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Abstract—Traditional unimodal sensing faces limitations in
accuracy and capability, and its decoupled implementation
with communication systems increases latency in bandwidth-
constrained environments. Additionally, single-task-oriented
sensing systems fail to address users’ diverse demands. To over-
come these challenges, we propose a semantic-driven integrated
multimodal sensing and communication (SIMAC) framework.
This framework leverages a joint source-channel coding archi-
tecture to achieve simultaneous sensing, decoding, and trans-
mission of sensing results. Specifically, SIMAC first introduces
a multimodal semantic fusion (MSF) network, which employs
two extractors to extract semantic information from radar
signals and images, respectively. MSF then applies cross-attention
mechanisms to fuse these unimodal features and generate mul-
timodal semantic representations. Secondly, we present a large
language model (LLM)-based semantic encoder (LSE), where
relevant communication parameters and multimodal semantics
are mapped into a unified latent space and input to the LLM,
enabling channel-adaptive semantic encoding. Thirdly, a task-
oriented sensing semantic decoder (SSD) is proposed, in which
different decoded heads are designed according to the specific
needs of tasks. Simultaneously, a multi-task learning strategy is
introduced to train the SIMAC framework, achieving diverse
sensing services. Finally, experimental simulations demonstrate
that the proposed framework achieves diverse and higher-
accuracy sensing services.

Index Terms—Integrated multimodal sensing and communica-
tions; semantic communication; large language model; multi-task
learning

I. INTRODUCTION

A. Backgrounds

Unimodal sensing technologies, such as radar and visual
sensing, have been extensively studied and widely deployed
across various domains due to their respective strengths. In
autonomous driving, radar enables precise measurement of
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object distance, velocity, and relative motion, making it es-
sential for advanced vehicular systems [1]. In military applica-
tions, radar serves as a critical component for reconnaissance,
surveillance, early warning, and missile defense systems [2].
Visual sensing, by contrast, captures rich image content and
supports detailed object recognition and classification. Leading
autonomous driving platforms, including those developed by
Tesla and Waymo, leverage advanced visual perception algo-
rithms to improve decision-making and situational awareness
[3]. In intelligent surveillance systems, visual sensing enables
automated video analytics for intruder detection, anomaly
recognition, and fire monitoring, thus enhancing security and
operational efficiency [4].

Despite their advantages, each modality suffers from inher-
ent limitations. Radar cannot capture visual attributes such as
color, texture, and shape, while visual sensing struggles with
accurate spatial localization, particularly under challenging
conditions involving low light or occlusion [5]. To overcome
these shortcomings, multimodal sensing has emerged as a
compelling approach, combining radar and visual inputs to ex-
ploit their complementary strengths [6]. By integrating radar’s
spatial awareness with the rich contextual information from
visual data, multimodal systems offer a more comprehensive
environmental understanding.

However, current sensing presents two major challenges:
(1) The traditional decoupled architecture, where sensing is
completed at the transmitter and the results are subsequently
forwarded to the receiver [7]. This design poses sequential
processing increases service latency, thereby limiting real-time
responsiveness; and (2) sensing devices without multimodal
capabilities must rely on other devices to access multimodal
sensing services, which often entails transmitting large vol-
umes of data and consequently imposes heavy communication
overhead. These limitations not only undermine the efficiency
of multimodal sensing but also hinder its deployment in
scenarios with stringent latency and bandwidth constraints.

B. Challenges

Given this background, several challenges associated with
traditional sensing technology are summarized as follows:

1) Insufficient Information Sensing: Unimodal sensing has
inherent limitations; for example, radar lacks visual
semantics, while vision struggles with precise spatial
localization and is vulnerable to lighting and occlusion.
These constraints limit the comprehensiveness of scene
understanding.
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2) High Communication Overhead: To support devices
without multimodal sensing capabilities, sensing results
may be transmitted from the transmitter to the re-
ceiver. This process generates substantial data traffic,
particularly in multimodal systems, which not only in-
creases latency but also limits deployment in bandwidth-
constrained scenarios.

3) Limited Sensing Services: Most sensing algorithms are
designed for specific tasks (e.g., distance estimation or
object recognition) and lack the flexibility to address
diverse or user-specific requirements.

C. Contributions
Semantic communication (SC) is an innovative approach

based on deep joint source-channel coding (JSCC), with
the potential to transform communication system design and
development [8], [9]. Unlike conventional systems, SC focuses
on understanding and conveying the message’s core meaning
or intent, rather than transmitting all bits [10]. This paradigm
shift allows for reduced redundancy and irrelevant data, im-
proving transmission efficiency.

Integrated sensing and communication (ISAC) unifies sens-
ing and data transmission, overcoming the limitations of
traditional decoupled systems [11]. By enabling simultane-
ous sensing and communication, ISAC reduces latency and
communication overhead, making it particularly effective for
multimodal systems. This approach optimizes resource use and
enhances efficiency in real-time applications.

Based on SC and ISAC, a semantic-driven integrated mul-
timodal sensing and communication (SIMAC) framework is
proposed to address the identified challenges. The main con-
tributions are as follows:

1) We introduce a multimodal semantic fusion (MSF) net-
work that employs two extractors to extract unimodal
semantics from images and radar signals, respectively.
One is based on the vision transformer (ViT) and
the other is based on complex convolutional neural
networks (CNNs). Then, a cross-attention mechanism
is used to fuse these unimodal semantics, obtaining
a comprehensive multimodal semantic representation.
This approach fully leverages both physical position and
visual information, addressing the first challenge.

2) We present an LLM-based semantic encoder (LSE),
where a specialized embedding network maps both mul-
timodal semantics and relevant communication parame-
ters into a unified latent space and obtains an embedding.
Then, an LLM is applied to perform semantic encoding
on the generated embeddings. Due to the inclusion of
communication parameters, LSE can flexibly adapt to
various communication environments without retraining.
Compared to traditional methods, only the semantic
encoding needs transmission, reducing communication
overheads and addressing the second challenge.

3) We design a multi-task-oriented sensing semantic de-
coder (SSD) with distinct decoding heads tailored to
specific tasks, such as distance and angle prediction,
velocity estimation, and image reconstruction. Addi-
tionally, a multi-task learning strategy is implemented

to train these heads simultaneously, enhancing training
efficiency. This approach enables users to access diverse
sensing services, addressing the final challenge.

4) Based on the VIRAT Video Dataset [12], we construct
a specific dataset to train and evaluate the proposed
framework. The results demonstrate that our framework
provides more diverse sensing services and higher accu-
racy with low communication costs.

