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Abstract—Edge caching is an emerging technology that em-
powers caching units at edge nodes, allowing users to fetch
contents of interest that have been pre-cached at the edge nodes.
The key to pre-caching is to maximize the cache hit percentage
for cached content without compromising users’ privacy. In this
letter, we propose a federated learning (FL) assisted edge caching
scheme based on lightweight architecture denoising diffusion
probabilistic model (LDPM). Our simulation results verify that
our proposed scheme achieves a higher cache hit percentage
compared to existing FL-based methods and baseline methods.

Index Terms—Federated learning, denoising diffusion proba-
bilistic model, edge caching.

I. INTRODUCTION

A. Background

IN recent years, the surge of smart devices has led to a
significant increase in mobile data traffic, putting enormous

pressure on wireless networks. As users become increasingly
reliant on user devices such as smartphones and computers
to access content, ensuring satisfactory service quality has
become challenging [1]. To address this challenge, edge
caching has become an effective solution. By caching user
interested content in advance at wireless network edge nodes
such as base stations (BS), user can directly obtain requested
content from nearby BS instead of remote cloud server. This
method can significantly alleviate network congestion, reduce
traffic load, reduce service latency, and improve overall system
performance [2].
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However, BSs have limited cache capacity, which makes it
crucial to efficiently cache content that users are interested in
[3]. Denoising diffusion probabilistic models (DDPM) have
garnered significant attention for their superior generative
capabilities, which generate samples through a step-by-step
denoising process [4]. Compared to earlier mainstream gen-
erative models (e.g., generative adversarial networks (GANs)
and Flow-based models), DDPM exhibits more stable training
processes and higher sample fidelity. However, the training
of DDPM requires significant computational resources and is
not suitable for resource-constrained devices. Recently, several
lightweight architecture DDPM (LDPM) have been proposed
to address this challenge. In [5], Li et al. achieved sub-
second text-to-image generation on mobile devices for the
first time through the design of an efficient U-Net architecture
and improved step distillation techniques. In [6], Chen et
al. proposed a LDPM suitable for edge devices through a
lightweight U-Net architecture design, which only requires 4
denoising steps to generate high-quality speech.

Additionally, model training requires access to users’ per-
sonal data. User personal data often contains a lot of privacy
sensitive information, and users are unwilling to directly share
their data with others, making it difficult to collect and train
directly on user data [7]. Fortunately, federated learning (FL)
can address this issue by enabling the sharing of local models
instead of raw user data [8]. Therefore, it is necessary to
introduce FL into edge caching in order to protect user privacy.

B. Related Work
Currently, there are many studies on edge caching. In [9],

Meybodi et al. proposed a multi-model Transformer frame-
work with parallel regression and classification branches that
enables regression-based prediction of future content request
probabilities. In [10], Yu et al. conducted edge caching for
vehicle environments, integrating mobility prediction with FL
to address the issues of high vehicle dynamics and user
privacy. However, the aforementioned papers cannot accurately
predict the content that users are interested in. The authors in
[7], [8] adopted a “K-nearest neighbor selection mechanism,”
calculating similarity based on the interests between users,
and using the interest lists of the K most similar “neighbor”
users to the target user as auxiliary predictions of the target
user’s interests. Although it can predict the content of user
interest more accurately, predicting the content of interest to
the target user requires the use of the “neighbor” user’s interest
list, which to some extent exposes the privacy of the “neigh-
bor” user. In [11], Wang et al. integrated Wasserstein GAN
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(WGANs) into FL frameworks, enabling accurate prediction
without exposing raw user data. However, the training of GAN
models demands substantial computational resources, render-
ing them impractical for deployment on resource-constrained
user edge devices.

C. Contributions

To address the above issues, we propose a FL assisted edge
caching scheme based on LDPM 1, which achieves a high
cache hit percentage without compromising user privacy. The
main contributions of our work are as follows:

• We are the first to combine LDPM with FL for edge
caching. Compared to previous FL schemes, our approach
achieves higher cache hit percentage without compromis-
ing user privacy and is suitable for edge devices.

• To effectively learn the distribution of high-dimensional
sparse user data, we use the pre-trained encoder to map
the raw user data into a low-dimensional latent space,
allowing LDPM to learn the user data distribution in this
low-dimensional space.

• To accurately predict the content of interest to users while
protecting their privacy, we first propose a federated-
based LDPM training algorithm, and then propose a
content popularity prediction method that generates data
samples using the global LDPM at the BS to predict the
content of interest to users.

