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ARTICLE INFO ABSTRACT

Keywords: Heatwaves (HWs) are escalating in frequency and intensity, posing serious risks to human health, agriculture,
Bangladesh and infrastructure worldwide. However, the lack of a universally accepted definition of HWs complicates
Heat index

consistent characterization across regions. In Bangladesh, a subtropical country increasingly vulnerable to
o extreme heat, the dynamics of HWs remain insufficiently understood. This study aims to bridge that knowledge
Heatwave indices X . . . . .
Observational data gap by analyzing three decades of observational data to characterize HWs in Bangladesh, using ambient and
ERA5 apparent temperature metrics. Five HW indices were employed to assess 24-hour (EHF), daytime (CTX90pct,
TX90), and nocturnal (CTN90pct, TN90) HW patterns, with humidity effects incorporated through apparent
temperature-based indices. HWs were defined as events lasting at least three consecutive days, reflecting the
heightened health risks of prolonged exposure. HWs were evaluated in terms of frequency, duration, intensity,
and early onset patterns. Station-based observations were compared against corresponding estimates derived
from ERAS reanalysis data. The 90 percentile of daily temperature emerged as a robust operational threshold
for HW characterization in Bangladesh. Declines in temperature variability during HW events were linked to
reduced intensities for indices sensitive to short-term variability or independent of seasonality. Humidity exerted
a stronger influence on nocturnal HWs than on daytime events, while seasonal variations in temperature and
humidity during the pre- and post-monsoon periods significantly shaped HW characteristics. These findings
provide new insights into the spatiotemporal dynamics of HWs in Bangladesh, offering an evidence base to
inform adaptation strategies in other subtropical regions facing similar climate threats.
Practical implications: This study provides critical insights into the growing challenges of HWs in Bangladesh,
highlighting their increasing frequency, duration, intensity, and earlier onset. The findings underscore the
importance of adopting the 90™ percentile of daily temperature as a reliable threshold for HW characterization,
tailored to Bangladesh’s subtropical climate. The study reveals distinct regional and seasonal patterns, with
coastal areas experiencing prolonged HWs and humidity-driven nocturnal events, which significantly disrupt
nighttime recovery and productivity. Policymakers can leverage these insights to develop localized mitigation
strategies, such as early warning systems, urban heat management plans, and infrastructure adaptations to
reduce HW impacts. The results emphasize the role of humidity in intensifying heat stress, calling for integrated
approaches that consider both ambient temperature and apparent temperature metrics in HW assessments.
Furthermore, the methodology used in this study is transferable to other similar climatic contexts, making the
results valuable for informing policy in regions beyond Bangladesh that face comparable challenges. By
addressing gaps in observational data and incorporating indoor heat stress and continuous surface data in future
research, the findings offer a pathway to designing more robust climate resilience frameworks. These measures
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are essential for safeguarding vulnerable populations, ensuring public health, and minimizing socio-economic
losses from extreme heat events both locally and globally.

1. Introduction

Heatwaves (HWs) have emerged as a pressing global issue due to
their profound impacts on agriculture (Miralles et al., 2019; Miller et al.,
2021), ecosystems (Handmer et al., 2012; Li and Amatus, 2020), human
health (Dong et al., 2021; Ebi et al., 2021), labor efficiency (Yin et al.,
2020), and productivity (Garcia-Leon et al., 2021; Zhao et al., 2021).
The increasing frequency and intensity of HWs are strongly linked to
anthropogenic climate change, with projections suggesting even greater
severity and recurrence in the future (Jyoteeshkumar reddy, Perkins-
Kirkpatrick and Sharples, 2021; Kornhuber et al., 2024).

HWs were ranked as the 6 and 7™ most destructive natural disasters
globally during the first two decades of the 21% century (CRED and
UNDRR, 2020), during which there was a significant rise in the extent of
landmass experiencing extreme heat (Vogel et al., 2019). Extreme heat
events have led to substantial loss of life, accounting for 91 % of the total
natural hazards-related deaths between 2000 and 2019 (CRED and
UNDRR, 2020). In Europe, for instance, catastrophic HWs in 2003 and
2010 led to over 72,000 and 55,000 fatalities, respectively (Habeeb,
Vargo and Stone, 2015; CRED and UNDRR, 2020). In South Asia, the
2018 HWs in India severely impacted agrarian communities, causing
substantial damage to agricultural productivity (Vogel et al., 2019).

Bangladesh, as one of the most densely populated countries in the
world, is highly vulnerable to HWs (Kagawa, 2022), ranking second
globally in terms of human exposure to heat (Tuholske et al., 2021).
Prolonged HW episodes in Bangladesh from 2022 to 2024 have resulted
in significant health, infrastructural, and socio-economic challenges
(Mohammad and Weng, 2024). Various reports highlight increases in
morbidity (Mustajib, 2024) and mortality (Hossain and Manik, 2022),
elevated energy demands with frequent power outages (Mahmud, 202.3;
Paul and Varadhan, 2023), and damage to critical infrastructure such as
roads (Adhikary, 2024) and railways (Chowdhury, 2024) during HWs.
Other consequences include disruptions to education (Ng, 2024) and
severe water shortages (Nandy, 2024). The economic toll of heat stress
in Bangladesh is substantial, with an estimated annual per capita loss of
$281 (Bardhan et al., 2024).

