
Received 2 June 2025; revised 5 August 2025; accepted 27 August 2025. Date of publication 5 September 2025; date of current version 25 September 2025.

Digital Object Identifier 10.1109/OJCOMS.2025.3606812

Joint User Association and Beamforming Design for
ISAC Networks With Large Language Models

HAOYUN LI 1 (Student Member, IEEE), MING XIAO 1 (Senior Member, IEEE),
KEZHI WANG 2 (Senior Member, IEEE), ROBERT SCHOBER 3 (Fellow, IEEE),

DONG IN KIM 4 (Life Fellow, IEEE), AND YONG LIANG GUAN 5 (Senior Member, IEEE)
(Invited Paper)

Please see the Acknowledgment section of this article for the author affiliations.

CORRESPONDING AUTHOR: M. XIAO (e-mail: mingx@kth.se)

This work was supported in part by the Swedish Research Council (VR) Project entitled “Coding for Large-scale Distributed Machine Learning”, under Grant
2021-04772; in part by the Swedish Agency for Innovation Systems (VINNOVA), Project “Integrating Large AI Models into 6G networks”, under Grant 2024-02435;
in part by the joint KTH-NTU collaboration project, entitled “Intelligent Joint Radar Communications with Millimeter Wave”; in part by the Horizon Europe COVER
project under Grant 101086228; and in part by UKRI under Grant EP/Y028031/1. The work of Kezhi Wang was supported in part by the Royal Society Industry
Fellow scheme under Grant IF\R2\23200104. The work of Robert Schober was supported in part by the Federal Ministry for Research, Technology and Space

(BMFTR) in Germany in the program of “Souverän. Digital. Vernetzt.” joint project 6G-RIC under Project 16KISK023; in part by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) through projects SFB 1483 under Project 442419336, EmpkinS; and in part by the Horizon Europe
Marie Skodowska-Curie Actions (MSCA)-UNITE under Project 101129618. The work of Dong In Kim was supported by the National Research Foundation of Korea

(NRF) Grant funded by the Korean Government (MSIT) under Grant 2021R1A2C2007638.

ABSTRACT Integrated sensing and communication (ISAC) has been envisioned to play a more important
role in future wireless networks. However, the design of ISAC networks is challenging, especially
when there are multiple communication and sensing (C&S) nodes and multiple sensing targets. We
investigate a multi-base station (BS) ISAC network in which multiple BSs equipped with multiple antennas
simultaneously provide C&S services for multiple ground communication users (CUs) and targets. To
enhance the overall performance of C&S, we formulate a joint user association (UA) and multi-BS
transmit beamforming optimization problem with the objective of maximizing the total sum rate of all CUs
while ensuring both the minimum target detection and parameter estimation requirements in terms of the
radar signal-to-noise ratio (SNR) and the Cramér-Rao bound (CRB), respectively. To efficiently solve the
highly non-convex mixed integer nonlinear programming (MINLP) optimization problem, we propose an
alternating optimization (AO)-based algorithm that decomposes the problem into two sub-problems, i.e.,
UA optimization and multi-BS transmit beamforming optimization. Inspired by the huge potential of large
language models (LLMs) for prediction and inference, we propose a unified framework integrating LLMs
with convex-based optimization methods to benefit from the theoretical rigor and convergence guarantees
of convex-based methods, and the adaptability and flexibility of LLMs. First, we propose a comprehensive
design of prompt engineering based on in-context, few-shot, chain of thought, and self-reflection techniques
to guide LLMs in solving the binary integer programming UA optimization problem. Second, we utilize
convex-based optimization methods to handle the non-convex beamforming optimization problem based
on fractional programming (FP), majorization minimization (MM), and the alternating direction method of
multipliers (ADMM) with an optimized UA from LLMs. Numerical results demonstrate that our proposed
LLM-enabled AO-based algorithm achieves fast convergence and near upper-bound performance with the
GPT-o1 model, outperforming various benchmark schemes, which shows the advantages of integrating
LLMs into convex-based optimization for wireless networks.

INDEX TERMS Integrated sensing and communication, large language model, user association, beam-
forming, optimization.

I. INTRODUCTION

THE FORTHCOMING sixth-generation (6G) wireless
networks are expected to not only provide ubiquitous

communication services with ultra-high data rates but
also perform high-precision sensing [1], [2]. The result-
ing communication and sensing (C&S) system requires

c© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

7620 VOLUME 6, 2025

HTTPS://ORCID.ORG/0000-0002-6318-587X
HTTPS://ORCID.ORG/0000-0002-5407-0835
HTTPS://ORCID.ORG/0000-0001-8602-0800
HTTPS://ORCID.ORG/0000-0002-6420-4884
HTTPS://ORCID.ORG/0000-0001-7711-8072
HTTPS://ORCID.ORG/0000-0002-9757-630X


more resources in terms of frequency bands and hardware
complexity to meet stringent multi-faceted performance
requirements. Towards this end, integrated sensing and
communication (ISAC) has been identified as a promising
technology combining sensing and communication function-
alities into a single system, in which C&S share the same
frequency bands and hardware platforms to substantially
improve spectral and energy efficiency with limited hardware
complexity [3], [4], [5]. Meanwhile, multi-input and multi-
output (MIMO) techniques, first introduced in [6], have
become a critical enabler for ISAC systems thanks to the
large numbers of degrees of freedom (DoFs) offered by
the multiple antennas deployed at both transmitters and
receivers [7], [8]. With MIMO, ISAC systems can flexibly
design transceiver beamforming and signal waveforms to
generate directional beams towards the locations of CUs
and sensing targets, thus enhancing communication rates and
sensing accuracy [9].
Motivated by MIMO-enabled ISAC, there are a number

of research works focusing on transmit beamforming design,
including [10], [11], [12], [13], [14], [15], [16], [17], [18].
Specifically, the authors in [10] considered an unmanned
aerial vehicle (UAV)-enabled ISAC system, in which the
UAV is equipped with a vertical uniform linear array (ULA)
and acts as an aerial dual-functional access point (AP).
The maneuvers and transmit beamforming of the UAV are
jointly optimized to maximize the weighted sum rate of the
CUs while ensuring the sensing requirements. As a further
advance, the authors in [11] aimed to jointly design the
transmit beamforming and trajectories of UAVs equipped
with ULAs in an ISAC network to maximize the achievable
cover rate for legitimate ground users. To efficiently explore
the spatial DoFs of the MIMO ISAC system, the authors
in [12] considered two different approaches to MIMO
antenna usage: separate antenna deployment by partitioning
MIMO antennas into radar and communication antennas,
and sharing all the antennas for both radar sensing and
downlink communications. The numerical results showed
that the shared deployment achieved better performance in
terms of the trade-off between C&S. Different from [12],
the authors in [13] designed the transmit beamforming to
fully extend the DoFs of the MIMO antennas through jointly
utilizing the precoded individual communication and radar
waveforms, which mitigates the interference between the
communication and sensing signals. To improve the C&S
trade-off performance and its impact on cell-free (CF) MIMO
systems, the authors in [14] optimized transmit beamforming
designs to suppress the interference and provide high-quality
communication and sensing services, which were shown
to outperform the zero-forcing (ZF) and the maximum
ratio transmission (MRT) schemes. In [15], the authors
investigated a reconfigurable intelligent surface (RIS)-aided
multi-user-MIMO (MU-MIMO) ISAC system, where the
RIS reflection coefficients and transmit beamforming were
jointly optimized to both enhance the target detection
and parameter estimation performance with respect to the

radar output signal-to-noise ratio (SNR) and the estimation
Cramér-Rao bound (CRB), respectively. Furthermore, the
authors in [16] considered an active RIS-empowered ISAC
system, in which the transmit beamforming and active RIS
beamforming were jointly optimized to minimize the CRB
for target direct-of-arrival (DoA) estimation. To explore
ISAC in vehicle-to-infrastructure (V2I) networks, the authors
in [17], [18] proposed an artificial intelligence (AI) deep
learning (DL)-based approach to provide predictive beam-
forming for tracking on-road vehicles while reducing the
signaling overhead and enhancing the ISAC performance.
Despite significant progress in MIMO ISAC system

design, the existing results in [10], [11], [12], [13], [14],
[15], [16], [17], [18] still face formidable challenges. The
simultaneous execution of C&S tasks in a MIMO ISAC
system necessitates the joint design of transmit beamforming,
transmit power allocation, and interference management
strategies to achieve the expected trade-off between the
C&S performance metrics. The balance required among
multiple objectives, such as sum rates, target detection,
and parameter estimation, complicates the system design
and makes the underlying optimization problem non-trivial
and computationally intensive. Therefore, optimization tools,
including model-based convex optimization [10], [11], [12],
[13], [14], [15], [16], data-driven DL [17], [18], [19], and
reinforcement learning (RL) [20], [21], [22] are exploited
to tackle the resulting highly complex optimization prob-
lems. As for convex-based optimization tools, such as
the Lagrangian algorithm, successive convex approximation
(SCA), and semidefinite relaxation (SDR) [23], the resulting
optimization algorithms can generate a sub-optimal or even
near-optimal solution with relatively low computational com-
plexity, even for highly non-convex problems. The powerful
data-driven capabilities of DL have advantages for model-
free and non-linear mapping, as they are able to handle
very high-dimensional input space while potentially learn-
ing to capture the characteristics of complex optimization
problems [24]. RL-based optimization algorithms can learn
the optimal policy by interacting with the system in real
time, which is suitable for use cases with unknown system
dynamics and complex reward functions [20]. However,
the above-mentioned tools have their limitations. To be
more specific, as the network system complexity increases,
convex-based optimization methods may suffer from the
growing dimensionality and may get trapped in local conver-
gence, while DL methods may be restricted by the growing
complexity and volume of training data, computational
demands and over-fitting risks, and for RL methods may have
the issue of convergence and stability decrease [25]. Another
limitation of convex-based optimization, DL, and RL meth-
ods is their inherent reliance on expert domain knowledge.
For instance, model-based convex optimization tools require
expert knowledge, including communication theory, signal
processing, and optimization theory. Model-free data-driven
DL and RL methods demand network expert knowledge
to formulate network optimization problems as regression
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tasks by correctly capturing network characteristics and
mapping network status (inputs) to the policies (outputs)
based on specifically designed neural network structures and
the parameters learned from the labeled dataset [26]. Both
model-based and model-free methods require substantial
expertise for each new network scenario, which can be time-
and resource-consuming and substantially restrict scalability
and flexibility in the dynamically changing environments
of wireless networks. With superior generalization capa-
bilities and knowledge integration, large language models
(LLMs) can address this limitation by utilizing substantial
inherent expert knowledge, thereby significantly reducing the
expertise dependence and enhancing model adaptability and
flexibility.
Recently, LLMs have emerged as powerful tools with

