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Abstract—Early detection of cardiovascular anomalies remains
critical for proactive patient care, especially within the growing
ecosystem of Internet of Medical Things (IoMT) devices. This
study explores the application of Federated Learning (FL) to
predict early cardiac events using electrocardiogram (ECG)
signals across heterogeneous IoMT silos without centralized data
sharing. We focus on Premature Ventricular Contraction (PVC)
as an example of early event prediction. Using three real-
world ECG datasets (PTB-XL, Chapman-Shaoxing, and MIT-
BIH), we simulate cross-silo environments where local models
are trained independently and aggregated through FL. Our
experiments demonstrate that local models can already achieve
high classification performance, but global models obtained via
FL lead to consistent improvements in macro precision, recall,
and F1-scores across datasets. Visual analysis of early ECG
segments further highlights inter-dataset variability, emphasizing
the importance of silo-specific characteristics. The results validate
that FL is a promising strategy to enable scalable, privacy-
preserving, and accurate early cardiovascular event prediction in
IoMT systems, bridging clinical silos while safeguarding sensitive
patient data.

Index Terms—Federated Learning, IoMT, ECG, Early Event
Prediction, Cross-Silo Learning, Cardiovascular Anomaly Detec-
tion

I. INTRODUCTION

Cardiovascular diseases (CVDs) continue to represent the
leading cause of global mortality, accounting for approxi-
mately 20.5 million fatalities in 2021 [1]. Projections suggest
that the global burden of CVDs will increase by over 90%
between 2025 and 2050, potentially resulting in more than
35 million cardiovascular-related mortalities annually by mid-
century [2]. These alarming trends highlight the critical need
for early detection, preventive care, and scalable diagnostic
solutions capable of supporting proactive patient management.

Advancements in healthcare technologies have ushered in
a paradigm shift toward more data-centric and intelligent
systems, particularly in the realm of cardiovascular disease
monitoring and diagnosis. In this context, machine learning

(ML) algorithms applied to biomedical data such as elec-
trocardiograms (ECGs) have gained increasing prominence.
However, traditional centralized learning approaches pose sub-
stantial privacy risks due to the sensitive nature of medical data
[3]–[5].

FL, first formalized by McMahan et al. [6], introduced a
decentralized approach to collaboratively train models without
centralizing sensitive data, addressing privacy concerns while
enabling efficient distributed learning [7]–[12].

Applications of FL in healthcare span a wide range of
modalities, from medical image classification to sensor-based
vital sign analysis. In particular, ECG-based diagnosis of
arrhythmias and other cardiac abnormalities has become a
focal area, owing to the proliferation of wearable sensors and
mobile ECG devices [13], [14]. These technologies enable
real-time monitoring and early intervention, crucial for im-
proving patient outcomes in both clinical and remote settings
[15], [16].

Meanwhile, the IoMT ecosystem is rapidly expanding. The
global IoMT market was valued at approximately USD 230.69
billion in 2024 and is projected to reach USD 658.57 billion by
2030, driven by the widespread adoption of connected health
devices and remote monitoring systems [17]. Specifically, the
market for wearable ECG monitors is expected to grow from
USD 3.29 billion in 2023 to USD 4.01 billion in 2024,
representing a compound annual growth rate (CAGR) of 21.7

In this work, we specifically target cross-silo IoMT environ-
ments, where healthcare institutions such as hospitals, clinics,
and remote care facilities utilize IoMT devices—for example,
wearable ECG monitors and portable diagnostics—for local
data collection. Each institution maintains its own siloed
dataset and collaborates to train a shared global model without
exposing raw patient data [18]. This paradigm is particularly
relevant in IoMT ecosystems, where resource constraints and
privacy concerns hinder the deployment of traditional central-
ized machine learning approaches.
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Nonetheless, despite its advantages, FL still faces challenges
related to data heterogeneity, communication costs, model
personalization, and explainability [3], [4]. Recent studies
propose architectural innovations, such as microservices-based
platforms [19] and transfer learning-enhanced FL frameworks
[13], to address these barriers.

The objective of this study is to demonstrate the practical
benefits of FL in cross-silo IoMT settings, with an emphasis
on early cardiovascular event prediction using ECG signals.
Through experimental evaluation across distinct datasets, we
illustrate how smaller entities—such as community hospitals,
clinics, and rural care centers—can significantly enhance their
predictive performance while preserving sensitive data privacy.

