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Abstract

Frequency estimation of undersampled waveforms has received considerable attention in communications, in-

strumentation, and measurement fields. Chinese remainder theorem (CRT)-based reconstruction is a prevalent

frequency estimation method. However, the existing CRT-based methods heavily rely on multi-rate sampling

and face challenges in handling real-valued undersampled waveforms and multi-frequency scenarios due to in-

herent ambiguities. To overcome these limitations, we propose a novel CRT-based frequency estimation method

that generates aliasing information through the phase change caused by delay and estimates frequencies by

solving the congruence equations constructed using the aliasing findings. The proposed method requires only a

specially designed periodic nonuniform sampling of order 2, which avoids multi-rate sampling and has a simpler

hardware implementation. Owing to the clear correspondence between the multiple frequencies and their alias-

ing frequencies, the proposed method can be applied to multi-frequency estimations. Furthermore, the proposed

method is extended to real-valued waveforms by incorporating grouping operations and frequency estimation

sifting. In summary, this study overcomes the main limitations of CRT in frequency estimation of undersampled

waveforms and shows superior applicability to real-valued signals and multi-frequency cases, which may lead to

a renaissance of CRT in undersampling signal processing.

Keywords: Chinese remainder theorem, Delay coprime sampling, Grouping and sifting operation,

Complex-valued and real-valued undersampled waveforms, Frequency estimation.

1. Introduction

Frequency estimation of sinusoidal signals from finite noisy samples is a fundamental problem in digital signal

processing which has diverse applications [1–4]. Numerous frequency estimation methods have been proposed

in recent decades, such as autoregressive spectral analysis [5], Prony’s method [6], maximum likelihood [7, 8],

and subspace method [9]. In these methods, signals are typically sampled at rates higher than the Nyquist

rate. However, as the signal frequency increases, the Nyquist rate becomes more difficult to reach due to

hardware or cost limitations in some applications [10, 11] and only undersampled waveforms are obtained.
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Consequently, frequency estimation of undersampled waveforms is drawing considerable attention, especially in

communications, instrumentation, and measurements [12–15].

To enable undersampling beyond the generic restriction stated in the Shannon-Nyquist sampling theorem

[16, 17], there is a main direction: making proper assumptions on the signal model. CRT-based reconstruction,

short for CRT method, is an efficient deterministic method that makes a complex-valued sinusoid waveform

assumption on the signal. CRT method is based on discrete Fourier transform (DFT) spectrum. It relies on

multi-rate sampling and uses the DFT spectra of the collected samples at each uniform sampling rate to detect

the aliasing frequency. Then the true frequency is estimated from these aliasing frequencies using CRT-based

algorithms [18]. Conventional CRT aims to reconstruct a single integer from congruence equations with coprime

moduli and error-free remainders, and is sensitive to remainder errors. A small remainder error may result in

an unacceptable error in reconstruction. Conventional CRT faces three challenges:

1) In frequency estimation, moduli and remainders are sampling rates and the corresponding aliasing fre-

quencies, which are usually not integers. Furthermore, even if the sampling rates are integer, they may

not be coprime. Thus, CRT method is required to be generalized.

2) Remainder errors are inevitable in practice; thus, CRT method is required to be robust to errors or noises.

3) Considering that a signal usually contains more than one frequency in practice, CRT method is required

to be able to reconstruct multiple frequencies.

The above three challenges/requirements encouraged the development of CRT method in the past two

decades. Specifically, the milestones in the development of CRT can be concluded as the following.

To overcome the sensitivity to remainder errors, some redundancy is introduced by adding a common factor to

moduli. This is the prototype of robust CRT (RCRT) pioneered by Xia [19]. For single frequency estimation, the

search-based and maximum likelihood estimation-based RCRT were successively proposed in [20, 21] and [22].

In 2010, closed-form RCRT (CR-CRT) was first proposed by Wang and Xia [18], which can robustly estimate

frequency when the remainder error is less than a quarter of the common factor of moduli. Owing to its closed-

form, CR-CRT has significantly lower computational complexity than previous RCRTs. Furthermore, CR-CRT

extends the applicability of this research beyond integers to real numbers. Following CR-CRT, a generalized

version called multistage RCRT was proposed in [23], where moduli may not share the same common divisor.

In multistage RCRT, partial moduli are selected in each step to improve the robustness against residual error.

As for multiple frequencies estimation, existing works primarily focused on the robust reconstruction of two

frequencies with erroneous remainders [24]. Although RCRT methods for multi-frequency reconstruction have

been developed [25–27], their computational complexity may be unacceptable due to the ambiguity between

multiple frequencies and their aliasing frequencies. In addition, extending RCRT to real-valued waveforms

is another challenge. Due to the presence of negative frequency, there exists ambiguity between the aliasing

frequency and remainder in the real-valued waveforms [28].

Motivations: In a nutshell, the CRT-based methods and its variants have three main limitations. First,

they rely on multi-rate sampling and are unsuitable for simpler sampling patterns, resulting in high hardware
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cost. Second, they are not efficient for multi-frequency estimation due to the ambiguity between multiple

frequencies and their aliasing frequencies. Finally, they can barely handle real-valued waveforms, which severely

limits their practicality. This study aims to develop a CRT-based method to address these limitations.

Contributions: In this study, we propose a novel CRT-based frequency estimation method that reduces

the required sampling rate and simplifies hardware configurations. More importantly, the proposed method can

be applied to real-valued waveforms and multi-frequency estimation, which greatly improves the practicality of

CRT. Our main contributions are summarized as follows.

• We propose a minimal periodic nonuniform sampling (PNS), termed delay coprime sampling (DCS),

and a corresponding algorithm, termed active aliasing time delay estimation (AATDE), to mine aliasing

information from sub-Nyquist samples. This strategy avoids multi-rate sampling and generates aliasing

information via data rearrangement.

• Using the aliasing findings, we develop a frequency reconstruction algorithm based on CRT for complex-

valued waveforms and give the error tolerance bound. Furthermore, the frequency reconstruction algorithm

can be extended to real-valued waveforms by introducing grouping operations and frequency estimation

sifting.

• Owing to the clear correspondence between the multiple frequencies and their aliasing frequencies in

AATDE, the proposed method can simplify the multi-frequency estimation problem to multiple indepen-

dent single-frequency estimations, which greatly improves computational efficiency.

2. Preliminaries

2.1. Signal and aliasing models

We first consider a complex waveform with K components

x(t) =
∑K

k=1
Ake

j(2πfkt+φk) + w(t), (1)

where Ak, fk, and φk respectively denote the amplitude, frequency, and phase of the kth component. w(t) is

the additive noise. j is imaginary unit, j =
√
−1.

Assume that x(t) is sampled at rate fs. Then, by Poisson’s summation formula [29], we have

X(f) =

+∞∑
n=−∞

x[n]e−j2πfn =
1

Ts

+∞∑
k=−∞

X̃(f + kfs), (2)

where x[n] is the discrete signal, x[n] = x(n/fs), and Ts = 1/fs. X(f) denotes the discrete time Fourier

transform (DTFT) of x[n], and X̃(f) denotes the true spectrum of x(t).

Eq. (2) indicates that X(f) is the periodic extension of X̃(f). Assuming fs is less than the Nyquist rate,

X(f) is aliased as shown in Fig. 1 in which a single frequency signal is considered for simplicity. Let ft be the

true frequency in x(t), i.e., supp(X̃(f)) = {ft} where supp(·) denotes the support of a function. Let X̃(ft) be

the Fourier coefficient at ft. As expressed in (2), X(f) contains a series of frequencies, which are caused by
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the periodic extension of ft. In practice, we typically calculate the DFT spectrum, which is a section of X(f)

in [0, fs). For complex-valued signals, the periodic extension result of ft in DFT spectrum is referred to as the

aliasing frequency fa. Remarkably, X(fa) = X̃(ft)
1.

⋯

𝑿(𝑓)

𝑓𝑎 𝑓𝑠 2𝑓𝑠0 𝑓𝑡
𝑓𝑠

𝑓𝑠
𝑓𝑡

DFT spectrum

෩𝑿 (𝑓𝑡) ෩𝑿 (𝑓𝑡)

𝑿 𝑓𝑎 = ෩𝑿 𝑓𝑡

Figure 1: DTFT and DFT spectra of a sub-Nyquist complex-valued signal.

If the signal is real-valued, its DTFT spectrum has additional negative duplicates. If x(t) is a real waveform,

X̃(f) contains two opposite frequencies ft and −ft, and their Fourier coefficients are conjugate, i.e., X̃∗(ft) =

X̃(−ft). By (2), X(f) contains a series of frequencies caused by the periodic extension of ft and −ft, which are

marked in blue and red lines, respectively (Fig. 2). For real-valued signals, there are two frequencies in DFT

spectrum which are periodic extension results of ft and −ft. For real-valued signals, the periodic extension

result of ft or −ft in the left half of the DFT spectrum is referred to as aliasing frequency fa. Remarkably, we

only know that fa is the periodic extension result of either ft or −ft, i.e., fa is the modulus of either ft or −ft

with respect to fs, but the precise correspondence is unknown. Therefore, there exist two possible relations

between X(fa) and X̃(ft), as follows

Case 1: mod(ft, fs) ∈ [0, fs/2). In this case, fa is the modulus of ft with respect to fs; thus, X(fa) =

X̃(ft), as shown in Fig. 2(a).

