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A B S T R A C T

Heatwaves (HWs) are escalating in frequency and intensity, posing serious risks to human health, agriculture, 
and infrastructure worldwide. However, the lack of a universally accepted definition of HWs complicates 
consistent characterization across regions. In Bangladesh, a subtropical country increasingly vulnerable to 
extreme heat, the dynamics of HWs remain insufficiently understood. This study aims to bridge that knowledge 
gap by analyzing three decades of observational data to characterize HWs in Bangladesh, using ambient and 
apparent temperature metrics. Five HW indices were employed to assess 24-hour (EHF), daytime (CTX90pct, 
TX90), and nocturnal (CTN90pct, TN90) HW patterns, with humidity effects incorporated through apparent 
temperature-based indices. HWs were defined as events lasting at least three consecutive days, reflecting the 
heightened health risks of prolonged exposure. HWs were evaluated in terms of frequency, duration, intensity, 
and early onset patterns. Station-based observations were compared against corresponding estimates derived 
from ERA5 reanalysis data. The 90th percentile of daily temperature emerged as a robust operational threshold 
for HW characterization in Bangladesh. Declines in temperature variability during HW events were linked to 
reduced intensities for indices sensitive to short-term variability or independent of seasonality. Humidity exerted 
a stronger influence on nocturnal HWs than on daytime events, while seasonal variations in temperature and 
humidity during the pre- and post-monsoon periods significantly shaped HW characteristics. These findings 
provide new insights into the spatiotemporal dynamics of HWs in Bangladesh, offering an evidence base to 
inform adaptation strategies in other subtropical regions facing similar climate threats.
Practical implications: This study provides critical insights into the growing challenges of HWs in Bangladesh, 
highlighting their increasing frequency, duration, intensity, and earlier onset. The findings underscore the 
importance of adopting the 90th percentile of daily temperature as a reliable threshold for HW characterization, 
tailored to Bangladesh’s subtropical climate. The study reveals distinct regional and seasonal patterns, with 
coastal areas experiencing prolonged HWs and humidity-driven nocturnal events, which significantly disrupt 
nighttime recovery and productivity. Policymakers can leverage these insights to develop localized mitigation 
strategies, such as early warning systems, urban heat management plans, and infrastructure adaptations to 
reduce HW impacts. The results emphasize the role of humidity in intensifying heat stress, calling for integrated 
approaches that consider both ambient temperature and apparent temperature metrics in HW assessments. 
Furthermore, the methodology used in this study is transferable to other similar climatic contexts, making the 
results valuable for informing policy in regions beyond Bangladesh that face comparable challenges. By 
addressing gaps in observational data and incorporating indoor heat stress and continuous surface data in future 
research, the findings offer a pathway to designing more robust climate resilience frameworks. These measures 
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are essential for safeguarding vulnerable populations, ensuring public health, and minimizing socio-economic 
losses from extreme heat events both locally and globally.

1. Introduction

Heatwaves (HWs) have emerged as a pressing global issue due to 
their profound impacts on agriculture (Miralles et al., 2019; Miller et al., 
2021), ecosystems (Handmer et al., 2012; Li and Amatus, 2020), human 
health (Dong et al., 2021; Ebi et al., 2021), labor efficiency (Yin et al., 
2020), and productivity (García-León et al., 2021; Zhao et al., 2021). 
The increasing frequency and intensity of HWs are strongly linked to 
anthropogenic climate change, with projections suggesting even greater 
severity and recurrence in the future (Jyoteeshkumar reddy, Perkins- 
Kirkpatrick and Sharples, 2021; Kornhuber et al., 2024).

HWs were ranked as the 6th and 7th most destructive natural disasters 
globally during the first two decades of the 21st century (CRED and 
UNDRR, 2020), during which there was a significant rise in the extent of 
landmass experiencing extreme heat (Vogel et al., 2019). Extreme heat 
events have led to substantial loss of life, accounting for 91 % of the total 
natural hazards-related deaths between 2000 and 2019 (CRED and 
UNDRR, 2020). In Europe, for instance, catastrophic HWs in 2003 and 
2010 led to over 72,000 and 55,000 fatalities, respectively (Habeeb, 
Vargo and Stone, 2015; CRED and UNDRR, 2020). In South Asia, the 
2018 HWs in India severely impacted agrarian communities, causing 
substantial damage to agricultural productivity (Vogel et al., 2019).

Bangladesh, as one of the most densely populated countries in the 
world, is highly vulnerable to HWs (Kagawa, 2022), ranking second 
globally in terms of human exposure to heat (Tuholske et al., 2021). 
Prolonged HW episodes in Bangladesh from 2022 to 2024 have resulted 
in significant health, infrastructural, and socio-economic challenges 
(Mohammad and Weng, 2024). Various reports highlight increases in 
morbidity (Mustajib, 2024) and mortality (Hossain and Manik, 2022), 
elevated energy demands with frequent power outages (Mahmud, 2023; 
Paul and Varadhan, 2023), and damage to critical infrastructure such as 
roads (Adhikary, 2024) and railways (Chowdhury, 2024) during HWs. 
Other consequences include disruptions to education (Ng, 2024) and 
severe water shortages (Nandy, 2024). The economic toll of heat stress 
in Bangladesh is substantial, with an estimated annual per capita loss of 
$281 (Bardhan et al., 2024).

