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Abstract—Vehicle-to-Infrastructure (V2I) technology enables
information exchange between vehicles and road infrastruc-
ture. Specifically, when a vehicle approaches a roadside unit
(RSU), it can exchange information with the RSU to obtain
accurate data that assists in driving. As the 3rd Generation
Partnership Project (3GPP) Release 16, which includes the
5G New Radio (NR) Vehicle-to-Everything (V2X) standards,
vehicles typically adopt mode-2 communication using sensing-
based semi-persistent scheduling (SPS). By this approach, vehi-
cles identify resources through a selection window and exclude
ineligible resources based on information from a sensing window.
However, vehicles often drive at different speeds, resulting in
varying amounts of data transmission with RSUs as they pass
by, which leads to unfair access. Therefore, developing an
scheme that accounts for different vehicle speeds to achieve fair
access across the network is essential. This paper formulates an
optimization problem for vehicular environment and proposes a
multi-objective optimization scheme to address it by adjusting
the selection window size. Experimental results validate the
efficiency of the proposed method.

Index Terms—5G NR V2I, SPS, Fairness Access.

I. INTRODUCTION

With the 3rd Generation Partnership Project (3GPP) Re-

lease 16, the initial Vehicle-to-Everything (V2X) standard

grounded in the 5G New Radio (NR) was introduced as a

supplement to Long-Term Evolution (LTE) V2X communica-

tion. NR V2X supports two types of communication: mode-1

(centralized) and mode-2 (distributed) [1], [2]. Vehicles may

operate within network coverage in mode-1, and resources are

scheduled through the Base station(BS). In contrast, mode-2

allows vehicles to autonomously allocate resources with the

sensing-based semi-persistent scheduling (SPS) mechanism,

significantly enhancing the flexibility of resource scheduling

for vehicles. Modern vehicles are often outfitted with cameras,

LiDARs, and other sensors to sense the environment [3], [4].

However, due to limited onboard computational resources, it

is challenging for vehicles to process the large-scale data they

produce [5], [6]. To address this, Vehicle-to-Infrastructure

(V2I) technology is applied in vehicular network scenarios

to obtain real-time data that assists with driving [7], [8]. In

NR V2I mode-2, vehicles typically employ sensing-based SPS

mechanisms for resource scheduling [9]. However, vehicles

on different lanes often travel at varying speeds, resulting in

different durations of time spent within an RSU’s coverage

area. Furthermore, transmission failures may occur, leading to

an unequal amount of successfully transmitted data for vehi-

cles of different speeds [10], [11]. This difference, referred to

as unfair access, often results in high-speed vehicles receiving

less information than low-speed vehicles, which increases the

likelihood of incorrect decisions and safety risks.

In summary, designing an access scheme that ensures fair

data access in vehicular networks is of great importance. As

far as we know, there has been no prior research specifically

addressing data access fairness in 5G NR V2I, which moti-

vates our work.

The contributions of this work are summarized :

1) We propose a speed-adaptive selection window adjust-

ment scheme for sensing-based SPS scheduling in 5G

NR V2I mode 2 to achieve fair network access.

2) We define a fairness index to represent the fairness of

data access for vehicles at different speeds, proving that

this index is a function of both speed and the selection

window size.

The structure of the rest of this work is outlined below:

Section II provides an overview of related works. Section III

presents the system model. Section IV presents the fairness

index. Section V formulates the optimization problem and

describes solution using NSGA-II. Section VI details the

experimental results. Section VII concludes the paper.

II. RELATED WORK

In this section, we first introduce the relevant improvements

related to SPS, followed by a discussion on the enhancements

made to network fairness.