Case 2: mod(ft, fs) ∈ [fs/2, fs). In this case, fa is the modulus of −ft with respect to fs; thus, X(fa) =

X̃∗(ft), as shown in Fig. 2(b).

The above observations clearly indicate the relation between the Fourier coefficients at true and aliasing

frequencies, on which our following analysis will heavily rely.

2.2. Chinese remainder theorem

CRT states that a positive integer can be reconstructed from its remainders modulo a series of integer

moduli, which has many applications. Specifically, it is formally given in

Chinese Remainder Theorem [30]: let B be the positive integer to be reconstructed and let Mi, 1 ⩽ i ⩽ S,

be S pairwise coprime integers as moduli,

mod(B,Mi) = ri or B = niMi + ri (3)

where ri denotes the remainder of B modulo Mi, and ni is an unknown integer (called folding integer). Then,

the target integer can be uniquely reconstructed if

0 ⩽ B < lcm{M1,M2, · · · ,MS} (4)

1The constant item T−1
s is omitted here for brevity

4

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



⋯
𝑓𝑎 𝑓𝑠/2 𝑓𝑠 3𝑓𝑠/2

DFT spectrum

෩𝑿(𝑓𝑡)

Odd Nyquist zone Even Nyquist zone

𝑓𝑡2𝑓𝑠

𝑿 (𝑓)

⋯
𝑓𝑎 𝑓𝑠/2 𝑓𝑠 3𝑓𝑠/2

DFT spectrum

2𝑓𝑠

𝑿 (𝑓)

𝑓𝑡

𝑓𝑡
𝑓𝑠

𝑓𝑠

𝑓𝑡
𝑓𝑠

𝑓𝑠

Odd Nyquist zone Even Nyquist zone

෩𝑿∗(𝑓𝑡)෩𝑿(𝑓𝑡)෩𝑿∗(𝑓𝑡)෩𝑿(𝑓𝑡)෩𝑿∗(𝑓𝑡)

෩𝑿∗(𝑓𝑡)෩𝑿(𝑓𝑡)෩𝑿∗(𝑓𝑡)෩𝑿(𝑓𝑡)෩𝑿∗(𝑓𝑡)෩𝑿(𝑓𝑡)

𝑿 𝑓𝑎 = ෩𝑿 𝑓𝑡

𝑿 𝑓𝑎 = ෩𝑿∗ 𝑓𝑡

(a)

⋯
𝑓𝑎 𝑓𝑠/2 𝑓𝑠 3𝑓𝑠/2

DFT spectrum

෩𝑿(𝑓𝑡)

Odd Nyquist zone Even Nyquist zone

𝑓𝑡2𝑓𝑠

𝑿 (𝑓)

⋯
𝑓𝑎 𝑓𝑠/2 𝑓𝑠 3𝑓𝑠/2

DFT spectrum

2𝑓𝑠

𝑿 (𝑓)

𝑓𝑡

𝑓𝑡
𝑓𝑠

𝑓𝑠

𝑓𝑡
𝑓𝑠

𝑓𝑠

Odd Nyquist zone Even Nyquist zone

෩𝑿∗(𝑓𝑡)෩𝑿(𝑓𝑡)෩𝑿∗(𝑓𝑡)෩𝑿(𝑓𝑡)෩𝑿∗(𝑓𝑡)

෩𝑿∗(𝑓𝑡)෩𝑿(𝑓𝑡)෩𝑿∗(𝑓𝑡)෩𝑿(𝑓𝑡)෩𝑿∗(𝑓𝑡)෩𝑿(𝑓𝑡)
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(b)

Figure 2: DTFT and DFT spectra of a sub-Nyquist real-valued signal: (a) case 1 and (b) case 2. Nyquist zones are regions of the

spectrum that are divided into uniform intervals of fs/2. Each zone contains a copy of the desired signal’s spectrum or a mirror

image of it. Here, the Nyquist zones [
(n−1)fs

2
, nfs

2
) for n = 1, 3, 5, · · · and n = 2, 4, 6, · · · are referred to as odd and even Nyquist

zones, respectively.

where lcm{·} denotes the least common multiple.

Classical CRT is not robust against remainder errors. To overcome remainder errors, a CR-CRT algo-

rithm [18] has been proposed for the reconstruction, which can accurately determine ni and lead to a robust

reconstruction if

|r̂i − ri| ⩽ gcd{M1,M2, · · · ,MS}/4 = 1/4, (5)

for each 1 ⩽ i ⩽ S, where r̂i denotes the erroneous remainders. gcd{·} denotes the greatest common divisor.

CRT provides theoretical support for frequency estimation of sub-Nyquist signals. A complex signal x(t) =

ej2πftt is sampled uniformly at the rate fs, where fs < ft and DFT is applied to the discrete samples. It is well

known that undersampling will result in a spectrum aliasing, as depicted in Fig. 1: the location of the spectrum

peak is mod(ft, fs) and is denoted by fa. Therefore, if multi-rate sampling is achievable, we can construct

congruence equations based on the aliasing results obtained from samples with different rates and estimate the

true frequency by solving the equations. Coprime sampling (CS) is an efficient multi-rate sampling widely used

in the existing CRT-based frequency identification methods. However, CRT-based methods encounter three

main challenges in practice. 1) One is the additional hardware overhead due to multi-rate sampling. 2) Another

is the ambiguity between the aliasing frequency and remainder in real-valued waveforms2. 3) The third challenge

is the correspondence ambiguity between the true frequencies and their aliasing results in multi-frequency cases3.

In the following, we propose a new CRT-based frequency estimation method that does not require multi-rate

sampling and eliminates the above two ambiguities.

2For a real-valued waveform, fa is equal to either mod(ft, fs) or fs − mod(ft, fs), but the exact correspondence is unknown.
3For a complexed valued multi-frequency signal with {fk}Kk=1, coprime sampling with {fsi}Si=1 and DFT can only obtain the

aliasing frequency sets S1, · · · , SS , where Si = {mod(f1, fsi), · · · ,mod(fK , fsi)}, but it cannot distinguish the aliasing frequencies

of a certain true frequency fk from S1, · · · , SS .
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3. Delay coprime sampling scheme

Here, we consider a special PNS with two low-rate channels:

y1[n] ≜ x[nL] = x(nLT ),

y2[n] ≜ x[nL+ P ] = x(nLT + PT ),
(6)

where T denotes the nominal (unit) interval, typically Nyquist interval. LT denotes the sampling period of

each channel. PT is delay between two channels, which can be precisely controlled by clock signal triggering

[31]. Particularly, L and P are coprime integers, i.e., gcd{L,P} = 1, as shown in Fig. 3. This sampling is

throughout referred to as DCS [32]. Furthermore, let Q ≜ (L − P ), then we have gcd{P,Q} = gcd{L,Q} = 1

which can be easily proven by contradiction.

ADC
𝑦1[𝑛]

ADC
𝑦2[𝑛]

𝑥(𝑡)

𝑃𝑇

gcd 𝑃, 𝐿 = 1

𝑓𝑠 = 1/𝐿𝑇

Delay

Module

(a)

𝑦1[𝑛]

𝑦2[𝑛]

𝑃𝑇

𝐿𝑇
⋯

⋯

DCS samplesMissing samples

𝐿𝑇

(b)

Figure 3: DCS: (a) system prototype and (b) sampling process.

The average sampling rate of DCS is given in

f̄DCS
s =

2

P +Q
fNyq, (7)

where fNyq denotes the Nyquist rate, fNyq ≜ 1/T .

3.1. Equivalent sampling and aliasing frequencies pair

Because DCS does not physically implement multi-rate sampling, we set out to collect aliasing frequency by

the phase change caused by delay. Note that, although the following derivation is performed in the continuous

domain, the extension to the discrete domain is straightforward.

Given two identical signals with delay τ : y1(t) = x(t), y2(t) = x(t+ τ), we obtain

Ỹ2(f) = Ỹ1(f)e
j2πfτ , (8)

where Ỹ1(f) and Ỹ2(f) denote the true spectra of y1(t) and y2(t), respectively. Assuming that ft is a true

frequency in the spectrum, we apparently have Ỹ2(ft) = Ỹ1(ft)e
j2πftτ . Next, the phase difference ϕ between

Ỹ1(ft) and Ỹ2(ft) can be calculated by

ϕ ≜ angle
[0,2π)

(
Ỹ ∗
1 (ft)Ỹ2(ft)

)
(o)
= angle

[0,2π)

(Y ∗
1 (fa)Y2(fa)) , (9)

where angle
[0,2π)

(·) is a phase angle operator defined in (10) which maps each complex number to a phase angle

within [0, 2π). (o) comes from the fact that Ỹi(ft) = Yi(fa) for i = 1, 2, as shown in Fig. 1. In the case

of sub-Nyquist sampling, although Ỹi(ft) is unavailable, Yi(fa) can be computed from discrete samples; thus,
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(8) and (9) imply that the true frequency can be estimated by ϕ/(2πτ), which is the prototype of time delay

estimation (TDE) [33]. Because ϕ ∈ [0, 2π), it is necessary for frequency estimation that the delay τ should

be smaller than the Nyquist interval, i.e., τ < 1/fmax. Restricted by this condition, delay τ in TDE is usually

very small. An extremely small τ will significantly amplify the error of phase (difference) estimation and results

in huge frequency estimation error [34, 35]. Therefore, TDE is impractical due to its small delay. To improve

the robustness to measurement noise and phase errors, active aliasing technique [36], i.e., AATDE, is employed

in this manuscript. Specifically, different from TDE, AATDE uses a delay larger than the Nyquist interval to

calculate frequency.

angle
[0,2π)

(a+ bj) =



tan−1
(
b
a

)
a > 0, b ⩾ 0

tan−1
(
b
a

)
+ 2π a > 0, b < 0

tan−1
(
b
a

)
+ π a < 0

b
|b|

π
2 a = 0, b > 0

b
|b|

3π
2 a = 0, b < 0

0 a = 0, b = 0

, (10)

where (a+ bj) denotes a complex number.