Climate data from 2022 revealed July and August as having the
highest average monthly temperatures and lowest rainfall since 1989.
The capital, Dhaka, experienced a maximum temperature of 40.4 °C in
April 2022 (Majumder, 2024) and recorded the highest temperature of
40.6 °C since 1960 during the April 2023 HW (Zachariah et al., 2023).
April 2024 was documented as the hottest April on record (The Eco-
nomic Times, 2024), affecting over three-quarters of the country and
lasting for more than 25 consecutive days, the longest HW episode since
1948 (Islam, 2024). Between April 15, 2023, and April 15, 2024, 57 days
of extreme heat events were reported, which would have been four times
shorter without anthropogenic-influenced climate change (Nabil, 2024).
These extreme heat events are exacerbated by anthropogenic activities
that have contributed to a 2 °C rise in the heat index (HI) since 1950
(Zachariah et al., 2023). The mean temperature of Bangladesh has also
increased by 0.5 °C between 1976 and 2019 and is projected to rise by
2.4 °C by 2100 (Mahmud et al., 2021).

Despite the growing severity of HWs, research on their dynamics and
impacts in Bangladesh remains limited due to sparse observational data
(Alexander et al., 2006) and the lack of localized models for accurate
predictions (Nissan et al., 2017). Existing studies in Bangladesh often
focus on surface urban heat islands (SUHI) (Dewan et al., 2021) or
specific aspects of extreme heat episodes, such as extreme temperature
events (Abdullah et al., 2022), HW vulnerabilities (Adnan et al., 2024),
heat exposure (Yasumoto et al., 2019), and health impacts of heat stress
(Wu et al., 2018). However, most of these studies rely on remotely

sensed data, either as a proxy or as dry bulb temperature, overlooking
the combined effects of dry bulb air temperature and humidity, which
are critical in humid climatic regions (Mohammad and Weng, 2024).
Although humidity is essential to the understanding of HW impacts on
humans, as it significantly influences apparent heat stress, particularly
during extreme heat events (Fischer and Schar, 2010; Guo et al., 2024),
it remains inadequately addressed in HW definitions for Bangladesh.
The only exception is Nissan et al. (2017), who developed a public
health-focused HW definition using a regression model to link mortality
with HW variations.

Furthermore, past studies (Rahman et al., 2024) and the Bangladesh
Meteorological Department (BMD) predominantly rely on absolute
threshold measures (such as > 36 °C) for HW detection (Bangladesh Red
Crescent Society, 2021). While absolute thresholds are straightforward
and easy to interpret, they have significant limitations, including failure
to account for acclimatization, temperature variability, and seasonal
changes (Barriopedro et al., 2023). Studies using relative thresholds
have typically employed the 95 percentile of daily temperature to
define HWs in Bangladesh, without adequately assessing the suitability
of alternative percentiles, such as the 90 or 99™ (Nissan et al., 2017;
Wu et al., 2018). Moreover, as regional warming intensifies, the rele-
vance of relative thresholds may diminish, particularly in dry atmo-
spheric conditions that could exacerbate future extreme events.
Additionally, there is a notable gap in the literature addressing
nocturnal HWs, which are critical in evaluating the impact of heat stress
during nighttime recovery periods.

Given these gaps, a comprehensive study on HWs in Bangladesh is
essential, focusing on their characteristics, seasonality, and spatial dis-
tribution using in-situ observational data. Leveraging available obser-
vational records, this study aims to: (1) identify an appropriate
percentile temperature threshold for defining HWs; (2) evaluate HW
indices to characterize 24-hour, daytime, and nocturnal HWs, assessing
their frequency, duration, intensity, and early onset; and (3) analyze the
spatiotemporal distribution and trends of HWs across Bangladesh.

2. Materials and methods
2.1. Study area

Bangladesh is a densely populated South Asian country that faces
significant developmental challenges due to its unique geographical,
topographical, and climatic conditions. The country experiences a
monsoon-driven climate system, characterized by four distinct meteo-
rological seasons: a relatively dry and warm pre-monsoon (March-May),
a humid monsoon (June-September), a transitional post-monsoon
(October-November), and a dry, cool winter (December-February).
The humid monsoon season contributes over 70 % of the country’s
annual rainfall, while the pre-monsoon and post-monsoon periods are
marked by high temperature variability.

The country is highly susceptible to climate extremes, including
HWs, due to its dense population and limited adaptive capacity (Khan
et al., 2019). Its proximity to the Bay of Bengal significantly influences
its climatic patterns (Shetye et al., 1996), as the southerly and south-
westerly monsoon flows transport warm, humid air inland during
summer (Ehsan et al., 2023), increasing humidity and predisposing the
region to HWs and heat stress (Choi et al., 2021). Major metropolitan
areas, such as Dhaka, Chittagong, Khulna, Rajshahi, and Sylhet, are
particularly vulnerable to HWs. Factors contributing to this vulnera-
bility include elevated surface temperatures, rapid urbanization, an
increasing proportion of built-up areas, limited green spaces, and the
poor socioeconomic status of many residents (Adnan et al., 2024). These
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conditions exacerbate the impacts of HWs, making the need for localized
studies and adaptive measures increasingly urgent.