This article is organized as follows: Section II reviews
related work on FL in ECG analysis and heart disease predic-
tion. Section III describes the datasets and the cross-silo FL
setup. Section IV presents the system model, including data
preprocessing, local model architecture, and federated training
procedures. Section V presents and analyzes the evaluation
results, emphasizing accuracy, robustness, and privacy preser-
vation. Section VI concludes the paper with key findings and
outlines directions for future research.

II. RELATED WORK

The growing body of literature in FL for ECG-based diag-
nostics demonstrates its transformative impact on healthcare
AI systems. Numerous methodologies have been proposed to
enhance the privacy, scalability, and diagnostic performance
of cardiovascular models in distributed environments.

Several studies focus on improving arrhythmia classification
and cardiovascular disease detection through FL. Pal et al.
developed CardioNet, employing transfer learning for ECG
arrhythmia classification [20], while Mane et al. proposed
a lightweight FL system for arrhythmia detection on edge
devices [21]. Sakib et al. explored asynchronous federated
approaches to improve latency in ECG analysis [22], and
Zhang et al. addressed non-IID data challenges in arrhythmia
detection [23]. Similarly, Jimenez Gutierrez et al. applied FL to
classify arrhythmias from 12-lead ECGs [24], while Meqdad et
al. introduced a Gaussian-based aggregation module to handle
data heterogeneity [25].

To personalize and optimize model performance, Tang et al.
aligned feature distributions for individualized classification
[26], and Park et al. designed a personalized FL system
for mobile sensor data [15]. Similarly, Phan et al. presented
an FL framework that balances privacy with ECG signal
classification performance [14], while Zeleke et al. leveraged
Kolmogorov-Arnold networks for explainability in ECG mod-
els [27].

Recent frameworks also address scalability and architectural
modularity. Atitallah et al. proposed a microservice-oriented
FL framework [19], and Yuan et al. developed an FL system
tailored for IoMT devices [7]. Raza et al. combined transfer
learning with explainable AI (XAI) [13], and Khan et al.
hybridized FL with the Artificial Bee Colony algorithm in
IoMT systems [28].

Efforts to benchmark and generalize FL models include
Zhang et al.’s FedCVD benchmark on real-world CVD data
[29], Hwang et al.’s practical utility evaluation across datasets
[11], and Agrawal et al.’s multi-hospital analysis using differ-
ential privacy [30]. Complementarily, Antunes et al. provided
a comprehensive taxonomy of FL systems [4], and Gafni et
al. emphasized the signal processing underpinnings [10].

In specialized studies, Santos et al. explored atrial fib-
rillation detection with federated neural networks [31], and
Alreshidi et al. developed Fed-CL for atrial fibrillation pre-
diction [32]. Ying et al. proposed FedECG, integrating semi-
supervised learning [33], while Asif et al. introduced weighted
aggregation for ECG anomaly detection [34]. Other notable
contributions include FedSDM by Rajagopal et al. [35], Couto
et al.’s arrhythmia-focused system [36], and Lin et al.’s Fed-
Cluster framework for cross-device classification [37].

Further developments include Khan et al.’s asynchronous
FL for improved cardiovascular prediction [38], Zou et al.’s
UNet++-based approach for heart failure detection [39], and
Qiu et al.’s paradigm for heart sound classification [40].
Semmadi and Bahhou provided an overarching discussion
on FL’s role in IoMT [41], and Elayan et al. examined FL
sustainability in Internet of Things (IoT) systems [12].

Several large-scale datasets underpin these studies. The
PTB-XL dataset [42], [43], the MIT-BIH arrhythmia database
[44], and Zheng et al.’s 12-lead ECG dataset [45] are fre-
quently employed. Goldberger et al.’s PhysioNet platform
further enhances data accessibility [46].

Finally, systems-level and implementation perspectives are
provided by Gupta et al. [9], Rani et al. [8], and Yoo et al.
[47]. Federated radar applications are explored in Jiang et al.’s
FedRadar system [48]. Cross-device and unsupervised learn-
ing approaches are examined by Kapsecker and Jonas [49],
while Christodoulou et al. highlight real-time cardiovascular
monitoring with FL integration [50]. Goto et al. proposed a
multinational FL framework combining ECG and echocardio-
gram data for hypertrophic cardiomyopathy detection [51], and
Gupta et al. applied LSTM (Long short-term memory) and
CNN-based models in a federated setting for heart disease
prediction [52]. Additional strategies were introduced by Ulver
et al. for FL in clinical cardiovascular prediction [53], and Rao
and Muneeswari, who proposed an IoT-integrated FL frame-
work for CVD prediction [54]. Ensemble learning techniques
were examined by Islam et al. [55], while Alahmadi et al.
focused on mental stress detection using a privacy-preserved
FL approach in IoMT systems [56]. Scalable FL architectures
for healthcare sensors were also proposed by Sun and Wu [57],
as well as Lee and Shin which assessed performance trade-offs
using clinical benchmark datasets [5].