Let τi be a delay larger than the Nyquist interval, we have

f̃ai =
ϕ

2πτi
=

ϕ

2π
f̃si, i = 1, 2, 3, (11)

where τi < 1/ft; thus, ϕ
2πτi

is the aliasing result of the true frequency ft, denoted by equivalent aliasing

frequency f̃ai. f̃si denote the equivalent sampling frequency, f̃si ≜ 1/τi. Numerically, f̃ai is equal to the aliasing

frequency of ft when fs = f̃si, i.e., f̃ai = mod(ft, f̃si). This finding prompts us to diversify delay τi to enrich

aliasing information and then reconstruct ft. By using different delays τi, we equivalently implement multi-

rate sampling instead of physically, which significantly simplifies the hardware configuration. To emphasize

this equivalent implementation, f̃ai and f̃si are called equivalent aliasing frequency and equivalent sampling

frequency, respectively. Note that, f̃ai obtained by (11) is not limited to the fixed frequency grids, this gridless

nature is helpful to improve accuracy estimation.

3.2. Delay scheme constructed by changing selected data

In DCS, we can flexibly construct delay schemes by changing selected data sequences, as shown in Fig. 4,

where the two data sequences in the dashed boxes denotes the input data for aliasing frequency estimation.

Firstly, we construct the first delay scheme by selecting the two data sequences as follows

Scheme 1:


y′
1 = [y1[0], y1[1], · · · , y1[N − 1]]

T

y′
2 = [y2[0], y2[1], · · · , y2[N − 1]]

T
,

where y′
1 and y′

2 denote the selected data sequences for equivalent aliasing frequency estimation. The sampling

time difference between y′
1 and y′

2 is referred as to delay. Readily, the delay and equivalent sampling frequency

in the first scheme are

τ1 = PT, f̃s1 =
1

τ1
=

1

PT
=

fNyq

P
.
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⋯

⋯

Channel 1

N

⋯𝜏1 𝜏1 𝜏1

Channel 2

𝑦1[𝑛]

𝑦2[𝑛]

⋯

N

⋯𝜏2 𝜏2 𝜏2
Channel 2

Channel 1

𝑦2[𝑛]

𝑦1[𝑛]

⋯

⋯

N

⋯𝜏3 𝜏3 𝜏3
Channel 1

Channel 1

𝑦1[𝑛]

𝑦1[𝑛]

⋯

Scheme 1

(𝜏1 = 𝑃𝑇)

Scheme 2

(𝜏2 = 𝑄𝑇)

Scheme 3

(𝜏3 = 𝐿𝑇)

⋯

Figure 4: Schematic diagram of different delay schemes. Note that we only list the first three delay schemes for brevity.

Then, the second delay scheme is constructed as follows

Scheme 2:


y′
1 = [y2[0], y2[1], · · · , y2[N − 1]]

T

y′
2 = [y1[1], y1[2], · · · , y1[N ]]

T

In the second scheme,

τ2 = QT, f̃s2 =
1

τ2
=

1

QT
=

fNyq

Q
.

Similarly, the third delay scheme is constructed as follows

Scheme 3:


y′
1 = [y1[0], y1[1], · · · , y1[N − 1]]

T

y′
2 = [y1[1], y1[2], · · · , y1[N ]]

T
.

In the third scheme,

τ3 = LT, f̃s3 =
1

τ3
=

1

LT
=

fNyq

L
.

It is readily seen that the other delays equal the first three delays plus an integer multiple of LT . In

this paper, we mainly focus on the first three delays schemes and the extension to other larger delay case is

straightforward. After determining the data sequences with τi for i = 1, 2, 3, we can calculate the equivalent

aliasing frequency f̃ai using the method given in Section 3.1. As a summary, the algorithm flow for mining

aliasing information is as follows

3.3. Comparison to coprime sampling

In this subsection, we explain the advantage of DCS by comparing it with a prevalent sub-Nyquist sampling

scheme (CS)4. CS exploits two uniform sub-Nyquist samplers with sampling period being coprime multiples of

4We only compare the DCS and CS themselves as well as the corresponding methods for mining aliasing information. The

ability of CS for power spectrum estimation is not considered here.
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Algorithm 1: AATDE

Input: y1,y2: data from DCS; N : data length for DFT; K: the number of frequencies.

Output: sampling and aliasing frequency pairs;

1 Generate delay schemes, τ1, · · · , τS and equivalent sampling frequencies, f̃s1, · · · , f̃sS ;

2 Select the data y′
1 and y′

2 according to the delay scheme, τi, 1 ⩽ i ⩽ S;

3 Calculate Fourier coefficients of y′
1 and y′

2, denoted by Y1 and Y2;

4 Find the location index set L of the most significant K peaks in amplitude spectrum |Y1|;

5 Calculate the equivalent aliasing frequencies of the lth index, f̃ai(l) = angle
[0,2π)

(Y ∗
1 (l)Y2(l)) / (2πτi), ∀l ∈ L.

T . The sampling model of CS is

y1[k] ≜ x[Uk] = x(UkT ),

y2[k] ≜ x[V k] = x(V kT ),
(12)

where gcd{U, V } = 1. Obviously, this CS is equivalent to a PNS of order (U + V ) where the sampling rate of

each channel is fNyq/(UV ). It follows that the average sampling rate of CS is

f̄CS
s =

U + V

UV
fNyq. (13)

Table 1 lists the key comparison of DCS and CS. Based on this table, we briefly explain the advantages of DCS

over CS in applicability by considering their abilities in overcoming the following two challenges. Challenge 1:

From complex-valued waveforms to real-valued waveforms. When the signal is a real-valued waveform,

there exists ambiguity between (equivalent) aliasing frequencies and remainders, leading to nonunique solutions.

For CS, additional hardware, e.g., a triggering circuit for zero-crossing detection [28] or an added sub-Nyquist

sampler for grouping operations, is required to eliminate this ambiguity. However, DCS can be directly applied

to real-valued waveforms using grouping operations, the details can be found in Section 5. Challenge 2: From

a single frequency to multi-frequency. When the signal has multiple frequencies, there exists ambiguity

between multiple frequencies and their aliasing frequencies, which leads to unacceptable complexity. Existing

CRT-based reconstruction is generally only applicable to single-frequency or two-frequencies cases and ineffective

for multiple-frequencies cases unless the amplitude difference between different frequencies is significant enough

to distinguish themselves. However, the multiple frequencies and their equivalent aliasing frequencies do clearly

correspond in AATDE as long as the aliasing results of multiple frequencies are separate. Therefore, in the

proposed method, the multi-frequency estimation problem can be naturally simplified to multiple independent

single-frequency estimations, which can be efficiently achieved. Relevant textual and graphic explanations can

be found in Section 6. Furthermore, according to the principle of AATDE, the key prerequisite to obtaining

aliasing frequencies of multiple true frequencies without ambiguity is an amplitude spectrum with significant

aliasing peaks. That is, the aliasing peaks in the amplitude spectrum are required to be separated and significant.

Therefore, our method is based on the sparse signal assumption, and it requires that the aliasing peaks of true

frequencies in the amplitude spectrum at sub-Nyquist rate fs = fNyq/L are distinguishable.
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Table 1: Comparison of DCS and CS.

Description DCS (P,Q) CS (U, V )

Average sampling rate 2
P+QfNyq

U+V
UV fNyq

Remainders are generated by AATDE DFT

Number of congruence equations ⩾ 2 = 2

Real-valued waveform case Applicable Hardware dependent

Multiple frequencies case Easy Complicated

4. Frequency estimation for complex-valued waveforms

In this section, we use the CRT-based algorithm [18, 23] to reconstruct the true frequency from aliasing

findings. Corresponding conclusions are actually the straightforward corollaries of the theorems in [18, 23].

