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   Abstract—Deep Reinforcement Learning (DRL) has emerged as 
a transformative approach in robotic assembly, offering 
unparalleled adaptability and efficiency in automating complex 
tasks. However, existing DRL methods with weak generalization 
require retraining of policy when facing new assembly scenarios, 
which require a significant amount of interaction and may harm 
the robots or parts. This paper presents a fast skill transfer 
approach for submillimeter-level assembly tasks. The approach 
enables rapid adaptation to varying textures and lighting 
variations, which are commonly encountered in flexible 
manufacturing environments. The model parameters can be 
quickly adjusted to facilitate seamless adaptation. Specifically, a 
concise distance-based encoder model is proposed to extract the 
latent representation from the low dimensional seam-based 
image (SBI) and map the extracted feature to the distance space. 
Then, the fine-tuning strategy is used to align the features of new 
scenes with those in the source scenes. The transfer strategy 
necessitates only the retraining of the feature extraction model, 
obviating the need to retrain the underlying RL policy. 
Simulation and real-world experiments are conducted to evaluate 
the proposed method, and the transfer can be finished in a few 
minutes. The policy trained in the simulation can be transferred 
to the different real-world assembly scenes with the proposed 
method with an average success rate of 94.3%, highlighting its 
potential for practical applications. 

Index Terms—Assembly, Reinforcement Learning, 
Assembly skill learning, Skill transfer learning. 

I. INTRODUCTION
he peg-in-hole insertion, as a typical assembly task in 

manufacturing, has been widely studied by applying 
DRL in recent years[1]. Although many studies focus 

on the force and torque information due to the inherently 
contact-rich nature of the peg-in-hole task [2], [3], there is a 
growing tendency to utilize visual information for its 
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advantages in adapting to a wider initial error range and 
improving assembly speed [4]. Compared with traditional 
methods[5], DRL approaches are less dependent on precise 
system calibration and specific visual setups. However, in 
personalized products and flexible manufacturing, products 
often have similar shapes but different textures and various 
light sources for illumination. This poses challenges for 
sample efficiency and generalization in DRL-based assembly 
[6], requiring extensive retraining in the new scenes. Efforts 
have been made to enhance training efficiency, but the 
complex network structures and high-dimensional state 
observation spaces inherent to DRL often impede training 
speed. Additionally, high-performance computers for learning 
may not be available in practical applications, making it 
necessary to design an efficient and concise transfer method. 
Therefore, how to adapt robots' existing skills to new tasks 
expeditiously is significance [7]. 

In response to the demands of flexible manufacturing, this 
article focuses on how to adjust assembly skill parameters in a 
short period to adapt to different manufacturing scenarios, 
rather than relying on a highly generalization model to cover 
all scenarios. Considering that assembly involves hole-search 
and insertion stages, and visual variations primarily affect the 
former. This work proposes a DRL-based fast skill transfer 
method to learn peg-in-hole assembly skills in the search stage, 
with a focus on the transfer strategy for assembly tasks under 
different part textures and lighting conditions. Contributions 
of this paper are summarized as follows: 
1) A visual domain adaption-based fast skill transfer method

is proposed for assembly tasks under different visual
conditions, by which the skill can be directly transferred
with only a few minutes of contactless data collection
without the need for retraining the RL policy.

2) A novel visual state representation for assembly tasks
called seam-based image (SBI) is proposed, which is low
dimensional and focuses on features closely related to the
assembly process. A concise feature extract model is
proposed to extract the distance information from the SBI.

3) A fully automatic two-stage transfer strategy is proposed
to fine-tuning the model, mapping the extracted features
from different scenes to the same physical distance space,
thereby enhancing both efficiency and success rate.

4) Both simulation and real-world experiments of
submillimeter-level insertion tasks are evaluated. By
using the proposed skill transfer method, the RL policy
trained in simulation can be successfully transferred to
different real-world assembly scenes in a few minutes.

T 
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II. RELATED WORK

In early research, DRL assembly methods were directly 
trained in real-world. Theses method were time-consuming 
and dangerous [8]. Recently, techniques were used to reduce 
the training time. This section mainly introduces the related 
works of efficient learning skills for RL-based assembly. 