Despite these advancements, there remains a critical gap
in validating FL systems under real-world, cross-silo health-
care scenarios, where privacy concerns, regulatory con-
straints, and institutional authorizations present significant
barriers—underscoring the need for practical, use-case-driven
investigations such as the one pursued in this study.
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III. DATASETS AND CROSS-SILO FL SETUP

For our cross-silo FL experiments, we utilize three
major open-access ECG datasets: MIT-BIH Arrhythmia
Database [44], PTB-XL [42], [43], and the Chapman-
Shaoxing ECG Dataset [45].

MIT-BIH provides a collection of long-term ECG record-
ings annotated with heartbeat-level symbols, such as “N”
(normal), “V” (premature ventricular contraction), and “A”
(atrial fibrillation). Signals are segmented around annotated
events, allowing flexible extraction of pre-event or event-
centered samples.

PTB-XL consists of over 20,000 12-lead ECG records
labeled according to the SCP-ECG coding standard, covering
diagnoses like atrial fibrillation (AFIB), atrial flutter (AFLT),
premature ventricular contractions (PVC), and normal sinus
rhythm (SR).

Chapman contains more than 45,000 ECG recordings la-
beled using SNOMED CT clinical codes. It captures a broad
range of cardiac conditions across diverse clinical settings,
similarly covering arrhythmic events such as AFIB, AFLT,
and PVC.

To maintain alignment across heterogeneous coding sys-
tems, we focus on Premature Ventricular Contractions
(PVC) as a shared clinical target across all three datasets.
Table I summarizes the distribution of total records and PVC-
specific cases per dataset. Although labeling systems differ,
PVC events offer a common diagnostic endpoint for federated
training and evaluation.

Additionally, Figure 1 visually compares examples of PVC
signals across the three datasets, highlighting morphology and
amplitude differences that motivate the need for FL strategies
capable of handling cross-silo heterogeneity.

Cross-silo FL enables decentralized model improvement
without direct data sharing, a crucial capability for sensitive
healthcare environments [13], [19], [20], [33], [35].

IV. SYSTEM MODEL

In this study, we model early detection of PVCs using a
Federated Learning (FL) framework applied to decentralized
IoMT client datasets. Each client (hospital, clinic, or device)
retains local ECG signals without sharing raw patient data.
The high-level workflow is illustrated in Figure 2 and follows
a five-step process aligned with our evaluation.

A. Step 1: Data Preparation
Given a set of local ECG recordings {(xi, yi)}Ni=1 from each

client, we preprocess the signals by:
• Selecting the first L = 90 samples (early prediction

focus), corresponding to approximately 0.25 seconds of
ECG signal at 360 Hz sampling,

• Normalizing each signal:

x̃i =
xi − µ(xi)

σ(xi) + ϵ
,

where µ(xi) and σ(xi) denote the mean and standard
deviation of xi, respectively, and ϵ = 10−6 prevents
division by zero,

• Assigning binary labels:

yi =

{
1 if PVC detected,
0 otherwise.

B. Step 2: Model Initialization

Each client receives a shared initialization of a lightweight
1D convolutional neural network (CNN) fθ, parameterized by
weights θ. This model, referred to as TinyECGCNN, consists
of:

• Two convolutional layers with ReLU activations:

h1 = ReLU(Conv1d(x)), h2 = ReLU(Conv1d(h1)),

• A flattening layer and fully connected classification head:

ŷ = Softmax(Wh2 + b),

where W and b are trainable parameters. The model is
designed for edge deployment and used to demonstrate the
benefits of FL. Each client minimizes the standard cross-
entropy loss:

LCE(θ) = − 1

N

N∑

i=1

C∑

c=1

yi,c log(ŷi,c).

C. Step 3: Local Model Training

Each hospital client independently trains its local copy of
TinyECGCNN using its own preprocessed ECG samples for
a few epochs. No raw data is exchanged between clients or
with the server.

D. Step 4: Federated Aggregation

Once local training is complete, each client k transmits its
learned model weights θk to a central aggregator. The global
model is updated using Federated Averaging (FedAvg):

θglobal =
1

K

K∑

k=1

θk,

where K is the number of participating clients. No raw patient
data is transferred during this process.

