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temperatures from previous ranges of 36–39  °C to new 
ones of 39–42 °C in several areas (Ogunrinde et al. 2024). 
In sub-Saharan Africa and the Sahel, models project even 
more extreme temperature increases between 3 and 6 °C 
by the end of the 21 st century (Weber et al. 2018; Ofori 
et al. 2021).

Heat waves, a climatic phenomenon associated with sig-
nificant risks to public health and the economy, are also on 
the rise. In West and Central Africa, a considerable increase 
in both their frequency and duration is expected, especially 
in the most arid and vulnerable areas (Diedhiou et al. 2018). 
Similarly, in North Africa and West Asia, extreme tempera-
tures not only affect the quality of life, but are also closely 
linked to an increase in the likelihood of socio-political 
conflicts and forced migrations (Abdel, 2024).

In East Africa, climate records highlight concerning 
upward trends in both maximum and minimum tempera-
tures, underscoring the urgent need to implement sustain-
able, local-scale adaptation measures. These strategies must 
be based on a thorough understanding of the specific needs 
of the affected communities (Gebrechorkos et al. 2019).

The Mediterranean and the Middle East, regions which 
are particularly vulnerable to climate change, are also expe-
riencing warming at an increasing rate. This phenomenon 
is more pronounced during the spring and summer seasons 
(Hadjinicolaou et al. 2023; Francis and Fonseca 2024). 
These trends affect local ecosystems, agricultural produc-
tion and water resources, aggravating living conditions in 
communities already facing climate challenges.

1  Introduction

Analysing the evolution of maximum temperatures and the 
frequency of hot days is crucial to understand the impact 
of climate change. Existing studies point to a significant 
increase in average maximum temperature in several 
regions of the world (Yan et al. 2020; Francis and Fon-
seca 2024; Ogunrinde et al. 2024; etc.). This increase, 
combined with more frequent heat waves, is transforming 
weather patterns dramatically. The regions most affected 
include North Africa, sub-Saharan Africa, Central and 
West Asia, the Mediterranean and parts of the Americas. 
These changes are exacerbating aridity over vast tracts of 
land, with profound implications for food security, water 
resource availability, and both local and transnational 
migration patterns (Sun et al. 2018; Linares et al. 2020; 
Issa et al. 2023).

In particular, in Central Asia, North Africa and West 
Africa there has been a marked increase in maximum 
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In China, there has also been a sharp increase in maxi-
mum temperatures and the frequency of hot days, especially 
since the 1990 s (Yan et al. 2020; Zhou and Lu 2021). In 
Australia, positive trends of more than 0.6  °C per decade 
have been detected in the highest temperatures of the year, 
and heat waves are becoming more intense, prolonged and 
frequent, affecting human health, agriculture and urban sys-
tems (Papari et al. 2020). Frederiksen and Osbrough (2022) 
analyse the systematic changes in precipitation and temper-
atures, both mean and extreme, in Australia since the begin-
ning of the 20th century, identifying transitions towards a 
warmer and drier climate. They conclude that, over the last 
two decades, there has been a significant increase in the fre-
quency of temperature extremes and a marked decrease in 
precipitation in the southwest and southeast of the country 
due to alterations in atmospheric circulation and possible 
climate tipping points. The same is happening in the US, 
where the frequency of extreme heat events is also increas-
ing (Ombadi and Risser., 2022; Ibebuchi et al. 2024).

This context requires the development and implementa-
tion of region-specific adaptation strategies. These should 
consider the characteristics of agricultural, water and social 
systems, as well as the intrinsic vulnerability of each area 
to projected climate changes. Therefore, there is a need 
for studies evaluating the evolution and long-term patterns 
of maximum temperatures and extreme events. These are 
essential to identify trends, validate climate models and 
design informed and sustainable adaptation policies.

The present study contributes to this area of the litera-
ture by analysing annual data on the evolution of days with 
temperatures above 35  °C over the period from 1950 to 
2022 in 54 countries from different regions of the world, 
including sub-Saharan Africa (Benin, Burkina Faso, Cam-
eroon, Chad, Eritrea, Ethiopia, Gambia, Ghana, Mali, 
Mauritania, Mozambique, Niger, Nigeria, Senegal, South 
Africa, Somalia, South Sudan, Sudan, Sudan and Togo), 
Central Asia (Kazakhstan, Tajikistan, Uzbekistan), South 
Asia (Afghanistan, Bangladesh, India, Nepal, Pakistan), 
North Africa (Algeria, Djibouti, Egypt, Libya, Morocco 
and Tunisia), West Asia and the Middle East (Bahrain, Iran, 
Iraq, Syria, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, 
Turkey, United Arab Emirates and Yemen), East Asia and 
Pacific (Australia, China, Myanmar and Thailand), as well 
as parts of the Americas (Argentina, Mexico, Paraguay and 
the United States). The analysis uses fractional integration 
methods, which are ideally suited to our purposes. Note 
that most of the existing literature on this topic is based on 
the classical dichotomy between stationary (or integrated 
of order 0, denoted as I(0) and non-stationary (or I(1) series 
(see, e.g., Woodward and Gray 1993; Stern and Kaufmann 

2000; Kaufmann et al. 2006, 2010; etc.). Such studies are 
based on standard unit roots tests that are now known to 
have very low power against fractional integration alterna-
tives (see, e.g., Diebold and Rudebusch 1991; Hassler and 
Wolters, 1994; Lee and Schmidt 1996; etc.). By contrast, 
a fractional integration framework (see Granger 1980; 
Granger and Joyeux 1980; and Hosking 1981) is much 
more general and flexible, since the differencing param-
eter d is allowed to take any real value, including fractional 
ones. Consequently, it encompasses a much wider range 
of stochastic processes, including the unit root case, and 
provides key information about whether or not the series 
of interest are mean-reverting (and thus on whether exog-
enous shocks have permanent or transitory effects) and on 
their degree of persistence, with crucial implications for 
climate change policies.

The remainder of the paper is structured as follows: 
Section 2 briefly reviews the relevant literature; Section 3 
introduces the modelling framework; Section  4 describes 
the data and presents the empirical results; Section 5 offers 
some concluding remarks.

2  Literature review

Understanding the evolution of temperatures and climatic 
conditions and their long-term trends, as well as changes in 
the frequency and intensity of extreme events, is essential 
to develop models generating reliable forecasts (Papacha-
ralampous et al. 2018; Bahari and Hamid 2019; Liu et al. 
2021; Domonkos et al. 2021; etc.). For this purpose, various 
methods have been used.

O’Kane et al. (2024) investigate climate regime shifts 
and tipping points in the Southern Hemisphere over the past 
few decades using observational data, reanalyses, numeri-
cal simulations and machine learning techniques. Their 
results reveal a marked transition in atmospheric circulation 
and climate stability since the late 1970 s, associated with 
oceanic warming and an increase in extreme events. These 
changes are directly linked to anthropogenic forcing and, 
under high-emission scenarios, are expected to intensify in 
the future.