A. Accelerate Policy Learning with Task Information
Several techniques have been investigated to accelerate the

DRL learning process. Firstly, the residual RL utilizes prior 
trajectories to reduce random exploration space. Johannine et 
al. [9] proposed a residual RL method in which the trained 
policy is fine-tuned on the prior trajectories from the PI 
controller, thus reducing the exploration scope and improving 
the learning efficiency. Secondly, the model accelerated 
technology establishes environmental dynamics models to 
generate virtual data for training. Zhao et al. [10] utilized a 
Gaussian process for dynamics modeling, and expanded the 
replay buffer with predicted information, thereby reducing the 
interaction frequency. Lastly, low-dimensional observation 
space reduces the complexity of input features. Zhao et al. [11] 
proposed a low-dimensional visual state representation based 
on pixel-wise linear and rectangular to enhance the training 
efficiency. G. Schoettler et al. [12] and Finn [13] reduced the 
dimensions by resizing images and autoencoders, which are 
also effective. Although studies have employed various 
techniques to accelerate training, policy was still learned from 
scratch and only utilized information from current tasks. 

B. Learning from Prior Policies
Some studies extract knowledge from similar tasks rather

than solely relying on current tasks. Such as filled the replay 
buffer with prior knowledge or used a pre-trained policy. Jin at 
el. [7] used Muti-kernel Maximum Mean Discrepancy to 
select the knowledge from the source tasks that are similar to 
the new tasks, and added them into the replay buffer to speed 
up the policy training. Zang et al. [14] proposed a geometric-
feature based pose transition model to pretrain the actor and 
critic network. Yasutomi et al. [15] designed a hole map and 
utilized it for offline training and minimal data extraction from 
the environment. In these works, although prior knowledge 
can accelerate the learning process, a small amount of 
interaction with the environment is still required to complete 
the final training of the policy. 

C. Techniques for Direct Policy Transfer
Some research has also explored how to directly transfer RL

policies to the new scenes, such as domain randomization 
(DR), image masking, and domain adaptation (DA). DR 
extensively randomizes parameters (e.g., lighting, texture [16], 
[17]) in the training process, thus improving the generalization 
performance. Image masking employs masks to unify textures 
and backgrounds, ensuring that images' input features remain 
consistent across various scenes. Ahn et al. [18] utilize mask 
images to transfer the image-based policy directly from the 
virtual to the real world. The image parts of peg, hole, and 
background are segmented and filled with different gray value. 

Fig. 1. Overview of the fast skill transfer framework. 

Xie et al. [19] designed pose estimators based on the mask 
images, and only the segmentation module needs to be 
retrained during transfer. DA aims to map the feature from 
different sources to the same space. For example, Shi et al. [20] 
utilize domain adaption to bridge the sim2real gap of images, 
where the Cycle-GAN is used to transfer the real-world 
images to the simulation style. Then, a Variational 
Autoencoder (VAE) was used to extract features for input into 
the RL policy. However, the methods mentioned above rely on 
complex network architectures (e.g., segmentation networks 
and GAN), which seriously impact the training speed. 
Meanwhile, these networks are partially affected by the 
environmental background. Uninterpretable features from 
inaccurate reconstruction outputs can decrease assembly 
success rates, especially in tasks with small clearances. 

Inspired by previous works, we present a technique for fast 
transfer of RL assembly skills. In conclusion, our research 
diverges notably from the previous works. Firstly, most 
studies use original images as input, relying on complex 
networks or attention mechanisms to filter out background 
information. The proposed SBI is extracted around the peg 
and only focuses on the task-related seam information with a 
small amount of background. This design enables even a 
simple network to process the information effectively. 
Secondly, most works require fine-tuning RL policies when 
using transfer methods, inevitably resulting in random or even 
dangerous contact actions to the environment. The proposed 
method maps image observations into physics - informed 
latent space, and achieves feature alignment for different tasks 
in an ingenious way, thereby ensuring input consistency of the 
RL strategy and avoiding retraining the policy. It is contactless 
during the transfer process. These characteristics make our 
method highly efficient and advantageous for rapid 
deployment in flexible manufacturing environments. 

III. METHODOLOGY

    A fast skill transfer framework is constructed for assembly 
tasks under different lighting and texture conditions (Fig. 1). 
The proposed method mainly includes two parts: 1) a feature 
extract model that introduces a novel low-dimensional visual 
representation and a concise distance-based encoder model 
(DBEM); 2) a two-stage transfer method, including the data 
collection and encoder-only fine-turning stage. The overall 
system will be introduced firstly, then the proposed method. 
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A. Overview of the Peg-In-Hole Assembly Process
As shown in Fig. 2, the robot initiates at a distance of

millimeters from the hole. Assuming the direction is pre-
aligned, the control policy is designed to learn a refined 
positioning strategy from the images captured by the in-hand 
camera. It aims to search the hole and correct positioning 
errors through multi-step adjustments. The process can be 
considered as Markov decision process, and DRL algorithm is 
used to learn the assembly policy. 

