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ON K-STABILITY OF ONE-NODAL PRIME FANO THREEFOLDS OF GENUS
12

ELENA DENISOVA AND ANNE-SOPHIE KALOGHIROS

To Professor Yuri Prokhorov on the occasion of his 60th birthday

ABSTRACT. We show that general one-nodal prime Fano threefolds of genus 12 are K-polystable.

1. INTRODUCTION

1.1. Singular Fano threefolds of genus 12. Let X be a Fano threefold with terminal Gorenstein
singularities. By [12, [7], X < X has a smoothing and &; for ¢ # 0 is a smooth Fano threefold
with Picard rank p(X) and anticanonical degree (—Kx)3. Unless mentioned otherwise, a prime
Fano threefold of genus 12 will refer to a terminal Gorenstein Fano threefold with Picard rank
1 and anticanonical degree 22. Recent advances in the theory of K-stability show that there
is a projective moduli space M?gz whose closed points over C parameterize K-polystable Fano
threefolds of anticanonical degree 22 that admit a smoothing (see [16] as a reference on the general
theory of K-moduli).

Let X be a prime Fano threefold of genus 12, then X is Q-factorial precisely when X is smooth
[T1]. Smooth prime Fano threefolds of genus 12 form a 6-dimensional family, which contains both
K-polystable and strictly K-semistable members [2, Section 7.1]. A precise description of which
smooth prime Fano threefolds of genus 12 are K-polystable or semistable is still conjectural. Denote
by M the (non-empty 6-dimensional) component of M?SS parametrizing those K-polystable Fano
threefolds of anticanonical degree 22 with a smoothing to a prime Fano threefold of genus 12.
Prokhorov classifies prime Fano threefolds of genus 12 with one node and shows that they form

four 5-dimensional families [I4]. The goal of this note is to show:

Theorem 1.1. A general one-nodal prime Fano threefold of genus 12 is K-polystable.
There are four boundary divisors of M parametrising K-polystable degenerations of one-nodal prime
Fano threefolds of genus 12.

We now describe the geometry of the four families of one-nodal prime Fano threefolds of genus 12
briefly.

Theorem 1.2. [14] Let X be a prime Fano threefold of genus 12, and assume that rk Cl(X) = 2 (or
equivalently that Sing(X') consists of precisely one ordinary double point). Then X is the midpoint
of a Sarkisov link

YN N
Zl X ZZ
where m; and o are small Q-factorializations, x is a flop, and fi and fs are K-negative extremal
contractions described as follows
(1) 7z, = P3 and Z, = P2, fi and f5 are the blowups of curves I'y C Zy and 'y C Zo respectively.

Both Ty and 'y are rational quintic curves that do not lie on quadric surfaces.
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(Il) Z, = Q C P* and Zy = P?, fy is the blowup of a rational quintic curve I'y C Q that does
not lie on a hyperplane section of Q), and fy is a conic bundle with discriminant § of degree
3.

(II1) Z, = Vs a quintic del Pezzo threefold, Zy = P, fi is the blowup of a rational quartic curve
I' C Vi and f5 is a del Pezzo fibration of degree 6.

(IV) Zy =P2% and Zy = P!, fi: Pp2(&) — P2, where & is a stable rank 2 vector bundle and fy is
a del Pezzo fibration of degree 5.

Remark 1.3. These four families appear in [8, Table 2] under references (12na),(12nb),(12nc) and
(12nd). The blowup of a general member X of Family (I) (resp. (II), resp. (III), resp. (IV)) at

its node is a weak Fano threefold X whose anticanonical model admits a smoothing in Family
MMy_15 (resp. MMy_13, resp. MMy_14, resp. MM3_5) in the classification of Fano threefolds [10].

Theorem 1.4. [2] Proposition 5.66] There is a K-stable member of Family (1V).