II. SYSTEM MODEL

A. System Scenario

The system scenario is shown in Fig. 1, where the edge
computing network includes a BS, a remote cloud server, and I
users. The BS and the remote cloud server are connected via a
reliable backhaul link, and users are within the coverage range
of the BS. Each user i = 1, 2, . . . , I has one smart device.
The BS is equipped with a caching entity and FL scheduling
module. The caching entity has a limited storage capacity and
can accommodate up to N contents, while the remote cloud
server caches all available content. The FL scheduling module
is used to connect different devices for federated training and
predict popular content. When the content requested by a
user is cached in the BS, the BS will directly deliver the
content to the user. Otherwise, the BS requests the content
from the remote cloud server and then delivers it to the
user, which results in higher request content delay. Our goal
is to maximize the cache hit percentage of user requests
by accurately predicting content popularity and proactively
caching at the BS.

B. Denoising Diffusion Probabilistic Model (DDPM)

The theoretical foundation of diffusion models stems from
the entropy increase-inverse process of non-equilibrium ther-
modynamic systems. DDPM achieves forward diffusion pro-
cess and reverse diffusion process through parameterized
Markov chains.

1The source code has been released at:
https://github.com/qiongwu86/Federated-Learning-Assisted-Edge-Caching-
Scheme-Based-on-Lightweight-Architecture-DDPM

Fig. 1. System Model.

1) Forward Diffusion Process: By parameterizing a
Markov chain with a scheduling strategy {βt}Tt=1, Gaussian
noise is progressively added to the original data, causing the
data distribution to gradually perturb towards random noise,
where T is the time steps. A single diffusion step can be
described as

q (xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
. (1)

In this work, we employ a varying scheduling strategy, where
{βt}Tt=1 increases linearly from β1 = 10−4 to βT = 0.02.
Similar to [12], we define ᾱt =

∏t
i=1 αi and αt = 1 − βt,

and can obtain q (xt|x0) and xt as

q (xt|x0) = N
(
xt;

√
αtx0, (1− αt) I

)
, (2)

xt =
√
αtx0 +

√
1− αtϵt, ϵt ∼ N (0, I) . (3)

2) Reverse Diffusion Process: By training a neural network
µθ to predict the noise ϵθ at each step, the goal is to recover
the original data distribution from the noisy data. The reverse
step is parameterized by conditional probability pθ (xt−1|xt),
defined as

pθ (xt−1|xt) = N
(
xt−1;µθ (xt, t) ,

1− ᾱt−1

1− ᾱt
βt

)
, (4)

µθ (xt, t) =
1

√
αt

(
xt −

βt√
1− αt

ϵθ (xt, t)
)
. (5)

In [4], Ho et al. proposed a simplified objective function
for optimization, expressed as

Lsimple
t−1 = Et,x0,ϵ∼N (0,I)

[∥∥∥ϵ−ϵθ

(√
αtx0+

√
1− αtϵ, t

)∥∥∥2].
(6)

III. EDGE CACHING SCHEME

This section introduces the proposed edge caching scheme.
We first introduce the federated-based LDPM training algo-
rithm, and then introduce the content popularity prediction
algorithm.

User data is typically high-dimensional and sparse, causing
the Euclidean distances between data points to become uni-
form, and the noise distribution to become extremely flat [8].
This makes it difficult for the model to distinguish between
signal and noise, and the DDPM fails to effectively learn
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Fig. 2. Encoder, Decoder and LDPM framework.

the distribution of user data [13]. Therefore, we employ pre-
trained encoder and decoder to process the data. Before per-
forming local model training, we use the pre-trained encoder
to map the raw user data into a low-dimensional latent space,
allowing LDPM to learn the user data distribution in this
low-dimensional space. Subsequently, when predicting content
popularity at the BS, the pre-trained decoder is used to recon-
struct the LDPM output data samples back to the original space
dimensions. The pre-trained encoder and decoder are trained
on the BS using publicly available datasets, and then fine-
tuned on the edge using local data [14]. Fig. 2 illustrates the
framework of the encoder, decoder, and LDPM. Furthermore,
our strategy also supports dynamic user scenarios. After a user
leaves, the BS will stop receiving model updates from the user,
and a user entering the BS coverage area will be added to the
training in a new round.

A. Federated-Based LDPM Training Algorithm
During the training process of FL, a total of Rmax rounds

of training are conducted. Each round of training r =
1, 2, . . . , Rmax consists of following four steps, corresponding
to steps 1− 4 in Fig. 1.

1) Download Model: The BS first generates the global
LDPM in this step. Let ωr represent the global LDPM
parameters for the r-th round. For the first round of training,
the BS initializes global LDPM parameters ω0. For subsequent
rounds, the BS will update the global model at the end of the
previous round. Then the BS distributes the global LDPM to
users for training.