A. Sensing Based Semi-Persistent Scheduling

Some studies have been worked on the SPS within NR V2X

Mode-2. In [12], Daw et al. proposed a priority-based SPS
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scheme that categorizes emergency vehicles separately and

introduced a complementary probabilistic collision mitigation

mechanism to minimize the collision probability for high-

priority vehicles in the network. In [13], Jeon et al. signifi-

cantly reduced data packet conflicts in the C-V2X mode-4 by

minimizing the uncertainty in resource selection. Specifically,

they utilized a “lookahead” approach to eliminate collisions

caused by unawareness of other users’ decisions. In [14],

Dayal et al. extended SPS to accommodate adaptive RRI,

referred to as SPS++, to address the severe underutilization

and overutilization of radio resources in various vehicular

traffic scenarios. This issue significantly impairs the timely

dissemination of BSMs, thereby increasing the risk of colli-

sions. In [15], Gu et al. proposed an SPS analytical model

that quantifies the impact of beacon rate, range settings, and

system configuration on the probability of access collisions

and delay outage. The analytical model provides critical

insights and guidance for adapting and optimizing protocol

parameters, including sensing range, transmission power, and

resource reservation.

The studies above have improved the SPS mechanism from

various perspectives. However, none of these works have

considered leveraging the sensing window size to address the

issue of access fairness in vehicular networks.

B. Fairness of network

Several studies have proposed solutions to address the fair

access of vehicle caused by varying vehicle speeds. In [16],

Wan et al. proposed modifying the contention window in the

IEEE 802.11p protocol to address vehicle access fairness.

In [17], Wu et al. addressed vehicle access fairness in a

platooning scenario by dynamically tuning the minimum

contention window according to vehicle speeds under the

IEEE 802.11p. In [18], Praghash et al. proposed a metric to

achieve a certain level of fairness among network users and

employed a reinforcement learning (RL) algorithm to mitigate

conflicts between clients. In [19], Song et al. proposed a novel

two-phase scheme, termed Energy-aware UAV Relay Trans-

mission (EURT), where the users’ limited residual energy

(RE) leads to unfair transmission delays within the network.

The scheme aims to balance users’ transmission delays and

network fairness.

However, the studies above have failed to simultaneously

consider the issue of fair access in vehicular networks, par-

ticularly under the 5G NR V2X protocol. Only a few works

have addressed fair access under the IEEE 802.11p protocol.

Moreover, since the current SPS mechanism cannot flexibly

adjust the selection window size based on vehicle speed, it

fails to dynamically maintain V2I access fairness according

to vehicle speed. Consequently, high-speed vehicles encounter

difficulties in exchanging sufficient information with the RSU.

Therefore, we are motivated to conduct this study.

III. SYSTEM MODEL

A. Scene Model
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Fig. 2: SPS Model

As depicted in Fig.1, we consider a highway environment

featuring N lanes, with an RSU deployed along the roadside

as an edge server. The lanes are divided into two directions.

vehicles arrive within the RSU following a Poisson process.

Once a vehicle enters the RSU’s communication range, it will

undertake information transmission with the RSU and extract

useful information.

B. Sensing Based Semi-Persistent Scheduling

Each vehicle adopts 5G NR V2X mode 2 for data trans-

mission and undergoes resource allocation through the SPS.
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Specifically, as Fig.2, the channel is partitioned into sub-

frames, each being 1ms. Within the frequency spectrum, the

channel is decomposed into subchannels, each composed of

multiple consecutive resource blocks (RBs). A subchannel can

be divided into two parts: the side link control information

(SCI), occupying two RBs, and the transmission block (TB),

occupying the remainder. One subchannel combined with one

subframe is referred to as a physical resource block (PRB).

Upon reserving a PRB, it generates a reselection counter

(RC) randomly and decrements it by 1 after transmission.

When RC = 0, it will reselect resources with a probability

of 1 − P , otherwise, it will continue to utilize the previous

resources. During the reselection process, vehicle initially

identifies resources within the selection window, where the

selection window’s size w is determined independently by the

vehicle. Subsequently, the vehicle determines the resources

that should be excluded, namely, according to the information

provided by the perception window of size 1000ms.

IV. FAIRNESS INDEX

This section focuses on deriving the correlation between

the fairness metric for vehicles at different speeds and the

parameters of speed and selection window size. Additionally,

we define a fairness index to quantify the network’s fairness.

A. Transmission rate

Achieving system fairness implies that vehicles traveling

at different speeds should transmit an equal average amount

of data while within the coverage area of the edge device.