During the training phase, the RL-based assembly policy 
network is trained with the follows reward function: 
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where reward 𝑟𝑟1 is used to encourage the robot to approach the 
hole while maintaining sufficiently small action to enable fine-
grained exploration. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 is used to discourage large action, 
and set to 0.5mm. ∆d is the difference in distance between step 
t and step t-1, i.e., ∆d = 𝑑𝑑𝑡𝑡 -𝑑𝑑𝑡𝑡−1 , where 𝑑𝑑𝑡𝑡 , 𝑑𝑑𝑡𝑡−1  are the 
relative distance(mm) between the peg and hole (calculate 
using ∆x, ∆y and ∆z between the hole and peg frames) at steps 
t and t-1, respectively. 𝛼𝛼 is a scale factor to limit the range of 
reward, set to 0.01. 𝑟𝑟2 is defined to encourage the robot to stay 
in the position of the hole without moving away, 𝑟𝑟3 is a sparse 
reward that only gets a positive value when the peg inserts the 
hole, it’s set to 1. and 𝑟𝑟4 is the step penalty that propels the 
robot to finish the task as quickly as possible, it is a fixed 
value set to 0.005.  

At each timestep, the state representation 𝑆𝑆𝑡𝑡 is calculated by 
the feature extract network and input to the RL policy network, 
then the policy network will output the action 𝑎𝑎𝑡𝑡 =
[∆𝑥𝑥,∆𝑦𝑦,∆𝑧𝑧] in TCP (Tool Center Point) frame to the robot 
control system. The hybrid force-position control is used to 
control the robot, which configures the system in position 
mode along X and Y directions and force control along the Z 
direction. For fast response, force signal is used to judge 
whether alignment is completed. Once the force in Z direction 
is smaller than the contact force threshold, it means the  
alignment is completed, X and Y directions will switch to 

Fig. 3. Using seam features to reduce the image dimension. (a) Seam between 
peg and hole. (b) The assembly direction is the direction that fills the hole. (c) 
Composition of the SBI. 

compliance force mode, allowing for deeper insertion. 

B. Feature Extract Model
In this section, an efficient model for feature extraction and

fast transfer is proposed. Firstly, a low-dimensional assembly 
image is designed to exclude irrelevant background 
information and serve as input for the model. Then, the 
distance-based encoder model is designed to extract the task-
related physics feature from the input image.  

1) Seam-based Images: Previous studies have shown that
assembly skills can be acquired even without direct visual 
observation of the target hole, provided that the image content 
is sufficiently distinctive [11], [21]. Nevertheless, it is critical 
to acknowledge that these distinctive elements may be task-
irrelevant features embedded in the background. Background 
variations are often unavoidable in practical applications, and 
variations in background features can significantly undermine 
the robustness and reliability of the learned skills. In contrast, 
the pixels surrounding the hole are relatively more stable and 
are directly related to the task.  

As shown in Fig. 3(a), a seam area is formed due to the 
different darkness reflections between the part surface and 
hole inner surface under lightening. Inspired by the human 
insertion of a peg into the hole, it always follows the rule of 
moving the peg to reduce the seam area, as illustrated in Fig. 
3(b). Based on this rule, it’s possible to reduce dimensionality 
on the source images and remove irrelevant backgrounds, and 
only reserve the seam pixels around the peg. These pixels 
provide sufficient information to ascertain the hole’s direction. 
Therefore, the seam-based image (SBI) 𝐼𝐼𝑆𝑆  is proposed and 
defined as follows: 

Concatenate( , , )L R DSI I I I= (4) 

where 𝐼𝐼𝐿𝐿 and 𝐼𝐼𝑅𝑅 represent the image patches (size of n×n) on 
the left and right sides of the peg tip, respectively. 𝐼𝐼𝐷𝐷 
represents the image patch beneath the peg tip, with the size of 
2n×n. By applying concatenate operation on the three patches, 
the seam-based image can be generated with the size of 2n×2n. 
Here, coordinates of 𝐼𝐼𝐿𝐿 , 𝐼𝐼𝑅𝑅  and 𝐼𝐼𝐷𝐷  are determined through an 
automated localization algorithm (introduced in sect IV-C), 
which ensures a certain degree of repeatability. 