2) Local Training: The local training process includes data
processing and training LDPM. Data processing is mainly used
to map the raw user data into a low-dimensional latent space,
and then let LDPM learn the distribution of user data in the
low-dimensional latent space.

For iteration k, user i first performs data processing using
a pre-trained encoder to map the raw user local data di
into a low-dimensional latent space d̂i = E(di), where E(·)
represents the encoder parameters.

After completing data processing, let LDPM learn the
distribution of user local data in the low-dimensional latent
space. For iteration k, user i randomly samples a subset b̂ri,k
from d̂i. Then, the local loss function for the LDPM can be
described as

f(ωr
i,k) =

1∣∣∣b̂ri,k∣∣∣
∑

ẑ∈b̂ri,k

L
(
ωr
i,k; ẑ

)
, (7)

where
∣∣∣b̂ri,k∣∣∣ is the size of the subset b̂ri,k, L(·) is defined

in Equation (6), ẑ is a data point in b̂ri,k, and ωr
i,k refers to

the LDPM parameters of user i at the r-th round in the k-th
iteration. Then, the local LDPM is updated as

ωr
i,k+1 = ωr

i,k − ηd∇f(ωr
i,k), (8)

where ηd is the LDPM learning rate. After completing e
iterations of local LDPM training, the local training process
is complete.

3) Upload Model: Each user will upload the locally up-
dated ωr

i to the BS after completing the local training process.
4) Model Aggregation: After receiving all the local models

uploaded by users, BS calculates the weighted sum of models
for all users within the coverage area to obtain a new global
model,

ωr+1 = ωr − η
I∑

i=1

|di|
d

ωr
i , (9)

where |di| is the size of the local data for user i, and d is the
size of the total data for all users within the BS coverage.
So far, the training of federated-based LDPM for the r-th
round has been finished, and the BS has acquired a new global
model ωr+1. This model will be utilized for the next round
of training. Once the number of training rounds reaches Rmax,
the entire training process concludes.

B. Content Popularity Prediction

After completing the training process, the BS uses global
LDPM to perform the reverse diffusion process, generating
U data samples gu, where U is the number of data samples
and u = 1, 2, . . . , U . These data samples are fed into the
pre-trained decoder to produce reconstructed data samples
g̃u = D(gu) in the original data dimensions, where D(·)
represents the dncoder parameters. We use these reconstructed
data samples for content popularity prediction in the BS.
Assuming the content library contains F items, the dimension
of g̃u is F and can be expressed as g̃u(1, 2, ..., F ). All
reconstructed fake samples can be added by dimension to
obtain the score g̃(1, 2, ..., F ) of all contents,

g̃(1, 2, ..., F ) =
1

U

U∑
u=1

g̃u(1, 2, ..., F ). (10)

The score g̃(1, 2, ..., F ) reflects the overall preferences of
users within the BS coverage area, which does not expose
the privacy of individual users. The higher the score, the more
popular the content is. Then, considering the cache capacity of
the BS, cache the N most popular contents. The above process
corresponds to step 5 in Fig. 1.

IV. SIMULATION

In this section, we conducted experiments on the widely
used MovieLens 1M dataset. The MovieLens 1M dataset
includes 1,002,099 ratings from 6,040 users on 3,952 movies,
with each rating ranging from 0 to 5. The values of the
parameters in the experiment are shown in Table I. Unless
otherwise specified, the number of users participating in the
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training is 20, the time steps T is 50. and the BS cache capacity
is 100 contents.

Our overall U-Net architecture is similar to [15]. The main
differences are the replacement of 2D convolutions with 1D
convolutions to adapt to the user’s interaction data structure,
and the use of one-fourth of the number of channels and three
feature map resolutions to reduce the model size [16], [17].
Therefore, our LDPM has only 770K parameters, making it
suitable for resource-constrained edge devices. To evaluate the
scheme, we adopt the cache hit percentage and request content
delay as evaluation metrics [18]. The cache hit percentage
represents the success rate of directly requesting content from
the BS. The more accurate the predicted popular content, the
higher the cache hit percentage. When the requested content
is stored in the BS, it is regarded as a successful cache;
conversely, if the content is not cached in the BS, it is termed a
failed cache. The request content delay represents the average
delay of all users getting content.
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Fig. 3. Cache hit percentage versus cache capacity.

We compare our proposed edge caching scheme with other
schemes, such as:

• Oracle [18]: The Oracle algorithm possesses full prior
knowledge of users future requests, defining the theoret-
ical maximum achievable cache hit percentage.

• CPPPP [11]: Claims to be the first to use FL with GAN
to predict popular content.

