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Abstract—Deep Reinforcement Learning (DRL) has emerged as
a transformative approach in robotic assembly, offering
unparalleled adaptability and efficiency in automating complex
tasks. However, existing DRL methods with weak generalization
require retraining of policy when facing new assembly scenarios,
which require a significant amount of interaction and may harm
the robots or parts. This paper presents a fast skill transfer
approach for submillimeter-level assembly tasks. The approach
enables rapid adaptation to varying textures and lighting
variations, which are commonly encountered in flexible
manufacturing environments. The model parameters can be
quickly adjusted to facilitate seamless adaptation. Specifically, a
concise distance-based encoder model is proposed to extract the
latent representation from the low dimensional seam-based
image (SBI) and map the extracted feature to the distance space.
Then, the fine-tuning strategy is used to align the features of new
scenes with those in the source scenes. The transfer strategy
necessitates only the retraining of the feature extraction model,
obviating the need to retrain the underlying RL policy.
Simulation and real-world experiments are conducted to evaluate
the proposed method, and the transfer can be finished in a few
minutes. The policy trained in the simulation can be transferred
to the different real-world assembly scenes with the proposed
method with an average success rate of 94.3%, highlighting its
potential for practical applications.

Index Terms—Assembly, Reinforcement Learning,
Assembly skill learning, Skill transfer learning.

[. INTRODUCTION

he peg-in-hole insertion, as a typical assembly task in
manufacturing, has been widely studied by applying

DRL in recent years[1]. Although many studies focus

on the force and torque information due to the inherently
contact-rich nature of the peg-in-hole task [2], [3], there is a
growing tendency to utilize visual information for its
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advantages in adapting to a wider initial error range and
improving assembly speed [4]. Compared with traditional
methods[5], DRL approaches are less dependent on precise
system calibration and specific visual setups. However, in
personalized products and flexible manufacturing, products
often have similar shapes but different textures and various
light sources for illumination. This poses challenges for
sample efficiency and generalization in DRL-based assembly
[6], requiring extensive retraining in the new scenes. Efforts
have been made to enhance training efficiency, but the
complex network structures and high-dimensional state
observation spaces inherent to DRL often impede training
speed. Additionally, high-performance computers for learning
may not be available in practical applications, making it
necessary to design an efficient and concise transfer method.

Therefore, how to adapt robots' existing skills to new tasks

expeditiously is significance [7].

In response to the demands of flexible manufacturing, this
article focuses on how to adjust assembly skill parameters in a
short period to adapt to different manufacturing scenarios,
rather than relying on a highly generalization model to cover
all scenarios. Considering that assembly involves hole-search
and insertion stages, and visual variations primarily affect the
former. This work proposes a DRL-based fast skill transfer
method to learn peg-in-hole assembly skills in the search stage,
with a focus on the transfer strategy for assembly tasks under
different part textures and lighting conditions. Contributions
of this paper are summarized as follows:

1) A visual domain adaption-based fast skill transfer method
is proposed for assembly tasks under different visual
conditions, by which the skill can be directly transferred
with only a few minutes of contactless data collection
without the need for retraining the RL policy.

2) A novel visual state representation for assembly tasks
called seam-based image (SBI) is proposed, which is low
dimensional and focuses on features closely related to the
assembly process. A concise feature extract model is
proposed to extract the distance information from the SBI.

3) A fully automatic two-stage transfer strategy is proposed
to fine-tuning the model, mapping the extracted features
from different scenes to the same physical distance space,
thereby enhancing both efficiency and success rate.

4) Both simulation and real-world experiments of
submillimeter-level insertion tasks are evaluated. By
using the proposed skill transfer method, the RL policy
trained in simulation can be successfully transferred to
different real-world assembly scenes in a few minutes.

“For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) license to any Accepted Manuscript version arising.”
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II. RELATED WORK

In early research, DRL assembly methods were directly
trained in real-world. Theses method were time-consuming
and dangerous [8]. Recently, techniques were used to reduce
the training time. This section mainly introduces the related
works of efficient learning skills for RL-based assembly.

