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Abstract

This paper uses fractional integration methods to obtain comprehensive evidence on the evolution of the number of hot
days, defined as those with temperatures above 35 °C, in 54 countries from various regions of the world over the period
from 1950 to 2022. The variable analysed is a key indicator of global warming, and the chosen modelling approach is
most informative about the behaviour of the series as it provides evidence on the possible presence of time trends, on
whether or not mean reversion occurs, and on the degree of persistence. In brief, the findings indicate the presence of
considerable heterogeneity among the countries studied and highlight the importance of tailored climate policies based

on both global and local factors.

1 Introduction

Analysing the evolution of maximum temperatures and the
frequency of hot days is crucial to understand the impact
of climate change. Existing studies point to a significant
increase in average maximum temperature in several
regions of the world (Yan et al. 2020; Francis and Fon-
seca 2024; Ogunrinde et al. 2024; etc.). This increase,
combined with more frequent heat waves, is transforming
weather patterns dramatically. The regions most affected
include North Africa, sub-Saharan Africa, Central and
West Asia, the Mediterranean and parts of the Americas.
These changes are exacerbating aridity over vast tracts of
land, with profound implications for food security, water
resource availability, and both local and transnational
migration patterns (Sun et al. 2018; Linares et al. 2020;
Issa et al. 2023).

In particular, in Central Asia, North Africa and West
Africa there has been a marked increase in maximum
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temperatures from previous ranges of 36-39 °C to new
ones of 39—42 °C in several areas (Ogunrinde et al. 2024).
In sub-Saharan Africa and the Sahel, models project even
more extreme temperature increases between 3 and 6 °C
by the end of the 21 st century (Weber et al. 2018; Ofori
et al. 2021).

Heat waves, a climatic phenomenon associated with sig-
nificant risks to public health and the economy, are also on
the rise. In West and Central Africa, a considerable increase
in both their frequency and duration is expected, especially
in the most arid and vulnerable areas (Diedhiou et al. 2018).
Similarly, in North Africa and West Asia, extreme tempera-
tures not only affect the quality of life, but are also closely
linked to an increase in the likelihood of socio-political
conflicts and forced migrations (Abdel, 2024).

In East Africa, climate records highlight concerning
upward trends in both maximum and minimum tempera-
tures, underscoring the urgent need to implement sustain-
able, local-scale adaptation measures. These strategies must
be based on a thorough understanding of the specific needs
of the affected communities (Gebrechorkos et al. 2019).

The Mediterranean and the Middle East, regions which
are particularly vulnerable to climate change, are also expe-
riencing warming at an increasing rate. This phenomenon
is more pronounced during the spring and summer seasons
(Hadjinicolaou et al. 2023; Francis and Fonseca 2024).
These trends affect local ecosystems, agricultural produc-
tion and water resources, aggravating living conditions in
communities already facing climate challenges.
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In China, there has also been a sharp increase in maxi-
mum temperatures and the frequency of hot days, especially
since the 1990s (Yan et al. 2020; Zhou and Lu 2021). In
Australia, positive trends of more than 0.6 °C per decade
have been detected in the highest temperatures of the year,
and heat waves are becoming more intense, prolonged and
frequent, affecting human health, agriculture and urban sys-
tems (Papari et al. 2020). Frederiksen and Osbrough (2022)
analyse the systematic changes in precipitation and temper-
atures, both mean and extreme, in Australia since the begin-
ning of the 20th century, identifying transitions towards a
warmer and drier climate. They conclude that, over the last
two decades, there has been a significant increase in the fre-
quency of temperature extremes and a marked decrease in
precipitation in the southwest and southeast of the country
due to alterations in atmospheric circulation and possible
climate tipping points. The same is happening in the US,
where the frequency of extreme heat events is also increas-
ing (Ombadi and Risser., 2022; Ibebuchi et al. 2024).

This context requires the development and implementa-
tion of region-specific adaptation strategies. These should
consider the characteristics of agricultural, water and social
systems, as well as the intrinsic vulnerability of each area
to projected climate changes. Therefore, there is a need
for studies evaluating the evolution and long-term patterns
of maximum temperatures and extreme events. These are
essential to identify trends, validate climate models and
design informed and sustainable adaptation policies.

The present study contributes to this area of the litera-
ture by analysing annual data on the evolution of days with
temperatures above 35 °C over the period from 1950 to
2022 in 54 countries from different regions of the world,
including sub-Saharan Africa (Benin, Burkina Faso, Cam-
eroon, Chad, Eritrea, Ethiopia, Gambia, Ghana, Mali,
Mauritania, Mozambique, Niger, Nigeria, Senegal, South
Africa, Somalia, South Sudan, Sudan, Sudan and Togo),
Central Asia (Kazakhstan, Tajikistan, Uzbekistan), South
Asia (Afghanistan, Bangladesh, India, Nepal, Pakistan),
North Africa (Algeria, Djibouti, Egypt, Libya, Morocco
and Tunisia), West Asia and the Middle East (Bahrain, Iran,
Iraq, Syria, Jordan, Kuwait, Oman, Qatar, Saudi Arabia,
Turkey, United Arab Emirates and Yemen), East Asia and
Pacific (Australia, China, Myanmar and Thailand), as well
as parts of the Americas (Argentina, Mexico, Paraguay and
the United States). The analysis uses fractional integration
methods, which are ideally suited to our purposes. Note
that most of the existing literature on this topic is based on
the classical dichotomy between stationary (or integrated
of order 0, denoted as 1(0) and non-stationary (or I(1) series
(see, e.g., Woodward and Gray 1993; Stern and Kaufmann
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2000; Kaufmann et al. 2006, 2010; etc.). Such studies are
based on standard unit roots tests that are now known to
have very low power against fractional integration alterna-
tives (see, e.g., Diebold and Rudebusch 1991; Hassler and
Wolters, 1994; Lee and Schmidt 1996; etc.). By contrast,
a fractional integration framework (see Granger 1980;
Granger and Joyeux 1980; and Hosking 1981) is much
more general and flexible, since the differencing param-
eter d is allowed to take any real value, including fractional
ones. Consequently, it encompasses a much wider range
of stochastic processes, including the unit root case, and
provides key information about whether or not the series
of interest are mean-reverting (and thus on whether exog-
enous shocks have permanent or transitory effects) and on
their degree of persistence, with crucial implications for
climate change policies.

The remainder of the paper is structured as follows:
Section 2 briefly reviews the relevant literature; Section 3
introduces the modelling framework; Section 4 describes
the data and presents the empirical results; Section 5 offers
some concluding remarks.

2 Literature review

Understanding the evolution of temperatures and climatic
conditions and their long-term trends, as well as changes in
the frequency and intensity of extreme events, is essential
to develop models generating reliable forecasts (Papacha-
ralampous et al. 2018; Bahari and Hamid 2019; Liu et al.
2021; Domonkos et al. 2021; etc.). For this purpose, various
methods have been used.