Classical models, such as the autoregression integrated 
moving average (ARIMA) one, are widely employed due 
to their versatility in analysing and modelling stationary 
and non-stationary series. ARIMA specifications allow to 
decompose time series into trend, seasonal and noise com-
ponents, providing a useful framework for making short-
term temperature forecasts (Lai and Dzombak 2020; Dimri 
et al. 2020). However, this approach has limitations in the 
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presence of long-range dependence between the observa-
tions, as in the case of temperature data, since past weather 
events may have persistent effects on future conditions 
(Chen et al. 2023).

Other common methods include exponential smooth-
ing techniques (Taylor 2004), which prioritise recent 
observations to capture dynamic changes, and decom-
position-based approaches such as seasonal or Fourier 
analysis (Yang 2013). These methods are useful for iden-
tifying periodic or cyclical patterns in the series, such as 
seasonal temperature variations. However, they are less 
suitable for capturing long-term trends and for distin-
guishing between stationary and non-stationary compo-
nents in the series.

Regression analysis is another common tool, which is 
often used for exploring relationships between temperatures 
and variables such as greenhouse gas emissions, land use or 
geographic factors. However, this approach assumes linear-
ity in the relationships, which may not be appropriate for 
climate data that exhibit complex and nonlinear behaviour 
(Deb and Jana 2021).

As already mentioned, a framework which is ideally 
suited to model the behaviour of temperature series is the 
autoregressive fractional integrated fractional moving 
average (ARFIMA) model (Granger and Joyeux 1980; 
Hosking 1981); this allows the differencing parameter 
d to be any real number, including fractional ones as 
opposed to integers only, and thus provides a more accu-
rate description of both short- and long-range dependence 
(Huang et al. 2022), and it also yields more efficient esti-
mates (Bhardwaj et al. 2020). Its generality and flexibility 
are particularly useful to distinguish between stationary 
and non-stationary processes, which is crucial to avoid 
erroneous conclusions about the evolution of weather pat-
terns, and to capture the long-range dependence or long 
memory typically exhibited by temperatures (Caporale et 
al. 2024, 2025; Gil Alana et al., 2022, 2024, 2025). Cli-
mate series are often influenced by long-term phenomena, 
such as global warming, climate cycle variability or the 
cumulative impact of anthropogenic changes (Twaróg 
2024), and therefore fractional integration techniques can 
shed light on their degree of persistence. Finally, these 
methods are a powerful tool for long-term forecasting of 
temperatures (Lenti and Gil-Alana 2021; Gil-Alana et al. 
2022, 2024, 2025; Chibuzor and Gil-Alana 2024; Vyushin 
and Kushner 2009; Yuan et al. 2013) as they integrate sys-
tem memory, and thus generate more accurate predictions 
reflecting underlying trends and persistence dynamics. 
The main features of this approach are described in the 
next section.

3  Fractional integration

Fractional integration can be defined in terms of the degree 
of differencing required to produce stationary I(0) behav-
iour in a series. Specifically, a process x(t), t = 0, 1, 2 … is 
said to be integrated of order d, and denoted as I(d), if it can 
be written as:

(1 − L)2
x (t) = u (t) , t = 1, 2, . . . � (1)

where L stands for the lag operator, i.e., Lx(t) = x(t-1); d 
is a real positive value, and u(t) is an I(0) process that can 
be assumed to be a white noise process or alternatively a 
weakly autocorrelated one as in the stationary AutoRegres-
sive Moving Average class of models.

The parameter d is called the differencing parameter; for 
non-integer values of d, one can use the following Binomial 
expansion of L, such that

(1 − L)d =
∑ ∞

j=1

Γ (d − 1) (−L)j

Γ (d − j + 1) Γ (j + 1)
,

.
where Γ is the gamma function, which is defined as:

Γ (z) =
∞̂

0

tz−1e−td (t) .

Alternatively, (1 − L)d can be expressed as a Taylor expan-
sion such that

(1 − L)d =
∑

∞
j=0

(
d
j

)
(−1)j

Lj = 1 − dL + d (d − 1)
2

L2 − . . .

and thus Eq. (1) becomes:

x (t) = d x (t − 1) − d (d − 1)
2

x (t − 2) + ... + u (t) .

Thus, for any non-integer d, x(t) becomes a function of all 
its past history, and the higher the value of d is, the higher 
the level of dependence between the observations.

Several cases can occur depending on the value of d, 
namely:

i)	 antipersistence, if d < 0, (e.g., when a process reverses 
itself more often than a pure random process; pink noise 
or 1/f noise),

ii)	 short memory, if d = 0, (e.g., a white noise process, sta-
tionary ARMA, etc.),
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climate models. We should notice that the aggregation at the 
national level may mask internal climate variations, espe-
cially in large countries, and we note this as a limitation of 
the study in the conclusions.

Regarding the selection of countries and data sources, 
it is important to note that the sample of 54 countries 
was determined exclusively by the complete and continu-
ous availability of annual data for the period 1950–2022, 
according to the records offered by the World Bank’s Cli-
mate Change Knowledge Portal. While we recognize that 
this database may not reach the level of climatological 
accuracy of sources such as ERA5 or MERRA2, its main 
advantage lies in offering harmonized time series, compa-
rable across countries and open access, which allows for a 
robust and reproducible implementation of the econometric 
methods used. In future research, the integration of alterna-
tive sources of higher geoscientific resolution could be con-
sidered, as well as the use of local thresholds derived from 
climate reanalyses.

The selected countries are all those for which data are 
available for the entire period from 1950 to 2022; the 
sample covers sub-Saharan Africa (Benin, Burkina Faso, 
Cameroon, Chad, Eritrea, Ethiopia, Gambia, Ghana, Mali, 
Mauritania, Mozambique, Niger, Nigeria, Senegal, South 
Africa, Somalia, South Sudan, Sudan and Togo), Central 
Asia (Kazakhstan, Tajikistan and Uzbekistan), South Asia 
(Afghanistan, Bangladesh, India, Nepal, Pakistan), North 
Africa (Algeria, Djibouti, Egypt, Libya, Morocco and Tuni-
sia), West Asia and Middle East (Bahrain, Iran, Iraq, Syria, 
Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Turkey, United 
Arab Emirates and Yemen), East Asia and Pacific (Austra-
lia, China, Myanmar and Thailand), as well as parts of the 
Americas (Argentina, Mexico, Paraguay and the United 
States).

Table 1 reports the estimates of d in Eqs. (1) and (2) under 
the assumption of white noise errors and for three different 
model specifications. The estimation is carried out using a 
general to specific approach. Column 4 shows the estimates 
of d (and the corresponding 95% confidence bands) from 
the most general model including both an intercept and a 
linear time trend. If the latter is found to be statistically 
insignificant, it is dropped from the regression, namely β 
is set equal to 0 in Eq.  (2) and the model is re-estimated 
including only an intercept as the deterministic component; 
the corresponding estimates of d with their 95% confidence 
bands are displayed in column 3. Finally, if the intercept is 
also found to be insignificant, the model is re-estimated set-
ting α = β = 0; column 2 reports the results obtained in this 
case.

