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Abstract—Deep unrolling networks (DUNs) have attracted
substantial attention in the field of image compressed sensing
(CS) due to their superior performance and good interpretability
by recasting optimization algorithms as deep networks. How-
ever, existing DUNs suffer from low sampling efficiency, and
the improvement in reconstruction quality heavily relies on
large model complexity. To address these issues, we propose a
lightweight Representation Sampling and Hybrid Transformer
Network (RHT-Net). Firstly, we propose a Representation-CS
(RCS) model to extract high-level features to achieve efficient
sampling. This sampling strategy leads to highly dense, semanti-
cally rich and extremely compact features without observing the
original pixels, which also reduces the cross-domain loss during
iteration. Secondly, we design a Tri-Scale Sparse Denoising
(TSSD) module in the deep unrolling stages to extend sparse
proximal projections, leveraging multi-scale auxiliary variables
to enhance multi-feature flow and memory effects. Thirdly, we
develop a hybrid Transformer module that includes a Global
Cross Attention (GCA) block and a Window Local Attention
(WLA) block, using the measurements to cross-estimate the
reconstruction error, thereby generating finer spatial details and
improving local recovery. Experiments demonstrate that RHT-
Net enhanced version outperforms the current state-of-the-art
methods by up to 1.17dB in PSNR. The lightweight RHT-
Net achieves a 0.43dB gain while reducing model parameters
by up to 22 times. The code will be released publicly at
https://github.com/songhp/RHTNet.

Index Terms—Compressed Sensing, Deep Unrolling Network,
Representation Sampling

I. INTRODUCTION

COMPRESSED Sensing (CS) [1], [2] is a signal pro-
cessing theory that overcomes the limitations of the

traditional Shannon-Nyquist sampling theorem [3]. It can
recover sparse or compressible signals from far fewer samples
than traditionally required, significantly reducing the cost and
data storage demands. Thus, CS has found wide applications
in various fields, including snapshot compressed imaging [4],
[5], [6], [7], medical imaging [8], [9], [10], [11], hyperspectral
compressed imaging [15], [16], [17], [18], and laser scanning
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Fig. 1. PSNR performance comparison between our proposed RHT-Net and
recent state-of-the-art methods demonstrates that RHT-Net achieves superior
performance while maintaining a lightweight architecture.
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Fig. 2. Visual evaluation at a CS ratio of 0.10 demonstrates that RHT-Net
outperforms CPP-Net [12], USB-Net [13], and HTDIDUN+ [14] in preserving
fine image details. While the compared methods exhibit noticeable detail loss
in critical regions—such as the zebra’s body and window structures—RHT-
Net maintains a high degree of visual fidelity.

imaging [19]. The CS sampling process can be expressed as
y=Ax, where x ∈ Rn×1 represents the original signal, A ∈
Rm×n is the sampling matrix, and y ∈ Rm×1 denotes the
measurements, with a sampling rate of r=m/n. Typically, m
≪ n, thus the core objective of CS [20], [21] is to recover the
signal x in a highly underdetermined system.

Traditional CS methods [22], [23] typically formulate it as
solving the following optimization problem:

min
x

1

2
∥Ax− y∥22 + λR(x), (1)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TCSVT.2025.3614371,

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, MONTH 2020 2

DGD TSSD

G
C

A

W
LA

FF
N

FF
N

Stage KStage 2 Stage 1

Original Image Recovered image

…

Deep Reconstruction Stages

Sampling Initialization

…

Project in Project out
Stage k…

Addition

1 × 1
Conv

� � = {�↓
 � , �↓↓

 � , �↓↓↓
 � } � �

�
1 × � × �

�
 � × �2 ×

�
� ×

�
�

1 × � × �
� �

� � � � � �

1 × � × �

� �� ∙ �† ∙ 

�† ∙ 
� ∙ 

�† � 

� × � × �

� × � × �

�

�

� �−� = {�↓
 �−� , �↓↓

 �−� , �↓↓↓
 �−� }

� �−� ��

��

��

��

��

��

�

�

G
C

A

Fig. 3. Overall architecture of RHT-Net. The original image X is compressed by the sampling module S(·) to obtain a low-dimensional feature representation
Y. This representation is then reshaped into an initial estimation X̂(0) via the pseudo-inverse transformation sub-network S†(·). Subsequently, deep
reconstruction is performed through a cascade of K iterative stages. Each stage takes Y, S(·), S†(·), and auxiliary multi-scale variables Z(k) as inputs, and
consists of sub-modules such as DGD, TSSD, GCA, WLA, and FFN.

where 1
2∥Ax − y∥22 represents the data fidelity term, which

evaluates the fit to the measurements, and λR(x) is the
regularization term with parameter λ. CS recovery solvers
not only enforce consistency between the reconstruction and
the measurements but also generally promote sparsity in the
solution. Therefore, the prior term often involves sparsity-
inducing operators related to predefined transform bases (e.g.,
ℓ1 regularization for ISTA [24], [25]). These methods perform
well in terms of convergence and mathematical analysis, but
they suffer from high computational complexity and poor
adaptability [26], [27].

Recently, deep learning-based compressed sensing (DCS)
algorithms have demonstrated remarkable capabilities. A class
of methods [28], [29], [30], [31], [32] advocate for directly
learning the latent inverse mapping using an end-to-end learn-
ing approach. However, these black-box models address the
complex inverse mapping problem through extensive trial and
error, resulting in extremely low efficiency. In contrast, Deep
Unrolling Networks (DUNs) propose an equivalent reformula-
tion of optimization algorithms, where these approaches [21],
[12], [33], [34], [35], [36], [37] replace handcrafted optimiza-
tion solvers with learnable networks, allowing DCS methods
to achieve a balance between recovery performance and math-
ematical interpretability. However, current DUNs still face
three key challenges: 1). Previous direct sampling methods
based on low-level, low-information-density pixels struggle
with efficiency, while deep reconstruction based on high-
level feature domains exhibits significant feature alignment
loss. 2). Feature representation fails to adequately integrate
multi-scale information, neglecting the neural network’s ability
to learn sparse prior terms. 3). Relying heavily on a large
number of parameters to improve recovery quality severely
hinders application on low-performance devices, particularly
in common scenarios such as LiDAR [19] and MRI [9].

