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Abstract

Precipitation hardening is the primary mechanism for strengthening 6xxx series aluminium
alloys. The characteristics of the precipitates play a crucial role in determining the me-
chanical properties. In particular, predicting yield strength (YS) based on microstructure is
experimentally complex and costly because its key variables, such as precipitate radius,
spacing, and volume fraction (VF), are difficult to measure. Physics-based models have
emerged to tackle these complications utilising advancements in simulation environments.
Nevertheless, pure physics-based models require numerous free parameters and ongoing
debates over governing equations. Conversely, purely data-driven models struggle with
insufficient datasets and physical interpretability. Moreover, the complex dynamics be-
tween internal model variables has led both approaches to adopt heuristic optimisation
methods, such as the Powell or Nelder-Mead methods, which fail to exploit valuable
gradient information. To overcome these issues, we propose a gradient-based optimisation
for the Kampmann-Wagner Numerical (KWN) model, incorporating CALPHAD (CALcu-
lation of PHAse Diagrams) and a strength model. Our modifications include facilitating
differentiability via smoothed approximations of conditional logic, optimising non-linear
combinations of free parameters, and reducing computational complexity through a single
size-class assumption. Model calibration is guided by a mean squared error (MSE) loss
function that aligns the YS predictions with interpolated experimental data using L2 regu-
larisation for penalising deviations from a purely physics-based modelling structure. A
comparison shows that the gradient-based adaptive moment estimation (ADAM) outper-
forms the gradient-free Powell and Nelder-Mead methods by converging faster, requiring
fewer evaluations, and yielding more physically plausible parameters, highlighting the im-
portance of calibration techniques in the modelling of 6xxx series precipitation hardening.

Keywords: precipitation hardening; gradient-based optimisation; model calibration; 6xxx
series alloys; physics-informed machine learning (PIML); physics-based modelling (PBM)

1. Introduction

The 6xxx series aluminium alloys are commonly used in various industrial applications
due to their unique properties, such as lightweight, corrosion resistance, and strength [1,2].
The strengthening of these alloys is attributed to a combination of factors, including
solid solution strengthening, work hardening, grain structure control, and precipitate
hardening [3,4].
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Work hardening has a minor effect, and solid solution strengthening and grain bound-
ary strengthening have a moderate impact, while precipitation hardening is the primary
mechanism for strengthening aluminium alloys [5,6]. In this process, finely dispersed
precipitates obstruct the dislocation motion and improve the yield strength (YS). The
process involves multiple stages, including supersaturation, nucleation, growth and coars-
ening, and phase transformation, all of which are influenced by temperature, time, and
composition [5,7].

Early-stage precipitates, such as B’ (forming at the nanometre scale), are challenging
to detect using transmission electron microscopy (TEM) and are often invisible in X-ray
diffraction (XRD) or differential scanning calorimetry (DSC) at a low volume fraction
(VF) [8,9].

Building on the insights obtained from in-situ TEM, physics-based modelling (PBM)
offers a next step by enabling the prediction and systematic exploration of precipitate
evolution. The scalability of PBM allows for the simulation of multiple alloy chemistries
and processes simultaneously. By contrast, in-situ microscopy is limited to examining a
single sample condition during each session [10]. Additionally, PBM has a lower com-
putational cost compared to the high expenses associated with sample preparation, time,
and microscope usage. In terms of time efficiency, PBM can provide results in a matter of
minutes to hours, while typical in-situ scanning transmission electron microscopy (STEM)
experiments, in spite of superior fidelity, can take several days to yield results [11]. The
repeatability of PBM is also high, as it is deterministic with well-defined parameters [10].
By contrast, in-situ techniques can be affected by user variability and sample artifacts [10].
Furthermore, physics-based methods allow us to expand the alloy design space by explor-
ing a wide range of compositions [11,12]. By comparison, in-situ STEM is often restricted
to reference alloys.

In industrial applications, such as automotive crash alloys, the strength and bendability
of the alloy must meet stringent specifications [2]. Therefore, adopting physics-based
models, such as the Kampmann-Wagner Numerical (KWN) model, cluster dynamics, or
CALPHAD (CALculation of PHAse Diagrams) combined with kinetics, is essential for
process optimisation and alloy design. However, implementing these models is often
hindered by a lack of experimental visibility and difficulties in tracking the key phenomena
that influence the strengthening processes.

These processes are influenced by various factors, including the composition of the
alloy, thermal cycles, and levels of impurities, such as Fe, 5i, and Mn. The need for
physics-based models can be summarised through the following points: (1) predicting
precipitate evolution, at which modelling helps to understand how particles nucleate,
grow, and coarsen under various heat treatment or processing schedules [10]; (2) replacing
trial-and-error heat treatments to avoid costly and time-consuming experimental cam-
paigns [10]; (3) enabling process optimisation, where the physics-based approach can
predict the strength based on the processing history (such as quench rate and ageing time),
thereby saving energy [10]; (4) support alloy development from scrap, enabling the sim-
ulation of the effects of impurities, such as Fe, Mn, or Zn, on precipitate interactions and
kinetics while reducing material waste [10].

One of the earliest models of phase transformations is the JMAK model by Johnson and
Mehl [13], which describes bulk transformation kinetics but lacks the microstructural detail
needed for accurate precipitation modelling. The subsequent model by Shercliff and Ashby
introduced distinct stages for nucleation and growth and coarsening [14], while Wagner
et al. later unified these stages in the KWN model, enabling the simultaneous simulation
of all subprocesses and bringing PBM closer to the actual ageing behaviour of alloys [15].
Although the KWN model improves agreement with experimental data [16], it introduces
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greater complexity, requiring over 10 fitting parameters compared to the 3—4 parameters
used in earlier models. More recent work has expanded the KWN framework to incorporate
additional features, such as non-spherical precipitates and the integration of CALPHAD
thermodynamics and mechanical strength models [17].

Incorporating industrial needs, such as cold forming between non-isothermal heat
treatments, introduces yet further complexity to precipitation modelling. This is primar-
ily due to the requirement for temperature-dependent diffusion coefficients and strain-
modulated nucleation kinetics, each necessitating new calibration constants for every
ageing stage. Furthermore, accounting for clustering during natural ageing adds another
layer of parameterisation, as the interfacial energy of clusters becomes size-dependent.
Alloying elements, such as magnesium, further influence clustering kinetics, thereby in-
creasing the number of variables that must be calibrated to accurately reflect the evolving
microstructure and mechanical properties [18]. These requirements on the PBM of precipita-
tion hardening brings serious challenges shared across alloy systems despite its established
foundations. While the details of PBM vary depending on theoretical assumptions and
industrial requirements, they are ultimately governed by a shared set of physical equations,
such as those represented in the KWN model, and therefore face common calibration chal-
lenges. It is important to note that, in its present form, our work applies to the precipitation
response during artificial ageing of the solution-treated and quenched alloys. Other manu-
facturing processes, such as cold forming, welding, or non-isothermal treatments, introduce
additional microstructural complexities (e.g., recovery, recrystallisation, strain-modulated
nucleation) that are beyond the scope of this work.

One of the major complexities of pure physics-based models is their dependence on
manual calibration. These models often require the expert-driven fitting of parameters
through iterative trial-and-error, relying heavily on metallurgists” subjective judgment and
prior domain expertise [19]. For example, Lu et al. established a detailed PBM framework
based on TEM measurements and stress—strain curves to assess individual strengthening
contributions, including the minor but necessary work-hardening effect, and to calibrate
a yield-strength model against tensile data [20]. Hell et al. further nuanced the same
physics-based strength modelling framework by explaining the double-peak behaviour
observed during artificial ageing of 6082 alloys under no-ramp treatment [21]. However,
the calibration of the free parameters in this model was still carried out empirically and
manually, rather than through automated optimisation. These studies highlight the typical
manual calibration approach used in precipitation hardening models, where physically
guided parameter values (e.g., interfacial energy, coarsening constants) are iteratively
adjusted to reproduce experimental curves.