In this note, we prove:

Theorem 1.5. There exist K-stable members of Families (I) and (II). There is a K-polystable
member of Family (I1I).
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2. PRELIMINARY RESULTS ON EXPLICIT K-STABILITY OF FANO THREEFOLDS

All varieties considered are defined over C. Let X be a Fano variety with at most Kawamata log
terminal singularities of dimension n > 2, and let G be a reductive subgroup in Aut(X). Let Z be

a divisor over X, that is Z is a prime divisor on a normal variety X with a birational morphism
p: X — X. Define 5(Z) = Ax(E) — Sx(E), where where Ax(E) = 1+ ordz(Ky,y) is the log
discrepancy of = and

1 T(E)
SX(E):—/ vol(p*(—Kx) — uZ)du
for 7(Z) = sup{u € Roo|p*(—Kx) — u= is big }.
Theorem 2.1. [17, Corollary 4.14] Suppose that f(Z) > 0 for every G-invariant prime divisor =
over X. Then X is K-polystable.

Recall the definition of the number aq z(X), where Z C X is a G-invariant subvariety:

the pair (X, AD) is log canonical at general point of Z for any,}

X) =
aG.2(X) = sup {A €Q effective G-invariant Q-divisor D on X such that D ~p —Kx

Then Oég<X) < OéG,Z(X).
Lemma 2.2. [2] 1.44] Let f: X — X be an arbitrary G-equivariant birational morphism, let = be

a G-invariant prime divisor in X such that Z C f(Z), then we have

Ax(Z) S nt 1
Sx(E) ~

Ozgyz(X).
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In particular, in dimension 3, the existence of a G-invariant divisor = over X with f(Z) < 0
and Z C cx(Z) implies that agz(X) < 2, so that Z is contained in Nklt(X, Bx) for some
Bx ~g —AKx and rational number A < %.

The next theorem is an application of the general inductive argument developed by Abban and

Zhuang to bound the ratio ?‘jj ((g)) [1] to the case of smooth Fano threefolds.

Theorem 2.3. [2, Corollary 1.110] Let X be a smooth Fano threefold, let Y be an irreducible
normal surface in the threefold X, let Z be an irreducible curve in'Y, and = a prime divisor over

X with Cx(Z) = Z. Then

and

SV 2) = e /0 (P(w)?-Y) - ordz (N(w)],,)du+

+ﬁ/OT/OMV01(P(u)’Y—UZ)dvdu

where P(u) is the positive part of the Zariski decomposition of the divisor —Kx — uY , and N(u)
18 1ts negative part.

Remark 2.4. Here, W,Y , is a N? linear series defined as the refinement of the anticanonical ring

VX = P H(X, -mKXx)

meN

by the divisor Y. We refer to [I, Section 2] or [2, Section 1.7] for the definition of W), and of
the associated invariant S (WY ; Z). We take the expression in Theorem as a definition of

S (W,Y o2 ) Note that an expression for S (WY A ) can be computed in the more general context

o)

of Q-factorial Mori Dream spaces [2, Theorem 1.106].

We recall a few results on nonklt centres of pairs (X, By) where X ~ —AKx for A € Q when X
admits morphisms to projective spaces.

Lemma 2.5 ([2, Corollary A.10]). Suppose X = P3 and Bx ~q —AKx for some rational number
A < 3. Let Z be the union of one-dimensional components of Nklt(X, Bx). Then Ops(1) - Z < 1.
In particular, if Z # 0, then Z is a line.

Lemma 2.6 ([2, Corollary A.12]). Suppose that X is a smooth Fano threefold, Bx ~qg —AKx
for some rational number A\ <1, and there exists a surjective morphism with connected fibers
¢: X - P Set H = ¢*(Opi(1)). Let Z be the union of one-dimensional components of
Nkit(X,\Bx). Then H - Z < 1.

Lemma 2.7 (|2, Corollary A.13]). Suppose that —Kx is nef and big, Bx ~g —AKx for some
rational number X < 1, and there exists a surjective morphism with connected fibers ¢: X — P2
Set H = ¢*(Op2(1)). Let Z be the union of one-dimensional components of Nklt(X, ABx). Then
H-Z <2.

3. FaMILy 1

Let X be a one-nodal prime Fano threefold of genus 12 that belongs to Family I of Theorem [I.2]

then X is the midpoint of a Sarkisov link associated to a Cremona transformation P --» P? which
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is a degeneration of the cubo-cubic transformation [3]. We describe the associated birational
geometry briefly, see [3, [5, [14] and [8] for proofs and precise statements.