A. Accelerate Policy Learning with Task Information

Several techniques have been investigated to accelerate the
DRL learning process. Firstly, the residual RL utilizes prior
trajectories to reduce random exploration space. Johannine et
al. [9] proposed a residual RL method in which the trained
policy is fine-tuned on the prior trajectories from the PI
controller, thus reducing the exploration scope and improving
the learning efficiency. Secondly, the model accelerated
technology establishes environmental dynamics models to
generate virtual data for training. Zhao et al. [10] utilized a
Gaussian process for dynamics modeling, and expanded the
replay buffer with predicted information, thereby reducing the
interaction frequency. Lastly, low-dimensional observation
space reduces the complexity of input features. Zhao et al. [11]
proposed a low-dimensional visual state representation based
on pixel-wise linear and rectangular to enhance the training
efficiency. G. Schoettler et al. [12] and Finn [13] reduced the
dimensions by resizing images and autoencoders, which are
also effective. Although studies have employed various
techniques to accelerate training, policy was still learned from
scratch and only utilized information from current tasks.

B. Learning from Prior Policies

Some studies extract knowledge from similar tasks rather
than solely relying on current tasks. Such as filled the replay
buffer with prior knowledge or used a pre-trained policy. Jin at
el. [7] used Muti-kernel Maximum Mean Discrepancy to
select the knowledge from the source tasks that are similar to
the new tasks, and added them into the replay buffer to speed
up the policy training. Zang et al. [14] proposed a geometric-
feature based pose transition model to pretrain the actor and
critic network. Yasutomi et al. [15] designed a hole map and
utilized it for offline training and minimal data extraction from
the environment. In these works, although prior knowledge
can accelerate the learning process, a small amount of
interaction with the environment is still required to complete
the final training of the policy.

C. Techniques for Direct Policy Transfer

Some research has also explored how to directly transfer RL
policies to the new scenes, such as domain randomization
(DR), image masking, and domain adaptation (DA). DR
extensively randomizes parameters (e.g., lighting, texture [16],
[17]) in the training process, thus improving the generalization
performance. Image masking employs masks to unify textures
and backgrounds, ensuring that images' input features remain
consistent across various scenes. Ahn et al. [18] utilize mask
images to transfer the image-based policy directly from the
virtual to the real world. The image parts of peg, hole, and
background are segmented and filled with different gray value.
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Fig. 1. Overview of the fast skill transfer framework.

Xie et al. [19] designed pose estimators based on the mask
images, and only the segmentation module needs to be
retrained during transfer. DA aims to map the feature from
different sources to the same space. For example, Shi et al. [20]
utilize domain adaption to bridge the sim2real gap of images,
where the Cycle-GAN is used to transfer the real-world
images to the simulation style. Then, a Variational
Autoencoder (VAE) was used to extract features for input into
the RL policy. However, the methods mentioned above rely on
complex network architectures (e.g., segmentation networks
and GAN), which seriously impact the training speed.
Meanwhile, these networks are partially affected by the
environmental background. Uninterpretable features from
inaccurate reconstruction outputs can decrease assembly
success rates, especially in tasks with small clearances.
Inspired by previous works, we present a technique for fast
transfer of RL assembly skills. In conclusion, our research
diverges notably from the previous works. Firstly, most
studies use original images as input, relying on complex
networks or attention mechanisms to filter out background
information. The proposed SBI is extracted around the peg
and only focuses on the task-related seam information with a
small amount of background. This design enables even a
simple network to process the information effectively.
Secondly, most works require fine-tuning RL policies when
using transfer methods, inevitably resulting in random or even
dangerous contact actions to the environment. The proposed
method maps image observations into physics - informed
latent space, and achieves feature alignment for different tasks
in an ingenious way, thereby ensuring input consistency of the
RL strategy and avoiding retraining the policy. It is contactless
during the transfer process. These characteristics make our
method highly efficient and advantageous for rapid
deployment in flexible manufacturing environments.

III. METHODOLOGY

A fast skill transfer framework is constructed for assembly
tasks under different lighting and texture conditions (Fig. 1).
The proposed method mainly includes two parts: 1) a feature
extract model that introduces a novel low-dimensional visual
representation and a concise distance-based encoder model
(DBEM); 2) a two-stage transfer method, including the data
collection and encoder-only fine-turning stage. The overall
system will be introduced firstly, then the proposed method.
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Fig. 2. Peg in hole assembly process. (a) Start from initial position with
millimeter level distance. (b) Contact with the part surface, search the hole
in x, y direction and apply a constant force in z direction. (c) Find the hole.
(d) Insert the peg into the sub-millimeter level clearance hole.