Additionally, disagreements among the experts about governing physics, simpli-
fications, or approximations introduce structural uncertainties into the models. These
uncertainties necessitate further calibration, requiring the need for expert intervention [22].
For instance, the NaMo model assumes spherical, volume-equivalent precipitates, which
simplifies the mathematics but ignores the elongated rod- or lath-shaped morphology
of real B precipitates [23]. This geometric simplification underestimates the density of
effective dislocation obstacles in overaged conditions and creates a systematic bias that
must be corrected with calibration. The Esmaeili model captures the rod-like geometry
more realistically but reduces the precipitate distribution to mean cross-sectional values.
This assumption overlooks the tail of the size distribution, where a few large precipitates
can disproportionately strengthen the alloy, and thus the model often under- or over-
predicts yield strength unless recalibrated against experimental data [22]. By contrast, the
Holmedal model integrates the full-size distribution and accounts for the multiple slip
planes intersected by long precipitates, providing a closer match to the experimental data.
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However, even this more advanced framework carries uncertainties, such as assuming
a single critical shearable-to-non-shearable transition size for all precipitate phases. This
approximation fails to capture phase-specific interactions with dislocations without careful
calibration [24,25]. This makes model calibration an inevitable and important step in all
PBM approaches.

Computational intensity is yet another obstacle. Detailed physics-based simulations
are resource-demanding, involving time-consuming calculations and significant compu-
tational costs. Efforts to add uncertainty quantification [26], an essential component for
reliable predictions, further increases the burden, sometimes to impractical levels for
complex systems [27].

For aluminium alloys, PBM faces particularly steep challenges due to two key factors.
Firstly, a vast design space governs the development of age-hardenable aluminium alloys,
encompassing not only a wide range of processing parameters and alloy chemistries but
conflicting performance objectives. High yield strength is essential to resist deformation;
however, sufficient ductility and work-hardening capacity are equally critical to ensure
energy absorption and formability. Thermal stability becomes a decisive factor for al-
loys exposed to elevated service temperatures, while additional requirements, such as
corrosion resistance, fracture toughness, and electrical conductivity, further complicate
optimisation [25]. As noted by [28], the wide and largely unexplored compositional space
of aluminium alloys, combined with their intricate precipitation mechanisms, makes it
difficult to construct accurate microstructure—property models. While addressing these
broader design trade-offs is of great importance, it lies beyond the scope of this paper.
Instead, we turn to a second major challenge: parameter calibration.

The current form of manual calibration causes inconsistency across expert studies and
reduces overall confidence in purely physics-based predictions [29]. Coupling precipitation
hardening models with other physics-based modules brings about additional integration
challenges. Multiphysics interactions introduce hierarchical dependencies and cascading
uncertainties, which make the simultaneous calibration of parameters extremely difficult.
Notably, Li et al. highlighted that, for strength models, the lack of a direct mapping between
the composition and the strength model parameters severely limits the ability of PBM to
predict the properties [30]. As another inseparable part in modelling the precipitation
hardening, calibrating CALPHAD models presents another formidable obstacle, as it
requires tackling a complex, high-dimensional optimisation problem involving multiple
objectives [31]. In a practical design scenario without limiting assumptions or case-specific
settings, the number of trainable parameters can rise to the hundreds within a multivariate,
multi-objective design space.

By contrast, relatively newer data-driven models offer the advantage of automated
calibration via techniques like automatic differentiation, reducing reliance on expert in-
tervention. They can capture complex, nonlinear relationships between composition,
processing, and properties, which enable a high-throughput alloy design, as demonstrated
by Juan et al. and Tamura et al. [28,32]. However, their effectiveness depends on the
availability of large, high-quality datasets, often lacking rare or unexplored alloys. Without
detailed compositional or microstructural features, predictive accuracy and extrapolation
capability diminish. Furthermore, their black-box nature limits physical interpretability,
making it difficult to extract mechanistic insights.

Hybrid modelling offers a promising solution by combining the strengths of physics-
based and data-driven approaches. Martinsen et al. exemplified this by integrating a
simplified physics-based precipitation model using Gaussian process regression. By learn-
ing the residuals between the physics-based predictions and the experimental measure-
ments, they effectively corrected the discrepancies between the experimental data and the



Metals 2025, 15, 1035

50f 25

physics-based model, improving predictive accuracy even when including cold-forming
processes [33]. However, their approach still inherits data-driven limitations, as the learned
Gaussian process parameters remain uninterpretable from a metallurgic point of view.

Between all the ways that data can be integrated with physics in a complex model,
direct model calibration offers the best physical interpretability [34], and gradient-free opti-
misers are particularly easier, though not necessarily better to apply than gradient-based
ones. This is because, without careful implementation, the valuable gradient information is
lost in complex systems due to recursive behaviour on the time axis, complicated corre-
lations in the parameter space, and discontinuities caused by intrinsic if-else branching
logic [35].

The KWN model contains all these sources of complexity, which persuaded Yu et al.
to calibrate model parameters using the Nelder-Mead and Powell algorithms, both being
gradient-free [36]. However, the lack of sufficient training data in their work highlights
the necessity of gradient-based methods. Another limitation of these heuristic methods is
their tendency to propose physically implausible values during a full simulation trial, as
seen in their work. We believe this also causes the physics-based model to collapse, often
within just a few iterations if performed without careful modifications on the physics-based
model. Furthermore, a critical limitation in their approach lies in the use of extremely
limited training data, sometimes as few as three points, or even a single data point per trial,
without any indication of interpolation or data smoothing to guide the optimisation. In such
data-scarce environments, the absence of interpolation raises concerns about the robustness
of the parameter fitting process and its ability to generalise across ageing durations. Equally
concerning is the lack of documented modifications to the physics-based model to ensure
numerical stability. Given the known discontinuities and recursive dependencies in KWN-
type models, it is unclear how convergence was achieved in the absence of constraints
on free parameters. These omissions underscore the importance of making targeted,
case-specific changes to the model structure before applying gradient-based or heuristic
optimisation methods for a complicated physics-based model.

Regarding gradient-based calibration of physics-based models, Kreikemeyer and An-
delfinger addressed the discontinuities by combining smooth interpretation (a probabilistic
execution model that approximates the program’s convolution with a Gaussian kernel) with
automatic differentiation. Their approach enables the computation of smoothed gradients
for imperative programs with input-dependent control flow, allowing for gradient-based
methods to be applied effectively. Empirical evaluations across several high-dimensional,
non-convex optimisation problems show that their estimators offer smoother and more
informative gradient signals even in the presence of discontinuities [35]. Given the charac-
teristics of precipitation hardening, a broadly generalised solution for smoothing the model
discontinuities is unnecessary for the time-being. Instead, we resolve the discontinuities
through tailored, case-specific modifications to maintain model tractability.

Moreover, while PBM of precipitation hardening has achieved significant progress,
driven by advances in computational power and data availability, the present work does
not aim to further develop the physics formulations or to generate high-fidelity experi-
mental datasets. Instead, our focus is narrowed to the problem of automatic calibration,
demonstrated here on a simplified physics-based model trained with a single alloy compo-
sition and processing condition. This approach serves as a first step toward addressing the
broader challenge of parameter calibration that is common to both simple and advanced
mechanistic models, regardless of whether they are trained with limited or highly accurate
experimental data.