Table 1 shows the estimates of d, with those correspond-
ing to the selected models in bold. It can be seen that only 

iii)	 stationary long memory, if 0 < d < 0.5,
iv)	 nonstationary mean reversion, if 0.5 ≤ d < 1,
v)	 I(1) behaviour, if d = 1, (e.g., a random walk process, 

ARIMA(p, 1, q), etc.)

In the empirical application carried out in the following sec-
tion, we assume that x(t) are the errors in a regression model 
including a linear time trend, i.e.,

y (t) = α + β t + χ (t) , t = 1, 2, . . . � (2)

where y(t) is the observed series.
The estimation of d (and of the coefficients of the deter-

ministic terms, i.e., α and β) is based on a maximum likeli-
hood function expressed in the frequency domain. In fact, 
we use a simple version of a testing approach developed in 
Robinson (1994) and whose functional form can be found in 
Gil-Alana and Robinson (1997). It considers of testing the 
null hypothesis Ho: d = do, in the model given by Eqs. (1) and 
(2) for any do-values = −1 to 2 with 0.01 increments. The 
test statistic selects the 95% confidence interval, while the 
close value to zero approximates the maximum likelihood 
estimate. A fundamental reason for using this approach is 
that it is not restricted to the stationary range d > 0.5) and 
therefore it does not require preliminary differentiation in 
case of nonstationary data. In addition, it is the most effi-
cient method in the “Pitman” when directed against local 
departures from the null.

4  Data and empirical results

Data on the number of days per year with maximum temper-
ature above 35 °C are taken from the World Bank Climate 
Change Knowledge Portal (2024), ​h​t​t​p​​s​:​/​​/​c​l​i​​m​a​​t​e​k​​n​o​w​l​​e​d​
g​​e​p​o​​r​t​a​l​.​w​o​r​l​d​b​a​n​k​.​o​r​g​/); they are based on a heat index, 
which is a measure of temperature including the influence 
of atmospheric humidity and is constructed as explained in 
World Bank Group (2025).

We recognize that there is no universally accepted defini-
tion of a hot day. The decision to use an absolute threshold 
of 35 °C is based on methodological and practical reasons 
as it allows homogeneous comparability across countries 
and over time, which is essential for trend and persistence 
analysis by fractional integration. In addition, this variable, 
already calculated in the World Bank’s Climate Change Por-
tal database, is widely available and covered for 54 countries 
over the period 1950–2022. The portal is based on precon-
structed climate indicators, including the annual number of 
days with maximum temperatures above 35 °C. The indi-
cators are calculated from sources such as reanalyses and 
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North Africa
Country No terms A constant A constant and a linear trend
ALGERIA 0.39 (0.30, 0.56) 0.45 (0.38, 0.54) 0.19 (0.08, 0.35)
DJIBOUTI 0.33 (0.23, 0.48) 0.39 (0.29, 0.53) 0.13 (−0.05, 0.39)
EGYPT 0.34 (0.26, 0.46) 0.39 (0.31, 0.51) 0.20 (0.09, 0.37)
LIBYA 0.14 (0.07, 0.24) 0.19 (0.10, 0.32) −0.27 (−0.44, −0.02)
MOROCCO 0.35 (0.27, 0.48) 0.41 (0.33, 0.52) 0.15 (0.02, 0.34)
TUNISIA 0.30 (0.22, 0.41) 0.34 (0.25, 0.44) 0.16 (0.02, 0.33)
Sub-Saharian Africa
BENIN 0.27 (0.19, 0.40) 0.33 (0.24, 0.46) −0.09 (−0.28, 0.46)
BURKINA FASO 0.29 (0.22, 0.40) 0.36 (0.28, 0.47) −0.07 (−0.24, 0.47)
CAMEROON 0.23 (0.16, 0.35) 0.28 (0.19, 0.40) −0.05 (−0.18, 0.40)
CHAD 0.49 (0.49, 0.60) 0.52 (0.45, 0.61) 0.36 (0.25, 0.61)
ERITREA 0.48 (0.39, 0.59) 0.52 (0.45, 0.64) 0.29 (0.16, 0.64)
ETHIOPIA 0.36 (0.27, 0.57) 0.47 (0.37, 0.62) 0.26 (0.00, 0.62)
GAMBIA 0.21 (0.13, 0.31) 0.24 (0.15, 0.35) −0.14 (−0.28, 0.35)
GHANA
MALI

0.19 (0.09, 0.35) 0.21 (0.10, 0.38) 0.04 (−0.12, 0.25)

MALI 0.30 (0.24, 0.38) 0.45 (0.38, 0.55) 0.31 (−0.54, 0.03)
MAURITANIA 0.30 (0.24, 0.42) 0.47 (0.39, 0.59) −0.04 (−0.23, 0.25)
MOZAMBIQUE 0.28 (0.14, 0.47) 0.28 (0.14, 0.48) 0.25 (0.12, 0.46)
NIGER 0.41 (0.34, 0.52) 0.48 (0.41, 0.58) 0.11 (−0.02, 0.31)
NIGERIA 0.21 (0.14, 0.30) 0.26 (0.18, 0.36) −0.42 (−0.57, −0.17)
SENEGAL 0.30 (0.23, 0.40) 0.37 (0.30, 0.47) −0.09 (−0.27, 0.14)
SOUTH AFRICA −0.01 (−0.12, 0.16) −0.01 (−0.14, 0.18) −0.15 (−0.32, 0.09)
SOMALIA 0.32 (0.24, 0.45) 0.40 (0.31, 0.52) 0.08 (−0.11, 0.35)
SOUTH SUDAN 0.26 (0.16, 0.41) 0.28 (0.18, 0.42) 0.12 (−0.01, 0.32)
SUDAN 0.47 (0.38, 0.63) 0.51 (0.43, 0.64) 0.33 (0.17, 0.57)
TOGO 0.08 (−0.01, 0.23) 0.10 (−0.01, 0.26) −0.17 (−0.37, 0.09)
Central Asia
KAZAKHSTAN 0.25 (0.15, 0.38) 0.26 (0.16, 0.39) 0.17 (0.04, 0.33)
TAJIKISTAN 0.49 (0.38, 0.64) 0.48 (0.37, 0.63) 0.48 (0.37, 0.63)
UZBEKISTAN 0.23 (0.13, 0.37) 0.25 (0.14, 0.38) 0.18 (0.05, 0.33)
South Asia
AFGHANISTAN 0.24 (0.17, 0.34) 0.31 (0.23, 0.40) 0.07 (−0.03, 0.21)
BANGLADESH 0.13 (−0.01, 0.32) 0.11 (−0.01, 0.30) −0.01 (−0.18, 0.23)
INDIA −0.04 (−0.09, 0.34) −0.11 (−0.29, 0.16) −0.14 (−0.32, 0.14)
NEPAL 0.05 (−0.12, 0.26) 0.04 (−0.09, 0.20) −0.12 (−0.32, 0.15)
PAKISTAN 0.43 (−0.04, 0.62) 0.02 (−0.08, 0.16) −0.01 (−0.11, 0.14)
West Asia and Middle East
BAHRAIN 0.31 (0.17, 0.52) 0.33 (0.19, 0.54) 0.24 (0.06, 0.50)
IRAN 0.47 (0.38, 0.61) 0.53 (0.46, 0.63) 0.34 (0.23, 0.49)
IRAQ 0.42 (0.32, 0.60) 0.46 (0.38, 0.56) 0.31 (0.17, 0.50)
SYRIA 0.05 (−0.04, 0.17) 0.06 (−0.04, 0.19) −0.12 (−0.24, 0.06)
JORDAN 0.09 (−0.01, 0.20) 0.10 (−0.01, 0.22) −0.06 (−0.18, 0.10)
KUWAIT 0.50 (0.36, 0.75) 0.45 (0.36, 0.55) 0.34 (0.20, 0.53)
OMAN 0.17 (0.12, 0.36) 0.36 (0.28, 0.49) −0.10 (−0.26, 0.18)
QATAR 0.54 (0.42, 0.73) 0.54 (0.45, 0.69) 0.46 (0.34, 0.66)
SAUDI ARABIA 0.50 (0.43, 0.62) 0.56 (0.50, 0.65) 0.37 (0.26, 0.54)
SYRIA 0.25 (0.17, 0.37) 0.28 (0.19, 0.40) 0.15 (0.04, 0.30)
TURKEY 0.22 (0.13, 0.36) 0.24 (0.14, 0.38) 0.15 (0.03, 0.32)
U.A.E. 0.51 (0.41, 0.67) 0.52 (0.44, 0.64) 0.43 (0.32, 0.59)
YEMEN 0.54 (0.45, 0.70) 0.62 (0.53, 0.76) 0.46 (0.28, 0.71)
East Asia and Pacific
AUSTRALIA 0.20 (0.06, 0.48) 0.25 (0.10, 0.48) 0.14 (−0.06, 0.44)
CHINA 0.45 (0.28, 0.70) 0.36 (0.23, 0.55) 0.36 (0.23, 0.55)