A. Overview of the Peg-In-Hole Assembly Process

As shown in Fig. 2, the robot initiates at a distance of
millimeters from the hole. Assuming the direction is pre-
aligned, the control policy is designed to learn a refined
positioning strategy from the images captured by the in-hand
camera. It aims to search the hole and correct positioning
errors through multi-step adjustments. The process can be
considered as Markov decision process, and DRL algorithm is
used to learn the assembly policy.

During the training phase, the RL-based assembly policy
network is trained with the follows reward function:

PR+ T, (D
—a*Ad, if Ad>0

r=i-a*Ad, if Ad<0 & |Ad[<step,, )
0, else

ro= _19 lf d>dmax

2710.01, if d<d_. (3)

where reward r; is used to encourage the robot to approach the
hole while maintaining sufficiently small action to enable fine-
grained exploration. step,,;, is used to discourage large action,
and set to 0.5mm. Ad is the difference in distance between step
t and step t-1, i.e., Ad =d;-d;_,, where d;, d,_; are the
relative distance(mm) between the peg and hole (calculate
using Ax, Ay and Az between the hole and peg frames) at steps
t and t-1, respectively. a is a scale factor to limit the range of
reward, set to 0.01. r;, is defined to encourage the robot to stay
in the position of the hole without moving away, r5 is a sparse
reward that only gets a positive value when the peg inserts the
hole, it’s set to 1. and 1, is the step penalty that propels the
robot to finish the task as quickly as possible, it is a fixed
value set to 0.005.

At each timestep, the state representation S, is calculated by
the feature extract network and input to the RL policy network,
then the policy network will output the action a; =
[Ax,Ay,Az] in TCP (Tool Center Point) frame to the robot
control system. The hybrid force-position control is used to
control the robot, which configures the system in position
mode along X and Y directions and force control along the Z
direction. For fast response, force signal is used to judge
whether alignment is completed. Once the force in Z direction
is smaller than the contact force threshold, it means the
alignment is completed, X and Y directions will switch to
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Fig. 3. Using seam features to reduce the image dimension. (a) Seam between
peg and hole. (b) The assembly direction is the direction that fills the hole. (c)
Composition of the SBI.

compliance force mode, allowing for deeper insertion.

B. Feature Extract Model

In this section, an efficient model for feature extraction and
fast transfer is proposed. Firstly, a low-dimensional assembly
image is designed to exclude irrelevant background
information and serve as input for the model. Then, the
distance-based encoder model is designed to extract the task-
related physics feature from the input image.

1) Seam-based Images: Previous studies have shown that
assembly skills can be acquired even without direct visual
observation of the target hole, provided that the image content
is sufficiently distinctive [11], [21]. Nevertheless, it is critical
to acknowledge that these distinctive elements may be task-
irrelevant features embedded in the background. Background
variations are often unavoidable in practical applications, and
variations in background features can significantly undermine
the robustness and reliability of the learned skills. In contrast,
the pixels surrounding the hole are relatively more stable and
are directly related to the task.

As shown in Fig. 3(a), a seam area is formed due to the
different darkness reflections between the part surface and
hole inner surface under lightening. Inspired by the human
insertion of a peg into the hole, it always follows the rule of
moving the peg to reduce the seam area, as illustrated in Fig.
3(b). Based on this rule, it’s possible to reduce dimensionality
on the source images and remove irrelevant backgrounds, and
only reserve the seam pixels around the peg. These pixels
provide sufficient information to ascertain the hole’s direction.
Therefore, the seam-based image (SBI) I is proposed and
defined as follows:

I, = Concatenate(/, ,/,,1,) 4

where [; and I represent the image patches (size of nxn) on
the left and right sides of the peg tip, respectively. I,
represents the image patch beneath the peg tip, with the size of
2nxn. By applying concatenate operation on the three patches,
the seam-based image can be generated with the size of 2nx2n.
Here, coordinates of I}, Iz and I are determined through an
automated localization algorithm (introduced in sect IV-C),
which ensures a certain degree of repeatability.