D. Organization

The rest of the paper has the following structure: Section
II introduces the related works, and Section III provides a
detailed description of the system model. Section IV presents
the proposed SIMAC framework, including the implementa-
tion of the MSF, LSE, and SSD modules. Section V employs
experimental simulations to evaluate the performance of the
proposed methods. Lastly, Section VI concludes this paper.

II. RELATED WORKS

This section reviews the related works about unimodal
and multimodal sensing and ISAC. We also summarize the
differences between our work and the existing works in Table
I.

A. Unimodal Sensing

Sensing technologies have found extensive applications
across various fields, due to their effectiveness in target
detection and tracking, particularly in complex environments.
For instance, in autonomous driving, Sun et al. [13] developed
a high-resolution imaging radar system that delivers high-
fidelity four-dimensional (4D) sensing through joint sparsity
optimization in the frequency spectrum and array configura-
tions. Sohail et al. [14] proposed a radar-based method for
relative vehicle positioning, utilizing the dynamic range and
azimuth of frequency-modulated continuous wave radar to
achieve precise vehicle positioning. Additionally, Luo et al.
[15] applied computer vision (CV)-based surface defect de-
tection to monitor the status and integrity of bridge structures,
ensuring their safety and reliability.

While these studies exploit the advantages of sensing tech-
nologies, they rely on unimodal data, which inherently limits
the diversity and scope of their sensing capabilities. Therefore,
we propose an approach that integrates radar signals with
visual data. In this method, the radar signals assist in locating
the key target in rough visual information, while the visual
modality improves the accuracy of the motion parameters
estimation.

B. Multimodal Sensing

The limitations of unimodal sensing, such as challenges
in maintaining robustness and accuracy in complex environ-
ments, have driven interest in multimodal sensing technolo-
gies. Liu and Lin [16] introduced a multimodal dynamic hand
gesture recognition method using a two-branch deformable
network with Gram matching, ensuring reliable recognition
and improving generalization across varying field-of-view
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TABLE I: Comparison of Our Contributions with Related Literature

Contributions Ours [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]

Unimodal sensing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multimodal sensing ✓ ✓ ✓ ✓ ✓ ✓ ✓

ISAC ✓ ✓ ✓ ✓ ✓ ✓ ✓

Semantic communication ✓

Channel self-adaption ✓ ✓ ✓ ✓ ✓

Multi-task learning ✓

scenes. Deliali et al. [17] developed a framework to classify
radar-based trajectories in multimodal traffic environments,
enhancing performance under adverse lighting and weather
conditions. Kim et al. [18] proposed an early fusion method
that combines spatial and contextual properties from cameras
and radar for improved 3D object detection.

Although these works demonstrate advancements in multi-
modal fusion and sensing accuracy, they largely overlook the
communication cost of transmitting sensing results. Further-
more, their designs are often tailored to specific tasks, such as
detection or imaging. In this paper, we will address these gaps
by introducing LSE to mitigate dynamic communication envi-
ronment challenges and employing SSD to efficiently deliver
diverse sensing services to users.

C. Integrated Sensing and Communication
ISAC represents a paradigm shift by seamlessly unifying

sensing and communication functionalities within a single
framework, thereby significantly enhancing overall system
efficiency. For unimodal ISAC systems, Zhang et al. [19]
investigated an IRS-assisted, WPT-enabled ISAC architecture
in which a base station (BS) simultaneously performs radar
sensing and data reception from IoT devices. To extend ISAC
capabilities to cellular-connected UAV systems, Wang et al.
[20] proposed an extended Kalman filter-based data fusion
algorithm that enables beyond-line-of-sight (LoS) sensing by
providing accurate environmental information. Xiang et al.
[21] introduced a green beamforming design for ISAC that
utilizes beam-matching error to assess radar performance. In
the context of multimodal ISAC, Xu et al. [22] proposed
FVMNet, a radar-camera fusion network that enables real-time
volumetric perception, demonstrating zero-shot generalization
and robustness under diverse weather conditions. Jiang et
al. [23] designed a vision-guided multiple-input multiple-
output (MIMO) radar system capable of multi-subject vital
sign monitoring in cluttered environments through adaptive
beamforming. Yang et al. [24] developed a deep multimodal
learning framework for wireless communications, introducing
novel architectures for effective multi-source sensing data
fusion and achieving improved performance in massive MIMO
channel prediction tasks.

While existing ISAC studies have demonstrated the feasibil-
ity of performing sensing and communication simultaneously,
they face two key limitations. First, conventional unimodal
ISAC systems primarily rely on radio frequency (RF) sig-
nals and cannot perceive the environment through multiple

modalities, making them inadequate in complex scenarios.
Second, traditional multimodal ISAC approaches focus on
enhancing the sensing capabilities of the BS, such as enabling
more efficient beamforming, but do not offer sensing support
to other users. In contrast, unlike unimodal ISAC, SIMAC
utilizes MSF to effectively integrate heterogeneous sensing
data, thereby enabling robust multimodal perception. Com-
pared to conventional multimodal ISAC, SIMAC is designed
to provide multimodal sensing services to users who lack such
capabilities, empowering them to perform downstream tasks,
such as drone tracking and environmental modeling, locally
and more efficiently. More importantly, SIMAC incorporates
SC to jointly optimize the transmission and decoding of
multimodal perception information between the BS and users.
By transmitting only task-relevant semantic representations,
SIMAC significantly reduces communication overhead while
enhancing resource efficiency.

III. WIRELESS SENSING AND COMMUNICATION SYSTEM
MODEL

A. System Model

As illustrated in Fig. 1, we consider a system consisting
of N sensing targets (STs), a BS as the transmitter, and a
user as the receiver. The primary objective of the BS is to
transmit the image of the nth ST (i.e., communicated data)
and its motion parameters (i.e., sensing results) to the user.
Specifically, the BS utilizes its radar and camera to sense the
nth ST from both digital signal and visual perspectives. The
BS then uses an integrated SC and multimodal sensing system
to communicate with the user, where the sensing decoding
and data transmission are processed in parallelly. The detailed
process is outlined as follows:

1) Sensing Data Acquisition: Due to its favorable prop-
erties, the linear frequency modulation (LFM) waveform is
extensively employed in radar sensing. The frequency of
this waveform varies linearly over time, making it inherently
robust against doppler frequency shifts, which enhances signal
processing gain. Assuming that the motion parameters of the
ST n include the angle θn, distance dn, and radial velocity
vn, as shown in Fig. 2, we adopt a single-input-multiple-
output (SIMO) radar model to transmit the LFM waveform
and capture the corresponding echo signal. The echo signal
can be expressed as:

An = λa(θn)ej2πµnTs(T− τn), (1)
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Fig. 1: The illustration of the integrated SC and multimodal sensing system model.
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Fig. 2: The illustration of the motion parameters of the ST.

where,

λ =
ξ · ρn

(4π)3/2 · d2n
, (2)

and
ξ =

c

fc +Kt
, (3)

while ρn is the radar cross-section (RCS) of the nth ST, which
represents the ST’s ability to reflect radar signals. a(θn) =
[1, e−jπ cos θn , . . . , e−j(K−1)π cos θn ] is the steering vector, and
K represents the number of receive antennas. T = [k·∆t | k ∈
Z, 0 ≤ k∆t ≤ Tr] denotes the time sequence of the sampling
process, where Tr is the pulse repetition interval (PRI), ∆t =
1
Fs

is the sampling interval, and Fs is the sampling frequency.
τn = 2dn

c and µn = 2(fc+Kt/2)vn

c represent the time delay and
doppler frequency shift, respectively, where fc is the radar’s
central frequency, Kt is the frequency modulation slope, and
c = 3× 108 m/s is the velocity of light.

