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Abstract—In this letter, we propose a new sparse linear array
(SLA), termed delay coprime array (DCA), and correspondingly
develop a low-complexity direction of arrival (DOA) estimation
algorithm. In terms of structure, unlike existing SLAs, e.g.,
coprime array, DCA is composed of two “large-spaced” uniform
linear arrays (ULAs) with shifted distance which is coprime with
the inter-element spacing in the ULAs. In terms of algorithm, the
proposed algorithm involves ambiguity and de-ambiguity stages
and significantly improves estimation accuracy due to the active
use of phase ambiguity instead of hastily suppressing ambiguity.
Numerical results indicate that DOA estimation with DCA has
comparable performance as the existing DOA estimation with
SLAs, but with much lower complexity and simpler configuration.
Admittedly, since the proposed method achieves fast calculation
without using difference co-array, it losts the ability to identify
more sources. Yet, owing to low complexity and simple config-
uration, DCA and the corresponding algorithm are expected to
play a role in DOA estimation.

Index Terms—Sparse linear array, DOA estimation, phase
ambiguity, phase de-ambiguity, Chinese remainder theorem.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation is a fundamental
problem in array signal processing and has diverse appli-

cations in radar, sonar, radio astronomy, and wireless commu-
nications [1]–[6]. Based on the generic restriction given in the
Shannon-Nyquist sampling theorem [7], uniform linear array
(ULA) has become the most prevalent array geometry where
the inter-element spacing is set to be half-wavelength such that
the DOA can be estimated without ambiguity. However, due to
the small spacing, ULA suffers from severe mutual coupling
between sensors and is expensive to achieve a large array
aperture for fine estimation resolution [8], [9]. To overcome
these limitations, recently various sparse linear arrays (SLAs)
have proposed, e.g., minimum redundancy array, coprime
array (CA), nested array (NA), and their variants [10]–[16].
Minimum redundancy array requires complex configuration.
Although CA and NA are easy to design, they may still
suffer from severe mutual coupling effect due to the presence
of dense local arrays. To solve this problem, super nested
array (SNA) [17] has been proposed by rearranging the dense
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uniform subarrays in NA. Moreover, thinned coprime array
(TCA) [18] has been developed by exploiting the redundancy
in difference co-array domain of CA. Inspired by both NA
and CA, coprime nested array (CNA) [19] has been proposed
using the nesting property of CA. However, almost all DOA
estimation with SLAs are conducted in the difference co-array
domain and involve massive computations. To reduce compu-
tation, some low-complexity algorithms have been developed
based on CA [20], [21], which perform ESPRIT on the sparse
ULAs in CA separately and estimate the true DOA from
the ambiguous phases by observing all possible estimations
from two sparse ULAs. However, those algorithms are only
applicable to CA and cannot obtain closed-form solutions.

Inspired by our previous work on undersampling frequency
estimation [22], [23], we propose a novel and simple sparse
array, termed delay coprime array (DCA) and correspondingly
develop a low-complexity DOA estimation algorithm. In terms
of structure, DCA is the superposition of two sparse ULAs
with a shifted distance which is coprime with the inter-
element spacing in the ULAs. In terms of algorithm, the
proposed estimation algorithm consists of Unitary-ESPRIT-
based phase ambiguity stage and Chinese remainder theorem
(CRT)-based phase de-ambiguity stage, and it significantly
improves estimation accuracy due to the active use of phase
ambiguity. Numerical results have shown that DOA estimation
with DCA has comparable performance to the existing SLAs,
yet with much lower complexity and simpler configuration.

Notations: we use gcd(·) and lcm(·) to represent greatest
common divisor and least common multiple, respectively. The
phase superscript “a” (φa) denotes the ambiguous version of
the true phase φ, and the difference between them is an integer
multiple of 2π. The unit distance d of arrays is set to be half-
wavelength. A variable with hat denotes an estimate with error.

II. PRELIMINARIES

The schematic diagram of classic far-field DOA estimation
is shown in Fig. 1, where the two circles represent array
sensors with distance d, and the solid line is the signal source
with DOA θ. Without loss of generality, assume the signal
source is as follows

s(t) = A exp(j2πf0t+ jϕ) + w(t), (1)

where A, f0, and ϕ respectively denote the amplitude, fre-
quency, and phase of the signal. w(t) is measurement noise.