Climate data from 2022 revealed July and August as having the 
highest average monthly temperatures and lowest rainfall since 1989. 
The capital, Dhaka, experienced a maximum temperature of 40.4 ◦C in 
April 2022 (Majumder, 2024) and recorded the highest temperature of 
40.6 ◦C since 1960 during the April 2023 HW (Zachariah et al., 2023). 
April 2024 was documented as the hottest April on record (The Eco
nomic Times, 2024), affecting over three-quarters of the country and 
lasting for more than 25 consecutive days, the longest HW episode since 
1948 (Islam, 2024). Between April 15, 2023, and April 15, 2024, 57 days 
of extreme heat events were reported, which would have been four times 
shorter without anthropogenic-influenced climate change (Nabil, 2024). 
These extreme heat events are exacerbated by anthropogenic activities 
that have contributed to a 2 ◦C rise in the heat index (HI) since 1950 
(Zachariah et al., 2023). The mean temperature of Bangladesh has also 
increased by 0.5 ◦C between 1976 and 2019 and is projected to rise by 
2.4 ◦C by 2100 (Mahmud et al., 2021).

Despite the growing severity of HWs, research on their dynamics and 
impacts in Bangladesh remains limited due to sparse observational data 
(Alexander et al., 2006) and the lack of localized models for accurate 
predictions (Nissan et al., 2017). Existing studies in Bangladesh often 
focus on surface urban heat islands (SUHI) (Dewan et al., 2021) or 
specific aspects of extreme heat episodes, such as extreme temperature 
events (Abdullah et al., 2022), HW vulnerabilities (Adnan et al., 2024), 
heat exposure (Yasumoto et al., 2019), and health impacts of heat stress 
(Wu et al., 2018). However, most of these studies rely on remotely 

sensed data, either as a proxy or as dry bulb temperature, overlooking 
the combined effects of dry bulb air temperature and humidity, which 
are critical in humid climatic regions (Mohammad and Weng, 2024). 
Although humidity is essential to the understanding of HW impacts on 
humans, as it significantly influences apparent heat stress, particularly 
during extreme heat events (Fischer and Schär, 2010; Guo et al., 2024), 
it remains inadequately addressed in HW definitions for Bangladesh. 
The only exception is Nissan et al. (2017), who developed a public 
health-focused HW definition using a regression model to link mortality 
with HW variations.

Furthermore, past studies (Rahman et al., 2024) and the Bangladesh 
Meteorological Department (BMD) predominantly rely on absolute 
threshold measures (such as ≥ 36 ◦C) for HW detection (Bangladesh Red 
Crescent Society, 2021). While absolute thresholds are straightforward 
and easy to interpret, they have significant limitations, including failure 
to account for acclimatization, temperature variability, and seasonal 
changes (Barriopedro et al., 2023). Studies using relative thresholds 
have typically employed the 95th percentile of daily temperature to 
define HWs in Bangladesh, without adequately assessing the suitability 
of alternative percentiles, such as the 90th or 99th (Nissan et al., 2017; 
Wu et al., 2018). Moreover, as regional warming intensifies, the rele
vance of relative thresholds may diminish, particularly in dry atmo
spheric conditions that could exacerbate future extreme events. 
Additionally, there is a notable gap in the literature addressing 
nocturnal HWs, which are critical in evaluating the impact of heat stress 
during nighttime recovery periods.

Given these gaps, a comprehensive study on HWs in Bangladesh is 
essential, focusing on their characteristics, seasonality, and spatial dis
tribution using in-situ observational data. Leveraging available obser
vational records, this study aims to: (1) identify an appropriate 
percentile temperature threshold for defining HWs; (2) evaluate HW 
indices to characterize 24-hour, daytime, and nocturnal HWs, assessing 
their frequency, duration, intensity, and early onset; and (3) analyze the 
spatiotemporal distribution and trends of HWs across Bangladesh.

2. Materials and methods

2.1. Study area

Bangladesh is a densely populated South Asian country that faces 
significant developmental challenges due to its unique geographical, 
topographical, and climatic conditions. The country experiences a 
monsoon-driven climate system, characterized by four distinct meteo
rological seasons: a relatively dry and warm pre-monsoon (March–May), 
a humid monsoon (June–September), a transitional post-monsoon 
(October–November), and a dry, cool winter (December–February). 
The humid monsoon season contributes over 70 % of the country’s 
annual rainfall, while the pre-monsoon and post-monsoon periods are 
marked by high temperature variability.

The country is highly susceptible to climate extremes, including 
HWs, due to its dense population and limited adaptive capacity (Khan 
et al., 2019). Its proximity to the Bay of Bengal significantly influences 
its climatic patterns (Shetye et al., 1996), as the southerly and south
westerly monsoon flows transport warm, humid air inland during 
summer (Ehsan et al., 2023), increasing humidity and predisposing the 
region to HWs and heat stress (Choi et al., 2021). Major metropolitan 
areas, such as Dhaka, Chittagong, Khulna, Rajshahi, and Sylhet, are 
particularly vulnerable to HWs. Factors contributing to this vulnera
bility include elevated surface temperatures, rapid urbanization, an 
increasing proportion of built-up areas, limited green spaces, and the 
poor socioeconomic status of many residents (Adnan et al., 2024). These 
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conditions exacerbate the impacts of HWs, making the need for localized 
studies and adaptive measures increasingly urgent.

2.2. Data

This study utilized weather data from the BMD spanning a 30-year 
period (1993–2022). Data were obtained from 33 meteorological sta
tions, selected based on their availability and geographic distribution to 
provide comprehensive national coverage (Fig. 1). Daily dry bulb air 
temperature and average relative humidity (RH) data were collected. 
For clarity, dry bulb air temperature is referred to as air temperature 
(Tair) and includes minimum (Tmin) and maximum temperatures (Tmax).

