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Abstract—Satellite Mobile Edge Computing (MEC) networks
offer a promising solution for delivering global services to
terrestrial Internet of Things (IoT) terminals in 5G and beyond.
However, satellite MEC systems face challenges such as under-
utilization of resources and task congestion, leading to resource
waste and increased latency. In this paper, we investigate the joint
resource allocation and task offloading problem in multi-satellite
MEC networks, aiming to minimize the average latency of IoT
terminals. To solve the joint optimization problem involving IoT
terminals’ task offloading decisions, uplink transmission power
and sub-channel allocation, and satellite computation resource
allocation, we propose an iterative optimization algorithm that
uses the Lagrange multipliers method to optimize the satellite
computation resource allocation and a Large Language Model
(LLM) based optimizer to optimize the other variables in each
iteration. Prompts and templated parameters are designed to
enhance the LLM’s inference accuracy and generalization capa-
bility across scenarios with varying numbers of satellites and IoT
terminals. Simulation results show that our proposed LLM-based
algorithm outperforms benchmark algorithms in convergence
speed and average latency of IoT terminals.

Index Terms—Satellite mobile edge computing, task offloading,
resource allocation, Large Language Model, Internet of Things.

I. INTRODUCTION

INTERNET of Things (IoT) terminals have driven numer-
ous intelligent applications [1]. However, terrestrial com-

munication networks fail to provide reliable communication
services for IoT terminals in remote areas, such as disaster
zones, oceans, and deserts. Low-Earth-Orbit (LEO) satellite
Mobile Edge Computing (MEC) networks can help provide
global service coverage for IoT terminals [2], [3]. Nonetheless,
achieving efficient resource allocation and task offloading
while meeting low-latency requirements remains challenging
due to limited communication and computation resources at
both satellites and terminals [4].

Some research has been conducted in this area. The authors
in [5] minimized latency and energy consumption in a satellite
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MEC network by Breadth-First Search and greedy algorithms.
The latency was minimized by using the Genetic Algorithm
(GA) and Lagrange multiplier method in [6] and by employing
game theory and many-to-one matching theory in [7]. The
authors in [8] solved a weighted-sum latency minimization
problem for satellite-assisted vehicle-to-vehicle networks by
Reinforcement Learning. Under limited bandwidth, effective
power and spectrum allocation schemes are necessary to over-
come co-channel interference. However, the existing works
[5]–[8] did not consider the impact of transmission power and
spectrum allocation on the data transmission rate or latency
for offloading tasks from terrestrial terminals to satellites.
Moreover, existing algorithms suffer from issues such as lim-
ited applicability, poor generalization, and slow convergence.
Large Language Models (LLMs) have emerged as a promising
approach to solve these issues with their contextual learning
and inference abilities, which have demonstrated outstanding
optimization capability for wireless networks [9], [10].

In this paper, we aim to minimize the average latency of IoT
terminals in a multi-satellite MEC network by optimizing the
satellites’ computation resource allocation and the IoT termi-
nals’ task offloading decisions, uplink sub-channel allocation,
and transmission power allocation. Given that the formulated
problem is non-convex and challenging to solve directly, we
decompose it into two sub-problems: the computation resource
allocation problem and the joint task offloading, power al-
location, and sub-channel allocation problem. The former is
proven to be convex and can be solved using the Lagrange
multiplier method to obtain a closed-form result. For the latter,
due to its complexity, traditional optimization algorithms often
suffer from prolonged computing time [11], while existing AI
algorithms typically require substantial time for model training
or fine-tuning [12]. By harnessing the LLM’s inference and
generalization capabilities while avoiding the costs of dedi-
cated model training, we propose an LLM-based optimizer
that utilizes structured templates, pre-designed prompts, and an
example pool to solve the second subproblem. An alternating
optimization algorithm is devised based on the solutions to
both sub-problems to solve the original problem. Simulation
results are provided to evaluate the proposed algorithm for
varying numbers of satellites and IoT terminals.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a low-density satellite-MEC scenario in a
remote area. The network contains M LEO satellites, denoted
by S = {S1, S2, . . . , SM}, which serve N IoT terminals
sparsely distributed on the ground at fixed locations via I
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Fig. 1. Satellite Mobile Edge Computing Network.