2.2. Data

This study utilized weather data from the BMD spanning a 30-year
period (1993-2022). Data were obtained from 33 meteorological sta-
tions, selected based on their availability and geographic distribution to
provide comprehensive national coverage (Fig. 1). Daily dry bulb air
temperature and average relative humidity (RH) data were collected.
For clarity, dry bulb air temperature is referred to as air temperature
(Tair) and includes minimum (Tp,in) and maximum temperatures (Tiax)-

To address missing data, the study employed Multiple Imputation by
Chained Equations (MICE), a robust statistical technique that imputes
missing values by generating multiple plausible estimates based on
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existing data (Zhang, 2016). This method constructs a prediction model
to fill gaps using seasonal and monthly patterns, ensuring that the
imputed values align with observed records (Abdullah et al., 2022). A
total of 30 imputed datasets were created using a Bayesian framework
and the predictive mean matching algorithm, which helps preserve data
integrity and variability (van Buuren, 2018). This gap-filling approach
ensured that missing values did not significantly bias the analysis or
compromise the quality of the results.

2.3. Methods

The methodology employed in this study is divided into two parts
(Fig. 2). First, the identification of HWs, which was carried out based on
(i) ambient and (ii) apparent temperatures. Here, T, was used as the
ambient temperature, while HI was used as the apparent temperature
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Fig. 1. Spatial distribution of the 33 weather stations considered in this study.



S. Chakma et al.

Climate Services 40 (2025) 100609

Tair
(daily min, max, mean)

RH

(daily records)

ERADS reanalysis
air temperature
(hourly records)

Y

Part 1 —

HI

(daily min, max, mean)

ERAS reanalysis
air temperature
(daily min, max, mean)

v

v

Part 2 < T

Trend analysis
(Mann-Kendall test)

—

Y
T, based Hl-based HW index
HW indices HW indices (EHF)
—
—
Y Y
HW metrics HW metrics

Validation

v

Trend analysis
(Mann-Kendall test)

Fig. 2. Schematic diagram illustrating the two-part methodology employed in this study: (1) identification of HWs using ambient and apparent temperatures and (2)
analysis of HW characteristics, including frequency, duration, intensity, and onset trends.

(Fischer and Schar, 2010). Five HW indices—Excess Heat Factor (EHF),
CTN9Opct, CTX90pct, TN90, and TX90—were used to identify HWs
based on both ambient and apparent temperatures.

Heat events defined using HI are referred to as humid heat events,
accounting for heat stress induced by humidity, which is reportedly
frequent in Bangladesh (Zachariah et al., 2023). The same five indices
noted earlier were calculated using HI to define HWs under humid
conditions and were denoted with a suffix “-HI” (e.g., EHF-HI,
CTN9Opct-HI, CTX90pct-HI, TN90-HI, and TX90-HI). A threshold of
three consecutive days was employed for all HW indices, meaning that a
high temperature persisting for at least three consecutive days was

considered a HW event. T, and RH records for the winter months
(December-February) were excluded from the analysis, as these months
are uncommon for exhibiting heat-related stress.

Second, six metrics were adopted to ascertain HW characteristics,
including frequency (HWN), duration (HWD, HWF), intensity (HWM,
HWA), and onset (HWT) of the events. The onset was calculated by
counting the number of days from March 1 (similar to the day of the
year) for each year. Trend analysis of these HW characteristics was
performed with the non-parametric Mann-Kendall test (Mann, 1945) in
conjunction with Sen’s slope estimator (Sen, 1968). Increasing or
decreasing trends in the onset indicated early or delayed HWs.

Table 1
HW indices and their calculation methods. All indices define a HW event as a period of at least three consecutive days meeting the specified criteria.

Index Type Input Calculation method Characteristics Corresponding HW
index for humid
condition*

EHF Composite Average EHF = EHIgg x max(1, EHI ) Detects HWs based on average ~ EHF-HI

index from Tair EHI; = 3-day average Tgir — 90" or 95‘hpercential of climate normal EHlLsig temperature and accounts for

average = 3-day average Ty, — 90 or 95™ percentile of climate normal deviation from climatological

temperature EHI,q = 3-day average T, — preceding 30-day average Toir percentile (EHI;) and
acclimatization (EHIge)

CTN9Opct  Nocturnal HW Trmin Tmin > 90™ percentile of 15-day moving window (15-day x 30 years = 450  Detects nighttime HWs CTN9Opct-HI

index values for each day) accounting for seasonality

CTX90pct Daytime HW Tmax Trmax > 90™ percentile of 15-day moving window (same as CTN90pct) Same as CTN90pct but for CTX90pct-HI

index daytime HWs

TN90 Nocturnal HW Tmin Tonin > 90 percentile of climate normal Detects nocturnal HWs TN90-HI

index exceeding climatological
percentile thresholds for
consecutive > 3 days

TX90 Daytime HW Tmax Tonax > 90" percentile of climate normal Same as TN90 but for daytime = TX90-HI

index HWs

* For HW indices that incorporate humidity, the input variable is Hl—such as daily average, minimum, maximum HI—rather than T,;.. All other aspects of the

calculation method remain the same as their corresponding T,;,-based indices.
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2.3.1. Identification of HWs from ambient and apparent temperatures

i) Ambient temperature-based HWs

HWs defined by ambient temperature were derived through the
direct use of T, in constructing the indices listed in Table 1.

EHF: The EHF (Nairn et al., 2009) is a quantitative metric used to
denote potential HW events by examining the deviation of the current 3-
day average temperature from both climatological normal (1993-2022)
and the preceding 30 days’ average temperature. The deviation from the
climatological normal provides a significance index (EHI;g), while the
deviation from the preceding 30 days’ average temperature yields an
acclimatization index (EHI,cq1). EHIsig uses an upper percentile figure,
typically the 9ot (Oliveira et al., 2022; Piticar, et al., 2018) or g5t
percentiles (Nairn et al., 2009; Tolika, 2019), from daily records over a
multi-decadal period to establish a reference value for the normal or
climate baseline. EHI, is particularly important from a human health
perspective, as its positive values indicate a sudden temperature change
to which humans may fail to acclimatize (Tolika, 2019). Both indices
measure temperature anomalies and are expressed in degrees Celsius,
providing insights into the severity of HWs and the associated risks they
pose to human and environmental systems (Nairn and Fawcett, 2014).
The EHF is a product of EHI;; and EHI,¢| (for more details, please see
Nairn et al. (2009)).