Table 1  Estimates of d under three deterministic specifications. White noise errors
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Concerning the estimates of d, it can be seen that the 
highest degrees of persistence are found in the cases of 
Tajikistan (d = 0.48), Qatar (0.46), Yemen (0.46), UAE 
(0.43) and Saudi Arabia (0.37). This parameter is sig-
nificantly positive in 24 countries in total, the additional 

in five countries, namely Mozambique, India, Nepal, China 
and Paraguay, the time trend is not statistically significant 
and is not included in the preferred specification. The entire 
set of estimated coefficients corresponding to the latter is 
instead shown for each country in Table 2.

North Africa
Country diff. par. (95% band) Intercept (t-value) Time trend (t-value)
ALGERIA 0.19 (0.08, 0.35) 19.1234 (8.46) 0.4739 (9.31)
DJIBOUTI 0.13 (−0.05, 0.39) −0.7466 (−0.46) 0.2413 (6.58)
EGYPT 0.20 (0.09, 0.37) 0.3750 (0.41) 0.1073 (5.30)
LIBYA −0.27 (−0.44, −0.02) 0.2672 (2.28) 0.0687 (12.68)
MOROCCO 0.15 (0.02, 0.34) 1.3111 (2.97) 0.0848 (8.50)
TUNISIA 0.16 (0.02, 0.33) −0.2058 (−2.21) 0.1334 (6.27
Sub-Saharian Africa
BENIN −0.09 (−0.28, 0.46) −0.3268 (−1.99) 0.0448 (11.29)
BURKINA FASO −0.07 (−0.24, 0.47) −0.7746 (−1.71) 0.1574 (12.79)
CAMEROON −0.05 (−0.18, 0.40) −0.1669 (−1.94) 0.0181 (8.84)
CHAD 0.36 (0.25, 0.61) −1.8865 (−1.09) 0.2409 (6.00)
ERITREA 0.29 (0.16, 0.64) −0.5539 (−0.81) 0.1166 (7.56)
ETHIOPIA 0.26 (0.00, 0.62) 0.5729 (2.11) 0.0436 (7.14)
GAMBIA −0.14 (−0.28, 0.35) −0.4767 (−3.49) 0.0362 (10.74)
GHANA
MALI

0.04 (−0.12, 0.25) −0.0906 (−1.98) 0.0074 (4.19)

MALI 0.31 (−0.54, 0.03) 14.9884 (25.38) 0.6218 (39.82)
MAURITANIA −0.04 (−0.23, 0.25) 15.4798 (12.34) 0.5061 (16.95)
MOZAMBIQUE 0.28 (0.14, 0.48) 0.0419 (1.76) ------
NIGER 0.11 (−0.02, 0.31) −1.5606 (−1.07) 0.4072 (12.35)
NIGERIA −0.42 (−0.57, −0.17) −0.3132 (−6.08) 0.0384 (27.02)
SENEGAL −0.09 (−0.27, 0.14) −0.2115 (−0.35) 0.2294 (16.03)
SOUTH AFRICA −0.15 (−0.32, 0.09) −0.0047 (−1.94) 0.0003 (3.18)
SOMALIA 0.08 (−0.11, 0.35) 0.0069 (0.20) 0.0062 (8.10)
SOUTH SUDAN 0.12 (−0.01, 0.32) −0.8026 (−1.66) 0.0466 (4.24)
SUDAN 0.33 (0.17, 0.57) 0.5948 (0.32) 0.2848 (6.82)
TOGO −0.17 (−0.37, 0.09) −0.0731 (−1.80) 0.0058 (5.74)
Central Asia
KAZAKHSTAN 0.17 (0.04, 0.33) −0.0136 (−0.19) 0.0058 (3.77)
TAJIKISTAN 0.48 (0.37, 0.63) −0.0324 (−2.23) 0.0095 (2.72)
UZBEKISTAN 0.18 (0.05, 0.33) 0.0828 (0.15) 0.0433 (3.84)
South Asia
AFGHANISTAN 0.07 (−0.03, 0.21) 3.0462 (5.66) 0.0938 (7.59)
BANGLADESH −0.01 (−0.18, 0.23) 0.2836 (3.73) −0.0046 (−2.60)

Table 2  Estimated coefficients from the selected models. White noise errors

North Africa
MYANMAR 0.03 (−0.06, 0.17) 0.04 (−0.08, 0.21) −0.29 (−0.52, 0.02)
THAILAND −0.06 (−0.16, 0.10) −0.07 (−0.20, 0.12) −0.24 (−0.42, 0.01)
America
ARGENTINA 0.11 (−0.02, 0.33) 0.12 (−0.01, 0.32) 0.08 (−0.10, 0.38)
MEXICO 0.24 (0.14, 0.42) 0.31 (0.20, 0.47) 0.13 (−0.03, 0.37)
PARAGUAY −0.02 (−0.14, 0.17) −0.02 (−0.15, 0.16) −0.01 (−0.15, 0.17)
U.S.A. 0.35 (0.24, 0.55) 0.41 (0.30, 0.57) 0.27 (0.10, 0.50)
In bold the selected specification on the basis of the statistical significance of the deterministic components. The reported values are the esti-
mates of d, and in brackets the corresponding 95% confidence intervals

Table 1  (continued) 
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(0.6325), Mali (0.6218), Mauritania (0.5061) and Algeria 
(0.4739), while it is insignificant in five countries, namely 
Morocco, India, Pakistan, China and Paraguay.