BGR mode represents image pixels using blue, green, and
red values, allowing direct display of sensor data without

interpolation for optimal quality. Thus, it is widely used in
image sensors [25]. We assume that the BS is equipped
with a camera that utilizes the BGR mode to acquire high-
quality images m ∈ RW×H×3, where W and H denote the
width and height of the image in terms of the number of
pixels, respectively. Note the captured image m may contain
multiple STs, hence we aim to isolate the portion of the image
corresponding to the nth ST, denoted as mn, using the latent
information of the echo signal An.

2) Semantic Extraction: Given that the echo signal An

and the captured image m have distinct data dimensions and
characteristics, we adopt two separate semantic extractors for
each modality. The process of semantic extraction is described
as follows:

ssig
n = Ssig(An,α), (4)

svis
n = Svis(m,β), (5)

where ssig
n and svis

n represent the semantic features of length
Ls extracted from An and m, respectively. Ssig(·) denotes the
signal semantic extractor with parameters α, and Svis(·) is the
image semantic extractor with parameters β.

To efficiently capture key information and explore the latent
relationships between the two semantic features ssig

n and svis
n ,

a semantic fusion module is employed to combine these
features and generate a comprehensive multimodal semantic
representation smul

n . This process can be expressed as:

smul
n = Smul(s

sig
n , svis

n ,γ), (6)

where Smul(·) is the semantic fusion module with parameters
γ.

3) Semantic Encoding: To minimize semantic distortion
during wireless transmission, a JSCC encoder is employed to
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perform semantic encoding, taking smul
n as input. The encoding

process is given by:

en = Fse(s
mul
n , δ), (7)

where en represents the semantic encoding and Fse(·) is the
JSCC encoder with parameters δ.

4) Wireless Communication: To ensure that the semantic
encoding can be transmitted over the wireless channel, sig-
nal modulation techniques, such as QPSK and 16QAM, are
employed to convert en into complex-valued symbols cn.

The complex-valued symbols cn are transmitted over the
channel, which is modeled as:

yn = H · cn +N, (8)

where yn represents the received complex-valued symbols,
H denotes the channel gain between the user and the BS.
N ∼ CN (0, σ2I) represents Additive White Gaussian Noise
(AWGN), where σ2 is the noise power. Given that we consider
a deep JSCC architecture, the channel model must be com-
patible with backpropagation to facilitate end-to-end training
of both the encoder and decoder. Consequently, the wireless
channel is simulated using neural network-based approaches
[26]. It is notable that this semantic-level communication
inherently mitigates privacy risks, as original sensor data is
never exposed. Even if intercepted, the semantic features are
difficult to decode without access to the task-specific decoder.
Moreover, this framework is compatible with existing privacy-
preserving techniques, such as homomorphic encryption [27],
differential privacy [28], and secure multi-party computation
can be directly applied to further enhance data security.

During wireless communication between the BS and the
user, the transmission rate v can be expressed as:

v = B log2

(
1 +

P∥H∥2

σ2

)
, (9)

where B and P represent the bandwidth and transmission
power, respectively. Thus, the transmission delay is given by:

tcom =
Z(cn)

v
, (10)

where Z(cn) denotes the number of bits required to transmit
the complex-valued symbols cn to the user.

5) Semantic Decoding: Upon receiving the symbols yn,
signal demodulation is applied to convert them back into the
received semantic encoding ên. To support diverse sensing
services for the user, a JSCC decoder is employed to obtain
sensing results tailored for multiple tasks. Specifically, we
consider a variety of sensing tasks, including distance, an-
gle, velocity prediction, and ST reconstruction. The decoding
process is therefore formulated as:

on = Fsd(ên, ϵ), on ∈ {θ̂n, d̂n, v̂n, m̂n}, (11)

where Fsd(·) represents the semantic decoder parameterized
by ϵ. The decoded results, on, may include a selection of the
reconstructed image m̂n of the nth ST, predicted distance d̂n,
predicted velocity v̂n, and estimated angle θ̂n.

B. Problem Formulation

To realize the data transmission and sensing decoding from
the BS to the user via a wireless channel, the total execution
time T exe comprises the computation time for semantic extrac-
tion tst and encoding tse at the transmitter, the communication
time for transmission tcom, and the computation time for
semantic decoding at the receiver tsd. Thus, the total execution
time can be expressed as:

T exe = tst + tse + tcom + tsd. (12)

To provide diversified services for the user, we consider
multiple sensing tasks, including distance, velocity, angle
prediction, and image reconstruction of the nth ST. The
corresponding task losses are defined as follows:

Ldp = ||dn − d̂n||2, (13)

Lap = ||θn − θ̂n||2, (14)

Lvp = ||vn − v̂n||2, (15)

Lsr = ||mn − m̂n||. (16)

The primary goal of the SIMAC framework is to minimize
semantic distortion during wireless transmission while maxi-
mizing the accuracy of the decoded sensing results. Addition-
ally, transmission delays must be accounted for to ensure the
quality of service. Accordingly, the objective function of the
proposed SIMAC framework can be expressed as:

min
α,β,γ,δ,ϵ

l1Ldp + l2Lap + l3Lvp + l4Lsr, (17a)

s.t. T exe ≤ Tmax, (17b)

where Tmax denotes the latency requirement for completing
the sensing task. l1, l2, l3, and l4 are adjustment factors.

To address the optimization problem described in Eq. (17a),
there are three key issues. First, images and radar signals have
different modalities and are difficult to process using a sin-
gle neural network. Second, fixed-strategy semantic encoding
is difficult to adapt to dynamic changes in communication
parameters, resulting in low semantic fidelity. Finally, tradi-
tional single-task learning has difficulty optimizing multiple
objectives simultaneously. Therefore, we have meticulously
designed specialized neural networks for the various modules
within the SIMAC framework, which will be described in the
next section.