Theoretically, using 𝐼𝐼𝑆𝑆 as input to the network is efficient to 
the training process and reduces the burden of transfer, 
because the size of the image is reduced to a small patch, 
meaning that the parameters of the feature extract network can 
be reduced accordingly. Besides, 𝐼𝐼𝑆𝑆  only contains the pixel 
around the hole, so that the network does not design additional 
attention modules to exclude background interference. 
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Fig. 2. Peg in hole assembly process. (a) Start from initial position with 
millimeter level distance. (b) Contact with the part surface, search the hole 
in x, y direction and apply a constant force in z direction. (c) Find the hole. 
(d) Insert the peg into the sub-millimeter level clearance hole. 
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Fig. 4. Distance-based encoder model. (a) Sampling position of the 
reference image. (b) Structure of the DBI. (c) Distance-based encoder 
model. (d) Structure of the CoordConv module. 

2) Distance-based Encoder Model: The encoder-decoder
architecture has been widely used to extract meaningful 
features[13], [15], [19]. Here, a distance-based encoder model 
(DBEM) is proposed based on the encoder-decoder 
architecture, which is used to extract the distance-relevant 
latent representation from SBI. The latent representation is 
then used as the state representation input to the RL policy. As 
shown in Fig. 4(c), SBI and a reference image are stacked and 
input to the DBEM, where the reference image is generated 
from the grayscale values of the hole (Fig. 4(a)), it is used to 
guide the network to focus on areas with similar grayscale. 
The output of the decoder is a reconstructed image, consisting 
only of black and white pixels. 

The design of the reconstructed object is crucial because it 
determines the meaning of the latent representation extracted 
by the encoder. Since our goal is to transfer the skill in 
different textures and lighting environments, it aims to extract 
features that are texture and lighting-independent, and ideally 
universal across different tasks. Therefore, the latent 
representation is designed to be solely related to the distance 
between the peg and hole, and the reconstructed object is set 
to a distance-based image (DBI).  

As shown in Fig. 4(b), DBI is designed to indicate distance 
information between the peg and hole. And it is divided into 
four areas, namely A1, A2, A3, and A4. A1 and A2 are used 
to represent the current distance between the hole and the peg 
in the X direction, where A1 will be filled with black when in 
the negative direction and A2 will be filled when in the 
positive direction. A3 and A4 represent the distance in the Y 
direction in the same way. Each area is then divided into n 
grids. The farther away, the larger the black area.  

As for the network, CoordConv[22] is used to replace the 
Convolutional module, as shown in Fig. 4(d). Two new 
channels (i, j coordinate) are added to the input data, and it 
excels at reconstructing such images with white and black 
blocks. The encoder is composed of 3 CoordConv layers, and 
the decoder is composed of 4 Coor-Deconvolutional layers. 

Fig. 5. Two-stage transfer strategy, mapping the target latent 
representation to the source latent representation. 

Finally, mean square error (MSE) is used for the loss function 
to train the network: 

2

1 1 1
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where 𝑓𝑓 is the distance-based image generated by the distance, 
𝑋𝑋  is the reconstructed image, 𝑤𝑤  and ℎ   are the width and 
height of the image, 𝑛𝑛 is the number of samples in each epoch. 

C. Two-Stage Transfer Strategy
When facing new scenes, the texture of the assembly part

and the environment lighting may be different. Denote the 
source task domain as 𝐷𝐷𝑠𝑠 ≡ (𝑆𝑆𝑠𝑠,𝐴𝐴𝑠𝑠,𝑃𝑃𝑠𝑠,𝑅𝑅𝑠𝑠)  and target task 
domain as 𝐷𝐷𝑇𝑇 ≡ (𝑆𝑆𝑇𝑇 ,𝐴𝐴𝑇𝑇 ,𝑃𝑃𝑇𝑇,𝑅𝑅𝑇𝑇), and assume that 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑇𝑇 
share the action space (𝐴𝐴𝑠𝑠 ≈ 𝐴𝐴𝑇𝑇), transitions (𝑃𝑃𝑠𝑠 ≈ 𝑃𝑃𝑇𝑇), and 
reward functions ( 𝑅𝑅𝑠𝑠 ≈ 𝑅𝑅𝑇𝑇 ), but with different state 
representations (𝑆𝑆𝑠𝑠 ≠ 𝑆𝑆𝑇𝑇). In order to directly use the source 
RL policy in the target domain, what needs to be done is to 
convert 𝑆𝑆𝑇𝑇 into 𝑆𝑆𝑠𝑠 (as in (6)), then the output action of the RL 
policy can be similar (as in (7)): 

( )T Sf S S≈ (6) 
( ) ( ( ))TSAction S f Sθ θπ π= ≈  (7) 

A two-stage transfer strategy is proposed, including data 
collection in the new environment and fine-tuning training, as 
shown in Fig. 5. 