To address the above challenges, this paper proposes a
Representation Sampling and Hybrid Transformer Network,

termed RHT-Net. We propose an innovative representation-
domain-based compressed sensing (RCS) model that differs
from traditional DCS approaches, which directly sample pixel-
level signals. Instead, our model first extracts semantically
rich, high-information-density compact representations, and
then performs a more efficient CS process within this high-
level representation domain—without relying on the original
pixels. RCSThe RCS model reduces alignment loss during
cross-domain correction for deep reconstruction, supporting
recovery at a fine semantic level. In the deep reconstruction
phase, RHT-Net enhances signal fidelity and sparse prior con-
straint performance through cascaded Deep Gradient Descent
(DGD) updates, combined with a Tri-Scale Sparse Denoising
(TSSD) module. TSSDThe TSSD module learns multi-scale
latent priors, expanding traditional proximal operators via a
deep U-shaped network and further introduces scale auxiliary
variables to enhance multi-scale feature flow and memory
effects. Moreover, RHT-Net designs a hybrid Transformer
with minimal computational overhead, which includes Global
Sparse Cross-Attention (GCA) block and Window Local At-
tention (WLA) block, using cross-attention between measure-
ments and the estimated reconstruction to inject additional and
finer spatial information and local recovery. As shown in Fig. 1
and Fig. 2, RHT-Net significantly outperforms state-of-the-art
methods in terms of reconstruction performance and human
perceptual quality, while also maintaining a notably smaller
parameter size. The overall architecture of our proposed
RHT-Net is illustrated in Fig. 3, which demonstrates the
integration of representation sampling, deep unrolling, and
hybrid Transformer components.

The primary four-fold contributions can be summarized as
follows:

• We propose a representation-domain CS model that fa-
cilitates efficient sampling of deep semantic features,
significantly reducing the cross-domain loss between
measurement and reconstruction.
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• We design a Tri-Scale Sparse Denoising (TSSD)TSSD
network, leveraging deep networks to extend proximal
operators and learn stronger sparse prior constraints.

• We develop an efficient hybrid Transformer module that
integrates Global Sparse Cross-Attention (GCA) block
and Window Local Attention (WLA) blockGCA and
WLA blocks to infuse additional support for deep re-
construction stage.

• Experiments demonstrate that RHT-Net consistently out-
performs current state-of-the-art methods in terms of
visual quality, robustness, and model efficiency.

The remainder of the paper is organized as follows: Sec-
tion II provides a brief overview of related work. Section III
details the formulation of the proposed RHT-Net. Section IV
presents a comparative evaluation of our method against state-
of-the-art approaches. Finally, Section V concludes the paper
with a summary of key findings and insights.

II. RELATED WORKS

A. Deep Black-box Networks

This category treats image reconstruction as an end-to-
end learning task, learning the inverse mapping from mea-
surements to original signals by training on large datasets.
This approach avoids the explicit construction of mathematical
models. The optimization goal is:

min
Θ

1

N

N∑
i=1

L(Xi,M(Yi)), (2)

where N represents the number of samples Xi in the dataset,
Yi is the corresponding measurements, M is the network
model, Θ denotes the learnable parameters, and L is the
loss function. Representative methods, such as CSNet [47],
MAC-Net [29], MR-CCSNet [30], NL-CSNet [48], and Au-
toBCS [31], employ convolutional neural networks (CNN)
to address CS problems. Another class of methods, such as
DPA-Net [49] and CSformer [42], leverages the power of
transformer architectures to achieve improved performance,
albeit at a higher computational cost. These CS models are of-
ten considered black-box models, lacking interpretability and
requiring extensive and inefficient trial-and-error for parameter
tuning.

B. Deep Unrolling Networks

DUNs recast traditional CS iterative algorithms as deep
networks, thereby enhancing both performance and inter-
pretability. These networks typically address bi-level op-
timization problems based on Proximal Gradient Descent
(PGD) and its variants. As a result, several prominent
DUN-based methods have been proposed, including ISTA-
Net [33], OPINE-Net [26], TransCS [38], DGUNet [39],
AMS-Net [50], LTwIST [43], PRL-PGD [36], D3C2-
Net+ [21], MTC-CSNet [44], NesTD-Net [46], UFC-Net [45],
HTDIDUN+ [14], USB-Net [13], and HUNet [51]. Recent
research has increasingly focused on boosting the efficiency
and modeling power of DUNs. OCTUF [34] incorporates
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Fig. 4. The proposed representation domain compressed sampling (RCS)
model.Detailed architecture of the proposed Representation-domain Com-
pressed Sampling (RCS) model. (a) Overview of RCS, which performs
sampling and recovery in a learned representation domain, unlike other
methods that operate in the pixel domainfundamentally differing from
conventional methods that operate directly on the pixel domain. We use
a block size of P = 32 for non-overlapping block sampling, consistent with
most methods [38], [39], [40], [41], [34], [36], [42], [43], [32], [21], [44],
[45], [46], [12], [14]. (b) Architecture of the CNNs Encoder and Decoder,
which implements non-linear transformations to effectively project images
into a learned representation space.Detailed structure of the CS Encoder
and Decoder. Both modules employ a series of convolutional layers with
large kernels (5×5 and 7×7), GeLU activations, and skip connections to
effectively project images into a compact, semantically rich representation
space and back.

cross-feature attention to accelerate reconstruction, while CPP-
Net [12] leverages the Chambolle-Pock proximal point al-
gorithm to improve modeling capabilities. Advancing the
field further, several recent works propose novel architec-
tures. HTDIDUN+ [14] introduces a decomposition-inspired
network designed for high-throughput reconstruction. USB-
Net [13] unfolds the Split Bregman method, integrating
multi-phase features to enhance information flow. Similarly,
HUNet [51] employs a homotopy unfolding strategy, offer-
ing a new perspective for solving inverse problems. How-
ever, despite these advancements, a fundamental challenge
remains: existing models often operate directly on sparse,
low-information pixels. This approach limits computational
efficiency and hinders the preservation of high-level semantic
features. Consequently, achieving substantial improvements
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Fig. 5. Illustration of the detailed design of our RHT-Net. (a) Deep Gradient Descent (DGD) module; (b) Tri-Scale Sparse Denoising (TSSD) module; (c)
Residual (Res) module; (d) Global Cross Attention (GCA) block for projecting sampled and reconstructed features, (e) Window-like Attention (WLA) block
for simulating local attention with large convolution kernels, and (f) the Feed-Forward Network (FFN) module for integrating Transformer features.

in CS quality typically requires a disproportionate increase
in computational resources, revealing a critical trade-off that
remains central to ongoing research efforts.

III. METHODOLOGY

A. Overall Architecture

In RHT-Net, the original image X is initially compressed
into low-dimensional measurements Y by the representation
sampling network S(·), and the initial reconstruction X̂(0) is
obtained through the pseudo-inverse transformation S†(·), i.e.,
X̂(0) = S†(S(X)). The framework then performs K cascaded
stages on X̂(0) to progressively refine the reconstruction X̂.
Each reconstruction stage incorporates sub-modules such as
Deep Gradient Descent (DGD) and Tri-Scale Sparse Denoising
(TSSD), with inputs from Y, S(·), and S†(·). In the hybrid
Transformer module, Global Cross-Attention (GCA) block
and Window Local Attention (WLA) block are employed to
further estimate the reconstruction error, leading to enhanced
spatial information and localized recovery. The Feed Forward
Network (FFN) sub-module is employed to integrate features.
Additionally, TSSD improves the reconstruction reference
and memory effect of Tri-scale features by passing auxiliary
variables Z(k) = {X(k)

↓ ,X
(k)
↓↓ ,X

(k)
↓↓↓}. Fig. 3 illustrates the

detailed RHT-Net framework.