Therefore, we can express this as:

E[Biti] = C, (1)

where E[·] is the averaged operation. Biti represents the

amount of data transmitted by vehicle i within the base

station’s range. C is a constant, and since transmission may

fail with a certain probability, we consider the expected value.

Specifically, Biti can be expressed as:

Biti = Ci · Ti, (2)

Therefore, Eq.(1) can be rewritten as:

Ci · Ti · PPRR
i = C, (3)

where Ci represents the transmission rate of vehicle i, and

Ti denotes the time vehicle i spends within the BS’s range.

PPRR
i is the probability of successful transmission. There-

fore, Ti can be expressed as:

Ti =
R

vi
, (4)

where R represents the coverage range of the RSU, and vi
denotes the speed of vehicle. Based on Shannon’s theorem,

Ci can be expressed as:

Ci = Blog2(1 +
pi · hi(t) · (di(t))−∂

σ2
), (5)

B represents the bandwidth, pi is the transmission power.

hi(t) represents the channel gain. di(t) is the distance be-

tween vehicle i and the BS, which depends on the vehicle’s

speed. ∂ denotes the path loss exponent. σ2 and is the noise

power. The distance di(t) can be described as:

di(t) =
∥∥Po

i − Po
B
∥∥ , (6)

where P i
o represents the position of vehicle i, and PB

o is the

position of the BS. The P i
o can be described as:

Po
i(t) = (vit, 0, 0). (7)

According to [20], we adopt an autoregressive (AR) model

to express the correlation between hi(t) and hi(t− 1):

hi(t) = ρihi(t− 1) + e(t)
√
1− ρ2i , (8)

where ρi represents the channel correlation coefficient during

successive time intervals, and e(t) is a complex Gaussian

random error vector. Considering the mobility of the vehi-

cle, which introduces Doppler effects. we use Jake’s fading

spectrum, ρi = J0(2πf
i
dt), where J0(·) is the zeroth-order

Bessel function of the first kind. f i
dt represents vehicle i’s

Doppler frequency. The Doppler shift can be expressed as:

f i
d =

vi
Λ0

cos θ, (9)

where Λ0 is the wave length, and cos θ is the angle between

the communication direction and the direction of motion .

B. Successful decoding probability

Next, we will analyze PPRR
i , which represents the proba-

bility that the data packet transmitted by vehicle i is success-

fully decoded by the BS:

PPRR
i =

∏
j �=i

(1− δjCOL)·
∏
j �=i

(1− δjHD), (10)

where δjCOL represents the data packet collisions’ probability

between vehicle i and vehicle j. When several vehicles

nearly simultaneously attempt to select resources, there is a

possibility that they may choose the same PRB. Based on the

model in [21], δjCOL can be expressed as:

δjCOL = POPSH|O
CCa

N2
Ca

, (11)

where PO is the probability of overlap between the selection

windows of vehicle i and vehicle j. PSH|O is the probability

which vehicle i and vehicle j select resources from their

shared selection window. NCa is the average number of

candidate PRBs. PO and PSH|O can be expressed as:

PO =
wi + wj + 1

1000 · 2μRRI
. (12)

PSH|O = (
NScNSh

Nr
)
2

, (13)

where NSc is the number of subchannels. NSh is the shared
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resources number within the overlapped selection window.

NSh can be expressed as:

NSh =
(wi + 1)(wj + 1)

wi + wj + 1
. (14)

δjHD represents the probability that vehicles use the same

time slot for transmission. Due to the half-duplex nature

of vehicle communication, the receiver cannot decode the

data packet from the transmitter if both vehicles transmit

simultaneously. Based on the model in [21], this can be

expressed as:

δjHD =
τj

1000
, (15)

where τj represents the packet generation frequency of vehi-

cle j. Therefore, it is known that PPRR
i is a function of w,

where w typically refers to the resource selection window.