demonstrated capabilities in natural language processing
(NLP) applications, particularly for different aspects of
problem optimization [27], [28], [29], [30], [31], [32].
For instance, the authors in [27], [28] leveraged LLMs as
optimizers to solve general math problems via optimization
task-specific prompts. The authors in [29] investigated
a novel approach that integrated LLMs as black-box
search operators into multi-objective evolutionary algorithms
(MOEAs) in a zero-shot manner. The authors in [30] intro-
duced a novel framework named LLAMBO that exploited
the reasoning capabilities of LLM to enhance model-based
Bayesian optimization via prompt engineering without fine-
tuning. Moreover, the authors in [31], [32] explored the
capabilities of LLMs in combinatorial optimization by inte-
grating LLMs into the evolution of a heuristics framework
through problem-specific descriptions in prompts. LLMs
offer several key advantages over traditional optimization
approaches. First, LLMs exhibit strong adaptability across
diverse tasks due to their pre-training on extensive datasets,
enabling them to develop comprehensive domain knowl-
edge [33]. Unlike convex-based optimization methods, which
require strict mathematical formulations, LLMs can handle
general optimization problems using more natural problem
representations. Additionally, LLMs can effectively leverage
transfer learning for rapid domain adaptation with minimal
fine-tuning requirements. Their ability to process natural
language descriptions of optimization problems provides
interpretability and flexibility advantages over conventional
DL and RL approaches [34]. Consequently, recent stud-
ies have explored the potential of LLMs for wireless
networks [35], [36], [37], [38], [39], [40], [41]. For instance,
the authors in [35] proposed a novel framework named
WirelessLLM empowered with knowledge and expertise for
adapting and enhancing LLMs to solve general optimization
problems in practical wireless scenarios like power allocation
and spectrum sensing. The authors in [37], [38] leveraged
LLMs for simple radio map generation and optimization
for network planning, which improved the efficiency of AP
deployment and management. By integrating LLMs as black-
box search operators in evolutionary algorithms, the authors
in [41] proposed a novel LLM-enabled multi-objective

evolutionary algorithm for finding the C&S trade-off in a
multi-UAV ISAC system, which outperformed traditional
evolutionary algorithms in terms of the Pareto fronts and con-
vergence obtained. All of the above works have demonstrated
the capabilities of LLMs in solving optimization problems in
wireless networks. Despite the promising potential of LLMs
demonstrated in prior works [35], [36], [37], [38], [39],
[40], [41], current LLMs still cannot efficiently solve highly
complex non-convex optimization problems based only on
prompts. More specifically, model-based and model-free
optimization algorithms exploit gradient information of the
objective function to precisely regulate the search direction
and the step size at each iteration, which results in algorithm
convergence. However, LLMs depend on discrete tokens
from the prompt without information of numerical gradients.
They lack the precision and stability for high-dimensional
complex-valued computations and are unable to guarantee
algorithm convergence due to the stochastic sampling of the
iteratively generated tokens. Furthermore, LLMs are limited
by the size of their context windows, which restricts them
to articulating algorithmic concepts or pseudocodes rather
than executing high-dimensional numerical optimization.
Consequently, LLMs are more suitable as black-box heuris-
tic solvers for optimization problems for which gradient
information is not available. These observations motivate us
to integrate LLMs with the existing optimization algorithm
framework.
To the best of our knowledge, the integration of LLMs

and convex-based optimization techniques for wireless com-
munication network design remains unexplored. A unified
framework that seamlessly integrates LLM-based techniques
with traditional convex-based optimization could leverage
the best of both worlds: the theoretical rigor and global con-
vergence guarantees of convex-based optimization combined
with the adaptability and flexibility of LLMs. Such a frame-
work can provide the benefits of reducing extensive model
training to adapt to wireless environments. Incorporating
LLMs into the convex-based optimization framework can
significantly alleviate the extensive reliance on expert-
dependent training processes associated with traditional
data-driven methods, which often require large-scale labeled
datasets and domain-specific feature engineering, requiring
considerable manual effort and expertise. In contrast, LLMs
inherently capture generalized knowledge, which enables
rapid adaptation to new optimization scenarios with minimal
fine-tuning, reducing the need for explicit domain exper-
tise and leading to shorter development cycles and lower
training overhead. Motivated by the above discussion, we
propose a framework that integrates LLMs and convex-based
optimization for a general MU-MIMO ISAC system, as
shown in Fig. 1, where multiple ISAC BSs serve multiple
ground CUs and perform radar sensing for multiple targets.
In particular, each BS is equipped with multiple antennas
and simultaneously detects the presence of targets and
estimates the DoAs, while all BSs collaboratively serve all
the ground CUs. Under this setup, we aim to design the user
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TABLE 1. Summary of recent AI-enabled ISAC research.

association (UA) strategy jointly with the multi-BS transmit
beamforming for optimization of the total communication
performance of all CUs while ensuring the detection and
DoA estimation requirements of multiple targets. The main
contributions of this paper are summarized as follows:

• Firstly, we investigate a multi-BS ISAC network,
where multiple BSs equipped with multiple antennas
simultaneously provide communication services for
multiple ground CUs while performing sensing for
multiple targets. To evaluate the C&S performance,
for radar sensing, we adopt the radar SNR as the
target detection metric and the CRB as the target DoA

estimation metric. For communications, we use the sum
rate of all ground CUs as our communication metric.
Based on the proposed metrics, we jointly take the
UA strategy and the multi-BS transmit beamforming
design into consideration to formulate the sum rate
maximization problem while ensuring the detection and
DoA estimation requirements of multiple targets.

• Secondly, to efficiently solve the highly non-convex
problem, we first decompose the original problem into
a UA sub-problem and a transmit beamforming sub-
problem, and solve them in an alternating optimization
(AO) manner iteratively until convergence. We pro-
pose integrating LLMs and convex-based optimization
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FIGURE 1. Illustration of the proposed multi-BS ISAC system.

into a single framework to exploit the theoretical
rigor and convergence guarantees of convex-based
optimization with the adaptability and flexibility of
LLMs. Specifically, for the integer programming UA
optimization problem, we propose a novel LLM-based
algorithm based on prompt engineering to generate a
high-quality UA strategy. To effectively adapt LLMs
for optimization, we specifically design the prompt
engineering based on the in-context, few-shot, chain
of thought, and self-reflection prompting design tech-
niques. For the transmit beamforming optimization
problem, we decompose it into a series of sub-problems
with respect to the transmit beamforming at each
BS and solve them simultaneously for a given UA.
However, the resulting sub-problem is still highly non-
convex due to the objective function and the sensing
requirement constraints. To tackle this issue, we propose
an alternating direction method of multipliers (ADMM)-
based algorithm using the techniques of fractional
programming (FP), augmented Lagrangian algorithm,
and majorization-minimization (MM) to iteratively
optimize the transmit beamforming for each BS.

• Thirdly, we conduct extensive simulations to show the
effectiveness of the proposed LLM-enabled AO-based
algorithm design compared with several benchmark
methods. We also compare the performance of multiple
LLMs, including GPT-o1, GPT-4-Turbo, Claude 3.5,
and Gemini 2.0. It is shown that the proposed algorithm
using the GPT-o1 model can achieve a similar, and
sometimes the same performance as an upper bound
and outperforms a benchmark method using only
convex-based optimization techniques or other LLM-
based schemes in terms of the total sum rate and
convergence speed. This demonstrates the effectiveness
of our designed prompt engineering for adapting LLMs
to the optimization problem. In addition, with increasing
system complexity, the proposed algorithm can still
approach the upper bound and outperform benchmark

schemes, which reveals the robustness and efficiency of
the proposed algorithm.

The remainder of this paper is organized as follows.
Section II presents the system model of the considered
multi-CU multi-BS ISAC system. Section III formulates the
optimization problem for total sum rate maximization while
ensuring the detection and DoA estimation requirements of
multiple targets. Section IV introduces the LLM-enabled
AO-based algorithm design for solving the formulated
problem. Section V provides numerical results to study the
effectiveness of the proposed algorithm. Finally, Section VI
concludes the paper.
Notations: Unless otherwise specified, we use boldface

lowercase letters to denote vectors and boldface uppercase
letters to denote matrices. (·)H , (·)T , and ¯(·) denote the
conjugate transpose, transpose, and conjugate, respectively.
For a square matrix A, Tr{A} and A−1 denote its trace
and inverse, respectively, and A � 0 indicates that A is
positive semidefinite. [A]n,p denotes the (n, p)-th entry of
A. CM×N denotes the set of M × N complex matrices. IN
denotes the N × N identity matrix. CN (μ,�) denotes the
circularly symmetric complex Gaussian (CSCG) distribution,
where μ and � are the mean vector and the covariance
matrix, respectively. E{·} denotes the expectation operator.
|| · ||2 denotes the Euclidean norm of a complex vector.
||·||F denotes the Frobenius norm of a complex matrix. ||·||0
denotes the L0 norm of a vector. | · | denotes the magnitude
of a complex number. ∂f (x,y,...,)

∂x denotes the partial derivative
of a function f (x, y, . . . , ) with respect to variable x. ⊗
denotes the Kronecker product. j denotes the imaginary unit.
In addition, Re{·} and Im{·} denote the real and imaginary
parts of a complex-valued matrix, respectively.

II. SYSTEM MODEL
We consider a multi-BS ISAC system, as shown in Fig. 1,
where K ISAC BSs serve a total of N single-antenna ground
CUs and perform radar sensing for a total of Q targets.
We denote the set of ISAC BSs as K = {1, 2, . . . ,K},

7624 VOLUME 6, 2025



the set of ground CUs as N = {1, 2, . . . ,N}, and the
set of targets as Q = {Q1,Q2, . . . ,QK}, respectively. In
this system, each ISAC BS is assumed to be a dual-
functional radar-communication (DFRC) BS equipped with
M antennas. We assume that all ISAC BSs can receive
sensing echo signals and maintain downlink communications
concurrently without interference by exploiting full-duplex
radio technologies [42], [43]. All ISAC BSs are supposed to
serve all ground CUs collaboratively. We assume that ISAC
BS k senses the set of targets in the area of interest, denoted
as Qk, and Q1 ∪Q2 ∪· · ·∪QK = Q. To simplify our system,
we model all targets as point targets. In this system, we
assume that each ISAC BS employs a different orthogonal
frequency band to eliminate inter-BS interference [44].