IV. SEMANTIC-DRIVEN INTEGRATED MULTIMODAL
SENSING AND COMMUNICATION

A. Overview

As illustrated in Fig. 3, the SIMAC framework first employs
the MSF module to extract semantic features from radar
and visual inputs and fuse them into a compact multimodal
representation. To enable channel adaptivity, the LSE module
incorporates real-time communication parameters, such as
SNR and modulation scheme, expressed in natural language
(e.g., “the SNR is 5 dB and the signal modulation is QPSK”)
into the semantic encoding process. At the receiver side, the
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Fig. 3: The network design of the proposed SIMAC framework.

SSD module decodes the transmitted features and generates
multi-task outputs, including distance, velocity, angle, and
reconstructed images. Assuming the training dataset is denoted
by D, the overall workflow of the proposed SIMAC framework
is summarized in Algorithm 1.

Algorithm 1 SIMAC Framework Workflow

Input: m,An,D.
Output: on,α,β,γ, δ, ϵ

Inference Phase:
1: Obtain the semantic representation smul

n from multimodal
data m and An using Algorithm 2.

2: Obtain the channel-adaptive semantic encoding en using
Algorithm 3.

3: Modulate en into cn and perform wireless transmission
according to Eq. (8).

4: Perform task-oriented semantic decoding using Algorithm
4 and obtain the sensing result on.

Training Phase:
5: Obtain the trained parameters α,β,γ, δ, ϵ by jointly

training all the modules according to Algorithm 5, using
D.

B. Multimodal Semantic Fusion Module

MSF integrates radar signal and visual image modalities
through a carefully designed framework that combines signal
processing, transformer-based image feature extraction, and

cross-attention fusion, as shown in Fig. 3. The detailed de-
scription of key modules is as follows:

1) Signal Semantic Extractor: We first process radar signal
An, which is represented as complex-valued tensors of shape
(B,K,Lsig), where B is the batch size, K is the number
of receiving antennas used by the BS for sensing, and Lsig
is the input length. Then, each complex-valued convolutional
layer performs operations on both the real and imaginary
components of the signal An, denoted by xreal

n and ximag
n ,

respectively. This process can be expressed as:

zreal
n = Wreal ∗ xreal

n −Wimag ∗ ximag
n , (18)

zimag
n = Wreal ∗ ximag

n +Wimag ∗ xreal
n , (19)

zout
n = ReLU(zreal

n + j · zimag
n ), (20)

where ∗ denotes convolution, Wreal and Wimag are the real and
imaginary parts of the convolutional kernel, and j represents
the imaginary unit. Next, complex max-pooling is applied,
reducing the sequence length while retaining the semantic
features. After three convolutional layers, each followed by
a pooling operation, the real and imaginary parts are concate-
nated along the channel dimension:

zn,3 = Concat(zreal
n,3, z

imag
n,3 ). (21)

Finally, the signal is sent through by a fully connected layer
that maps the concatenated features to a reduced dimension-
ality:

ssig
n = Linear(zn,3), s

sig
n ∈ RB×Ls×d, (22)
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where Linear(·) represents a fully connected layer, Ls is the
sequence length of the signal semantic and d is the feature
dimensionality.

2) Vision Semantic Extractor: To ensure high extraction
accuracy and inference velocity, we utilize a lightweight
ViT network——bilateral transformer (BiFormer) [29], as the
backbone to extract visual features from input images m. The
key advantage of BiFormer over traditional ViT lies in its
bilevel routing attention (BRA) mechanism.

First, m is divided into S × S non-overlapping regions
using a patch embedding layer, with each region contain-
ing HW/S2 feature vectors. This process reshapes m into
mr ∈ RS2×HW/S2×C . Linear projections are then applied to
obtain query, key, and value tensors, denoted as Q, K, and
V ∈ RS2×HW/S2×C , respectively:

Q = mrWq, K = mrWk, V = mrWv, (23)

where Wq, Wk, and Wv are the projection weights for the
query, key, and value, respectively.

Second, region-level queries and keys, Qr and Kr ∈ RS2×C ,
are computed by averaging the query and key tensors over each
region. Using these, we calculate the adjacency matrix Ar ∈
RS2×S2

to quantify semantic relationships between regions:

Ar = Qr (Kr)
⊤
, (24)

where ⊤ represents the transpose operation.
The adjacency matrix is then pruned by retaining the top-

h semantic connections for each region, yielding the routing
index matrix Ir ∈ NS2×h:

Ir = toph(Ar), (25)

where toph(·) is the row-wise top-h selection operator. Hence,
the i-th row of Ir contains the indices of the h most semanti-
cally relevant regions for the i-th region.

Next, with the region-to-region routing index matrix Ir, fine-
grained token-to-token attention is performed by gathering the
corresponding key and value tensors:

Kg = gather (K, Ir) , Vg = gather (V, Ir) , (26)

where Kg and Vg are the gathered key and value tensors.
Attention is then applied to the gathered key-value pairs,
producing the output tensor:

O = Attention (Q,Kg,Vg) + LCE(V), (27)

Attention (Q,Kg,Vg) = softmax

(
QKg⊤
√
C

)
Vg, (28)

where
√
C is the scaling factor, and LCE(V) refers to a local

context enhancement term [30].
Finally, a linear projection layer FProj is applied to the output

tensor to obtain the vision semantic while ensuring it has the
same shape with the signal semantic ssig

n . This can be expressed
as:

svis
n = FProj(O), svis

n ∈ RB×Ls×d. (29)

3) Cross-Attention Fusion Module: To achieve deep mul-
timodal fusion, we integrate the signal semantics ssig

n and
vision semantics svis

n through a bidirectional cross-attention
mechanism [31]. This mechanism enables each modality to
dynamically attend to the other, thereby capturing comple-
mentary semantic cues across domains. In the MSF network,
when ssig

n acts as the query, svis
n serves as the key and value,

and vice versa. The two cross-attention branches are computed
as:

zvis
n = Attention(W1

qs
sig
n ,W2

ks
vis
n ,W2

vs
vis
n ), (30)

zsig
n = Attention(W2

qs
vis
n ,W1

ks
sig
n ,W1

vs
sig
n ), (31)

where W1
q ,W

1
k,W

1
v are the learnable linear projections for

the radar signal modality, and W2
q ,W

2
k,W

2
v are for the vision

modality. Notably, the two cross-attention directions serve
different fusion purposes: In Eq. (30), the signal features query
vision features, enabling the model to capture rich spatial and
visual context to complement the signal representation. In
Eq. (31), the vision features query signal features, allowing
the model to enhance visual understanding with physical
or geometric cues from the signal domain. Therefore, the
bidirectional design allows mutual enhancement between the
modalities, rather than a one-way dependency.