C. Fairness index

For brevity, we only consider the fairness index at a certain

time. Eq.(3) can be further expressed as:

C =Blog2(1 +
pi · hi · (di)−∂

σ2
) · R

vi

·
∏
j �=i

(1− δjCOL)·
∏
j �=i

(1− δjHD).
(16)

We eliminate the items that have no relation to vehicle i.
Therefore, Eq. (16) can be further expressed as:

Ki
index =

C

C ′ =log2(1 +
pi · hi · (di)−∂

σ2
)

·

∏
j �=i

(1− δjCOL)

vi
,

(17)

Thus, we have derived the fairness index for vehicle i.
Furthermore, since di is a function of vi and PPRR

i is a

function of w, Ki
index is a function of both v and w.

Therefore, by knowing the vehicle’s speed, we can adap-

tively adjust the vehicle’s selection window based on speed

to achieve overall network fairness.

By averaging the speed and window size of all vehicles in

the network, we can obtain:

Kindex = log2(1+
pihidi(v̄)

−∂

σ2
)·

∏
j �=i

(1− δjCOL(w̄))

v̄
(18)

where v̄ represents the average speed, and w̄ represents the

network’s average window size. The fairness index Kindex

can measure the overall network’s fairness. The vehicle is

achieving fair access when Ki
index approaches Kindex.

V. OPTIMIZATION PROBLEM AND SOLUTION

In this section, we formulate a multi-objective optimization

problem and employ the NSGA-II algorithm [22].

A. Optimization Objective

The optimization goal is to adjust vehicle’s selection

window sizes to ensure that data transmitted between each

vehicle and the RSU is similar. This implies that Ki
index

approaches the network’s fairness index Kindex. Accordingly,

the optimization objective functions can be formulated as:

Objective 1 to N : Minimize the variation between the

fairness index on different lanes and network’s fairness index.

min
w

F (w) = [FK1
(w), FK2

(w), . . . , FKN
(w)]T

s.t

wLB ≤ wi ≤ wUB , i ∈ [1, . . . , N ],

(19)

where

FKi
(w) =

∣∣Kindex(w)−Ki
index(w)

∣∣ , (20)

w = {w1, w2, ..., wN}. wLB and wUB indicate the minimum

and maximum bounds of the selection window sizes. Our aim

is to filter the resulting set of Pareto solutions to find the

optimal solution.

B. Optimization Solution

We use the NSGA-II algorithm [22] to address the opti-

mization problem. Each population consists of N individuals,

representing the vehicle selection windows. The population

size is M . The algorithm is presented in Algorithm 1.

1) Initialization Phase: We randomly initialize a set of

selection windows within the range [wLB , wUB ].
2) Iteration Phase: Firstly, crossover and mutation are

performed. Crossover involves exchanging parts of two parent

individuals’ genes to generate new offspring. Mutation ran-

domly modifies an individual’s genes to prevent the algorithm

from converging to a local optimum. At this point, the parent

and offspring populations are merged into a new population

Qn for the subsequent selection operation.

Next, we use v = {v1, v2, . . . , vN} to calculate the objec-

tive function values FK(w) according to Eq.(20).

Then we perform non-dominated sorting. Non-dominated

sorting divides the population into multiple levels accord-

ing to each individual’s dominance rank. Thus we derive

F = [F1, F2, . . . ], F1 means the individuals which rank first,

and then, crowding distance is calculated. Parent individuals

are selected based on non-dominated sorting and crowding

distance. The selection prefers individuals that are ranked

higher within the same rank. Individuals with larger crowding

distances are preferred.

Thus, the merged population Qn undergoes non-dominated

sorting and selection. Finally, M individuals with higher

domination rank and larger crowding distances are selected

to form the new population pn+1.

3) Optimization Phase: The optimal population is selected

from the Pareto front. The optimal population must ensure

that the difference between the fairness index of each vehicle

is smaller than a threshold.
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Meet the above conditions while also minimizing the total

objective function values. Thus, the optimal selection window

w∗ is obtained.