A. SIGNAL MODEL
Let sck,i[l] ∈ C denote the complex communication symbol
transmitted from BS k to CU i in time slot l, and
Wc

k = [wc
k,1,w

c
k,2, . . . ,w

c
k,N] ∈ C

M×N denote the transmit
communication beamforming matrix from BS k to all CUs,
where wc

k,i ∈ C
M×1 denotes the dedicated communication

beamforming vector for the i-th CU. Hence, the transmitted
communication signal is given by

xck[l] = Wc
ks
c
k[l] ∈ C

M×1, (1)

where sck[l] = [sck,1[l], sck,2[l], . . . , sck,N[l]]T ∈ C
N×1 denotes

the transmitted communication symbols from BS k to all
CUs in time slot l. It is assumed that sck,i[l],∀k,∀i are
mutually independent with zero mean and unit energy, where
E{|sck,i[l]|2} = 1,E{sck[l]sck[l]H} = IN . Similarly, the complex
radar signal transmitted by BS k in time slot l can be
expressed as

xrk[l] = Wr
ks
r
k[l] ∈ C

M×1, (2)

where Wr
k ∈ C

M×M denotes the transmit radar beamforming
matrix of BS k, and srk[l] ∈ C

M×1 denotes the transmitted
radar signal of BS k for the targets in Qk, which includes
M individual independent waveforms with E{srk[l]srk[l]H} =
IM . We assume the communication symbols are independent
from the radar waveforms with E{sck[l]srk′[l]H} = 0, ∀k, k′ ∈
K, k 	= k′.
The ISAC signal transmitted by BS k in time slot l is

given by

xk[l] = xck[l] + xrk[l]

= Wc
ks
c
k[l] + Wr

ks
r
k[l]

= Wksk[l] ∈ C
M×1, (3)

where Wk = [Wc
k,W

r
k] ∈ C

M×(N+M) denotes the down-
link transmit beamforming matrix of BS k, and sk[l] =
[sck[l]

T , srk[l]
T ]T ∈ C

(N+M)×1 denotes the transmitted symbol
vector of BS k in time slot l.

B. COMMUNICATION MODEL
We denote hk,i ∈ C

M×1 as the communication channel
between BS k and CU i, which is assumed to follow Rician
fading and given by

hk,i = βk,i

√
κk,i

κk,i + 1
ck,i

︸ ︷︷ ︸
�hk,i

+βk,i

√
1

κk,i + 1
c̃k,i

︸ ︷︷ ︸
�h̃k,i

. (4)

Here, βk,i = β0(
dk,i
d0

)−ςc is the large-scale fading factor from
BS k to CU i, where β0 is the path loss factor at a reference
distance d0 = 1 m, dk,i is the distance between BS k and
CU i, and ςc is the path loss exponent. κk,i denotes the
Rician factor of the channel from BS k to CU i. c̃k,i is
the non-line-of-sight (NLoS) component, where elements are
an independent complex CSCG random variables with zero
mean and unit variance, that is c̃k,i ∼ CN (0, IM), and ck,i is
the line-of-sight (LoS) component given as ck,i = 1√

M
a(θk,i),

where a(θk,i) is the steering vector, and θk,i is the direction
of departure (DoD) from BS k to CU i. We assume a ULA
at each BS, and a(θk,i) can be expressed as

a
(
θk,i
) =

[
1, ej

2πd
λ

cos(θk,i), . . . , e(M−1)j 2πd
λ

cos(θk,i)
]T

, (5)

where d denotes the antenna spacing distance, and λ is the
wavelength. Then, the signal received at CU i from BS k
can be expressed as

yck,i[l] = hHk,ixk[l] + zi[l] (6)

= hHk,iw
c
k,is

c
k,i[l] + hHk,i

∑
n∈N ,n 	=i

wc
k,ns

c
k,n[l]

+ hHk,iW
r
ks
r
k[l] + zi[l], (7)

where zi[l] denotes the complex circularly symmetric white
Gaussian noise received at CU i with a zero mean and
variance σ 2

i . We assume that each ISAC BS employs a
different orthogonal frequency band to eliminate inter-BS
interference [44]. Therefore, the signal-to-interference-plus-
noise ratio (SINR) from BS k to CU i is given by

γk,i =
∣∣∣hHk,iwk,i

∣∣∣2
∑N+M

n=1,n 	=i
∣∣∣hHk,iwk,n

∣∣∣2 + σ 2
i

, (8)

where wk,i denotes the i-th column of Wk =
[wk,1,wk,2, . . . ,wk,N+M].

C. SENSING MODEL
We assume that each BS k is supposed to sense a specific
subset of targets in the area of interest of BS k, i.e., Qk,
and there is no overlap between any two target subsets, i.e.,
Qk ∩ Qj = ∅, ∀k, j ∈ K, k 	= j, and Q1 ∪ Q2, . . . ∪ QK =
Q. In each subset Qk, there is one target Q̃k for detection
and one target Q̂k for parameter estimation, respectively. To
simplify illustration, we assume all BSs operate in the time
division multiple access (TDMA) mode or apply enhanced
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inter-cell interference coordination techniques such as those
in LTE Rel. 10 to limit inter-cell interference [45]. The signal
echoes transmitted by BS k reflected by targets and received
at BS k in time slot l are given by

yrk[l] =
∑
i∈Q

αt,igk,i
(
φk,i
)
gHk,i
(
φk,i
)
Wksk[l] + zk[l], (9)

where αt,i ∼ CN (0, σ 2
t ) denotes the radar cross section

(RCS) of the i-th target, gk,i ∈ C
M×1 denotes the sensing

channel between BS k and target i, and zk[l] ∼ CN (0, σ 2
r IM)

is the CSCG noise. It is assumed that the channels between
the BSs and the targets are LoS. To be more specific, gk,i =

1√
M

β̃k,ia(φk,i), where β̃k,i = β0(
dk,i
d0

)−ςt is the large-scale
fading factor from BS k to target i, ςt is the path loss
exponent, and φk,i is the DoA with respect to target i and
BS k.

III. PERFORMANCE METRICS
In this section, we first separately derive the sensing
detection and parameter estimation performance metrics, and
then formulate the sum rate of all ground CUs as our
communication metric.

A. TARGET DETECTION
In this section, we will show that the probability of target
detection is positively related to the radar SNR, which is
used as our sensing performance metric for target detection.
Assume that the system has prior knowledge of the DoA of
each target via some localization algorithms or estimation
methods based on previous observations [46]. Each BS
k, ∀k ∈ K, implements a receive beamforming vector

1√
M
aH(φ̇k,i) to multiply with the echo signal reflected by

target i. The sensing signal reflected by target i received at
BS k can be approximately expressed as

ỹrk,i[l] = αt,iβ̃k,igHk,i
(
φk,i
)
Wksk[l] + zk[l]. (10)

We denote φ̇k,i as the estimate of φk,i and assume φ̇k,i ≈
φk,i for simplification. We have ∀i 	= i′, |aH(φk,i)a(φk,i′)| ≈
0, 1

M a
H(φ̇k,i)a(φk,i) ≈ 1 if M is sufficiently large [47]. In

addition, zk[l] = 1√
M
aH(φ̇k,i)zk[l] ∈ C, is a white CSCG

noise, i.e., zk[l] ∼ CN (0, σ 2
r ). To improve the sensing

accuracy, we collect samples of a total of L time slots. By
averaging over L time slots, we can express the final received
sensing samples as

ỹrk,i = 1

L

L∑
l=1

ỹrk,i[l],

= 1

L

L∑
l=1

αt,iβ̃k,igHk,i
(
φk,i
)
Wksk[l]

︸ ︷︷ ︸
�ηk

+ 1

L

L∑
l=1

zk[l]

︸ ︷︷ ︸
�z̃k

. (11)

Thus, the target detection problem can be formulated as
a composite binary hypothesis test as follows:

y =
{H0 : zk,
H1 : ηk + z̃k,

(12)

where ηk � 1
L

∑L
l=1 αt,iβ̃k,igHk,i(φk,i)Wksk[l], αt,i ∼

CN (0, σ 2
t ), and z̃k � 1

L

∑L
l=1 zk[l]. The Neyman-Pearson

detector is given by [48]

E = |y|2 H0
≶
H1

δ, (13)

where δ is the decision threshold determined by the
probability of a false alarm. Noting that αt,i is independent
of sk[l],∀l, we have the conditional probability distributions

of y | H0 ∼ CN (0, μ0) with μ0 � E{|z̃k|2} = σ 2
r
L and

y | H1 ∼ CN (0, μ1) with μ1 � σ 2
t |β̃k,i|2 WH

k gk,ig
H
k,iWk

L + σ 2
r
L .

Therefore, the test statistic E is subject to the following
distribution [48]

E ∼
⎧⎨
⎩

σ 2
r
L χ2

2 , H0(
σ 2
t |β̃k,i|2 WH

k gk,ig
H
k,iWk

L + σ 2
r
L

)
χ2

2 , H1
, (14)

where χ2
2 denotes the central chi-squared distribution with

two DoFs. As a result, the probability of a false alarm can
be calculated as

PFA = Pr(E > δ|H0) = 1 − Fχ2
2
(δ/μ0), (15)

where Pr(·) denotes the probability, and Fχ2
2
(·) is the

cumulative distribution function (CDF) of the chi-square
random variable. Similarly, the probability of detection can
be calculated as

PD = Pr(E > δ|H1) = 1 − Fχ2
2
(δ/μ1). (16)

For a given decision threshold δ, the detection probability
PD can be rewritten as

PD = 1 − Fχ2
2

(
μ0

μ1
F−1

χ2
2
(1 − FFA)

)
, (17)

where F−1
χ2

2
(·) denotes the inverse function of Fχ2

2
. It is clearly

observed that PD is positively related to μ1
μ0
, which is also

positively related to radar SNR �k,i as

�k,i = σ 2
t |β̃k,i|2WH

k gk,ig
H
k,iWk

σ 2
r

. (18)

Therefore, we use the radar SNR �k,i as the sensing
performance metric for target detection.

B. PARAMETER ESTIMATION
In this section, we derive the CRB of the DoA of target i as
our sensing performance metric for parameter estimation. To
start with, we collect the unknow parameters in vector ξ k,i �
[φk,i,αTi ]T ∈ C

3×1 with αi � [Re(αt,i), Im(αt,i)]T ∈ C
2×1,

and we focus on DoA estimation of φk,i. To improve the
estimation accuracy, we collect samples of all L time slots
with ỹrk = [(yrk[1])T , (yrk[2])T , . . . , (yrk[L])T ]T ∈ C

ML×1. For
simplification, we define G(φk,i) � g(φk,i)gH(φk,i) ∈ C

M×M ,
z̃k � [zTk [1], zTk [2], . . . , zTk [L]]T ∈ C

ML×1,
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and

μ
(
ξ k,i
)
�
[(

αt,iG(φk,i)Wksk[1]
)T

,

, . . . ,
(
αt,iG(φk,i)Wksk[L]

)T]T ∈ C
ML×1 (19)

which is defined according to (9), respectively. Thus, we
have

ỹrk =
∑
i∈Q

μ
(
ξ k,i
)+ z̃k ∈ C

ML×1, (20)

where ỹrk ∼ CN (
∑

i∈Q μ(ξ k,i), σ
2
r IML), E{z̃kz̃Hk } = σ 2

r IML.
The (n, p)-th element of the Fisher Information Matrix (FIM)
for estimating parameters ξ k,i based on the model in (9) is
given by [46]

[
J
(
ξ k,i
)]
n,p = 2

σ 2
r

Re

{
∂μ
(
ξ k,i
)H

∂ξn

∂μ
(
ξ k,i
)

∂ξp

}
, (21)

where ξn denotes the n-th element in ξ k,i, and J(ξ k,i) ∈ C
3×3

is the FIM, which can be partitioned into a block matrix
given as

J
(
ξ k,i
) =

[
J
(
ξ k,i
)
φk,iφk,i

J
(
ξ k,i
)
φk,iα

T
i

J
(
ξ k,i
)T
φk,iα

T
i
J
(
ξ k,i
)
αiα

T
i

]
, (22)

where the real J(ξ k,i)φk,iφk,i and sub-matrices in J(ξ k,i) are
derived in Appendix VII. The CRB for DoA φk,i estimation
of the target can be expressed as

CRB
(
φk,i
) =

[
J
(
ξ k,i
)
φk,iφk,i

− J
(
ξ k,i
)
φk,iα

T
i
J
(
ξ k,i
)−1
αiα

T
i
J
(
ξ k,i
)T
φk,iα

T
i

]−1

.