The attention outputs from both branches are fused as:

zfusion
n = zvis

n + zsig
n . (32)

To avoid vanishing gradients and to preserve modality-
specific cues, we further apply residual connections and nor-
malization:

smul
n = LayerNorm(zfusion

n )+ssig
n +svis

n , smul
n ∈ RB×Ls×d. (33)

As a result, this fused representation smul
n serves as a

semantically aligned and contextually enriched embedding
for downstream tasks. The inference process of MSF is
summarized in Algorithm 2. Overall, the advantage of MSF
is the combination of complex operations, ViT-based feature
extraction, and attention-driven fusion, effectively fusing the
latent information between radar signal processing and im-
age. Importantly, compared to traditional concatenation- or
addition-based fusion, cross-attention adaptively weighs the
contribution of each modality based on learned semantic cor-
relations, leading to more robust and discriminative semantic
representations. This is particularly beneficial under partial
observation or modality degradation (e.g., occlusion in vision
or noise in radar), where complementary information can be
leveraged to recover accurate perception.

Algorithm 2 Inference of MSF

Input: m, An.
Output: smul

n .
1: Extract signal semantic ssig

n using Eqs. (20)-(22).
2: Extract vision semantic svis

n using Eqs. (23)-(29).
3: Obtain the fused multimodal semantic smul

n via cross-
attention using Eqs. (30)-(33).
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C. LLM-Based Semantic Encoder Module

LSE is designed to encode multimodal semantic informa-
tion by leveraging the representational capabilities of LLMs
[32]. Specifically, the encoder integrates textual descriptions
of communication parameters with multimodal features to
generate channel-adaptive semantic encoding en.

First, the input to the LSE consists of two components:
the multimodal semantic representation smul

n derived from
the MSF network and textual communication parameters Cn.
The textual input Cn undergoes tokenization using the GPT-
2 tokenizer [33], producing input token IDs Ctext

n and the
corresponding attention mask Mtext

n . The end-of-sequence,
“eos_token” symbol, replaces padding tokens to ensure
compatibility with the pre-trained GPT-2 model [33]. The
tokenized input is then mapped to an embedding space using
the GPT-2 word embedding layer Embed(·), which can be
expressed as:

En = Embed(Ctext
n ),En ∈ RB×Lt×d, (34)

where Lt is the length of the text embedding.
Second, the multimodal semantic representation smul

n and
textual embeddings En are concatenated along the sequence
dimension to form a fused input:

Finput
n = Concat(smul

n ,En),F
input
n ∈ RB×Lfusion×d, (35)

where Lfusion = Ls + Lt. Simultaneously, a fused attention
mask is constructed:

Fmask
n = Concat(Mfeat

n ,Mtext
n ),Fmask

n ∈ RB×Lfusion , (36)

where Mfeat
n ∈ RB×Ls is initialized as a matrix of ones.

Third, the fused input Finput
n and the fused attention mask

Fmask
n are passed into the pre-trained GPT-2 model, which

generates contextually enriched representations from its final
hidden state:

Sfusion
n = GPT2(Finput

n ,Fmask
n ),Sfusion

n ∈ RB×Lfusion×d. (37)

To reduce the computational burden and extract the most
salient features, a max-pooling operation is applied along the
sequence dimension, reducing the dimension by half:

Spool
n = MaxPool(Sfusion

n ),Spool
n ∈ RB×Lfusion×d/2. (38)

Finally, the pooled output is subsequently activated using a
hyperbolic tangent function:

en = tanh(Spool
n ), en ∈ RB×Lfusion×d/2. (39)

We summarize the inference process of LSE in Algo-
rithm 3. Overall, this enriched semantic encoding en captures
multimodal contextual dependencies and textual semantics,
making it suitable for downstream tasks such as semantic
reconstruction and communication. By integrating GPT-2 into
the pipeline, the LSE effectively bridges the gap between
textual and non-textual modalities, achieving a comprehensive
representation of multimodal inputs.

Algorithm 3 Inference of LSE

Input: smul
n , Cn.

Output: en.
1: Tokenize Cn to obtain Ctext

n and Mtext
n .

2: Map Ctext
n to embedding space En using Eq. (34).

3: Concatenate smul
n and En to obtain Finput

n using Eq. (35).
4: Initiate Mfeat

n .
5: Construct fused attention mask Fmask

n according to Eq.
(36).

6: Generate fused semantic representation Sfusion
n using GPT-

2 according to Eq. (37).
7: Apply max-pooling to reduce the dimensions using Eq.

(38).
8: Activate pooled representation to obtain en by Eq. (39).

D. Sensing Semantic Decoder Module

SSD, used as the JSCC decoder, integrates ViT-based and
CNN-based modules to extract and decode semantic infor-
mation and it is capable of reconstructing target images
and estimating angles, velocities, and distances. The specific
design of SSD is described as follows:

First, SSD reshapes the received semantic encoding ên
into a spatial representation compatible with convolutional
operations. To achieve this, the Conv2d(·) operation rear-
ranges ên into a size of (B × Wd × Hd × d/2), where
Hd = Wd =

√
Lfusion, assuming Lfusion is a perfect square.

This process can be expressed as:

Zgrid
n = ReLU(Conv2d(Fgrid

n )),Zgrid
n ∈ RB×C′

d×Hd×Wd ,
(40)

where C ′
d is the channel dimensionality of the backbone’s

output. These enriched features are shared among four task-
specific decoding heads, each optimized for a distinct semantic
task of image reconstruction, distance prediction, angle esti-
mation, and velocity estimation.

Second, for the task of image reconstruction, a ViT de-
coder [34] serves as the primary decoder. Zgrid

n undergoes
up-sampling to double its spatial resolution, followed by the
addition of a positional embedding, Epos ∈ RH′

d×W ′
d×D.

This embedding retains spatial information during transformer-
based processing:

Zembed
n = Upsample(Zgrid

n ) +Epos,Z
embed
n ∈ RB×H′

d×W ′
d×D,

(41)
where Upsample(·) is the upsampling operation. The trans-
former blocks within the ViT decoder perform global feature
aggregation, and the final prediction layer maps the trans-
formed features back to pixel space. The reconstructed image
is derived via:

m̂n = Unpatchify(Transformer(Zembed
n )), (42)

where Transformer(·) represents multiple transformer blocks
and Unpatchify(·) converts a patch to an image.