Algorithm 1: Non-dominated Sorting Genetic Algo-

rithm II

Input: v = {v1, v2, . . . , vN}, Nmax: Maximum

number of generations

Output: optimal solution w∗

1 Initialize the population P0 = {w1,w2, . . . ,wM}
within [wLB , wUB ] ;

2 for n = 0 to Nmax do
3 Crossover: Generate PC

n from Pn with crossover;

4 Mutation: Apply mutation to PC
n to produce PM

n ;

5 Population Merge: Form Qn = Pn ∪ PM
n ;

6 Objective function value: Calculate

FK(wi) = {f1(wi), f2(wi), . . . , fM (wi)} based

on Eq.(20), for all wi ∈ Qn;

7 Non-dominated Sorting: Compute

F = {F1, F2, . . . } for Qn;

8 Crowding Distance: Compute crowding distance

d(wi) for all wi ∈ Qn with FK(wi);
9 Selection: Select the top M individuals in Qn as

Pn+1 using F and d(wi);

10 Pfiltered = w ∈ Pn+1 : FKi(w) ≤ Threshold, ∀i;
11 w∗ = argminw∈Pfiltered

∑N
i=1 FKi

(w);

VI. NUMERICAL SIMULATION AND ANALYSIS

In this section, we validate the effectiveness of our

proposed scheme.The experimental setup and implementation

details can be accessed from the source code repository

at https://github.com/qiongwu86/Enhanced-SPS-Velocity-

adaptive-Scheme-Access-Fairness-in-5G-NR-V2I-Networks.

The scenario is set as a two-way highway with four lanes,

where the speed limit is between 20 and 30 m/s, and the

speed difference between adjacent lanes is within 4 m/s.

The window size limits and time slot length are configured

according to the 5G NR V2I Mode 2 settings.

Fig. 3 presents the performance metrics of the NSGA-

II using hypervolume (HV), Inverted Generational Distance

(IGD), Generational Distance (GD), and Spacing. The HV

measures the extent to which the solution set covers the

objective space, progressively increasing and stabilizing, in-

dicating high diversity. GD evaluates the proximity of the

obtained solutions to the true Pareto front, with values

steadily decreasing and stabilizing, demonstrating effective

convergence. IGD considers both diversity and convergence,

yielding higher values than GD. Lastly, Spacing measures the

uniformity of solution distribution, remaining consistently low

and indicating an even spread of solutions.

Fig. 4 illustrates the optimal window size variation for three

vehicles traveling in different lanes as the average vehicle

speed increases. It can be observed that vehicles with higher

speeds tend to have smaller optimal window sizes. This is

Fig. 3: Performance Indicators of the NSGA-II Algorithm

Fig. 4: Optimal Selection Window Versus Average Velocity

Fig. 5: Objective Function Value Versus Average Velocity
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because higher speeds reduce the transmission time with RSU,

necessitating a decrease in the window size to maximize

data transmission. Moreover, as the average network speed

increases, the window sizes for all vehicles decrease. This

is also attributed to the challenge of achieving fairness at

higher speeds, which requires a reduction in the window size

to balance data transmission across vehicles effectively.

In Fig. 5, we present a comparison of the objective values

when vehicles adopt the optimal selection window versus the

standard selection window. It can be observed that when using

the standard selection window, the objective values of vehicles

progressively increase, indicating a gradual loss of fairness

in access. This phenomenon arises because faster vehicles

will have less staying time in RSU coverage, resulting in

transmitting less data, leading to unfairness. However, when

the optimal selection window is employed, both the rate of in-

crease and the initial values are significantly smaller compared

to the standard window. This improvement is attributed to

the vehicles’ ability to adaptively adjust the optimal window

based on their speed, thereby striving to maintain fairness.

VII. CONCLUSION

In this paper, we considered the fairness in data access

within vehicular networks and proposed a multi-objective

optimization method based on adjusting the selection window

of the SPS in NR V2I. The goal is to ensure fair access to

the base station for vehicles at varying speeds. The simulation

results lead to the following conclusions:

• Vehicle speed significantly impacts access fairness. Un-

der the same conditions, higher vehicle speeds result in

reduced data exchange with the RSU, making it more

challenging to achieve fairness.

• The optimal selection window decreases progressively

with increasing vehicle speed to reduce data transmission

time costs, thereby improving fairness.

In future research, optimization can be broadened to simul-

taneously consider the minimization of age of information.
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