Theoretically, using I as input to the network is efficient to
the training process and reduces the burden of transfer,
because the size of the image is reduced to a small patch,
meaning that the parameters of the feature extract network can
be reduced accordingly. Besides, I only contains the pixel
around the hole, so that the network does not design additional
attention modules to exclude background interference.
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Fig. 4. Distance-based encoder model. (a) Sampling position of the
reference image. (b) Structure of the DBI. (c) Distance-based encoder
model. (d) Structure of the CoordConv module.

2) Distance-based Encoder Model: The encoder-decoder
architecture has been widely used to extract meaningful
features[13], [15], [19]. Here, a distance-based encoder model
(DBEM) is proposed based on the encoder-decoder
architecture, which is used to extract the distance-relevant
latent representation from SBI. The latent representation is
then used as the state representation input to the RL policy. As
shown in Fig. 4(c), SBI and a reference image are stacked and
input to the DBEM, where the reference image is generated
from the grayscale values of the hole (Fig. 4(a)), it is used to
guide the network to focus on areas with similar grayscale.
The output of the decoder is a reconstructed image, consisting
only of black and white pixels.

The design of the reconstructed object is crucial because it
determines the meaning of the latent representation extracted
by the encoder. Since our goal is to transfer the skill in
different textures and lighting environments, it aims to extract
features that are texture and lighting-independent, and ideally
universal across different tasks. Therefore, the latent
representation is designed to be solely related to the distance
between the peg and hole, and the reconstructed object is set
to a distance-based image (DBI).

As shown in Fig. 4(b), DBI is designed to indicate distance
information between the peg and hole. And it is divided into
four areas, namely Al, A2, A3, and A4. Al and A2 are used
to represent the current distance between the hole and the peg
in the X direction, where A1 will be filled with black when in
the negative direction and A2 will be filled when in the
positive direction. A3 and A4 represent the distance in the Y
direction in the same way. Each area is then divided into n
grids. The farther away, the larger the black area.

As for the network, CoordConv[22] is used to replace the
Convolutional module, as shown in Fig. 4(d). Two new
channels (i, j coordinate) are added to the input data, and it
excels at reconstructing such images with white and black
blocks. The encoder is composed of 3 CoordConv layers, and
the decoder is composed of 4 Coor-Deconvolutional layers.
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Fig. 5. Two-stage transfer strategy, mapping the target
representation to the source latent representation.

latent

Finally, mean square error (MSE) is used for the loss function
to train the network:
IS 1 e . SR
L n;(wxh;;\m(],k) X017 %)
where f is the distance-based image generated by the distance,
X is the reconstructed image, w and h are the width and
height of the image, n is the number of samples in each epoch.

C. Two-Stage Transfer Strategy

When facing new scenes, the texture of the assembly part
and the environment lighting may be different. Denote the
source task domain as Dg = (S, A, P, Rs) and target task
domain as D = (S¢, Ar, Pr, Ry), and assume that D; and Dy
share the action space (A; = Ar), transitions (P; = Pr), and
reward functions ( Ry = Ry ), but with different state
representations (S # Sy). In order to directly use the source
RL policy in the target domain, what needs to be done is to
convert Sy into S (as in (6)), then the output action of the RL
policy can be similar (as in (7)):

J(Sp) =S (6)
Action = 75,5(Ss) = 7, (f (S7)) )

A two-stage transfer strategy is proposed, including data
collection in the new environment and fine-tuning training, as
shown in Fig. 5.

1) Data collection stage: it is necessary to ensure that the
movement range covers the actual workspace as much as
possible, which can be achieved through offline programming.
During the movement, images are recorded, and SBI and DBI
can be generated. At the same time, take an image of the
interior of the hole directly above it as a reference image.