Among the fitting parameters, the choice of interfacial energy and coarsening factor
is particularly important yet challenging, as these parameters are difficult to measure
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experimentally [26,36]. They appear in multiple equations within the KWN model and
influence the output with varying degrees of sensitivity. Furthermore, the underlying phys-
ical formulations of these parameters remain a topic of ongoing debate in the literature [27].
Thus, the hosting equations of these parameters are of particular interest in this work.

These studies underscore the limitations of relying solely on physics-based or data-
driven models, while highlighting the potential and nuances of hybrid approaches to
balance physical interpretability and predictive power. In this work, we propose an
alternative approach: a gradient-based calibration of the physics-based parameters in
a simplified KWN model integrated with machine learning (ML) for the evolution of
precipitate hardening in aluminium 6xxx series. The main contributions of this work
include (1) a differentiable simplistic KWN implementation, (2) a gradient-based calibration
using the ADAM optimiser, and (3) a comparative analysis against the gradient-free Powell
and Nelder-Mead optimisers.

The remainder of this paper is organised as follows: Section 2 presents the proposed
methodology, including a dependency graph of the ML-integrated, physics-based equa-
tions acquired from the literature underlying the precipitation hardening model and the
required adjustments to a purely physics-based method that are offered by this work.
We propose trainable coefficients within the network of equations for ML integration.
Section 3 describes a gradient-based optimisation algorithm applied to the model and
demonstrates its effectiveness in automatically calibrating the YS evolution for a 6xxx series
aluminium alloy. In addition, a performance comparison between a gradient-based method
and two gradient-free methods is presented. Section 4 concludes this paper and outlines
directions for future research. In this work, scalars are written in italic (e.g. R, t), vectors in
bold italic (e.g. ND), and abbreviations in plain text (e.g. YS, TEM). Elements of vectors are
scalars and written in italics (e.g. ND][i]). This notation is applied consistently throughout
the paper.

2. Methods

We apply trainable coefficients Py, k € {0,...,5} to treat each equation that hosts
an occurrence of a functional form of free parameters (rather than optimising each free
parameter directly). Before showing where they appear throughout the KWN model,
we start by defining the sigmoid function that is used to make the model end-to-end
differentiable. To implement this, different definitions for positive and negative input
domains are used as follows:

_ 1
O'(Ll, x) _ 1_;,_%;11)( fOr X Z 0/. (1)
1j7 forx < 0.

The above implementation mitigates the risk of overflow that appears in a well-known
version of the sigmoid function: o(a,x) = 1/(1 + ™). In this version, there is a risk of
overflow for values of x that are significantly negative. Although introducing the sigmoid
function adds a hyperparameter, its steepness coefficient g, it is commonly chosen from
practical values, such as 1, 10, or 100. These values control the smoothness of the transition
and can be tuned to balance between physical realism and numerical smoothness.

Figure 1 shows a flowchart of the common full KWN model found in the litera-
ture [18,37,38], with the redundant blocks for a simplified implementation in dashed red
lines for this work. Following the full implementation, time ¢ and size class counters i and j
are set to zero in the Initialisation block. Then, the process and composition parameters,
temperature T, and initial composition x(0), are specified. In the Nucleation block, ND[i]
new precipitates with radius PR[i] nucleate. Next, the Growth block updates all the size
classes j (0 < j <= i) in NDJ[j] and PR[j] according to the input arguments (x, PR[j]).
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The updated vectors are passed on to the Volume Fraction block to calculate the vector
VF[i], in which the i'th array represents the contribution of size class i to the total volume
fraction (TVF) as a function of the i’th array in vectors ND and PR. The Yield Strength block
calculates YS(t) based on the vectors ND, PR, and scalar TVF(t) at time t. The Update
block renews the concentrations x of leftover Mg and Si in the matrix as a function of TVF.
The concentrations x play an important role in the system state and affects the Nucleation
and Growth for the next iteration. The size class counter i is increased by 1 to allow for
the creation of a newer i'th size class, and the time ¢t is increased by dt at the end of each
iteration. The outputs, such as total number density (TND), mean particle radius (MPR),
TVEF, and YS, are some of the outputs that can be measured experimentally; therefore, the
physics-based model’s performance, with respect to the choice of the fitting parameters,
can be evaluated by how much the model predictions agree with the experimental data.

time t=dt
size class i=0

Input composition and process parameters
Initial composition wtpmg,si
Temperature T

Ageing time AT

-——-
1 i+=1 }

Nucleation
NDI[i], PRIi] = N(x)

Growth and coarsening

1

1

1

1 ND[j], PR[j] = GC(x, PR[j] )
1
A
1 -

1

1

1

1

Display

Volume fraction
VFIK] = VF(ND[K], PRIK]) fork =0, ..., i

Total volume fraction
TVF(t) = sum(VF[K]) fork =0, ..., i

Update Dispaly
x(TVF) TVF
Yield strength
YS(t)
NO Display
YS

t>AT

YES
Full KWN in —and ==
@ Simplfied KWN in —

Figure 1. Flowcharts of the full and simplified Kampmann-Wagner Numerical (KWN) model used

for simulating precipitation hardening, in the literature and in this work, respectively. The full KWN
model (solid black and dashed red lines) includes multiple nucleation and size class iterations, while
the simplified version (solid black outlines only) assumes a single precipitate class and one-time
nucleation, facilitating gradient-based optimisation. Blocks for nucleation, growth and coarsening,
VF, and YS are highlighted in green, blue, orange, and grey, respectively. Model outputs include the
TND, MPR, TVE, and predicted YS. Blocks removed in the simplified model are shown in dashed
red lines.
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A simplified version of the KWN model can be derived from Figure 1 by removing
the blocks outlined by dashed red lines. In this proposed formalisation, Nucleation is
assumed to occur only once at the beginning of the simulation, as most of the nucleation
events take place during the early stages of the ageing process, which is not far from the
reality. Subsequent particle growth and coarsening take place only for this initial size class
throughout the rest of the ageing process. By restricting nucleation to a single event, the
number of iterative loops in the model is reduced from two to one, thereby simplifying
the integration of the gradient-based optimiser with the Nucleation and Growth and
Coarsening blocks (more on this in Appendix A). A more comprehensive KWN model
incorporating detailed physics and multiple size classes will be the subject of future work.

Figure 2 presents a compilation of the abovementioned KWN module as a network of
equations. It also illustrates the dependency structure among nucleation (green), growth
and coarsening (blue) and their overall connection to the optimisation block. The KWN
model is driven by input composition and processing parameters (namely, temperature
and solute concentrations in this work) which appear throughout the formulation. These
quantities contribute to loop-based calculations of particle number density (ND) and
particle radius (PR), which are the core variables of the KWN framework and evolve in
array size and value over time. The outputs of the microstructural evolution feed into
a mechanical Strength model used to predict the YS, which in turn guides the iterative
optimisation of the model’s trainable coefficients {P, ..., P5}, proposed by this work.
Please note that the simplified KWN model is derived once the (i, j) size class counters are
both assumed to be zero across all time steps ¢. The complete forms of the equations in
Figure 2 are provided in Table A2 in Appendix C.