O’Kane et al. (2024) investigate climate regime shifts
and tipping points in the Southern Hemisphere over the past
few decades using observational data, reanalyses, numeri-
cal simulations and machine learning techniques. Their
results reveal a marked transition in atmospheric circulation
and climate stability since the late 1970s, associated with
oceanic warming and an increase in extreme events. These
changes are directly linked to anthropogenic forcing and,
under high-emission scenarios, are expected to intensify in
the future.

Classical models, such as the autoregression integrated
moving average (ARIMA) one, are widely employed due
to their versatility in analysing and modelling stationary
and non-stationary series. ARIMA specifications allow to
decompose time series into trend, seasonal and noise com-
ponents, providing a useful framework for making short-
term temperature forecasts (Lai and Dzombak 2020; Dimri
et al. 2020). However, this approach has limitations in the
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presence of long-range dependence between the observa-
tions, as in the case of temperature data, since past weather
events may have persistent effects on future conditions
(Chen et al. 2023).

Other common methods include exponential smooth-
ing techniques (Taylor 2004), which prioritise recent
observations to capture dynamic changes, and decom-
position-based approaches such as seasonal or Fourier
analysis (Yang 2013). These methods are useful for iden-
tifying periodic or cyclical patterns in the series, such as
seasonal temperature variations. However, they are less
suitable for capturing long-term trends and for distin-
guishing between stationary and non-stationary compo-
nents in the series.

Regression analysis is another common tool, which is
often used for exploring relationships between temperatures
and variables such as greenhouse gas emissions, land use or
geographic factors. However, this approach assumes linear-
ity in the relationships, which may not be appropriate for
climate data that exhibit complex and nonlinear behaviour
(Deb and Jana 2021).

As already mentioned, a framework which is ideally
suited to model the behaviour of temperature series is the
autoregressive fractional integrated fractional moving
average (ARFIMA) model (Granger and Joyeux 1980;
Hosking 1981); this allows the differencing parameter
d to be any real number, including fractional ones as
opposed to integers only, and thus provides a more accu-
rate description of both short- and long-range dependence
(Huang et al. 2022), and it also yields more efficient esti-
mates (Bhardwaj et al. 2020). Its generality and flexibility
are particularly useful to distinguish between stationary
and non-stationary processes, which is crucial to avoid
erroneous conclusions about the evolution of weather pat-
terns, and to capture the long-range dependence or long
memory typically exhibited by temperatures (Caporale et
al. 2024, 2025; Gil Alana et al., 2022, 2024, 2025). Cli-
mate series are often influenced by long-term phenomena,
such as global warming, climate cycle variability or the
cumulative impact of anthropogenic changes (Twarog
2024), and therefore fractional integration techniques can
shed light on their degree of persistence. Finally, these
methods are a powerful tool for long-term forecasting of
temperatures (Lenti and Gil-Alana 2021; Gil-Alana et al.
2022, 2024, 2025; Chibuzor and Gil-Alana 2024; Vyushin
and Kushner 2009; Yuan et al. 2013) as they integrate sys-
tem memory, and thus generate more accurate predictions
reflecting underlying trends and persistence dynamics.
The main features of this approach are described in the
next section.

3 Fractional integration

Fractional integration can be defined in terms of the degree
of differencing required to produce stationary /() behav-
iour in a series. Specifically, a process x(?), t=0, 1, 2 ... is
said to be integrated of order d, and denoted as /(d), if it can
be written as:

1-LPz@)=u(t), t=1,2, ... (1)

where L stands for the lag operator, i.e., Lx(t)=x(t-1); d
is a real positive value, and u(?) is an /(0) process that can
be assumed to be a white noise process or alternatively a
weakly autocorrelated one as in the stationary AutoRegres-
sive Moving Average class of models.

The parameter d is called the differencing parameter; for
non-integer values of d, one can use the following Binomial
expansion of L, such that

d B [e'e] F (d—l) (_L)j
O-D%=) Fa iG]

where I is the gamma function, which is defined as:

I (2)= t*"te7td (t).

0\8

Alternatively, (1 — L)* can be expressed as a Taylor expan-
sion such that

afmdzghg<?>@wyzz17M+dwgnﬁfu.

and thus Eq. (1) becomes:

o) = da(t—1) - L1

z(t—2) + ... 4+ u(t).

Thus, for any non-integer d, x(z) becomes a function of all
its past history, and the higher the value of d is, the higher
the level of dependence between the observations.

Several cases can occur depending on the value of d,
namely:

i) antipersistence, if d<0, (e.g., when a process reverses
itself more often than a pure random process; pink noise
or 1/f noise),

ii) short memory, if d=0, (e.g., a white noise process, sta-
tionary ARMA, etc.),
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iii) stationary long memory, if 0<d<0.5,

iv) nonstationary mean reversion, if 0.5<d<1,

v) I(1) behaviour, if d=1, (e.g., a random walk process,
ARIMA(p, 1, q), etc.)

In the empirical application carried out in the following sec-
tion, we assume that x(?) are the errors in a regression model
including a linear time trend, i.e.,

yW)=a+Bt+x@),t=1,2, ... )

where y(?) is the observed series.

The estimation of d (and of the coefficients of the deter-
ministic terms, i.e., o and f) is based on a maximum likeli-
hood function expressed in the frequency domain. In fact,
we use a simple version of a testing approach developed in
Robinson (1994) and whose functional form can be found in
Gil-Alana and Robinson (1997). It considers of testing the
null hypothesis H,: d=d,, in the model given by Egs. (1) and
(2) for any d -values = —1 to 2 with 0.01 increments. The
test statistic selects the 95% confidence interval, while the
close value to zero approximates the maximum likelihood
estimate. A fundamental reason for using this approach is
that it is not restricted to the stationary range d>0.5) and
therefore it does not require preliminary differentiation in
case of nonstationary data. In addition, it is the most effi-
cient method in the “Pitman” when directed against local
departures from the null.

4 Data and empirical results

Data on the number of days per year with maximum temper-
ature above 35 °C are taken from the World Bank Climate
Change Knowledge Portal (2024), https://climateknowled
geportal.worldbank.org/); they are based on a heat index,
which is a measure of temperature including the influence
of atmospheric humidity and is constructed as explained in
World Bank Group (2025).

We recognize that there is no universally accepted defini-
tion of a hot day. The decision to use an absolute threshold
of 35 °C is based on methodological and practical reasons
as it allows homogeneous comparability across countries
and over time, which is essential for trend and persistence
analysis by fractional integration. In addition, this variable,
already calculated in the World Bank’s Climate Change Por-
tal database, is widely available and covered for 54 countries
over the period 1950-2022. The portal is based on precon-
structed climate indicators, including the annual number of
days with maximum temperatures above 35 °C. The indi-
cators are calculated from sources such as reanalyses and
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climate models. We should notice that the aggregation at the
national level may mask internal climate variations, espe-
cially in large countries, and we note this as a limitation of
the study in the conclusions.

