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ABSTRACT

This study investigates the finite-time consensus control problem for a class of mixed-order multi-
agent systems (MASs) with both stochastic noises and nonlinear dynamics. The sub-systems of the
MASs under consideration are heterogenous that are described by a series of differential equations
with different orders. The purpose of the addressed problem is to design a control protocol ensuring
that the agents’ states can achieve the desired consensus in finite time in probability 1. By using the
so-called adding a power integrator technique in combination with Lyapunov stability theory, the
required distributed consensus control protocol is developed and the corresponding settling time is
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estimated. Finally, a simulation example is given to demonstrate the correctness and usefulness of

the proposed theoretical results.

1. Introduction

In recent years, along with the fast development of net-
work communications (Zou et al., 2020), multi-agent sys-
tems (MASs) have been stirring considerable research
interest due to the broad practical applications in vari-
ous fields, ranging from autonomous vehicles to sensor
networks (Chen et al., 2015; Ge & Han, 2016, 2017; Li
et al,, 2017; Ma et al., 2017a; Oh et al., 2015; Tariverdi
et al, 2021; Wang & Han, 2018; Yousuf et al., 2020;
Zhang et al., 2011; Zou, Wang, Dong et al.,, 2020; Zou,
Wang, Hu et al., 2020). MASs consist of a multitude of
agents (sub-systems) that can interact with neighbours
for the purpose of achieving the common goals collec-
tively. It should be mentioned that the consensus control
problem, which aims to seek a control law/protocol that
enables the agents’ states to reach certain common val-
ues, is one of the most fundamental yet active research
topics in the study of MASs (Ma et al., 2017b). Many other
tasks (e.g. Ma, Wang, Han et al., 2017) can be equivalently
converted to the consensus control issue, and therefore,
the consensus control of MASs have been extensively
investigated and a huge amount of results have been
reported in literature, see Wang and Wang (2020), Xu
and Wu (2021), Herzallah (2021) and Liu et al. (2020) for
some recent publications.

Among the aforementioned works, most algorithms
have been exploited to reach the consensus in the

asymptotic mean. In other words, the required consen-
sus might be achieved when the time approaches infinity
rather than in a finite time interval (Zhu et al., 2014; Zou
et al,, 2019). It is widely known that the convergence
rate is critical which is utilized to evaluate the speed of
attaining the consensus, as in many practical systems,
faster convergence speed indicates better performance.
Consequently, the finite-time consensus control issue for
MASs with the purpose of reaching consensus in a lim-
ited/required time interval has started to gain research
interest. So far, much effort has been devoted to the
investigation on the finite-time consensus control, result-
ing in many research fruits available in the literature, see
e.g.Lietal. (2011), Wang et al. (2016), Lu et al. (2017) and
Li et al. (2019) and the references therein.

Note that to date, almost all of the investigation
regarding the finite-time consensus control of MASs have
been concerned with the homogeneous case where the
considered MASs are comprised of sub-systems of iden-
tical dynamics. In engineering practice, however, quite a
few types of MASs are consisting of agents with different
parameters, dynamics and/or structures. In such cases,
the existing results on homogeneous MASs cannot be
employed directly to deal with the heterogeneous ones.
This gives rise to the study toward the consensus con-
trol problem for heterogeneous MASs (Shi et al.,, 2020).
Forinstance, for a class of heterogeneous linear MASs, the
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consensus control problem has been solved in Wieland
and Allgower (2009) where the sub-systems are of the
same structure but with different parameters. Not only
the parameters but also the structures can be differ-
ent in a heterogeneous MAS. A quintessential example
that should be mentioned is the multi-vehicle systems
composed of unmanned ground vehicles (UGVs) and
unmanned aerial vehicles (UAVs), which can be found
wide utilizations in various areas like patrol, search and
rescue (Luo et al., 2016). Notice that agents of UGVs are
usually modelled by second-order differential equations,
whereas those of UAVs are modelled by fourth-order
ones.