Input composition and
process parameters

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, f! KWN model

CALPHAD ‘ :
#11 bs = Gy (Xig/50) #9 velgrowenlil = bs. bsljl. b7 [f], E
Vj € {0, ..., i} '

#2R; = P1N;(1) +0(@1,86,) |

[142)

T mzvb;[é]; Py ,SR[f];
dN _ * .
#50=Ns(Z,B°,4G7) Fmmm———— o100
#3Z = Np(v; Rs) \4#131;,[1]:,7—?“] y
#6 AG*= P3. Ny (y) Mo©@A6) i vjE {Of_",i} h

Optimisation of

{Py, ..., Ps}

#7ND[{] = dt % #10 velcoarseninglil =
#8 PRIi] = Ry + P35 Ns(y) Ps.by. be[j]. coars/PRIj],
— Vj € {0, ..., i}
[ #17 VF[i] = VEQVDLi], PRI
| #18 TVF = 3, VF[i]
| #19 x4 /50 = Un (Z; VF[i])

#14 by = 1/ Xsimg XPsimgd2GXsimg

RT

#15 d26xsi/g = 50—

N )
#16 PRIj] += (velcoarsening Ul + velgrowen i) *dt, |
vj € {0, ...,i} H

(NDy,[i], PRy [il) = (ND[i], PR[i]) if PR[i] < 7c
(NDslil, PRs[i]) = (ND[i], PR[i]) if PRIi] > 75c

et

] #2070, 0 = S2(NDIilw, PRIil) | | 20 Ty = Sa(ND[ily, PRIil,) | e |

| m Volume Fraction

I #22 appe = S1(Teyyear: Testrong)

Output
YS,TND,MPR,TVF

Figure 2. Detailed calibration loop of the KWN model. The diagram illustrates the iterative interaction
between the KWN model and the gradient-based optimiser. The fitting parameters are updated
once the YS predictions become available across all time steps. Nucleation, Growth and Coarsening,
Volume Fraction, and YS modules are shown in green, blue, orange, and grey, respectively. The full
form of the equation is presented in Appendix C.
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It is important to note that assuming a value of unity for all instances, i.e.,
P1 = P2 = P3 = P4 = P5, results in the purely physics-based KWN model formulation
commonly used in the literature. However, in this work, we deliberately allow for
each instance to vary independently, enabling the optimisation algorithm to explore a
five-dimensional parameter space. It is intuitional to conclude that the optimiser will obtain
this solution in the extreme scenario when all the physics-based formulations are ideal. This
added flexibility allows us to investigate whether improved model fidelity or new physical
insights can emerge from differentiating between instances of the same physical variable.

Starting from the Nucleation block, the temperature T and compositions x are input
to the CALPHAD module to determine the driving force AG. The volumetric driving force
AGy, (normalised by the molar volume v,;) is then used in the definition of the critical radius
R;. It determines the minimum value for the radius PR[i] of a newly formed size class i to
be able to grow larger rather than dissolve back to the matrix. The original critical radius
R;, defined by classical nucleation theory [39], is modified with the trainable coefficient P;
and a smoothing term as follows:

2y 20
R, = 14

fry 1AGUW+U(Q1,AGU), (2)

where 1 is the interfacial energy between the precipitate and the matrix, The sigmoid
function o(.) guarantees the physics-based definition (the first term) is only used when
the driving force is negative. Once the composition and temperature conditions turn
unfavourable for nucleation, the driving force becomes positive. Hence, the critical radius
is smoothly set to a large value (close to 1) by including the second term in its calculations.
A R, = 1 signals to the rest of the downstream equations a thermodynamically unstable
condition for the nucleation of new precipitates without imposing discontinuity on the
model. The shape parameter @ is simply a constant that depends on the shape of the
precipitates. P; is a coefficient for the original interfacial energy that is optimised by
automatic calibration. The critical radius R, whether in the order of O (10’9) in nucleating
conditions or O(1) for non-nucleating conditions, is then passed on to the equation of the
Zeldovich factor Z and the attachment rate §*. We maintain their original form for MgsSig

precipitates as defined by [18]:
p
% |97
Z= (30 —1)7Rs \ kT’ ®)

. 47moRS? (xpg; — xsl-)2 (xPMg - ng)z 1
- 4 Dexe. T D
ag SiXsi MgXMg

, (4)

Regarding the Zeldovich factor (which accounts for the probability of a nucleus
reaching the critical size), vuﬁt, and kj represent the atomic volume of the precipitates and
the Boltzmann factor, respectively. For the attachment rate, a B Dg;y, Mg xg i/ Mg define the
interatomic distance in the precipitate, diffusion rate of Mg/Si atoms, and precipitate
concentrations x of Mg/Si atoms. The Zeldovich factor and the attachment rate are passed
on to the nucleation rate defined by classical nucleation theory as follows [39]:

dN AG*
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where AG™ is the critical Gibbs free energy [40]. We modify this key parameter of the
Nucleation block by the addition of P, and a factor M as follows:

3 3
AG* — P2 167-[’)/ 5 4® 2M(7(112,AGU)
3(AGy)” (3 —1)

/ (6)

Here, M7(ACo) sets the critical Gibbs free energy AG* to an infinitely large number
when the driving force is positive. This smoothing mechanism is required for the addition
of the ML optimiser. Consequently, the ND of the newly formed class will also be smoothly
set to zero by Equation (5). The Nucleation block is concluded by defining the number
density ND[i] and particle radius PR[i] of the current size class 7 as follows [39]:

NDJ[i] = dt.‘%{, 7)

o Py | KT
PR[z]—rp—<Rs+23 nm)‘ 8)

It is worth mentioning that the PR will be set to a value close to 17 by combining
Equations (2) and (8) when the driving force is positive. However, in the calculation of VF,
which we will see later, this large value will be multiplied by ND[i] = 0 and the calculations
of VE, and new concentrations will not be affected.

In the Growth block, velocity of growth vel, s, and velocity of coarsening velcosrsening
are the most centric equations, and for each size class up to and including the current size
class i, their original form can be found in [18]. Here, however, we introduce two trainable
coefficients P4 and Ps to account for the fitting parameters that they contained:

velgrowth []] = Py b5b6[]]b7[]]r Vje {0/ T i}f ©)
. . coars . .
Uelcoarsening[]] = Ps. byg.bg U]Wm, V] S {0, .. .,l} (10)

where coars is the coarsening parameter. The fitting parameters Py and Ps modify the
interfacial energy -y (from inside bg), and the product «y * coars, respectively. The parameter
groups bs, bg, by, and by are defined as follows [18]:

2 2y 1
bs — (¥si — xsi)” (xmg — *mg) 1)
d2Gxg;xg; dZGngxi/Ig !
L1 4ySoy . ,
bolil = prp G —nRe €10 ih 12)
. 1 1 . .
by (] = R, _ PR} vjie{o,...,i}, (13)
bo=1/ ) XPsi mgd2GXsi Mg- (14)
Si, Mg

Here, R represents the gas constant, and d2Gxs; pg is defined as follows [18]:

RT

RO = Dy
g/ ot

(15)
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Combining the above equations, the PR of the size class up to and including i updates
with Equation (16):

PR U] = radtotal []] = PR U] + (velcoarsening m + Z)elgrowth []]) *dt, Vj € {0/ ce ri}' (16)

According to Ostwald ripening, the ND of the precipitates should also be modified
since bigger precipitates grow larger by consuming smaller ones [18]:

rad /] ) 3 .
growth .
T , V] € 0, e lyy, 17
radtotal []} J { } 17)

ND[j = ND]  (
where 7adgrowth [j] = PR[j] + (Uezgrowth [J}) x dt.
The ND and PR are input to the Update block. The VF of all the size classes up to and
including i is readily available as follows:

VE[j] = (2@ - §>nPR3[ﬂND[j], vje{o,...,i}. (18)

As mentioned above, PR array values close to one will not affect the computations
of the update block (hence upcoming time steps) because they will be masked by the
multiplication of zero values in ND. The TVF is calculated by a summation over all the
arrays of VF as follows:

TVF =) . VFIi]. (19)

The Update block receives its name by updating the concentrations of Mg and Si
as follows:

f(WfPMg/5i> — TVF.xpmyg/si
AMg/si = 1—TVF

The function f(.) converts the initial composition from weight percent to initial mo-

(20)

lar concentration.