Regarding the selection of countries and data sources,
it is important to note that the sample of 54 countries
was determined exclusively by the complete and continu-
ous availability of annual data for the period 1950-2022,
according to the records offered by the World Bank’s Cli-
mate Change Knowledge Portal. While we recognize that
this database may not reach the level of climatological
accuracy of sources such as ERAS5 or MERRA?2, its main
advantage lies in offering harmonized time series, compa-
rable across countries and open access, which allows for a
robust and reproducible implementation of the econometric
methods used. In future research, the integration of alterna-
tive sources of higher geoscientific resolution could be con-
sidered, as well as the use of local thresholds derived from
climate reanalyses.

The selected countries are all those for which data are
available for the entire period from 1950 to 2022; the
sample covers sub-Saharan Africa (Benin, Burkina Faso,
Cameroon, Chad, Eritrea, Ethiopia, Gambia, Ghana, Mali,
Mauritania, Mozambique, Niger, Nigeria, Senegal, South
Africa, Somalia, South Sudan, Sudan and Togo), Central
Asia (Kazakhstan, Tajikistan and Uzbekistan), South Asia
(Afghanistan, Bangladesh, India, Nepal, Pakistan), North
Africa (Algeria, Djibouti, Egypt, Libya, Morocco and Tuni-
sia), West Asia and Middle East (Bahrain, Iran, Iraq, Syria,
Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Turkey, United
Arab Emirates and Yemen), East Asia and Pacific (Austra-
lia, China, Myanmar and Thailand), as well as parts of the
Americas (Argentina, Mexico, Paraguay and the United
States).

Table 1 reports the estimates of d in Egs. (1) and (2) under
the assumption of white noise errors and for three different
model specifications. The estimation is carried out using a
general to specific approach. Column 4 shows the estimates
of d (and the corresponding 95% confidence bands) from
the most general model including both an intercept and a
linear time trend. If the latter is found to be statistically
insignificant, it is dropped from the regression, namely /S
is set equal to 0 in Eq. (2) and the model is re-estimated
including only an intercept as the deterministic component;
the corresponding estimates of d with their 95% confidence
bands are displayed in column 3. Finally, if the intercept is
also found to be insignificant, the model is re-estimated set-
ting a=f=0; column 2 reports the results obtained in this
case.

Table 1 shows the estimates of d, with those correspond-
ing to the selected models in bold. It can be seen that only
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Table 1 Estimates of d under three deterministic specifications. White noise errors

North Africa

Country
ALGERIA
DJIBOUTI
EGYPT
LIBYA
MOROCCO
TUNISIA

Sub-Saharian Africa

BENIN
BURKINA FASO
CAMEROON
CHAD
ERITREA
ETHIOPIA
GAMBIA

GHANA
MALI

MALI
MAURITANIA
MOZAMBIQUE
NIGER
NIGERIA
SENEGAL
SOUTH AFRICA
SOMALIA
SOUTH SUDAN
SUDAN

TOGO

Central Asia
KAZAKHSTAN
TAJIKISTAN
UZBEKISTAN
South Asia
AFGHANISTAN
BANGLADESH
INDIA

NEPAL
PAKISTAN

West Asia and Middle East

BAHRAIN
IRAN

IRAQ

SYRIA
JORDAN
KUWAIT
OMAN

QATAR

SAUDI ARABIA
SYRIA
TURKEY
UAGE.

YEMEN

East Asia and Pacific

AUSTRALIA
CHINA

No terms

0.39 (0.30, 0.56)
0.33(0.23,0.48)
0.34 (0.26, 0.46)
0.14 (0.07,0.24)
0.35(0.27,0.48)
0.30 (0.22,0.41)

0.27 (0.19, 0.40)
0.29 (0.22, 0.40)
0.23 (0.16, 0.35)
0.49 (0.49, 0.60)
0.48 (0.39, 0.59)
0.36 (0.27, 0.57)
0.21 (0.13, 0.31)
0.19 (0.09, 0.35)

0.30 (0.24, 0.38)
0.30 (0.24, 0.42)
0.28 (0.14, 0.47)
0.41 (0.34, 0.52)
0.21 (0.14, 0.30)
0.30 (0.23, 0.40)

~0.01 (-0.12, 0.16)

0.32 (0.24, 0.45)
0.26 (0.16, 0.41)
0.47 (0.38, 0.63)
0.08 (-0.01, 0.23)

0.25 (0.15, 0.38)
0.49 (0.38, 0.64)
0.23 (0.13, 0.37)

0.24 (0.17, 0.34)
0.13 (-0.01, 0.32)

~0.04 (~0.09, 0.34)

0.05 (~0.12, 0.26)
0.43 (~0.04, 0.62)

0.31(0.17, 0.52)
0.47 (0.38, 0.61)
0.42 (0.32, 0.60)
0.05 (—0.04, 0.17)
0.09 (—0.01, 0.20)
0.50 (0.36, 0.75)
0.17 (0.12, 0.36)
0.54 (0.42, 0.73)
0.50 (0.43, 0.62)
0.25 (0.17, 0.37)
0.22 (0.13, 0.36)
0.51 (0.41, 0.67)
0.54 (0.45, 0.70)

0.20 (0.06, 0.48)
0.45 (0.28, 0.70)

A constant

0.45 (0.38, 0.54)
0.39 (0.29, 0.53)
0.39(0.31, 0.51)
0.19 (0.10, 0.32)
0.41 (0.33,0.52)
0.34 (0.25, 0.44)

0.33 (0.24, 0.46)
0.36 (0.28, 0.47)
0.28 (0.19, 0.40)
0.52 (0.45, 0.61)
0.52 (0.45, 0.64)
0.47 (0.37, 0.62)
0.24 (0.15, 0.35)
0.21 (0.10, 0.38)

0.45 (0.38, 0.55)
0.47 (0.39, 0.59)
0.28 (0.14, 0.48)
0.48 (0.41, 0.58)
0.26 (0.18, 0.36)
0.37 (0.30, 0.47)

~0.01 (~0.14, 0.18)

0.40 (0.31, 0.52)
0.28 (0.18, 0.42)
0.51 (0.43, 0.64)
0.10 (~0.01, 0.26)

0.26 (0.16, 0.39)
0.48 (0.37, 0.63)
0.25 (0.14, 0.38)

0.31 (0.23, 0.40)
0.11 (-0.01, 0.30)

—0.11 (—0.29, 0.16)

0.04 (—0.09, 0.20)
0.02 (—0.08, 0.16)

0.33(0.19, 0.54)
0.53 (0.46, 0.63)
0.46 (0.38, 0.56)
0.06 (~0.04, 0.19)
0.10 (-0.01, 0.22)
0.45 (0.36, 0.55)
0.36 (0.28, 0.49)
0.54 (0.45, 0.69)
0.56 (0.50, 0.65)
0.28 (0.19, 0.40)
0.24 (0.14, 0.38)
0.52 (0.44, 0.64)
0.62 (0.53, 0.76)

0.25 (0.10, 0.48)
0.36 (0.23, 0.55)

A constant and a linear trend
0.19 (0.08, 0.35)

0.13 (-0.05, 0.39)

0.20 (0.09, 0.37)

—0.27 (-0.44, —0.02)