To address missing data, the study employed Multiple Imputation by 
Chained Equations (MICE), a robust statistical technique that imputes 
missing values by generating multiple plausible estimates based on 

existing data (Zhang, 2016). This method constructs a prediction model 
to fill gaps using seasonal and monthly patterns, ensuring that the 
imputed values align with observed records (Abdullah et al., 2022). A 
total of 30 imputed datasets were created using a Bayesian framework 
and the predictive mean matching algorithm, which helps preserve data 
integrity and variability (van Buuren, 2018). This gap-filling approach 
ensured that missing values did not significantly bias the analysis or 
compromise the quality of the results.

2.3. Methods

The methodology employed in this study is divided into two parts 
(Fig. 2). First, the identification of HWs, which was carried out based on 
(i) ambient and (ii) apparent temperatures. Here, Tair was used as the 
ambient temperature, while HI was used as the apparent temperature 

Fig. 1. Spatial distribution of the 33 weather stations considered in this study.
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(Fischer and Schär, 2010). Five HW indices—Excess Heat Factor (EHF), 
CTN90pct, CTX90pct, TN90, and TX90—were used to identify HWs 
based on both ambient and apparent temperatures.

Heat events defined using HI are referred to as humid heat events, 
accounting for heat stress induced by humidity, which is reportedly 
frequent in Bangladesh (Zachariah et al., 2023). The same five indices 
noted earlier were calculated using HI to define HWs under humid 
conditions and were denoted with a suffix “-HI” (e.g., EHF-HI, 
CTN90pct-HI, CTX90pct-HI, TN90-HI, and TX90-HI). A threshold of 
three consecutive days was employed for all HW indices, meaning that a 
high temperature persisting for at least three consecutive days was 

considered a HW event. Tair and RH records for the winter months 
(December–February) were excluded from the analysis, as these months 
are uncommon for exhibiting heat-related stress.

Second, six metrics were adopted to ascertain HW characteristics, 
including frequency (HWN), duration (HWD, HWF), intensity (HWM, 
HWA), and onset (HWT) of the events. The onset was calculated by 
counting the number of days from March 1 (similar to the day of the 
year) for each year. Trend analysis of these HW characteristics was 
performed with the non-parametric Mann-Kendall test (Mann, 1945) in 
conjunction with Sen’s slope estimator (Sen, 1968). Increasing or 
decreasing trends in the onset indicated early or delayed HWs.

Fig. 2. Schematic diagram illustrating the two-part methodology employed in this study: (1) identification of HWs using ambient and apparent temperatures and (2) 
analysis of HW characteristics, including frequency, duration, intensity, and onset trends.

Table 1 
HW indices and their calculation methods. All indices define a HW event as a period of at least three consecutive days meeting the specified criteria.

Index Type Input Calculation method Characteristics Corresponding HW 
index for humid 
condition*

EHF Composite 
index from 
average 
temperature

Average 
Tair

EHF = EHIsig × max(1, EHIaccl)

EHIsig = 3-day average Tair – 90thor 95thpercential of climate normal EHIsig 

= 3-day average Tair – 90th or 95th percentile of climate normal 
EHIaccl = 3-day average Tair – preceding 30-day average Tair

Detects HWs based on average 
temperature and accounts for 
deviation from climatological 
percentile (EHIsig) and 
acclimatization (EHIaccl)

EHF-HI

CTN90pct Nocturnal HW 
index

Tmin Tmin > 90th percentile of 15-day moving window (15-day × 30 years = 450 
values for each day)

Detects nighttime HWs 
accounting for seasonality

CTN90pct-HI

CTX90pct Daytime HW 
index

Tmax Tmax > 90th percentile of 15-day moving window (same as CTN90pct) Same as CTN90pct but for 
daytime HWs

CTX90pct-HI

TN90 Nocturnal HW 
index

Tmin Tmin > 90th percentile of climate normal Detects nocturnal HWs 
exceeding climatological 
percentile thresholds for 
consecutive ≥ 3 days

TN90-HI

TX90 Daytime HW 
index

Tmax Tmax > 90th percentile of climate normal Same as TN90 but for daytime 
HWs

TX90-HI

* For HW indices that incorporate humidity, the input variable is HI—such as daily average, minimum, maximum HI—rather than Tair. All other aspects of the 
calculation method remain the same as their corresponding Tair-based indices.
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2.3.1. Identification of HWs from ambient and apparent temperatures
i) Ambient temperature-based HWs
HWs defined by ambient temperature were derived through the 

direct use of Tair in constructing the indices listed in Table 1.
EHF: The EHF (Nairn et al., 2009) is a quantitative metric used to 

denote potential HW events by examining the deviation of the current 3- 
day average temperature from both climatological normal (1993–2022) 
and the preceding 30 days’ average temperature. The deviation from the 
climatological normal provides a significance index (EHIsig), while the 
deviation from the preceding 30 days’ average temperature yields an 
acclimatization index (EHIaccl). EHIsig uses an upper percentile figure, 
typically the 90th (Oliveira et al., 2022; Piticar, et al., 2018) or 95th 

percentiles (Nairn et al., 2009; Tolika, 2019), from daily records over a 
multi-decadal period to establish a reference value for the normal or 
climate baseline. EHIaccl is particularly important from a human health 
perspective, as its positive values indicate a sudden temperature change 
to which humans may fail to acclimatize (Tolika, 2019). Both indices 
measure temperature anomalies and are expressed in degrees Celsius, 
providing insights into the severity of HWs and the associated risks they 
pose to human and environmental systems (Nairn and Fawcett, 2014). 
The EHF is a product of EHIsig and EHIaccl (for more details, please see 
Nairn et al. (2009)).