C. COMMUNICATION METRICS
In this section, we derive the sum rate of all ground CUs as
our communication performance metric. To start with, we
define the UA matrix U ∈ C

K×N as

U = [u1,u2, . . . ,uN] =

⎡
⎢⎢⎢⎢⎢⎢⎣

u1,1, u1,2, . . . , u1,N︸ ︷︷ ︸
ũ1
...

uK,1, uK,2, . . . , uK,N︸ ︷︷ ︸
ũK

⎤
⎥⎥⎥⎥⎥⎥⎦

. (23)

We denote ui = [u1,i, u2,i, . . . , uK,i]T ∈ C
K×1 as the UA

vector of CU i, where uk,i is a binary variable. Specifically,
uk,i ∈ {0, 1}, ∀k, ∀i, and uk,i = 1 if CU i is associated with
BS k. Otherwise, uk,i = 0. ||̃uk||0 is the number of CUs
served by BS k. It is assumed that each CU can only be
served by one BS, which means that ||ui||0 = 1. Therefore,
the achievable data rate from BS k to CU i is defined as
Rk,i, which is given by

Rk,i = B

||̃uk||0 log2
(
1 + γk,i

)
, (24)

where B is the total bandwidth allocated to BS k. Based
on (24), the achievable data rate of CU i in bps/Hz can be
rewritten as

Ri =
∑
k∈K

uk,i
B

||̃uk||0 log2
(
1 + γk,i

)
. (25)

As a result, the sum rate of all CUs can be expressed as

R =
∑
i∈N

Ri =
∑
i∈N

∑
k∈K

uk,i
B

||̃uk||0 ×

log2

⎛
⎜⎝1 +

∣∣∣hHk,iwk,i

∣∣∣2∑N+M
n=1,n 	=i |hHk,iwk,n|2 + σ 2

i

⎞
⎟⎠. (26)

IV. PROBLEM FORMULATION
In this paper, we aim to maximize the sum rate of all
ground CUs while guaranteeing the sensing performance of
all targets subject to the maximum transmit power constraints
and UA requirements. In this section, we first formulate the
joint BS beamforming matrices and UA strategy optimization
problem. Then, we decompose the original problem into
UA and BS transmit beamforming matrix optimization sub-
problems.

A. FORMULATION OF PROBLEM
Based on the performance metrics derived in Section III,
our goal is to maximize the total sum rate of all ground
CUs subject to the radar SNR and DoA estimation CRB
constraints of all targets and the maximum BS transmit
power budget constraints by jointly optimizing with BS
transmit beamforming matrices {Wk}Kk=1 and the UA strategy
U. Therefore, the optimization problem can be formulated
as follows

(P1): max
{Wk}Kk=1,U

∑
i∈N

∑
k∈K

uk,i
B

‖̃uk‖0
×

log2

(
1 + |hHk,iwk,i|2∑N+M

n=1,n 	=i |hHk,iwk,n|2 + σ 2
i

)
(27)

s.t.
σ 2
t |β̃k,i|2 WH

k gk,igHk,iWk

σ 2
r

≥ �t, ∀ k ∈ K, i ∈ Q̃k,

(27a)

CRB
(
φk,i
) ≤ ε, ∀ k ∈ K, i ∈ Q̂k, (27b)

‖Wk‖2
F ≤ Pt, ∀ k ∈ K, (27c)∑

j∈N
uk,j ≥ 1, ∀ k ∈ K, (27d)

∑
k∈K

uk,j = 1, ∀ j ∈ N , (27e)

uk,j ∈ {0, 1}, ∀ k ∈ K, ∀ j ∈ N , (27f)

where �t in (27a) denotes the radar SNR threshold, ε in (27b)
denotes the DoA estimation CRB threshold, and Pt denotes
the maximum BS transmit power budget. Constraints (27a)
and (27b) represent the sensing performance requirements.
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Constraint (27c) ensures that the BS transmit power does
not exceed the maximum power budget. Constraint (27d)
indicates that each BS should serve at least one ground CU.
Constraint (27e) ensures that each CU can only be served
by a single BS.
Problem (P1) is a highly non-convex mixed-integer

optimization problem including continuous variables
{Wk}Kk=1 and integer variables U due to the highly cou-
pled optimization problem (27) and highly non-convex
constraints (27a), (27b), and (27f). Thus, it is generally
challenging to directly obtain a global optimal solution. To
tackle this challenging problem, we decompose the original
problem (P1) into two sub-problems and alternatively solve
them via AO.

B. PROBLEM DECOMPOSITION
To efficiently solve problem (P1), we alternatively solve two
sub-problems in two independent phases: the UA phase and
the beamforming optimization phase. We optimize the two
phases alternately in each outer iteration until convergence.
First, given initial BS beamforming matrices {W(0)

k }Kk=1, we
obtain the initial UA strategy by solving sub-problem (P2),
which can be written as

(P2): max
U

∑
i∈N

∑
k∈K

uk,i
B

‖̃uk‖0
×

log2

(
1 + |hHk,iw(0)

k,i |2∑N+M
n 	=i |hHk,iw(0)

k,n|2 + σ 2
i

)
(28)

s.t.
∑
j∈N

uk,j ≥ 1, ∀ k ∈ K, (28d)

∑
k∈K

uk,j = 1, ∀ j ∈ N , (28e)

uk,j ∈ {0, 1}, ∀ k ∈ K, ∀ j ∈ N . (28f)

Given the obtained UA strategy U∗, the BS trans-
mit beamforming matrix optimization sub-problem can be
written as

(P3): max
{Wk}Kk=1

∑
i∈N

∑
k∈K

u∗
k,i

B

‖̃u∗
k‖0

×

log2

(
1 + |hHk,iwk,i|2∑N+M

n	=i |hHk,iwk,n|2 + σ 2
i

)
(29)

s.t.
σ 2
t |β̃k,i|2 WH

k gk,igHk,iWk

σ 2
r

≥ �t, ∀ k ∈ K, i ∈ Q̃k,

(29a)

CRB
(
φk,i
) ≤ ε, ∀ k ∈ K, i ∈ Q̂k, (29b)

‖Wk‖2
F ≤ Pt, ∀ k ∈ K. (29c)

To realize such a coordinated multi-cell optimization
framework, we assume there exists a remote cloud server
acting as a control server while the multiple BSs act as
edge servers. The cloud controller and edge BSs form a
hierarchical network. Specifically, the cloud server gathers

comprehensive cross-cell information, including channel
state information (CSI), user association patterns, and
precoding/beamforming matrices from all edge BSs par-
ticipating in coordinated beamforming. The cloud server
analyzes the collected data, executes optimization algorithms,
and distributes the optimized solutions back to the edge
BSs for local execution. The edge BSs then implement the
instructions obtained from the connected cloud server via
an optical backhaul link in real time, dynamically managing
local beamforming and resource allocation decisions to
ensure optimized performance in a rapidly changing wireless
environment.
It is worth noting that the proposed framework relies

on the availability of accurate CSI, which presents a
significant challenge in dynamic environments with a large
number of users. To address this issue, for massive MIMO
systems, advanced methods such as compressed sensing can
exploit the spatial sparsity of millimeter wave (mmWave)
channels to reconstruct CSI with fewer pilots [49]. DL-based
approaches are also effective for CSI feedback compression,
which significantly reduces overhead while maintaining high
accuracy [50]. In TDD systems, channel reciprocity allows
the BS to infer the downlink CSI from the estimated
uplink channel. This approach eliminates the need for
downlink pilots and user feedback and makes the system
highly scalable [51]. Furthermore, within the ISAC network,
the radar-based localization can provide user position and
velocity estimates, which can be used to reduce the search
space for channel estimation algorithms and improve the CSI
acquisition efficiency [52]. Although a detailed investigation
of CSI acquisition methods is beyond the scope of this
paper, the proposed framework is compatible with the above-
mentioned advanced techniques of accurate CSI acquisition.
With accurate CSI, the proposed framework can precisely
design transmit beamforming matrices and allocate transmit
power efficiently. Such accurate resource management is
essential for maximizing the sum rate of all users and
minimizing interference, thereby enhancing overall network
performance and ensuring that sensing requirements are met.

V. LLM-ENABLED AO-BASED ALGORITHM DESIGN
To solve problem (P1), we decompose it into two sub-
problems (P2) and (P3) and apply an AO-based algorithm
to iteratively optimize UA and BS transmit beamforming by
combining LLMs and convex-based optimization as follows:

A. LLM-BASED USER ASSOCIATION OPTIMIZATION
In what follows, we propose an LLM-based framework to
solve the UA strategy optimization sub-problem (P2) given
the BS beamforming matrices. Problem (P2) is a binary
integer programming problem that cannot be directly solved
due to the huge number of possible UA combinations for
large N and K. To efficiently optimize U, inspired by the
substantial mathematical capabilities of LLMs, we utilize
LLMs as a black-box solver for problem (P2).
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Fine-tuning Pre-trained Foundation Models (PFMs),
including Large Language Models (LLMs), is expected
to be instrumental in facilitating intelligent, hierarchical
coordination across future 6G networks. These networks
are envisioned to span cloud infrastructures, edge servers
such as base stations or intelligent edge nodes, and a wide
range of user equipment. To enable such coordination, the
fine-tuning process should begin with the development of
diversified datasets that capture the heterogeneity of 6G
environments, including dynamic mobility patterns, variable
quality-of-service (QoS) demands, and stringent resource
constraints. The fine-tuning of PFMs should be approached
in a hierarchical manner, where cloud infrastructures focus
on global optimization tasks such as strategic resource
management and interference coordination. In parallel, edge
servers are responsible for context-specific functionalities,
such as low-latency task execution and localized sensing. At
the user level, models are expected to provide personalized
services and adapt to the immediate environment of the
user. Given the dynamic nature of 6G networks, techniques
such as prompt engineering allow PFMs to generalize to
new conditions with minimal retraining. To utilize LLMs
resource-efficiently and flexibly for solving problem (P2),
we aim to design prompt engineering to adapt LLMs for
optimization using several techniques.