Unfortunately, the aforementioned literature concern-
ing heterogenous MASs are mainly focus on agents with
relatively low-order dynamics (Du et al., 2020; Zheng
& Wang, 2012), and therefore, the corresponding algo-
rithms would be unapplicable for the high-order MASs
(Du et al., 2017; Li et al.,, 2019; Sun et al., 2015; You
et al., 2019). Limited research has been carried out but
the obtained results can be applied only for relatively
simple dynamics, see e.g. Zhou et al. (2015). As for the
more complex cases such as general nonlinear high-order
MASs, the corresponding research has been far from ade-
quate which still remains challenging. On the other hand,
in real-world applications, all the systems are inherently
nonlinear (Liu, H. et al., 2020; Liu, Ma et al., 2020; Ma, Fang
et al., 2020; Ma, Wang et al.,, 2020; Zhang et al., 2020) and
subject to stochastic disturbances (Hu & Feng, 2010; Li
&Zhang, 2010; Wen et al,, 2012; Zhao & Jia, 2015). Accord-
ingly, it is of vital importance to take into account non-
linearities and stochasticity when handling the consensus
problem of MASs, which gives us the main motivation of
conducting the current research.

In response to the above dissuasions, this paper tack-
les the finite-time consensus control problem for a class
of mixed-order stochastic nonlinear MASs. The main dif-
ficulties of the addressed problem can be identified as
follows: (i) How to develop an appropriate methodol-
ogy to design a consensus control protocol ensuring the
agents’ states of the same order could reach some com-
mon values during a finite-time interval? (ii) In addition
to mixed-order agents’ dynamics (which contains high-
order components), both random noise and nonlineari-
ties are also taken into consideration in the system model,
which makes the design of the consensus protocol more
complicated.

The main contributions of this study can be outlined
as follows: (1) The model of the heterogeneous MASs
discussed in this paper is comprehensive, not only the
nonlinearities but also the orders of agents can be dif-
ferent. (2) Stochastic noises, nonlinear terms, high-order

and mixed-order dynamics are considered simultane-
ously that provide a comprehensive yet realistic reflection
of the real-world engineering complexities. In compari-
son to algorithms in existing literature, the advantage of
the consensus approach proposed in this paper mainly
lies in its capability of dealing with finite-time consen-
sus in probability for mixed-order dynamics and high-
order dynamics in a uniform framework. (3) By resorting
to adding a power integrator technique in combination
with Lyapunov theory, the addressed finite-time consen-
sus control protocol is proposed and the desired specific
settling time is formulated.

The rest of this paper is organized as follows. The
consensus control problem of the mixed-order het-
erogeneous stochastic nonlinear MAS is formulated in
Section 2. The design of consensus control protocol and
the analysis of the setting time are presented in Section 3.
To demonstrate the usefulness of the proposed protocol,
a simulation is given in Section 4. Section 5 draws our
conclusion.

Notation: The notations used in this paper is quite
standard except where otherwise stated. R" refers to
the n-dimensional Euclidean space. |-| denotes the
absolute value. The superscript T denotes the trans-
pose and trace(A) means the trace of matrix A. A(A)
denotes the eigenvalue of matrix A. 1, refers to an
n-dimensional column vector with all ones. The nota-
tion P{A} denotes the probability of event A, while
E{A} stands for the mathematical expectation of random
variable A.

2. Preliminaries and problem formulation

In this paper, we use an undirected graph G(V, &, H)
to describe the interaction among N agents. Denote,
respectively, V ={1,...,Nz}, £ and H = [h;], as the
set of N, agents, the set of edges, and the adjacency
matrix of G. If there is an edge between agent i and
agent j, it means the two agents can communicate
with each other. In this case, hj = h; > 0. Specially,
we set h;; = 0. The matrix L = [/;] represents the Lapla-
cian matrix, where [ = Z]N:ﬂ hj and ljj = —hj;,i #j. If
a path can be found between any two nodes, then
the graph is connected. Here, we suppose G(V, &, 'H) is
connected.