CTN90pct and CTX90pct: Two indices, CTN90pct and CTX90pct 
(Perkins and Alexander, 2013), were used to determine nocturnal and 
daytime HWs, respectively. CTN90pct relies on the percentile threshold 
of Tmin from a 15-day moving window, while CTX90pct depends on the 
percentile threshold of Tmax from the same 15-day moving window. 
These moving windows around calendar days result in different 
percentile thresholds for each calendar day, accounting for seasonality 
(Perkins and Alexander, 2013). For 30 years of data used, percentile 
thresholds for each calendar day were calculated from 150 (15 × 30) 
daily records (Zhang et al., 2005; Fischer and Schär, 2010).

While the adverse health impacts of extreme daytime heat are well- 
documented, recent studies have highlighted the growing risks of 
nighttime heat (Wu et al., 2023). This study included nocturnal HWs in 
the analysis, as limited research has explored their mechanisms (Luo 
et al., 2022; Thomas, et al., 2020), particularly in the context of 
Bangladesh.

TN90 and TX90: The likelihood of extremely high temperatures 
increases in regions that frequently surpass historical temperature re
cords (Yin et al., 2020). Therefore, this study used climatological 
percentile thresholds to define nocturnal and daytime HWs using TN90 
and TX90 indices for comparison with historical records. For TN90, any 
hot spell exceeding the percentile threshold, calculated from the daily 
Tmin of 30 years, was registered as an HW event. TX90 was calculated 
using the same methodology, but Tmax values were used.

ii) Apparent (perceived) temperature-based HWs
HI: The HI evaluates apparent or human-perceived temperature, 

representing heat stress felt in shaded conditions (Steadman, 1979). It 
was calculated by combining Tair with RH (Fischer and Schär, 2010), 
following the National Oceanic and Atmospheric Administration 
(NOAA) guidelines (https://www.wpc.ncep.noaa.gov/html/heati 
ndex_equation.shtml).

HWs from HI: The subtropical climate of Bangladesh necessitates 
considering both air temperature and humidity to accurately assess heat 
stress in humid conditions. Accordingly, daily average, minimum, and 
maximum HI values were incorporated into the HW indices, denoted as 
EHF-HI, CTN90pct-HI, CTX90pct-HI, TN90-HI, and TX90-HI. The 
methodologies for estimating these indices mirror those of their ambient 
temperature counterparts (EHF, CTN90pct, CTX90pct, TN90, and 
TX90), with the only difference being the use of HI as the input 
parameter.

2.3.2. Characterizing HWs
To characterize HW events, six HW metrics (Perkins and Alexander, 

2013) were calculated (Table 2). These metrics were summarized on a 

monthly, seasonal, and annual basis, as well as for the entire study 
period (1993–2023) for each ground station. The spatial distribution of 
the metrics was evaluated by computing the mean over the entire study 
period, while the temporal distribution was reported as monthly, sea
sonal, and annual summaries.

2.3.3. Trend detection
The statistical significance of the trends was assessed using the 

Mann-Kendall test, available in the pyMannKendall Python package 
(Hussain and Mahmud, 2019). The Mann-Kendall test is a non- 
parametric method that tests for the presence of a monotonic trend, 
considering the rank correlation of observations. In addition, the 
magnitude of the monotonic trend was determined using Sen’s slope 
(Sen, 1968). The non-parametric Sen slope estimator was applied to 
identify temporal trends in the HW metrics.

2.3.4. Validation with ERA5 reanalysis data
To validate the results from observational Tair, ERA5 reanalysis data 

for 2-m Tair was used (Hersbach et al., 2020). Hourly ERA5 reanalysis 
data covering all of Bangladesh was obtained from the Copernicus 
Climate Data Store (Copernicus Climate Data Store, 2018). Daily Tmax 
and Tmin temperatures were resampled from the hourly data using the 
xarray Python package (Hoyer et al., 2023). The Python tool ehfheat
waves (Loughran, 2021) was used to retrieve daily EHF scores. When 
applied to ERA5 reanalysis data, the tool generates three outputs: 

i) EHF: EHF scores for each day.
ii) events: Binary values indicating whether the EHF score exceeded 

zero, signifying a HW event.
iii) ends: The duration of HW events, starting from their date of 

onset.

Using the retrieved EHF and ends variables from the ehfheatwaves 
tool, six HW metrics were calculated (Table 2). Pearson’s correlation 
was used to calculate the correlation coefficients between the ERA5 
reanalysis data and the station-observed metrics.

3. Results

3.1. Heatwave events

The findings of this study revealed a distinct difference between the 
two HW thresholds (e.g., 90th and 95th percentiles) in identifying HW 

Table 2 
HW metrics used for characterizing HW events.

HW metric Characteristics Unit

HW number 
(HWN)

The frequency of HW events. Event

HW duration 
(HWD)

The number of days for the longest HW 
event.

day

HW frequency 
sum (HWF)

The sum of all frequencies of HW days. day

HW magnitude 
(HWM)

Average intensity of HWs.  

Calculated based on anomaly from the 
threshold.

◦C2 for only 
EHF and EHF- 
HI  

◦C for all other 
indices

HW amplitude 
(HWA)

The maximum intensity of HWs or the 
intensity of the hottest HW event.  

Calculated based on anomaly from the 
threshold.

HW timing 
(HWT)

First HW event’s timing or onset.  

Considered from the first annual day of a 
specific time/season, revealing onset 
pattern. In this study, HWT is relative to 
March 1 for a year is considered.

Day of the year
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events, regardless of whether Tair or HI-based indices were used. A 
comparison of linear trends and interannual variations of the metrics 
derived from Tair (Fig. 3) and HI (Fig. S1, supplementary document) 
indicated that the 90th percentile was more suitable for capturing the 
frequency of HW events across the country. HW indices based on the 
90th percentile consistently detected a considerable number of measur
able events.