Tables 3 and 4 have the same layout as Tables 1 and 2 
but report the results under the assumption of autocorrela-
tion in the error term modelled as in Bloomfield (1973). 
It can be seen from Table 3 that the time trend is now sta-
tistically insignificant in Tajikistan, Uzbekistan, Pakistan, 
China and Paraguay, in the latter three just as in the the 
previous case of white noise errors. Concerning the differ-
encing parameter d, statistical evidence of a long memory 
pattern, i.e., d > 0, is now found in 19 countries, namely 
Tajikistan (d = 0.84), Uzbekistan (0.68), Tunisia, Kuwait 
and UAE (0.54), Saudi Arabia (0.49), Kazakhstan (0.48), 
Iraq (0.42), Chad and Qatar (0.41), Iran (0.40), Algeria 
(0.36), Afghanistan (0.34), Syria (0.30), Eritrea (0.24), 
Turkey (0.23), Pakistan and Egypt (0.22) and Sudan 
(0.17). Short memory or I(0) behaviour is found in 27 
countries, namely China (0.30), Yemen (0.27), Morocco 
and Jordania (0.13), Mozambique and Argentina (0.08), 
Paraguay (0.06), USA (0.05), South Sudan (0.03), Niger 

19 being Chad and China (0.36), Iran and Kuwait (0.34), 
Sudan (0.33), Iraq (0.31), Eritrea (0.29), Mozambique 
(0.28), USA (0.27), Ethiopia (0.26), Bahrain (0.24), Egypt 
(0.20), Algeria (0.19), Uzbekistan (0.18), Kazakhstan 
(0.17), Tunisia (0.16), Morocco, Syria and Turkey (0.15). 
In another 24 countries the estimated values of d are either 
positive or negative and the I(0) hypothesis of short mem-
ory cannot be rejected – these are Mali (0.31), Australia 
(0.14), Djibouti and Mexico (0.13), South Sudan (0.12), 
Niger (0.11), Argentina and Somalia (0.08), Afghani-
stan (0.07), Ghana (0.04), Pakistan (0.02), Bangladesh 
(−0.01), Paraguay (−0.02), Cameroon and Mauritania 
(−0.04), Jordan (−0.06), Burkina Faso and Afghanistan 
(−0.07), Benin and Senegal (−0.09), Oman (−0.10), India 
(−0.11), Syria and Nepal (−0.12), Gambia (−0.14), Togo 
(−0.17), Thailand (−0.24) and Myanmar (−0.29). Finally, 
two countries exhibit significant anti-persistent patterns, 
specifically Libya (−0.27) and Nigeria (−0.42). The time 
trend is significant in 49 countries, the highest coefficients 
being those corresponding to Kuwait (0.8274), Saudi 
Arabia (0.7463), Qatar (0.6784), UAE (0.6339), Iraq 

North Africa
INDIA −0.11 (−0.29, 0.16) 0.7991 (42.00) ------
NEPAL −0.12 (−0.32, 0.15) 0.2355 (6.90) −0.0026 (−3.08)
PAKISTAN 0.02 (−0.08, 0.16) 22.3880 (54.49) -----
West Asia and Middle East
BAHRAIN 0.24 (0.06, 0.50) 0.1026 (0.04) 0.1257 (2.49)
IRAN 0.34 (0.23, 0.49) 6.9583 (6.78) 0.1636 (6.91)
IRAQ 0.31 (0.17, 0.50) 19.6346 (4.44) 0.6325 (6.28)
SYRIA −0.12 (−0.24, 0.06) −0.0125 (−1.27) 0.0010 (4.11)
JORDAN −0.06 (−0.18, 0.10) −0.1473 (−2.81) 0.0188 (4.56)
KUWAIT 0.34 (0.20, 0.53) 51.8854 (7.81) 0.8274 (5.40)
OMAN −0.10 (−0.26, 0.18) 26.7653 (25.71) 0.3002 (11.85)
QATAR 0.46 (0.34, 0.66) 24.0736 (3.05) 0.6784 (3.39)
SAUDI ARABIA 0.37 (0.26, 0.54) 12.7233 (3.03) 0.7463 (7.84)
SYRIA 0.15 (0.04, 0.30) 0.6866 (2.74) 0.0820 (3.93)
TURKEY 0.15 (0.03, 0.32) 0.0666 (1.61) 0.0022 (2.36)
U.A.E. 0.43 (0.32, 0.59) 30.68761 (3.99) 0.6339 (3.36)
YEMEN 0.46 (0.28, 0.71) 1.8171 (2.30) 0.1815 (5.14)
East Asia and Pacific
AUSTRALIA 0.14 (−0.06, 0.44) 3.5900 (4.74) 0.0406 (2.35)
CHINA 0.36 (0.23, 0.55) 0.1342 (2.63) ------
MYANMAR −0.29 (−0.52, 0.02) 0.0091 (2.42) 0.0038 (6.82)
THAILAND −0.24 (−0.42, 0.01) −0.0085 (−0.39) 0.0020 (3.68)
America
ARGENTINA 0.08 (−0.10, 0.38) 0.0134 (2.26) 0.0039 (3.48)
MEXICO 0.13 (−0.03, 0.37) 0.1212 (3.11) 0.0041 (4.72)
PARAGUAY −0.02 (−0.15, 0.16) 0.4142 (4.47) ------
U.S.A. 0.27 (0.10, 0.50) 0.0988 (2.06) 0.0054 (5.04)
Column 2 reports the estimate of d and in brackets the corresponding 95% confidence intervals, whilst column 3 and 4 report the estimates of 
the intercept and of the coefficient on the time trend respectively as well as the corresponding t-values in brackets; --- indicates lack of statisti-
cal significance

Table 2  (continued) 
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North Africa
Country No terms A constant A constant and a linear trend
ALGERIA 0.73 (0.47, 1.06) 0.55 (0.40, 0.74) 0.36 (0.13, 0.65)
DJIBOUTI 0.28 (0.12, 0.51) 0.35 (0.17, 0.58) −0.21 (−0.73, 0.24)
EGYPT 0.42 (0.28, 0.61) 0.47 (0.30, 0.66) 0.22 (0.04, 0.50)
LIBYA 0.19 (0.08, 0.37) 0.28 (0.11, 0.46) −0.52 (−1.08, −0.11)
MOROCCO 0.39 (0.27, 0.60) 0.45 (0.32, 0.59) 0.13 (−0.06, 0.40)
TUNISIA 0.59 (0.35, 0.95) 0.55 (0.34, 0.93) 0.54 (0.14, 0.94)
Sub-Saharian Africa
BENIN 0.28 (0.15, 0.44) 0.34 (0.18, 0.51) −0.42 (−0.75, −0.03)
BURKINA FASO 0.35 (0.21, 0.54) 0.42 (0.27, 0.61) −0.32 (−0.71, 0.21)
CAMEROON 0.29 (0.13, 0.46) 0.34 (0.18, 0.51) −0.09 (−0.38, 0.17)
CHAD 0.58 (0.44, 0.75) 0.61 (0.48, 0.76) 0.41 (0.20, 0.64)
ERITREA 0.52 (0.40, 0.72) 0.57 (0.45, 0.74) 0.24 (0.03, 0.57)
ETHIOPIA 0.23 (0.12, 0.39) 0.36 (0.20, 0.53) −0.67 (−1.04, 0.11)
GAMBIA 0.30 (0.18, 0.47) 0.35 (0.21, 0.51) −0.19 (−0.44, 0.12)
GHANA
MALI