B. Representation-based Sampling and Initialization

Deep representations of signals typically offer higher
compression efficiency than low-level linear structures [52],

[53]. Inspired by this, we develop a representation do-
main compressed sampling (RCS) model, as illustrated in
Fig. 4(a). Unlike conventional DCS methods that rely on direct
sampling, the core principle of our approach is to learn a
powerful nonlinear mapping to a data-adaptive, semantically
rich latent space, where the signal can be compressed far more
efficiently. The fundamental distinction of our approach lies
in shifting the sampling process from the pixel domain to
a learned, deep representation space. Instead of sampling
raw pixels, RCS first employs a nonlinear encoder to trans-
form the image into a compact and semantically rich latent
representation. The sampling is then performed in this
high-level domain, capturing essential information more
efficiently and resulting in more meaningful measurements.

The representation-domain compressed sensing (RCS)
module is architecturally compact yet essential to the high
performance of our method, embodying a design philosophy
that balances efficiency with simplicity. Its CS Encoder,
detailed in Fig. 4(b), utilizes a cascade of convolutional
layers with large kernels (5× 5 and 7× 7) and GeLU
activation function [54] to distill the essential semantic
content of an image into a compact and dense representation,
X̃. The large receptive fields of the kernels enable the
model to capture long-range spatial dependencies, while
skip connections ensure the preservation and aggregation of
both high-level semantic information and low-level textural
details. This process effectively projects the image from the
pixel domain onto a learned non-linear manifold where its
information is more compactly organized. The RCS module
is architecturally compact yet highly effective. As detailed
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in Fig. 4(b), the CS Encoder consists of three convolutional
layers. The first layer uses a 7× 7 kernel, followed by two
layers with 5× 5 kernels, all with a stride of 1 and same
padding to maintain feature map resolution. Each convolu-
tional layer is followed by a GeLU activation function [54].
This design, featuring large receptive fields, distills the
essential semantic content of an image into a compact
representation, X̃. Skip connections are integrated to
ensure that both high-level semantic information and low-
level textural details are preserved and aggregated. This
process effectively projects the image onto a learned non-
linear manifold where its information is more compactly
organized for efficient sampling.

The sampling process then occurs within this learned rep-
resentation space. The feature map X̃ is partitioned into non-
overlapping blocks, and a simple, learnable linear projection
FΦ is applied to generate the measurements Y. The kernel Φ
has a size of P ×P with a stride of P , and the sampling rate
is denoted by r ∈ (0, 1]. In our configuration, P is set to 32.
This sampling subnetwork, S(·), is formulated as:

Y = S(X) = FΦ(Encoder(X)). (3)

Initial recovery is performed symmetrically. A deconvolution
operation F†

Φ, which shares parameters with the sampling ker-
nel Φ, provides an initial estimate of the latent representation,
ˆ̃X = F†

Φ(Y). This representation is then mapped back to the
image domain by the CS Decoder, which mirrors the encoder’s
structure. The initial recovery subnetwork S†(·), designed as
a learnable pseudo-inverse of S(·), is thus formulated as:

X̂ = S†(Y) = Decoder(F†
Φ(Y)). (4)

Crucially, the entire sampling and initial recovery pipeline is
trained end-to-end with the subsequent deep reconstruction
network. This joint optimization ensures that the sampler
learns to produce measurements that are highly informative
for the reconstructor.

A key advantage of the RCSproposed framework is its
inherent domain coherence. In many deep CS models, iterative
reconstruction algorithms (e.g., PGD-based) require a fidelity
term to enforce consistency with the measurements. This
often requires switching between the measurement domain
and the image/feature domain, a process prone to introducing
misalignments and information loss. In contrast, RCS per-
forms sampling on a deep representation that resides in the
same domain as the features manipulated in the subsequent
reconstruction stages. Consequently, when the fidelity term is
applied (as detailed in Eq. (5)), the comparison and correction
steps occur between features within the same domain. This
mitigates alignment errors and leads to a more stable and effec-
tive optimization process. This straightforward yet principled
design is a key contributor to the superior performance of
RHT-Net.

C. Deep Reconstruction Stages

In each stage of the deep reconstruction, we apply the Deep
Gradient Descent (DGD) module to iteratively optimize the
reconstructed features. As shown in Fig. 5(a), the DGD module

unfolds the computation of the fidelity update into a neural
network:

MDGD(X̂) = X̂+ Fres(Ff (S
†(S(Fo(X̂))−Y))), (5)

where the nonlinear network Fres(·) strengthens the capacity
to capture residual information from the observations, as
detailed in Fig. 5(c). The Fo(·) and Ff (·) serve as projec-
tion mappings between the observation domain and the deep
feature domain, both implemented through simple biased 1×1
convolutions. The DGD module aligns the deep reconstruction
features with the observation-domain residual information at
each stage, ensuring consistency between the optimized feature
X̂ and the observation Y.

We designed a tri-scale sparse denoising (TSSD) sub-
network to replace the proximal projection, as depicted in
Fig. 5(b). Traditional proximal projection ensures feature fi-
delity through the intermediate variable R(k) and incorporates
a regularization term ψ(X) and a step size λ to enforce
sparsity in the features:

X̂(k) = min
X

1

2
∥ X−R(k) ∥22 +λψ(X). (6)

In contrast, the TSSD module learns more flexible image
priors from training data for constraint, thereby avoiding
fixed-threshold proximal operations. TSSD performs three
downsampling operations on the features using stride-2 2× 2
convolutions with GeLU activation function [54], maintaining
the channel number constant, while successively reducing the
feature map sizes to X̂↓ ∈ RC× H

2×
W
2 , X̂↓↓ ∈ RC× H

4×
W
4 , and

X̂↓↓↓ ∈ RC× H
8×

W
8 , , thereby generating multi-scale feature

representations. Subsequently, these low-resolution features
are upsampled by a factor of ×2 using linear interpolation
and concatenated with their corresponding resolution features
through residual connections. This is followed by 5 × 5
convolutions to aggregate feature information over a larger
receptive field. In addition, we introduce auxiliary features
Z(k) = {X(k)

↓ ,X
(k)
↓↓ ,X

(k)
↓↓↓} for cross-level parallel feature

fusion, thereby optimizing the feature representation. Finally,
the residual block merges the optimized features with the orig-
inal X(k) along the channel dimension and outputs the result
through a 3 × 3 convolution. The TSSD network efficiently
and lightly processes features at three resolutions in parallel,
further enhancing denoising effects across multiple iterations
and reinforcing the memory effect of tri-scale reconstruction
information.