orthogonal sub-channels, as shown in Fig. 1. Each satellite
has a computational capacity FSAT (in CPU cycle/s). The set
of IoT terminals is represented by T = {T1, T2, . . . , TN}. The
n-th IoT terminal Tn has a task ψn with data size εn (in bits)
and required computational density ρ (in CPU cycle/bit). Each
terminal has a local computational capacity of FIoT (in CPU
cycle/s). An IoT terminal can either process its task locally
or offload it to one of the satellites. The set of sub-channels
is denoted by A = {A1, A2, . . . , AI}. Each sub-channel has
a bandwidth of B and can be employed by multiple IoT
terminals simultaneously. One IoT terminal can use multiple
sub-channels to send the task data to one satellite and can
allocate various power across the sub-channels, with the to-
tal transmission power constrained by PIoT. The scheduling
period ∆ is assumed to be sufficiently short such that the
satellite-terminal geometry and channel fading coefficients can
be regarded as quasi-static [11]. At the beginning of each
scheduling period, the binary task offloading indicators αm,n

and sub-channel allocation indicators βn,i are updated by the
system. Specifically, αm,n = 1 if task ψn is offloaded to
satellite Sm, otherwise αm,n = 0; βn,i = 1 if sub-channel
Ai is allocated for transmitting task ψn, otherwise, βn,i = 0.

A. Transmission Model

Since the distance from a satellite to an IoT terminal is much
longer than that between any two IoT terminals, we assume
that all the IoT terminals have approximately the same distance
to the same satellite. The distance from an IoT terminal to
satellite Sm is denoted by dm and derived as [12]:

dm =
√
R2

e + (Re +Rh)2 − 2Re(Re +Rh) cos θm, (1)

θm = arccos

(
Re

Re +Rh
· cos em

)
− em, (2)

where Re and Rh represent the radius of the Earth and the
height of the satellite orbit above ground, respectively; θm is
the geocentric angle of satellite Sm, and em is the elevation
angle of Sm to an IoT terminal with lower limit emin [13].

The channel gain of sub-channel Ai between satellite Sm

and IoT terminal Tn is given by:

Gi
m,n = Gn(

c

4πfcdm
)2(|him,n|)2, (3)

where Gn is the antenna gain (in dBi) of IoT terminal Tn, fc
is the carrier frequency, c denotes the speed of light, and him,n

represents the Rician fading with factor K.
If IoT terminal Tn offloads its task to satellite Sm, i.e.,

αm,n = 1, then the data rate from Tn to Sm is given by:

Cm,n=
I∑

i=1

B log2

1+ αm,nβn,iPn,iG
i
m,n

N∑
n′ ̸=n

M∑
m′=1

αm′,n′βn′,iPn′,iGi
m′,n′+N0

 ,

(4)
where N0 denotes the additive white Gaussian noise (AWGN)
power at the satellite receiver, and Pn,i denotes the transmis-
sion power from IoT terminal Tn in sub-channel Ai.

In the uplink, the transmission latency δTransm,n of task ψn

offloaded to satellite Sm is:

δTransm,n =
εn
Cm,n

. (5)

The downlink transmission latency is neglected since the
computation result size is typically much smaller than the
uplink task data size [6].

B. Problem Formulation

If task ψn is processed locally, the computation time is:

δIoTn =
εnρ

FIoT
, (6)

If task ψn is offloaded to satellite Sm, the computation time
is:

δSAT
m,n =

εnρ

F SAT
m,n

, (7)

where F SAT
m,n represents the computation resource (in CPU

cycle/s) of satellite Sm allocated for processing task ψn.
The latency experienced by an IoT terminal includes the

transmission latency and computation latency of its task. The
latency of terminal Tn is given by:

δn =
M∑

m=1

αm,n(δ
SAT
m,n + δTransm,n ) + (1−

M∑
m=1

αm,n)δ
IoT
n . (8)

To minimize the average latency of all IoT terminals, we
formulate an optimization problem as follows,

min
P ,F ,α,β

1

N

N∑
n=1

δn, (9a)

s.t. 0 ≤
I∑

i=1

βn,iPn,i ≤ PIoT, ∀n ∈ {1, ..., N}, (9b)

0 ≤
N∑

n=1

αm,nF
SAT
m,n ≤ FSAT, ∀m ∈ {1, ...,M}, (9c)

M∑
m=1

αm,n ≤ 1,∀n ∈ {1, ..., N}, (9d)

δn ≤ ∆,∀n ∈ {1, ..., N}, (9e)
αm,n, βn,i ∈ {0, 1}, (9f)

where P = {Pn,i|n = 1, ..., N ; i = 1, ..., I}, F =
{FSAT

m,n |m = 1, ...,M ;n = 1, ..., N}, α = {αm,n|m =
1, ...,M ;n = 1, ..., N}, and β = {βn,i|n = 1, ..., N ; i =
1, ..., I}. Constraint (9b) limits the total power allocated by
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a terminal across all sub-channels; (9c) imposes the computa-
tional capacity of each satellite; (9d) ensures that a task can be
offloaded to at most one satellite; (9e) ensures that a task must
be processed within a scheduling period; and (9f) specifies the
binary indicators.