CTN90pct and CTX90pct: Two indices, CTN90pct and CTX90pct
(Perkins and Alexander, 2013), were used to determine nocturnal and
daytime HWs, respectively. CTN90pct relies on the percentile threshold
of Tpin from a 15-day moving window, while CTX90pct depends on the
percentile threshold of Tpax from the same 15-day moving window.
These moving windows around calendar days result in different
percentile thresholds for each calendar day, accounting for seasonality
(Perkins and Alexander, 2013). For 30 years of data used, percentile
thresholds for each calendar day were calculated from 150 (15 x 30)
daily records (Zhang et al., 2005; Fischer and Schar, 2010).

While the adverse health impacts of extreme daytime heat are well-
documented, recent studies have highlighted the growing risks of
nighttime heat (Wu et al., 2023). This study included nocturnal HWs in
the analysis, as limited research has explored their mechanisms (Luo
et al,, 2022; Thomas, et al., 2020), particularly in the context of
Bangladesh.

TN90 and TX90: The likelihood of extremely high temperatures
increases in regions that frequently surpass historical temperature re-
cords (Yin et al., 2020). Therefore, this study used climatological
percentile thresholds to define nocturnal and daytime HWs using TN90
and TX90 indices for comparison with historical records. For TN90, any
hot spell exceeding the percentile threshold, calculated from the daily
Tmin of 30 years, was registered as an HW event. TX90 was calculated
using the same methodology, but Ty« values were used.

ii) Apparent (perceived) temperature-based HWs

HI: The HI evaluates apparent or human-perceived temperature,
representing heat stress felt in shaded conditions (Steadman, 1979). It
was calculated by combining T,i, with RH (Fischer and Schar, 2010),
following the National Oceanic and Atmospheric Administration
(NOAA) guidelines  (https://www.wpc.ncep.noaa.gov/html/heati
ndex_equation.shtml).

HWs from HI: The subtropical climate of Bangladesh necessitates
considering both air temperature and humidity to accurately assess heat
stress in humid conditions. Accordingly, daily average, minimum, and
maximum HI values were incorporated into the HW indices, denoted as
EHF-HI, CTN9Opct-HI, CTX90pct-HI, TN90-HI, and TX90-HI. The
methodologies for estimating these indices mirror those of their ambient
temperature counterparts (EHF, CTN9Opct, CTX90pct, TN90, and
TX90), with the only difference being the use of HI as the input
parameter.

2.3.2. Characterizing HWs
To characterize HW events, six HW metrics (Perkins and Alexander,
2013) were calculated (Table 2). These metrics were summarized on a

Climate Services 40 (2025) 100609

Table 2

HW metrics used for characterizing HW events.
HW metric Characteristics Unit
HW number The frequency of HW events. Event

(HWN)

HW duration The number of days for the longest HW day

(HWD) event.

HW frequency The sum of all frequencies of HW days. day
sum (HWF)
HW magnitude Average intensity of HWs.

(HWM) °C2 for only
Calculated based on anomaly from the EHF and EHF-
threshold. HI

HW amplitude The maximum intensity of HWs or the
(HWA) intensity of the hottest HW event. °C for all other
indices
Calculated based on anomaly from the
threshold.
HW timing First HW event’s timing or onset. Day of the year
(HWT)

Considered from the first annual day of a
specific time/season, revealing onset
pattern. In this study, HWT is relative to
March 1 for a year is considered.

monthly, seasonal, and annual basis, as well as for the entire study
period (1993-2023) for each ground station. The spatial distribution of
the metrics was evaluated by computing the mean over the entire study
period, while the temporal distribution was reported as monthly, sea-
sonal, and annual summaries.

2.3.3. Trend detection

The statistical significance of the trends was assessed using the
Mann-Kendall test, available in the pyMannKendall Python package
(Hussain and Mahmud, 2019). The Mann-Kendall test is a non-
parametric method that tests for the presence of a monotonic trend,
considering the rank correlation of observations. In addition, the
magnitude of the monotonic trend was determined using Sen’s slope
(Sen, 1968). The non-parametric Sen slope estimator was applied to
identify temporal trends in the HW metrics.

2.3.4. Validation with ERA5 reanalysis data

To validate the results from observational Ty;;, ERAS reanalysis data
for 2-m T, was used (Hersbach et al., 2020). Hourly ERAS5 reanalysis
data covering all of Bangladesh was obtained from the Copernicus
Climate Data Store (Copernicus Climate Data Store, 2018). Daily Tmax
and Tp, temperatures were resampled from the hourly data using the
xarray Python package (Hoyer et al., 2023). The Python tool ehfheat-
waves (Loughran, 2021) was used to retrieve daily EHF scores. When
applied to ERAS reanalysis data, the tool generates three outputs:

i) EHF: EHF scores for each day.
ii) events: Binary values indicating whether the EHF score exceeded
zero, signifying a HW event.
iii) ends: The duration of HW events, starting from their date of
onset.