1) Data collection stage: it is necessary to ensure that the
movement range covers the actual workspace as much as 
possible, which can be achieved through offline programming. 
During the movement, images are recorded, and SBI and DBI 
can be generated. At the same time, take an image of the 
interior of the hole directly above it as a reference image.  

2) Transfer training stage: The encoder only fine-tuning
strategy is utilized in this stage. The purpose is to fine-tune the 
feature extract model parameters, and a similar output can be 
obtained by input images from different environments. As 
mentioned in above, the reconstructed image of DBEM is 
generated from distance information and not related to visual 
changes such as texture and lighting. Thus, the different tasks 
have the same reconstructed image as long as they are located 
at the same position. However, the neural networks have a 
certain degree of randomness in the training process. If the 
fine-tuned operation is applied to the encoder and decoder at 
the same time, it's possible to get the same reconstruction 
result but with a different latent representation. Therefore, the  
decoder parameters are frozen, and only the encoder will 
perform parameter fine-tuning during the training process, 
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Fig. 6. (a) Virtual assembly environment in Isaac sim. (b) Training 
environments. (c) Testing environments. 

Fig. 7. Learning curves of different RL algorithms and SBI size. (a) and (b) 
are trained with SAC, SAC w/o Force, PPO and TD3. (c) and (d) are trained 
with SAC, and SBI size set to 7, 9 and 11. 

making the different image input mapping to the same 
distance space as the source task. 

IV. EXPERIMENT

To verify the performance of the proposed transfer method, 
circle peg insertion tasks were conducted in both simulation 
and real-world environments. A computer with an RTX 4090 
GPU and an Intel i9 CPU was used to fine-tuning the model. 
A laptop with an RTX 1060 GPU and Intel i7 CPU was used 
to control the robot in the real-world experiment. In this 
section, the details of model pre-training in source tasks were 
first introduced, and then the transfer experiments were 
conducted in simulation and real-world scenarios separately. 

A. Model Training in Source Tasks
Initially, the RL policy and feature extraction model were

trained on the source task in simulation. The training process 
and its details were described as follows: 

1) Pre-Training of the DBEM: A robotic assembly scene
was established in Nvidia Issac Sim, as shown in Fig. 6(a). 
The DR technology was used to randomly set the initial 
position and the gray value of the hole part from 0 to 255 (see 
Fig. 6(b)) at each start of the epoch. Then, data was collected 
and the DBEM was trained and saved as the pre-train DBEM, 
which was subsequently used to train the RL policy in the 
source scene and fine-tuning in the new scenes. 

2) Training of RL Policy: The environment for RL policy
training was also configured with DR. The pre-train DBEM 
was used to extract features for the policy network. Then the 
RL algorithm was utilized to update the weight of the policy 
network. The maximum training timestep was set to 105. After 

convergence, the policy network was saved and used in the 
subsequent experiments. 

3) Configuration of Training: The experiment was first
conducted to evaluate whether the seam feature was sufficient 
for the robot to acquire assembly skills. Both state-of-the-art 
on-policy and off-policy DRL algorithms were used for 
validation. As shown in Fig. 7. (a) and (b), SAC, TD3, and 
PPO can all successfully learn the skill, which demonstrates 
the effectiveness of the seam feature and shows its ability to 
freely switch its base actor-critic training approaches. Besides, 
SAC outperformed the others and was thus selected to be used 
in the subsequent experiments. Additionally, it shows the 
training environment without force control. The peg was 
easily stuck on the surface or inside the hole, resulting in a 
decrease in the success rate. Fig. 7. (c) and (d) showed the 
performance of different sizes of SBI. It showed that n=11 has 
a slightly higher reward and success rate than the other two at 
the end of training. Thus, the SBI size in the simulation and 
real-world experiments was set to 22×22 (2n×2n). 

B. Skill Transfer in Simulation
In this section, the transfer experiments in the simulation

were conducted. The configuration was set as same as the 
training environments (peg and hole clearance with 0.9mm). 
However, the render lighting and the hole parts texture were 
different, as shown in Fig. 6(c).  