From Fig. 1, there is a delay τ between the signal’s time of
arrival to the two sensors. Then, the delay τ results in a phase
difference φ between the received signals by the two sensors,

τ = d sin θ/c, φ = 2πf0τ, (2)
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where c denotes the speed of electromagnetic waves. Let λ

𝑑

𝜃

Fig. 1. Schematic diagram of DOA estimation.

denotes the signal wavelength. Substituting f0 = c/λ into (2),
the phase difference φ can be rewritten as

φ = 2πd sin θ/λ. (3)

Eq. (3) is a fundamental formula of DOA estimation.
By (3), DOA estimation is equivalent to phase difference
estimation since θ = arcsin

(
φλ
2πd

)
. In practice, the calculated

phase difference is limited to (−π, π]. In order to ensure the
equivalence between the calculated and true phase differences,
the distance d is required to satisfy d 6 λ/2. Furthermore,
reducing d will widen the main-lobe and thus lead to poor
directionality/resolution. Thus, d is generally set to be half-
wavelength (d = λ/2) in the field of DOA. In the following
Sections III and IV, we respectively introduce the proposed
DCA and corresponding DOA estimation algorithm.

III. DELAY COPRIME ARRAY

The proposed DCA is the superposition of two unconven-
tional ULAs with a large distance, as depicted in Fig. 2.
Note that, the distance of inner sensors in the two ULAs
is (P + Q)d and there exists a shifted distance Pd between
the two ULAs. Particularly, gcd(P,Q) = 1 in DCA. Without
loss of generality, let P < Q. It should be emphasized
that although the name of DCA is similar to CA, DCA is
completely different from CA in terms of both array structure
and estimation algorithm. DCA is the new paradigm of our
previous work “delay coprime sampling” [22], [24] in the
spatial domain. Strictly, DCA is the superposition of two large-
spaced ULAs with a shifted distance where the shifted distance
and the uniform spacing are coprime. By definition, it may be
more appropriate to refer to this array as “spacing coprime
array”. However, herein this array as shown in Fig. 2 is still
referred to as “delay coprime array” for consistency.

⋯

⋯
𝑃𝑑 𝑄𝑑 𝑃𝑑 𝑄𝑑

𝑀 uniform sensors

𝑀 − 1 uniform sensors

𝑥1 𝑥2 𝑥3 𝑥𝑀−1 𝑥𝑀

𝑦1 𝑦2 𝑦3 𝑦𝑀−1

Fig. 2. Delay coprime array. Note that P and Q are coprime numbers.

For ease of expression, assume there are 2M −
1 sensors in DCA, that is, the two uniform subar-
rays in DCA respectively contain M and M − 1 sen-
sors (see Fig. 2). Let {x1(n), x2(n), · · · , xM (n)}Nn=1 and

{y1(n), y2(n), · · · , yM−1(n)}Nn=1 denote the measured dis-
crete data by the first and second uniform subarrays, respec-
tively, and N denotes the number of snapshots. In addition,
M − 1 is required to be smaller than the number of sources.

IV. TWO STAGES DOA ESTIMATION WITH DCA
In this section, we present the DOA estimation with DCA

in two stages: ambiguity and de-ambiguity stages.
A. Ambiguity Stage: Mining Ambiguous Phases

Phase difference (hereinafter abbreviated as phase), is
closely related to delay [see (2)]. In the first stage, we construct
different delay schemes to calculate phases.

Firstly, we construct the first delay scheme by forming
snapshots as follows

Scheme 1:

{
x1(n) = [x1(n), x2(n), · · · , xM−1(n)]T

y1(n) = [y1(n), y2(n), · · · , yM−1(n)]T
, (4)

where x1(n) and y1(n) denote the snapshots from the sub-
array 1 and subarray 2 in the first delay scheme, as shown in
Fig. 3. Readily, the delay and phase (difference) between the
two snapshots in the first scheme respectively are

τ1 = P
λ

2
sin θ/c, φ1 = Pπ sin θ. (5)

⋯

Subarray 1: 𝑀 − 1 sensors

Subarray 2: 𝑀 − 1 sensors

𝑥1 𝑥2 𝑥3 𝑥𝑀−1

𝑦1 𝑦2 𝑦3 𝑦𝑀−1

𝑥𝑀

Fig. 3. The first delay scheme.