Third, the other sensing results, including angle, velocity,
and distance, are extracted from the shared backbone features
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Zgrid
n through their specialized heads, respectively. This can be

expressed as:

θ̂n = sigmoid(Wangle · Conv2d(Zgrid
n ) + bangle), (43)

v̂n = sigmoid(Wrate · Conv2d(Zgrid
n ) + brate), (44)

d̂n = sigmoid(Wdistance · Conv2d(Zgrid
n ) + bdistance), (45)

where sigmoid(·) is the sigmoid activation function, Wangle,
Wrate, and Wdistance are the weights of the three task output
heads. bangle, brate, and bdistance are the bias.

Finally, we summarize the inference process of SSD in
Algorithm 4. The SSD efficiently integrates ViT-based image
reconstruction and auxiliary sensing tasks. By optimizing
a unified multitask objective, SSD can provide diversified
sensing results using the same semantic information. More-
over, users can select suitable output heads to deploy locally,
according to their personalized requirements.

Algorithm 4 Inference of SSD

Input: ên.
Output: m̂n, θ̂n, v̂n, d̂n.

1: Obtain the refined feature Zgird
n using Eq. (40).

2: Reconstruct the image of the ST using Eqs. (41)-(42).
3: Predict the distance of the ST using Eq. (43).
4: Estimate the velocity of the ST using Eq. (44).
5: Predict the angle of the ST using Eq. (45).

E. Multi-Task Learning-Based Training Process

To ensure the SIMAC framework can achieve diversified
sensing services, multi-task learning is used to jointly train
the modules in this framework. Multi-task learning leverages
a unified framework to address the simultaneous optimization
of multiple objectives, targeting image reconstruction, angle
estimation, and distance prediction. Specifically, the image
reconstruction task is guided by the L1 loss, promoting pixel-
level accuracy. Simultaneously, the angle, velocity, and dis-
tance prediction tasks are supervised using the mean squared
error (MSE) loss, which minimizes deviations from the ground
truth. The total multi-task loss is formulated as a weighted
sum:

LMTL = l1Lsr + l2Lap + l3Lvp + l4Ldp, (46)

where each task loss is given in Eqs. (13)-(16).
During training, input data comprising the captured image

m and echo signal An. Moreover, dynamic channel charac-
teristics are introduced based on the SNR and modulation
schemes (e.g., BPSK, QPSK, 8PSK, 16QAM). These parame-
ters, along with contextual information about the channel, are
used to condition the model predictions. The forward pass of
the model generates reconstructed images, estimated angles,
and predicted distances. Losses for each task are computed
and backpropagated to update the model parameters.

Assuming the training dataset is D, the training process of
the SIMAC framework is summarized in Algorithm 5.

Algorithm 5 Training process based on multi-task learning

Input: D.
Output: α,β,γ, δ, ϵ.

1: for each training epoch do
2: for each batch (mn,An) from D do
3: Generate communication parameters Cn using dy-

namic SNR and modulation scheme.
4: Predict the sensing results m̂n, d̂n, v̂n, θ̂n according

to Algorithms 2-4.
5: Compute total loss using Eq. (46).
6: Backpropagate and update model parameters

α,β,γ, δ, ϵ with the optimizer.
7: end for
8: end for

V. EXPERIMENTAL SETUP AND NUMERICAL RESULTS

This section presents the simulation dataset, parameter
configurations, and evaluation results. The simulations are
conducted on a server equipped with an Intel Xeon CPU (2.3
GHz, 256 GB RAM) and two NVIDIA RTX 4090 GPUs
(24 GB SGRAM each), leveraging the PyTorch framework
to implement the proposed schemes.

A. Experimental Settings

1) Dataset Setup: Based on the VIRAT Video Dataset [12],
we perform a series of operations to construct a specialized
dataset for training and testing our proposed methods. The
detailed procedure is as follows:

First, we select videos representing three specific scenes
from [12] as the raw data. Each video is sampled at a velocity
of one frame per second, resulting in approximately 10,000
RGB images (i.e., m).

Second, for each extracted frame, we assume that all STs
are cars. A YOLOv10 [35] model detects the bounding box
coordinates of cars in the scenes. Based on these bounding box
coordinates, we employ the segment anything model (SAM)
[36] to isolate the car images from the raw frames, which serve
as labels for image reconstruction (i.e., mn). This process
produces approximately 800,000 images of STs.

Third, we assume the BS is positioned at the lower-right
corner of each image. Accordingly, we calculate the distance
of each ST to the BS as follows:

dn =
√

(xBS − xcenter
n )2 + (yBS − ycenter

n )2, (47)

where (xBS, yBS) represents the coordinates of the BS, and
(xcenter

n , ycenter
n ) denotes the center coordinates of the nth ST’s

bounding box.
Similarly, we estimate the angle of each ST relative to the

BS as follows:

θn = arctan2(yBS − ycenter
n , xcenter

n − xBS), (48)

where arctan2(·) computes the arc tangent of the input
coordinates, returning a radian value within the range [−π, π].

Additionally, the tracking capability of the YOLO model
is employed to track the same object across consecutive
frames. The velocity of the object is calculated as the ratio
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of the displacement of the center point of the object detection
bounding box to the frame duration. This can be expressed as:

vn =
∥pn,t+1 − pn,t∥

∆t
, (49)

where pn,t = (xcenter
n,t , ycenter

n,t ) and pn,t+1 = (xcenter
n,t+1, y

center
n,t+1)

represent the center points of the nth ST at frame t and t +
1, respectively, and ∆t is the time interval between the two
frames.

Finally, we generate the echo signal An for each ST
according to Eq. (1).

2) Parameter Settings: Considering that the task of image
reconstruction is more difficult than the other tasks, the ad-
justment factors of task losses are set to l1 = 100, l2 = 1,
l3 = 1, and l4 = 1, respectively. The bandwidth is set to
B = 1 kHz, the power is set to P = 1 W, and the SNR
is varied between 0 dB and 25 dB. When the SNR is low,
the transmitted symbols are easy to be impacted. Hence, to
achieve more accurate transmission, we apply the following
modulation scheme:

Modulator =


BPSK, 0 dB ≤ SNR ≤ 10 dB,
QPSK, 10 dB < SNR ≤ 18 dB,
8PSK, 18 dB < SNR ≤ 22 dB,
16QAM, otherwise.

(50)

The radar’s central frequency is fc = 10GHz. The PRI is
configured as Tr = 1 × 10−4 s, with a sampling frequency
of Fs = 60MHz, corresponding to a sampling interval of
∆t = 1

Fs
= 1.67 ns. Since only cars are considered as the

ST, all RCSs of the STs are set to ρn = 100. We assume the
SIMO radar model utilizes K = 10 antennas to transmit the
LFM waveform and capture the echo signal.