0.15 (0.02, 0.34)

0.16 (0.02, 0.33)

~0.09 (—0.28, 0.46)
—0.07 (-0.24, 0.47)
—0.05 (=0.18, 0.40)
0.36 (0.25, 0.61)
0.29 (0.16, 0.64)
0.26 (0.00, 0.62)
~0.14 (-0.28, 0.35)
0.04 (—0.12, 0.25)

0.31 (—0.54, 0.03)
—0.04 (-0.23, 0.25)
0.25 (0.12, 0.46)
0.11 (0.02, 0.31)
~0.42 (~0.57, —0.17)
~0.09 (~0.27, 0.14)
~0.15 (-0.32, 0.09)
0.08 (—0.11, 0.35)
0.12 (-0.01, 0.32)
0.33 (0.17, 0.57)
~0.17 (<0.37, 0.09)

0.17 (0.04, 0.33)
0.48 (0.37, 0.63)
0.18 (0.05, 0.33)

0.07 (-0.03, 0.21)
~0.01 (-0.18, 0.23)
~0.14 (-0.32, 0.14)
—0.12 (-0.32, 0.15)
~0.01 (-0.11, 0.14)

0.24 (0.06, 0.50)
0.34 (0.23, 0.49)
0.31 (0.17, 0.50)
~0.12 (=0.24, 0.06)
~0.06 (-0.18, 0.10)
0.34 (0.20, 0.53)
~0.10 (-0.26, 0.18)
0.46 (0.34, 0.66)
0.37 (0.26, 0.54)
0.15 (0.04, 0.30)
0.15 (0.03, 0.32)
0.43 (0.32, 0.59)
0.46 (0.28, 0.71)

0.14 (—0.06, 0.44)
0.36 (0.23, 0.55)
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Table 1 (continued)

North Africa

MYANMAR 0.03 (=0.06, 0.17) 0.04 (-0.08, 0.21) —0.29 (-0.52, 0.02)
THAILAND —0.06 (-0.16, 0.10) —0.07 (-0.20, 0.12) —0.24 (-0.42, 0.01)
America

ARGENTINA 0.11 (-0.02, 0.33) 0.12 (-0.01, 0.32) 0.08 (—0.10, 0.38)
MEXICO 0.24 (0.14, 0.42) 0.31(0.20, 0.47) 0.13 (-0.03, 0.37)
PARAGUAY —0.02 (-0.14, 0.17) —0.02 (—0.15, 0.16) —0.01 (—0.15, 0.17)
US.A. 0.35(0.24, 0.55) 0.41(0.30, 0.57) 0.27 (0.10, 0.50)

In bold the selected specification on the basis of the statistical significance of the deterministic components. The reported values are the esti-

mates of d, and in brackets the corresponding 95% confidence intervals

in five countries, namely Mozambique, India, Nepal, China
and Paraguay, the time trend is not statistically significant
and is not included in the preferred specification. The entire
set of estimated coefficients corresponding to the latter is
instead shown for each country in Table 2.

Concerning the estimates of d, it can be seen that the
highest degrees of persistence are found in the cases of
Tajikistan (d=0.48), Qatar (0.46), Yemen (0.46), UAE
(0.43) and Saudi Arabia (0.37). This parameter is sig-
nificantly positive in 24 countries in total, the additional

Table 2 Estimated coefficients from the selected models. White noise errors

North Africa

Country
ALGERIA
DIJIBOUTI
EGYPT

LIBYA
MOROCCO
TUNISIA
Sub-Saharian Africa
BENIN
BURKINA FASO
CAMEROON
CHAD
ERITREA
ETHIOPIA
GAMBIA

GHANA
MALI

MALI
MAURITANIA
MOZAMBIQUE
NIGER
NIGERIA
SENEGAL
SOUTH AFRICA
SOMALIA
SOUTH SUDAN
SUDAN

TOGO

Central Asia
KAZAKHSTAN
TAJIKISTAN
UZBEKISTAN
South Asia
AFGHANISTAN
BANGLADESH

diff. par. (95% band)
0.19 (0.08, 0.35)
0.13 (-0.05, 0.39)
0.20 (0.09, 0.37)
—0.27 (-0.44, —0.02)
0.15 (0.02, 0.34)
0.16 (0.02, 0.33)

~0.09 (~0.28, 0.46)
~0.07 (~0.24, 0.47)
~0.05 (~0.18, 0.40)
0.36 (0.25, 0.61)
0.29 (0.16, 0.64)
0.26 (0.00, 0.62)
~0.14 (-0.28, 0.35)
0.04 (—0.12, 0.25)

0.31 (~0.54, 0.03)
~0.04 (-0.23, 0.25)
0.28 (0.14, 0.48)
0.11 (=0.02, 0.31)
~0.42 (-0.57, -0.17)
~0.09 (<027, 0.14)
~0.15 (~0.32, 0.09)
0.08 (-0.11, 0.35)
0.12 (-0.01, 0.32)
0.33(0.17, 0.57)
~0.17 (<0.37, 0.09)

0.17 (0.04, 0.33)
0.48 (0.37, 0.63)
0.18 (0.05, 0.33)

0.07 (-0.03, 0.21)
—0.01 (-0.18, 0.23)

Intercept (t-value)
19.1234 (8.46)
—0.7466 (—0.46)
0.3750 (0.41)
0.2672 (2.28)
1.3111 (2.97)
—0.2058 (-2.21)

~0.3268 (~1.99)
~0.7746 (-1.71)
~0.1669 (~1.94)
~1.8865 (~1.09)
~0.5539 (~0.81)
0.5729 (2.11)

~0.4767 (~3.49)
~0.0906 (~1.98)

14.9884 (25.38)
15.4798 (12.34)
0.0419 (1.76)

~1.5606 (~1.07)
~0.3132 (-6.08)
~0.2115 (-0.35)
~0.0047 (~1.94)
0.0069 (0.20)

~0.8026 (~1.66)
0.5948 (0.32)

~0.0731 (~1.80)

~0.0136 (—0.19)
~0.0324 (-2.23)
0.0828 (0.15)

3.0462 (5.66)
0.2836 (3.73)

Time trend (t-value)
0.4739 (9.31)
0.2413 (6.58)
0.1073 (5.30)
0.0687 (12.68)
0.0848 (8.50)
0.1334 (6.27

0.0448 (11.29)
0.1574 (12.79)
0.0181 (8.84)
0.2409 (6.00)
0.1166 (7.56)
0.0436 (7.14)
0.0362 (10.74)
0.0074 (4.19)

0.6218 (39.82)
0.5061 (16.95)
0.4072 (12.35)
0.0384 (27.02)
0.2294 (16.03)
0.0003 (3.18)
0.0062 (8.10)
0.0466 (4.24)
0.2848 (6.82)
0.0058 (5.74)

0.0058 (3.77)
0.0095 (2.72)
0.0433 (3.84)

0.0938 (7.59)
—0.0046 (—2.60)
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Table 2 (continued)