4.1. Congruence equations and reconstruction algorithm

Numerically, f̃ai equals the aliasing result of ft in the case of fs = f̃si. (P.S. There will always be errors

in practice which will be discussed in the next subsection.) Remarkably, we implement equivalent multi-rate

sampling by changing delay/phase. Therefore, f̃si and f̃ai are termed equivalent sampling frequency and aliasing

frequency, respectively. f̃ai equals the aliasing result of ft in the case of fs = f̃si; thus, following the aliasing

law of complex-valued signal, we obtain

mod(ft, f̃si) = f̃ai or ft = nif̃si + f̃ai for i = 1, 2, 3. (14)

Before proceeding, for ease of the description, we give some generalized definitions as follows

Definition 1 (generalized coprime number and generalized greatest common divisor). If a and b

are coprime integers, then ma and mb are called generalized coprime number where m ∈ R is referred to as

generalized greatest common divisor. Particularly, m is denoted by ggcd{ma,mb}.

Definition 2 (generalized least common multiple). If some real numbers a1, a2, · · · , aS that can be integers

by dividing a constant b, i.e., ai/b ∈ N, b · lcm{a1/b, · · · , aS/b} is defined as their generalized least common

multiple, denoted by glcm{a1, a2, · · · , aS}.

Here are some demonstrative examples for definitions 1 and 2 for clarity. For example, 0.2 and 0.3 can be

coprime integers (2, 3) by dividing 0.1. Thus, they are generalized coprime numbers and ggcd{0.2, 0.3} = 0.1.

For example, 0.1, 0.2, and 0.3 can be integers by dividing 0.1; thus, glcm{0.1, 0.2, 0.3} = 0.1 · lcm{1, 2, 3} = 0.6.

Then, we set out to reconstruct the true frequency ft from (14). Note that (14) is a congruence equation

which can be analyzed by CRT. According to CRT, we have a corollary:

Corollary 1. Let f̃si, 1 ⩽ i ⩽ S, be S arbitrarily positive numbers as moduli. The target frequency can be

uniquely reconstructed from (14) if 0 ⩽ f < glcm{f̃s1, f̃s2, · · · , f̃sS}.

Corollary 1 is a straightforward corollary of CRT, which extends the moduli and the reconstructed target

from the integer domain to the real domain to improve its practicality.
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Then, we analyze the maximum frequency that can be reconstructed in theory, i.e., glcm{f̃s1, f̃s2, · · · , f̃sS}.

The analysis result is formally presented as follows

Theorem 1. The supremum frequency fsup that can be uniquely identified/reconstructed by solving the congru-

ence equations (14) is 1/T , i.e., fNyq, in the complex-valued case.

Next, we consider a specific CRT-based reconstruction algorithm to solve (14). In this paper, we use the

robust algorithm proposed in [18, 23] to reconstruct ft by solving (14). The specific algorithm flow is illustrated

in Algorithm 2.

Algorithm 2: CR-CRT [18, 23]

Input: {f̃si}Si=1: moduli; {f̃ai}Si=1: erroneous remainders.

Output: f̂t:the frequency to be reconstructed.

1 Calculate q̂i1 for 2 ⩽ i ⩽ S: q̂i1 ←
[
(f̃ai−f̃a1)

m1i

]
where m1i = ggcd{f̃s1, f̃si} and [·] denotes the rounding integer;

2 Calculate the remainders of q̂i1Γ̄i modulo Γi1, ξ̂i1 ← mod(q̂i1Γ̄i,Γi1) where Γ̄i is the modular multiplicative

inverse of Γ1i modulo Γi1;

3 Calculate n̂1 by solving the congruence equations, ξ̂i1 = mod(n̂1,Γi1), 2 ⩽ i ⩽ S;

4 Calculate n̂i for 2 ⩽ i ⩽ S: n̂i = (n̂1Γ1i − q̂i1)/Γi1;

5 Reconstruct the target, f̂t =
1
S

∑S
i=1 n̂if̃si + f̃ai.

4.2. Error tolerance bound

In practice, remainder errors are inevitable. In this subsection, we consider the influence of remainder error

(equivalent aliasing frequency error) on the reconstruction algorithm.

According to [23], we obtain the following theorem

Theorem 2: The folding number ni can be accurately determined if and only if∣∣∣∆f̃ai −∆f̃a1

∣∣∣ ⩽ ggcd{f̃s1, f̃si}/2, (15)

where ∆f̃ai denotes the error of f̃ai, f̃
∗
ai = f̃ai +∆f̃ai, f̃

∗
ai is the ith accurate aliasing frequency.

Although condition (15) is necessary and sufficient for the uniqueness of the solution of the folding integers

from CR-CRT, it involves two remainder errors and is hard to check in practice. Below, we present a simpler

sufficient condition.

Corollary 2. If each remainder error, i.e., ∆f̃ai satisfies∣∣∣∆f̃ai

∣∣∣ < max
1⩽k⩽S

min
1⩽j ̸=k⩽S

ggcd{f̃sk, f̃sj}
4

, (16)

then the folding integers ni can be accurately determined.

The proof of Corollary 2 is presented in Appendix C.

5. Extension to real-valued waveforms

Different from the complex waveform, a sinusoidal real-valued waveform is the superposition of two conjugate

complex waveforms,

cos(2πfkt+ φk) =
1

2

(
ej(2πfkt+φk) + e−j(2πfkt+φk)

)
, (17)
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which indicates a real-valued signal contains symmetric peaks in the spectrum. Thus, the real-valued waveform

has an additional negative duplicate compared to the complex-valued case. In this case, the proposed DCS is

still effective by incorporating grouping operations. However, due to the presence of the negative duplicate, the

supremum frequency that can be identified is half of the original, i.e., fsup = fNyq/2, in the real-valued case.

The following is the specific introduction.

For a real-valued sinusoidal signal with frequency ft, there exist two aliasing results in the range [0, fs) in the

case of sub-Nyquist sampling (fs < 2ft), which are caused by the periodic extension of ft and −ft, respectively.

However, the correspondence is ambiguous. In the real-valued signal case, the aliasing result in the first Nyquist

zone [0, fs/2) is traditionally referred to as aliasing frequency of ft, which can be equivalently calculated by

f̃ai =
|ϕ|
2πτi

=
|ϕ|
2π

f̃si, i = 1, 2, 3, (18)

where ϕ is the phase difference defined as

ϕ = angle
(−π,π]

(Y ∗
1 (fa)Y2(fa)) , (19)

where angle
(−π,π]

(·) is a phase angle operator defined in (20) which maps each complex number to a phase angle

within (−π, π]. Note that, the calculation of f̃ai in real-valued signals [(18)∼(20)] is different from that in

complex-valued signals [(9)∼(11)].

angle
(−π,π]

(a+ bj) =



tan−1
(
b
a

)
a > 0

tan−1
(
b
a

)
+ π a < 0, b ⩾ 0

tan−1
(
b
a

)
− π a < 0, b < 0

b
|b|

π
2 a = 0, b ̸= 0

0 a = 0, b = 0

. (20)

5.1. Congruences grouping

The frequency ft in real-valued signal follows the following aliasing law in the case of sub-Nyquist sampling,

fa = min
m∈N

|ft −mfs| = min {mod(ft, fs), fs − mod(ft, fs)}, (21)

wherem is the integer that minimizes |ft −mfs|, and the corresponding minimum is defined as fa, fa ∈ [0, fs/2).

Numerically, fa equals the minimum of mod(ft, fs) and fs −mod(ft, fs).

With the same reasoning, the f̃ai obtained by AATDE is equivalent to the aliasing result of ft in the case

of fs = f̃si; thus, we have

f̃ai = min
κ∈N

|ft − κf̃si| = min{mod(ft, f̃si), f̃si − mod(ft, f̃si)}, (22)

where κ is the integer that minimizes |ft − κf̃si|.

In the congruence equation of CRT, the ith remainder is defined as mod (ft, f̃si) where ft is the frequency to

be reconstructed and f̃si is the modulus. In the complex-valued case, the aliasing law follows f̃ai = mod (ft, f̃si);
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thus, f̃ai is equal to the remainder. However, in any real-valued case, the remainder denoted by r̃ai ≜ mod

(ft, f̃si) has two possible values from (22), i.e.,

r̃ai =

 f̃ai ft = κf̃si + f̃ai

f̃si − f̃ai ft = κf̃si − f̃ai
. (23)

Due to the ambiguity of remainder, ft cannot be directly reconstructed by CR-CRT. To eliminate the

ambiguity, a grouping strategy is utilized. First, the S congruence equations are divided into C2
S = S!

2!(S−2)!

groups. For example, we present the groups in the case of S = 3 in (24).
mod(ft, f̃s1) = r̃a1

mod(ft, f̃s2) = r̃a2

,


mod(ft, f̃s1) = r̃a1

mod(ft, f̃s3) = r̃a3

,


mod(ft, f̃s2) = r̃a2

mod(ft, f̃s3) = r̃a3

. (24)

Estimates of ft can be calculated from the congruence equations in each group. When remainders are

accurately selected, the estimates are valid if the remainder errors are below the tolerance. However, when

remainders are mistakenly selected, remainder errors must have exceeded the tolerance and the estimates are

invalid. For S known equivalent aliasing frequencies, f̃a1, f̃a2, · · · , f̃aS , there exist 2S possible combinations

of remainders {r̃a1, r̃a2, · · · , r̃aS}. Then, we consider all combinations and estimate ft by solving the congru-

ence equation groups. Note that, time-complexity of the proposed method increases exponentially with S.