Denote by H; = o} (f;Ops(1)) for i = 1,2, and by H = 7*(—Kx) the pullbacks to X (or to any of
the models) of the ample generators of Pic(P?) and of Pic(X). Given a curve I' C P?, we (sloppily)
denote by |[nH; — I'| the linear system H°(P3, Ops(n) ® Zr) of surfaces of degree n on which T lies.
The morphism f; is the blowup of a smooth rational quintic curve I'y C P? that does not lie on
a quadric (|]2H; — T'1| = 0), and there is a unique quadrisecant line Ly to I';. The curve T'; lies
on a cubic surface, |3H; — I'1| has dimension 4 and Bs|3H; — I';| = I';y U L;. The birational map
associated to |3H; — I'y| = | Hy| is precisely the Cremona transformation P? --» P? induced by the
Sarkisov link above. The threefold X; is weak Fano,

_KX1 ~ H N4H1 —El,

where F; = Exc f1, so that the proper transform of L; (still denoted L;) is the unique flopping
curve on X;. The map m contracts L, to a node {xy} = Sing(X) € X.

Let 7: X — X be the blowup of zy, and o7 the induced map to X;. Note that X; and X5 are the
two small resolutions of the node zg, x: X7 --» X, is the associated Atiyah flop and L; = o1 (F),
where F = Excr. Then, X is a weak Fano threefold of p = 3 and we have [§]:

and from
H~4H, — E, ~4Hy — Ey
we deduce
H~2(H1+H2)—¥ and H, + Hy ~ #Jrl?

For iuture reference, let T be a cubic surface containing I'y, and denote by T its proper transform
on X. Since Bs|[3H; —I'y| =Ty U Ly, Ly lies on T; and:

T ~ 30';(]1;(9]}»3(1)) — E1 —F~ 3H1 - E1 —F~ HQ,
so that

~

—K)’E —uTl ~ H1 + H2 — UHQ € ZZO[Hl] —f—ZZQ[HQ] C Nef(X)

is nef for 0 <wu < 1. For u > 1, —K¢ — «T" is no longer nef. If C' is the proper transform on X of
a minimal rational curve contracted by f;, then H; - C'=0 and H, - C' > 0, so that

—K¢—ul'~H-C—(u—1)Hy - C <.
We may write for u > 1
—K¢ —ul ~uHy — (u—1)(Hi + Hy) ~uH; — (u—1)(4H, — E; — F)
~(4=3uH + (u—-1)(E1+ F)
showing that the pseudo-effective threshold is u = %, and that —K¢ — uT" admits a Zariski
decomposition with nef positive part P(u) = (4—3u)H; and negative part N(u) = (u—1)(Ey +F).
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3.1. Construction of a member with Z,; x Z,-action. We now consider a special member of
Family (I). Let C(, ) be the image of the embedding P' < P? given by

[z :y] = [2° : axty + b2®y® : bay? 4 azy® : °) for a,b € C¥;
then C{44) is a rational quintic curve that does not lie on a quadric surface for |a| # |b|. The curve
Clap) 18 invariant under the action of G := Z/27Z x Z/27 on P? defined by:
7'12[xoll’lIx23$3]%[$32$22I13$0],
Tyt wo @yt xo w3 = [Xo —x1 t g 1 —x3).
In fact, the action of 7 (resp. 72) on Clap) is induced by that of the involution of P! given by
[z :y] < [y : x] (vesp. [x : y] > [z : —y]). We consider the element of Family (I) obtained by

taking the curve I'y = Cy _y).
Since I'y is G-invariant, L; is also G-invariant and X; and X are endowed with a G-action.

Claim 3.1. The group Aut(X) is finite.

Proof. The curve T'y is not contained in a hypersurface of P3, the stabilizer of T’ in Aut(P?) is
Aut(P3;Ty) ~ Aut(Ty) ~ Aut(P'). By construction of X, Aut(X) is a subgroup of the group
Aut(P?,T;) ~ Aut(P') that preserves the four points of intersection T’y N Ly, so it is a finite
group. 0]

We will apply Theorem to prove that X is K-stable. To do so, we first describe possible centres
of G-invariant divisors over X. In what follows, = always denotes a G-invariant prime divisor over

X.

Claim 3.2. If the centre of = on X is 0-dimensional, it is the singular point cx(Z) = {zo}.
Proof. There is no point of P3 fixed by the action of G. O
Claim 3.3. If the centre of = on P3 is a line L, then

L—1 . /\£E0+M$2:O,
T e T >\JI3 + HT1 = 0.