2) Transfer training stage: The encoder only fine-tuning
strategy is utilized in this stage. The purpose is to fine-tune the
feature extract model parameters, and a similar output can be
obtained by input images from different environments. As
mentioned in above, the reconstructed image of DBEM is
generated from distance information and not related to visual
changes such as texture and lighting. Thus, the different tasks
have the same reconstructed image as long as they are located
at the same position. However, the neural networks have a
certain degree of randomness in the training process. If the
fine-tuned operation is applied to the encoder and decoder at
the same time, it's possible to get the same reconstruction
result but with a different latent representation. Therefore, the
decoder parameters are frozen, and only the encoder will
perform parameter fine-tuning during the training process,
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Fig. 6. (a) Virtual assembly environment in Isaac sim. (b) Training
environments. (¢) Testing environments.
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Fig. 7. Learning curves of different RL algorithms and SBI size. (a) and (b)
are trained with SAC, SAC w/o Force, PPO and TD3. (c) and (d) are trained
with SAC, and SBI size setto 7, 9 and 11.

making the different image input mapping to the same
distance space as the source task.

IV. EXPERIMENT

To verify the performance of the proposed transfer method,
circle peg insertion tasks were conducted in both simulation
and real-world environments. A computer with an RTX 4090
GPU and an Intel 19 CPU was used to fine-tuning the model.
A laptop with an RTX 1060 GPU and Intel i7 CPU was used
to control the robot in the real-world experiment. In this
section, the details of model pre-training in source tasks were
first introduced, and then the transfer experiments were
conducted in simulation and real-world scenarios separately.

A. Model Training in Source Tasks

Initially, the RL policy and feature extraction model were
trained on the source task in simulation. The training process
and its details were described as follows:

1) Pre-Training of the DBEM: A robotic assembly scene
was established in Nvidia Issac Sim, as shown in Fig. 6(a).
The DR technology was used to randomly set the initial
position and the gray value of the hole part from 0 to 255 (see
Fig. 6(b)) at each start of the epoch. Then, data was collected
and the DBEM was trained and saved as the pre-train DBEM,
which was subsequently used to train the RL policy in the
source scene and fine-tuning in the new scenes.

2) Training of RL Policy: The environment for RL policy
training was also configured with DR. The pre-train DBEM
was used to extract features for the policy network. Then the
RL algorithm was utilized to update the weight of the policy
network. The maximum training timestep was set to 10°. After

convergence, the policy network was saved and used in the
subsequent experiments.

3) Configuration of Training: The experiment was first
conducted to evaluate whether the seam feature was sufficient
for the robot to acquire assembly skills. Both state-of-the-art
on-policy and off-policy DRL algorithms were used for
validation. As shown in Fig. 7. (a) and (b), SAC, TD3, and
PPO can all successfully learn the skill, which demonstrates
the effectiveness of the seam feature and shows its ability to
freely switch its base actor-critic training approaches. Besides,
SAC outperformed the others and was thus selected to be used
in the subsequent experiments. Additionally, it shows the
training environment without force control. The peg was
easily stuck on the surface or inside the hole, resulting in a
decrease in the success rate. Fig. 7. (c¢) and (d) showed the
performance of different sizes of SBI. It showed that n=11 has
a slightly higher reward and success rate than the other two at
the end of training. Thus, the SBI size in the simulation and
real-world experiments was set to 22x22 (2nx2n).

B. Skill Transfer in Simulation

In this section, the transfer experiments in the simulation
were conducted. The configuration was set as same as the
training environments (peg and hole clearance with 0.9mm).
However, the render lighting and the hole parts texture were
different, as shown in Fig. 6(c).

1) Method Comparison: Comparative experiments were
designed to evaluate the performance of our method with other
methods. Cycle-GAN was chosen as a baseline. Because it is
widely used in visuomotor skill transfer and has been applied
in manipulation tasks like insertion[20], pouring[23], and
grasp[24]. Variational auto-encoder (VAE) is a commonly
used and powerful feature extraction model, and was selected
to be compared. Besides, to evaluate whether DBI can be
replaced as classification task, MLP was used to replace the
decoder. All the methods are as follows:

a) Y. Shi et al. [20]: Cycle-GAN based method was used
to transfer the assembly images in new scenes into
source scenes. Then, VAE is used to extract features
and input them into the RL policy network.

b) DR: the policy network trained in the DR environment
was directly used to test in the transfer scenes.

c) VAE-based approach: Replaced the DBEM with
VAE, used the proposed method to transfer the skill.

d) VAE-FBED: Replaced the DBEM with VAE. and
fine-tuning both the encoder and decoder.

e) DBEM-FBED: Use DBEM and fine-tuning both the
encoder and decoder.

f) MLP-4: Instead of using DBI as the label, an MLP
classified the encoder features into four categories
defined by the sign combinations of relative
displacement along the x and y axes.

g) MLP-484. MLP was used to classify features into 484
categories, following the 22x22 DBI configuration.

h) Our method.