E. Step 5: Fine-Tuning and Evaluation

After aggregation, the global model can be optionally fine-
tuned locally by each client to improve adaptation to site-
specific characteristics. In our experimental setup, fine-tuning
was performed on MIT-BIH to simulate adaptation at a smaller
hospital.

Model performance is then evaluated using standard classi-
fication metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP

TP + FP
,

Recall =
TP

TP + FN
, F1-Score = 2× Precision × Recall

Precision + Recall
,

where TP , TN , FP , and FN denote true positives, true
negatives, false positives, and false negatives, respectively.

This five-step design enables early detection of PVC ab-
normalities in a privacy-preserving, distributed manner across
heterogeneous IoMT hospital clients.
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TABLE I
DISTRIBUTION OF TOTAL RECORDS AND PVC CASES ACROSS FL CLIENTS (MIT-BIH, PTB-XL, CHAPMAN). PVC = PREMATURE VENTRICULAR

CONTRACTION. ALTHOUGH CODING SYSTEMS DIFFER ACROSS DATASETS (E.G., SCP-ECG, SNOMED CT, MIT ANNOTATIONS), PVC EVENTS PROVIDE
A SHARED CLINICAL TARGET FOR CROSS-SILO FL EXPERIMENTS.

Client (Dataset) #Records Code Type Diagnosis Description
MIT-BIH 19,386 Annotation Symbols (Various) All ECG Classes Full sample size after early signal segmentation, including

PVC, Normal, AFIB, and other heartbeat categories.
PTB-XL 25,590 SCP-ECG Labels (Various) All ECG Classes Full set of clinical 12-lead ECG recordings with multiple

cardiac diagnoses based on SCP-ECG labeling standards.
Chapman 45,152 SNOMED CT Codes (Various) All ECG Classes Comprehensive ECG dataset covering a wide range of

SNOMED-coded cardiac conditions across multiple settings.
MIT-BIH 644 Annotation Symbol (“V”) PVC Early abnormal ventricular beats identified in MIT-BIH via

the “V” annotation symbol (ventricular ectopic beats).
PTB-XL 1,143 SCP-ECG Label (“PVC”) PVC Premature ventricular contractions annotated according to the

SCP-ECG clinical guidelines in resting ECGs.
Chapman 1,091 SNOMED CT Code (“427172004”) PVC Ventricular premature beats detected using SNOMED CT

coding in Chapman dataset ECG recordings.

Fig. 1. Comparison of random PVC signals across the PTB-XL, Chapman, and MIT-BIH datasets (first 2000 samples shown). Differences in signal shape,
noise, and amplitude are evident across the three silos.

�

MIT-BIH Dataset (USA)

�

PTB-XL Dataset (Germany)
�

Chapman Dataset (China)

Federated Aggregator
Securely aggregates model updates

w =
1

K

K∑

k=1

wk

Sends back improved global model w

w ↔ w1

w ↔ w2

w ↔ w3

Fig. 2. FL across three hospital silos. Each hospital trains a local
TinyECGCNN on early segmented MIT-BIH PVC signals, exchanges only
model updates with the federated aggregator, and receives global model
improvements.

V. EVALUATION AND DISCUSSION

This section evaluates the five-step Federated Learning
(FL) framework introduced in Section IV, focusing on early-
stage PVC prediction across decentralized IoMT silos. The

evaluation simulates a realistic healthcare scenario in which
each institution has limited ECG data and privacy constraints.
To enable early detection, only the first 90 samples (approxi-
mately 0.25 seconds at 360Hz) are extracted from each ECG
trace—prior to any arrhythmia onset.

Step 1: Dataset Preparation. PVC-labeled records were
extracted from three sources: MIT-BIH (symbol “V”), PTB-
XL (“PVC”), and Chapman (SNOMED code “427172004”).
All records were normalized and segmented to retain only
early signals. This process produced 682 early PVC signals
from MIT-BIH, with proportionally processed subsets from
PTB-XL and Chapman for simulation purposes.

Step 2: Shared Model Initialization. A lightweight CNN
model, referred to as TinyECGCNN, was defined to ensure
compatibility with edge-device constraints. This model archi-
tecture was initialized centrally and distributed identically to
all three client silos.

Step 3: Local Model Training. Each client (MIT-BIH,
PTB-XL, and Chapman) independently trained its local copy
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of TinyECGCNN on its respective early PVC dataset for a
few epochs (typically 3–5), producing local updates without
sharing raw data.

Step 4: Aggregation via FedAvg. The local model param-
eters were transmitted to a central aggregator and combined
using the Federated Averaging (FedAvg) algorithm. This sim-
ulated a single round of federated collaboration.