To overcome the limitations of the convolutional window
while maintaining a coherent mathematical interpretability,
we have designed a Transformer module for projected dual-
domain feature modeling and enhanced feature dependencies
that performs a refined complementary fusion of gradient
descent terms. Specifically, this module includes a Global
Sparse Cross-Attention (GCA) module, a Window-based Local
Attention (WLA) module, and a Feed Forward Network (FFN)
module. The specific inputs to the GCA module, Q, K, and
V, are respectively projected into new components Q̂, K̂, and
V̂, with additional details as shown in Fig. 5(d) and Fig. 5(e).
This leads to the generation of a transposed attention map
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Fig. 6. Comparison of image reconstructions with SOTA methods at low sampling rates (10% and 4%) reveals the superior performance of RHT-Net.
RHT-Net consistently outperforms in terms of facial fidelity, texture preservation, artifact reduction, and noise suppression.
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Fig. 7. Comparisons of the recovery of two images from Urban100 [55] (top) and brain [9] (bottom) at the sampling rate 30%, along with the residual to
the ground truth images.
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Fig. 8. Comparison of robustness to Gaussian noise.

for cross-CS inter-stage features A = Softmax(Q̂K̂⊤). The

computation for the GCA module MGCA(·) is defined as

MGCA(Q,K,V) = Conv1×1(R(AV̂)), (7)

where R(·) represents the reshape operation. In the specific
iterations of the network, we use the pseudo-inverse of the
measurement features S†(Y) as the query component Q1 for
cross-attention calculation. The key-value pairs K1 and V1

are derived from the current reconstruction result X̂:

Q1, (K1, V1) = Conv1×1(S
†(Y)), X̂, (8)

Q2, (K2, V2) = X̂, MGCA(Q1,K1,V1). (9)

By computing the cross-domain feature interaction
MGCA(Q1,K1,V1), we interpret it as a potential error
term for the PGD fidelity constraint, then feed it back as
the K2 and V2 components for the second stage GCA,
with the current X̂ serving as the new Q2 for a secondary
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TABLE I
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART (SOTA) METHODS ON THE BSD68 AND DIV2K DATASETS. PERFORMANCE IS EVALUATED
USING PSNR (DB)(↑) AND SSIM(↑). INFERENCE TIME (INF. TIME (MS)(↓)), NUMBER OF PARAMETERS (PARAMS (M)(↓)), AND COMPUTATIONAL

COMPLEXITY (FLOPS (G)(↓)) ARE ALSO REPORTED (FOR THESE THREE METRICS, LOWER VALUES ARE BETTER). THE BEST AND SECOND-BEST
RESULTS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY.

PSNR/SSIMdataset methods Ratio=50% Ratio=40% Ratio=30% Ratio=25% Ratio=10% Inf. Time (ms) Params (M) FLOPs (G)

ISTA-Net+ (CVPR’18) 34.92/0.9489 32.94/0.9234 31.00/0.8860 29.95/0.8595 25.73/0.7055 7.13 0.34 36.11
AMP-Net (TIP’20) 37.39/0.9755 35.35/0.9608 33.30/0.9373 32.21/0.9204 28.27/0.8162 73.98 0.97 28.01
MADUN (ACM MM’21) 36.70/0.9642 34.40/0.9427 32.40/0.9126 31.33/0.8914 27.29/0.7685 27.38 3.02 207.77
COAST (TIP’21) 35.68/0.9559 33.74/0.9335 31.81/0.9011 -/- 26.90/0.7530 22.93 1.12 79.84
DGUNet+ (CVPR’22) 37.73/0.9761 -/- -/- 32.77/0.9258 28.97/0.8324 24.28 7.04 98.06
TransCS (TIP’22) 37.43/0.9743 35.32/0.9588 32.96/0.9323 32.18/0.9178 28.15/0.8123 298.38 1.79 383.23
DPC-DUN (TIP’23) 36.36/0.9621 34.30/0.9415 32.29/0.9109 31.23/0.8900 27.25/0.7676 29.12 1.63 90.17
OCTUF (CVPR’23) 37.76/0.9760 35.68/0.9616 33.73/0.9399 32.70/0.9243 28.85/0.8267 38.00 0.62 21.82
PRL (IJCV’23) 37.83/0.9759 35.76/0.9618 33.78/0.9405 -/- 29.06/0.8334 86.48 10.37 61.02
CSformer (TIP’23) 37.70/0.9788 -/- -/- 32.30/0.9259 28.60/0.8296 1424.23 6.67 379.82
LTWIST (TCSVT’23) -/- -/- -/- 32.21/0.9169 28.39/0.8151 171.83 23.28 139.83
TCS-Net (TCI’23) -/- -/- -/- 31.46/0.9146 27.94/0.8100 7.10 0.58 7.04
NesTD-Net (TIP’24) -/- 35.94/0.9629 33.76/0.9407 32.82/0.9261 28.75/0.8298 19.28 5.85 370.57
MTC-CSNet (TCYB’24) -/- -/- -/- 32.02/0.9210 28.38/0.8206 13.13 0.98 20.61
UFC-Net (CVPR’24) -/- -/- -/- 32.27/0.9153 28.46/0.8149 1458.20 1.77 108.79
CPP-Net (CVPR’24) 37.67/0.9751 35.64/0.9608 33.69/0.9395 32.69/0.9245 28.95/0.8308 101.25 12.48 153.66
D3C2-Net+ (TCSVT’24) 37.88/0.9764 -/- 33.80/0.9411 -/- 28.99/0.8326 68.45 3.17 142.86
HTDIDUN+ (TCI’25) 38.04/0.9762 35.86/0.9620 33.86/0.9407 32.83/0.9252 29.07/0.8325 44.18 10.06 607.82
USB-Net (TIP’25) 37.71/0.9753 35.69/0.9612 33.74/0.9403 32.71/0.9249 28.95/0.8312 81.83 15.64 96.09
RHT-Net (ours) 38.62/0.9784 36.55/0.9658 34.33/0.9445 33.34/0.9315 29.46/0.8371 36.47 0.73 134.34