In contrast, the 95th percentile threshold failed to clearly identify HW 
events when acclimatization and seasonal cycles were considered, 
particularly with HI-based indices (Fig. S1(a), supplementary docu
ment). For instance, no HW events were detected in 2007 using the 
CTX90pct-HI index, and in 1993 and 2018 using the CTN90pct-HI index. 
Additionally, the CTX90pct-HI and TX90-HI indices identified only one 
HW event per year. Metrics related to intensity (HWM and HWA) and 
onset (HWT) were not effective in determining the most appropriate 
percentile thresholds, as they exhibited identical interannual variations 

and linear trends (see Fig. 3(d-f) and Supplementary Fig. S1(d-f)).

3.1.1. Monthly and seasonal distribution of HWs
Fig. 4 and Fig. 5 exhibit the monthly distribution of HW events and 

HW days derived from various indices. Both figures demonstrate similar 
patterns and distributions; however, the total HW days (Fig. 5) show 
greater variability compared to the total HW events (Fig. 4). This vari
ability highlights disparities in the number of HW events and days across 
different regions of Bangladesh. The monthly distribution of total HW 
events and days suggests an earlier onset of Tair − based HWs compared 
to HI-based HWs. This distinction is particularly evident in indices such 
as EHF, TN90, TX90, and their HI-based counterparts. Notably, the HI- 
based CTN90pct and CTX90pct indices indicate an increased number 
of HW events (Fig. 4(d-f)) and HW days (Fig. 5(d-f)) in November, 
reflecting a significant percentage of events occurring during the post- 
monsoon months (Fig. 6).

Fig. 3. HW metrics derived from 90th and 95th percentiles of Tair. CTN90pt and CTX90pct used a 15-day window of daily Tmin and Tmax across the study period 
(1993–2022), accounting for seasonality, while TN90 and TX90 indices used climatological percentile thresholds. The HW metrics are: (a) HWN, (b) HWD, (c) HWF, 
(d) HWM, (e) HWA, and (f) HWT.
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When analyzing the average monthly duration of HWs across 
Bangladesh, April exhibited the highest annual average duration for Tair- 
based indices (Supplementary Fig. S2(a)). For instance, the TN90-HI 
index also indicated the longest HW duration in April, with an 
average of 4.88 days per year, coinciding with relatively low average RH 
of 75.79 % (Supplementary Fig. S2(b-c)). HI-based indices, however, 
displayed the longest HW durations in different months: May (6.30 
days/year) for EHF-HI and November (4.52 and 3.70 days/year) for 
CTN90pct-HI and CTX90pct-HI, respectively. As humidity increased 
during the later part of summer, when Tair remained high and the 
diurnal temperature range (DTR) narrowed (Supplementary Fig. S2(c)), 
fluctuations in Tair were found to influence DTR.

A seasonal shift in the percentage of HW events was observed when 
humidity was considered (Fig. 6). Using climatological thresholds, 
daytime HWs (TX90) were more prevalent (68.39 %) during the pre- 

monsoon season, whereas nocturnal HWs were predominantly recor
ded during the monsoon (TN90 69.18 % and TN90-HI 88.39 %). A more 
balanced distribution of HW events between the pre-monsoon and 
monsoon seasons was observed for EHF, CTN90pct, and CTX90pct 
indices. In contrast, HI-based indices exhibited a greater disparity in HW 
events between the two seasons.

3.1.2. Interannual changes in HW metrics and trend assessment
Fig. 7 illustrates interannual changes in HW metrics, highlighting 

some differences in HWN for Tair-based indices. HI-based indices, except 
for EHF-HI, showed notable deviations from their Tair-based counter
parts. Both EHF and EHF-HI demonstrated similar patterns in terms of 
frequency (HWN), duration (HWD), and frequency-weighted duration 
(HWF). When seasonality was accounted for, nocturnal HI-based fre
quency (CTN90pct-HI) exhibited greater interannual fluctuations 

Fig. 4. Total number of HW events. Each dot represents the total HW events observed at each weather station,1993–2022.
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compared to daytime HWs, a trend that also persisted in the duration 
metrics for nocturnal HWs. HI-based indices, excluding TX90-HI, dis
played similar but more pronounced fluctuations in HW intensity met
rics compared to their Tair-based counterparts (Fig. 7(d-e)). The linear 
trend in HWT (Fig. 7(f)) suggested an earlier onset of HW events in 
recent years across most indices. However, the linear trends for 
CTX90pct-HI indicated a delayed onset of HWs.

The Mann-Kendall test revealed a significant increasing trend in 
HWN across all indices, except for CTN90pct-HI, CTX90pct-HI, and 
TN90-HI (Table 3). For HW duration, indices such as CTN90pct, 
CTN90pct-HI, CTX90pct-HI, and TN90-HI showed no statistically sig
nificant trends. Similarly, no statistically significant trends were 
observed in intensity metrics or onset timing, except for the average 
intensity (HWM) derived from the EHF index.