2) Result and Analysis: The test results in terms of training

time (TT) and success rate (SR) are listed in Table 1. The
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TABLEI
EXPERIMENTAL RESULTS WITH DIFFERENT METHODS IN SIMULATION
Y. Shi et al [20 DR VAE VAE-FBED

Part | TT SR TT SR TT SR TT SR

Hl | 871s | 97% \ 7% 1896s | 6% | 2040s | 20%
H2 |4352s | 33% \ 99% | 1870s | 5% | 2041s | 10%
H3 [1450s | 98% \ 51% | 1888s | 2% [2038s | 3%
H4 | 1305s | 99% \ 97% | 1890s | 18% | 2041s | 3%
H5 ]1305s| 99% \ 52% | 1885s 8% 12033s | 5%
DBEM-FBED MLP-4 MLP-484 Ours

Part | TT SR TT SR TT SR TT SR

H1 [1202s| 23% | 1212s | 51% | 1224s | 5% 42s | 99%
H2 [ 1201s| 22% | 1226s | 65% | 1224s | 15% | 21s |100%
H3 [1199s| 41% | 1222s | 62% | 1219s | 7% 107s | 98%
H4 [1080s| 97% | 1213s | 36% | 1205s | 18% | 41s | 99%
H5 | 1204s| 36% | 1209s | 44% | 1231s 8% 21s | 99%

results were counted every 15 episodes, and the TT was
recorded when the SR was greater than 95% (evaluate 100
times) or training above the max episodes (Specifically, max
episodes for Cycle-GAN was set to 150, and 2000 for others.).

The results showed that DR has the advantage of zero-shot
transfer and is adaptable to unseen hole parts with similar
textures (e.g. H2 and H4). But some slight differences can lead
to a decrease in SR (e.g. H3). And it's not adapted to larger
differences (e.g. H1).

For DBEM-FBED, the success rate remained low even after
extended training, despite the loss converging to a similar
level as the proposed method. This indicates that without
freezing the decoder, intermediate feature consistency with
source tasks cannot be ensured. In both variants where DBEM
was replaced by VAE, the SR was also low, highlighting
VAE’s limitation in preserving feature alignment with source
representations. These results emphasize the necessity of
integrating DBEM with the proposed transfer method.

For MLP-4, the 4-classification task reduces the granularity
of distance features, achieving only a 70% success rate even in
the source task. During transfer, the coarse features are hard to
maintain consistency, leading to degraded performance. MLP-
484 struggles with the high-dimensional classification task due
to its simple architecture, resulting in low classification
accuracy and similarly poor overall success rate.

Compared with the Cycle-GAN, our method achieved a
high success rate in all cases. It is worth noting that Cycle-
GAN also achieved a high success rate, except for H2.
Because the color of the holes in H2 is very close to the peg, it
is difficult for Cycle-GAN to accurately generate the position
of the holes during reconstruction in such a situation.

With the low dimensional input and lightweight network
architecture, our method only took about 0.7s with about 6000
images/episodes. The result showed that the fastest transfer
can be completed in 21 seconds in the fastest cases (H2, HS).
However, more time was needed for the Cycle-GAN due to
the complex GAN architecture, which took about 30s/episode.
The fastest transfer is finished in about 15 minutes (H1),
which was trained with about 30 episodes.

In addition, the input of the Cycle-GAN was resized from
the original images to 64x64, which will lose pixel accuracy

and make the image blurry. If the original image is used as
input, the training time will become longer. Instead, our

BD prinid par

White -}

o ld = 10.65mm| d = 11.02mmjd = 10.85mmid = 10.88mm|
-]

- penst &
Calibration /
- r
~ Hole Part A {‘
a$

Fig. 8. (a) Hardware and Calibration area with green background. (b)
Type and size of peg and hole. (c) Automatically detect and segment the
peg edge. (d) extract the SBI based on the edge detect result.

o

method reduces the images through cropping operations,
preserving the precision information in the images.