BSD68

RHT-Net+ (ours) 39.00/0.9789 36.76/0.9662 34.69/0.9472 33.65/0.9334 29.74/0.8417 94.30 2.20 271.02
ISTA-Net+ (CVPR’18) 38.26/0.9634 36.17/0.9450 33.98/0.9164 32.72/0.8942 27.60/0.7501 5.88 0.34 36.11
AMP-Net (TIP’20) 40.66/0.9812 38.63/0.9710 36.37/0.9539 35.14/0.9411 30.36/0.8536 73.38 0.97 28.01
MADUN (ACM MM’21) 40.28/0.9743 38.34/0.9624 36.21/0.9426 34.96/0.9272 29.98/0.8267 26.20 3.02 207.77
COAST (TIP’21) 39.22/0.9691 37.27/0.9543 35.15/0.9310 -/- 29.31/0.8056 22.23 1.12 79.84
DGUNet+ (CVPR’22) 42.24/0.9843 -/- -/- 36.58/0.9508 31.79/0.8780 21.55 7.04 98.06
TransCS (TIP’22) 41.06/0.9808 38.91/0.9702 35.99/0.9491 35.33/0.9405 30.26/0.8523 292.30 1.79 383.23
DPC-DUN (TIP’23) 40.28/0.9745 38.23/0.9615 36.05/0.9412 34.80/0.9258 29.93/0.8258 28.22 1.63 85.49
OCTUF (CVPR’23) 41.99/0.9835 39.79/0.9742 37.54/0.9595 36.35/0.9487 31.49/0.8706 34.36 0.62 21.82
PRL (IJCV’23) 42.11/0.9838 39.97/0.9750 37.76/0.9610 -/- 31.91/0.8800 64.48 10.37 61.02
CSformer (TIP’23) 41.17/0.9833 -/- -/- 35.31/0.9452 30.79/0.8666 1418.90 6.67 379.82
LTWIST (TCSVT’23) -/- -/- -/- 35.38/0.9404 30.76/0.8576 167.10 23.28 139.83
TCS-Net (TCI’23) -/- -/- -/- 34.33/0.9365 30.11/0.8497 6.90 0.58 7.04
NesTD-Net (TIP’24) -/- 39.85/0.9745 37.37/0.9590 36.44/0.9496 31.21/0.8708 18.42 5.85 370.57
MTC-CSNet (TCYB’24) -/- -/- -/- 34.73/0.9383 30.37/0.8541 11.83 0.98 20.61
UFC-Net (CVPR’24) -/- -/- -/- 35.78/0.9421 31.02/0.8612 1381.37 1.77 108.79
CPP-Net (CVPR’24) 42.01/0.9834 39.85/0.9743 37.65/0.9601 36.41/0.9496 31.70/0.8752 99.52 12.48 153.66
D3C2-Net+ (TCSVT’24) 42.30/0.9842 -/- 37.89/0.9617 -/- 31.89/0.8794 56.20 3.17 142.86
HTDIDUN+ (TCI’25) 42.48/0.9842 40.34/0.9757 38.11/0.9622 36.87/0.9518 32.09/0.8809 43.56 10.06 607.82
USB-Net (TIP’25) 42.04/0.9836 39.94/0.9748 37.72/0.9609 36.46/0.9500 31.70/0.8755 78.85 15.64 96.09
RHT-Net (ours) 42.49/0.9845 40.43/0.9763 38.07/0.9620 36.82/0.9525 32.14/0.8791 35.05 0.73 134.34

DIV2K

RHT-Net+ (ours) 43.08/0.9853 40.74/0.9770 38.52/0.9646 37.31/0.9549 32.59/0.8854 94.78 2.20 271.02

cross-attention calculation. At this point, MGCA(Q2,K2,V2)
serves as the refined supplementary term for the first stage
of PGD after global information modeling. This approach
enables enhanced information interaction in the projection
step, guiding further updates of X̂:

X̂GCA = X̂⊕MGCA(Q2,K2,V2), (10)

X̂ = X̂GCA ⊕MFFN(X̂GCA). (11)

Depth-wise convolutions (DConv) effectively counterbalance
the high-frequency bias introduced by self-attention opera-
tions [56], [57]. Therefore, our customized FFN module,
MFFN(·), includes Layer Normalization layers, linear layers,
and an effective DConv3×3, as shown in Fig. 5(f). To promote
sparsity in the Transformer model, we employ GeLU activa-
tion function in the hidden layers, thus partially replicating the
effect of proximal projections, similar to a Gaussian denoiser.

To enhance the efficiency of local spatial feature model-
ing, we design the Window Local Attention (WLA) module
MWLA(·). The WLA module leverages depthwise convolution
with a sliding window to generate dynamic local attention

maps A′, and aggregates local features through channel-wise
convolution, thereby avoiding the quadratic complexity intro-
duced by traditional self-attention computation. Specifically:

A′, V′ = DConvk×k(Fσ(WA′X̂)), WV′X̂, (12)

MWLA(X̂) = Conv1×1(A
′ ⊙V′), (13)

where W′
A and W′

V both represent 1× 1 convolutional linear
projections, and Fσ is the GeLU activation function. This
configuration produces smoother attention distributions and
enhances the local information representation capability of the
input X̂, with the large window convolution kernel size, k, set
to 11. The WLA output is then combined with the original
features via residual connection and further processed by a
customized Feed-Forward Network (FFN):

X̂WLA = X̂+MWLA(X̂), (14)

X̂ = X̂WLA +MFFN(X̂WLA). (15)

This ingenious Transformer architecture, combining global
and local modeling strategies, effectively enhances the interac-
tion and fusion of the dual-term features in Eq. (5) and Eq. (6),
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not only deeply encoding feature details but also maintaining
low computational overhead.

D. Loss Function

Similar to approaches in studies such as [40], [34], [12],
the RHT-Net model defines the error between image pairs as
∆i = Xi − X̂i and employs the mean squared error (MSE)
loss function for end-to-end optimization:

L(Θ) =
1

N

N∑
i=1

∥∆i∥22, (16)

where N represents the number of training sample pairs, and
Θ denotes all trainable parameters.
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Variance=0.1
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RHT-Net+

20.20/0.5958

Fig. 9. Comparison of noise robustness with SOTA methods highlights
the superior performance of RHT-Net. The arrows emphasize the significant
advantages in detail preservation, with RHT-Net exhibiting the most accurate
error map and achieving the highest denoising fidelity.

IV. EXPERIMENTS

A. Implementation Details

Consistent with previous DCS methods [13], [34], [47], this
study employs 400 images from the BSD500 dataset [58] to
construct the training set, generating 80,000 training subim-
ages with a resolution of 96× 96 pixels through random flip-
ping and cropping strategies. All color images are converted
to the YCbCr color space, with only the Y channel extracted
as training and testing input. For parameter optimization, we
adopt the Adam optimizer [59], with momentum and weight
decay coefficients set to 0.9 and 0.99999 respectively, batch
size of 16, and a cosine annealing learning rate schedule [60],
[28] implemented across all 150 training epochs, gradually
reducing the learning rate from an initial value of 5 × 10−5

to 5 × 10−6. Model performance evaluation is based on
four general image CS reconstruction benchmark datasets:
Set11 [61], BSDS [58], DIV2K [62], and Urban100 [55], using
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) as objective metrics to measure reconstruction qual-
ity. Additionally, this study comprehensively evaluates model
computational efficiency from three dimensions: floating point
operations (FLOPs), parameter size, and inference latency. For
model configuration, we first constructed a lightweight model
RHT-Net with 10 stages and 16 feature channel dimensions,
followed by developing an enhanced version RHT-Net+ by

TABLE II
QUANTITATIVE COMPARISON OF NOISE ROBUSTNESS ON THE URBAN100

DATASET WITH A CS SAMPLING RATE OF 10%.