North Africa

INDIA —0.11 (-0.29, 0.16) 0.7991 (42.000 -

NEPAL —0.12 (-0.32, 0.15) 0.2355 (6.90) —0.0026 (—3.08)
PAKISTAN 0.02 (-0.08, 0.16) 22.3880(5449 -

West Asia and Middle East

BAHRAIN 0.24 (0.06, 0.50)
IRAN 0.34 (0.23, 0.49)
IRAQ 0.31(0.17, 0.50)
SYRIA —0.12 (=0.24, 0.06)
JORDAN —0.06 (-0.18, 0.10)
KUWAIT 0.34 (0.20, 0.53)
OMAN —0.10 (=0.26, 0.18)
QATAR 0.46 (0.34, 0.66)
SAUDI ARABIA 0.37 (0.26, 0.54)
SYRIA 0.15 (0.04, 0.30)
TURKEY 0.15(0.03, 0.32)
U.A.E. 0.43 (0.32, 0.59)
YEMEN 0.46 (0.28,0.71)
East Asia and Pacific

AUSTRALIA 0.14 (-0.06, 0.44)
CHINA 0.36 (0.23, 0.55)
MYANMAR —-0.29 (-0.52, 0.02)
THAILAND —0.24 (-0.42,0.01)
America

ARGENTINA 0.08 (—0.10, 0.38)
MEXICO 0.13 (-0.03, 0.37)
PARAGUAY —-0.02 (=0.15, 0.16)
U.S.A. 0.27 (0.10, 0.50)

0.1026 (0.04)
6.9583 (6.78)
19.6346 (4.44)
~0.0125 (-1.27)
~0.1473 (-2.81)
51.8854 (7.81)
26.7653 (25.71)
24.0736 (3.05)
12.7233 (3.03)
0.6866 (2.74)
0.0666 (1.61)
30.68761 (3.99)
1.8171 (2.30)

3.5900 (4.74)
0.1342 (2.63)
0.0091 (2.42)
~0.0085 (—0.39)

0.0134 (2.26)
0.1212 3.11)
0.4142 (4.47)
0.0988 (2.06)

0.1257 (2.49)
0.1636 (6.91)
0.6325 (6.28)
0.0010 (4.11)
0.0188 (4.56)
0.8274 (5.40)
0.3002 (11.85)
0.6784 (3.39)
0.7463 (7.84)
0.0820 (3.93)
0.0022 (2.36)
0.6339 (3.36)
0.1815 (5.14)

0.0406 (2.35)

0.0038 (6.82)
0.0020 (3.68)

0.0039 (3.48)
0.0041 (4.72)

0.0054 (5.04)

Column 2 reports the estimate of d and in brackets the corresponding 95% confidence intervals, whilst column 3 and 4 report the estimates of
the intercept and of the coefficient on the time trend respectively as well as the corresponding t-values in brackets; --- indicates lack of statisti-

cal significance

19 being Chad and China (0.36), Iran and Kuwait (0.34),
Sudan (0.33), Iraq (0.31), Eritrea (0.29), Mozambique
(0.28), USA (0.27), Ethiopia (0.26), Bahrain (0.24), Egypt
(0.20), Algeria (0.19), Uzbekistan (0.18), Kazakhstan
(0.17), Tunisia (0.16), Morocco, Syria and Turkey (0.15).
In another 24 countries the estimated values of d are either
positive or negative and the /(0) hypothesis of short mem-
ory cannot be rejected — these are Mali (0.31), Australia
(0.14), Djibouti and Mexico (0.13), South Sudan (0.12),
Niger (0.11), Argentina and Somalia (0.08), Afghani-
stan (0.07), Ghana (0.04), Pakistan (0.02), Bangladesh
(—0.01), Paraguay (—0.02), Cameroon and Mauritania
(—0.04), Jordan (—0.06), Burkina Faso and Afghanistan
(—0.07), Benin and Senegal (—0.09), Oman (—0.10), India
(—=0.11), Syria and Nepal (—0.12), Gambia (—0.14), Togo
(—=0.17), Thailand (—0.24) and Myanmar (—0.29). Finally,
two countries exhibit significant anti-persistent patterns,
specifically Libya (—0.27) and Nigeria (—0.42). The time
trend is significant in 49 countries, the highest coefficients
being those corresponding to Kuwait (0.8274), Saudi
Arabia (0.7463), Qatar (0.6784), UAE (0.6339), Iraq

(0.6325), Mali (0.6218), Mauritania (0.5061) and Algeria
(0.4739), while it is insignificant in five countries, namely
Morocco, India, Pakistan, China and Paraguay.

Tables 3 and 4 have the same layout as Tables | and 2
but report the results under the assumption of autocorrela-
tion in the error term modelled as in Bloomfield (1973).
It can be seen from Table 3 that the time trend is now sta-
tistically insignificant in Tajikistan, Uzbekistan, Pakistan,
China and Paraguay, in the latter three just as in the the
previous case of white noise errors. Concerning the differ-
encing parameter d, statistical evidence of a long memory
pattern, i.e., d >0, is now found in 19 countries, namely
Tajikistan (d=0.84), Uzbekistan (0.68), Tunisia, Kuwait
and UAE (0.54), Saudi Arabia (0.49), Kazakhstan (0.48),
Iraq (0.42), Chad and Qatar (0.41), Iran (0.40), Algeria
(0.36), Afghanistan (0.34), Syria (0.30), Eritrea (0.24),
Turkey (0.23), Pakistan and Egypt (0.22) and Sudan
(0.17). Short memory or I(0) behaviour is found in 27
countries, namely China (0.30), Yemen (0.27), Morocco
and Jordania (0.13), Mozambique and Argentina (0.08),
Paraguay (0.06), USA (0.05), South Sudan (0.03), Niger
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Table 3 Estimates of d under three deterministic specifications. Autocorrelated errors

North Africa

Country No terms A constant A constant and a linear trend
ALGERIA 0.73 (0.47, 1.06) 0.55(0.40, 0.74) 0.36 (0.13, 0.65)
DJIBOUTI 0.28 (0.12, 0.51) 0.35(0.17, 0.58) —0.21 (-0.73, 0.24)

EGYPT 0.42 (0.28, 0.61) 0.47 (0.30, 0.66) 0.22 (0.04, 0.50)

LIBYA 0.19(0.08, 0.37) 0.28 (0.11, 0.46) —0.52 (-1.08, —0.11)
MOROCCO 0.39(0.27, 0.60) 0.45 (0.32, 0.59) 0.13 (—0.06, 0.40)
TUNISIA 0.59 (0.35, 0.95) 0.55(0.34, 0.93) 0.54 (0.14, 0.94)

Sub-Saharian Africa
BENIN

BURKINA FASO
CAMEROON
CHAD

ERITREA
ETHIOPIA
GAMBIA

GHANA
MALI

MALI
MAURITANIA
MOZAMBIQUE
NIGER
NIGERIA
SENEGAL
SOUTH AFRICA
SOMALIA
SOUTH SUDAN
SUDAN

TOGO

Central Asia
KAZAKHSTAN
TAJIKISTAN
UZBEKISTAN
South Asia
AFGHANISTAN
BANGLADESH
INDIA

NEPAL
PAKISTAN

West Asia and Middle East
BAHRAIN
IRAN

IRAQ

SYRIA
JORDAN
KUWAIT
OMAN

QATAR

SAUDI ARABIA
SYRIA
TURKEY

U.ALE.