Finally, the Strength block divides the size classes to weak/sheared (ND{i],, PR[i],,)
and strong/bypassed (ND[i],, PR[i],) size classes based on the critical threshold p.. The
weak size classes contribute to the strength as follows [37]:

VL NDI[i] ,20PR[i], , Y ND[i],,v/284isGmoabais> PRi],,/ PR 2

Teweak = ( -
/ ND
2\6[ disDais L [l]w

where Iy, = ( %) S is GmodbdiSZ- The parameters J,;5, G104, and by;s represent the disloca-

(21)

tion parameter (depending on the shape and nature of dislocations) [37], the shear modulus
of the aluminium matrix, and the magnitude of the Burgers vector, respectively. The strong
size classes (NDJi],, PR[i],) contribute to the strength as follows [37]:

Tcstrong = ﬁédinmod'bdis \/Z ND[i]szng[i]s' (22)

The Strength block is concluded by superposition of these two mechanisms which
gives the precipitation’s contribution to the overall YS as follows [37]:

Oppt = Mppt{’/(TCwEHkq + Tcstrongq> (23)

where g and M, are the Taylor exponent and the Taylor factor, respectively.
To clarify, the variables of the KWN model mentioned so far are divided into five
groups (G1-5):
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G1. The independent physical constants, such as the Boltzmann constant K.

G2. The independent experimental parameters, such as temperature T.

G3. The dependent parameters, such as the Gibb’s free energy that depend on
other variables.

G4. The outputs, such as the YS(t), VF;y(t), TND(i), and MPR(i).

G5. The fitting parameters, such as the interfacial energy -.

This work aims to calibrate the functional forms of the fitting parameters of Group 5
indirectly via the coefficients P; (as presented in Table 1). To address the discontinuities and
to ensure compatibility with gradient-based optimisation, we introduced modifications
to the traditional KWN model. Theoretically speaking, nucleation occurs only when this
driving force is negative. However, in conventional implementations, once the solute
concentration falls below a threshold, the driving force becomes positive, leading to an
abrupt stop in nucleation, causing a discontinuity that propagates to model outputs. To
mitigate this, we employed a smooth approximation using a sigmoid function, as often
found in activation functions in neural networks.

Table 1. Summary of the trainable coefficients, the corresponding physics-based variables and fitting
parameter instance, and the governing equations in which they appear.

Trainable Coefficients = Variables (Parameter Instance) = The Hosting Equation

& Rs(7) @)
P AG*(7?) (6)
; & (v'7) ®
Py Velgrowth (')’) (12)
Ps Vel oarsening (’y X coarscoeff) (10) and (12)

As a second instance of discontinuity, the equation for the critical nucleation radius (see
Equation (2) in Methods) contains the driving force in the denominator. A positive driving
force would mathematically result in a nonphysical, negative radius. As a replacement
to truncating or zeroing the radius (which introduces non-differentiability), we applied a
large softening term via a sigmoid, effectively assigning a large nucleation radius. These
radii correspond to near-zero number densities from Equation (5), ensuring that such
precipitates do not affect the overall evolution of the system. It is worth mentioning that,
although traditional precipitation hardening models often distinguish between small and
large particles, potentially introducing further discontinuities, we circumvent this issue by
using a single size class in our current work, which is justified in Appendix A. Nevertheless,
we acknowledge that additional discontinuities may emerge when expanding the model or
applying it to more complex case studies. Table 1 summarises the trainable coefficients and
the corresponding equations that have appeared in this section.

3. Results

This section presents the findings of applying a gradient-based calibration framework
to the differentiable KWN model for predicting YS in a 6xxx series aluminium alloy. We
begin by examining how the ADAM optimiser progressively refines the model’s trainable
coefficients to match an interpolated version of the raw experimental data borrowed
from [41]. Convergence behaviour, parameter trajectories, and loss function evolution are
thoroughly examined for the ADAM optimiser to assess the optimisation performance,
followed by a comparative analysis against the gradient-free Powell and Nelder-Mead
optimisers. A brief Monte Carlo analysis of the parameter initialisation reveals insights into
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the robustness and variance of the fitted coefficients. Finally, a benchmark table summarises
the advantages of gradient-based optimisation in terms of convergence time, parameter
stability, physical plausibility, and computational complexity.

The ADAM optimiser of TensorFlow (version 2.14.0) trains the trainable coefficients
in a multivariable optimisation task, with a unique learning rate for each trainable coeffi-
cient {LR,; = 0.01, LR, = 0.001, LR)3 = 0.1,LR,4 = 0.01, LRy5 = 0.01} and a commu-
nal ADAM learning rate of 0.001. The learning rates have been chosen empirically based
on visual assessments on the sensitivity of each parameter. Due to the higher sensitivity
of the KWN model on parameter P,, a smaller initialisation variance of 0.01 has been
chosen for it while the rest of the parameters use an initialisation variance of 0.1. A mean
initialisation value of unity has been chosen for all the trainable coefficients, meaning the
optimisation starts with the purely physics-based knowledge and leaves further refinement
to the optimiser. The loss criterion is the mean squared error (MSE) plus the L2 regularisa-
tion terms on the trainable coefficients that penalise their divergence from unity and thus
the physics-based assumptions. This condition on the loss function defines how far the
optimiser can explore from the purely physics-based equations.

Moreover, a one-on-one comparison is made between the ADAM, Powell, and Nelder—
Mead optimisers. The Powell settings in SciPy version 1.11.2 include a function tolerance of

012, and a strict maximum function

ftol =1 x 107*, a strict parameter tolerance of 1 x 1
evaluation of maxfev = 10,000 to ensure that successful termination is only based on the
function tolerance. To prevent the physics-based model from collapsing due to unrealisti-
cally large or small parameter values during line searches, the bounds were restricted to
the range [0, 5]. The Nelder-Mead optimiser is set up with a similar optimisation package
and values: a “function absolute tolerance” of fatol = 1 x 10~* and a “strict absolute
error in parameter space” of xatal = 1 x 10710 to ensure convergence is only based on
the improvements in function values. The loss function for the Powell and Nelder-Mead
optimisers is defined in the same way as the ADAM optimiser to ensure a fair comparison:
MSE with L2 regularisation with a weight of 1 x 10~%..

The training data is sourced from [41]. In their work, the commercial Al-Mg-5i alloy
was acquired in the form of extruded rods with a diameter of 16.5 mm. Its chemical
composition, determined using atomic emission spectroscopic analysis, includes 0.50 wt.%
Mg, 0.43 wt.% Si, 0.18 wt.% Fe, 0.08 wt.% Mn, along with minor quantities of Cu, Cr, Zn, and
Ti, with the balance being Al. Hardness and tensile samples, with a gauge length of 25 mm
and a diameter of 6.25 mm, underwent solution treatment at 525 °C for two hours, followed
by rapid quenching in ice water and subsequent artificial ageing at 150 °C. Uniaxial
tensile tests were conducted on a servo-hydraulic universal testing machine (Model: 8801,
Instron, Norwood, MA, USA) under a nominal strain rate of 1073 s~! at room temperature
(298 K). For each ageing time, three samples were tested, and the average tensile properties
were reported.