Suppose that the addressed heterogeneous MAS is
composed of agents whose dynamics are described
by kth-order (k =2,...,n) differential equations. The
amount of all agents is N,. Agents with nth-order dynam-
ics are labelled as i =1,...,Np, and agents with mth-
order (2 < m < n) dynamics are labelled as i = N1 +
1,...,Nm, where N, < N,_q7 <--- <Nj. The model of
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agent j is described as follows:

Xij(t) = Xijj1 () j=1,...,n—1
Xim (1) = fiXin; () 4 Ui(8) 4 gi(Xin; () (D)

where x;1(t),...,Xjn;(t) € R are the entries of state of
agent i; uj(t) € R is the control input; n; is the order of
agent i; n(t) is a scalar Gaussian noise with E(n(t)) =0
and E(p?(t)) = 1;f, : R — Rand g; : R — R are continu-
ously differentiable nonlinear functions, satisfying f;(0) =
0andg;(0) = 0.

In the following, we apply the abbreviated notations
X1, - Xip; and u;forx;q (), . . ., Xin; (t) and u;(t). Then, we
can rewrite equationsin (1) as follows Zhao and Jia (2015):

dX,‘J =XfJ+1dt j=1,...,ni—1,

(2)
dxin; = (filxin,) + updt + gi(x;n,)dW

where W € R denotes the standard Wiener process.

Remark 2.1: Itis worth mentioning that MASs composed
of different orders of agents are quite common. The sys-
tem model considered in this paper can represent both
multi-agent systems with different order dynamics and
multi-agent systems with the same order dynamics. Here
are two examples to help readers understand the sys-
tem model proposed above. For instance, when n = 4,
N3 — N4 = 0, the MAS can be described as a combination
of N4 fourth-order agents

dx;1 = x;dt

dx;> = x;3dt

dx;3 = xj4dt (3)
dxj4 = (fi(xja) + uj)dt 4 gj(xj4)dW,
i=1,...,Ng,

and N, — N4 second-order agents

dX,',1 = X,'yzdt
dx; = (fi(xi2) + updt + g;(x;2)dW 4)
i=Ng+1,...,N>

When n = k(k > 2), Ny = Nx_q = --- = N, the MAS is
only composed of kth-order agents:

dX,‘,1 = X,‘yzdt
dxix = (fixik) + updt + gi(xi)) dW
i=1,..., Nk

The following assumption and definition are needed in
our subsequent development.

Assumption 2.1: There exist constants pj7 > Oand pj >
0 such that [fi(x1) — fi(x2)| < pirlx1 — x2| and [gi(x1) —
gi(x2)| < pialx1 — x2|.

Definition 2.1: The mixed-order MAS (2) is said to
achieve finite-time consensus in probability 1 if the fol-
lowing holds:

P{X,‘,1 =le1} =1, Vt=TVi#jij=1,...,Np

P{X,'lz =ij2} =1, Vt>TVNi#jij=1,...,Np

PlXin =Xxjn} =1, VYt=T,Vi#jij=1,...,Np,

where T is the settling time.

3. Main results

Before the establishment of main results, the following
lemmas are firstly introduced.

Lemma 3.1 (Qian & Wei, 2001): For a>0, b> 0 and
y(m,n) >0,

ay(m,n)|m|9t® by (m,n)"b|n|at+b
im|“In[ < V(H)'b' 4 o alb" . ®)

Lemma 3.2 (Hardy et al., 1952): For given scalars
&1,&,...,Em > 0, the following inequalities hold.

m m k
Zg,kzm“k (Zg,-) if1 <k <oo 7)
i=1 i=1

i=1 i=

m m k
Y &> (Z&) if0 < k<1 (8)
1

Lemma 3.3 (Zhao &Jia, 2015): Forscalars&; € R, & e R
andm = %, where m1 and m; are positive odd integers,

|67 — &0 <2'"MEr — &M 9
Consider the following system:

dx(t) = f(t,x(t))dt + g(t, x(t))dw(t), x(0) = xo € R",
t>0, (10)

wherex € R"isthe system state, w(t) isan m-dimensional
standard Wiener process (Brown motion) defined on a
complete probability space (2, F, P) with the augmented
filtration {F;}+>0 generated by {w;}>0.In (10),f(,)and g(,)
are continuous functions of appropriate dimensions with
f(t,0) = 0and g(t,0) = Oforallt > 0.
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The differential operator of Lyapunov function V in
regard to (10) is defined as:

rv V(x) { 9%V () }
()_—f(tx)+—trace g(tx) 2 g(t, x)