YEMEN

East Asia and Pacific
AUSTRALIA
CHINA

0.28 (0.15, 0.44)
0.35 (0.21, 0.54)
0.29 (0.13, 0.46)
0.58 (0.4, 0.75)
0.52 (0.40, 0.72)
0.23 (0.12, 0.39)
0.30 (0.18, 0.47)
0.16 (~0.02, 0.42)

0.28 (0.19, 0.38)
0.25 (0.16, 0.37)
0.12 (-0.15, 0.37)
0.41 (0.30, 0.56)
0.28 (0.17, 0.40)
0.36 (0.23, 0.51)
~0.05 (-0.24, 0.21)
0.41 (0.24, 0.96)
0.25 (0.07, 0.49)
0.45 (0.33, 0.64)
0.09 (-0.07, 0.32)

0.54 (0.21, 0.85)
0.84 (0.55, 1.13)
0.68 (0.25, 1.00)

0.55 (0.37, 0.79)
0.11 (-0.17, 0.43)
~0.11 (-0.19, 0.35)
0.01 (~0.29, 0.40)
0.70 (0.40, 0.99)

0.15 (~0.04, 0.47)
0.61 (0.45, 0.83)
0.60 (0.36, 1.03)
0.18 (0.02, 0.42)
0.28 (0.10, 0.54)
0.73 (0.38, 1.08)
0.18 (0.12, 0.40)
0.52 (0.37, 0.80)
0.63 (0.50, 0.90)
0.42 (0.26, 0.64)
0.33(0.17, 0.57)
0.59 (0.43, 0.87)
0.53 (0.42,0.71)

0.03 (~0.08, 0.26)
0.35 (~0.01, 1.04)

0.34 (0.18, 0.51)
0.42 (0.27, 0.61)
0.34(0.18, 0.51)
0.61 (0.48, 0.76)
0.57 (0.45, 0.74)
0.36 (0.20, 0.53)
0.35(0.21, 0.51)
0.19 (~0.05, 0.45)

0.42 (0.28, 0.55)
0.40 (0.25, 0.53)
0.12 (-0.12, 0.38)
0.48 (0.36, 0.62)
0.35 (0.22, 0.49)
0.43 (0.30, 0.57)
~0.06 (~0.32, 0.26)
0.51 (0.34,0.97)
0.28 (0.08, 0.49)
0.51 (0.38, 0.68)
0.12 (~0.09, 0.39)

0.49 (0.20, 0.83)
0.84 (0.48, 1.13)
0.59 (0.18, 1.00)

0.52 (0.39, 0.68)
0.07 (-0.12, 0.37)
~0.48 (~0.80, —0.08)
0.01 (~0.34, 0.31)
0.22 (0.03, 0.49)

0.17 (~0.04, 0.47)
0.59 (0.45, 0.75)
0.58 (0.44, 0.89)
0.21 (0.03, 0.46)
0.31 (0.12, 0.56)
0.62 (0.44, 1.07)
0.40 (0.27, 0.59)
0.57 (0.42, 0.78)
0.70 (0.58, 0.90)
0.44 (0.29, 0.64)
0.37 (0.21, 0.58)
0.65 (0.51, 0.88)
0.63 (0.51, 1.23)

0.06 (-0.18, 0.34)
0.30 (-0.03, 0.71)

~0.42 (-0.75, —0.03)
—0.32 (-0.71, 0.21)
~0.09 (0.38, 0.17)
0.41 (0.20, 0.64)
0.24 (0.03, 0.57)
~0.67 (~1.04, 0.11)
~0.19 (~0.44, 0.12)
~0.09 (~0.60, 0.29)

~1.21 (-1.86, —0.58)
—0.54 (-0.95, —0.13)
0.08 (—0.15, 0.34)
~0.03 (=0.27, 0.25)
~0.69 (~0.87, —0.39)
~0.33 (0.75, 0.17)
~0.42 (-0.88, 0.05)
—0.14 (—0.49, 0.98)
0.03 (—0.22, 0.34)
0.17 (0.04, 0.49)
~0.53 (~1.06, 0.04)

0.48 (0.16, 0.83)
0.83(0.57, 1.14)
0.68 (0.30, 1.01)

0.34 (0.15, 0.56)
~0.24 (-0.51, 0.17)
~0.54 (-0.82, —0.15)
~0.42 (~0.74, 0.09)
0.18 (~0.01, 0.48)

~0.05 (—0.41, 0.41)
0.40 (0.25, 0.63)
0.42 (0.11, 0.90)
~0.05 (-0.29, 0.32)
0.13 (—0.10, 0.47)
0.54 (0.09, 1.06)
~0.30 (-0.47, 0.02)
0.41 (0.21, 0.71)
0.49 (0.28, 0.83)
0.30 (0.11, 0.57)
0.23 (0.01, 0.56)
0.54 (0.34, 0.84)
0.27 (-0.01, 0.77)

~0.24 (-0.60, 0.14)
0.35 (0.01, 0.69)
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Table 3 (continued)

North Africa

MYANMAR —0.02 (—0.15, 0.17) —0.03 (-0.22, 0.21) -1.03 (-1.69, —0.32)
THAILAND —0.11 (-0.28, 0.14) —0.15(-0.41, 0.17) —-0.55 (-1.17, -0.08)
America

ARGENTINA 0.10 (=0.09, 0.64) 0.13 (-0.13, 0.51) 0.08 (—0.29, 0.86)
MEXICO 0.19 (0.06, 0.48) 0.28 (0.08, 0.52) -0.06 (-0.39, 0.33)
PARAGUAY 0.06 (—0.25, 0.53) 0.06 (—0.23, 0.48) 0.10 (—0.20, 0.57)
U.S.A. 0.25(0.07, 0.54) 0.30 (0.11, 0.50) 0.05 (—0.29, 0.41)

In bold the selected specification on the basis of the statistical significance of the deterministic components. The reported values are the esti-

mates of d, and in brackets the corresponding 95% confidence intervals

Table 4 Estimated coefficients from the selected models. Autocorrelated errors

North Africa

Country diff. par. (95% band) Intercept (t-value) Time trend (t-value)
ALGERIA 0.36 (0.13, 0.65) 20.3542 (6.10) 0.4693 (6.04)
DIJIBOUTI —-0.21 (-0.73, 0.24) —-0.7076 (—1.19) 0.2368 (15.80)
EGYPT 0.22 (0.04, 0.50) 0.4061 (0.43) 0.1069 (5.03)
LIBYA —-0.52 (-1.08, -0.11) 0.2828 (—1.08) 0.0681 (24.87)
MOROCCO 0.13 (—0.06, 0.40) 1.2932 (-0.06) 0.0849 (8.95)
TUNISIA 0.54 (0.14, 0.94) 0.1199 (0.05) 0.1442 (2.53)
Sub-Saharian Africa