The AWGN and Rayleigh channels are considered, and the
SNR is randomly chosen for each forward pass to enhance the
robustness of the SIMAC framework to channel noise. In the
inference phase, we evaluate the SC model under fixed SNR
conditions at [5, 10, 15, 20, 25] dBs.

3) Evaluation Metrics: We use the root mean squared
error (RMSE) to evaluate the performance of the proposed
method in distance, velocity, and angle prediction tasks. RMSE
quantifies the absolute average deviation between predictions
and ground truth. These metrics are defined as follows:

RMSE(xi, x̂i) =

√√√√1

I

I∑
i=1

∥x̂i − xi∥2, (51)

where x̂i ∈ (0, 1) denotes the predicted value, xi represents
the ground truth, and I is the total number of samples.
Particularly, xi is the normalized value of speed, distance, or
angle.

To evaluate image reconstruction performance, we adopt
peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) as metrics. PSNR measures the quality
of reconstructed images and is expressed in decibels (dB), with
higher values indicating better quality:

PSNR(xi, x̂i) = 10 · log10
(

MAX2
I

∥x̂i − xi∥2

)
, (52)

where MAXI is the maximum possible pixel value, typically
255 for 8-bit images. Similarly, SSIM is a metric that gauges
the perceived similarity between two images, factoring in
three key components - luminance, contrast, and structure. The
definition of SSIM is outlined as follows:

SSIM(xi, x̂i) =
(2φxi

φx̂i
+ c1)(2ϕxix̂i

+ c2)

(φ2
xi

+ φ2
x̂i

+ c1)(ϕ2
xi

+ ϕ2
x̂i

+ c2)
, (53)

where φxi
and φx̂i

are mean values, ϕ2
xi

and ϕ2
x̂i

are variances,
ϕxix̂i

is their covariance, and c1 and c2 are two small constants
to prevent division by zero.

B. Visualization of Sensing Results

As illustrated in Fig. 4, the SIMAC framework processes the
raw image m, the radar signal An, and the sensing outputs, in-
cluding the reconstructed image m̂n and the predicted motion
attributes. A distinctive feature of the SIMAC framework is its
capability to produce diversified sensing outputs for the same
image by integrating various radar signals. Since the training
data is derived from simulations, there may be discrepancies
between the predicted results and real-world scenes. Fig. 5
presents a representative comparison between raw sensing
images and their reconstructed counterparts. The reconstructed
images demonstrate significantly enhanced visual quality, as
evidenced by the SNR gains over the raw inputs. Remarkably,
the model is even able to recover missing regions in the
original images, highlighting the strong generative capacity
of the ViT-based decoder.

Overall, the proposed MSF module enables the SIMAC
framework to leverage the semantic information of radar
signals, which serve as queries for localizing corresponding
spatiotemporal features during training. These findings demon-
strate the framework’s capacity to fuse multimodal information
effectively for target localization and motion attribute estima-
tion.

C. Evaluation for Multimodal Sensing

1) Benchmark Schemes: To evaluate the advantages of
the multimodal sensing in the proposed SIMAC framework
compared to the unimodal sensing, we consider the following
benchmark schemes:

• CV-based Sensing (CV-S): This variant only uses the
image modality to perform sensing.

• Radar Signal-based Sensing (RS-S): This variant only
uses the radar signal to perform sensing.

2) Evaluation Results: As illustrated in Figs. 6–8, SIMAC
consistently outperforms both baselines across all three pre-
diction tasks, distance, angle, and velocity, under AWGN and
Rayleigh channels. Specifically, in distance prediction under
the Rayleigh channel and Scene 1, SIMAC achieves an RMSE
of 0.009, compared to 0.054 for CV-S and 0.020 for RS-
S, corresponding to performance gains of 83.3% and 55.0%,
respectively. In angle prediction, SIMAC maintains a near-
constant RMSE of around 0.010 across all SNR levels and
scenes, offering over 85% reduction compared to CV-S and
RS-S in highly noisy conditions (Fig. 7(b), Rayleigh, Scene
3). Similarly, for velocity prediction in Scene 2 under AWGN,
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Fig. 4: Visualization of the SIMAC framework’s running process.

Fig. 5: Comparison results of raw sensing images and reconstructed images.

SIMAC yields an RMSE of 0.0038, improving by 55.8% over
CV-S and 25.5% over RS-S.

Overall, these results validate the effectiveness of the pro-
posed multimodal sensing framework. By integrating com-
plementary features from both visual and radar modalities,
SIMAC achieves superior distance prediction accuracy and
enhanced robustness across diverse environments and channel
conditions.

D. Evaluation for LLM
1) Benchmark Schemes: To evaluate the advantages of

the GPT-2 in the proposed SIMAC framework compared to
the traditional models, we consider the following benchmark
schemes:

• SIMAC (with LSTM): This variant uses the LSTM [37]
to replace the GPT-2 as the semantic encoder.

• SIMAC (with GRU): This variant uses the GRU [38] to
replace the GPT-2 as the semantic encoder.

2) Evaluation Results: As demonstrated in Figs. 9–13, the
GPT-2-based SIMAC consistently outperforms its RNN-based
counterparts, including LSTM and GRU, across all SNR levels
and evaluation metrics. Specifically, under the AWGN channel
at an SNR of 25 dB (Figs. 9–11(a)), it achieves substantial re-
ductions in RMSE for angle, distance, and velocity estimation,
up to 40.2%, 12.5%, and 18.1% compared to LSTM, and as
high as 90%, 102%, and 80% relative to GRU, respectively.
For image reconstruction (Figs. 12–13(a)), GPT-2 provides
significant improvements, with PSNR gains of 1.2 dB over
LSTM and 3.1 dB over GRU, while also enhancing SSIM
by 3.2% and 11.5%, achieving values exceeding 0.85. Under
the more challenging Rayleigh fading conditions (Figs. 10-
13(b)), GPT-2 demonstrates superior robustness, maintaining
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Fig. 6: Distance prediction comparisons across different
schemes under different channels.
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Fig. 7: Angle prediction comparisons across different
schemes under different channels.

30–40% lower RMSE in angle and velocity estimation at
high SNRs and achieving up to 1.2 dB PSNR gains and over
20% improvements in SSIM compared to LSTM across all
evaluated scenarios.

These results underscore GPT-2’s strong capability in mod-
eling semantic dependencies within multimodal sensing data.
Its transformer-based architecture effectively captures long-
range contextual information, thereby enhancing both accuracy
and resilience under diverse channel conditions. Consequently,
integrating GPT-2 as the semantic encoder significantly im-
proves the overall performance of the SIMAC framework,
affirming the potential of large language models in advancing
semantic communications and multimodal joint sensing.