The PBM is implemented using Python 3.11.5 and the thermodynamic library of Kawin
(version 0.3.0). Table A1 in Appendix B includes the names, symbols, nominal values (if not
randomly chose), and units of measurement for all the physical parameters. These include
independent physical constants, independent experimental parameters, fitting parameters,
dependent parameters, and the outputs. Scaling values of 4 = 10 and a, = 1 have been
chosen empirically for the sigmoid functions in Equations (2) and (6), respectively.

The convergence of the predictions to the experimental data is plotted in Figure 3 for
four iterations: namely, iterations of 0 (upon initialisation), 50, 200, and 400 to reach a
function tolerance of 1 x 107 in the normalised YS predictions and training data. The
time step of 0 indicates the YS curve is derived from the initialisation values without any
prior optimisation attempts. The interpolated data is generated with the polyfit method
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of NumPy (version 1.26.0) to fit the scarce experimental data to a polynomial of degree
two. The time axis of the interpolated data matches the time axis of the KWN model’s
prediction. In our work, a 1-h time resolution has been chosen as a compromise between the
computational cost and the required accuracy to cover the domain of the training data. It is
worth noting that the interpolation facilitates the model to reach a compromise between
the physics-based constraints and the experimental data. The moving breakpoint observed
in the predicted YS curves reflects the growth of the precipitate size class over time. As
the particles grow and exceed the critical radius, the model transitions from the strong
(shearable) to the weak (non-shearable) strengthening mechanisms. The full gradient-based
training process is shown in GIF S1 in the Supplementary Material for all the iterations.

Yield strength vs. time at iteration 0 Yield strength vs. time at iteration 50

300 300
x x
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Figure 3. Convergence of the predicted YS (MPa) as a function of time (h) to the interpolated
experimental data at selected iterations of a single training trial with a stopping criterion of function
tolerance (1 x 107°). The interpolated curve, derived from experimental data [41], guides the
gradient-based optimisation with the ADAM optimiser. (a) Initial prediction before training (iteration
0, error = 61.1%). (b) Intermediate result at iteration 50 (error = 45.0%). (c) Advanced convergence
at iteration 200 (error = 6.1%). (d) Final prediction at iteration 400 (error = 4.3%), showing close
agreement with the interpolated target.

The training process of the trainable coefficients P; is shown in Figure 4. They exhibit
convergence and progressively smaller loss gradients in Figures 4a and 4b, respectively.
For a clearer visualisation of the changes, a stopping criterion of 300 iterations was used, in
this case as iterations [300 — 400] do not show significant gradients.
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Figure 4. The gradient-based training process of the KWN model parameters for 300 iterations for
(a) the convergence of the fitting parameters, and (b) the convergence of the loss function.

In Figure 5, the collective results of 10 Monter Carlo simulations are plotted. The YS
curves in Figure 5a exhibit close agreement across all trials, ranging from 104.0 4= 3.0 MPa
in the under-aged to 279.2 + 0.3 MPa in the peak-aged and to 271.9 £ 0.8 MPa in the
over-aged conditions. The relatively larger uncertainty observed in the under-aged
regime can be attributed to the fact that the KWN model provides its most accurate
description near the peak-aged conditions, where 3" precipitates dominate the microstruc-
ture. Although the predicted YS curves show high consistency across the Monte Carlo
trials, the corresponding fitted coefficients exhibit substantial variability (Figure 5b).
This non-uniqueness reflects the ill-posed nature of the inverse problem in fitting high-
dimensional physics-based models: multiple parameter sets can produce similar out-
comes. In practice, this means, that although the exact parameter values may not be
uniquely identifiable, the model still captures the underlying physical mechanisms gov-
erning precipitation hardening. The variance of convergence for the trainable coeffi-
cients is {Var(P;) =5.82 x 1074, Var(P,) = 131 x 107% Var(P;) = 3.30 x 1073,
Var(Py) =138 x 1073, Var(Ps)= 7.59 x 107%}.

Finally, we present a comparative benchmark between the ADAM (gradient-based),
Powell (gradient-free), and Nelder-Mead (gradient-free) optimisers, using a common
function tolerance of 0.001 (Table 2). As shown in Row 1, the ADAM optimiser demonstrates
a faster convergence compared to the gradient-free optimisers thanks to the gradient-
informed parameter tuning. Row 2 solidifies this argument further, showing that the
number of function evaluations for the ADAM optimiser is significantly smaller than
that of the Powell and the Nelder-Mead optimisers. This was expected for gradient-free
optimisations due to the internal line searches and simplex operations that take a lot of time
and computation. Row 3 highlights another critical drawback in gradient-free optimisation,
which is the number of invalid function evaluations. Especially, the Powell optimiser tends
to propose more unphysical parameter values. These values cause the KWN model to either
produce unrealistic outputs (e.g., negative radius) or fail entirely (e.g., by returning NaN
values), which halts the optimisation process and contributes to a high count of invalid
function evaluations. It is worth noting that, without imposing bounds on the search
space, none of the optimisation trials for the Powell optimiser would achieve meaningful
convergence. The invalid evaluations for the Nelder-Mead optimiser are much better but
not fully eliminated, highlighting the necessity of expert intervention when using gradient-
free calibration methods. Finally, in row 4, the ADAM and Nelder-Mead optimisers have
similar orders of computational complexity. However, the latter’s performance degrades
with the increasing the number of trainable coefficients N, proving a lack of scalability to a
full KWN model.



Metals 2025, 15, 1035

16 of 25

Yield strength mean and standard deviation over 10 runs

—— Mean
275 +1 Std Dev
250
g
g 225
=
5 200
f=4
o
& 175
kel
<D
5= 150
125
100
0 25 50 75 100 125 150 175
Time (h)
(a)
Parallel Coordinates Plot of Converged Parameters
— Runl
L15 — Run 2
110 i”" Z
g K — Run
£ 1.05 / —— Run5
5 \ — Run6
2 1.00 N — Run?7
g —— Run 8
£ 0.95 Run 9
Run 10
0.90
0.85
P P, Ps Py Ps
(b)

Figure 5. (a) Predicted YS curves from 10 Monte Carlo trials using the gradient-based optimiser,
showing consistent convergence despite random initialisations. (b) Parallel coordinate plot of the
converged trainable coefficients, highlighting the non-uniqueness of inverse solutions despite similar
YS predictions.

Table 2. Benchmark comparison of the ADAM (gradient-based), Powell (gradient-free), and Nelder—
Mead (gradient-free) optimisers applied to the simplified KWN model with a common function
tolerance of 0.001. Metrics include convergence time, number of function evaluations, invalid function
evaluations per trial, and computational complexity across 10 Monte Carlo runs. The results highlight
the computational cost and instability risks associated with the Powell and Nelder-Mead optimisers.

Metric ADAM Powell Nelder-Mead
Time (minutes) 179£21 57 £12 45+ 16
Number of function evaluations 139 £17 886 £ 190 620 £ 170
Invalid function evaluations per trial None 40 4= 38 32 &£ 12
Computational complexity O(N) O(N?) O(N)

4. Discussion

In this work, we demonstrated that integrating the gradient-based ADAM optimiser
into a simplified KWN model enables more efficient parameter calibration than conven-
tional gradient-free methods. The ADAM algorithm produced a faster convergence of yield
strength predictions toward the experimental data, with reduced simulation time, fewer
function evaluations, and fewer invalid optimisation attempts. This highlights the potential
of gradient-based optimisation for automatic calibration in a full-scale KWN model.