1) Method Comparison: Comparative experiments were
designed to evaluate the performance of our method with other 
methods. Cycle-GAN was chosen as a baseline. Because it is 
widely used in visuomotor skill transfer and has been applied 
in manipulation tasks like insertion[20], pouring[23], and 
grasp[24]. Variational auto-encoder (VAE) is a commonly 
used and powerful feature extraction model, and was selected 
to be compared. Besides, to evaluate whether DBI can be 
replaced as classification task, MLP was used to replace the 
decoder. All the methods are as follows: 

a) Y. Shi et al. [20]: Cycle-GAN based method was used
to transfer the assembly images in new scenes into
source scenes. Then, VAE is used to extract features
and input them into the RL policy network.

b) DR: the policy network trained in the DR environment
was directly used to test in the transfer scenes.

c) VAE-based approach: Replaced the DBEM with
VAE, used the proposed method to transfer the skill.

d) VAE-FBED: Replaced the DBEM with VAE. and
fine-tuning both the encoder and decoder.

e) DBEM-FBED: Use DBEM and fine-tuning both the
encoder and decoder.

f) MLP-4： Instead of using DBI as the label, an MLP
classified the encoder features into four categories
defined by the sign combinations of relative
displacement along the x and y axes.

g) MLP-484. MLP was used to classify features into 484
categories, following the 22×22 DBI configuration.

h) Our method.
2) Result and Analysis: The test results in terms of training

time (TT) and success rate (SR) are listed in Table I. The 

(a) (b)

(c) (d)
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TABLE I 
EXPERIMENTAL RESULTS WITH DIFFERENT METHODS IN SIMULATION 

Y. Shi et al [20] DR VAE VAE-FBED 
Part TT SR TT SR TT SR TT SR 
H1 871s 97% \ 7% 1896s 6% 2040s 20% 
H2 4352s 33% \ 99% 1870s 5% 2041s 10% 
H3 1450s 98% \ 51% 1888s 2% 2038s 3% 
H4 1305s 99% \ 97% 1890s 18% 2041s 3% 
H5 1305s 99% \ 52% 1885s 8% 2033s 5% 

DBEM-FBED MLP-4 MLP-484 Ours 
Part TT SR TT SR TT SR TT SR 
H1 1202s 23% 1212s 51% 1224s 5% 42s 99% 
H2 1201s 22% 1226s 65% 1224s 15% 21s 100% 
H3 1199s 41% 1222s 62% 1219s 7% 107s 98% 
H4 1080s 97% 1213s 36% 1205s 18% 41s 99% 
H5 1204s 36% 1209s 44% 1231s 8% 21s 99% 

results were counted every 15 episodes, and the TT was 
recorded when the SR was greater than 95% (evaluate 100 
times) or training above the max episodes (Specifically, max 
episodes for Cycle-GAN was set to 150, and 2000 for others.).  

The results showed that DR has the advantage of zero-shot 
transfer and is adaptable to unseen hole parts with similar 
textures (e.g. H2 and H4). But some slight differences can lead 
to a decrease in SR (e.g. H3). And it's not adapted to larger 
differences (e.g. H1). 

For DBEM-FBED, the success rate remained low even after 
extended training, despite the loss converging to a similar 
level as the proposed method. This indicates that without 
freezing the decoder, intermediate feature consistency with 
source tasks cannot be ensured. In both variants where DBEM 
was replaced by VAE, the SR was also low, highlighting 
VAE’s limitation in preserving feature alignment with source 
representations. These results emphasize the necessity of 
integrating DBEM with the proposed transfer method. 

For MLP-4, the 4-classification task reduces the granularity 
of distance features, achieving only a 70% success rate even in 
the source task. During transfer, the coarse features are hard to 
maintain consistency, leading to degraded performance. MLP-
484 struggles with the high-dimensional classification task due 
to its simple architecture, resulting in low classification 
accuracy and similarly poor overall success rate.  

Compared with the Cycle-GAN, our method achieved a 
high success rate in all cases. It is worth noting that Cycle-
GAN also achieved a high success rate, except for H2. 
Because the color of the holes in H2 is very close to the peg, it 
is difficult for Cycle-GAN to accurately generate the position 
of the holes during reconstruction in such a situation.  

With the low dimensional input and lightweight network 
architecture, our method only took about 0.7s with about 6000 
images/episodes. The result showed that the fastest transfer 
can be completed in 21 seconds in the fastest cases (H2, H5). 
However, more time was needed for the Cycle-GAN due to 
the complex GAN architecture, which took about 30s/episode. 
The fastest transfer is finished in about 15 minutes (H1), 
which was trained with about 30 episodes.  