(1

Definition 3.1 (Yin & Khoo, 2015): The trivial solution
of (10) is said to be finite-time stable in probability if the
following two requirements are met simultaneously:

(1) System (10) admits a solution (either in the strong
sense or in the weak sense) for any initial data xo €
R", denoted by x(t; xo). Moreover, for every initial value
Xo € R™{0}, the first hitting time ©,, = inf{t : x(t;x0) =
0} = inf{t : |x(t; x0)| = 0}, called stochastic settling time,
is finite almost surely, that is, P{zy, < co} = 1;

(2) For every pair of ¢ € (0,1) and r > 0, there exists
ad =§8(g,r) > 0such that P(|x(t;xg)| < rforallt > 0) >
1 — e whenever |xg| < 3.

Next, we introduce a lemma regarding the finite-
time stability in probability for the nonlinear stochastic
system (10).

Lemma 3.4 (Yin et al., 2015; Yin & Khoo, 2015):
Suppose that system (10) has a solution for each initial
value xo € R", if there is a C3(R™) function V : R" — R
such that:

(1) hi(x) < V() <hy(x), xeR" for some Ky, class
functions h1 (x) and h, (x);

() LV(x) < —aV(x)b, xe R™{0} for some real num-
bersa>0,0<b<1,

then the origin of (10) is finite-time stochastically stable and

the stochastic settling time ty, can be estimated by E{ty,} <

Vix)'~®
a(1-b) *

Lemma 3.5 (Olfati-Saber & Murray, 2004): Laplacian
matrixL € RN2*N2 js a semi-positive matrix and its eigenval-
ues are greater than or equal to 0. Define A1 (L), Ao(L), .. .,
AN, (L) to be the eigenvalues of L sorted from small to large.
The eigenvector corresponding to eigenvalue 0 is 1y,. When
the graph corresponding to the Laplacian matrix L is a
connected graph, the second smallest eigenvalue Aa(L) is
greater than 0. If 1L2x1 = 0, then A2 (L)x]x1 < x]Lxq.

3.1. Design of the finite-time consensus protocol

In this section, we shall design the finite-time consensus
protocols for the considered mixed-order MASs. To this
end, we first present three lemmas that play vital roles
in the establishment of our main results. To begin with,

define
N>
&1 = Za;j(x,-,1 —=X1), i=1,...,Ny,
J=1
* q2 L * 1
X = —PET G2 = (xi2) 2 — (62)%
, = 1[ .7 Nzl
* dn L * L
Xin = _,Bn—1é,',n_1r §in = (Xi,n) an (X,‘,n) an -,
I = 1, .,Nn,
where gj11 =g+ o, a = pze(— ,0,g1=1p; >0

is a known even integer, p; > 0 is a known odd integer
and g > 0,j = 1,...,nare suitable constants.

Lemma 3.6 (Li et al., 2019): Consider MAS (2). For 2 <
k < nj, there exists a positive scalar [i such that

e
d(— oG %)
dt
Z|s,m|‘"+z (1§11 +18217) | . (12)

j=1

In this paper, the proposed distributed control proto-
col is of the following form:

n;— - 1
=—&n (Pi,1 €' P O, 111 —1] ' 92

1 2 - 1
+9n,,2|§i,n,~| t92) 4 pls & 92 (On 31Eim—1]' T

1 dnj+1
+9n,4|é§/n, +q2)) ﬂn,%-,,:; (13)
where 6y, 1, 0p;,2, 0n, 3, 6n;,4 and By, are positive parameters

to be determined later.
Defining two functions V; and V; by

Ny N>
Vi = —x1Lx1 ZZGU Xi1 —x” (14)
i=1 j=1
where x7 = [x11,...,Xn,11", and
N2
Vo=Vi+ ) Wi (15)

i=1
where
Xi2 1 2—q;
Wi> :/ <sqz - (x 2)‘?2) ds, (16)
xl.’fz

we present the following lemma which is pivotal in the
design of control parameters.
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Lemma 3.7: Consider MAS (2) under protocol (13) and
functions V', and V5. With appropriately selected parameters
B1, B2, 621,622, 92[3 and 02,4, the following inequality holds