1) MOTIVATION FOR PROMPT ENGINEERING

The design of effective prompts is critical for guiding LLMs
so that their outputs are relevant, consistent, and aligned
with user intent. Various prompting methods embody distinct
principles and are suitable for different scenarios. In this
work, we aim to design a comprehensive prompt for solving
UA strategy optimization sub-problem (P2). We first utilize
in-context prompting along with expert knowledge to provide
background knowledge for LLMs. Then, we utilize the zero-
shot chain of thought techniques to ask LLMs to give
an initial solution to the optimization problem. Following
the idea of self-reflection, we ask LLMs, provided with
few-shot prior examples, to self-enhance their solutions
iteratively until the objective function value converges. By
comprehensively and strategically applying these diverse
prompting strategies, we can tailor prompts to meet the
specific demands of a given task, thereby optimizing the
performance and quality of LLM output. For illustration
purposes, we briefly introduce the prompt techniques used
in our design.
First, in-context prompting embeds pertinent background

information directly into the prompt to ensure that LLM
responses are enriched with relevant context, which is
useful for tasks requiring in-depth analysis. Moreover,
expert knowledge ensures that the embedded background
information is both accurate and relevant to the domain
at hand, which allows the prompts to precisely guide the
LLMs [35].

Second, zero-shot prompting uses clear and direct instruc-
tions without providing examples, which is suitable for

simple tasks or situations that demand prompt responses.
However, it may encounter difficulties when addressing
ambiguous requirements in more complex cases [53]. In con-
trast, few-shot prompting improves clarity by incorporating
exemplar inputs that define the desired output format, which
is suitable for tasks with nuanced requirements.
Third, chain of thought prompting encourages LLMs to

articulate intermediate reasoning steps that lead to the final
answer to one complex problem. The chain of thought
provides an interpretable window for LLMs to reach the
correct answer and debug where the reasoning path might
go wrong [54].
Finally, the self-reflection technique has proven to be a

powerful tool that enables LLMs to learn from their mis-
takes, self-correct, and generate more accurate outputs [55].
For complex problem-solving, self-reflection is especially
beneficial when dealing with tasks that require multi-step
reasoning or synthesizing information from multiple sources.
By evaluating their initial approaches and identifying errors,
LLMs can refine their strategies and produce more precise
solutions, ultimately leading to improved results.

2) PROMPTING-BASED LLM AS A BLACK-BOX
OPTIMIZER

We aim to design prompt engineering using the techniques
of in-context learning and chain of thought in an iterative
self-reflection manner, which enables LLMs to generate a
mathematical model of our optimization problem (P2) based
on the prompt and find a near-optimal UA strategy. The
structure of the designed prompting involves background
description, optimization problem description, task instruc-
tions, self-enhancement, and expected outputs, as follows
(also shown in Fig. 2).

a) Background description: In this part, we aim to provide
LLMs with the necessary background knowledge of our
problem. Specifically, as shown in Fig. 2, we first specify
the role of LLMs as experts in wireless communications.
Consequently, LLMs are expected to understand the fol-
lowing question using their expert knowledge of wireless
communications. Then, we introduce the system settings
of our problem to the LLMs, including the number of
BSs and ground CUs and the UA rules. Such information
provides LLMs with a clear picture of our system, which
helps them better understand the optimization problem.
Moreover, to facilitate LLMs to accurately generate the
mathematical model of the optimization problem (P2),
we provide LLMs with extra expert knowledge as high-
lighted in Fig. 2. Specifically, we instruct the LLMs to
calculate the communication rate from each BS to each
CU using the Shannon capacity while considering the
bandwidth allocation of multiple CUs. This background
context serves as a foundation for guiding LLMs to bet-
ter understand the problem and reduce ambiguity in the
instructions, which can effectively set the stage for in-context
learning.
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FIGURE 2. An example prompt for solving sub-problem (P2) with K = 3 BSs and N = 10 ground CUs.

b) Optimization problem description: In this part, given the
specified background descriptions and expert knowledge, we
elaborate optimization problem (P2) with natural language
for LLMs. To help LLMs better distinguish between the
objective function and constraints, we highlight the objective

and constraint descriptions using special marks, which can
clarify and enhance the structure of the prompt.
c) Task instructions: In this part, we clarify the task

instructions for LLMs. First, we instruct the LLMs to
formulate the mathematical model of our optimization
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problem (P2). Given the background knowledge and a
clearly structured problem description, LLMs can accurately
formulate problem (P2), as shown in Fig. 2. Then, we
instruct LLMs to solve the formulated problem to generate a
near-optimal UA strategy. To achieve this goal, we utilize the
chain of thought technique to guide the LLMs, as highlighted
in Fig. 2. More specifically, the chain of thought guides
LLMs in solving the optimization problem step by step.
LLMs are asked to consider that the sum rate of the CUs
served by the same base station becomes smaller if more
CUs are served. Then, the LLMs consider that the BS should
give priority to the CU with the largest SINR if the sum
rate is dominated by such a CU to maximize the total sum
rate. Then, the LLMs are supposed to find the optimal UA
strategy to maximize the objective function under the above
guidance. The chain of thought prompting encourages LLMs
to break down the reasoning process into intermediate steps,
which can lead to more accurate and robust problem-solving.
d) Self-enhancement: Initially, the LLMs may generate

unexpected or incorrect solutions. To tackle this issue, in
this part, we aim to make LLMs iteratively self-refine
the solutions obtained in previous iterations as highlighted
in Fig. 2. Specifically, in each iteration, we provide the
prior UA strategy and the objective function value from
the previous iteration to guide LLMs to self-refine their
solutions until the objective function value exceeds that from
the last iteration or the objective function value meets the
convergence criteria.
e) Expected outputs: In this part, we describe the expected

output solutions. The output of LLM should only be given in
our expected format. As shown in Fig. 2, the output response
from LLMs is given exactly in the expected format.

3) ALGORITHM SUMMARY

Given the above designs, the proposed framework of the
prompting-based black-box optimizer is summarized in
Algorithm 1. The proposed method specifically designs a
prompt engineering strategy to manage the combinatorial
complexity of large systems, which avoids brute-force
searches by using a black-box heuristic approach. The
scalability is achieved through three key techniques.
First, in-context learning acts as a constraint mechanism

by providing the LLM with core principles (e.g., Shannon
capacity). Second, a chain of thought process guides the
LLM through a step-by-step and greedy-like heuristic search.
This prunes the vast search space by prioritizing high-quality
assignments, such as assigning users with high SINR to one
BS, while considering that adding too many users to one BS
diminishes the total returns. Finally, self-reflection enables
iterative refinement, turning the problem into a guided local
search where the model improves upon existing solutions,
which is far more efficient than starting from scratch.
Despite being more scalable than exhaustive methods,

applying this approach to extremely large systems (e.g.,
100+ users, 20+ BSs) presents critical challenges. The
required input data text may exceed the LLM’s context

Algorithm 1: Prompt Engineering Structure for UA
Optimization in Problem (P2)
Input: Number of BSs: {Number_of_BSs}. Number of

CUs: {Number_of_CUs}. SINR matrix:
{SINR_Matrix}.

Output: UA strategy U
1 Step 1: Background Description:
2 Provide the background description of the problem,
together with expertise.

3 Step 2: Optimization Problem Description:
4 Provide the optimization problem description based on
Problem (P2).

5 Step 3: Task Instructions:
6 Give task instructions to obtain the initial solution.
7 while no convergence do
8 Self-enhance the task instructions to obtain the

refined solution.
9 end
10 Step 4: Expected Outputs:
11 LLMs generate outputs in the expected format.
12 return Final UA strategy U∗.

window, the reasoning quality of the chain of thought may
degrade with increased complexity, and the iterative nature
of self-reflection could lead to a huge cost of API usage and
latency.

B. ADMM-BASED BS TRANSMIT BEAMFORMING
OPTIMIZATION
In what follows, we propose an ADMM-based algorithm
to solve the BS transmit beamforming optimization sub-
problem (P3) given a fixed UA strategy U∗. It is clear that
problem (P3) is highly non-convex even with fixed integer
variables due to the log2(·) in the objective function (29) and
constraints (29a), (29b). To effectively optimize Wk, k =
1, . . . ,K, for each BS k, we further decompose the problem
(P3) into a series of sub-problems and solve them simulta-
neously, where each sub-problem omitting bandwidth B is
written as

(P3.k): max
Wk

∑
i∈N

u∗
k,i

1

‖̃u∗
k‖0

×

log2

(
1 + |hHk,iwk,i|2∑N+M

n 	=i |hHk,iwk,n|2 + σ 2
i

)
(30)

s.t.
σ 2
t |β̃k,i|2 WH

k gk,igHk,iWk

σ 2
r

≥ �t, i ∈ Q̃k, (30a)

CRB
(
φk,i
) ≤ ε, i ∈ Q̂k, (30b)

‖Wk‖2
F ≤ Pt. (30c)

To solve this problem, we propose an algorithm framework
based on FP, MM, and ADMM to decompose problem (P3.k)
into a series of sub-problems and solve them iteratively until
convergence.
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1) PROBLEM REFORMULATION BASED ON FP

Based on [56], we introduce a Lagrangian dual reformulation
of problem (P3.k) by introducing a set of auxiliary variables
υ = [υ1, υ2, . . . , υN]T . The reformulated objective function
is given as follows

�(Wk,υ) =
N∑
i=1

ωilog2(1 + υi) −
N∑
i=1

ωiυi

+
N∑
i=1

ωi(1 + υi)|hHk,iwk,i|2∑N+M
n=1 |hHk,iwk,n| + σ 2

i

, (31)

where ωi � u∗
k,i

1
‖̃u∗

k‖0
, and variable Wk is taken out of

log2(·) and included in the third term. A detailed proof of the
problem reformulation is provided in Part II of [57]. Given
a fixed υ, to optimize Wk, we expand the third quadratic
form and further recast �(Wk,υ) as

�(Wk,υ, b) =
N∑
i=1

ωilog2(1 + υi) −
N∑
i=1

ωiυi

+
N∑
i=1

2Re{b̄ihHk,iwk,i}
√

ωi(1 + υi)

−
N∑
i=1

|bi|2
(
N+M∑
n=1

|hHk,nwk,n|2 + σ 2
i

)
, (32)

where b = [b1, b2, . . . , bN]T denotes introduced auxiliary
variables. To simplify the reformulated objective func-
tion �(Wk,υ, b), we introduce vector variable wk ∈
C
M(M+N)×1 by vertically stacking the wk,i, i = 1, 2, . . . ,N+

M. Therefore, objective function �(Wk,υ, b) can be
equivalently expressed as

�(wk,υ, b) = Re
{
fHwk

}
− ||Fwk||22 + δ(υ, b), (33)

where δ(υ, b) collects all forms that do not depend on υ

and b. Vector f is given as follows

f �[
2
√

ω1
(
1 + υ1

)
b̄1hHk,1, . . . , 2

√
ωN
(
1 + υN

)
b̄NhHk,N,

0H, . . . , 0H
]H ∈ C

M(N+M)×1,

where 0 � [0, 0, . . . , 0] ∈ C
M×1 denotes the vector of all

zeros. Matrix F in (33) is given by

F =
[
FT1 ,FT2 , . . . ,FTN

]T ∈ C
N(N+M) ×M(N+M), (34)

where Fi = IN+M ⊗ b̄i hHk,i, i = 1, . . . ,N.