In addition, the input of the Cycle-GAN was resized from 
the original images to 64×64, which will lose pixel accuracy 
and make the image blurry. If the original image is used as 
input, the training time will become longer. Instead, our 
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Fig. 8. (a) Hardware and Calibration area with green background. (b) 
Type and size of peg and hole. (c) Automatically detect and segment the 
peg edge. (d) extract the SBI based on the edge detect result. 

method reduces the images through cropping operations, 
preserving the precision information in the images. 

C. Skill Transfer in Real-World
1) Experiment Setup: Three different 3D printed hole parts

and a headphone jack (Hp jack) were tested, as shown in 
Fig.8 (b). A camera was mounted on the end-flange of UR5 
robot without carefully calibration. The Ft Sensor (robotiq 
FT300s) was used to measure the contact force, and a 2-finger 
gripper was used to grip the peg (Fig. 8(a)). The robot control 
rate was 125Hz, RL policy output rate was 20Hz, and the max 
servo speed was limited to 5mm/s.  

For each test, the initial x and y of the peg and hole ranged 
from -5mm to 5mm, and a 40-times test for each task was 
conducted. It is considered successful when the insert depth 
reaches the requirement (1cm of 3D-printed part and 2.3cm of 
headphone jack) and fails when the time exceeds 25s. 

A green-background calibration area was designed to 
automatically extract the peg tip before each task using an 
edge detection algorithm. The algorithm identified the peg’s 
edge and segmented it into two straight lines and one arc 
based on curvature changes (Fig. 8(c)). The intersection points 
between the straight lines and the arc, along with the arc’s 
lowest point, were used as sampling coordinates to generate 
the corresponding SBI area automatically (Fig. 8(d)). 
Although a green background and geometric rules were used 
to extract coordinates. However, the extraction algorithm can 
be replaced as needed, as long as repeatability can be ensured.  

A pre-programmed trajectory was used to capture 
comprehensive images of new parts. The robot first captured a 
pixel patch above the hole and resized it to match the SBI 
image using interpolation, creating a reference image. It then 
moved to the insertion point and followed spiral paths at five 
height levels to collect data. The process took about 5 minutes 
and produced around 6,000 images for SBI generation. 

2) Result and Discussion (different texture): The average
success rate (ASR), average execute time (AET), maximum 
initial distance (MAXID), maximum execute time (MAXET), 
minimum execute time (MINET), and training time (TT) were 
recorded.  

As shown in Table II, all the parts achieved a success rate 
higher than 97.5% with our method, and the average finish 
time was about 5s. This indicates that the proposed method is 
equally effective. Even when applied on sim2real transfer, it 
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TABLE II 
 SUCCESS RATE AND FINISH TIME IN REAL-WORLD EXPERIMENT 

Ours 

Part ASR AET MAX 
ID 

MAX 
ET MINET TT 

Black 97.5% 5.10 s 6.7 mm 9.8s 4.0s 31s 
White 97.5% 5.26 s 6.3 mm 9.0s 3.3s 166s 
Mix 100% 5.31s 6.2 mm 19.9s 3.1s 158s 

Hp jack 97.5% 4.92s 6.9mm 10.7s 3.2s 62s 
Y. Shi et al [20] 

Part ASR AET MAX 
ID 

MAX 
ET MINET TT 

Black 97.5% 6.14 s 6.7 mm 22.8 s 3.6 s 1893 s 
White 100% 3.72 s 6.2 mm 5.7 s 2.8 s 2161 s 
Mix 80% 6.9 s 6.3 mm 22.3 s 3.5 s 4048 s 

Hp jack 7.5% 4.1s 2.3 mm 5.2 s 3.8 s 4050 s 

Fig. 9. Assembly results of three different textured parts. The figure 
shows the assembly situation at different initial positions. 

can be successfully transferred in a few minutes or even tens 
of seconds. As for the method in [20], it should be noted that it 
can also achieve a high success rate when facing the white and 
black parts because these parts have a simple texture.  

However, it’s sensitive to the shape of the peg and hole. 
When the tip of the headphone jack has different shapes, the 
Cycle-GAN was hard to transfer the actual image to the 
simulation. On the other hand, our method only samples the 
pixels around the peg, so it’s not affected by the shape of the 
hole part and only focuses on the texture differences between 
the hole and the hole surfaces. 