0.16 (−0.02, 0.42) 0.19 (−0.05, 0.45) −0.09 (−0.60, 0.29)

MALI 0.28 (0.19, 0.38) 0.42 (0.28, 0.55) −1.21 (−1.86, −0.58)
MAURITANIA 0.25 (0.16, 0.37) 0.40 (0.25, 0.53) −0.54 (−0.95, −0.13)
MOZAMBIQUE 0.12 (−0.15, 0.37) 0.12 (−0.12, 0.38) 0.08 (−0.15, 0.34)
NIGER 0.41 (0.30, 0.56) 0.48 (0.36, 0.62) −0.03 (−0.27, 0.25)
NIGERIA 0.28 (0.17, 0.40) 0.35 (0.22, 0.49) −0.69 (−0.87, −0.39)
SENEGAL 0.36 (0.23, 0.51) 0.43 (0.30, 0.57) −0.33 (−0.75, 0.17)
SOUTH AFRICA −0.05 (−0.24, 0.21) −0.06 (−0.32, 0.26) −0.42 (−0.88, 0.05)
SOMALIA 0.41 (0.24, 0.96) 0.51 (0.34, 0.97) −0.14 (−0.49, 0.98)
SOUTH SUDAN 0.25 (0.07, 0.49) 0.28 (0.08, 0.49) 0.03 (−0.22, 0.34)
SUDAN 0.45 (0.33, 0.64) 0.51 (0.38, 0.68) 0.17 (0.04, 0.49)
TOGO 0.09 (−0.07, 0.32) 0.12 (−0.09, 0.39) −0.53 (−1.06, 0.04)
Central Asia
KAZAKHSTAN 0.54 (0.21, 0.85) 0.49 (0.20, 0.83) 0.48 (0.16, 0.83)
TAJIKISTAN 0.84 (0.55, 1.13) 0.84 (0.48, 1.13) 0.83 (0.57, 1.14)
UZBEKISTAN 0.68 (0.25, 1.00) 0.59 (0.18, 1.00) 0.68 (0.30, 1.01)
South Asia
AFGHANISTAN 0.55 (0.37, 0.79) 0.52 (0.39, 0.68) 0.34 (0.15, 0.56)
BANGLADESH 0.11 (−0.17, 0.43) 0.07 (−0.12, 0.37) −0.24 (−0.51, 0.17)
INDIA −0.11 (−0.19, 0.35) −0.48 (−0.80, −0.08) −0.54 (−0.82, −0.15)
NEPAL 0.01 (−0.29, 0.40) 0.01 (−0.34, 0.31) −0.42 (−0.74, 0.09)
PAKISTAN 0.70 (0.40, 0.99) 0.22 (0.03, 0.49) 0.18 (−0.01, 0.48)
West Asia and Middle East
BAHRAIN 0.15 (−0.04, 0.47) 0.17 (−0.04, 0.47) −0.05 (−0.41, 0.41)
IRAN 0.61 (0.45, 0.83) 0.59 (0.45, 0.75) 0.40 (0.25, 0.63)
IRAQ 0.60 (0.36, 1.03) 0.58 (0.44, 0.89) 0.42 (0.11, 0.90)
SYRIA 0.18 (0.02, 0.42) 0.21 (0.03, 0.46) −0.05 (−0.29, 0.32)
JORDAN 0.28 (0.10, 0.54) 0.31 (0.12, 0.56) 0.13 (−0.10, 0.47)
KUWAIT 0.73 (0.38, 1.08) 0.62 (0.44, 1.07) 0.54 (0.09, 1.06)
OMAN 0.18 (0.12, 0.40) 0.40 (0.27, 0.59) −0.30 (−0.47, 0.02)
QATAR 0.52 (0.37, 0.80) 0.57 (0.42, 0.78) 0.41 (0.21, 0.71)
SAUDI ARABIA 0.63 (0.50, 0.90) 0.70 (0.58, 0.90) 0.49 (0.28, 0.83)
SYRIA 0.42 (0.26, 0.64) 0.44 (0.29, 0.64) 0.30 (0.11, 0.57)
TURKEY 0.33 (0.17, 0.57) 0.37 (0.21, 0.58) 0.23 (0.01, 0.56)
U.A.E. 0.59 (0.43, 0.87) 0.65 (0.51, 0.88) 0.54 (0.34, 0.84)
YEMEN 0.53 (0.42, 0.71) 0.63 (0.51, 1.23) 0.27 (−0.01, 0.77)
East Asia and Pacific
AUSTRALIA 0.03 (−0.08, 0.26) 0.06 (−0.18, 0.34) −0.24 (−0.60, 0.14)
CHINA 0.35 (−0.01, 1.04) 0.30 (−0.03, 0.71) 0.35 (0.01, 0.69)

Table 3  Estimates of d under three deterministic specifications. Autocorrelated errors
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North Africa
MYANMAR −0.02 (−0.15, 0.17) −0.03 (−0.22, 0.21) −1.03 (−1.69, −0.32)
THAILAND −0.11 (−0.28, 0.14) −0.15 (−0.41, 0.17) −0.55 (−1.17, −0.08)
America
ARGENTINA 0.10 (−0.09, 0.64) 0.13 (−0.13, 0.51) 0.08 (−0.29, 0.86)
MEXICO 0.19 (0.06, 0.48) 0.28 (0.08, 0.52) −0.06 (−0.39, 0.33)
PARAGUAY 0.06 (−0.25, 0.53) 0.06 (−0.23, 0.48) 0.10 (−0.20, 0.57)
U.S.A. 0.25 (0.07, 0.54) 0.30 (0.11, 0.50) 0.05 (−0.29, 0.41)
In bold the selected specification on the basis of the statistical significance of the deterministic components. The reported values are the esti-
mates of d, and in brackets the corresponding 95% confidence intervals

Table 3  (continued) 

North Africa
Country diff. par. (95% band) Intercept (t-value) Time trend (t-value)
ALGERIA 0.36 (0.13, 0.65) 20.3542 (6.10) 0.4693 (6.04)
DJIBOUTI −0.21 (−0.73, 0.24) −0.7076 (−1.19) 0.2368 (15.80)
EGYPT 0.22 (0.04, 0.50) 0.4061 (0.43) 0.1069 (5.03)
LIBYA −0.52 (−1.08, −0.11) 0.2828 (−1.08) 0.0681 (24.87)
MOROCCO 0.13 (−0.06, 0.40) 1.2932 (−0.06) 0.0849 (8.95)
TUNISIA 0.54 (0.14, 0.94) 0.1199 (0.05) 0.1442 (2.53)
Sub-Saharian Africa
BENIN −0.42 (−0.75, −0.03) −0.3207 (−5.66) 0.0443 (28.22)
BURKINA FASO −0.32 (−0.71, 0.21) −0.7488 (−3.14) 0.1559 (24.69)
CAMEROON −0.09 (−0.38, 0.17) −0.1676 (−2.20) 0.0181 (9.80)
CHAD 0.41 (0.20, 0.64) −1.6176 (−0.85) 0.2388 (5.22)
ERITREA 0.24 (0.03, 0.57) −0.6227 (−1.03) 0.1176 (8.64)
ETHIOPIA −0.67 (−1.04, 0.11) 0.7013 (42.74) 0.0409 (81.60)
GAMBIA −0.19 (−0.44, 0.12) −0.4760 (−4.06) 0.0361 (12.23)
GHANA
MALI