N
LVy<—(n—1)) &' —

i=1

N
(=1 [&l""®
i=1

N3
27
+ Y &S Pz — xiy). 17)

i=1

Proof: Differentiating V along the trajectory of MAS (2)
with (13), we arrive at

olv1 i
Zéﬂxﬂ = Zéﬂxlz‘i‘ZE/](Xlz

Set 81 = n, then

(18)

dv1 i
= Zé1+q2+2&,1(x;,z—x;’j2)- (19)

It is easy to have from (11) that

N>
dVv dw;
EVz_—1+Z '2+ Z LW,

i=N3+1
N3 N>
dv- dw; W,
=& T
= i=N3+1 Xi2
b aw, de
2 i2 d§jn
+ Z )+ Y 2o
i=N3+1 8’ Nyt 08 dt
N> 2
1 8 i2 2
+3 > Sz 9 V2. (20)
i=N3+1 i,2

Itis inferred from Lemmas 3.1 and 3.3 that

N2
D Enia =Xy < Z &1+ +czZ &2
i=1

(21)
where ¢; > 0.
Furthermore, we have

Xi2 1-a2
/ <5qz—(x2)q2) ds <25, (22)
X*

i2

By defining d; = Z, 1 Gjj» we obtain that

1
d (_(sz) qZ) 1 N>
=g =87 (el + eyl ) @3

=1

It follows from Zhou et al. (2015) that

[Xi2l1&i2| < <,31 . Lo 21_‘72) || 92

92 1442
+ i (24)
ﬂ11+q21/1|€:,1|
and
pall§ial < b1l
14 g2
+21—QZ 1492
.I+q2y2|§j,2|
+<21_q2—1 N V_m)'
1+g "2 14+qgp""
x 5|92 (25)

where 7 > 0and y» > 0.
Consequently, based on (23)-(25) in combination with
Lemma 3.1, we derive that

( (XIZ) 2) Xi.2 1
Z(Z q)————= / (sqz

"
Xi2

e 1-q2
— (X;'jz) 42) ds

IA

N 1 N>
> 2= g2 (di[xia| + Y ay x| ) &2l
~

j=1

A

1 Ny Ny
<5 D ElTE 4G Y g (26)
i=1 =

where ¢; > 0.
On the other hand, we know from (26) that

N N
idWi,z . XZ: W5 d&;4
= dt i=N3-+1 98y dt

2- < (X’z)q2>
—Zs "Zx,3+,21:<2—q2)—t

X2 (1 a0\ 1%
xf 592 — (xj5) %2 ds
x*

i2

Zm 1l +q2+CZZ|§2|1+q2+Z$2 xi3.

(27)
Then, the following is true
Nz N2
Z BWIZ — Z %._22*(12. (28)
Ny OXi2 '
=N3+1 i=N3+1
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According to Assumption 2.1 and f;(0) = 0, it is readily
inferred that |fi(x;2)| < pi1|Xi2|. Moreover, we acquire

b awi,
> o iXi2)
i=Ng1 0702
q2
< Z pialéial —q2|s,z|<|s,z|+ﬂ |é,1|)
i=N3+1
N3
< > p;,1|s,-,z|‘q2<|s,~,z|”‘"+ﬁ1|s,-,1|q2|§,~,z|>
i=N3+1
Z pial€al’ "2<ﬂ1 v I6i |+
i=N3+1

- (m 1 Yy 2+ 1)|s,-,z|1+q2)

Z pitl&ial'™

i=N3+1

%2 (0211811192 + 02,518i2]'T92)

(29)

where 651 > 12 T+ 5V —92 4 1 with y
an arbitrary positlve constant

Next, it can be obtained that

N2 NZ

32w, 2— P
I D I I
i=N341 Xi2 i=N3+1 q

From Assumption 2.1 and g;(0) = 0, we have |g;(x;2)| <
pi2|Xi2|- Using Lemma 3.2 again, it is obtained that

N
S 19°Wi2 ,
Z 2 9x 2 9,( IZ)
i=N3+1
Q2 1 P B
2 ¢
= Z PhEis 7 (&2 + B &0
i=N3+1
A}
2 - 1 1
< Y PhlEal" P (023161 1P + 0541500 )
i=N3+1
(31
1+q9y
where 6,3 > 2922028 % and g,, > 28220
23 = g, 1 24 Z ¢, 4

Selecting 82 = n — 1+ ¢, + ¢y, and taking into acc-
ount (13), (20), (21), (27), (29) and (31), it is seen that
inequality (17) holds. The proof is complete now. |

By following a similar line, by defining a function Vj as

k N
Vi=Vi+) > Wy 3<k=<n-1 (32
j=2 i=1

where
Xij 1 1
Wij = / (s — (x7) 9)*~9ds, (33)
Xi;
we give the following lemma.