3.2. Spatial distribution and HW trends

Fig. 8 illustrates the spatial distribution of HW metrics derived from 
EHF. The HWN and HWD metrics display contrasting patterns across the 
country (Fig. 8(a-b)). The northeast region experienced a higher fre
quency of HW events, while longer durations were observed in the 
southwest. Similar spatial distributions were noted for HWN in both Tair- 
based and their HI-based HW indices (Fig. 8; Supplementary Fig. S3- 
S11), although the HI-based indices exhibited more pronounced clus
tering. The HWD (longest duration) patterns for 24-hour HWs derived 
from both Tair- and HI-based indices were comparable, but notable dif
ferences emerged for daytime and nocturnal HWs. A consistent increase 
in HW duration (HWD, HWF) was evident from the northeast to 
southwest, including coastal stations, for daytime HWs (Supplementary 
Figs. S6 and S10). In contrast, HI-based nocturnal HWs (CTN90pct-HI, 

Fig. 5. Total HW days at each weather station. Each dot represents the total HW days observed.
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TN90-HI) displayed opposing spatial patterns, while Tair-based 
nocturnal HWs showed extended durations in coastal stations 
(Supplementary Figs. S5–S6 and S9–S10).

Metrics for intensity (HWM and HWA) were consistently higher in 
the western regions for both EHF and EHF-HI, especially at stations like 
Rajshahi, Ishurdi, and Chuadanga (Fig. 8 and Supplementary Fig. S3). A 
similar pattern emerged for daytime HWs (CTX90pct, CTX90pct-HI, 
TX90), except for TX90-HI. Among the 33 stations analyzed, Hatiya 
and Sylhet recorded the highest intensity magnitudes (1.56 ◦C and 
1.41 ◦C) and amplitudes (2.46 ◦C and 2.17 ◦C, respectively). Coastal 
stations generally had lower HW onset (HWT) values compared to 
inland stations for all indices except CTX90pct-HI (Supplementary 
Fig. S7(f)). This north–south distinction was most pronounced in 
nocturnal HWs derived from TN90 (Supplementary Fig. S8(f)).

A significant upward trend in HW frequency (HWN) and duration 
(HWD, HWF) was observed across many stations (Fig. 9 and Supple
mentary Figs. S12-S20). Tair-based daytime HWs that accounted for 
seasonality showed significantly increasing trends in frequency and 
duration at many stations, surpassing trends observed for nocturnal HWs 
(Supplementary Figs. S13(a-c) and S15(a-c)). Contrasting patterns were 
observed when using climatological percentile thresholds 
(Supplementary Figs. S17 and S19). Increasing intensity trends (HWM 
and HWA) for daytime HWs (CTX90pct, TX90) were primarily noted in 
coastal and northeastern stations, notably Sylhet and Srimangal 
(Supplementary Figs. S15(d-e) and S19(d-e)). Meanwhile, nocturnal 
HWs (CTN90pct, TN90) exhibited either no trend or decreasing trends in 
most coastal stations (Supplementary Figs. S13(d-e) and S17(d-e)).

HI-based HW indices, apart from EHF-HI, showed limited trends in 
frequency and duration at most stations. The onset (HWT) of HWs 
clustered in coastal regions for all indices except EHF-HI, CTN90pct-HI, 
and CTX90pct-HI. Since HI-based indices incorporated RH, the onset of 
HW events was associated with rising humidity levels, typically occur
ring towards the end of the summer season (Supplementary Fig. S2(c)). 
Increasing trends indicated a delayed onset for both Tair and HI-based 
indices. More stations exhibited increasing trends in HWT derived 
from HI-based nocturnal HWs (Supplementary Figs. S14(f) and S18(f)), 
suggesting delayed onsets driven by higher RH and drier summers in 
recent years (Supplementary Figs. S13(f) and S17(f)).

3.3. Comparison with ERA5 reanalysis product

The HW metrics derived from ERA5 data exhibited spatial patterns 
similar to those obtained from station-based observations (Fig. 10). 

Additionally, the spatial distribution of trends and slopes showed a 
strong resemblance between the two datasets (Supplementary Fig. S21).

When comparing annual average metrics and their trends, HW in
tensity (HWM and HWA) demonstrated high consistency between ERA5 
reanalysis and observational data (Fig. 11). Other metrics displayed 
similar linear trends, except for HW onset (HWT). In the ERA5 dataset, 
HWT showed an increasing trend, indicating a tendency for the first HW 
event to occur later in the year.

Pearson’s correlation analysis revealed statistically significant cor
relation coefficients exceeding 0.5 for all metrics (Fig. 12). Notably, the 
EHIaccl metric exhibited a declining trend, which can be attributed to the 
limited temperature variability observed over short periods or seasons 
(Supplementary Fig. S22). EHF-based measures similarly indicated a 
decline in spatial variability of temperature across stations 
(Supplementary Fig. S23(a)) and a reduction in temporal variability of 
both DTR and average Tair during HW events (Supplementary Fig. S23
(b)). Lower EHIaccl scores, coupled with rising HWN, HWD, and HWF, 
point to an ongoing shift toward prolonged warmer seasons, a trend that 
heightens heat stress risks for both human health and environmental 
systems.

4. Discussion

HWs are among the most destructive natural hazards globally. 
However, characterizing their impacts remains challenging due to the 
absence of a universally accepted definition (Jyoteeshkumar reddy 
et al., 2021; Marx et al., 2021; Tong et al., 2015). This study analyzed 
HW frequency, duration, intensity, and onset across Bangladesh, 
focusing on spatiotemporal distribution and trends using a range of 
indices. Five HW indices were employed to capture 24-hour (EHF), 
daytime (CTX90pct, TX90), and nocturnal (CTN90pct, TN90) heatwave 
patterns. Observational data from weather stations were compared 
against estimates derived from ERA5 reanalysis data. Results indicate 
that the 90th percentile of daily temperature serves as a reliable opera
tional threshold for HW characterization in Bangladesh.