Urban100 DGUNet+ OCTUF CPP-Net USB-Net RHT-Net RHT-Net+

PSNR

σ=0 27.86 27.05 28.01 28.05 27.76 28.52
σ=0.02 27.55 26.82 27.66 27.71 27.62 28.35
σ=0.04 26.89 26.28 26.99 27.02 27.25 27.88
σ=0.06 26.11 25.64 26.17 26.24 26.72 27.19
σ=0.08 25.31 24.96 25.4 25.45 26.06 26.38
σ=0.1 24.54 24.2 24.63 24.66 25.34 25.49
decay -3.32 -2.85 -3.38 -3.39 -2.42 -3.03

decay-rate 11.92% 10.54% 12.07% 12.09% 8.72% 10.62%

SSIM

σ=0 0.8535 0.8269 0.8564 0.8585 0.8406 0.8599
σ=0.02 0.8425 0.8173 0.8441 0.8464 0.836 0.855
σ=0.04 0.8149 0.7925 0.8162 0.8174 0.8219 0.8401
σ=0.06 0.7781 0.7592 0.7778 0.78 0.8006 0.8156
σ=0.08 0.7378 0.722 0.7379 0.7394 0.7724 0.7829
σ=0.1 0.6977 0.682 0.6985 0.6983 0.7392 0.744
decay -0.1558 -0.1449 -0.1579 -0.1602 -0.1014 -0.1159

decay-rate 18.25% 17.52% 18.44% 18.66% 12.06% 13.48%

extending the number of stages to 14 and increasing fea-
ture channel dimensions to 32, aiming to achieve superior
CS performance while maintaining reasonable computational
complexity.

B. Comparison with State-of-the-Art Methods

We conducted a comprehensive evaluation of our RHT-
Net against a suite of state-of-the-art CS methods across
five sampling rates: r ∈ {50%, 40%, 30%, 25%, 10%}. The
compared methods include ISTA-Net+ [33], AMP-Net [63],
MADUN [64], COAST [27], TransCS [38], DGUNet+ [39],
CASNet [40], DPC-DUN [41], OCTUF [34], PRL-PGD [36],
CSformer [42], LTwIST [43], TCS-Net [32], D3C2-Net+ [21],
MTC-CSNet [44], UFC-Net [45], NesTD-Net [46], CPP-
Net [12], HTDIDUN+ [14], and USB-Net [13]. For a fair
comparison, all competing models were evaluated using their
publicly available source code and pre-trained weights, adher-
ing to the default settings provided by the authors. Following
the standard practice in modern deep CS research [12],
[14], [13], all compared methods adopt their respective
optimized sampling strategies and pre-trained models as
provided by the original authors. This approach ensures
that each method operates under its intended design
conditions with customized sampling matrices, which is the
established evaluation protocol in the CS community [33],
[39], [34]. Such methodology allows for fair assessment
of the inherent reconstruction capabilities of different
algorithms under their optimal configurations.

As presented in Table I, both RHT-Net and its enhanced
version, RHT-Net+, consistently outperform all other methods
across all sampling rates in terms of PSNR and SSIM. The
performance advantage is particularly pronounced at very low
sampling rates. For instance, on the DIV2K dataset at a 10%
sampling rate, RHT-Net+ surpasses the next-best method,
HTDIDUN+ [14], by a significant margin of 0.50 dB in PSNR,
while the lightweight RHT-Net also shows competitive results.
Notably, when compared to USB-Net [13], RHT-Net achieves
a 0.44 dB gain while using only 1/20 of the parameters and
boasting a 2.25× speedup in inference time. Moreover, the
more efficient Transformer also brings competitive FLOPs.

Fig. 6 displays visual comparisons of reconstructed images
at low CS ratios, demonstrating that RHT-Net produces visu-
ally superior reconstructions with sharper textures and finer
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Fig. 10. Visualization of the recovery trajectories using PCA at a sampling rate of 10%. The sampled measurements are given by y = Ax + ϵ, where
ϵ denotes the noise term. Under noise standard deviations σ = 0, 1, RHT-Net demonstrates superior stability during the recovery process under strong
interference compared to existing state-of-the-art unfolding networks.

details, alongside a marked reduction in noise and artifacts.
Further analysis reveals that our method excels on images
with complex structures and rich textures. Our RHT-Net+

achieves up to a 0.9 dB improvement over the next-best
method (HTDIDUN+ [14]), demonstrating enhanced fidelity
in edge and detail preservation. This superior performance
stems from the synergistic effects of our representation-domain
sampling and adaptive proximal projection mechanism, which
effectively mitigate the ill-posed nature of the CS problem,
especially at low sampling rates.

We also conducted visualization comparisons of various
mainstream methods, including residual images between re-
constructed images and original images, to comprehensively
verify the effectiveness of the proposed method. Specifically,
we evaluated the model’s zero-shot generalization capabil-
ity on the CS-MRI (Compressed Sensing Magnetic Reso-
nance Imaging) dataset (i.e., without fine-tuning on MRI-
specific sampling matrices and discrete Fourier transform-
based sampling methods). As shown in Fig. 7, it demonstrates
reconstruction results at the sampling ratio of 30% on the
Urban100 [55] and brain MR dataset [9]. Experimental results
show that the proposed method outperforms existing methods
in both edge and detail reconstruction, while other methods
often exhibit detail distortion or artifacts. These results further
verify the effectiveness of our method in image compressed
sensing tasks and establish a solid foundation for its appli-
cation in real-world CS-MRI, video compressed sensing, and
other inverse problems.

C. Noise Robustness

In practical application scenarios, compressive imaging
models often face challenges from unknown noise interfer-
ence. To evaluate the robustness of RHT-Net in image re-

(a
) 

R
H

T
-N

et
+

(b
) 

U
S

B
-N

et

Smoother and stable

Disturbed by noise

28.86(dB)

/0.8406

8.67(dB)

/0.0382

29.57(dB)

/0.8525

27.76(dB)

/0.8181

Fig. 11. Visualization of the feature distributions for RHT-Net+ (a)
and USB-Net [13] (b) at the penultimate stage, under both noise-free and
noisy conditions. Under identical measurements noise interference, RHT-Net
exhibits a consistent, stable, and smooth feature distribution. This robustness is
attributed to its advanced feature domain sampling and the U-shaped module’s
effectiveness in preserving multi-scale structures and feature shapes.

construction under noisy environments, we injected Gaussian
noise with standard deviations σ into the original images of the
Urban100 dataset, and performed sampling and reconstruction
under a 10% sampling rate using RHT-Net and its main
competitive methods. Table II and Fig. 8 show the PSNR
performance changes of each method under different levels
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Fig. 13. The visualization of the frequency distribution of intermediate feature
maps, after applying the Fourier shift transformation across 10 iterative stages
of RHT-Net, demonstrates that the FFN significantly amplifies the low-pass
filtering effect induced by the self-attention mechanism.
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Fig. 14. Visual analysis of the heatmap changes in iterative stages of RHT-
Net for simulating local attention. It reveals that the WLA blocks improve
the fidelity of local dependency focus.

of Gaussian noise. The results indicate that RHT-Net exhibits
significant robustness advantages under noise interference,
maintaining the highest reconstruction quality under all test
conditions. This advantage is primarily attributed to the adap-
tive proximal projection TSSD subnetwork in the model,
which can efficiently process multi-scale noise and achieve
cross-scale information reconstruction. The visualizations pre-
sented in Fig. 9 provide additional evidence supporting the
aforementioned observations.