BENIN —-0.42 (-0.75, —0.03) —0.3207 (-5.66) 0.0443 (28.22)
BURKINA FASO -0.32 (-0.71,0.21) —0.7488 (-3.14) 0.1559 (24.69)
CAMEROON —0.09 (-0.38, 0.17) —0.1676 (—2.20) 0.0181 (9.80)
CHAD 0.41 (0.20, 0.64) -1.6176 (—0.85) 0.2388 (5.22)
ERITREA 0.24 (0.03, 0.57) —0.6227 (-1.03) 0.1176 (8.64)
ETHIOPIA —0.67 (—1.04, 0.11) 0.7013 (42.74) 0.0409 (81.60)
GAMBIA —0.19 (-0.44,0.12) —0.4760 (—4.06) 0.0361 (12.23)
GHANA —0.09 (-0.60, 0.29) —-0.0912 (-0.60) 0.0073 (5.78)
MALI

MALI —1.21 (-1.86, —0.58) 15.2272 (446.99) 0.6133 (485.57)
MAURITANIA —-0.54 (-0.95, —0.13) 15.5827 (60.43) 0.5006 (66.88)
MOZAMBIQUE 0.08 (—0.15, 0.34) 0.0028 (0.12) 0.0009 (1.71)
NIGER —0.03 (-0.27, 0.25) —-1.7392 (-1.80) 0.4081 (17.80)
NIGERIA —0.69 (-0.87,-0.39) —0.3105 (—13.76) 0.0384 (55.49)
SENEGAL —-0.33 (-0.75,0.17) 0.0233 (1.24) 0.2259 (5.37)
SOUTH AFRICA —-0.42 (-0.88, 0.05) —0.0044 (-2.26) 0.0003 (6.36)
SOMALIA —0.14 (-0.49, 0.98) 0.0045 (00.25) 0.0063 (14.53)
SOUTH SUDAN 0.03 (—0.22, 0.34) —0.8439 (-2.25) 0.0466 (5.35)
SUDAN 0.17 (0.04, 0.49) 0.2383 (0.19) 0.2875 (10.36)
TOGO —0.53 (—1.06, 0.04) —0.0658 (—5.00) 0.0055 (14.53)
Central Asia

KAZAKHSTAN 0.48 (0.16, 0.83) 0.0183 (0.14) 0.0064 (1.87)
TAJIKISTAN 0.84(0.55,1.13) e e
UZBEKISTAN 0.68 (0.25,1.000 e e

South Asia

AFGHANISTAN 0.34 (0.15, 0.56) 3.2783 (3.19) 0.0940 (3.96)
BANGLADESH —-0.24 (-0.51,0.17) 0.2914 (7.70) —0.0049 (-5.08)
INDIA —-0.54 (-0.82, —0.15) 8.2815 (61.02) 0.0132 (3.36)
NEPAL —0.42 (-0.74, 0.09) 0.2361 (17.65) —0.0025 (—6.91)
PAKISTAN 0.22 (0.03, 0.49) 22.5716 (27.01) -

West Asia and Middle East

BAHRAIN —0.05 (-0.41, 0.41) —0.2843 (-0.28) 0.1259 (5.29)
IRAN 0.40 (0.25, 0.63) 7.1588 (6.21) 0.1621 (5.88)
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Table 4 (continued)

North Africa

IRAQ 0.42 (0.11, 0.90) 19.2862 (3.51) 0.6428 (4.81)
SYRIA —0.05 (-0.29, 0.32) —0.0119 (-0.98) 0.0009 (3.39)
JORDAN 0.13 (=0.10, 0.47) —0.1355 (—0.46) 0.0192 (2.90)
KUWAIT 0.54 (0.09, 1.06) 48.2138 (5.18) 0.8714 (3.29)
OMAN —-0.30 (-0.47, 0.02) 26.4727 (46.62) 0.3088 (20.65)
QATAR 0.41(0.21,0.71) 23.2478 (3.21) 0.6844 (3.93)
SAUDI ARABIA 0.49 (0.28, 0.83) 14.0864 (2.82) 0.7323 (5.59)
SYRIA 0.30 (0.11, 0.57) 0.9216 (0.69) 0.0804 (2.67)
TURKEY 0.23 (0.01, 0.56) 0.0741 (1.47) 0.0021 (1.82)
U.AE. 0.54 (0.34, 0.84) 32.3177 (3.57) 0.6182 (2.40)
YEMEN 0.27 (=0.01, 0.77) 1.1794 (1.23) 0.1962 (9.10)
East Asia and Pacific

AUSTRALIA —0.24 (-0.60, 0.14) 3.5276 (14.55) 0.0396 (6.36)
CHINA 0.30 (=0.03, 0.71) 0.1312 (265 e
MYANMAR —1.03 (-1.69, —0.32) —0.0148 (7.01) 0.0037 (49.63)
THAILAND —-0.55 (-1.17,-0.08) —-0.0551 (-0.67) 0.0019 (8.08)
America

ARGENTINA 0.08 (—0.29, 0.86) 0.0134 (0.26) 0.0039 (3.48)
MEXICO —0.06 (—0.39, 0.33) 0.1226 (5.44) 0.0040 (7.51)
PARAGUAY 0.06 (—0.23, 0.48) 0.4202(29%¢) e

U.S.A. 0.05(=0.29, 0.41) 0.10004 (3.75) 0.0052 (8.41)

Column 2 reports the estimate of d and in brackets the corresponding 95% confidence intervals, whilst column 3 and 4 report the estimates of
the intercept and of the coefficient on the time trend respectively as well as the corresponding t-values in brackets; --- indicates lack of statisti-

cal significance

(—0.3), Syria and Bahrain (—0.05), Mexico (—0.06), Cam-
eron and Ghana (—0.09), Somalia (—0.14) Gambia (—0.19),
Djibouti (—0.21), Bangladesh and Australia (—0.24),
Oman (—0.30), Burkina Faso (—0.32), Senegal (—0.33),
Nepal and South Africa (—0.42), Togo (—0.53), and Eritrea
and Ethiopia (—0.67). Further, 8 countries exhibit anti-
persistence (d <0), namely Benin (—0.42), Libya (—0.52),
India and Mauritania (—0.54), Thailand (—0.55), Nigeria
(—0.69), Myanmar (—1.09) and Mali (—1.21). Finally,
the countries with the highest time trend coefficients are
Kuwait (0.8714), Saudi Arabia (0.7323), Qatar (0.6844),
Iraq (0.6428), U.A.E. (0.6182), Mali (0.6122), Mauritania
(0.5006) and Algeria (0.4693). Tables 5 and 6 provide a
summary of the results concerning the time trends and the
degree of persistence respectively.