Due to the subtropical climate and low temperature variability in 
Bangladesh, higher thresholds—such as the 95th percentile—fail to 
effectively capture HW events. For instance, HW duration (HWD) from 
TX90-HI at the 95th percentile yielded comparable results to Nissan et al. 
(2017), yet produced too few measurable events for HW frequency and 
duration (Fig. 3 (a–c); Supplementary Fig. S1). Similar conclusions were 
drawn by Perkins and Alexander (2013) in Australia, who favored 90th 

percentile threshold for CTX90pct and CTN90pct. Prior research 

Fig. 6. Seasonal distribution of HW events, expressed as percentages of the total annual count. The figure also illustrates the influence of humidity on seasonal shifts 
in HW occurrence.
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underscores the need for region-specific HW thresholds (Piticar et al., 
2018; Hulley, Dousset and Kahn, 2020; Mohammad and Weng, 2024). 
Thresholds below the 90th percentile, such as the 85th, tend to over
estimate HW occurrences, reinforcing the 90th percentile as a balanced 
and suitable choice—consistent with findings in the One Belt One Road 
region (Yin, et al., 2020).

Most HWs were observed during the summer and monsoon seasons, 
with a higher concentration in summer for indices such as CTN90pct, 
CTN90pct-HI, and CTX90pct-HI (Fig. 6). This aligns with higher vari
ability in Tair and RH during these periods (Supplementary Fig. S2; 
Table S1). April, marked by peak Tmax (Supplementary Fig. S2(c)), 
recorded the longest HW durations, consistent with Zachariah et al. 

Fig. 7. Interannual changes of HW metrics. Large EHIsig and EHIaccl resulted in a larger amplification in HWA for EHF-HI.

Table 3 
Trend of HW metrics at the annual scale.

Metric EHF EHF-HI CTN90pct CTN90pct-HI CTX90-pct CTX90pct-HI TN90 TN90-HI TX90 TX90-HI

HWN 0.152* 0.176* 0.045* − 0.012 0.099* 0.012 0.106* − 0.017 0.109* 0.022*
HWD 0.187* 0.166* 0.018 − 0.021 0.062* 0.001 0.07 − 0.013 0.117 − 0.002
HWF 0.882* 1.053* 0.126 − 0.072 0.402* 0.036 0.51* − 0.071 0.576* 0.062*
HWM − 0.022* − 0.173* − 0.005 − 0.006 − 0.004 0.008 − 0.002 0.002 − 0.004 0.0003
HWA − 0.013 − 0.113 0.004 − 0.021 0.011 0.029 0.004 0.001 0.004 0.001
HWT − 0.371 − 0.321 − 0.699 − 0.571 − 0.234 0.809 − 0.608 0.019 − 0.461 − 0.509

*significant at p ≤ 0.05.
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(2023). Indices that incorporate seasonality (CTX90pct, CTN90pct, and 
their HI-based variants) were more responsive to changes in Tair and RH, 
as well as DTR. In contrast, the monsoon season—with lower intra- 
seasonal Tair and RH variability (Supplementary Fig. S2; Table S1)— 
exhibited fewer HW events (Fig. 4) and days (Fig. 5). Similarly, EHF- 
based indices, which account for prior temperature anomalies, were 
less sensitive to short-term variability and reflected broader seasonal 
Tmax trends (Supplementary Fig. S2(c)).

Daytime and nocturnal HWs showed distinct temporal patterns. 
March and November, which typically experience cooler nights (lower 
Tmin), showed limited variability in TN90-based HW events (Fig. 4(g); 
Fig. 5(g)). This effect extended to EHF and EHF-HI indices, which also 
demonstrated lower variability. Daytime HWs (TX90) were concen
trated in summer, consistent with Nissan et al. (2017), while nocturnal 
HWs were moderately distributed during monsoon months (Fig. 4(g-h); 
Fig. 5(g-h)). This suggests that although nights in the monsoon season 
are warmer than in other periods, they still provide some relief after hot 
days. However, the persistence of high humidity at night, particularly in 
monsoon months, can impair nighttime recovery and reduce produc
tivity (Adnan et al., 2024).

The comparison between Tair-based and HI-based indices revealed 
important distinctions. While EHF-HI closely mirrored Tair-based EHF in 
terms of frequency (HWN) and duration (HWD, HDF), other HI-based 
indices (CTN90pct-HI, CTX90pct-HI) showed lower variability and 

displayed declining trends, suggesting reduced atmospheric moisture in 
recent years (Imran et al., 2023). For example, HWN from CTN90pct-HI 
showed less interannual fluctuation and a downward trend, in contrast 
to the upward trend observed in CTN90pct. These differences likely stem 
from variations in RH within the 15-day seasonal windows used in these 
indices. Moreover, recent studies indicate a positive association between 
daytime HWs and increased land moisture outflows (Wu et al., 2023).

Spatial differences in HW trends and intensities were also evident 
(Fig. 8). Inland areas showed variability between eastern and western 
zones, potentially due to the presence of wetlands, river networks, 
higher rainfall, and the small hills of northeastern Bangladesh—factors 
that can moderate HW impacts and lead to shorter, more frequent events 
(Adnan et al., 2024). Coastal areas experienced longer HW durations, 
suggesting sea surface temperatures (SSTs) may play a role (Raja et al., 
2021). Coastal Bangladesh is generally warmer—especially in winter
—compared to inland regions (Abdullah et al., 2022). Higher HW fre
quency and duration in coastal regions, particularly for nocturnal and 
daytime HWs (e.g., CTN90pct, TN90, TX90), suggest coastal proximity 
amplifies nocturnal HW events. A similar trend was observed for HW 
onset (HWT), which occurred earlier in coastal areas than inland, based 
on both observation (Fig. 8(f) and Fig. 9(f)) and ERA5 data (Fig. 10(f) 
and Supplementary Fig. S21(f)). One likely explanation is the warming 
influence of SSTs in contrast with the cooler inland winds during the 
winter-to-summer transition (Rahman et al., 2024). Further 

Fig. 8. Spatial distribution of the HW metrics: (a) HWN, (b) HWD, (c) HWF, (d) HWM, (e) HWA, (f) HWT, using EHF at 90th percentile.
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investigation into local and regional atmospheric circulation is war
ranted. For example, Luo et al. (2025) and Wu et al. (2023) reported that 
daytime HWs are associated with reduced cloud cover, while nocturnal 
HWs correlate with increased cloud cover. The former enhances solar 
radiation and reduces humidity, while the latter increases longwave 
radiation, intensifying nighttime warming.