Using the retrieved EHF and ends variables from the ehfheatwaves
tool, six HW metrics were calculated (Table 2). Pearson’s correlation
was used to calculate the correlation coefficients between the ERAS
reanalysis data and the station-observed metrics.

3. Results

3.1. Heatwave events

The findings of this study revealed a distinct difference between the
two HW thresholds (e.g., 90" and 95 percentiles) in identifying HW
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events, regardless of whether T, or Hl-based indices were used. A
comparison of linear trends and interannual variations of the metrics
derived from T, (Fig. 3) and HI (Fig. S1, supplementary document)
indicated that the 90t percentile was more suitable for capturing the
frequency of HW events across the country. HW indices based on the
90t percentile consistently detected a considerable number of measur-
able events.

In contrast, the 957 percentile threshold failed to clearly identify HW
events when acclimatization and seasonal cycles were considered,
particularly with HI-based indices (Fig. S1(a), supplementary docu-
ment). For instance, no HW events were detected in 2007 using the
CTX90pct-HI index, and in 1993 and 2018 using the CTN90pct-HI index.
Additionally, the CTX90pct-HI and TX90-HI indices identified only one
HW event per year. Metrics related to intensity (HWM and HWA) and
onset (HWT) were not effective in determining the most appropriate
percentile thresholds, as they exhibited identical interannual variations

(a) HWN EHF CTN90pct

CTX90pct

Climate Services 40 (2025) 100609
and linear trends (see Fig. 3(d-f) and Supplementary Fig. S1(d-f)).

3.1.1. Monthly and seasonal distribution of HWs

Fig. 4 and Fig. 5 exhibit the monthly distribution of HW events and
HW days derived from various indices. Both figures demonstrate similar
patterns and distributions; however, the total HW days (Fig. 5) show
greater variability compared to the total HW events (Fig. 4). This vari-
ability highlights disparities in the number of HW events and days across
different regions of Bangladesh. The monthly distribution of total HW
events and days suggests an earlier onset of T,y —based HWs compared
to HI-based HWs. This distinction is particularly evident in indices such
as EHF, TN90, TX90, and their HI-based counterparts. Notably, the HI-
based CTN90pct and CTX90pct indices indicate an increased number
of HW events (Fig. 4(d-f)) and HW days (Fig. 5(d-f)) in November,
reflecting a significant percentage of events occurring during the post-
monsoon months (Fig. 6).

TN9O TX90

2000 2010 2020 2000 2010 2020

—— 90pct ---- Linear trend (90pct)

2000

50+

2010 2020 2000 2010 2020 2000 2010 2020

—— 95pct ---- Linear trend (95pct)

Fig. 3. HW metrics derived from 90 and 95" percentiles of T,;;. CTN90pt and CTX90pct used a 15-day window of daily Tmin and Tpax across the study period
(1993-2022), accounting for seasonality, while TN90 and TX90 indices used climatological percentile thresholds. The HW metrics are: (a) HWN, (b) HWD, (c) HWF,

(d) HWM, (e) HWA, and (f) HWT.
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When analyzing the average monthly duration of HWs across
Bangladesh, April exhibited the highest annual average duration for Ty,
based indices (Supplementary Fig. S2(a)). For instance, the TN90-HI
index also indicated the longest HW duration in April, with an
average of 4.88 days per year, coinciding with relatively low average RH
of 75.79 % (Supplementary Fig. S2(b-c)). HI-based indices, however,
displayed the longest HW durations in different months: May (6.30
days/year) for EHF-HI and November (4.52 and 3.70 days/year) for
CTN9Opct-HI and CTX90pct-HI, respectively. As humidity increased
during the later part of summer, when T, remained high and the
diurnal temperature range (DTR) narrowed (Supplementary Fig. S2(c)),
fluctuations in T,i, were found to influence DTR.

A seasonal shift in the percentage of HW events was observed when
humidity was considered (Fig. 6). Using climatological thresholds,
daytime HWs (TX90) were more prevalent (68.39 %) during the pre-

monsoon season, whereas nocturnal HWs were predominantly recor-
ded during the monsoon (TN90 69.18 % and TN90-HI 88.39 %). A more
balanced distribution of HW events between the pre-monsoon and
monsoon seasons was observed for EHF, CTN90pct, and CTX90pct
indices. In contrast, HI-based indices exhibited a greater disparity in HW
events between the two seasons.

3.1.2. Interannual changes in HW metrics and trend assessment

Fig. 7 illustrates interannual changes in HW metrics, highlighting
some differences in HWN for Ty;-based indices. HI-based indices, except
for EHF-HI, showed notable deviations from their T,j-based counter-
parts. Both EHF and EHF-HI demonstrated similar patterns in terms of
frequency (HWN), duration (HWD), and frequency-weighted duration
(HWF). When seasonality was accounted for, nocturnal HI-based fre-
quency (CTN9Opct-HI) exhibited greater interannual fluctuations
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Fig. 5. Total HW days at each weather station. Each dot represents the total HW days observed.

compared to daytime HWs, a trend that also persisted in the duration
metrics for nocturnal HWs. Hl-based indices, excluding TX90-HI, dis-
played similar but more pronounced fluctuations in HW intensity met-
rics compared to their T,i-based counterparts (Fig. 7(d-e)). The linear
trend in HWT (Fig. 7(f)) suggested an earlier onset of HW events in
recent years across most indices. However, the linear trends for
CTX90pct-HI indicated a delayed onset of HWs.