Table 5 Summary results. Time trends

No autocorrelation With autocorrelation

Highest time trends No time  Highest time trends No time
trends trends

Kuwait (0.8274) Morocco  Kuwait (0.8714) Tajikistan

Saudi Arabia (0.7463) India Saudi Arabia (0.7323) Uzbekistan

Qatar (0.6784) Pakistan  Qatar (0.6844) Pakistan

U.A.E. (0.6339) China Iraq (0.6428) China

Iraq (0.6325) Paraguay U.A.E. (0.6182) Paraguay

Mali (0.6218) Mali (0.6122)

Mauritania (0.5061) Mauritania (0.5006)

Algeria (0.4739) Algeria (0.4693)
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Table 6 Summary results. Persistence

No autocorrelation With autocorrelation

Highest d Lowest d Highest d Lowest d
Tajkistan (0.48) Nigeria (—0.42)  Tajkistan (0.84) Mali (—-1.21)
Qatar (0.46) Myanmar Uzbekistan (0.68)  Myanmar
Yemen (0.46)  (—0.29) Kuwait (0.53) (-1.03)
U.AE. (0.43)  Libya (-0.27) U.AE. (0.54) Nigeria
Saudi Arabia Thailand (—0.24) Tunisia (0.54) (—0.69)
(0.37) Togo (—0.17) Saudi Arabia (0.49) Ethiopia
Chad (0.36) South Africa Kazakhstan (0.48)  (—0.67)
China (0.36) (=0.15) Iraq (0.42) Thailand
Iran (0.34) Gambia (—0.14) Qatar (0.41) (—0.55)
Kuwait (0.34)  Nepal (—0.12) Chad (0.40) India (—0.54)
Sudan (0.33) Syria (=0.12) Iran (0.40) Mauritania
Mali (0.31) India (=0.11) Algeria (0.36) (=0.54)
Iraq (0.31) Oman (—0.10) Afghanistan (0.34) Togo (—0.53)
Libya (—0.52)

Benin (-0.42)
Nepal (—0.42)
South Africa
(-0.42)

5 Conclusions

The number of hot days, namely those with temperatures
above 35 °C, is often used as a measure of global warming
and as the basis to design appropriate policies to tackle cli-
mate change. This paper uses fractional integration meth-
ods to obtain comprehensive evidence on how this variable
has evolved in 54 countries from various regions of the
world over the period from 1950 to 2022. The chosen
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modelling approach is most informative about the behav-
iour of the series as it provides evidence on the possible
presence of time trends, on whether or not mean reversion
occurs, and on the degree of persistence, with important
implications for the design of effective climate policies.
In brief, the findings indicate considerable heterogeneity
among the countries studied.

More specifically, the results show that the Middle East-
ern countries (in particular Kuwait, Saudi Arabia and Qatar)
are those with the most pronounced upward trends. This
result is in agreement with previous studies indicating that
the Middle East, especially the Arabian Peninsula, is expe-
riencing faster warming than the global average (Zittis et al.
2022; Masoudi et al. 2024).

Warming in this region is driven by a combination of
global factors such as increased greenhouse gases (Malik
et al. 2024) and local factors such as desertification, vege-
tation decrease and the urban heat island effect in densely
populated cities (Adamo et al. 2022). Since this geograph-
ical area is characterised by arid and semi-arid climates, it
is particularly vulnerable to small variations in tempera-
ture due to the limited capacity of the ecosystem to buffer
climatic changes (Malik et al. 2024; Zittis et al. 2022).

Worrying positive trends are also found in the case of
sub-Saharan Africa, where climatic conditions already
severely limit water availability and agricultural produc-
tivity. In this region, global warming not only intensifies
droughts, but also increases the frequency and intensity
of heat waves, with direct effects on public health and
food security (Ahmed 2020).

By contrast, there is less evidence of concerning trends
in countries such as Morocco, China, India and Paraguay,
which appear to be characterised by a more stable cli-
mate. This is likely to reflect local factors, such as effec-
tive environmental policies, higher levels of vegetation or
natural climate variability, which counteract the effects of
global warming. In particular, in India and China efforts
to reduce emissions through climate policies and refores-
tation programmes could be contributing to this behaviour
(Yu et al. 2020; Li et al. 2022).

As for persistence, the results based on white noise
errors indicate that Tajikistan, Qatar, Yemen, UAE and
Saudi Arabia are the countries where long-range depen-
dence is most apparent. This could reflect reduced rain-
fall, increased greenhouse gas emissions and the retreat
of resilient ecosystems. Under the assumption of auto-
correlated errors an even higher degree of persistence is
estimated in countries such as Tajikistan, Uzbekistan and
Kuwait. In Central Asia this evidence could be linked
to increasing aridity and altered atmospheric patterns
resulting from both human activity and natural phenom-
ena (Alahmad et al. 2022; Zong et al. 2020).

In other countries the estimates instead imply the pres-
ence of anti-persistence. These include Nigeria, Libya,
Ethiopia, Mauritania, Myanmar, Thailand and India, with
the coefficients being even bigger in absolute terms under
the assumption of autocorrelated errors, for instance in
Mali and Myanmar. The anti-persistence identified in these
cases reflects climate patterns determined by extreme events
counteracting each other over time and resulting in more
pronounced and less predictable fluctuations. This feature
may be associated with local factors such as massive defor-
estation, abrupt land-use changes, seasonal variability and
socio-political instabilities, that limit the capacity of ecosys-
tems and social systems to respond to climate change. In the
case of Nigeria, for example, thermal fluctuations could be
related to the impact of massive deforestation (Zaccheaus
2015), while in Myanmar and Libya, political and social
instabilities have resulted in less effective climate change
monitoring. In terms of climate change such patterns imply
that these regions are highly vulnerable to sudden and vari-
able weather changes. This phenomenon requires further
analysis to develop adaptive strategies aimed at mitigating
the risks inherent in this unusual thermal behaviour.

To sum up, the findings in this study indicate diverse
climate patterns in different regions of the world, some of
them, such as the Middle East and Sub-Saharan Africa,
being characterised by pronounced upward trends and high
persistence in the number of hot days, whilst in others there
is less evidence of sustained warming. The observed differ-
ences reflect the interaction between the global phenomenon
of climate change and local factors affecting warming. This
evidence underscores the importance of adopting differenti-
ated approaches to mitigate the effects of climate change,
prioritising strategies that address both global factors and
specific local dynamics.

A limitation of the present study is the use of a uniform
absolute threshold of 35 °C to define a hot day in all countries
analysed. While there is no universally accepted definition
of this concept and that relative or locally adjusted thresh-
olds would ideally be adopted, the choice of this threshold
is justified for reasons of methodological comparability
between countries and over time. Moreover, this threshold
has support in the literature as an indicator of thermal health
risk conditions in many regions (Raymond et al. 2020; Lu
et al. 2023; Sun et al. 2018). However, we recognize that
this choice may not adequately capture regional climatic
diversity or differential impacts of extreme heat. Therefore,
as a line of research, we propose to complement this analy-
sis using other available thresholds (such as 4042 °C) and
explore relative definitions more sensitive to the local cli-
mate context which would allow for a more accurate charac-
terization of thermal extremes and their implications. Work
in this direction is now in progress.

@ Springer
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