2) CONSTRAINT TRANSFORMATION

The radar SNR constraint (30a) can be rewritten as

N+M∑
j=1

wH
k,jgk,ig

H
k,iwk,j ≥ �̃t, i ∈ Q̃k, (35)

where �̃t = �tσ
2
r

σ 2
t |β̃k,i|2 . It can be equivalently transformed with

respect to wk as

wHk GHi Giwk ≥ �̃t, i ∈ Q̃k, (36)

where Gi = IN+M ⊗ gHk,i.
Noting that constraint (36) is not convex, we apply the

first-order Taylor expansion with respect to wk on (36) and
obtain

wHk GHi Giwk ≥ −
(
w(j)
k

)HGHi Giw(j)
k

+ 2Re{
(
w(j)
k

)HGHi Giwk}, (37)

where w(j)
k denotes the acquired solution in the j-th iteration.

Thus, the original constraint (30a) is transformed into

−
(
w(j)
k

)HGHi Giw(j)
k + 2Re{

(
w(j)
k

)HGHi Giwk} ≥ �̃t. (38)

To handle CRB constraint (30b), we transform it into the
following constraints based on [58]

C−1 ≤ ε, (39)[
J
(
ξ k,i
)
φk,iφk,i

− C J
(
ξ k,i
)
φk,iα

T
i

J
(
ξ k,i
)T
φk,iα

T
i

J
(
ξ k,i
)
αiα

T
i

]
� 0, i ∈ Q̂k (40)

C > 0, (41)

where C ∈ R
+ is an introduced auxiliary variable. However,

constraint (40) is still non-convex and very challenging to
handle. To address this challenge, we introduce an auxiliary
variable q � [q1, q2, q3]T ∈ C

3×1 to take Wk out of the
positive semidefinite matrix (PSD) constraint (40), where
qi, i = 1, 2, 3 is expressed as

qi � Qi(Wk), i = 1, 2, 3, (42)

where Qi(·) denotes the function with respect to Wk based
on the FIM defined in (21) and (22). The detailed definitions
of Qi(·), i = 1, 2, 3, are given in Appendix VII.

3) ADMM-BASED AUGMENTED LAGRANGIAN PROBLEM
SOLUTION

Based on the above derivations, problem (P3.k) is trans-
formed into

max
wk,υ,b,C,q

�(wk,υ, b) (43a)

s.t. −
(
w(j)
k

)HGHi Giw(j)
k

+ 2Re{
(
w(j)
k

)HGHi Giwk} ≥ �̃t, i ∈ Q̃k, (43b)

C−1 ≤ ε, (43c)⎡
⎣q1 − C Re{q2[1 j]}
Re

{
q2

[
1
j

]}
q3I2

⎤
⎦ � 0, i ∈ Q̂k,

C > 0, (43d)

||wk||22 ≤ Pt, (43e)

qi = Qi(Wk), i = 1, 2, 3. (43f)
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To tackle constraints (43f), we formulate the augmented
Lagrangian problem of (43) by introducing the Lagrangian
dual variable ϒ � [ϒ1, ϒ2, ϒ3]T ∈ C

3×1 and the penalty
factor ρ > 0 as [59]

L(ρ,ϒ): min
wk,υ,b,C,q

−�(wk,υ, b) + Pρ(Wk, ϒ) (44)

s.t. (43b)−(43e), (45)

where

Pρ(Wk, ϒ) = 1

2ρ

3∑
i=1

|Qi(Wk) − qi + ρϒi|2. (46)

To solve the augmented Lagrangian problem, we first
optimize the original problem using block coordinate descent
(BCD) in the inner loop and then update the Lagrangian
dual variables and the penalty factor in the outer loop, as
presented below.
a) Update υ and b: For given Wk, �(Wk,υ) is convex

with respect to υ. We can obtain the optimal υ∗ by setting
∂�(υ)/∂υ to zero. Thus, we have

υ∗
i =

∣∣∣hHk,iwk,i

∣∣∣2
∑N+M

n=1,n 	=i
∣∣∣hHk,iwk,n

∣∣∣+ σ 2
i

, ∀i ∈ N . (47)

Note that υ∗
i is equal to the received SINR from BS k at CU i.

Similarly, to obtain the optimal b∗ for given Wk and optimal
υ∗, we set ∂�(Wk,υ, b)/∂b equal to zero, and obtain

b∗
i =

√
ωi
(
1 + υ∗

i

)
hHk,iwk,i∑N+M

n=1 |hHk,iwk,n| + σ 2
i

, ∀i ∈ N . (48)

b) Sub-problem with respect to C and q: For given wk,υ,

and b, the optimization of C and q can be expressed as the
following sub-problem

min
C,q

1

2ρ

3∑
i=1

|Qi(Wk) − qi + ρϒi|2 (49a)

s.t. C−1 ≤ ε, (49b)⎡
⎣q1 − C Re{q2[1 j]}
Re

{
q2

[
1
j

]}
q3I2

⎤
⎦ � 0, i ∈ Q̂k,

C � 0. (49c)

Note that problem (49) is a semidefinite problem (SDP)
and can be solved optimally using existing optimization
toolboxes such as CVX [60].
c) Sub-problem with respect to wk: The sub-problem with

respect to wk is given as

min
wk

||Fwk||22 − Re{fHwk}

+ 1

2ρ

3∑
i=1

|Tr{�iWkWH
k } + ci|2 (50a)

s.t. −
(
w(j)
k

)HGHi Giw(j)
k

+ 2Re{
(
w(j)
k

)HGHi Giwk} ≥ �̃t, i ∈ Q̃k, (50b)

||wk||22 ≤ Pt, (50c)

where the definitions of �i, i = 1, 2, 3, are given in
Appendix VII, and we introduce constants ci � −qi +
ρϒi, i = 1, 2, 3. The sub-problem is non-convex due to
the third term in (50a). To address this challenge, we apply
the MM method to construct surrogate functions that locally
approximate the objective function and then minimize the
surrogate functions.
To start with, we first expand the non-convex term as

|Tr{�iWkWH
k } + ci|2, i = 1, 2, 3, which can be expressed

as ∣∣∣Tr{�iWkWH
k

}
+ ci

∣∣∣2

= 2Re
{
c̄iTr

{
�iWkWH

k

}}
+
∣∣∣Tr{�iWkWH

k

}∣∣∣2 + |ci|2

= 2Re
{
c̄iwHk (IN+M ⊗ �i)wk

}

+
∣∣∣wHk (IN+M ⊗ �i)wk

∣∣∣2 + |ci|2, i = 1, 2, 3, (51)

where the expansion is based on the transformation
Tr{ABCD} = vecH{DH}(CT ⊗ A)vec{B}, and ⊗ denotes
the Kronecker product operation. We rewrite the first term
in (51) as follows

2Re
{
c̄iwHk (IN+M ⊗ �i)wk

}

= c̄iwHk (IN+M ⊗ �i)wk + ciwHk
(
IN+M ⊗ �H

i

)
wk

= wHk �̃iwk, (52)

where �̃i � c̄i×IN+M⊗�i+ci×IN+M⊗�H
i is a Hermitian

matrix based on the properties of the Kronecker product.
Therefore, the quadratic form wHk �̃iwk can be upper-bounded
(e.g., similar to Example 13 in [61]) as

wHk �̃iwk ≤ wHk Vwk + 2Re
{
wHk
(
�̃i − V

)
w(j)
k

}

+
(
w(j)
k

)H(
V − �̃i

)
w(j)
k , (53)

where V � λiIM(N+M) � �̃i with λi being the maximum
eigenvalue of �̃i, and w(j)

k denotes the acquired solution in
the j-th iteration. Since ||wk||22 ≤ Pt, (53) is transformed into

wHk �̃iwk ≤ 2Re
{
wHk
(
�̃i − V

)
w(j)
k

}
+ λiPt

+
(
w(j)
k

)H(
V − �̃i

)
w(j)
k , (54)

where the last two terms are constant with respect to wk.
As for the third term in (51), we expand it as

|wHk (IN+M ⊗ �i)wk|2
= Tr

{
(IN+M ⊗ �i)wkwHk (IN+M ⊗ �i)

HwkwHk
}

= vecH{wkwHk }
×
((

IN+M ⊗ �i

)
⊗ (IN+M ⊗ �i)

)
vec{wkwHk }
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= ŵk
H�̂iŵk, (55)

where ŵk � vec{wkwHk }, and �̂i � (IN+M ⊗ �i ⊗ (IN+M ⊗
�i). Based on [61, Lemma 12], we have the following
inequality

ŵk
H�̂iŵk

≤ ŵk
HV̂ŵk + Re

{
(ŵk

(j)
)H(�̂i + �̂

H
i − 2V̂)ŵk

}

+ (ŵk
(j)

)H(V̂ − �̂i)ŵk
(j)

≤ Re
{
(ŵk

(j)
)H(�̂i + �̂

H
i − 2V̂)ŵk

}

+ λ̂iP
2
t + λ̂i(ŵk

(j)
)Hŵk

(j) − (ŵk
(j)

)H�̂iŵk
(j)

, (56)

where V̂i � λ̂iIM2(N+M)2 � �̂i, and λ̂i is the maximum
eigenvalue of �̂i. We rewrite the first term in (56) and
transform it as

Re

{(
ŵk

(j)
)H(

�̂i + �̂
H
i − 2V̂

)
ŵk

}

=
(
ŵk

(j)
)H

�̂iŵk +
(
ŵk

(j)
)H

�̂
H
i ŵk − 2

(
ŵk

(j)
)H

V̂ŵk,

=
∣∣∣wHk vec

(
�H
i W

(j)
k

)∣∣∣2 +
∣∣∣wHk vec

(
�iW

(j)
k

)∣∣∣2

− 2λ̂iwHk w
(j)
k

(
w(j)
k

)H
wk + λ̂iP

2
t + λ̂i

(
ŵk

(j)
)H
ŵk

(j)

−
(
ŵk

(j)
)H

�̂iŵk
(j)

, (57)

where the first and second terms are convex, and the
third term is concave. By applying the first-order Taylor
expansion, we have

−2λ̂iwHk w
(j)
k

(
w(j)
k

)H
wk

≤ −2λ̂i

(∥∥∥w(j)
k

∥∥∥4 + 2Re

{∥∥∥w(j)
k

∥∥∥2(
w(j)
k

)H(
wk − w(j)

k

)})
.