III. ALGORITHM DESIGN

The problem in (9) is non-convex due to the discrete solu-
tion space imposed by the binary variables [11]. To address
this, it is divided into two sub-problems: the satellite computa-
tion resource allocation problem and the joint task offloading,
power allocation, and sub-channel allocation problem. We first
show that the former is convex and obtain a closed-form
solution using the Lagrange multiplier method. Then, a novel
LLM-based optimizer is proposed to solve the latter.

A. Satellite Computation Resource Allocation

For given values of α, β and P , problem (9) reduces to:

min
F

1

N

N∑
n=1

M∑
m=1

αm,nδ
SAT
m,n , (10)

s.t. (9c).

The second derivative of any element within the summation
in (10) with respect to F SAT

m,n is:

∂2(αm,nδ
SAT
m,n )

∂F SAT
m,n

2 =
2αm,nεnρ

F SAT
m,n

3 ≥ 0, (11)

where αm,n ≥ 0, εn > 0, ρ > 0, and F SAT
m,n > 0. So

the Hessian matrix of the objective function in (10) is a
positive semi-definite matrix, and problem (10) is convex. The
Lagrangian function L(F SAT

m,n , λm) with Lagrange multiplier
λm is as follows:

L(F SAT
m,n , λm) =

1

N
(

M∑
m=1

N∑
n=1

αm,nδ
SAT
m,n )

+
M∑

m=1

λm(
N∑

n=1

αm,nF
SAT
m,n − FSAT).

(12)

Taking the partial derivatives of L(F SAT
m,n , λm) with respect to

F SAT
m,n and λm, and setting the results to zero, we have:

∂L(F SAT
m,n , λm)

∂F SAT
m,n

= −αm,nεnρ

F SAT
m,n

2 + λmαm,n = 0,

∂L(F SAT
m,n , λm)

∂λm
=

N∑
n=1

αm,nF
SAT
m,n − FSAT = 0.

(13)

By solving the above equations, we obtain the optimal satellite
computation resource allocation:

F̃ SAT
m,n =

FSAT
√
εnρ

N∑
k=1

αm,k
√
εkρ

. (14)

B. Joint task Offloading, Power Allocation and Sub-channel
Allocation

For given F , problem (9) reduces to :

min
P ,α

1

N

N∑
n=1

δn, (15a)

s.t. 0 ≤
I∑

i=1

Pn,i ≤ PIoT, ∀n ∈ {1, ..., N}, (15b)

(9c), (9d), (9f),

where for simplicity, the sub-channel allocation indicators βn,i
are omitted under the assumption that βn,i = 0 if Pn,i = 0
and βn,i = 1 if Pn,i > 0.

Problem (15) is still non-convex due to the binary constraint
and fractional sum terms. To solve it, we propose an LLM-
based optimizer as shown in Fig. 2 and detailed below.

The Generator Module consists of an LLM-based decision
maker that uses prompts and an example pool as inputs
to generate task offloading and power allocation solutions
as outputs. The initial prompt includes the task description
that outlines the objective based on (15), the environment
description that details the system model with key parameters
for customization, and the output format that specifies the
template for generated solutions. The example pool contains
an initial solution, i.e., the best solution to (15) among 100
randomly generated solutions, denoted by αe, Pe, and δe.

The Evaluation Module is composed of an LLM output ex-
tractor and a performance evaluation system. To avoid redun-
dant texts due to hallucinations, the LLM extractor uses a task
offloading extraction prompt and a power allocation extraction
prompt to extract the intended solutions from the output text
generated by the LLM. The performance of the extracted
solutions α and P is evaluated by substituting them into (15),
and calculating the average latency δ = (

∑N
n=1 δn)/N ; if any

constraint of (15) is violated, δ =∞.
The LLM-based iterative algorithm begins by inputting the

initial prompt and example pool into the LLM-based decision
maker. The decision maker’s output is then evaluated by
the Evaluation Module, which compares δ with the average
latency δe of the solution in the example pool and determines
how the inputs to the decision maker should be updated in the
next iteration as follows:

• If δ > δe: An expert prompt, based on domain-specific
knowledge, will be input into the Generator Module.