Expected discrepancies in HW measures across indices reflect dif
ferences in their mathematical structures, input variables, and threshold 
criteria. Metrics using maximum, minimum, or mean temperatures—a
long with differing durations and baselines—led to varied HW charac
terizations. These differences produced some surprising results, such as 
declining trends in HW intensity, particularly HWM (Fig. 6 & Table 3). 
This is consistent with Perkins and Alexander (2013), who reported 
similar trends in tropical northern Australia and attributed them to low 
seasonal variability in temperature. These findings reinforce the 
importance of using multiple indices to ensure a comprehensive un
derstanding of HW behavior. Each index captured unique dimensions of 
HWs, and their combined use helped elucidate broader spatial and 
temporal patterns. Among them, EHF, TN90, TX90, and their HI-based 
variants were most effective, while CTX90pct and CTN90pct (and 
their HI versions) underperformed during the monsoon season, likely 
due to limited seasonal temperature variability in the region.

The reliability of HW measures also depends on the quality and 
spatial coverage of weather stations. Geographic variations in HW 

characteristics are influenced by topography, surface processes, and 
human activities. The uneven distribution of stations in Bangladesh may 
have introduced some bias. Future studies should consider using 
continuous surface datasets, such as satellite-based products, to over
come these limitations. Additionally, using daily average RH with Tmax 
and Tmin to calculate HI may underestimate HI-based HWs. Incorpo
rating daily maximum and minimum RH would likely improve accuracy. 
Moreover, the HI metric does not account for indoor heat stress, which 
poses significant risks, especially in densely built urban environments 
with poor ventilation. Future research should integrate indoor temper
ature records and HW event timestamps to assess indoor exposure and 
its health implications. These insights would support the development of 
targeted adaptation strategies for vulnerable populations.

Recent studies have also highlighted the increasing frequency and 
severity of compound heatwaves—events characterized by concurrent 
extreme daytime and nighttime temperatures over multiple days (Wang 
et al., 2020; Zhang et al., 2022; Wu et al., 2023; Luo et al., 2025). Such 
events are particularly dangerous due to the lack of nocturnal cooling, 
which prevents physiological recovery and elevates health risks. 
Although the present study examined daytime and nocturnal HWs 
separately, it did not incorporate compound HW metrics into the anal
ysis. Future research should explicitly identify and assess compound 
HWs using integrated metrics that capture both Tmax and Tmin extremes 
within the same diurnal cycle. This would provide a more holistic 

Fig. 9. EHF-derived trends: (a) HWN, (b) HWD, (c) HWF, (d) HWM, (e) HWA, (f) HWT.
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Fig. 10. Average HW metrics derived from EHF over 30 years using ERA5 data.

Fig. 11. Interannual changes of average HW metrics from ERA5 and observed data. The metrics are calculated using EHF.
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understanding of HW impacts in Bangladesh’s subtropical context, 
especially given rising humidity and nighttime temperatures. Addi
tionally, investigating the atmospheric and land-surface drivers of 
compound HWs could yield valuable insights into their formation and 
persistence.

5. Conclusion

This study applied five heatwave (HW) indices—covering 24-hour 
(EHF), daytime (CTX90pct, TX90), and nocturnal (CTN90pct, TN90) 
events—to analyze HW frequency, duration, intensity, and onset across 
Bangladesh using both ambient and apparent temperature data. The 90th 

percentile emerged as the most suitable threshold for HW character
ization in the country. However, EHF-based intensity values should be 
interpreted cautiously, as persistently high baseline temperatures can 
yield low magnitude estimates. Across indices, declining intensity trends 
and reduced temperature variability at both national and station scales 
point to a warmer, more stable, and uniform thermal regime. Simulta
neously, the consistent advancement in HW onset dates signals an 
alarming shift toward earlier extreme heat events. Rising trends in HW 
frequency and duration underscore the urgency of implementing effec
tive heat-risk mitigation measures.

Spatiotemporal analyses revealed that April consistently experienced 
the longest HW durations, while summer recorded the highest frequency 
and persistence of events. Coastal and inland areas, as well as eastern 
and western regions, displayed distinct HW characteristics, reflecting 
the influence of geography, climate variability, and local environmental 
factors. The increasing prevalence of both daytime and nocturnal 
HWs—coupled with shorter recovery periods between 

events—amplifies risks to human health, productivity, and overall 
resilience.

In summary, HWs in Bangladesh are becoming more frequent, longer 
lasting, and occurring earlier in the year, with pronounced regional 
disparities in their manifestation. These trends present significant public 
health and socioeconomic challenges. Future research should integrate 
high-resolution continuous datasets, such as satellite-based observa
tions, and account for indoor heat stress to better capture the full 
spectrum of HW impacts. Such efforts will provide critical evidence to 
inform targeted interventions, strengthen early warning systems, and 
build climate resilience in vulnerable communities.
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