E. Evaluation for Ablation

1) Benchmark Schemes: To evaluate the effectiveness of
each module in the proposed SIMAC framework, we consider
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Fig. 8: Velocity prediction comparisons across different
schemes under different channels.
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Fig. 9: Distance prediction comparisons across different
schemes under different channels.

the following benchmark schemes:
• SIMAC (w/o LSE): This variant excludes communication

parameters during training and inference.
• SIMAC (w/o SSD): In this variant, the SIMAC frame-

work operates without multiple output heads, and each
sensing task is trained independently.

2) Evaluation Results: Figs. 14–18 present comprehensive
comparisons under both AWGN and Rayleigh channels across
three distinct scenes. The full SIMAC consistently outperforms
its counterparts in all metrics. For instance, in distance pre-
diction under the Rayleigh channel and Scene 2 (Fig. 14(b)),
SIMAC achieves an RMSE of 0.005, compared to 0.009 for
SIMAC (w/o LSE) and 0.007 for SIMAC (w/o SSD), reflecting
a 44.4% and 57.1% reduction in error, respectively. The
benefit of the LSE module is particularly evident under low
SNR conditions, where the semantic representation enhances
robustness against noise. For example, in angle prediction (Fig.
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Fig. 10: Angle prediction comparisons across different
schemes under different channels.
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Fig. 11: Velocity prediction comparisons across different
schemes under different channels.

15(a), AWGN, Scene 1), SIMAC reduces RMSE to 0.038,
while SIMAC (w/o LSE) and SIMAC (w/o SSD) remain above
0.042 and 0.006, respectively, highlighting the LSE’s critical
role in extracting context-aware features. Meanwhile, the SSD
module significantly improves multi-task synergy, especially
in velocity prediction, where tasks are inherently coupled. In
Fig. 16(b) (Rayleigh, Scene 1), SIMAC achieves an RMSE
of 0.0024, compared to 0.0036 (w/o LSE) and 0.006 (w/o
SSD). In terms of image reconstruction quality, SIMAC also
demonstrates PSNR and SSIM improvements, respectively,
across all scenes (Figs. 17 and 18).

These results validate the indispensability of both the LSE
and SSD modules. Specifically, the LSE module enhances
robustness across varying channel conditions, while the SSD
module facilitates more effective feature learning. The synergy
between the two modules enables SIMAC to generalize effec-
tively across heterogeneous environments while maintaining
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Fig. 12: PSNR comparisons across different schemes under
different channels.
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Fig. 13: SSIM comparisons across different schemes under
different channels.

superior sensing accuracy and perceptual fidelity.

F. Evaluation for Complexity

TABLE II: Parameters, Complexity, and Inference Delay of
the SIAMC Framework

MSF LSE SSD SIMAC

Parameters 17.5M 124.4M 34.3M 176.3M

Complexity (FLOPs) 6.1G 8.3G 5.3G 19.8G

Inference delay (ms) 0.68 0.44 0.35 1.5

Table II summarizes the model size, computational com-
plexity, and inference delay of SIMAC and its key components.
The reported inference delay and computational complexity
represent the average values per sample processed by SIMAC.
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Fig. 14: Distance prediction comparisons across different
schemes under different channels.
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Fig. 15: Angle prediction comparisons across different
schemes under different channels.

Notably, SIMAC achieves an inference delay of only 1.5
ms, which is sufficiently low to meet the demands of real-
time applications. These results indicate that SIMAC imposes
no significant computational burden on the communication
system, striking a favorable balance between intelligent pro-
cessing capabilities and resource efficiency. Consequently,
SIMAC shows strong potential for latency-sensitive scenarios,
such as autonomous driving, industrial automation, and UAV-
based sensing.

G. Discussion

While the proposed SIMAC framework demonstrates
promising performance in multimodal sensing and SC, several
limitations remain, offering potential directions for future
research:

1) The current design focuses on the fusion of only two
sensing modalities, vision and radar signal. As a fact
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Fig. 16: Velocity prediction comparisons across different
schemes under different channels.
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Fig. 17: PSNR comparisons across different schemes under
different channels.

that real-world environments often involve richer and
more diverse modalities (e.g., LiDAR, thermal, audio).
Effectively extending SIMAC to handle more than two
modalities poses challenges in terms of semantic space
unification, modality weighting, and training efficiency.

2) The framework assumes that all predefined modalities
are consistently available and equally necessary for all
tasks. However, in practical scenarios, certain modalities
may be redundant, unreliable, or irrelevant depending on
the specific environment or task requirements. There-
fore, it is crucial to explore adaptive modality selection
and fusion strategies that can dynamically activate the
most informative modalities while suppressing others,
based on semantic relevance and system constraints.

3) The SIMAC framework currently operates in a single-
device setting, where all sensing data is collected and
fused locally. This does not reflect the distributed nature
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Fig. 18: SSIM comparisons across different schemes under
different channels.

of many real-world systems, such as vehicle-to-vehicle
perception or multi-camera surveillance networks. A
promising extension would be to enable collaborative
ISAC across multiple devices, where distributed agents
share partial semantic representations to build a global
understanding of the environment.

VI. CONCLUSIONS AND FUTURE WORKS

To address the challenges of limited accuracy and re-
stricted capabilities in unimodal sensing, high communication
overhead in decoupled sensing-communication systems, and
the inability of single-task sensing to meet diversified user
demands, we propose the SIMAC framework. This framework
integrates multimodal sensing with SC to enable low-cost
and high-accuracy sensing services. Specifically, the frame-
work first employs the MSF network to extract and fuse
semantic information from radar signals and images using
cross-attention mechanisms, generating comprehensive mul-
timodal representations. Then, it incorporates the LSE that
maps communication parameters and multimodal semantics
into a unified latent space, enabling channel-adaptive semantic
encoding. Furthermore, it introduces the SSD to feature task-
specific decoding heads and a multi-task learning strategy
to deliver diversified sensing services. We conducted experi-
mental simulations across four sensing tasks and benchmarks,
demonstrating that the SIMAC framework substantially en-
hances sensing accuracy and service diversity.

In future work, as discussed in Section V-G, we aim to
enhance the scalability and adaptability of SIMAC in the
following directions. First, we will explore the integration of
additional sensing modalities beyond radar and vision (e.g.,
LiDAR, cloud-point), and design efficient semantic fusion
strategies that scale with modality number. Second, we plan to
investigate adaptive modality selection mechanisms, enabling
the system to dynamically determine which modalities are
most relevant under specific environmental or task conditions,
thereby reducing redundancy and improving efficiency. Third,

we will extend SIMAC to multi-device cooperative sensing
scenarios, such as multi-BS or vehicle-to-vehicle deployments.
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