−0.09 (−0.60, 0.29) −0.0912 (−0.60) 0.0073 (5.78)

MALI −1.21 (−1.86, −0.58) 15.2272 (446.99) 0.6133 (485.57)
MAURITANIA −0.54 (−0.95, −0.13) 15.5827 (60.43) 0.5006 (66.88)
MOZAMBIQUE 0.08 (−0.15, 0.34) 0.0028 (0.12) 0.0009 (1.71)
NIGER −0.03 (−0.27, 0.25) −1.7392 (−1.80) 0.4081 (17.80)
NIGERIA −0.69 (−0.87, −0.39) −0.3105 (−13.76) 0.0384 (55.49)
SENEGAL −0.33 (−0.75, 0.17) 0.0233 (1.24) 0.2259 (5.37)
SOUTH AFRICA −0.42 (−0.88, 0.05) −0.0044 (−2.26) 0.0003 (6.36)
SOMALIA −0.14 (−0.49, 0.98) 0.0045 (00.25) 0.0063 (14.53)
SOUTH SUDAN 0.03 (−0.22, 0.34) −0.8439 (−2.25) 0.0466 (5.35)
SUDAN 0.17 (0.04, 0.49) 0.2383 (0.19) 0.2875 (10.36)
TOGO −0.53 (−1.06, 0.04) −0.0658 (−5.00) 0.0055 (14.53)
Central Asia
KAZAKHSTAN 0.48 (0.16, 0.83) 0.0183 (0.14) 0.0064 (1.87)
TAJIKISTAN 0.84 (0.55, 1.13) ------ ------
UZBEKISTAN 0.68 (0.25, 1.00) ------ ------
South Asia
AFGHANISTAN 0.34 (0.15, 0.56) 3.2783 (3.19) 0.0940 (3.96)
BANGLADESH −0.24 (−0.51, 0.17) 0.2914 (7.70) −0.0049 (−5.08)
INDIA −0.54 (−0.82, −0.15) 8.2815 (61.02) 0.0132 (3.36)
NEPAL −0.42 (−0.74, 0.09) 0.2361 (17.65) −0.0025 (−6.91)
PAKISTAN 0.22 (0.03, 0.49) 22.5716 (27.01) ------
West Asia and Middle East
BAHRAIN −0.05 (−0.41, 0.41) −0.2843 (−0.28) 0.1259 (5.29)
IRAN 0.40 (0.25, 0.63) 7.1588 (6.21) 0.1621 (5.88)

Table 4  Estimated coefficients from the selected models. Autocorrelated errors
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5  Conclusions

The number of hot days, namely those with temperatures 
above 35 °C, is often used as a measure of global warming 
and as the basis to design appropriate policies to tackle cli-
mate change. This paper uses fractional integration meth-
ods to obtain comprehensive evidence on how this variable 
has evolved in 54 countries from various regions of the 
world over the period from 1950 to 2022. The chosen 

(−0.3), Syria and Bahrain (−0.05), Mexico (−0.06), Cam-
eron and Ghana (−0.09), Somalia (−0.14) Gambia (−0.19), 
Djibouti (−0.21), Bangladesh and Australia (−0.24), 
Oman (−0.30), Burkina Faso (−0.32), Senegal (−0.33), 
Nepal and South Africa (−0.42), Togo (−0.53), and Eritrea 
and Ethiopia (−0.67). Further, 8 countries exhibit anti-
persistence (d < 0), namely Benin (−0.42), Libya (−0.52), 
India and Mauritania (−0.54), Thailand (−0.55), Nigeria 
(−0.69), Myanmar (−1.09) and Mali (−1.21). Finally, 
the countries with the highest time trend coefficients are 
Kuwait (0.8714), Saudi Arabia (0.7323), Qatar (0.6844), 
Iraq (0.6428), U.A.E. (0.6182), Mali (0.6122), Mauritania 
(0.5006) and Algeria (0.4693). Tables 5 and 6 provide a 
summary of the results concerning the time trends and the 
degree of persistence respectively.

North Africa
IRAQ 0.42 (0.11, 0.90) 19.2862 (3.51) 0.6428 (4.81)
SYRIA −0.05 (−0.29, 0.32) −0.0119 (−0.98) 0.0009 (3.39)
JORDAN 0.13 (−0.10, 0.47) −0.1355 (−0.46) 0.0192 (2.90)
KUWAIT 0.54 (0.09, 1.06) 48.2138 (5.18) 0.8714 (3.29)
OMAN −0.30 (−0.47, 0.02) 26.4727 (46.62) 0.3088 (20.65)
QATAR 0.41 (0.21, 0.71) 23.2478 (3.21) 0.6844 (3.93)
SAUDI ARABIA 0.49 (0.28, 0.83) 14.0864 (2.82) 0.7323 (5.59)
SYRIA 0.30 (0.11, 0.57) 0.9216 (0.69) 0.0804 (2.67)
TURKEY 0.23 (0.01, 0.56) 0.0741 (1.47) 0.0021 (1.82)
U.A.E. 0.54 (0.34, 0.84) 32.3177 (3.57) 0.6182 (2.40)
YEMEN 0.27 (−0.01, 0.77) 1.1794 (1.23) 0.1962 (9.10)
East Asia and Pacific
AUSTRALIA −0.24 (−0.60, 0.14) 3.5276 (14.55) 0.0396 (6.36)
CHINA 0.30 (−0.03, 0.71) 0.1312 (2.65) ------
MYANMAR −1.03 (−1.69, −0.32) −0.0148 (7.01) 0.0037 (49.63)
THAILAND −0.55 (−1.17, −0.08) −0.0551 (−0.67) 0.0019 (8.08)
America
ARGENTINA 0.08 (−0.29, 0.86) 0.0134 (0.26) 0.0039 (3.48)
MEXICO −0.06 (−0.39, 0.33) 0.1226 (5.44) 0.0040 (7.51)
PARAGUAY 0.06 (−0.23, 0.48) 0.4202 (2.98) ------
U.S.A. 0.05 (−0.29, 0.41) 0.10004 (3.75) 0.0052 (8.41)
Column 2 reports the estimate of d and in brackets the corresponding 95% confidence intervals, whilst column 3 and 4 report the estimates of 
the intercept and of the coefficient on the time trend respectively as well as the corresponding t-values in brackets; --- indicates lack of statisti-
cal significance

Table 4  (continued) 