• If δ < δe: The extracted solutions α and P replace αe

and Pe in the example pool, respectively.
• If δ = δe: If α = αe and P = Pe, a reminder prompt

will be input into the Generator Module to prevent the
LLM from being trapped in existing solutions; otherwise,
the expert prompt will be input into the Generator Mod-
ule.

The iteration process terminates when the example pool is
not updated for ϵ consecutive iterations or when the number
of iterations reaches a preset limit. The example pool returns
the final solution to problem (15). Based on the solutions to
the two sub-problems, an alternating optimization algorithm is
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Fig. 2. The LLM-based framework for joint optimization of task offloading, power allocation, and sub-channel allocation.

Algorithm 1 LLM-Based Alternating Optimization
Input: M , N , I , ϵ, max iterations

1: Initialize example pool (αe,P e, δe) and initial prompt
2: Set iteration counter i← 0, no update counter ← 0
3: Prompti ← initial prompt
4: repeat
5: Query LLM with Prompti and extract (αnew,P new)
6: if any constraint of (15) is violated then
7: Set δnew ←∞
8: else
9: for m = 1 :M and n = 1 : N do

10: F SAT
m,n ← (14)

11: end for
12: Compute average latency: δnew ← (8) and (9)
13: end if
14: if δnew < δe then
15: Update: (αe,P e, δe)← (αnew,P new, δnew)
16: no update counter ← 0
17: else if (αnew,P new, δnew) = (αe,P e, δe) then
18: Prompti+1 ← initial prompt::reminder prompt
19: no update counter ← no update counter +1
20: else
21: Prompti+1 ← initial prompt::expert prompt
22: no update counter ← no update counter +1
23: end if
24: i← i+ 1
25: until no update counter ≥ ϵ or i ≥ max iterations
26: return αe,P e,F, δe

devised to solve (9). The pseudo-code is shown in Algorithm
1.

Since most existing commercial LLM APIs are memoryless,
both task offloading and power allocation solutions must be
generated within a single conversation (i.e., a series of prompt-

response exchanges) with the LLM. The example pool can
help maintain continuity across iterations. Some open-source
localized models like Llama 3 can mitigate this issue, but
currently lag behind in inference performance.

IV. SIMULATION RESULTS

This section presents the performance evaluation of the pro-
posed LLM-based alternating optimization algorithm (LLM),
building on (14) and the LLM-based optimizer in Fig. 2. It
is well recognized that employing commercial LLM APIs
introduces additional network latency due to data exchanges
with cloud servers, whereas local deployment of LLMs en-
tails significant hardware and maintenance costs. Therefore,
commercial APIs are particularly suitable for edge devices
with limited computational resources, offering access to high-
performance LLMs at relatively low costs. Conversely, lo-
cal deployment ensures greater data confidentiality and, by
interacting directly with local devices, significantly reduces
communication overhead, making it preferable in latency-
sensitive and/or safety-critical scenarios. Given the substantial
hardware requirements for deploying high-performance LLMs
locally, this study utilizes different LLM models through
commercial APIs for performance evaluation. Nevertheless,
our proposed algorithm is compatible with local deployment-
based LLMs too. By testing three widely used models, GPT-
4o, LLaMA-3.1-70B, and DeepSeek-R1-0528 under the same
prompt design and algorithmic framework, we observe that
only GPT-4o successfully converged to an optimized so-
lution, where both the LLaMA-3.1-70B and DeepSeek-R1-
0528 failed to complete the algorithm due to hallucinations.
The LLaMA-3.1-70B model sometimes returned wrong di-
mensions of decision matrices, while the DeepSeek-R1-0528
model often generated non-binary values of α within the
first 5 iterations, both failing to complete the algorithm.
Therefore, GPT-4o is adopted in the following simulations due
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to its superior reliability and reasoning performance across
iterative optimization tasks. The benchmarks for performance
comparison include the GA, where the initial population size
is set at 400 with a crossover probability of 0.5 and a mutation
probability of 0.2; the Deep Deterministic Policy Gradient
(DDPG) algorithm with a greedy exploration strategy, where
the exploration rate is 0.05, and both the Actor and Critic
networks contain three layers with the learning rate of 10−5;
Random Choice (RC), where each task has an equal proba-
bility of being processed locally or offloaded to one of the
satellites, and the other optimization variables are uniformly
distributed within their allowed value ranges; Processing All
Locally (PAL), where each IoT terminal processes its task
locally and all the variables in problem (9) are set to zero. In
the simulation, the task data size ϵn is uniformly distributed
between 0.3 MB and 0.6 MB, and other parameters are shown
in Table I unless otherwise specified.