All G-invariant lines lie on the quadric Q = {x1x9 — 2323 = 0}. Any two distinct G-invariant
lines are disjoint. A G-invariant line L # Ly is either disjoint from 'y or meets 'y in precisely
two points.

Proof. Let L C P3 be a G-invariant line, and consider any two distinct hyperplanes H; = {f; = 0}
and Hy = {f, = 0} containing L, so that L = Hy N Hy = {fi = fo = 0}. Then, L = BsJ# is the
base locus of the pencil # = {uf; +vfy = 0;[u:v] € P'}.

The line L = Bs 77 is G-invariant precisely when G fixes 57, or equivalently when both 7 and 7
induce involutions on .7, and on its base P'. Up to reparametrizing the pencil .77 we may assume
that [u: v] = [1: 0] is a -invariant hyperplane, that is, the linear form f;(zo,- -+ ,x3) is one of

A\Tg + pxg or A\vs + pay for [\ :pu) € P

and H; = {\zg + pro = 0} or Hy = {A\x3 + pxy = 0}. The condition that .7 is G-invariant is
then that 7 - H; is a fibre of the pencil, so that (noting that H; is not fixed by 1)

)\.CL'Q + UL = O,
) 17 11y {)\1‘3 4y = 0,

which gives the desired expression.



Check that L., C @ for all [\ : u] € P, that Ly, N Ly = 0 for (X @ p] # [N : /], and that
Ly NTy = 0 unless (A : p] € {[0:1],[3:1],[-5: 1]} and Ly, N Ty consists of 2 points, or
[A:p)=[1:1] and Ly = Ly is the unique quadrisecant to I';. O

Remark 3.1. Given that the Sarkisov link of which X is a midpoint is G-equivariant, E, and
'y = I'" are also invariant under the induced G-action. Since the map P? --» P3 is induced by
|Hy| = |3H; — I'y|, the fibres of Ey — I'y are the transforms of trisecant lines of I';. Since none of
these are G-invariant, the action of G on I'y does not fix I'y pointwise either.

Claim 3.4. Let Hpy.,) be a general hyperplane containing Liy.,).
Then Hpyy NIy = {b1, -+ ,bs} and Hpny N Ly = {bo}, where by,--- ,bs (resp. by, -+ ,bs) consists
of 5 (resp. 6) points in general position.

Proof. Fix [\ : pu] € P!, and let J# be the pencil of hyperplanes containing Lix.). We compute
that the general fibre of 77 intersects I'y U L; in 6 distinct points. Assume that for some fibre H
of 7, 3 of the 5 points of H NI’y lie on a line (resp. the 6 points H N (Fl U Ll) lie on a conic).
Then, this line (resp. conic) is contracted by the Cremona transformation P? --» P? to a point
lying on I'y. If the points of intersection of a general hyperplane containing Liy., are not in general
position, then we define a dominant rational map P! —-» I'y from the base of 5 to I's, leading to
a contradiction.

O

We now turn to the proof that no G-invariant prime divisor = over X with $(Z) < 0 has 1-
dimensional centre Z = ¢ps(Z). If Z is 1-dimensional, then either Z = I';, or by Lemma Z is
the union of 1-dimensional components of Nklt(P?, B) for some B ~ Ops(4)\) with A € Q, A < 3/4.
Then, by Lemma [2.5, Z can only be a line.

Lemma 3.2. If Z = ¢ps(Z) is a G-invariant line distinct from Ly, (=) > 0.

Proof. We will use Lemma to find a lower bound for 5(Z). To this effect, we find an irreducible
normal surface S C X containing Z and use the inequality

Ax(2) - 1 1
Sx(Z) Sx(8) S(Ws; Z) |

Let S; C X; and S C X be the pullbacks to X; and X of a general hyperplane containing Z. By
Claim [3.4] S; C X is a del Pezzo surface of degree 4 and S is a cubic surface. Recall that F; and
E5 are the f; and f5 exceptional divisors, and that F' is the m-exceptional divisor. All these are
G-invariant, and FEs is covered by the (proper transforms of) trisecant lines of T';.