Furthermore, the delays after the first three has smaller remainder error tolerances, thus have higher failure

risk in frequency reconstruction. Considering the negligible accuracy improvement, high failure risk, and huge

computational complexity caused by increasing S, it is recommended to use the first three delays, i.e., S = 3.

5.2. Frequency estimations sifting

Next, we begin to sift the frequency estimations and select the valid estimations. When the remainders

are correctly selected, the estimates from the congruence equations are valid estimates of the true frequency.

When the remainders are mistakenly selected, the estimates are invalid estimates of the true frequency and

there exists at least one outlier. Therefore, the estimations from the correct remainder combinations exhibit

high consistency. Specifically, we used the following criterion to sift frequency estimations.

Consistency criterion: The frequency estimations with minimum variance are considered the valid estimation

of target frequency, as follows

f̂t = argmin
f̂tc

∑3

i=1

(
f̂tc(i)− f̄tc

)2

, (25)

where f̂tc(i) denotes the frequency estimation from the ith congruence equation group in the case of the cth

remainder combination. f̄tc is the average of the frequency estimations, f̄tc =
1
3

∑3
i=1 f̂tc(i).

However, it should be claimed that consistency criterion cannot uniquely determine the valid frequency

estimations. There always exist two remainder combinations that result in two frequency estimation sets with

the same minimum variance. The detailed explanation on this assertion can be found in the proof of Theorem 3

(Appendix D). In order to uniquely determine the valid frequency estimation, we rely on an additional criterion:
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Minimum estimation criterion: Calculate the respective averages of the two set estimations with the

smallest variance obtained by the consistency criterion and choose the minimum average as the final frequency

estimation, i.e.,

f̂t = min{f̄tc1 , f̄tc2}, (26)

where f̄tc1 and f̄tc2 denote the averages of the two set estimations sifted by the consistency criterion, respectively.

Note that the above minimum estimation criterion depends on the prerequisite that ft ⩽ fNyq/2. That

is, the target frequency to be estimated by the proposed method cannot exceed fNyq/2, otherwise, the method

will fail. This assertion comes from the following theorem.

Theorem 3. The supremum frequency fsup that can be uniquely identified by solving the congruence equation

groups (24) is 1/(2T ), i.e., fNyq/2, in the real-valued case.

The proof of Theorem 3 is presented in Appendix D.

In a nutshell, in order to apply to the real-valued signal case, grouping operation and frequency sifting

operation are added to CR-CRT, as summarized in Algorithm 3.

Algorithm 3: Grouping and Sifting CR-CRT (GSCR-CRT)

Input: {f̃si}3i=1: moduli; {f̃ai}3i=1: erroneous remainders.

Output: f̂t:the frequency to be reconstructed.

1 Group congruence equations according to (24);

2 Solve congruence equations from each group and obtain frequency estimations f̂tc(g) by CR-CRT where

c = 1, 2, · · · , 8 and g = 1, 2, 3.;

3 Sift frequency estimations by consistency criterion and minimum estimation criterion.

For the ease of understanding, we provide an example.

Example: Assume that the target frequency ft of the real-valued signal is 100 MHz, and T = 1/210 µs,

fNyq = 210 MHz. DCS (P = 3, Q = 7) is employed to acquire the samples (Note that the average sampling

rate of the DCS is only 42 MHz). In this case, the first three available delay schemes are {3T, 7T, 10T}.

Accordingly, {f̃s1, f̃s2, f̃s3} = {70, 30, 21}. This example is to show how GSCR-CRT reconstructs the true

frequency from {f̃si, f̃ai}3i=1. For demonstration purpose, the equivalent aliasing frequencies are assumed to

be error-free here. Theoretically, we can obtain {f̃a1, f̃a2, f̃a3} = {30, 10, 5}. According to (23), we have the

following 8 possible combinations of {r̃a1, r̃a2, r̃a3}, as shown in Table 2. By the consistency criterion, we

can locate the combinations 2 and 7. Their estimated results are 100 and 110 MHz, respectively. On this basis,

by the minimum estimation criterion, 100 MHz is considered the final estimate of ft. Obviously, ft can be

successfully estimated by the proposed method in the real-valued case.

As a summary, the complete flow-graph of the proposed method is given in Fig. 5. The proposed method is

based on DCS, and it can deal with complex-valued and real-valued multi-frequency signals using CR-CRT and

GSCR-CRT algorithms, respectively. Table 3 lists the comparison between the proposed method and CS-based

method.
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Table 2: An example for demonstrating frequency estimation sifting.

No. r̃a1 r̃a2 r̃a3 f̂t(1) f̂t(2) f̂t(3)

1 30 10 5 100 171.5 130.5

2 30 10 16 100 100 100

3 30 20 5 170 171.5 110

4 30 20 16 170 100 79.5

5 40 10 5 40 110 130.5

6 40 10 16 40 38.5 100

7 40 20 5 110 110 110

8 40 20 16 110 38.5 79.5

Delay coprime sampling 

Calculate equivalent sampling and 

aliasing frequencies pair  by AATDE

Estimate the true frequency 

one by one by CR-CRT 

Estimate the true frequency 

one by one by GSCR-CRT 

Frequency estimations of 

complex-valued signal

Frequency estimations of 

real-valued signal

Figure 5: The flow-graph of the proposed method.

Table 3: Comparison of the different methods.

Method CR-CRT with DCS GSCR-CRT with DCS CR-CRT with CS

Complexity

O(2SN logN +KN)

+C2
S ·O(2log2L)

S=3
≈ O(6N logN +KN)

O(SN logN +KN)

+2S · C2
S ·O(2log2L)

S=3
≈ O(3N logN +KN)

O(UN log(UN) +KUN)

+O(V N log(V N) +KVN)

+O(2log2L)

Applicability
Complex-valued signal Real-valued signal Complex-valued signal

Multi-frequency Multi-frequency Single-frequency

Corollary 3. In the real-valued waveform case, if the target frequency ft ∈ [0, fNyq/2] and each remainder

error, i.e., ∆f̃ai, satisfies

|∆f̃ai| <
1

4
min

{
fNyq

PQ
,
fNyq

PL
,
fNyq

QL

}
, i = 1, 2, 3, (27)

then the folding integers ni can be accurately determined and the error bound of target frequency estimation is
√
3

12 min
{

fNyq

PQ ,
fNyq

PL ,
fNyq

QL

}
.

According to Theorem 1 and Theorem 3, we derive a necessary condition for identifiability in DCS scheme: L · fs > fmax complex

L · fs ⩾ 2fmax real
, (28)
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where fmax denotes the maximum frequency of the signal. fs is the sampling rate of each channel in DCS.

By Corollary 3, we can improve the probability of successful reconstruction by optimizing DCS, i.e., the

configuration of P , Q, and L. According to Corollary 3, we should increase the error tolerance bound, i.e.,

1
4 min

{
fNyq

PQ ,
fNyq

PL ,
fNyq

QL

}
, as much as possible. Assuming L is given and it satisfies the identifiability condition

(28), we have the optimization model for DCS,

minmax {P,Q} , s.t.


P +Q = L

gcd{P,Q} = 1

1 ⩽ P,Q ⩽ L− 1

. (29)

For a given L larger than 2, the optimal configuration is
P = L−1

2 , Q = L+1
2 L is odd

P = L−2
2 , Q = L+2

2 gcd{L, 4} = 4

P = L−4
2 , Q = L+2

2 gcd{L, 4} = 2

, (30)

where the case of even L is divided into two sub-cases: gcd{L, 4} = 4 and gcd{L, 4} = 2.

5.3. Performance analysis

5.3.1. Comparison to CR-CRT

CR-CRT does not involve grouping and sifting operations; thus, it cannot eliminate the ambiguity of re-

mainder due to negative duplicate and is ineffective for real-valued signal analysis. In contrast, owing to the

grouping operations, the first advantage of the proposed algorithm is that it can eliminate the ambiguity of re-

mainder and determine the valid estimation of target frequency based on the consistency criterion and minimum

estimation criterion. Furthermore, coprime property of delays in DCS, the supremum frequency fsup does not

decrease due to grouping operations. Specifically, the frequency range that can be uniquely determined by solv-

ing the complete congruence equations mod(ft, f̃si) = f̃ai for 1 ⩽ i ⩽ 3 is 0 ⩽ ft < glcm{f̃s1, f̃s2, f̃s3} = fNyq;

The frequency range that can be uniquely determined by solving each grouped congruence equation (24) is

0 ⩽ ft < glcm{f̃s1, f̃s2} = glcm{f̃s1, f̃s3} = glcm{f̃s2, f̃s3} = fNyq, which is the same as the previous result. It

should be claimed that the halving of fsup in the real-valued signal is not caused by the grouping operations but

by the ambiguity of the remainder (the presence of negative frequency). Then, we compare the error tolerance

bound of the remainder before and after grouping. Without loss of generality, let P ⩽ Q. According to Corol-

lary 2, the remainder error bound of complete congruence equations mod(ft, f̃si) = f̃ai for 1 ⩽ i ⩽ 3 is 1
4
fNyq