The recent literature on physics-based precipitation-hardening models has increasingly
highlighted the challenge of parameter calibration. Traditional approaches often rely on
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manual tuning, which limits reproducibility and scalability, especially in advanced models
with many free parameters. More recently, heuristic optimisation methods, such as the
Powell and Nelder-Mead methods, have been applied, but their fundamental limitation is
the absence of gradient information. These methods perform a blind search of the parameter
space, requiring computationally expensive trial-and-error line searches. By contrast, the
gradient-based ADAM optimiser relies on automatic differentiation, ensuring that each
optimisation step moves the model closer to experimental data in a more systematic and
informed manner.

The present work deliberately employed a simplified KWN framework with one size
class, one nucleation event, and one precipitate type. This simplification was necessary
because introducing gradient-based optimisation requires the underlying model equations
to be made continuous and differentiable. Each conditional branch and if-else logic in the
KWN framework had to be carefully examined and modified to avoid discontinuities in
the predictions. As such, this study did not attempt detailed physics-based modelling or
new experimental measurements. Similarly, microstructural complexities, such as plastic
deformation, grain boundaries, heterogeneous microstructures, and thermomechanical
histories, were excluded. Incorporating these features would multiply the number of fitting
parameters from five to potentially hundreds, which would distract from the core aim of
addressing the calibration bottleneck that persists in precipitation models regardless of size
or accuracy.

As another simplification, only a single case study was explored, using yield-strength
data from a 6xxx series alloy reported in the literature. While this does not reflect the full
diversity of alloy compositions and processing routes, it served as a representative example
of the calibration challenge in solidification problems.

Overall, the findings suggest that automatic, yet reliable, parameter calibration is
crucial for advancing physics-based models of precipitation hardening. By showing that
gradient-based optimisation can outperform gradient-free counterparts, this work es-
tablishes a framework that may be extended to more complex models and eventually
integrated into digital alloy design workflows.

A core part of this framework is making the equations continuous. This was achieved
by introducing differentiable approximations, such as a smoothed sigmoid function to
handle conditional logic. In addition, instead of directly optimising the free parameters
themselves, which often take on extremely large or small values, we introduced trainable
coefficients that scale their functional forms. This approach offers two key advantages: (1) it
normalises the optimisation landscape by allowing the optimiser to work with coefficients
close to unity, thereby improving numerical stability; and (2) it enables the calibration of
parameter groups rather than individual parameter instances, since many free parameters
appear multiple times across different parts of the model. Optimising their scaling coeffi-
cients ensures that the interdependencies among these repeated occurrences are respected.
Due to varying sensitivities, the learning rates for each coefficient were empirically chosen
to balance convergence speed and model fidelity.

As this is the first step in careful model calibration in the vast world of precipitation
hardening, the following provides some ideas for future work:

e Expanding the KWN model: Applying gradient-based calibration to the full KWN
model with multiple nucleation events and several size classes, especially in case stud-
ies where a finer time resolution on the ageing process is required and all size classes
contribute significantly to the ageing dynamics. Additionally, incorporating other
precipitate types, extending the applicable temperature range, and including a broader
spectrum of alloy compositions would increase the model’s generalisability and in-
dustrial relevance. The current framework is restricted to modelling precipitation
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hardening during ageing heat treatment. Extension to components that undergo prior
processing operations will require coupling with additional modules to capture the
effects of plastic deformation, heterogeneous microstructures, and thermomechanical
histories. This remains an important direction for future work.

e  Some key considerations for advancing towards a more detailed physics-based model
include (a) a sensitivity analysis to identify which model parameters have the most
significant impact on the predictions, so that calibration efforts can prioritise those
parameters, (b) dimension reduction techniques to reduce the search space and make
the optimisation more tractable when dealing with a very high number of parameters,
and (c) studying parameter interdependencies to understand how fitting parame-
ters influence each other and the outputs, which can help in simplifying the model
or decoupling certain effects, thereby reducing degrees of freedom without losing
predictive power.

e  Multi-objective optimisation: in this work, the loss function is based on YS data;
however, the intermediate outputs of the precipitation hardening, such as MPR, TVF,
and TND, is also experimentally measurable and can be used as training data for the
model. This leads to a multi-objective problem which requires a balance between
several loss function terms.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /met15091035/s1. GIF S1: Gradient-based calibration of the
predicted yield strength curve using the ADAM optimiser. The model iteratively adjusts parameters
to minimise the loss, with a stopping criterion set to a function tolerance of 1 x 107°. The convergence
towards the interpolated experimental data is shown across successive iterations.
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JMAK Johnson-Mehl-Avrami-Kolmogorov
KWN Kampmann-Wagner Numerical
MPR Mean Particle Radius

MSE Mean Squared Error

ND Number Density

PBM Physics-Based Modelling

PR Particle Radius

STEM Scanning Transmission Electron Microscopy
TEM Transmission Electron Microscopy
TND Total Number Density

TVE Total Volume Fraction

VF Volume Fraction

XRD X-Ray Diffraction

YS Yield Strength

Appendix A. Justification of Single-Size-Class Assumption

Due to the well-established physical fidelity of the Kampmann—-Wagner Numerical
(KWN) model, it was selected in this study as the underlying precipitation model. The
multi-class formulation of the KWN model, which discretises the precipitate population
into size classes and concurrently simulates nucleation, growth and coarsening, offers a
realistic description of precipitation kinetics compared to earlier mean-field models. Its
ability to resolve the evolving particle size distribution (PSD) makes it the most suitable
candidate for capturing the physical phenomena governing precipitation hardening.

The previous analytical models, such as the Langer-Schwartz approach, assume the
MPR rather than the size distribution, and oversimplify the transient effects. However,
the KWN model accounts for size-dependent growth kinetics and curvature-driven solute
redistribution. As a result, it enables a more accurate evaluation of key outputs, such as VF
and YS.

However, in the present study, the time resolution and computational setup lead to
the use of secondary size classes at significantly later times (on the order of 1 h) compared
to the primary nucleation event. Under these conditions, the contribution of later size
classes to the TVF and YS is negligible, primarily due to the steep drop in number density
observed across size classes.

Figure A1 illustrates the number density distribution across the precipitate size classes,
showing that the first size class dominates by several orders of magnitude (O(10%)) com-
pared to the subsequent classes. When combined with a nearly uniform particle radius
distribution, this leads to a negligible contribution of later size classes to the TVF, as quanti-
fied by Equations (18) and (19). Consequently, their influence on the evolution of solute
concentrations of Mg and Si (Equation (20)) is minimal.

Similarly, the contributions of subsequent size classes to the YS are shown to be
negligible in this case study. The calculations via the superposition of number density
and particle radius for both weak (Equation (21)) and strong (Equation (22)) particles
prove this fact. This justifies focusing computational resources on the primary size class,
particularly given the aim of this work; to explore the integration of physics-based models
with gradient-based optimisation methods in the context of YS prediction, rather than to
fully exploit the physics-based depth of the KWN model.
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Figure Al. The distribution of size classes formed at different time steps during the simulation for
(a) the number density vs. size class number, and (b) the particle radius vs. the size class number.
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Appendix B. Variable Values

Table A1 provides a comprehensive categorisation of all variables used in the simula-
tion of the gradient-calibrated KWN model. The parameters are grouped into five distinct
types: independent physical constants, independent experimental parameters, fitting pa-
rameters, dependent parameters, and model outputs. Independent physical constants
include fundamental quantities, such as the Boltzmann constant and the gas constant,
which remain unchanged during the simulation. Independent experimental parameters
refer to inputs defined by the experimental setup, including alloy composition, temperature,
and time step. Fitting parameters are physical quantities—such as shape factor, coarsening
coefficient, and Taylor factor—that are subject to manual or automatic calibration. Depen-
dent parameters, such as critical radius or nucleation rate, are intermediate quantities that
evolve as a function of other variables within the KWN model. Finally, the model outputs
include experimentally measurable quantities like TND, MPR, and YS. This structured
presentation in Table Al facilitates clarity in the model’s implementation and ensures
reproducibility by explicitly listing all governing quantities and their respective units.