The Mann-Kendall test revealed a significant increasing trend in
HWN across all indices, except for CTN90pct-HI, CTX90pct-HI, and
TN9O0-HI (Table 3). For HW duration, indices such as CTN90pct,
CTN9Opct-HI, CTX90pct-HI, and TN90-HI showed no statistically sig-
nificant trends. Similarly, no statistically significant trends were
observed in intensity metrics or onset timing, except for the average
intensity (HWM) derived from the EHF index.

3.2. Spatial distribution and HW trends

Fig. 8 illustrates the spatial distribution of HW metrics derived from
EHF. The HWN and HWD metrics display contrasting patterns across the
country (Fig. 8(a-b)). The northeast region experienced a higher fre-
quency of HW events, while longer durations were observed in the
southwest. Similar spatial distributions were noted for HWN in both Tpj;-
based and their HI-based HW indices (Fig. 8; Supplementary Fig. S3-
S11), although the HI-based indices exhibited more pronounced clus-
tering. The HWD (longest duration) patterns for 24-hour HWs derived
from both T,;- and HI-based indices were comparable, but notable dif-
ferences emerged for daytime and nocturnal HWs. A consistent increase
in HW duration (HWD, HWF) was evident from the northeast to
southwest, including coastal stations, for daytime HWs (Supplementary
Figs. S6 and S10). In contrast, HI-based nocturnal HWs (CTN90pct-HI,
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TN90-HI) displayed opposing spatial patterns, while Tg;-based
nocturnal HWs showed extended durations in coastal stations
(Supplementary Figs. S5-S6 and S9-S10).

Metrics for intensity (HWM and HWA) were consistently higher in
the western regions for both EHF and EHF-HI, especially at stations like
Rajshabhi, Ishurdi, and Chuadanga (Fig. 8 and Supplementary Fig. S3). A
similar pattern emerged for daytime HWs (CTX90pct, CTX90pct-HI,
TX90), except for TX90-HI. Among the 33 stations analyzed, Hatiya
and Sylhet recorded the highest intensity magnitudes (1.56 °C and
1.41 °C) and amplitudes (2.46 °C and 2.17 °C, respectively). Coastal
stations generally had lower HW onset (HWT) values compared to
inland stations for all indices except CTX90pct-HI (Supplementary
Fig. S7(f)). This north-south distinction was most pronounced in
nocturnal HWs derived from TN90 (Supplementary Fig. S8(f)).

A significant upward trend in HW frequency (HWN) and duration
(HWD, HWF) was observed across many stations (Fig. 9 and Supple-
mentary Figs. §12-S20). Ty-based daytime HWs that accounted for
seasonality showed significantly increasing trends in frequency and
duration at many stations, surpassing trends observed for nocturnal HWs
(Supplementary Figs. S13(a-c) and S15(a-c)). Contrasting patterns were
observed when wusing climatological percentile thresholds
(Supplementary Figs. S17 and S19). Increasing intensity trends (HWM
and HWA) for daytime HWs (CTX90pct, TX90) were primarily noted in
coastal and northeastern stations, notably Sylhet and Srimangal
(Supplementary Figs. S15(d-e) and S19(d-e)). Meanwhile, nocturnal
HWs (CTN90pct, TN90) exhibited either no trend or decreasing trends in
most coastal stations (Supplementary Figs. S13(d-e) and S17(d-e)).

Hl-based HW indices, apart from EHF-HI, showed limited trends in
frequency and duration at most stations. The onset (HWT) of HWs
clustered in coastal regions for all indices except EHF-HI, CTN90pct-HI,
and CTX90pct-HI. Since HI-based indices incorporated RH, the onset of
HW events was associated with rising humidity levels, typically occur-
ring towards the end of the summer season (Supplementary Fig. S2(c)).
Increasing trends indicated a delayed onset for both T,j, and HI-based
indices. More stations exhibited increasing trends in HWT derived
from HI-based nocturnal HWs (Supplementary Figs. S14(f) and S18(f)),
suggesting delayed onsets driven by higher RH and drier summers in
recent years (Supplementary Figs. S13(f) and S17(f)).

3.3. Comparison with ERA5 reanalysis product

The HW metrics derived from ERAS data exhibited spatial patterns
similar to those obtained from station-based observations (Fig. 10).

Additionally, the spatial distribution of trends and slopes showed a
strong resemblance between the two datasets (Supplementary Fig. S21).

When comparing annual average metrics and their trends, HW in-
tensity (HWM and HWA) demonstrated high consistency between ERAS
reanalysis and observational data (Fig. 11). Other metrics displayed
similar linear trends, except for HW onset (HWT). In the ERAS dataset,
HWT showed an increasing trend, indicating a tendency for the first HW
event to occur later in the year.

Pearson’s correlation analysis revealed statistically significant cor-
relation coefficients exceeding 0.5 for all metrics (Fig. 12). Notably, the
EHI, metric exhibited a declining trend, which can be attributed to the
limited temperature variability observed over short periods or seasons
(Supplementary Fig. S22). EHF-based measures similarly indicated a
decline in spatial variability of temperature across stations
(Supplementary Fig. S23(a)) and a reduction in temporal variability of
both DTR and average Ty during HW events (Supplementary Fig. S23
(b)). Lower EHI, scores, coupled with rising HWN, HWD, and HWF,
point to an ongoing shift toward prolonged warmer seasons, a trend that
heightens heat stress risks for both human health and environmental
systems.