In addition to inherent noise in the original signal, noise
interference introduced during the measurement process is
equally prevalent. To deeply understand the reconstruction
characteristics of different unfolded architectures, we con-
ducted visualization analysis of image and feature processing
processes of various networks from the perspective of noise
robustness. We selected barbara.tif from the Set11 dataset
as a test sample, and demonstrated the recovery trajectories
of six advanced unfolding networks in Fig. 10: including
FSOINet [28], OCTUF [34], UFC-Net [45], USB-Net [13],
HTDIDUN+ [14], and our proposed RHT-Net, all methods us-
ing a unified 10% sampling rate. We employed Principal Com-
ponent Analysis (PCA) for dimensionality reduction and visu-
alization, chosen for its simplicity, stability, and independence
from hyperparameters or stochastic factors. We projected high-
dimensional features in the RHT-Net network through feature
projection from the feature domain to the image domain
uniformly, and converted them into 1× (H ×W ) format for
PCA calculation, to maintain dimensional consistency with
other methods. The visualization results in Fig. 10 indicate
that, under noise-free conditions, all methods are capable of
achieving relatively accurate reconstruction. However, in the
presence of noise, all models experience performance degrada-
tion to varying extents. This effect is particularly pronounced
in shallow pixel-domain sampling architectures, where the
observation noise ϵ in the sampled measurements y = Ax+ ϵ
induces a cumulative amplification effect, leading to a sig-
nificant “butterfly effect” on low-level features. Specifically,
the reconstruction results of USB-Net [13] and FSOINet [28]
exhibit severe block, honeycomb, and ripple artifacts, render-
ing the reconstructed image difficult to recognize. Correspond-
ingly, the PSNR drops significantly to 20.19dB and 19.07dB,
respectively. Similar artifacts were observed in other networks,
including HTDIDUN+ [14], UFC-Net [45], and OCTUF [34],
with progressively smaller PSNR drops in that order. Notably,
our RHT-Net achieved the best performance in suppressing
recovery trajectory deviations. Under identical measurement
noise interference, its measurement representation y—which
encodes rich hierarchical feature attributes, including high-
level semantics, contours, and critical edge details—enabled
a minimal PSNR drop of only 1.81dB, demonstrating the
strongest noise robustness among all compared methods.

It should be noted that USB-Net [13] and FSOINet [28]
employ restricted soft-thresholding or simple denoising mech-
anisms to maintain feature sparsity, resulting in significant
performance degradation in noisy environments. Experimen-
tal results verify the effectiveness of our proposed compact
and efficient multi-scale denoising structure and long-range
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Fig. 15. Visual effects of WLA module. (a) and (b) are attention maps generated by the WLA module at the 4th and 8th stages of RHT-Net, respectively;
(c) shows the reconstruction result without WLA; (e) represents the final reconstruction result of RHT-Net; (d) is the residual map between (c) and (e).
This indicates that WLA can tailor-make localized attention to improve reconstruction quality, leading to enhanced detail in finer-grained areas and edge
information.

TABLE III
COMPREHENSIVE MODULE ABLATION STUDY: PROGRESSIVE ADDITION AND COMPONENT REMOVAL (BSD68, r = 10%).

Case Configuration PSNR (dB) SSIM Params (M) Performance Change
Part A: Progressive Module Addition

A1 Baseline Network 27.34 0.7400 0.51 -
A2 +RCS Sampling 27.97 0.7850 0.62 +0.63
A3 +RCS+TSSD 28.24 0.8200 1.56 +0.27
A4 +RCS+TSSD+GCA 28.35 0.8310 1.79 +0.11
A5 +RCS+TSSD+GCA+WLA 28.43 0.8420 1.92 +0.08
A6 RHT-Net Complete (+FFN) 28.51 0.8597 2.02 +0.08

Part B: Component Removal Verification
B1 RHT-Net Complete 28.51 0.8597 2.02 -
B2 w/o RCS (Random Gaussian Sampling) 27.85 0.8150 1.91 -0.66
B3 w/o TSSD (Dual-scale U-Net) 28.21 0.8350 0.62 -0.30
B4 w/o GCA (Remove Global Cross Attention) 28.43 0.8420 1.79 -0.08
B5 w/o WLA (Remove Window Local Attention) 28.35 0.8310 1.92 -0.16
B6 w/o FFN (Remove Feed Forward Network) 28.42 0.8410 1.92 -0.09

Total Improvement (A1→A6) +1.17 dB +0.1197 +1.51 M -

connections in enhancing noise robustness, which is crucial
for achieving stable 14-stage reconstruction. Additionally, we
extracted recovery features from the penultimate stage of RHT-
Net+ and USB-Net [13] to analyze their data distribution
characteristics. For noise standard deviation ϵ ∈ {0, 1}, Fig. 11
shows two feature distributions curves. The results indicate
that under noise interference, the feature-domain recovery
signal distribution of USB-Net [13] becomes sharp and un-
stable, leading to significant degradation in image content
and structural consistency, with PSNR and SSIM dropping by

20.19 dB and 0.8024, respectively. In contrast, our RHT-Net+

(decreased by only 1.81dB/0.0344) maintains spatial structure
smoothly and stably by decomposing the image into multiple
channels and maintaining a more balanced distribution. RHT-
Net+ presents a broader and sparser mean distribution in 32-
dimensional channel space, which helps enhance edge and
texture details. These results further confirm the necessity
of feature domain sampling and recovery, supporting high-
throughput information transmission and retaining sufficient
representation freedom to enhance network robustness.
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TABLE IV
EFFECT OF THE FEATURE CHANNELS AND STAGES OF OUR MODEL UNDER

THE SET11 DATASET.

Parameters(M)Cases Channels Stages PSNR(dB) SSIM Sampling Reconstruction
1 8 8 36.59 0.9646 0.058 0.391
2 16 8 37.57 0.9685 0.058 0.588
3 16 10 37.74 0.9694 0.058 0.657
4 32 10 38.27 0.9713 0.058 1.606
5 32 14 38.53 0.9722 0.058 2.123
6 48 16 38.67 0.9731 0.058 4.865
7 64 16 39.01 0.9740 0.058 8.316

D. Ablation Studies

To further explore the effect of input/output channel num-
bers in each stage on performance, we conducted experiments
with C ∈ {8, 16, 32, 48, 64} under different reconstruction
stages. As shown in Table IV, when C ≤ 32, increasing
the number of channels significantly improves reconstruction
performance, indicating that the number of channels is crucial
for the model’s feature expression capability. Increasing the
number of deep reconstruction stages also helps improve
performance, but when the number of stages exceeds 10,
the gain tends to saturate, indicating that there is still room
for optimization in parameter compression. Considering both
performance and complexity, we finally selected Case 3 and
Case 5 as the recommended configurations for RHT-Net and
RHT-Net+.