Step 5: Fine-Tuning and Evaluation. The aggregated
global model was fine-tuned for two additional epochs using
only MIT-BIH data, simulating further training at a smaller
hospital site. Model performance was then evaluated on a held-
out MIT-BIH test set to assess improvements in early PVC
classification.

It is important to note that local models did not need to
converge fully before aggregation. Instead, early-stage training
across diverse silos was sufficient to produce meaningful
global improvements—a typical design principle in FL sys-
tems to balance efficiency and generalization.

Two key visualizations summarize the evaluation:
As shown in Figure 3, the local MIT-BIH model achieved

reasonable initial performance but exhibited notable misclas-
sifications, particularly for PVC events. Specifically, the local
model correctly classified 347 PVC samples, but misclassified
293 PVC instances as “Other,” reflecting a substantial false-
negative rate. Similarly, 83 “Other” samples were incorrectly
classified as PVC, contributing to false positives.

After applying FL aggregation with the PTB-XL and
Chapman silos and performing fine-tuning, the global model
demonstrated substantial improvements. The number of cor-
rectly classified PVC events increased from 347 to 417, while
false negatives decreased from 293 to 223. In addition, the
global model reduced false positives from 83 to 40, and
slightly improved the true negative count, correctly identifying
18,706 “Other” instances compared to 18,663 before FL.

Overall, these results highlight that cross-silo FL training
not only enhanced the model’s sensitivity to PVC events
(true positives) but also improved its specificity by reducing
incorrect PVC predictions. The improvements validate the
benefits of knowledge sharing across different clinical silos
while preserving data privacy.

Performance metrics in Figure 4 reinforce these findings.
After FL, the macro-averaged precision increased from 0.8169
to 0.8606, recall rose from 0.7825 to 0.8261, and F1-score
improved from 0.7873 to 0.8413. This is particularly notable
given the constrained input size and minimal number of
training samples.

Key takeaway: Healthcare-oriented cross-silo FL enables
early-stage cardiovascular anomaly prediction from minimal
ECG signals, delivering substantial improvements in accuracy,
precision, recall, and F1-scores, while safeguarding patient
privacy across decentralized institutions governed by distinct
administrative domains.

Overall, the results show that smaller hospitals—such as
the one represented by MIT-BIH—can benefit significantly
from FL. By collaborating with larger institutions like PTB-
XL and Chapman, they achieve notable improvements in

early arrhythmia prediction without sharing patient data. These
gains in PVC detection are critical for early intervention
and could reduce morbidity and mortality associated with
arrhythmias. Beyond validating the feasibility of cross-silo FL
for ECG-based prediction, these findings emphasize its broader
importance for future IoMT healthcare systems. Enabling
collaborative model training across heterogeneous, resource-
constrained sites allows performance improvements otherwise
inaccessible to smaller silos. Notably, this study demonstrates
that even with extremely short ECG segments (only 90 sam-
ples) and limited local data, meaningful generalization can
be achieved without centralizing datasets. This aligns with
emerging privacy regulations and supports scalable, privacy-
preserving AI deployment across diverse clinical settings.

VI. CONCLUSION AND FUTURE WORK

This study presented a practical application of FL for early
cardiovascular event prediction in cross-silo IoMT environ-
ments. By targeting pre-event PVC prediction using just the
first 90 samples (around 0.25 seconds) of ECG data, we
showed that minimal, time-constrained input can still enable
effective modeling. The experiments confirmed that small hos-
pital silos with limited local data—like MIT-BIH—benefited
from FL collaboration with larger datasets such as PTB-XL
and Chapman. Through model updates without sharing raw
data, FL delivered performance gains in accuracy, precision,
recall, and F1-score, validating its role in empowering smaller
institutions within distributed healthcare networks.

This work serves as an initial demonstration of how FL in
cross-silo IoMT settings improves prediction while preserving
privacy. The gains after aggregation highlight the value of
shared model knowledge, especially for clinics with limited
data access. Our findings suggest that cross-silo FL frame-
works are well-suited for early detection tasks in decentralized
healthcare, offering equitable access to AI-based diagnostic
tools.

Future work will expand the framework beyond binary
PVC classification to multiclass cardiac anomalies, integrate
explainable AI for clinical interpretation, and explore person-
alized FL for silo-specific adaptation. Additional directions
include anomaly detection, communication optimization, real-
time ECG streaming, and applying privacy-preserving methods
such as differential privacy and secure aggregation. These
enhancements will help evolve the proposed FL system into
a deployable, real-time, and trustworthy solution for early
cardiac monitoring across diverse healthcare environments.
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Fig. 3. Confusion matrices comparing the MIT-BIH local model (left) and the global federated model after fine-tuning (right). Models were trained using
only the first 90 samples (approximately 0.25 seconds) of ECG traces before the PVC events.