4. Discussion

HWs are among the most destructive natural hazards globally.
However, characterizing their impacts remains challenging due to the
absence of a universally accepted definition (Jyoteeshkumar reddy
et al., 2021; Marx et al., 2021; Tong et al., 2015). This study analyzed
HW frequency, duration, intensity, and onset across Bangladesh,
focusing on spatiotemporal distribution and trends using a range of
indices. Five HW indices were employed to capture 24-hour (EHF),
daytime (CTX90pct, TX90), and nocturnal (CTN90pct, TN90) heatwave
patterns. Observational data from weather stations were compared
against estimates derived from ERA5 reanalysis data. Results indicate
that the 90" percentile of daily temperature serves as a reliable opera-
tional threshold for HW characterization in Bangladesh.

Due to the subtropical climate and low temperature variability in
Bangladesh, higher thresholds—such as the 95% percentile—fail to
effectively capture HW events. For instance, HW duration (HWD) from
TX90-HI at the 95" percentile yielded comparable results to Nissan et al.
(2017), yet produced too few measurable events for HW frequency and
duration (Fig. 3 (a—c); Supplementary Fig. S1). Similar conclusions were
drawn by Perkins and Alexander (2013) in Australia, who favored goth
percentile threshold for CTX90pct and CTN90pct. Prior research
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Table 3
Trend of HW metrics at the annual scale.
Metric EHF EHF-HI CTN9Opct CTN9Opct-HI CTX90-pet CTX90pct-HI TN9O TN9O-HI TX90 TX90-HI
HWN 0.152%* 0.176* 0.045* —0.012 0.099* 0.012 0.106* —0.017 0.109* 0.022*
HWD 0.187* 0.166* 0.018 —0.021 0.062* 0.001 0.07 —0.013 0.117 ~0.002
HWF 0.882* 1.053* 0.126 —0.072 0.402* 0.036 0.51% -0.071 0.576* 0.062*
HWM —0.022* ~0.173* —0.005 —0.006 —0.004 0.008 —0.002 0.002 —0.004 0.0003
HWA ~0.013 -0.113 0.004 ~0.021 0.011 0.029 0.004 0.001 0.004 0.001
HWT -0.371 —0.321 —0.699 -0.571 —0.234 0.809 —0.608 0.019 —0.461 —0.509

*significant at p < 0.05.

underscores the need for region-specific HW thresholds (Piticar et al.,
2018; Hulley, Dousset and Kahn, 2020; Mohammad and Weng, 2024).
Thresholds below the 90 percentile, such as the 85“‘, tend to over-
estimate HW occurrences, reinforcing the 9ot percentile as a balanced
and suitable choice—consistent with findings in the One Belt One Road
region (Yin, et al., 2020).
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Most HWs were observed during the summer and monsoon seasons,
with a higher concentration in summer for indices such as CTN90pct,
CTN90pct-HI, and CTX90pct-HI (Fig. 6). This aligns with higher vari-
ability in T,y and RH during these periods (Supplementary Fig. S2;
Table S1). April, marked by peak Tmax (Supplementary Fig. S2(c)),
recorded the longest HW durations, consistent with Zachariah et al.
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(2023). Indices that incorporate seasonality (CTX90pct, CTN90pct, and
their HI-based variants) were more responsive to changes in Tpi; and RH,
as well as DTR. In contrast, the monsoon season—with lower intra-
seasonal Ty and RH variability (Supplementary Fig. S2; Table S1)—
exhibited fewer HW events (Fig. 4) and days (Fig. 5). Similarly, EHF-
based indices, which account for prior temperature anomalies, were
less sensitive to short-term variability and reflected broader seasonal
Tmax trends (Supplementary Fig. S2(c)).

Daytime and nocturnal HWs showed distinct temporal patterns.
March and November, which typically experience cooler nights (lower
Tmin), showed limited variability in TN90-based HW events (Fig. 4(g);
Fig. 5(g)). This effect extended to EHF and EHF-HI indices, which also
demonstrated lower variability. Daytime HWs (TX90) were concen-
trated in summer, consistent with Nissan et al. (2017), while nocturnal
HWs were moderately distributed during monsoon months (Fig. 4(g-h);
Fig. 5(g-h)). This suggests that although nights in the monsoon season
are warmer than in other periods, they still provide some relief after hot
days. However, the persistence of high humidity at night, particularly in
monsoon months, can impair nighttime recovery and reduce produc-
tivity (Adnan et al., 2024).

The comparison between Tyi-based and HI-based indices revealed
important distinctions. While EHF-HI closely mirrored T,i-based EHF in
terms of frequency (HWN) and duration (HWD, HDF), other HI-based
indices (CTN9O0pct-HI, CTX90pct-HI) showed lower variability and