(58)

By substituting (51)-(58) into the objective function (50a),
the problem can be transformed into

min
wk

||Fwk||22 − Re
{
fHwk

}

+ 1

2ρ

3∑
i=1

(
2Re

{
wHk
(
�̃i − V

)
w(j)
k

}

− 4λ̂iRe

{∥∥∥w(j)
k

∥∥∥2(
w(j)
k

)H(
wk − w(j)

k

)}

+
∣∣∣wHk vec

(
�H
i W

(j)
k

)∣∣∣2 +
∣∣∣wHk vec

(
�iW

(j)
k

)∣∣∣2 + oi

)

(59a)

s.t. −
(
w(j)
k

)HGHi Giw(j)
k

+ 2Re

{(
w(j)
k

)HGHi Giwk
}

≥ �̃t, i ∈ Q̃k, (59b)

||wk||22 ≤ Pt, (59c)

where oi, i = 1, 2, 3 collects all terms that do not depend
on wk. Problem (59a) is a convex quadratically constrained

Algorithm 2: ADMM-Based BS Transmit Beamforming
Algorithm for Solving Problem (P3.k)

Input: Optimized UA strategy: U∗. Maximum iteration
number: Niter. Convergence threshold: ε.

Output: BS transmit beamforming matrix Wk, ∀k ∈ K.
1 Initialization: Set feasible ρ(0) ≥ 0. Initialize w(0)

k and
ϒ(0). Set j = 0.

2 while j ≤ Niter and ε(j) > ε do
3 Outer loop:
4 Inner loop:
5 Step 1: Update υ(j) and b(j) based on (47) and

(48), respectively.
6 Step 2: Update C(j) and q(j) via solving (49).

7 Step 3: Update w(j)
k given υ(j), b(j),C(j),q(j)

via solving (59).
8 End of Inner loop.
9 Step 4: Update ϒ(j) based on (60).
10 Step 5: Update ρ(j+1): ρ(j+1) = 0.9ρ(j).
11 Step 6: Update j = j+ 1.
12 Step 7: Calculate the increase of objective

function as ε(j).
13 End of the Outer loop.
14 end
15 Reshape w∗

k to W∗
k .

16 return Optimized BS transmit beamforming matrix
W∗

k , ∀k ∈ K.

quadratic programming (QCQP) problem, which can be
solved optimally using existing optimization toolboxes such
as CVX [60].
d) Update Lagrangian dual variables ϒ: The update of ϒ

given w(j)
k ,υ(j), b(j),C(j),q(j) obtained in the j-th iteration is

given as [59]

ϒi = ϒ
(j)
i + 1

ρ(j)

(
Qi
(
W(j)

k

)
− q(j)

i

)
, i = 1, 2, 3, (60)

where ϒ
(j)
i and ρ(j) denote the obtained dual variable and

penalty factor in the j-th iteration, respectively.

4) ALGORITHM SUMMARY

The overall ADMM-based BS transmit beamforming
algorithm for solving problem (P3.k) is summarized
in Algorithm 2. The main complexity of Algorithm 2
is due to solving (59). Given solution accuracy ε,
the corresponding complexity for updating wk via the
interior-point method is in the order of O((M3.5N3.5 +
M7)log(1/ε)) [15]. Noting that each step in the inner
loop of Algorithm 2 results in monotonically non-decreasing
objective function values, the algorithm is guaranteed
to converge to a stationary point because the search
region of wk is bounded and ρ(j) is shrunk in each
iteration.
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Algorithm 3: LLM-Enabled AO-Based Algorithm for
Solving Problem (P1)
Input: Convergence threshold: ξ . Maximum iteration

number: Niter.
Output: UA strategy U. BS transmit beamforming

matrix Wk, ∀k.
1 Initialization: Initialize U(0) and W(0)

k , ∀k. Set j = 0.
2 while j ≤ Niter and ξ (j) > ξ do
3 Step 1: Obtain U(j+1) by running Algorithm 1 with

fixed W(j)
k , ∀k.

4 Step 2:
5 for k = 1, 2, . . . ,K do
6 Obtain W(j+1)

k by running Algorithm 2 with
fixed U(j+1).

7 end
8 Step 3: Update j = j+ 1.
9 Step 4: Calculate the increase of objective function

value as ξ (j).
10 end
11 return UA U∗. The optimized BS transmit

beamforming matrix W∗
k , ∀k ∈ K.

C. OVERALL ALGORITHM SUMMARY
The LLM-enabled AO-based algorithm design for solving
problem (P1) is summarized in Algorithm 3. At the j-th
iteration, we define the objective function of problem (P1)
as F({W(j)

k }Kk=1,U
(j)). According to the AO-based algorithm,

we have

F
(
{W(j)

k }Kk=1,U
(j)
) (a)≤ F

(
{W(j)

k }Kk=1,U
(j+1)

)
(b)≤ F

(
{W(j+1)

k }Kk=1,U
(j+1)

)
. (61)

Note that inequality (a) holds since solution U(j+1) to
problem (P2) can be obtained for fixed {W(j)

k }Kk=1. Inequality
(b) holds since solution {W(j+1)

k }Kk=1 to problem (P3) can
be obtained for fixed U(j+1). Thus, the update of variables
leads to a non-decreasing objective function (27) after every
iteration. Due to the power constraints and limited search
space of the UA, problem (P1) has an upper bound. Thus,
Algorithm 3 is guaranteed to converge.

To guarantee sensing performance in non-asymptotic
regimes, such as moderate SNR or small-sample settings,
several alternatives to the CRB can be employed. For
instance, the Ziv-Zakai Bound (ZZB) establishes a lower
bound on the mean-square error (MSE) through a binary-
hypothesis testing formulation. An even tighter alternative is
the Weiss-Weinstein Bound (WWB), which also accounts for
estimator bias. Both the ZZB and WWB can replace the CRB
constraint, often resulting in convex or quasi-convex formula-
tions. Additionally, an empirical MSE estimate derived from
Monte Carlo simulations offers a practical and generally
non-convex alternative that can be linearized. The proposed
AO framework is adaptable to these advanced bounds. While

TABLE 2. Simulation parameters.

the UA subproblem remains unchanged, the beamforming
subproblem would simply incorporate the chosen non-
asymptotic bound in place of the CRB. Established solution
methods including the ADMM, MM, and FP would still be
applicable.

VI. SIMULATION RESULTS
A. SIMULATION SYSTEM SETUP
In this section, we present numerical results to verify the
benefits of the proposed LLM-enabled AO-based algorithm.
In the considered multi-CU multi-BS ISAC network, we
deploy K ISAC BSs with M transmit and receive antennas.
For each ISAC BS k ∈ K, there is one target Q̃k for detection
and one target Q̂k for parameter estimation in the associated
target set Qk. The K ISAC BSs serve N ground CUs. We
consider an area within 200 m × 200 m, where each BS is
spaced between 80 and 160 m. Without loss of generality,
we assume that all ground CUs are uniformly and randomly
distributed, and the associated targets are randomly located
at positions between 100 m and 160 m away from each
ISAC BS. We assume that all the RCS of targets αt,i, ∀i
are randomly generated following CSCG distributions. We
adopt the same initialization method for {Wk}Kk=1 as in [15]
to maximize the sum power of the received signals of the
targets and CUs using the Riemannian conjugate gradient
(RCG) algorithm. All numerical results are averaged over
50 independent Monte Carlo simulations with independent
random location realizations of CUs, targets, and BSs in each
simulation. The main system parameters are summarized in
Table 2.

To evaluate the performance of our proposed LLM-
enabled AO-based algorithm, we consider the following
benchmark schemes for comparison:
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FIGURE 3. Illustration of the overall framework of Algorithm 3.

• Convex optimization with brute-force search method
(Upper bound, Convex plus BF): This scheme utilizes
the brute-force search to find the optimal UA in Step
1 of Algorithm 3, while optimizing the BS transmit
beamforming with the Step 2 of Algorithm 3.

• Convex optimization with game theory (Convex
method only): This scheme utilizes a low-complexity
game theory-based method to optimize the UA in Step
1 of Algorithm 3. Specifically, this scheme first applies
the Gale-Shapley algorithm [62] to find the initial
matching between CUs and BSs. Then, considering
that CUs may have an incentive for potential transfers
from one heavily loaded base station (BS) to another
lightly loaded BS, we formulate a coalition game
based on [63] to further optimize the user associ-
ation (UA). The complexity of Step 1 is O(LNK),

where L is the number of iterations. Finally, the
BS transmit beamforming is optimized using Step 2
of Algorithm 3.

• BS transmit beamforming optimization only
(Beamforming only): This scheme only optimizes the
BS transmit beamforming using Step 2 of Algorithm 3,
while fixing the UA to the initial matching obtained by
the Gale-Shapley algorithm.

• Proposed Algorithm using the GPT-o1 model (Convex
plus GPT-o1): This scheme adopts the proposed LLM-
enabled AO-based algorithm using the GPT-o1 model
as the chosen LLM.

• Proposed Algorithm using the GPT-4-Turbo (Convex
plus GPT-4-Turbo): This scheme adopts the proposed
LLM-enabled AO-based algorithm using the GPT-4-
Turbo model as the chosen LLM.
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FIGURE 4. Optimized transmit beampattern gains of different BSs with initialized UA (Beamforming only), where circle markers denote the BSs, the square markers denote the
CUs, the star markers denote the target for parameter estimation, and the diamond markers denote the target for detection.

• Proposed Algorithm using the Claude 3.5 (Convex plus
Claude 3.5): This scheme adopts the proposed LLM-
enabled AO-based algorithm using the Claude 3.5 model
as the chosen LLM.

• Proposed Algorithm using the Gemini 2.0
(Convex plus Gemini 2.0): This scheme adopts
the proposed LLM-enabled AO-based algorithm
using the Gemini 2.0 model as the chosen
LLM.

In our simulations, we set the default parameter settings for
all the LLMs used. All the simulation results were averaged
over multiple independent runs.