Then, the second delay scheme is constructed as follows

Scheme 2:

{
x2(n) = [y1(n), y2(n), · · · , yM−1(n)]T

y2(n) = [x2(n), x3(n), · · · , xM (n)]T
, (6)

where x2(n) and y2(n) denote the snapshots from the subar-
ray 1 and subarray 2 in the second delay scheme, as shown in
Fig. 4. Readily, the delay and phase (difference) between the
two snapshots in the second scheme respectively are

τ2 = Q
λ

2
sin θ/c, φ2 = Qπ sin θ. (7)

Subarray 1: 𝑀 − 1 sensors

Subarray 2: 𝑀 − 1 sensors

𝑥2 𝑥3 𝑥4 𝑥𝑀

𝑦1 𝑦2 𝑦3 𝑦𝑀−1
⋯

𝑥1

Fig. 4. The second delay scheme.

The above-mentioned phases (φ1, φ2) are the true phases
which may be out of the computable range (−π, π] because
Q > P > 1. That is, the calculated phases are the ambiguous
versions of the true phases,

φ1 = 2πn1 + φa1 , φ2 = 2πn2 + φa2 , (8)

where φa1 and φa2 denotes the ambiguous phases of φ1 and φ2,
respectively, which can be calculated by existing methods, e.g.,
ESPRIT and its variants [23]. n1 and n2 are unknown integers
called ambiguity integers.
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B. De-ambiguity Stage: Reconstructing True Phase

To estimate DOA accurately, we then determine the true
phases according to the ambiguous phases in the second stage.

By substituting φ1 = Pπ sin θ and φ2 = Qπ sin θ into (8),
we have the following simultaneous equations{

Pπ sin θ = 2πn1 + φa1

Qπ sin θ = 2πn2 + φa2
. (9)

Then (9) can be rewritten as follows

Congruence equation:


PQ

2
sin θ = Qn1 +

Qφa1
2π

PQ

2
sin θ = Pn2 +

Pφa2
2π

. (10)

When PQ
2 sin θ may be a negative value which contradicts

the non-negative dividend requirement in the traditional con-
gruence equation, we define a new number X , PQ

2 (1+sin θ).
Then, (10) can be equivalently written as

X = Qn1 +
Qφa1
2π

+
PQ

2

X = Pn2 +
Pφa2
2π

+
PQ

2

, (11)

where {P,Q} and {Qφ
a
1

2π + PQ
2 ,

Pφa
2

2π + PQ
2 } respectively are

the moduli and remainders. X is here dividend, particularly,
here it is the number to reconstruct. According to CRT [25],
[26], X can be uniquely reconstructed since

X ,
PQ

2
(1 + sin θ) 6 PQ = lcm{P,Q}, (12)

where the last equality come from the fact gcd(P,Q) = 1.
This explains the reason why we require gcd(P,Q) = 1.

Furthermore, note that, although the remainders in (11) are
not strict remainder in mathematical sense since they are non-
integers and greater than moduli, X can be reconstructed by
variant CRT algorithms, e.g., robust CRT (RCRT) [27]–[29].
Then, by the definition of X , the DOA estimation is achieved
by

θ̂ = arcsin(2X̂/(PQ)− 1), (13)

where X̂ denotes the reconstruction/estimation of X , and θ̂
denotes the estimation of θ.

Remarkably, while the above derivation is based on a single
source, extension to multiple-source cases is straightforward
since the ambiguous phases and the multiple sources have one-
to-one correspondences in Unitary-ESPRIT [21]. Thereby, the
multiple-DOA estimation can be simplified to multiple single-
DOA estimations once the ambiguous phases are calculated.

As a summary, the complete flow is given in Algorithm 1.

V. ERROR ANALYSIS

In this section, we will demonstrate the advantage of the
proposed DCA in estimation accuracy by comparing it with a
ULA with the same number of sensors.

In ULA, DOA is directly estimated by

ULA: θ̂ULA = arcsin(φ̂/π), (14)

where φ̂ denotes the estimated phase by a certain method, e.g.,
ESPRIT. Note that φ̂ is free from phase ambiguity.