displayed declining trends, suggesting reduced atmospheric moisture in
recent years (Imran et al., 2023). For example, HWN from CTN90pct-HI
showed less interannual fluctuation and a downward trend, in contrast
to the upward trend observed in CTN90pct. These differences likely stem
from variations in RH within the 15-day seasonal windows used in these
indices. Moreover, recent studies indicate a positive association between
daytime HWs and increased land moisture outflows (Wu et al., 2023).
Spatial differences in HW trends and intensities were also evident
(Fig. 8). Inland areas showed variability between eastern and western
zones, potentially due to the presence of wetlands, river networks,
higher rainfall, and the small hills of northeastern Bangladesh—factors
that can moderate HW impacts and lead to shorter, more frequent events
(Adnan et al., 2024). Coastal areas experienced longer HW durations,
suggesting sea surface temperatures (SSTs) may play a role (Raja et al.,
2021). Coastal Bangladesh is generally warmer—especially in winter-
—compared to inland regions (Abdullah et al., 2022). Higher HW fre-
quency and duration in coastal regions, particularly for nocturnal and
daytime HWs (e.g., CTN90pct, TN90, TX90), suggest coastal proximity
amplifies nocturnal HW events. A similar trend was observed for HW
onset (HWT), which occurred earlier in coastal areas than inland, based
on both observation (Fig. 8(f) and Fig. 9(f)) and ERAS data (Fig. 10(f)
and Supplementary Fig. S21(f)). One likely explanation is the warming
influence of SSTs in contrast with the cooler inland winds during the
winter-to-summer transition (Rahman et al., 2024). Further
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investigation into local and regional atmospheric circulation is war-
ranted. For example, Luo et al. (2025) and Wu et al. (2023) reported that
daytime HWs are associated with reduced cloud cover, while nocturnal
HWs correlate with increased cloud cover. The former enhances solar
radiation and reduces humidity, while the latter increases longwave
radiation, intensifying nighttime warming.

Expected discrepancies in HW measures across indices reflect dif-
ferences in their mathematical structures, input variables, and threshold
criteria. Metrics using maximum, minimum, or mean temperatures—a-
long with differing durations and baselines—led to varied HW charac-
terizations. These differences produced some surprising results, such as
declining trends in HW intensity, particularly HWM (Fig. 6 & Table 3).
This is consistent with Perkins and Alexander (2013), who reported
similar trends in tropical northern Australia and attributed them to low
seasonal variability in temperature. These findings reinforce the
importance of using multiple indices to ensure a comprehensive un-
derstanding of HW behavior. Each index captured unique dimensions of
HWs, and their combined use helped elucidate broader spatial and
temporal patterns. Among them, EHF, TN90, TX90, and their HI-based
variants were most effective, while CTX90pct and CTN9O0pct (and
their HI versions) underperformed during the monsoon season, likely
due to limited seasonal temperature variability in the region.

The reliability of HW measures also depends on the quality and
spatial coverage of weather stations. Geographic variations in HW
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characteristics are influenced by topography, surface processes, and
human activities. The uneven distribution of stations in Bangladesh may
have introduced some bias. Future studies should consider using
continuous surface datasets, such as satellite-based products, to over-
come these limitations. Additionally, using daily average RH with Tpax
and Tpin to calculate HI may underestimate HI-based HWs. Incorpo-
rating daily maximum and minimum RH would likely improve accuracy.
Moreover, the HI metric does not account for indoor heat stress, which
poses significant risks, especially in densely built urban environments
with poor ventilation. Future research should integrate indoor temper-
ature records and HW event timestamps to assess indoor exposure and
its health implications. These insights would support the development of
targeted adaptation strategies for vulnerable populations.

Recent studies have also highlighted the increasing frequency and
severity of compound heatwaves—events characterized by concurrent
extreme daytime and nighttime temperatures over multiple days (Wang
et al., 2020; Zhang et al., 2022; Wu et al., 2023; Luo et al., 2025). Such
events are particularly dangerous due to the lack of nocturnal cooling,
which prevents physiological recovery and elevates health risks.
Although the present study examined daytime and nocturnal HWs
separately, it did not incorporate compound HW metrics into the anal-
ysis. Future research should explicitly identify and assess compound
HWs using integrated metrics that capture both T, and T extremes
within the same diurnal cycle. This would provide a more holistic
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understanding of HW impacts in Bangladesh’s subtropical context,
especially given rising humidity and nighttime temperatures. Addi-
tionally, investigating the atmospheric and land-surface drivers of
compound HWs could yield valuable insights into their formation and
persistence.

5. Conclusion

This study applied five heatwave (HW) indices—covering 24-hour
(EHF), daytime (CTX90pct, TX90), and nocturnal (CTN90pct, TN90)
events—to analyze HW frequency, duration, intensity, and onset across
Bangladesh using both ambient and apparent temperature data. The goth
percentile emerged as the most suitable threshold for HW character-
ization in the country. However, EHF-based intensity values should be
interpreted cautiously, as persistently high baseline temperatures can
yield low magnitude estimates. Across indices, declining intensity trends
and reduced temperature variability at both national and station scales
point to a warmer, more stable, and uniform thermal regime. Simulta-
neously, the consistent advancement in HW onset dates signals an
alarming shift toward earlier extreme heat events. Rising trends in HW
frequency and duration underscore the urgency of implementing effec-
tive heat-risk mitigation measures.

Spatiotemporal analyses revealed that April consistently experienced
the longest HW durations, while summer recorded the highest frequency
and persistence of events. Coastal and inland areas, as well as eastern
and western regions, displayed distinct HW characteristics, reflecting
the influence of geography, climate variability, and local environmental
factors. The increasing prevalence of both daytime and nocturnal
HWs—coupled  with  shorter  recovery  periods between
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events—amplifies risks to human health, productivity, and overall
resilience.

In summary, HWs in Bangladesh are becoming more frequent, longer
lasting, and occurring earlier in the year, with pronounced regional
disparities in their manifestation. These trends present significant public
health and socioeconomic challenges. Future research should integrate
high-resolution continuous datasets, such as satellite-based observa-
tions, and account for indoor heat stress to better capture the full
spectrum of HW impacts. Such efforts will provide critical evidence to
inform targeted interventions, strengthen early warning systems, and
build climate resilience in vulnerable communities.
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