C. Skill Transfer in Real-World

1) Experiment Setup: Three different 3D printed hole parts
and a headphone jack (Hp jack) were tested, as shown in
Fig.8 (b). A camera was mounted on the end-flange of URS
robot without carefully calibration. The Ft Sensor (robotiq
FT300s) was used to measure the contact force, and a 2-finger
gripper was used to grip the peg (Fig. 8(a)). The robot control
rate was 125Hz, RL policy output rate was 20Hz, and the max
servo speed was limited to Smm/s.

For each test, the initial x and y of the peg and hole ranged
from -5mm to 5mm, and a 40-times test for each task was
conducted. It is considered successful when the insert depth
reaches the requirement (1cm of 3D-printed part and 2.3cm of
headphone jack) and fails when the time exceeds 25s.

A green-background calibration area was designed to
automatically extract the peg tip before each task using an
edge detection algorithm. The algorithm identified the peg’s
edge and segmented it into two straight lines and one arc
based on curvature changes (Fig. 8(c)). The intersection points
between the straight lines and the arc, along with the arc’s
lowest point, were used as sampling coordinates to generate
the corresponding SBI area automatically (Fig. 8(d)).
Although a green background and geometric rules were used
to extract coordinates. However, the extraction algorithm can
be replaced as needed, as long as repeatability can be ensured.

A pre-programmed trajectory was used to capture
comprehensive images of new parts. The robot first captured a
pixel patch above the hole and resized it to match the SBI
image using interpolation, creating a reference image. It then
moved to the insertion point and followed spiral paths at five
height levels to collect data. The process took about 5 minutes
and produced around 6,000 images for SBI generation.

2) Result and Discussion (different texture): The average
success rate (ASR), average execute time (AET), maximum
initial distance (MAXID), maximum execute time (MAXET),
minimum execute time (MINET), and training time (TT) were
recorded.

As shown in Table II, all the parts achieved a success rate
higher than 97.5% with our method, and the average finish
time was about 5s. This indicates that the proposed method is
equally effective. Even when applied on sim2real transfer, it
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TABLEII
SUCCESS RATE AND FINISH TIME IN REAL-WORLD EXPERIMENT
Ours
MAX MAX
Part ASR AET D ET MINET TT
Black 97.5% 510s 6.7 mm 9.8s 4.0s 31s
White 97.5% 526s 6.3 mm 9.0s 3.3s 166s
Mix 100% 5.31s 6.2 mm 19.9s 3.1s 158s
Hpjack  97.5% 4.92s 6.9mm 10.7s 3.2s 62s
Y. Shi et al [20]
MAX MAX
Part ASR AET D ET MINET TT
Black 97.5% 6.14s 6.7 mm 22.8s 3.6s 1893 s
White 100% 3.72s 6.2 mm 5.7s 2.8s 2161s
Mix 80% 6.9s 63mm 223s 35s 4048 s
Hp jack 7.5% 4.1s 2.3 mm 52s 3.8s  4050s
Y (mm)
‘ . A Success:
41 . o X
] . 8 . ® Mix color
b N Black
2] White
0 . ° Y Headphone jack
L B SR e ey e
» '4, 2 o002 4 Fail:
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Fig. 9. Assembly results of three different textured parts. The figure
shows the assembly situation at different initial positions.

can be successfully transferred in a few minutes or even tens
of seconds. As for the method in [20], it should be noted that it
can also achieve a high success rate when facing the white and
black parts because these parts have a simple texture.

However, it’s sensitive to the shape of the peg and hole.
When the tip of the headphone jack has different shapes, the
Cycle-GAN was hard to transfer the actual image to the
simulation. On the other hand, our method only samples the
pixels around the peg, so it’s not affected by the shape of the
hole part and only focuses on the texture differences between
the hole and the hole surfaces.