Fig. 9. shows the overall testing results. The failed cases 
were randomly distributed in various positions. The reason for 
the failure was mainly due to the grasp stability. Although the 
gripper kept closing during the 40 tests, and re-calibration was 
conducted before each epoch. The pose of the peg may 
undergo slight changes during hole searching due to contact 
forces, leading to shifts in SBI sampling coordinates and 
discrepancies between the extracted features and those used 
during transfer training. Although the peg remains near the 
hole during execution, such discrepancies, combined with the 
sub-millimeter clearance, can prevent the task from being 
successfully completed. 

Fig. 10. shows the assembly process. The tasks start from 
random initial positions, including situations where the hole is 
occluded in the camera view. It can be seen that the RL policy 
did not direct the peg immediately towards the hole. Instead, 
the peg was maneuvered in a continuous trajectory around the 
hole's vicinity. Once aligned with the hole, the peg rapidly 
moved down under the influence of force control in Z 
direction, while the system detect the contact force smaller 
than 5N, it switched to the compliance control mode to 
complete the insertion. This strategic approach of persistent 

Fig. 10 UR5 executes the assembly operation successfully. 

Fig.11 Experiment results in different lighting environments. Including 
Shadow lighting source (LS), Strong LS, and Without LS environments.

exploration near the hole substantially enhanced the system's 
adaptability to positional inaccuracies. 

3) Result and Discussion (different lighting): As shown in
Fig.11, our method performs well under most lighting 
conditions, with the success rate achieving over 95%. 
However, the success rates for Task 2 and 4 fall below 0.7, 
primarily because the shadowed regions coincide with the SBI 
areas, where the low contrast between the shadows and the 
holes leads to weak feature variation. This results in missing 
information and prevents the encoder from fully capturing 
distance features. We attempted to increase the encoder depth 
from 3 to 5 layers to enhance encoding capacity, but only 
improved the success rate from around 0.3 to 0.6, which was 
still unable to achieve satisfactory results. 

Finally, we investigated and compared several recent 
studies of learning-based assembly approaches, with a 
particular focus on the success rate for round peg insertion, as 
summarized in Table III. The "Training environments" column 
indicates whether the RL policy was trained in simulation or 
real world. The success rate was obtained by testing the policy 
in a real-world environment. Notably, our assembly skill was 
learned in simulation and can maintain a high average success 
rate in real-world applications with the proposed methods. 
Additionally, its persistent searching behavior near the hole 
makes it less sensitive to clearance, and if the control 
frequency and precision can be improved, smaller clearances 
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TABLE III 
COMPARISON OF THE SUCCESS RATE WITH OTHER WORKS ON THE ROUND 

PEG-IN-HOLE ASSEMBLY 

Methods Training 
environments Clearance Success rate  

Zang et al. [14] Sim 0.1mm 78% 
Yasutomi et al. [15] Real 0.2mm 93.9% 
Kozlovsky et al. [25] Sim 0.4mm 84% 

Arik et al. [26] Sim 1mm 84.29% 
Cristian C et al. [27] Sim+Real 0.2mm 80% 

Cai et al. [28] Real 0.80mm 89% 
Ours Sim 0.13~0.37mm 94.3% 

could theoretically be handled. 

V. CONCLUSION

This work proposes a visual domain adaption-based fast 
skill transfer method for peg-in-hole assembly in various 
visual conditions. The transfer speed is significantly improved 
by utilizing the proposed low dimensional SBI and transfer 
learning in the distance latent spaces. The proposed DBEM 
maps the latent representation to the physics distance spaces 
by reconstructing the DBI. The fine-tuning transfer learning 
method makes the features extracted from the target tasks 
similar to the source tasks, thus eliminating the need to retrain 
the RL policy. The results demonstrate that our method 
achieves favorable outcomes in both simulated and real-world 
applications. It requires only a brief training period, consisting 
of a 5 mins data collection phase followed by a 3 mins transfer 
learning process. This efficiency holds promise for rapid 
deployment in flexible manufacturing industries.  

Our method also has certain limitations. When the contrast 
between the inside and outside of the hole is insufficient, or 
the shadow falls into the SBI area, the encoder may fail to 
extract reliable features, leading to transfer failures. 
Orientation skill transfer is also not considered in the current 
stage. Future work will focus on optimizing network 
architecture to enhance the feature extraction ability. And 
incorporating multi-modal information will be studied to cope 
with assembly tasks with different shapes of parts in 6D space. 
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