Algorithm 1: Two stages DOA Estimation with DCA
Input: Received data: {xm(n)}Nn=1 and {ym(n)}Nn=1 for

m = 1, 2, · · · ,M ; Number of sources: K;
Output: DOA estimations: {θ̂k}Kk=1

1 Construct two delay schemes according to (4) and (6);
2 Calculate ambiguous phases {φ̂a

1(k), φ̂
a
2(k)}Kk=1

corresponding to K sources by Unitary-ESPRIT;
3 Build congruences (11) and reconstruct X via RCRT;
4 Estimate DOA by (13): θ̂k = arcsin(2X̂/(PQ)− 1).

Let ∆e be the average error of the aforementioned phase
estimations (φ̂, φ̂a1 , φ̂

a
2). Then, the error of variable φ̂/π is

δ(sin(θ̂ULA)) = δ
(
φ̂/π

)
=

∆e

π
, (15)

where δ(·) denotes the error of a certain variable.
In DCA, DOA estimation is achieved by

DCA: θ̂DCA = arcsin(2X̂/(PQ)− 1)

= arcsin

(
Pn̂2 +Qn̂1

PQ
+

φ̂a1
2πP

+
φ̂a2

2πQ
− 1

)
, (16)

where n̂1 and n̂2 denotes estimations of n1 and n2. In
particular, it has been proven that n̂1 and n̂2 obtained by
RCRT are precisely n1 and n2 when the remainder errors are
less than 1/4 [27]. Based on this prerequisite, the estimation
error of θ̂DCA is caused by ambiguous phase estimations φ̂a1
and φ̂a2 . From (16), the estimation error of sin(θ̂DCA) is

δ(sin(θ̂DCA)) = δ

(
Qφ̂a1 + Pφ̂a2

2πPQ

)
=

∆e

π
·
√
P 2 +Q2

2PQ
, (17)

where the last equality comes from the error propagation
formulation under the i.i.d. assumption. Note that δ(φ̂a1) and
δ(φ̂a2) are assumed to be ∆e.

Since Q > P > 1, it is easily verified that

δ(sin(θ̂DCA)) < δ(sin(θ̂ULA)). (18)

Eq. (18) indicates that the estimation error of DCA is
less than that of ULA. In particular, according to (17), the
estimation error of DCA will significantly decrease as P and
Q increase if the ambiguity integers (n1, n2) are precisely
determined. However, does this imply we should fanatically
choose large P and Q in DCA? The answer is clearly negative.
To explain the reason, we need to review the condition that
we take for granted: n1 and n2 can be precisely determined
via RCRT if and only if the remainder errors are less than 1/4
[27], i.e., the condition for a robust reconstruction

max

{
δ

(
Qφ̂a1
2π

)
, δ

(
Pφ̂a2
2π

)}
<

1

4
. (19)

Substituting δ(φ̂a1), δ(φ̂a2) = ∆e into (19), we have

∆e <
π

2 max{P,Q}
=

π

2Q
. (20)

Therefore, in practice, choosing larger P and Q will result in
higher risks that ambiguity integers are incorrectly determined
and then lead to unacceptable DOA estimation errors. Thus,
the selection of P and Q should consider both the propagation
error (17) and the condition for a robust reconstruction (19).
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VI. NUMERICAL SIMULATIONS

In this section, we conduct numerical simulations to verify
the effectiveness of DCA by comparing with ULA and classic
SLAs including SNA [17], TCA [18], and CNA [19]. The
number of sensors in all arrays is set to 19. The configurations
for DCA are P = 7 and Q = 9 and the configurations for other
SLAs are set to be respectively optimal. In addition, Algorithm
1 and ESPRIT are used in DOA estimation with DCA and
ULA, respectively. Other SLAs extract the largest portion of
consecutive lags from the available segments of consecutive
lags in the co-array followed by the spatial smoothing tech-
nique to generate the covariance matrix based on the extracted
co-array segment before applying ESPRIT. In the simulations,
the noise is added to be zero-mean additive white Gaussian
process, and a total of 200 random tests are conducted. The
number of snapshots is set to be N = 100.