Fig. 4. Comparison of macro-averaged precision, recall, and F1-score between
the MIT-BIH local model and the federated global model after fine-tuning.
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B. Eskofier, “Federated learning for healthcare: Systematic review and
architecture proposal,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 13, no. 4, pp. 1–23, 2022.

[5] G. H. Lee and S.-Y. Shin, “Federated learning on clinical benchmark
data: performance assessment,” Journal of medical Internet research,
vol. 22, no. 10, p. e20891, 2020.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Aguera y
Arcas, “Communication-efficient learning of deep networks from de-
centralized data,” in Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (AISTATS), vol. 54. PMLR,
2017, pp. 1273–1282.

[7] B. Yuan, S. Ge, and W. Xing, “A federated learning framework for
healthcare IoT devices,” arXiv preprint arXiv:2005.05083, 2020.

[8] S. Rani, A. Kataria, S. Kumar, and P. Tiwari, “Federated learning for
secure iomt-applications in smart healthcare systems: A comprehensive
review,” Knowledge-based systems, vol. 274, p. 110658, 2023.

[9] A. Gupta, S. Misra, N. Pathak, and D. Das, “Fedcare: Federated
learning for resource-constrained healthcare devices in iomt system,”
IEEE Transactions on Computational Social Systems, vol. 10, no. 4, pp.
1587–1596, 2023.

[10] T. Gafni, N. Shlezinger, K. Cohen, Y. C. Eldar, and H. V. Poor,
“Federated learning: A signal processing perspective,” IEEE Signal
Processing Magazine, vol. 39, no. 3, pp. 14–41, 2022.

[11] H. Hwang, S. Yang, D. Kim, R. Dua, J.-Y. Kim, E. Yang, and E. Choi,
“Towards the practical utility of federated learning in the medical
domain,” in Conference on Health, Inference, and Learning. PMLR,
2023, pp. 163–181.

[12] H. Elayan, M. Aloqaily, and M. Guizani, “Sustainability of healthcare
data analysis IoT-based systems using deep federated learning,” IEEE
Internet of Things Journal, vol. 9, no. 10, pp. 7338–7346, 2021.

[13] A. Raza, K. P. Tran, L. Koehl, and S. Li, “Designing ecg monitoring
healthcare system with federated transfer learning and explainable ai,”
Knowledge-Based Systems, vol. 236, p. 107763, 2022.

[14] Q. B. Phan, L. Nguyen, N. T. Bui, D. C. Nguyen, L. Zhang, and T. T.
Nguyen, “Federated learning for enhanced ECG signal classification
with privacy awareness,” in 2024 46th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC).
IEEE, 2024, pp. 1–4.

[15] J. Park, K. Lee, S. Lee, M. Zhang, and J. Ko, “Attfl: A personalized
federated learning framework for time-series mobile and embedded
sensor data processing,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 7, no. 3, pp. 1–31, 2023.

[16] A. Manocha, S. K. Sood, and M. Bhatia, “Federated learning-inspired
smart ECG classification: an explainable artificial intelligence approach,”
Multimedia Tools and Applications, pp. 1–24, 2024.

[17] Grand View Research, “Internet of medical things (iomt)
market size report, 2024-2030,” 2024, accessed: 2025-04-27. [On-
line]. Available: https://www.grandviewresearch.com/industry-analysis/
internet-of-medical-things-iomt-market-report

[18] G. Cloud, “Cross-silo and cross-device federated learning
on google cloud,” https://cloud.google.com/architecture/
cross-silo-cross-device-federated-learning-google-cloud, 2024, last
reviewed June 3, 2024.

[19] S. B. Atitallah, M. Driss, and H. B. Ghezala, “Fedmicro-ida: A federated
learning and microservices-based framework for IoT data analytics,”
Internet of Things, vol. 23, p. 100845, 2023.

[20] A. Pal, R. Srivastva, and Y. N. Singh, “Cardionet: An efficient ECG
arrhythmia classification system using transfer learning,” Big Data
Research, vol. 26, p. 100271, 2021.

[21] D. Mane, J. Jain, U. Jaju, K. Agarwal, and A. Kalamkar, “A federated
approach towards detecting ECG arrhythmia,” in 2024 2nd International
Conference on Sustainable Computing and Smart Systems (ICSCSS).
IEEE, 2024, pp. 106–111.