Fig. 9. shows the overall testing results. The failed cases
were randomly distributed in various positions. The reason for
the failure was mainly due to the grasp stability. Although the
gripper kept closing during the 40 tests, and re-calibration was
conducted before each epoch. The pose of the peg may
undergo slight changes during hole searching due to contact
forces, leading to shifts in SBI sampling coordinates and
discrepancies between the extracted features and those used
during transfer training. Although the peg remains near the
hole during execution, such discrepancies, combined with the
sub-millimeter clearance, can prevent the task from being
successfully completed.

Fig. 10. shows the assembly process. The tasks start from
random initial positions, including situations where the hole is
occluded in the camera view. It can be seen that the RL policy
did not direct the peg immediately towards the hole. Instead,
the peg was maneuvered in a continuous trajectory around the
hole's vicinity. Once aligned with the hole, the peg rapidly
moved down under the influence of force control in Z
direction, while the system detect the contact force smaller
than 5N, it switched to the compliance control mode to
complete the insertion. This strategic approach of persistent

Headphone <
jack 4

Initial position Finish

Fig. 10 URS executes the assembly operation successfully.

white black
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| L
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Fig.11 Experiment results in different lighting environments. Including
Shadow lighting source (LS), Strong LS, and Without LS environments.

exploration near the hole substantially enhanced the system's
adaptability to positional inaccuracies.

3) Result and Discussion (different lighting): As shown in
Fig.11, our method performs well under most lighting
conditions, with the success rate achieving over 95%.
However, the success rates for Task 2 and 4 fall below 0.7,
primarily because the shadowed regions coincide with the SBI
areas, where the low contrast between the shadows and the
holes leads to weak feature variation. This results in missing
information and prevents the encoder from fully capturing
distance features. We attempted to increase the encoder depth
from 3 to 5 layers to enhance encoding capacity, but only
improved the success rate from around 0.3 to 0.6, which was
still unable to achieve satisfactory results.

Finally, we investigated and compared several recent
studies of learning-based assembly approaches, with a
particular focus on the success rate for round peg insertion, as
summarized in Table III. The "Training environments" column
indicates whether the RL policy was trained in simulation or
real world. The success rate was obtained by testing the policy
in a real-world environment. Notably, our assembly skill was
learned in simulation and can maintain a high average success
rate in real-world applications with the proposed methods.
Additionally, its persistent searching behavior near the hole
makes it less sensitive to clearance, and if the control
frequency and precision can be improved, smaller clearances
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TABLE III
COMPARISON OF THE SUCCESS RATE WITH OTHER WORKS ON THE ROUND
PEG-IN-HOLE ASSEMBLY

Methods Trammg Clearance Success rate
environments
Zang et al. [14] Sim 0.lmm 78%
Yasutomi et al. [15] Real 0.2mm 93.9%
Kozlovsky et al. [25] Sim 0.4mm 84%
Arik et al. [26] Sim Imm 84.29%
Cristian C et al. [27] Sim+Real 0.2mm 80%
Cai et al. [28] Real 0.80mm 89%
Ours Sim 0.13~0.37mm 94.3%

could theoretically be handled.

V. CONCLUSION

This work proposes a visual domain adaption-based fast
skill transfer method for peg-in-hole assembly in various
visual conditions. The transfer speed is significantly improved
by utilizing the proposed low dimensional SBI and transfer
learning in the distance latent spaces. The proposed DBEM
maps the latent representation to the physics distance spaces
by reconstructing the DBI. The fine-tuning transfer learning
method makes the features extracted from the target tasks
similar to the source tasks, thus eliminating the need to retrain
the RL policy. The results demonstrate that our method
achieves favorable outcomes in both simulated and real-world
applications. It requires only a brief training period, consisting
of a 5 mins data collection phase followed by a 3 mins transfer
learning process. This efficiency holds promise for rapid
deployment in flexible manufacturing industries.

Our method also has certain limitations. When the contrast
between the inside and outside of the hole is insufficient, or
the shadow falls into the SBI area, the encoder may fail to
extract reliable features, leading to transfer failures.
Orientation skill transfer is also not considered in the current
stage. Future work will focus on optimizing network
architecture to enhance the feature extraction ability. And
incorporating multi-modal information will be studied to cope
with assembly tasks with different shapes of parts in 6D space.
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