For the ease of comparison, Fig. 5(a) plots the RMSE
performance of different arrays versus SNR, where there are
two uncorrelated sources with unit amplitudes (A = 1) and
different DOAs (20◦, 65◦). Readily, in low SNRs (6 −5 dB),
the performance of DCA is admittedly unsatisfactory. This is
mainly caused by the failed reconstruction due to unacceptable
ambiguous phase errors. In the DOA estimation with DCA,
an RCRT-based de-ambiguity algorithm is used to reconstruct
the true phase from ambiguous phases and it will fail when
the remainder error exceeds 1/4. However, when SNR is
higher than 0 dB, DCA is significantly superior to the ULA.
This is mainly owing to the two-stage estimation strategy
and the reduced correlation of the subarrays. Moreover, DCA
performs better than the other SLAs, especially in high SNRs.
Therefore, according to our experiences, it is recommended
to use DCA when SNR is higher than 0 dB. Remarkably,
it should be emphasized that the main advantage of DCA
over other SLAs is its low computational complexity for DOA
estimation.

(a) (b)
Fig. 5. Comparison of different arrays: (a) RMSEs versus SNR; (b) running
time versus the number of sensors.

Fig. 5(b) shows the complexity comparison of all arrays
under different array sizes. All results are obtained using
an ordinary computer with 2.9 GHz CPU i5-10400F, 32
GB RAM, and MATLAB 2019a. The number of sensors
(2M−1) varies from 7 to 47. Other simulation parameters are
consistent with the previous simulation. It is readily seen that
the computational complexity of DOA estimation algorithm
with DCA is the least, it is a bit lower than that with
ULA and much lower than those with SLAs. Although the
proposed DOA estimation algorithm with DCA involves two
ESPRIT-based calculations for ambiguous phases, its running
time is still slightly faster than the ESPRIT-based calculation

with ULA because its subarrays for ESPRIT have smaller
sizes. Furthermore, since the DOA estimation algorithm with
conventional SLAs requires excessive difference operations
and spatial smoothing, their running time is much longer
than the proposed method with DCA. However, it should be
noted that in addition to a sparse configuration, another major
advantage of existing SLAs is their ability to identify more
sources, which is lacking in the proposed method with DCA
since it doesn’t operate on the difference co-array domain.

From Fig. 5, we have seen the performance of DCA with
P = 7 and Q = 9. It has been revealed in Section V that
DCA’s robustness to noise is closely related to the selection of
P and Q. To study the impact of P and Q on the performance
of DCA, we plot RMSEs of DCAs with different configura-
tions versus SNR in Fig. 6(a). It is readily seen that the RMSEs
of DCA decrease in high SNRs (> 0 dB) but increase in low
SNRs (6 −5 dB) as the P and Q increase. As said at the end
of Section V, the optimal selection of P and Q should balance
between estimation accuracy and robustness. Specifically, in
high SNRs, the DCA with larger P and Q are recommended
for pursuing high estimation accuracy; while in low SNRs, the
DCA with smaller P and Q should be considered to ensure
a robust reconstruction [30]. In addition, Fig. 6(b) plots the
RMSEs of different DCAs versus the number of snapshots
(N ) in the case of SNR = 5 dB. Admittedly, the estimation
accuracies of DCAs gradually increase with the increase of
N ; however, they are very limited, especially for N > 300.
In other words, DCA can achieve high-accuracy estimation
without a larger number of snapshots.

(a) (b)
Fig. 6. RMSEs of DCAs with different P and Q versus (a) SNR and (b) N .

VII. CONCLUDING REMARKS

In this letter, we have proposed a new SLA, termed DCA,
and correspondingly develop a two-stage DOA estimation. In
terms of structure, DCA is the superposition of two large-
spaced ULAs with a shifted distance where the shifted distance
and the uniform spacing are coprime. In terms of algorithm,
the proposed estimation algorithm involves ambiguity and
de-ambiguity stages and significantly improves estimation
accuracy due to the active use of phase ambiguity. Numerical
results have shown that DOA estimation with DCA has compa-
rable performance as the existing DOA estimation with SLAs,
but with much lower complexity and simpler configuration.

This letter can be regarded as a basic introduction to DCA.
Currently, DCA is only applicable to uncorrelated sources
and narrowband signal. Its applicability could be extended
by incorporating existing techniques, e.g., spatial smoothing.
Moreover, further performance analysis considering mutual
coupling is worthwhile in the future.
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