Table 5  Summary results. Time trends
No autocorrelation With autocorrelation
Highest time trends No time 

trends
Highest time trends No time 

trends
Kuwait (0.8274)
Saudi Arabia (0.7463)
Qatar (0.6784)
U.A.E. (0.6339)
Iraq (0.6325)
Mali (0.6218)
Mauritania (0.5061)
Algeria (0.4739)

Morocco
India
Pakistan
China
Paraguay

Kuwait (0.8714)
Saudi Arabia (0.7323)
Qatar (0.6844)
Iraq (0.6428)
U.A.E. (0.6182)
Mali (0.6122)
Mauritania (0.5006)
Algeria (0.4693)

Tajikistan
Uzbekistan
Pakistan
China
Paraguay

Table 6  Summary results. Persistence
No autocorrelation With autocorrelation
Highest d Lowest d Highest d Lowest d
Tajkistan (0.48)
Qatar (0.46)
Yemen (0.46)
U.A.E. (0.43)
Saudi Arabia 
(0.37)
Chad (0.36)
China (0.36)
Iran (0.34)
Kuwait (0.34)
Sudan (0.33)
Mali (0.31)
Iraq (0.31)

Nigeria (−0.42)
Myanmar 
(−0.29)
Libya (−0.27)
Thailand (−0.24)
Togo (−0.17)
South Africa 
(−0.15)
Gambia (−0.14)
Nepal (−0.12)
Syria (−0.12)
India (−0.11)
Oman (−0.10)

Tajkistan (0.84)
Uzbekistan (0.68)
Kuwait (0.53)
U.A.E. (0.54)
Tunisia (0.54)
Saudi Arabia (0.49)
Kazakhstan (0.48)
Iraq (0.42)
Qatar (0.41)
Chad (0.40)
Iran (0.40)
Algeria (0.36)
Afghanistan (0.34)

Mali (−1.21)
Myanmar 
(−1.03)
Nigeria 
(−0.69)
Ethiopia 
(−0.67)
Thailand 
(−0.55)
India (−0.54)
Mauritania 
(−0.54)
Togo (−0.53)
Libya (−0.52)
Benin (−0.42)
Nepal (−0.42)
South Africa 
(−0.42)
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In other countries the estimates instead imply the pres-
ence of anti-persistence. These include Nigeria, Libya, 
Ethiopia, Mauritania, Myanmar, Thailand and India, with 
the coefficients being even bigger in absolute terms under 
the assumption of autocorrelated errors, for instance in 
Mali and Myanmar. The anti-persistence identified in these 
cases reflects climate patterns determined by extreme events 
counteracting each other over time and resulting in more 
pronounced and less predictable fluctuations. This feature 
may be associated with local factors such as massive defor-
estation, abrupt land-use changes, seasonal variability and 
socio-political instabilities, that limit the capacity of ecosys-
tems and social systems to respond to climate change. In the 
case of Nigeria, for example, thermal fluctuations could be 
related to the impact of massive deforestation (Zaccheaus 
2015), while in Myanmar and Libya, political and social 
instabilities have resulted in less effective climate change 
monitoring. In terms of climate change such patterns imply 
that these regions are highly vulnerable to sudden and vari-
able weather changes. This phenomenon requires further 
analysis to develop adaptive strategies aimed at mitigating 
the risks inherent in this unusual thermal behaviour.

To sum up, the findings in this study indicate diverse 
climate patterns in different regions of the world, some of 
them, such as the Middle East and Sub-Saharan Africa, 
being characterised by pronounced upward trends and high 
persistence in the number of hot days, whilst in others there 
is less evidence of sustained warming. The observed differ-
ences reflect the interaction between the global phenomenon 
of climate change and local factors affecting warming. This 
evidence underscores the importance of adopting differenti-
ated approaches to mitigate the effects of climate change, 
prioritising strategies that address both global factors and 
specific local dynamics.

A limitation of the present study is the use of a uniform 
absolute threshold of 35 °C to define a hot day in all countries 
analysed. While there is no universally accepted definition 
of this concept and that relative or locally adjusted thresh-
olds would ideally be adopted, the choice of this threshold 
is justified for reasons of methodological comparability 
between countries and over time. Moreover, this threshold 
has support in the literature as an indicator of thermal health 
risk conditions in many regions (Raymond et al. 2020; Lu 
et al. 2023; Sun et al. 2018). However, we recognize that 
this choice may not adequately capture regional climatic 
diversity or differential impacts of extreme heat. Therefore, 
as a line of research, we propose to complement this analy-
sis using other available thresholds (such as 40–42 °C) and 
explore relative definitions more sensitive to the local cli-
mate context which would allow for a more accurate charac-
terization of thermal extremes and their implications. Work 
in this direction is now in progress.

modelling approach is most informative about the behav-
iour of the series as it provides evidence on the possible 
presence of time trends, on whether or not mean reversion 
occurs, and on the degree of persistence, with important 
implications for the design of effective climate policies. 
In brief, the findings indicate considerable heterogeneity 
among the countries studied.

More specifically, the results show that the Middle East-
ern countries (in particular Kuwait, Saudi Arabia and Qatar) 
are those with the most pronounced upward trends. This 
result is in agreement with previous studies indicating that 
the Middle East, especially the Arabian Peninsula, is expe-
riencing faster warming than the global average (Zittis et al. 
2022; Masoudi et al. 2024).

Warming in this region is driven by a combination of 
global factors such as increased greenhouse gases (Malik 
et al. 2024) and local factors such as desertification, vege-
tation decrease and the urban heat island effect in densely 
populated cities (Adamo et al. 2022). Since this geograph-
ical area is characterised by arid and semi-arid climates, it 
is particularly vulnerable to small variations in tempera-
ture due to the limited capacity of the ecosystem to buffer 
climatic changes (Malik et al. 2024; Zittis et al. 2022).

Worrying positive trends are also found in the case of 
sub-Saharan Africa, where climatic conditions already 
severely limit water availability and agricultural produc-
tivity. In this region, global warming not only intensifies 
droughts, but also increases the frequency and intensity 
of heat waves, with direct effects on public health and 
food security (Ahmed 2020).

By contrast, there is less evidence of concerning trends 
in countries such as Morocco, China, India and Paraguay, 
which appear to be characterised by a more stable cli-
mate. This is likely to reflect local factors, such as effec-
tive environmental policies, higher levels of vegetation or 
natural climate variability, which counteract the effects of 
global warming. In particular, in India and China efforts 
to reduce emissions through climate policies and refores-
tation programmes could be contributing to this behaviour 
(Yu et al. 2020; Li et al. 2022).

As for persistence, the results based on white noise 
errors indicate that Tajikistan, Qatar, Yemen, UAE and 
Saudi Arabia are the countries where long-range depen-
dence is most apparent. This could reflect reduced rain-
fall, increased greenhouse gas emissions and the retreat 
of resilient ecosystems. Under the assumption of auto-
correlated errors an even higher degree of persistence is 
estimated in countries such as Tajikistan, Uzbekistan and 
Kuwait. In Central Asia this evidence could be linked 
to increasing aridity and altered atmospheric patterns 
resulting from both human activity and natural phenom-
ena (Alahmad et al. 2022; Zong et al. 2020).
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