Lemma 3.8: Consider MAS (2) under protocol (13) with
function V. By selecting appropriate values of By, Ok 1, 6,2,
Ok3 and 6y 4, the following inequality holds

N
LV <—(n—k+1)) |&]'T%

i=1

kN
—(—k+ 1)y > lgyl

j=2 i=1

Nyt

2—
+ D G " Ot —

i=1

Xe): (34)

Proof: The proofis performed by induction.

Initial Step: For k = 2, it can be known directly from
Lemma 3.7 that inequality (34) holds.

Inductive Step: Given that at step k—1,3 <k <n-—1,
the following inequality is true:

N
LViy < —(n—k+2) ) [&1"TP
i=1

k=1 Nj
—(n—k+2)) ) gt
j=2 i=1
N
2—qk_
+ ) E T ik = X5 (35)

Then it remains to show that inequality (34) still holds at
step k.
In fact, one can obtain that

N,
Lv, > dWlk
k=EVk71+Z + Z LW,y
i=1 =Ny +1
Nk+1 de Nk BWk
= LV_ Z K ik
k1+Z at +.Z oy
i=1 =Ny 1+1 )
Ny N
oW, Wi dii
+ > 5 LIRS oE Lk Sakt 1
i=Ngqq+1 Xik i=Njey1+1 ‘gl,k—1
N¢ )
1 92w
e 5% g2 (xi). (36)
2. X
I=Nk+1+] ik

Similar to (21) and (22), we have

2—gk—
2% O —

1 5
X0l = 516kl + Glgl T (37)
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and
Xi 1—qx
/ (sqk — (] )4k> ds < 2179, (38)
x;fk

where ¢, > 0.
Based on inequality (48) in combination with Lem-
mas 3.1 and 3.6, we acquire that

( (Xlk) k) Xik 1
Z(z - ——= / (sqk

x*

1 1—qx
— (X)) % ) ds
ik

k N3 N>
< ﬁkz(z |s,-,m|qz+z|s,~,1|qz+z|s,~,2|qz)|e,~,k|
i=1 “m=1 j=1 j=1

k—2 Nm
< Z|s 24NN T
m=2 i=1
+5 Zm 1|+q2+ck2|sk| o (39)

i=1

where iy = (2 — qx)fix and ¢, > 0.
Itis inferred from (39) that

Ny

N,
fdw,-,k Py Wik dix
o dt i=Niy1+1 ik dt

Nic+1 ( G )qk>
—Zé?,k X:k+1+Z(2 Q) —————

Xik 1- —qk
x/ <s‘7k —(x )qk> ds
X

1 Ni Ni
1 ~ 1
< 5D Wl TR G Il
i=1 i=1

Nit1
+ Zglk Xlk+1 +Z|E!1|1+q2
k=2 Nm
+Z|sz|”qz+22|s |"+a, (40)
m=3 j=1

Similar to (28)-(31), one obtains

N,

AWy

Z an(X:k)
i=Njgq+1 Ok

N
1— 1 1

< Y Pl€ikd " Bk lEik—1 1" + Ok alEikl )

i=Ni41+1

(41)

and
Ni
192 Wik 2
Z 2 ax ) 9, Ik)
i=Ng41+1 i,
Ny
2 1—
> phlax'®
i=Niy1+1

x (Ok3lEik—11"T92 + Oal&inl'T92).  (42)

It follows from Lemma 3.1 that

Ok1 = Br—

1+q YKl

1+0 — Gk ~Targ

Ok,2 2ﬁk—1WVk1Hq2 41
1

2—qr g 1+ ak

2q KM 14+gp

2—CIk G — Qs
Oa > 2% 4 43
k4 — (ﬂk 1+, Yio + > (43)

Yk2

where Y1 and yy; are arbitrary positive scalars.