PL ,

whereas the remainder error bound of grouped congruence equations (24) is 1
4 min

{
fNyq

PQ ,
fNyq

PL ,
fNyq

QL

}
= 1

4
fNyq

QL

by Corollary 3. Obviously, the remainder error tolerance bound is reduced due to the grouping operations in

this paper. In the optimal configuration of DCS given in (30), the reduction is

1

4

fNyq

PL
− 1

4

fNyq

QL
=


fNyq

L3−L L is odd

2fNyq

L3−4L gcd{L, 4} = 4

4fNyq

L3−16L gcd{L, 4} = 2

. (31)
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Eq. (31) indicates the reduction of the remainder error tolerance bound due to grouping operation is

negligible as L increases. It should be emphasized that a proper grouping does not lead to a decrease in

remainder error tolerance bound. For instance, if we delete the 3rd group and only consider the 1st and 2nd

groups in (24). Apparently, the remainder error tolerance bound in this case is

1

4
min

{
fNyq

PQ
,
fNyq

PL

}
≡ 1

4

fNyq

PL
, (32)

which indicates that the remainder error tolerance bound is invariable before and after grouping. Another

advantage of this simplified grouping is to reduce computational complexity. However, the main drawback of

such a grouping is the decrease in the number of groups, which may increase the risk of failure of the consistency

criterion in practice. In a nutshell, 2-group or 3-group strategy is recommended. In practical use, a specific

grouping strategy depends on the limitations of computational complexity and remainder errors.

5.3.2. Comparison to TDE

TDE is a classic frequency estimation method, which directly estimates the target frequency by (11). Because

0 ⩽ ϕ < 2π, it requires the delay between two cosets to be less than Nyquist interval, that is, the corresponding

equivalent sampling frequency is required to reach Nyquist rate. However, the extremely small delay, i.e., high

equivalent sampling frequency usually leads to unacceptable errors due to the presence of phase error; Thus, TDE

is not practical in noisy environments. In contrast, the proposed method can significantly reduce interference

of phase errors in frequency estimation. Let us assume the phase error due to noise is ∆ϕ5. It is not hard to

derive the frequency estimation error caused by the phase error is |∆ϕ|
2π fNyq. The remainder errors due to the

phase error respectively are |∆ϕ|
2π

fNyq

P , |∆ϕ|
2π

fNyq

Q , and |∆ϕ|
2π

fNyq

L from the three delay schemes. The final estimation

error obtained by the proposed method is the average of the remainder errors, i.e., 1
3
|∆ϕ|
2π

(
fNyq

P +
fNyq

Q +
fNyq

L

)
.

Additionally, assuming the phase error conforms to a Gaussian distribution, we can obtain a lower error bound

according to the error propagation formula,

1

3

√
1

P 2
+

1

Q2
+

1

L2
· |∆ϕ|

2π
fNyq ≪ 1 · |∆ϕ|

2π
fNyq, (33)

where L ⩾ 3 and P ⩾ 1. The sign ≪ is based on the inequality
√

1
P 2 + 1

Q2 + 1
L2 ⩽ 1

P + 1
Q + 1

L ≪ 3.

Substituting the optimal configuration (30) into (33), the estimation error bound of the proposed method is

|∆ft| ⩽



(
1
L + 4

3(L3−L)

)
|∆ϕ|
2π fNyq L is odd(

1
L + 16

3(L3−4L)

)
|∆ϕ|
2π fNyq gcd{L, 4} = 4(

1
L + 64

3(L3−16L)

)
|∆ϕ|
2π fNyq gcd{L, 4} = 2

, (34)

where L needs to satisfy the constraint L ⩽ 1
4

2π
|∆ϕ| to ensure that (27) holds and thus the folding integers can

be accurately determined. According to (34), it is recommended to use odd L in DCS to reduce the frequency

estimation error.

5Phase error is equivalent to the remainder error up to a scaling factor, |∆r̃ai| = |∆f̃ai| = |∆ϕ|
2π

f̃si.
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6. Numerical Validation

In this section, we present some simulation results to validate the proposed methods for frequency identifi-

cation from complex-valued and real-valued signals, respectively. First, a total of 4,200 samples are generated

at a Nyquist rate of fNyq = 1, 050 MHz. Then, the Nyquist samplers are downsampled by three sub-Nyquist

sampling schemes, DCS (P = 10, Q = 11), CS (U = 3, V = 7), DCS (P = 1, Q = 20). The sub-Nyquist samples

from DCS (P = 10, Q = 11) and DCS (P = 1, Q = 20) are respectively analyzed by the proposed method

and TDE to identify frequencies. The CS samples are used to calculate the aliasing frequencies by DFT and

estimate the true frequencies by solving the congruence equations. According to Theorem 1 and Theorem 3,

the supremum frequency that can be identified is 1050 MHz and 525 MHz in the complex-valued and real-

valued cases, respectively. Therefore, we randomly generate K frequency components with identical power,

which are uniformly distributed in [0, 1050) MHz and [0, 525) HMz in the complex-valued and real-valued cases,

respectively.

6.1. Single test result for demonstration

In this subsection, we present a single test result to demonstrate the effectiveness for multi-frequency case.

Herein, K = 2 and SNR = 10 dB.

6.1.1. Complex-valued signals

The characteristic frequency is {f1, f2} = {678, 1012} MHz. Firstly, we use AATDE to calculate f̃si and

f̃ai from DCS (P = 10, Q = 11) samples. Fig. 6 presents the constructed delay schemes and the calculation

of f̃ai. In Fig. 6, the amplitude spectrum is the aliasing spectrum of sub-Nyquist samples (fs = 50 MHz),

which provides references for the phase locations. Once the phase locations are determined, phases are also

determined and then the f̃ai are calculated by (11). Remarkably, the amplitude spectrum is almost constant in

different delay schemes; thus, the multiple frequencies and their aliasing frequencies do clearly correspond. For

example, the f̃ai(1) are the equivalent aliasing frequencies of a certain true frequency and f̃ai(2) represents the

equivalent aliasing frequencies of another true frequency. Therefore, the multi-frequency estimation problem

can be naturally simplified to multiple independent single frequency estimation problems, which can be solved

efficiently.

Table 4: Results obtained by AATDE in the complex-valued case.

f̃si MHz ϕ(1) rad f̃ai(1) MHz ϕ(2) rad f̃ai(2) MHz

105 3.997 66.79 2.875 48.05

1050/11 3.795 57.65 0.643 9.77

50 1.509 12.01 3.517 27.99

We present the results from AATDE in Table 4. According to the equivalent sampling frequencies and
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𝒀𝑖:
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⋯
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Frequency f (MHz)

(c)

Figure 6: Calculation of the equivalent aliasing frequencies in the complex-valued case: (a) the 1st, (b) the 2nd, and (c) the 3rd

delay schemes.

aliasing frequencies in Table 4, we have two congruence equations,
mod(f1, 105) = 66.79

mod(f1,
1050

11
) = 57.65

mod(f1, 50) = 12.01

;


mod(f2, 105) = 48.05

mod(f2,
1050

11
) = 9.77

mod(f2, 50) = 27.99

.

By solving the two congruence equations using CR-CRT, we obtain the estimates of f1 and f2, i.e., f̂1 =

1011.998 HMz and f̂2 = 677.997 HMz, which are very close to the true values (f1 = 1012 MHz, f2 = 678 MHz).

6.1.2. Real-valued signals

Furthermore, we set out to demonstrate the effectiveness of the proposed method for real-valued signals.

Here, {f1, f2} = {339, 506} MHz. Similarly, the constructed delay schemes and the calculation of f̃ai are

presented in Fig. 7. Different from the complex-valued case, there are four peaks in the aliasing amplitude

spectrum, which are symmetrically distributed in the 1st and 2nd Nyquist zones, respectively. According to the

law of periodic extension, the peaks in [0, 25) and [25, 50) MHz are the aliasing result of true frequencies and its
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negative duplicates. However, the correspondence is ambiguous. In this case, we map the phase to range (−π, π]

to calculate f̃ai. The phases in [0, 25) and [25, 50) MHz are opposite; thus, we only consider the peaks and phases

in the 1st Nyquist zone. The equivalent sampling frequencies and aliasing frequencies obtained by AATDE are

summarized in Table 5. Notably, f̃ai obtained by (18) is numerically equal to min
κ∈N

|ft − κf̃si|, which leads to

the ambiguity between (equivalent) aliasing frequencies and remainders as shown in (23). To eliminate this

ambiguity, we use GSCR-CRT to reconstruct true frequencies individually and the reconstruction results of f2

are presented in Table 6. By the consistency criterion, we can locate combinations 4 and 5. Furthermore, by the

minimum estimation criterion, case 5 is considered confident. Thus, f̂2 = (505.99+506.01+505.97)/3 = 505.99

MHz and its error is only 0.01 MHz. The high accuracy shows the effectiveness of the proposed method for

real-valued signals with multiple frequencies.