B. PERFORMANCE EVALUATION
Fig. 4 and Fig. 5 illustrate the optimized transmit beampat-
tern gains of different BSs with the initial and optimized
UA, respectively, where each BS senses the corresponding
targets and serves the associated CUs. It can be observed that
each BS generates the strongest beams towards the locations
of the targets and associated CUs in both cases. Compared
with the beamforming-only method shown in Fig. 4, the
optimized beampattern gain of each BS from the proposed
algorithm with the GPT-o1 model is much stronger and more
concentrated towards the locations of the targets and CUs,
while the beampattern gains towards other directions are
reduced. Moreover, it is also observed that based on the
proposed algorithm with the GPT-o1 model, BS 1 and BS
2 only serve a single CU, respectively, while BS 3 serves
the rest of the CUs to maximize the overall communication

performance. This demonstrates that our designed prompt
engineering structure effectively guides the GPT-o1 model to
find the optimal UA that maximizes the total sum rate, which
also verifies the effectiveness of our proposed LLM-enabled
AO-based algorithm.
In Fig. 6, we evaluate the convergence performance of

the proposed algorithm compared with other benchmark
schemes. The proposed algorithm with the GPT-o1 model
converges within 10 iterations and achieves exactly the same
performance as the Convex plus BF method, which achieves
a performance upper bound. It is also observed that the
proposed algorithm with the GPT-o1 model outperforms
benchmark schemes using GPT-4-Turbo, Gemini 2.0, and
Claude 3.5 in terms of the convergence speed. This can be
attributed to the powerful reasoning capability of the GPT-
o1 model. With the reasoning steps, GPT-o1 can clearly
understand and efficiently solve the optimization problem
by strictly following the chain of thought prompt. However,
conversation models, including GPT-4-Turbo, Claude-3.5,
and Gemini 2.0, are trained for general language conversa-
tions and have difficulty following the reasoning logic in
the prompts and checking the correctness of their problem-
solving logic. It can be concluded that the performance of
the proposed algorithm is largely determined by the chosen
LLM model, and the reasoning model GPT-o1 achieves the
best performance in terms of convergence speed.
In Fig. 7, we evaluate the average sum rate per CU as

a function of the number of CUs. As the number of CUs
increases, the average sum rate per CU decreases since more
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FIGURE 5. Optimized transmit beampattern gains of different BSs with optimized UA (Proposed algorithm with the GPT-o1 model), where circle markers denote the BSs, the
square markers denote the CUs, the star markers denote the target for parameter estimation, and the diamond markers denote the target for detection.

TABLE 3. Total sum rate of all CUs for K = 10 and N = 40.

CUs compete for the limited transmit power and bandwidth
resources. It is observed that compared with other benchmark
schemes, the proposed algorithm with the GPT-o1 model
achieves the best performance in terms of the sum rate per
CU, which is very close to the upper bound for a large
number of CUs. To be more specific, it can be seen that
the proposed algorithm with the GPT-o1 model can generate
optimal results if a small number of CUs are considered.
When the number of CUs increases, the GPT-o1 model
can still generate near-optimal results with the exponential
growth of the UA search space. However, compared with
methods using LLMs, the Convex method only scheme
can generate smoother results with a clearer decreasing
trend, which complies with the stability of convex-based
optimization methods. Although the proposed algorithm
with the GPT-4-Turbo model can sometimes outperform
other benchmark methods, the generated results are not
good enough and are sometimes even worse than the
beamforming-only method. Similarly, Claude 3.5 and Gemini

2.0 achieve exactly the same performance, which is not
as smooth as that of the Convex method only. First, this
is because the sampling mechanisms of LLMs (controlled
by, e.g., top-p and temperature) introduce randomness at
each token, which yields diverse high-probability outputs
in repeated runs rather than a single deterministic solution.
Second, the fluctuating performance of Claude 3.5, Gemini
2.0, and GPT-4-Turbo is largely due to their general-purpose
inference capabilities, which rely on broad statistical patterns
rather than the precise step-by-step reasoning required for
complex combinatorial optimization. In contrast, reasoning
models like GPT-o1 are fine-tuned with dedicated reasoning
capabilities that better navigate the exponential search space,
resulting in more deterministic outputs. Hence, it can be
concluded that the performance of the proposed algorithm
is largely determined by the chosen LLM model, and the
reasoning GPT-o1 model is more likely to yield determin-
istic and high-quality solutions compared with conversation
models.
Table 3 shows that in a middle network system with 10

BSs and 40 CUs, our proposed Convex plus GPT-o1 scheme
still outperforms other benchmark schemes. The complexity
of the brute-force search is O(1040), which is too complex
to be implemented with our current computational resources.
It is also shown that the conversation models Claude 3.5
and Gemini 2.0 fail to generate available solutions because
these models may lose part of the information in the prompts
and fail to generate eligible UA strategies satisfying all
constraints in sub-problem (P2). This again verifies that with
the increase in the network size, the exponential explosion
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FIGURE 6. Convergence performance of the proposed algorithm.

FIGURE 7. Average sum rate per CU as a function of the number of CUs for M = 24
and Pt = 32 dBm.

of the combinatorial complexity in UA demands a level
of rigorous and multi-step logical inference that is beyond
the capability of general-purpose conversational models. In
contrast, the reasoning model GPT-o1 is more stable and
powerful in following complex instructions and performing
precise step-by-step reasoning.
In Fig. 8, we evaluate the average sum rate as a function

of the number of antennas. We observe a small performance
gap between the proposed algorithm and other benchmark
methods when the number of antennas is small. This is
because there are not enough DoFs for beamforming to
sense targets and serve CUs. As can be observed, as the
number of antennas increases, the average sum rate increases
since additional antennas can provide more spatial DoFs
for more efficient beamforming. It is also observed that the
proposed algorithm with the GPT-o1 model achieves the
best performance in terms of the sum rate and approaches
the upper bound. Besides, the proposed algorithm with

FIGURE 8. Average sum rate as a function of the number of antennas for N = 10
and Pt = 32 dBm.

FIGURE 9. Averaged sum rate as a function of the transmit power for N = 10 and
M = 24.

conversation LLMs still fails to generate the expected results
due to the random output of such LLMs.
In Fig. 9, we evaluate the average sum rate as a function of

the transmit power. It is observed that as the transmit power
increases, the average sum rate also increases because more
power can be allocated to each CU for better communication
performance, which is an obvious and predictable result. In
addition, the proposed algorithm achieves the upper bound
while outperforming other benchmark methods. Compared
with the GPT-o1 model, although the use of conversation
LLMs can sometimes outperform the Convex method only
scheme, such LLMs still fail to generate deterministic and
smooth results due to their stochastic generation process
and limited capabilities in handling complex optimization
problems.
In Fig. 10, we evaluate the average sum rate as a function

of the values of CRB thresholds. We can observe a high-
performance gap for all methods from the CRB threshold
of 0.005 to that of 0.01. This is because such a CRB
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FIGURE 10. Average sum rate as a function of the values of CRB thresholds for
N = 10, M = 24, and Pt = 32 dBm.

threshold of 0.005 is so tight that the BSs are forced
to allocate most of the transmit power for sensing, thus
compromising the communication performance. There is also
a clear trade-off between communication and sensing. As the
CRB thresholds increase, the average sum rate also increases
since the sensing requirements become looser, and more
power can be allocated for communications. In addition, the
proposed algorithm with the GPT-o1 model reaches the upper
bound while outperforming other benchmark methods. The
proposed algorithm with Gemini 2.0 and Claude 3.5 even
generates results worse than the Beamforming only scheme,
which again verifies the benefits of using reasoning LLMs
for the performance of our proposed algorithm.
As shown in the numerical results, the proposed LLM-

enabled AO-based algorithm, specifically, the Convex
plus GPT-o1 method, demonstrates performance approach-
ing the upper bound and outperforms the Convex
method only benchmark using a commonly used match-
ing theory-based UA scheme [62], [63]. Verified by the
literature [64], [65], [66], heuristic-based methods such as
max-SINR or clustering-based methods are often suboptimal
and can lead to severe load imbalances, which degrade
network performance. Similarly, relaxation techniques, while
common for combinatorial optimization, may introduce the
duality gap and do not guarantee an integer solution, often
requiring a rounding step that can introduce significant
suboptimality. Given that our proposed LLM-enabled AO-
based algorithm achieves performance close to the upper
bound and outperforms a strong matching theory-based
benchmark, the simulations are sufficient to validate the
effectiveness and significant potential of integrating LLMs
in addressing highly non-convex optimization challenges.

VII. CONCLUSION AND FUTURE WORK
We considered a multi-BS multi-CU ISAC system and
proposed an LLM-enabled AO-based algorithm to jointly
optimize the multi-BS transmit beamforming and UA

strategy to maximize the total communication sum rate
while ensuring the sensing requirements. Firstly, we for-
mulated the corresponding optimization problem based on
appropriate performance metrics, including the radar SNR
for sensing, CRB for parameter estimation, and downlink
sum rate for communications. Secondly, we decomposed
the original problem into two sub-problems, namely the
UA optimization and beamforming optimization problems.
Thirdly, we proposed integrating LLMs and convex-based
optimization into an LLM-enabled AO-based algorithm
framework to solve the two sub-problems iteratively. LLMs
learn to efficiently optimize the UA given expert knowledge
through in-context, few-shot, chain of thought, and self-
reflection prompt engineering, which demonstrates the strong
and flexible adaptability of LLMs without extensive training.
Then, the convex-based optimization is used to handle
beamforming optimization based on the FP, MM, and
ADMM techniques. Finally, our numerical results demon-
strated that the algorithm proposed with the GPT-o1 model
achieves a performance close to the upper bound and
outperforms the Convex method only scheme and other
LLM models (GPT-4-Turbo, Claude 3.5, Gemini 2.0) in
terms of total sum rate and convergence speed, verifying the
effectiveness of integrating reasoning LLMs with the convex-
based optimization algorithm framework by combining both
of their benefits.
In future work, we aim to explore how LLMs can

address the security challenges in high-frequency (e.g.,
mmWave/THz) ISAC applications. The coupling of C&S
functions introduces unique vulnerabilities, including sophis-
ticated eavesdropping, jamming, and spoofing attacks that
can compromise both data privacy and sensing integrity.
Fortunately, LLMs can make a paradigm shift towards proac-
tive and intelligent defense. By training on vast and diverse
datasets containing network traffic and security incidents,
LLMs can perform intelligent threat analysis, identifying
novel and subtle attack patterns that traditional systems might
miss, which is crucial for securing complex environments,
such as 6G Space-Air-Ground Integrated Networks [67].
Furthermore, LLMs can automate the generation and real-
time adaptation of security policies, such as designing
optimal beamforming strategies to nullify eavesdroppers
while preserving the ISAC performance. At the physical
layer, where ISAC systems are particularly vulnerable,
generative AI and LLMs can design resilient waveforms and
intelligent artificial noise to counter spoofing and jamming
attempts, thereby enhancing physical layer security [68].
By integrating LLMs into security frameworks in high-
frequency ISAC, we can transform the security management
into an adaptive, intelligent, and predictive framework, which
ensures the robustness and trustworthiness of future ISAC
applications.

APPENDIX A
Based on the derivation of FIM in (21), we first calculate the
partial derivatives of μ(ξ k,i) with respect to each parameter
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in ξ k,i, which yields
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where Ġ(φk,i) denotes the partial derivative of G(φk,i) with
respect to θk,i. The elements of the FIM in (22) are given
by
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To rearrange the FIM in (22), based on the deriviations
above, we define Qj(·) as

Qj(Wk) � Tr{�jWkWH
k }, j = 1, 2, 3, (67)

where

�1 � 2L|αt,i|2
σ 2
r

ĠH(φk,i)Ġ(φk,i), (68)

�2 � 2Lᾱt,i
σ 2
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σ 2
r
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