Selecting Bx =n—k+1+¢ + ¢ and taking into
account (13), (36), (40), (41) and (42), it can be concluded
that inequality (34) holds. The proof is now complete. B

The following theorem gives our main results of this
paper.

Theorem 3.1: The nonlinear MAS (2) can achieve finite-
time consensus in probability under the control proto-
col (13). Moreover, the settling time T satisfies

1~ e
V 2(0
Ery<—n © (44)
1 - ta 1- 4o
3¢ 7 =739
wherec:max{m,z“qf},j:z...,n
Proof: According to Lemma 3.8, we obtain
n—1 Nj
LVp_1 < 22|s1|1+q2—222|s, T+
j=2 i=1
+ Zé,z,, I (X — X (45)
We acquire from (11) that
oW, ow;
LV = LV, 1+Z e -+Z ax’”f(x,n)
Xin =1 N
_i_% 8Wi,n dfi,n—1 —Zaszgz(X )
£ BEjp  dt 2
(46)
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Similar to (21) and (22), we have

2—qn- 1 A 1
|Ei,nf1n 1(Xf,” - 1&in—1l a2 4 cnléinl ta2 (47)

1
X;fn)' = E
and

Xin , 1 1\ 1-0Gn 1
/ (Sqn — (X;fn)qn> ds <2 _q"|'§i,n| (48)
x;fn

where ¢, > 0.
Next, it can be obtained that

a(—(x;jn)ain)

0 Wi,n

=2 —qn)
3&in—1 T
Xin 1 1\ 1-aGn
X / (sqn —(x,-”f,,)%) ds. (49)
x}fn
Subsequently,
Nn
Z 8Wi,n dfi,n—1
0&n—q dt
n—2 Np
< Z a2+ YD Jgml TP
m=2 i=1

—I n B n
+5 ; Ein1]'T92 + Cp Z &0t (50)

where ¢, > 0.
Similar to (28)-(31), we have that

Np
aW;
Z d fi (Xi,n)
= 8Xi'n

2 (01181011192 + 0521801 H92)

<Zp,1|s,n|

(51)
and

18 W/n 2
: 2 8 2 g[ (Xln)
i=1
Np
<Y phlEinl "% (Onl&in1]"T? + Onalginl )
i=1
(52)

where 6,1, 0,2, 6n 3, On,4 can be chosen according to (43).

Set Bn, = —(¢y + &, + 1). Taking into account (13)
and (46)-(52), we arrive at

LV, < —(Ds 11792 4 ZZ & |1+"2). (53)

j=2 i=1

For X7, < X;k, we obtain from Lemma 3.3 that

*
ik

U1 [ Xik 2 _
Wi > 2 % / (s—xj)% ds=>0 (54)
X
and

2 - 2
Wik < Ixik — Xl &kl “™% < 277% g, (55)

Likewise, we can easily obtain (54) and (55) forxl.*k > Xjk-
From Lemma 3.5, we have 1L2L%L%1N2 =15,L1n, =

0.Hence, 1}, L7 =0, According to Lemma 3.5, if 1], L2x
2 2
=0, then

1 1 T 1 1 N> R
Vi < 250 (L2X1) L(L2X1) = m;&‘“. (56)

Itis inferred from (55) and (56) that

Vp, = Vi +XH:ZW,, <C(Z<§,1 +Xn:25,,>

j=2 i=1 j=2 i=1

Based on Lemma 3.2, one obtains that

'I+‘72 ‘I+q2 1 n 1
Va (Zw +"2+ZZ|5 |+q2>. (58)
Jj=2 i=1
Moreover, from (53) and (58), we acquire that
1 1 4ay
EV,, + EC_#VH 2
n
(ZIE |1 +ZZ |s,,|‘+q2>
j=2 i=1
<0. (59)

Consequently, it can be concluded from Zhao and
Jia (2015) that there exists a time T such that E{V,} = 0,
Vvt > T. According to (54), we can obtain that E{V;} =0
and E{W;y} =0,i=1,...,Ni,k=1,...,n,Vt > T, which
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indicates that

Pixin =xj1} =1, Vt=TNVi#jij=1...,N

P{X,'Iz =le2} =1, Vt=TVNi#jij=1,...,Np

PXin =Xjn} =1, Vt>TNi#jij=1,...,Np.