6

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ). 

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation 
information: DOI: 10.1109/DCOSS-IoT65416.2025.00087, 2025 21st International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT)



[22] S. Sakib, M. M. Fouda, Z. M. Fadlullah, K. Abualsaud, E. Yaacoub,
and M. Guizani, “Asynchronous federated learning-based ECG analysis
for arrhythmia detection,” in 2021 IEEE International Mediterranean
Conference on Communications and Networking (MeditCom). IEEE,
2021, pp. 277–282.

[23] M. Zhang, Y. Wang, and T. Luo, “Federated learning for arrhythmia
detection of non-IID ECG,” in 2020 IEEE 6th international conference
on computer and communications (ICCC). IEEE, 2020, pp. 1176–1180.

[24] D. M. Jimenez Gutierrez, H. M. Hassan, L. Landi, A. Vitaletti, and
I. Chatzigiannakis, “Application of federated learning techniques for
arrhythmia classification using 12-lead ECG signals,” in International
Symposium on Algorithmic Aspects of Cloud Computing. Springer,
2023, pp. 38–65.

[25] M. N. Meqdad, A. H. Hussein, S. O. Husain, and A. M. Jawad,
“Classification of electrocardiogram signals based on federated learning
and a gaussian multivariate aggregation module,” Indones. J. Electr. Eng.
Comput. Sci, vol. 30, no. 2, p. 936, 2023.

[26] R. Tang, J. Luo, J. Qian, and J. Jin, “Personalized federated learning for
ECG classification based on feature alignment,” Security and Commu-
nication Networks, vol. 2021, no. 1, p. 6217601, 2021.

[27] S. N. Zeleke and M. Bochicchio, “Federated kolmogorov-arnold net-
works for health data analysis: A study using ECG signal,” in 2024
IEEE International Conference on Big Data (BigData). IEEE, 2024,
pp. 8070–8077.

[28] N. A. Khan, M. M. Akhtar, A. M. U. Siddiqi, K. A. Rashid, S. Ra-
jeyyagari, M. N. Khalid, and M. Ahmad, “An iomt enabled iterative
artificial bee colony approach using federated learning for detection
of heart disease,” in Solving with Bees: Transformative Applications of
Artificial Bee Colony Algorithm. Springer, 2024, pp. 103–116.

[29] Y. Zhang, G. Chen, Z. Xu, J. Wang, D. Zeng, J. Li, J. Wang, Y. Qi, and
I. King, “FedCVD: The first real-world federated learning benchmark
on cardiovascular disease data,” arXiv preprint arXiv:2411.07050, 2024.

[30] V. Agrawal, S. V. Kalmady, V. M. Manoj, M. V. Manthena, W. Sun,
M. S. Islam, A. Hindle, P. Kaul, and R. Greiner, “Federated learning
and differential privacy techniques on multi-hospital population-scale
electrocardiogram data,” in Proceedings of the 2024 8th International
Conference on Medical and Health Informatics, 2024, pp. 143–152.

[31] D. R. Santos, A. Protani, L. Giusti, A. S. Aillet, P. Brutti, and L. Se-
rio, “Feasibility analysis of federated neural networks for explainable
detection of atrial fibrillation,” arXiv preprint arXiv:2410.19781, 2024.

[32] F. S. Alreshidi, M. Alsaffar, R. Chengoden, and N. K. Alshammari, “Fed-
cl-an atrial fibrillation prediction system using ECG signals employing
federated learning mechanism,” Scientific Reports, vol. 14, no. 1, p.
21038, 2024.

[33] Z. Ying, G. Zhang, Z. Pan, C. Chu, and X. Liu, “FedECG: A federated
semi-supervised learning framework for electrocardiogram abnormalities
prediction,” Journal of King Saud University-Computer and Information
Sciences, vol. 35, no. 6, p. 101568, 2023.

[34] R. N. Asif, A. Ditta, H. Alquhayz, S. Abbas, M. A. Khan, T. M. Ghazal,
and S.-W. Lee, “Detecting electrocardiogram arrhythmia empowered
with weighted federated learning,” IEEE Access, vol. 12, pp. 1909–1926,
2023.

[35] S. M. Rajagopal, M. Supriya, and R. Buyya, “FedSDM: Federated
learning based smart decision making module for ECG data in IoT
integrated edge–fog–cloud computing environments,” Internet of Things,
vol. 22, p. 100784, 2023.