• Thompson Sampling: In each iteration, the BS dynami-
cally updates its cached contents by evaluating historical
cache success/failure statistics and retains the top N
highest-value items through Bayesian posterior probabil-
ity updates.

• LDPM: Directly using raw user data for LDPM training
without using the pre-trained encoder for data processing.

Fig. 3 illustrates the cache hit percentage of BS under
different caching capacity across various schemes. It can be
observed that as the caching capacity increases, the cache hit
percentage improves for all schemes. This is because larger
caching capacity enable the BS to store more content, making
it more likely for users to retrieve the requested content from
the BS. Oracle has the highest cache hit percentage because
it knows the content of user requests in the future. Our
proposed scheme outperform CPPPP because LDPM leverage
a step-by-step denoising generation process, a stable training
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Fig. 4. Request content delay versus cache capacity.

TABLE I. Values of the parameters in the experiments.

Parameter Value
ηd 0.0006
U 1000
F 3952

Structure of pre-trained encoder 3952-100-16
Structure of pre-trained decoder 16-100-3952

objective, and a more comprehensive ability to approximate
data distributions, effectively overcoming the limitations of
GAN in terms of training instability and mode collapse. The
performance of CPPPP is superior to Thompson Sampling
because Thompson Sampling does not rely on learning-based
content prediction. LDPM has the worst performance because
it is difficult for LDPM to learn an effective data distribution
directly on the original high-dimensional sparse user data.

Fig. 4 shows the request content delay of BS under different
caching capacity for various schemes. It can be observed that
as the caching capacity increases, the request content delay
decreases across all schemes. This is because a larger caching
capacity allows the BS to store more content, increasing the
likelihood that each user can obtain the desired content directly
from the BS, thereby reducing the request delay. Furthermore,
the request delay of our proposed scheme is lower than that
of other schemes except for Oracle. This is attributed to the
higher cache hit percentage of our proposed scheme, which
enables more users to retrieve content from the BS, further
minimizing the request delay.

From Table II, it can be observed that as the time steps T
increases from 10 to 50, the cache hit percentage for different
cache capacities show a significant improvement, while the to-
tal training time of the model and CPU cycles increase slightly.
This is because the increase in the number of time steps T
allows the model to learn more refined noise, thus producing
better performance. Further increasing time steps T results
in almost no change in the cache hit percentage for different
cache capacities, but the total training time of the model and
CPU cycles increase significantly. This is because the model
has already achieved near-optimal performance, and further
increasing the number of time steps T cannot significantly
improve performance but will significantly increase the model
training time and CPU cycles. Therefore, we choose T = 50.

Fig. 5 shows how cache hit percentage and request content
delay vary with the number of user participating in training.
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TABLE II. Cache efficiency, total training time and CPU cycles under different time steps T .

T Cache capacity Time (s) CPU cycles50 100 150 200 250 300 350 400 450 500
10 10.18% 17.38% 22.85% 28.22% 32.94% 37.08% 40.81% 44.55% 47.80% 51.01% 18.46 57.05G
50 10.79% 17.67% 23.67% 29.06% 33.83% 38.23% 42.30% 45.75% 48.98% 52.20% 21.56 66.09G
100 10.83% 17.95% 24.02% 29.21% 34.09% 38.20% 42.13% 45.68% 49.20% 52.25% 33.88 103.97G
200 10.93% 18.00% 24.09% 29.37% 34.09% 38.34% 42.31% 45.92% 49.17% 52.18% 40.68 122.64G
500 10.87% 18.09% 24.20% 29.62% 34.31% 38.53% 42.44% 46.18% 49.38% 52.39% 92.10 283.03G
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Fig. 5. Cache hit percentage and request content delay versus the
number of user.

It can be seen that as the number of user participating in
training increases, the cache hit percentage gradually increases
and the request content delay gradually decreases. This is
because more users provide more data and computational
power, which allows for more accurate prediction of popular
content. Furthermore, it can be observed that after the number
of users reaches 20, further increasing the number of users
leads to only a slight improvement in performance, while
the communication overhead of FL will keep accumulating.
Therefore, 20 users are selected to participate in the experi-
ment for a better tradeoff between the scaling of user number
and the complexity of communication overheads.

V. CONCLUSION

In this letter, we propose a FL assisted edge caching scheme
based on LDPM, achieving a higher cache hit percentage com-
pared to existing FL-based methods and baseline methods. To
protect user privacy, we first propose a federated-based LDPM
training algorithm. Afterwards, we propose an algorithm for
predicting popular content on edge nodes. Finally, experiments
are conducted to verify the scheme we proposed. Our current
work only considers content caching for a single BS. We
are considering introducing multi BSs collaborative caching
in future work to further improve edge caching efficiency.
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