Based on Lemma 3.4, it can be known that the settling
time T satisfies

17ﬁ
E(T) < - e (01)+ :
3-8
The proof is now complete. ]

Remark 3.1: So far, the finite-time consensus problem
has been solved for a class of mixed-order stochastic
nonlinear systems. With a recursive design method, the
controller of agent i has been designed at step n;. By
assuming that the nonlinear terms satisfying Lipschitz-
type conditions and with the help of the adding a power
integrator technique, the consensus control problem has
been solved for the case where both mixed-order and
high-order dynamics are involved.

Remark 3.2: Note that in this paper, we have proposed
the algorithm to drive the agents consensus in a finite
time interval. It should be mentioned that the provided
design framework could not be directly used to deal with
the fixed-time control that requires MAS to reach consen-
sus in a pre-specified time interval. However, it is worth
pointing out that, on basis of our obtained results, it
is not difficult to extend the provided theory and tech-
niques to deal with the fixed-time consensus study which
is indeed an interesting direction of our future research
work. Another research topic would be the consideration
of the communication threats/attacks occurring in the
data propagation among the agents (Liu et al., 2021; Ma
etal, 2021).

4. Simulation results

In this section, a numerical example is given to demon-
strate the effectiveness of the proposed consensus con-
trol algorithm.

Consider the following mixed-order MASs consisting
of two third-order agents and three second-order agents:

Xi1 = X2
Xi,Z = X3 (60)
Xi3 = sin(x;3) + 0.2x;3 + u; + 0.1sin(x;3)7

wherei =1, 2, and

{5(/,1 = Xjp 67)

Xi2 = sin(x;2) — 0.2xj2 4+ uj + 0.1 sin(x;2)n

wherej = 3,4, 5.
The communication topology of the MAS is presented
in Figure 1 with Laplacian matrix L as follows:

0
-1 2 -1 0 0
0

0
0 o -1 2 -1
0

Choose the following initial conditions: x; = [x71, X21, X31,
xa1,x511" = [1,2,8,3,41", X3 = [x12,X22, 32, Xa2, x52]" =
[2,2,5,4,3]", x3=I[x31,x32]" =[1,2]". According to
Assumption 1, parameters p;1 associated with f;i =
sin(x;3) + 0.2x;3,i = 1,2 can be selected as 1.2; param-
eters p;1 associated with f; = sin(x;2) — 0.2x;2,i = 3,4,5
can be selected as 1.2; parameters p;, associated with
gi = sin(x;3),i = 1,2 can be selected as 0.1 and parame-
ters p; associated with g; = 0.1sin(x;2),i = 3,4,5 can be
selected as 0.1.

In addition, we select control parameters 3 = 300,
B2 =7, B1 =3, 027 =100, 62 = 1000, 623 = 100, 624 =
1000, 637 = 300, 63, = 300, 633 = 3000, 634 = 1000,q; =

Figure 1. The communication topology among the MAS.

X

x21

31
7r X

41

X51

t

Figure 2. Results of the first-order states of the MAS given
in (60), (61) under the control law (13).
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32

42|

%52
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Figure 3. Results of the second-order states of the MAS given
in (60), (61) under the control law (13).

30 T T T T

XZS

Figure 4. Results of the third-order states of the MAS given
in (60), (61) under the control law (13).

%, gz = % and g4 = 17 It can be seen from Figures 2-4,
all the states of agents of different orders reach con-
sensus within three seconds, which is indicative of the
applicability of the proposed consensus protocol.

5. Conclusion

In this paper, the finite-time consensus control prob-
lem has been solved for mixed-order heterogeneous
stochastic MASs with non-identical nonlinear dynamics.
By assuming that nonlinear terms satisfy Lipschitz-type
conditions, a novel consensus control protocol has been
provided by resorting to adding a power integrator tech-
nique. Then, the finite-time consensus in probability has
been proven where the boundness of the settling time
has been formulated. Finally, a simulation example has

been given to verify the usefulness of the proposed con-
trol law.
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