[36] R. S. Couto and L. C. Favaro, “Federated learning applied to arrhythmia
detection on electrocardiograms,” in 2023 IEEE Virtual Conference on
Communications (VCC). IEEE, 2023, pp. 305–310.

[37] D. Lin, Y. Guo, H. Sun, and Y. Chen, “Fedcluster: A federated learning
framework for cross-device private ECG classification,” in IEEE INFO-
COM 2022-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2022, pp. 1–6.

[38] M. A. Khan, M. Alsulami, M. M. Yaqoob, D. Alsadie, A. K. J. Saudagar,
M. AlKhathami, and U. Farooq Khattak, “Asynchronous federated
learning for improved cardiovascular disease prediction using artificial
intelligence,” Diagnostics, vol. 13, no. 14, p. 2340, 2023.

[39] L. Zou, Z. Huang, X. Yu, J. Zheng, A. Liu, and M. Lei, “Automatic
detection of congestive heart failure based on multiscale residual unet++:
From centralized learning to federated learning,” IEEE Transactions on
Instrumentation and Measurement, vol. 72, pp. 1–13, 2022.

[40] W. Qiu, K. Qian, Z. Wang, Y. Chang, Z. Bao, B. Hu, B. W. Schuller,
and Y. Yamamoto, “A federated learning paradigm for heart sound
classification,” in 2022 44th Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC). IEEE,
2022, pp. 1045–1048.

[41] A. Semmadi and T. Bahhou, “Federated learning in internet of medical
things (iomt) healthcare applications,” Ph.D. dissertation, Kasdi Merbah
University OUARGLA ALGERIA, 2024.

[42] P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze,
W. Samek, and T. Schaeffter, “Ptb-xl, a large publicly available electro-
cardiography dataset,” Scientific data, vol. 7, no. 1, pp. 1–15, 2020.

[43] P. Wagner, N. Strodthoff, R.-D. Bousseljot, W. Samek, and T. Schaeffter,
“PTB-XL, a large publicly available electrocardiography dataset (version
1.0.3),” https://doi.org/10.13026/kfzx-aw45, 2022, physioNet.

[44] G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhythmia
database,” IEEE engineering in medicine and biology magazine, vol. 20,
no. 3, pp. 45–50, 2001.

[45] J. Zheng, J. Zhang, S. Danioko, H. Yao, H. Guo, and C. Rakovski,
“A 12-lead electrocardiogram database for arrhythmia research covering
more than 10,000 patients,” Scientific data, vol. 7, no. 1, p. 48, 2020.

[46] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet: components of a
new research resource for complex physiologic signals,” circulation, vol.
101, no. 23, pp. e215–e220, 2000.

[47] J. H. Yoo, H. Jeong, J. Lee, and T.-M. Chung, “Federated learning: Issues
in medical application,” in Future Data and Security Engineering: 8th
International Conference, FDSE 2021, Virtual Event, November 24–26,
2021, Proceedings 8. Springer, 2021, pp. 3–22.

[48] X. Jiang, J. Zhang, and L. Zhang, “Fedradar: Federated multi-task
transfer learning for radar-based internet of medical things,” IEEE
Transactions on Network and Service Management, vol. 20, no. 2, pp.
1459–1469, 2023.

[49] M. Kapsecker and S. M. Jonas, “Cross-device federated unsupervised
learning for the detection of anomalies in single-lead electrocardiogram
signals,” PLOS Digital Health, vol. 4, no. 4, p. e0000793, 2025.

[50] L. Christodoulou, A. Chari, and M. Georgiades, “AI-enhanced healthcare
IoT system: Advanced ml detection and classification algorithms for
real-time cardiovascular monitoring,” in 2024 20th International Con-
ference on Distributed Computing in Smart Systems and the Internet of
Things (DCOSS-IoT). IEEE, 2024, pp. 440–449.

[51] S. Goto, D. Solanki, J. E. John, R. Yagi, M. Homilius, G. Ichihara,
Y. Katsumata, H. K. Gaggin, Y. Itabashi, C. A. MacRae, and R. C.
Deo, “Multinational federated learning approach to train ECG and
echocardiogram models for hypertrophic cardiomyopathy detection,”
Circulation, vol. 146, no. 10, pp. 755–769, 2022.

[52] H. Gupta, A. Bhardwaj, M. S. Rafeeq, A. Choudhary, I. Garse, O. P.
Vyas, and A. Puliafito, “Improving heart disease prediction: Insights
from federated deep learning,” in 2024 15th International Conference
on Computing Communication and Networking Technologies (ICCCNT),
2024, pp. 1–6.
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