TABLE I
SIMULATION PARAMETERS [6], [12], [13]

Notation Value Notation Value Notation Value
N0 -134dBm ρn 100cycle/bit PIoT 0.2mW
∆ 1s FIoT 0.5Gcycle/s emin 10°
B 10MHz FSAT 20Gcycle/s Re 6371km
Gn 3dBi fc 3.49GHz Rh 550km

Fig. 3. Convergence of the LLM-based algorithm for different temperature
t and different prompt (DP) wording, GA, and DDPG for M = 3, N =
10, I = 4.

Fig. 3 shows the convergence performance of the proposed
LLM-based algorithm for different values of temperature t,
which is a hyperparameter that controls the sharpness of
the LLM’s output probability distribution, and for different
prompt (DP) wording, in comparison with GA and DDPG.
Higher temperature values lead to more diverse and stochastic
outputs. Our simulations tested temperature values of 0.5,
0.7, 1, 1.3, and 1.5 and found that for t = 1.3 and 1.5, the
LLM-based algorithm failed to complete due to occasional
dimension mismatches in the generated solutions. For t = 0.5,
0.7, and 1, the LLM-based algorithms converge within 40 to

Fig. 4. Mean latency and standard deviation vs. the number of IoT terminals
for M = 3, I = 4.

Fig. 5. Average latency for different values of (N,M, I).

200 iterations, significantly faster than both DDPG and GA.
The results indicate that t = 1 offers the best balance between
convergence speed and latency minimization performance.
Therefore, in the subsequent experiments, the LLM-based
algorithm adopts t = 1. Additionally, the performance of the
LLM-based algorithm with different prompt wording is close
to that with the prompt wording defined in Fig. 2, suggesting
that the LLM-based algorithm is not sensitive to the wording
of prompts as long as the underlying intent remains consistent.

Fig. 4 shows the mean latency and standard deviation
achieved by different algorithms across 10 experimental runs
for 5, 10, 15, and 20 IoT terminals served by 3 satellites. It
shows that as the number of terminals increases, the average
latency rises for all the considered schemes. This is mainly due
to increased co-channel interference. It also shows that the pro-
posed LLM-based algorithm achieves the lowest mean latency
and smallest standard deviation for every considered number
of IoT terminals, followed by GA and DDPG. Although
DDPG has been widely used for solving non-convex problems,
it is prone to being stuck in local optima and is highly sensitive
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to hyperparameter settings. In contrast, the proposed LLM-
based algorithm encourages broader solution exploration when
repetitive solutions are detected and avoids getting stuck in
local optima through prompt-based adaptations.

Fig. 5 shows the average latency achieved by four schemes
for different values of (N,M, I). The proposed LLM-based
algorithm consistently outperforms RC across all scenarios.
For the scenarios of (20, 6, 4), (20, 6, 8), and (20, 3, 8), as
the decision matrices contain significantly more float numbers,
increasing the likelihood of hallucinations or invalid outputs,
the LLM-based algorithm is outperformed by GA.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a novel LLM optimizer
combined with the Lagrange multiplier method to minimize
the average latency of IoT terminals in a multi-satellite
MEC network. Simulation results demonstrate that the LLM-
based alternating optimization algorithm converges signifi-
cantly faster than both GA and DDPG while obtaining a
lower average latency for the IoT terminals. The LLM-based
algorithm exhibits strong adaptability and effectively achieves
the optimization objective across varying numbers of IoT
terminals and satellites. Our results also show that for high-
dimensional scenarios, it would be necessary to adopt a
multi-agent approach—a promising direction for future work.
In addition, we plan to investigate other practical issues in
satellite MEC networks, such as the response time of LLMs.
It is mainly determined by the latency of generating the first
token and the subsequent time required to produce the full
output text, which scales with the number of output tokens
[14].
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