Table Al. The parameters for the simulation of the differentiable simplified KWN model.

Type Name Parameter Value (Unit) [Reference]
Independent physical constant Boltzmann constant K 1.380649 x 107 3(j-K™ 1)
Independent physical constant As-quenched strength o) 55 x 10° (Pa)
Independent physical constant Gas constant R 8.31 (j- K L.mol 1)
Independent physical constant Mg'’s ppt concentration XPMg 5/11
Independent physical constant Si’s ppt concentration Xpsi 6/11
Independent physical constant Average volume of ppt atoms v 1.92 x 107% (m?)
Independent physical constant Interatomic distance a 2.86 x 107 1(m)
Independent physical constant Precipitation sites Nop 5.8 x 10?8
Independent physical constant Molar volume of precipitates U 3.95 x 107° (m3)
Independent physical constant Shear modulus of Al matrix Gonod 2.7 x 10'% (N-m?)
Independent physical constant The magnittécelitgi the Burgers bgis 2.84 x 10710
Independent physical constant Mg’s molar weight Mwpg 24.305 (g/mol)
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Table Al. Cont.

Type Name Parameter Value (Unit) [Reference]
Independent physical constant Si’s molar weight mws; 28.09 (g/mol)
Independent physical constant Al’s molar weight Mw 4 26.98 (g/mol)
Independent physical constant Scalsirolﬁl i?g;oﬁjﬁéel\ﬁi ;Olid kg 21.1 x 10° (Pa/wt%) [37]
Independent physical constant Scasli)?gti:ﬁ\igzi;;hd ksi 10.5 x 10° (Pa/wt%) [42]
Independent physical constant Critical threshold Tpe 24 x 1077 (m) [37]
Independent physical constant Mg’s diffusion coefficient DOpig 22 x 107* (m?2/s) [38]
Independent physical constant Mg’s activation energy Qumg 115,000 (j/mol)
Independent physical constant Si’s diffusion coefficient DOg; 2.2 x 107% (m?2/s) [38]
Independent physical constant Si’s activation energy Qs;i 115,000 (j/mol)
Independent physical constant Time step dt 3600 (s)
Independent experimental parameter Time t 1(s)
Independent experimental parameter Mg’s weight percent wtppmg 0.5
Independent experimental parameter Si’s weight percent wtps; 0.43
Independent experimental parameter Temperature T (150 + 273) (K)
Independent experimental parameter Ageing time AT 170 (h)
Fitting Shape factor ¢ 7
Fitting Total volume fraction coefficient € 1
Fitting Coarsening coefficient COarSeoeff 1x1073
Fitting Taylor factor Mppt 3.1
Fitting Taylor exponent q 2
Fitting dhipe and nature of disocations s 05
Fitting Strength-to-yield’s parameter co2 500 [37]
Fitting Strength-to-yield’s parameter co3 10 [37]
Fitting P arening oquations ¢ 03
Fitting Interfacial energy ¥ 0.042 (j/m?)
Dependent parameter Critical radius R Variable
Dependent parameter Volumetric Gibbs free energy AG, Variable
Dependent parameter Strain energy AG; Variable
Dependent parameter Critical Gibbs free energy AG* Variable
Dependent parameter - d2Gxsi/mg Variable
Dependent parameter Diffusion coefficient Dgysi Variable
Dependent parameter - bs Variable
Dependent parameter - b Variable
Dependent parameter - by Variable
Dependent parameter - b1o Variable
Dependent parameter Mg /Si molar concentration Variable

XSi,Mg
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Type Name Parameter Value (Unit) [Reference]
Dependent parameter Velocity of growth velgrowth Variable
Dependent parameter Velocity of coarsening velcoarsening Variable
Dependent parameter Critical radius r;‘, Variable
Dependent parameter Zeldovich factor zZ Variable
Dependent parameter Attachment rate B Variable
Dependent parameter Nucleation rate dN/dt Variable
Dependent parameter Number density of size class i NDJi] Variable
Dependent parameter Particle radius of size class i PRJi] Variable
Dependent parameter Line tension for strong particles Testrong Variable
Dependent parameter Line tension for weak particles Teweak Variable

Number density of size class i . .
Dependent parameter (only for weak sizes classes) ND[i],, Variable
Particle radius of size class i . .
Dependent parameter (only for weak sizes classes) PR[i],, Variable
Dependent parameter Number density O.f size class i NDJi] Variable
(only for strong sizes classes) s
Particle radius of size class i . .
Dependent parameter (only for weak sizes classes) PR[i], Variable
Output (intermediate) Total volume fraction TVF Variable
Output (intermediate) Total number density TND Variable
Output (intermediate) Mean particle radius MPR Variable
. Precipitation hardening .
Output (final) hardness Tppt Variable

Appendix C. Full Equations Forms

Table A2 provides the expanded mathematical expressions for the abbreviated equa-
tions presented in Figure 2, where certain long or complex terms were compacted for
visual clarity. The figure adopts shorthand notations to reduce clutter and to improve
readability in the graphical depiction of the KWN model’s modules. This table restores the
full form of those expressions, enabling an exact interpretation of the computational logic
underlying each block. While not exhaustive of all the equations in the model, Table A2
focuses specifically on the subset that would clutter the figure, covering the Nucleation,
Growth and Coarsening, Update, and Strength blocks. This mapping between simplified
visual notation and complete mathematical form supports accurate implementation and
ensures traceability between the schematic representation and the underlying physics.

Table A2. Abbreviated forms of the equation components shown in Figure 2 and their corresponding
expanded mathematical expressions.

Equation Ref. (Figure 2) Abbreviated Form Expanded Equation Part
(1) Rs = N3(7) Rs = ;7335,%1
3 Z =Ny(7;R - Y 27
©) 2(7:Rs) 2= G-\ KT
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Table A2. Cont.

Equation Ref. (Figure 2) Abbreviated Form Expanded Equation Part
B’ B )’
4) * =N, (R , X% ) ¥ _ 4moRS? (x5i7x5i> <ngfog) -1
P A\ TMg/si pr= na;‘; ( Dg;xg; + Dmg Xy )
(5) a{%} = N5(Z,ﬁ*,AG*) dd—l;] = N()Zﬁ*exp(—%)
(6) AG* = N1 (')/) AGH = 167y° 4053

3(AGy)* (39—1)2
®) Neg(7) Ne(y) = 3,/£L

Ty
(11) bs = G (¥44q/:) (gt (i)
> P\ TMg/si bs = { dZZxSiﬁsczgi + d2Gj‘ng£1<z }
(12) Ga(7) G2(7) = almkr
(14) bio bio =1/ ¥ xps;agd2GXsimg
Si, Mg
17) VF[i] = VF(NDIi], PR[i]) VF[i] = (20 — 3)nPR3[i]NDi]
(18) VFiotal VFiotar = Z VPM
1
(19) Yg/si = U, (TVE) Mg/si = f(ZUtng/ilgg;\ZZ Dt
wt i/ mw i
(19) XMg/si = f(ZUtPMg/Si) xg/{g/sl' = W’ Xdenom = ceMt, Al %
(20) Teweak = $2(NDJily, PRIi],) . _ /ENDI[,25PRT], < END[i}wﬁ&GbZPR[i]w/PRC)3/ 2
cweak \/2\/§Fb Y. ND[i[,
(21) Testrong = S3(NDIil,,, PR[i],,) Testrong = V20Gb/¥. ND[i] 2@ PR[i],
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