∅ 1 = −1.135 rad ∅ 2 = −1.454 rad

25,50 MHzሚ𝑓𝑎1(1) =
∅ 1

2𝜋𝜏1
= 18.97 MHz

ሚ𝑓𝑎1(2) =
∅ 2

2𝜋𝜏1
= 24.30 MHz

0,25 MHz

1.454 rad 1.135 rad

39 MHz 44 MHz6 MHz 11 MHz

Frequency f (MHz)

(a)

∅ 1 = 1.888 rad ∅ 2 = 2.836 rad

ሚ𝑓𝑎2(1) =
∅ 1

2𝜋𝜏2
= 28.68 MHz

ሚ𝑓𝑎2(2) =
∅ 2

2𝜋𝜏2
= 43.09 MHz

−2.836 rad −1.888 rad

39 MHz 44 MHz6 MHz 11 MHz

25,50 MHz0,25 MHz

Frequency f (MHz)

(b)

∅ 1 = 0.752 rad

∅ 2 = 1.382 rad

ሚ𝑓𝑎3(1) =
∅ 1

2𝜋𝜏3
= 5.99 MHz

ሚ𝑓𝑎3(2) =
∅ 2

2𝜋𝜏3
= 11.00 MHz

−1.382 rad −0.752 rad

Frequency f (MHz)

39 MHz 44 MHz6 MHz 11 MHz

25,50 MHz0,25 MHz

(c)

Figure 7: An example of ambiguity between the equivalent aliasing frequency and remainder in the real-valued case: (a) the 1st,

(b) the 2nd, and (c) the 3rd delay schemes.

Table 5: The results obtained by AATDE in the real-valued case.

f̃si MHz ϕ(1) rad f̃ai(1) MHz ϕ(2) rad f̃ai(2) MHz

105 −1.135 18.97 −1.454 24.30

1050/11 1.888 28.68 2.836 43.09

50 0.752 5.99 1.382 11.00

Table 6: Reconstruction results of a single frequency.

No. r̃a1 r̃a2 r̃a3 f̃s1 f̃s2 f̃s3

1 18.97 28.68 5.99 124.05 754.98 505.97

2 18.97 28.68 44.01 124.05 543.99 793.16

3 18.97 66.77 5.99 544.01 754.98 256.84

4 18.97 66.77 44.01 544.01 543.99 544.03

5 86.03 28.68 5.99 505.99 506.01 505.97

6 86.03 28.68 44.01 505.99 295.02 793.16

7 86.03 66.77 5.99 925.95 506.01 256.84

8 86.03 66.77 44.01 925.95 295.02 544.03
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6.2. RMSE versus SNR

In this subsection, we present the statistical performance of the proposed method through 200 random tests

where K frequencies are uniformly distributed. The statistical performance is evaluated by the root mean

square error (RMSE) of the frequency estimation, defined as follows

RMSE(f) =

√
1

200K

∑200

r=1

∑K

k=1

(
f̂k(r)− fk

)2

, (35)

where f̂k(r) is the estimate of fk from the rth random trial.

To further verify its effectiveness, the proposed method is compared with several representative frequency

estimation methods including CR-CRT [18], Candan [1, 2], TDE [33, 34], MUSIC [37, 38], and Periodogram

[39, 40]. For a fair comparison, the frequency resolution of Candan, MUSIC, and Periodogram are set to the

same as the proposed method in the active aliasing stage (50/200 = 0.25 Hz).

6.2.1. Complex-valued signals

The RMSE results in the complex-valued case are presented in Fig. 8(a), where single frequency (K = 1)

and multi-frequency case (K = 5) are both considered. Sub-Nyquist sampling schemes, DCS (P = 10, Q = 11),

CS (U = 3, V = 7), DCS (P = 1, Q = 20) are respectively used in the proposed method, CR-CRT, and TDE,

and their average sampling rates are 100, 500, and 100 MHz. The rest methods employ the same sampling

schemes as the proposed method for a fair comparison. The proposed method and CR-CRT require aliasing

information which are respectively obtained by AATDE and DFT. Remarkably, in the case of −10 ⩽ SNR ⩽

30 dB, the frequency peaks in the DFT spectra are clear and the aliasing frequencies are the same for different

SNRs. Therefore, the RMSE of frequency estimations obtained by CR-CRT is constant in the simulation.

Furthermore, DFT suffers from frequency resolutions and thus these exists errors in frequency estimations

from CR-CRT. From Fig. 8(a), RMSE of the proposed method is obviously lower than that of TDE, which

validates the effectiveness of the proposed method in terms of reducing estimation error. Furthermore, the

proposed method outperforms CR-CRT, MUSIC, and the Periodogram, particularly at high SNRs, owing to

the gridless nature of AATDE. In contrast, since Candan’s method is not applicable to sub-Nyquist sampling,

it exhibits unsatisfactory performance. Then, we compare the results of single frequency and multi-frequency

cases. It should be emphasized that the CR-CRT is not applicable to multi-frequency cases due to the ambiguity

between multiple frequencies and their aliasing frequencies. The proposed method is still effective for the multi-

frequency case in the high SNR case even though its performance is slightly degraded compared with that in

single frequency cases. In the multi-frequency cases, the mutual coupling between frequencies in the aliasing

spectrum causes additional phase error, which is the main cause of the performance degradation.

6.2.2. Real-valued signals

Fig. 8(b) shows the RMSE of frequency estimation in the real-valued case. Due to the ambiguity between

aliasing frequencies and remainders, CR-CRT is not applicable to the real-valued case, and we add a two

opposite numbers-based CRT (TON-CRT) [41, 42] for comparison. Note that, TON-CRT is only applicable to
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(a) (b)

Figure 8: RMSE versus SNR in the (a) complex-valued case and (b) real-valued case.

real-valued single-frequency single in coprime sampling and it can only identify the frequency up to 175 MHz

with CS (150 MHz and 350 MHz); thus, it cannot work when the characteristic frequency is set to [0, 525) MHz,

as shown in the RMSE marked 525. Fig. 8(b) indicates the proposed method can be applied to real-valued

signals and its estimation accuracy of the proposed method is significantly higher than those of Candan, TDE,

MUSIC and Periodogram. Furthermore, it should be emphasized that almost all existing CRT-based frequency

estimation algorithms are limited by their poor applicability. Fortunately, the proposed method has superior

applicability to complex-valued and real-valued signals, single-frequency and multi-frequency cases.

7. Conclusion

This paper has proposed a novel CRT-based frequency estimation method that reduces the required sam-

pling rate and simplifies hardware configurations. Significantly, it is applicable to real-valued waveforms as well

as in multiple-frequency cases. In terms of structure, the proposed method only requires a special periodic

nonuniform sampling of order 2, which is simpler than multi-rate sampling. In terms of mining aliasing infor-

mation, the proposed method equivalently generates aliasing information by phase change caused by delay and

estimates frequencies by solving the congruence equations constructed by the aliasing findings. Owing to the

clear correspondence between the multiple frequencies and their aliasing frequencies, the proposed method can

be applied to multiple-frequency estimation. Furthermore, the proposed method can be extended to real-valued

waveforms by incorporating grouping operations and frequency estimation sifting. Owing to its high practicality,

the proposed method has potential applications in communications, measurements, and radar detection.

In summary, the paper overcomes the main limitations of CRT in frequency estimation of undersampled

waveforms without additional hardware configuration and unacceptable computational complexity, and thus is

expected to lead to a renaissance of CRT in undersampled signal processing.

However, we have to admit that the proposed method cannot work at extremely low SNRs due to the phase-

based aliasing frequency calculation. In the future, new aliasing frequency estimation techniques to improve the
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robustness to severe noise are worth studying.

Appendix A: Proof of Theorem 1

Proof. By definition, f̃si ≜ 1/τi. Any achievable delay in DCS can be expressed by a linear combination of PT

and LT with integer coefficients. Thus, we have {f̃s1, f̃s2, f̃s3, · · · , f̃sS} = { fNyq

P ,
fNyq

Q ,
fNyq

L , · · · , fNyq

mP+nL} where

m ∈ {−1, 0, 1} and n ∈ N. Because gcd{L,P} = gcd{L,Q} = gcd{P,Q} = 1, glcm{f̃s1, f̃s2, · · · , f̃sS} = fNyq

for any integer S ⩾ 2. From Corollary 1, fsup = fNyq, Q.E.D.

Appendix B: Proof of Theorem 2

The proof is divided into two parts: sufficiency and necessity.

Sufficiency proof [23]. q̂i1 =
[
(f̃ai−f̃a1)

m1i

]
where m1i ≜ ggcd{f̃s1, f̃si} and [·] denotes rounding operation;

thus, q̂i1 =
[
(f̃∗

ai+∆f̃ai−f̃∗
a1−∆f̃a1)

ggcd{f̃s1,f̃si}

]
= qi1 +

[
(∆f̃ai−∆f̃a1)

ggcd{f̃s1,f̃si}

]
where q̂i1 is an estimate of qi1 in the presence

of remainder errors. Since |∆f̃ai − ∆f̃a1| ⩽ ggcd{f̃s1, f̃si}/2,
[
(∆f̃ai−∆f̃a1)

ggcd{f̃s1,f̃si}

]
= 0 and q̂i1 = qi1. In this

case, ξ̂i1 can be accurately calculated by mod(q̂i1Γ̄i,Γi1), i.e., ξ̂i1 = ξi1 where ξi1 ≜ mod(qi1Γ̄i,Γi1). Thus,

ξ̂i1 = mod(n̂1,Γi1) can be equivalently written as ξi1 = mod(n1,Γi1). That is, the n̂1 obtained by solv-

ing the congruence equations ξ̂i1 = mod(n̂1,Γi1) is equal to the true folding integer, i.e., n1 = n̂1. From

n1f̃s1 ⩽ ft ⩽ glcm{ f̃s1, f̃s2, · · · , f̃sS} , we have n1 ⩽ lcm{Γ21,Γ31, · · · ,ΓS1}. Thus, according to CR-CRT,

n1 can be uniquely reconstructed by solving the above congruence equations. After n1 is determined, we can

calculate other integers ni for 2 ⩽ i ⩽ S from Algorithm 2. Therefore, n̂i = ni for 2 ⩽ i ⩽ S. Hence the

above analysis proves the sufficiency.