We first compute Sx(5); on X , we have the following intersection numbers:

S? =1, S?. B =0, S-Ef= -5 E? = 18,
S%.F =0, S.F? =1, F3=2,
S-E,-F=0, E,-F? = —4, E? F=0.

and relations [§]
S~H ~3Hy— Ey, — F H~A4H, — Ey ~4Hy — Es H—-F ~ Hy+ H,.
Define, for u > 0, the divisor
D,=7m"(—Kx)—uS~1—-uH+uH-S5)~(1—uH+uHy+ F) =
H+ E,

= (1 —u)H + u( +F),



then D, is pseudo-effective for u < 4/3, and has a Zariski decomposition with nef positive part

P(u) = (1-2)H,

4

Dy = P(u) + N(u), where { N(u) = u(Z + F).

and we compute:

1 T . 1 (3114 - 3u)? 1

We now show that S (Wf,; Z ) < 1 in order to apply Theorem .
The surface S is a cubic surface obtained by blowing up a general hyperplane P? at 6 points
{bg, - -+ ,bs} in general position. Let ¢ be the pullback of the generator of Pic(P?), and e, - - - ,e5
the exceptional curves. The Mori cone NE(S) is generated by eq, - - - , e5, by the proper transforms
l;; = € —e; — e of lines through two of the blownup points, and by the proper transforms
¢ =2l — Y e; + ¢; of the conics through any 5 of the blownup points {bg, - - - , b5}

We want to evaluate

L /Or (P(U)2 . S) cordy (N(u)‘s)du—{—

+ ﬁ/{: /000 VOl(P(u)‘S — vZ)dvdu.

Since there are no G-fixed points, Z C S'is one of £ or the lines [; ;. Recall that Fy ~ 8H—3F,—4F,
and restricting to S gives Ey|, ~ 8¢ — 3(e; + - -+ + e5) — 4eg. From the description of NE(S),

ordy (EZ}S) <2

S(WiZ) =

o)

s

and

ordy <N<u>‘5) = {() oiherx?vise.

The first term of the expression S (WS 1 4 ) is bounded by

o0

3 T 3 (3114 -3u)? 1 1
P(u)?-S) - d(N >d PR el s R
(—Kx)3/o (P()? - 5) ordz (N(w)lg )du < o5 ; 16 =3
Case 1: Z NIy = (. In this case, Z ~ ¢, and the Zariski decomposition of
(—m*(Kx) —uS)|s —vZ = P(u,v) + N(u,v);
for u € [O, %} is given by
0 for 0 < v < 343w
N(u,v) = 8u—3(4—3u) o 3(4_—31;)_ s 47_3u
qu for -5 S v S 5 -
and we compute:
P - v2—8v+6uv+%—337“+11 for()gvg?’(%?’“),
(u,v)" = 5(2117(;;:3@)2 for 3(4;3u) <uv< %.
This yields:
1 3 T o0
S(W2,,7) < =+ ——— vol(P(u)|, —vZ)dvdu <
( s ) 3 (_KX)3 0 0 ( ( )’S )
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3(4—3u)

1 3 [Y3 B 99u? 33y
<-4 — 2 -8+ 6 —— +11d
_3+22/0 (/0 v v+ buv + 16 2+ v+
4—3u
2 5(2v— (4 —3u))? 1 53 97
dv |du< =+ -— =" <1
+ Azxgsm A vjdus gt Ty < b

which is what we wanted.

Case 2: ZNTIy # (. As Z is one of the bisecant lines of I'y, Z ~ [;; = £ — ¢; — ¢; for
some 1 < ¢ < j < 5. We may assume that Z ~ l;5. Write the Zariski decomposition of
(—m*(Kx) —uS)|s —vZ for 0 < u < 3 we have:

0 for0<wv < w,
N(U, U) _ 4v73€4473u) (61 + 62) for 3(4;3u) <ov< 433u’
4v—3(4—3u) 5(4—3u)

1 (61 + 62) + M(&M + 635 + £45) for 47% S v S g

This time, we compute:

1 o0
S(Wf.;Z) < g 3/ / vol(P )‘ —vZ)dvdu <
0 0
1 3 / 99u?  33u
<-4 2
=375 0 16 2
117u® 39
+ v? — 8v + 6uv + “ ——u+13dv—i—
i-du 16 2
5 (8u — 5(4 — 3u))? _1. 23 13
v — u
dv |Jdu< -+ —=—<1
i / 16 ”) =3 T
and this finishes the proof in this case. O