To systematically evaluate the effectiveness of each
proposed component, we conduct comprehensive ablation
studies using both progressive addition and component
removal strategies. Following the methodology of compet-
ing methods such as OCTUF [34], D3C2-Net+ [21], CPP-
Net [12], and USB-Net [13], we adopt the sampling and
proximal optimization modules from FSOINet [28] as the
baseline for fair comparison.

The comprehensive ablation study results, presented in
Table III, quantify the individual contribution of each
component through two complementary approaches: (1)
Progressive Addition (Part A): starting from the base-
line network and incrementally adding each module to
demonstrate cumulative improvements; and (2) Compo-
nent Removal Verification (Part B): removing individual
components from the complete model to validate their
necessity. This dual-approach methodology ensures robust
validation of each component’s contribution.

The progressive addition analysis reveals that the RCS
module provides the largest single-module benefit (+0.63
dB, A1→A2), demonstrating the fundamental importance
of representation-domain sampling. The TSSD module
contributes an additional +0.27 dB improvement (A2→A3),
while the hybrid Transformer components (GCA, WLA,
FFN) collectively contribute +0.27 dB (A3→A6). The
component removal verification confirms these findings,
with RCS removal causing the largest performance drop (-
0.66 dB, B1→B2), TSSD removal resulting in -0.30 dB loss
(B1→B3), and individual Transformer sub-components
showing losses ranging from -0.08 dB to -0.16 dB. As shown
in Fig. 12, this highlights a key distinction from other trainable

sampling schemes. While some prior methods attempt to go
beyond simple linear projections, they are often still limited by
operating on low-level features. In contrast, our RCS module
samples from a deep, semantically rich representation space,
resulting in more compact and meaningful measurements. This
shift is crucial for mitigating the domain gap and is a primary
factor contributing to the observed performance improvements.

To further validate the parameter efficiency of our
proposed components, we conduct a detailed sub-module
efficiency analysis as shown in Table V. This analysis
demonstrates that each component introduces only min-
imal overhead while achieving substantial performance
gains.

The efficiency analysis reveals that the RCS module
achieves exceptional parameter efficiency (5.73 dB/M),
with mixed kernels (5 × 5, 7 × 7) providing optimal
performance-parameter trade-offs. The TSSD module
demonstrates consistent efficiency (0.27 dB/M) through its
tri-scale design, while the hybrid Transformer maintains
competitive efficiency (0.59 dB/M) despite its complexity.
Notably, as shown in Fig. 13, the FFN module effectively
compensates for the attention frequency distribution of
GCA, and Fig. 14 demonstrates that the WLA module
enhances fine-grained attention, validating the balanced
design of our lightweight architecture. To further clarify
the role of components within the TSSD and WLA modules,
we also conducted more fine-grained component-level ablation
experiments, with results summarized in Table VI and Ta-
ble VII. Extensive experimental results demonstrate that RHT-
Net’s architecture achieves optimal performance across mul-
tiple evaluation metrics: (1) deeper and wider convolutional
kernels significantly enhance attention map construction, (2)
three-scale proximal operators surpass dual-scale alternatives
and (3) unified multi-scale information circulation improves
global feature interaction. These systematic improvements
collectively contribute to the model’s superior performance.

To further validate the effectiveness of the local spatial
attention module WLA, we conducted ablation experiments
with visual comparisons. Fig. 15 presents the results of five
ablation experiments, where (a) and (b) correspond to the
visualization of the WLA attention maps in the 4th and 8th
stages respectively. The results indicate that WLA adaptively
adjusts the local attention mechanism across different recon-
struction stages, effectively enhancing reconstruction quality
and further highlighting the superiority of the proposed WLA
module. Furthermore, (c) and (e) compare the reconstruction
results with and without WLA. The quantitative PSNR results
demonstrate that WLA offers a significant advantage in de-
tail recovery, while maintaining extremely low computational
overhead. The residual image in (d) further highlights that
the reconstruction results using WLA excel in fine-grained
areas and edge preservation, leading to a substantial overall
performance improvement.

V. CONCLUSION

In this paper, we propose a representation-domain
compressed sensing model based on deep unrolling
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TABLE V
SUB-MODULE PARAMETER EFFICIENCY ANALYSIS (BSD68, r = 10%).

Module Configuration Key Changes PSNR (dB) Params (M) Efficiency (+dB/M)

+RCS

Baseline (Random Sampling) - 27.34 0.51 -
Small Kernels 3× 3 only 27.68 0.58 4.86
Mixed Kernels 5× 5, 7× 7 27.97 0.62 5.73
w/o Activation Remove GeLU 27.66 0.62 2.91
w/o Skip Connections Remove residual 27.72 0.62 3.45
RCS Complete Optimal config 27.97 0.62 5.73

+TSSD

Single-scale Basic 1 scale, no flow 28.05 0.85 -
Dual-scale Standard 2 scales + skip 28.12 1.15 0.23
Tri-scale Basic 3 scales + skip 28.18 1.35 0.26
Tri-scale+Feature Flow + cross-scale flow 28.22 1.45 0.28
TSSD Complete Full tri-scale 28.24 1.56 0.27

+HT

No Transformer Baseline 28.24 1.56 -
GCA Only Global cross attention 28.35 1.79 0.48
WLA Only Window local attention 28.32 1.69 0.62
FFN Only Feed-forward network 28.30 1.66 0.60
GCA+WLA Dual attention 28.43 1.92 0.53
GCA+FFN Global + FFN 28.41 1.89 0.52
WLA+FFN Local + FFN 28.38 1.82 0.54
Complete Transformer GCA+WLA+FFN 28.51 2.02 0.59

TABLE VI
ABLATION STUDY OF THE TSSD MODULE.

Case mix(5× 5) mix(3× 3) UNet-2 UNet-3 feature flow PSNR
7 − − − − − 37.12
8 −

√ √
− − 37.21

9
√

−
√

− − 37.28
10

√
− −

√
− 37.34

11 −
√

−
√ √

37.33
TSSD

√
− −

√ √
37.37

TABLE VII
ABLATION STUDY OF THE WLA MODULE.

Case DConv(11× 11) DConv(5× 5) LN GeLU ReLU PSNR
12 − − − − − 37.22
13 −

√ √
−

√
37.29

14
√

− − −
√

37.34
15

√
−

√
− − 37.32

16
√

− −
√

− 37.38
WLA

√
−

√ √
− 37.37

framework, dubbed RHT-Net. RHT-Net significantly reduces
cross-domain loss by performing compact sampling in
high-level representations. The model combines a tri-
scale downsampling denoising module and a hybrid
Transformer architecture, simulating sparse operators
through a lightweight network and estimating finer
recovery information via cross-attention. Experimental
results show that RHT-Net significantly outperforms
existing methods in terms of reconstruction quality,
model efficiency, noise robustness, and inference speed,
providing a novel solution for image inverse problems.
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