Necessity proof [23]. Assume that there exists one remainder error that contradicts (15). Without loss of

generality, assume the exception is the jth remainder, i.e., |∆f̃aj − ∆f̃a1| > ggcd{f̃s1, f̃sj}/2. It follows that[
(∆f̃aj−∆f̃a1)

ggcd{f̃s1,f̃sj}

]
̸= 0 and q̂j1 ̸= qj1. We have the following two cases.

Case 1): Γj1 is a divisor of [(∆f̃aj − ∆f̃a1)/ggcd{f̃s1, f̃sj}], it follows that ξ̂j1 = mod(q̂j1Γ̄j ,Γj1) =

mod(qj1Γ̄j ,Γj1) = ξj1. Hence, from Algorithm 2, n1 can be correctly reconstructed, i.e., n̂1 = n1.

Case 2): Γj1 is not a divisor of [(∆f̃aj − ∆f̃a1)/ggcd{f̃s1, f̃sj}]. Assuming ξ̂j1 = ξj1, we have ∃k ∈

Z, q̂j1Γ̄j − qj1Γ̄j = kΓj1. Multiplying this equation by Γ1j and considering Γ̄jΓ1j = 1 + kΓj1 for some k ∈ Z,

we have q̂j1 − qj1 = kΓj1 for some k ∈ Z. By definition, q̂j1 ≜ [(f̃aj − f̃a1)/m1j ] = [(f̃∗
aj + ∆f̃aj − f̃∗

a1 −

∆f̃a1)/ggcd{f̃s1, f̃sj}] = qj1 + [(∆f̃aj − ∆f̃a1)/ggcd{f̃s1, f̃sj}]. Thus, [(∆f̃aj − ∆f̃a1)/ggcd{f̃s1, f̃sj}] = kΓj1,

which contradicts with the premise. Thus, the assumption is not valid. Since ξ̂j1 ̸= ξj1, n1 and n̂1 have different

congruences. Thus, n̂1 ̸= n1. Apparently, from (14), we have n̂j ̸= nj .

From Case 1) and Case 2), if condition (15) is not satisfied, the folding number ni cannot be accurately

determined. This proves the necessity. Q.E.D.

23

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Appendix C: Proof of Corollary 2

Proof. In DCS, using the first equation as the reference to differentiate can maximize the error tolerance

bound. Thus, we have

max
1⩽k⩽S

min
1⩽j ̸=k⩽S

ggcd{f̃sk, f̃sj}
4

= min
1⩽j ̸=k⩽S

ggcd{f̃s1, f̃sj}
4

,

Apparently, if |∆f̃ai| < min
1⩽j ̸=k⩽S

ggcd{f̃s1, f̃sj}/4, it follows that |∆f̃ai −∆f̃a1| ⩽ ggcd{f̃s1, f̃si}/2. Therefore,

(16) is the sufficient condition for (15). By Theorem 2, ni can be accurately determined. Q.E.D.

Appendix D: Proof of Theorem 3

Proof. In this proof, we do not consider the reconstruction failure due to the remainder errors, i.e., the folding

integers can be accurately determined by CR-CRT. It is not hard to find if Theorem 3 is proven to be true

in the absence of reconstruction failure, the target frequency ft can be uniquely identified in the presence of

remainder errors as long as ft ⩽ fsup and the remainder errors satisfy (16). Let us continue to prove.

According to the definitions of f̃s1,f̃s2,f̃s3 given in Section 3.2, we have glcm{f̃s1, f̃s2} = glcm{f̃s1, f̃s3} =

glcm{f̃s2, f̃s3} = fNyq. Therefore, by CR-CRT, the target frequency ft can be reconstructed if ft < fNyq and

the remainders are correctly selected. Assume the correct remainders of ft modulo f̃s1, f̃s2, and f̃s3 are r∗a1,

r∗a2 and r∗a3, respectively, particularly, r
∗
ai ∈ {r̃ai, f̃si − r̃ai} for each 1 ⩽ i ⩽ 3. On the premise of 0 ⩽ ft < fNyq

and the all remainders are correctly selected, ft can be successfully reconstructed from each group; and the

corresponding reconstruction results are (n1f̃s1 + r̃∗a1 + n2f̃s2 + r̃∗a2)/2, (n1f̃s1 + r̃∗a1 + n3f̃s3 + r̃∗a3)/2, and

(n2f̃s2 + r̃∗a2 + n3f̃s3 + r̃∗a3)/2, where ni = ⌊ft/f̃si⌋ for each 1 ⩽ i ⩽ 3.

Then, we consider the opposite case where each remainder is mistakenly selected. The true remainders

are r∗a1, r
∗
a2 and r∗a3; however, we mistakenly consider f̃s1 − r∗a1, f̃s2 − r∗a2, and f̃s3 − r∗a3 as the remainders

for congruence equations. In this case, f̃s1 − r∗a1, f̃s2 − r∗a2, and f̃s3 − r∗a3 are actually are the remainders of

fNyq−ft modulo f̃s1, f̃s2, and f̃s3 because mod(fNyq, f̃si) = 0 for 1 ⩽ i ⩽ 3. Therefore, if 0 ⩽ ft < fNyq and each

remainder is mistakenly selected, the corresponding reconstruction results actually are estimates of fNyq−ft, and

the specific results are (z1f̃s1− r̃∗a1+z2f̃s2− r̃∗a2)/2, (z1f̃s1− r̃∗a1+z3f̃s3− r̃∗a3)/2, and (z2f̃s2− r̃∗a2+z3f̃s3− r̃∗a3)/2,

where zi = ⌊(fNyq − ft)/f̃si⌋ + 1 = (fNyq/f̃si) − ni. In this case, the variance of frequency estimations is the

same as the previous once. Therefore, the consistency criterion cannot uniquely determine the valid frequency

estimation from those two cases. To completely separate these two cases, a sufficient and necessary conditions is

0 ⩽ ft ⩽ fNyq/2. On the premise of 0 ⩽ ft ⩽ fNyq/2, ft ⩽ fNyq − ft. Hence, we can always uniquely determine

valid frequency estimation by consistency criterion and minimum estimation criterion6. Q.E.D.

6The minimum average of the estimations from the two sets of estimations with the minimum variance is regarded as the final

estimation
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Appendix E: Proof of Corollary 3

Proof. According to Theorem 2, when the remainder errors satisfy (E1), the folding integers ni can be correctly

reconstructed from (24). 

∣∣∣∆f̃a2 −∆f̃a1

∣∣∣ ⩽ 1

2
ggcd

{
f̃s1, f̃s2

}
=

1

2

fNyq

PQ∣∣∣∆f̃a3 −∆f̃a1

∣∣∣ ⩽ 1

2
ggcd

{
f̃s1, f̃s3

}
=

1

2

fNyq

PL∣∣∣∆f̃a3 −∆f̃a2

∣∣∣ ⩽ 1

2
ggcd

{
f̃s2, f̃s3

}
=

1

2

fNyq

QL

. (E1)

Eq. (27) is a simpler sufficient condition for (E1). Obviously, if ∆f̃ai satisfies (27), (E1)) hold true and then

ni can be correctly reconstructed.

Moreover, according to Theorem 3, ft can be uniquely and effectively estimated from each congruence

equation group (24) in the case of ft ∈ [0, fNyq/2] and the corresponding results are (n1f̃s1+ r̃a1+n2f̃s2+ r̃a2)/2,

(n1f̃s1 + r̃a1 + n3f̃s3 + r̃a3)/2, and (n2f̃s2 + r̃a2 + n3f̃s3 + r̃a3)/2, respectively. The final estimate is their mean,

i.e., f̂t = (n1f̃s1 + r̃a1 + n2f̃s2 + r̃a2 + n3f̃s3 + r̃a3)/3. Because n1, n2, n3 are correct, we only need to consider

the impact of remainder errors on the final estimate. According to the error propagation formula, we have

|∆f̂t| =
√
∆f̃2

a1 +∆f̃2
a2 +∆f̃2

a3/3, (E2)

where ∆f̂t denotes the estimation error of f̂t.

Substituting (27) into (E2), we have the inequality

|∆f̂t| <
√
3

12
min

{
fNyq

PQ
,
fNyq

PL
,
fNyq

QL

}
, (E3)

therefore, this proves Corollary 3. Q.E.D.
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