Lemma 3.3. Let = be a prime divisor over X with cps(Z) = Ly then 5(Z) > 0

Proof. By [8], there are precisely 4 lines through xy € X. Since G fixes xy and G sends lines
to lines, G sends a line through To tO a line through zo. If L > To Is a 11ne and L is its proper
transform on X Ky L=0and Lisa flopping curve. Let w: X — X be the blowup of the
proper transforms of the 4 lines through zo € X, and denote by A = Ay + Ay + Ag + Ay its
(G-invariant) exceptional divisor. Denote by F = w'F, E, = w*E; — A the proper transforms of
F and E; on X. On X we have the intersection numbers:

A =8, A wF=-4,  AW(F)P=0,  Aw(F) w(E)=0,
AW (B) =4, AWt (B)' =0, WF =2 W B} = —18.

We first show that the Zariski decomposition of w*r*(—Kx) — uF exists and writes P(u) + N (u),
where P(u) is nef and

N(u) 0 for0 <u<l,
u) =
(u—1)A forl<u<3.
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We have Ay (F) =2 and compute

(3.1.2) _ 1 /122—2u3du+/32(u—3)(u2—3u—3)du _ 5
o 22\ . 44

So that B(F) >

Now we assume that the centre of Z over X is one-dimensional, so that Z = cz(2) C F is an
irreducible curve. The surface F is the blowup of F ~ P! x P! at 4 points, so it is a del Pezzo
surface of degree 4. Let ¢; and {5 be the pullbacks to F of the two rulings and ey, es, €3, ¢4 the
exceptional divisors. Then ﬁ(ﬁ ) is generated by the proper transforms of rulings through one of
the blownup points (¢1; = ¢4 —e; or o; = 5 — ¢;) and by the proper transforms of (1,1) curves
on [ through 3 blownup points ¢; j, = €1 + €2 — e; — e; — e;,. We use Theorem to find a lower
bound for 5(Z). We have

S(WE,; 2) = ﬁ /0 3 (P(u)? - F) - ordy (N(u)\ F) du+

+ ﬁ/gg /Ooo vol(P(u) | — vZ) dvdu.

Since Z ¢ {e1, e9,€3,e4} = Aj, ordy (N(u)‘ﬁ) = 0. By construction, we may write

Z ~ aie; + azes + azez + azeq + Z aiilicj) + aa3lioz + 1aaliog + 13alizs + a34l234.

ie{1727374}7
je{1,2}

Since there is no G-fixed point in P? on either side of the link, one of aqas, (io4, Qza, OF o34 1S
greater than 1. Without loss of generality we assume that aq93 > 1; by convexity of volume we
get the inequality

S( eei Z 22/ / vol ~—UZ dvdu < / / Vol ~—v€123>dvdu

so it is enough to show that the last integral is less than 1 to conclude.
We now assume Z ~ (153, and denote by P(u,v) and N(u,v) the positive and negative parts of
the Zariski decomposition of (w*n*(—Kx) — uF)|z —vZ. Then

e if u € [0,1] then for 0 < v <u N(u,v) =v(e; + €3 + €3) so that P(u,v)* = 2(u — v)2.
e if u € [1,2] then:
0 for0<v<u-—1,
N(u,v) = ¢ (—u+v+1)(e; + ez +e3) foru—1<ov<1,
(—U+U + 1)(61 + es + 63) + (U — 1)(6174 —|—£274) for 1 S v S UT—H

o if u € [2,3] then:
0 for 0 <wv <1,

N(u,v) =< (v —=1)(l14+ la4) forl<v<u-—1,

(—U +v+ 1)(61 + e9 + 63) + (U — 1)(61,4 +€2’4> for u —1 <ov< UTH
9



We have

S( 0o 4 22 / / Vol = — vf123> dvdu =
_ 9 2
= 22(/0 /0 2(u — v)“dvdu+

2 pu-l 1
+/ (/ (—2u2+2uv—v2—|—8u—6v—4)dv—|—/ (u? — duv + 2v* + 2u — 1)dv+
1 0 u—1
wtl

2
+ / (14+u— 2v)2dv) du+
1

3 1 u—1
+/ (/ (—2u2~|—2uv—v2+8u—60—4)dv+/ (—2u? + 2uv + v* + 8u — 10v — 2)dv+
2 0 1

ER 29
+L1 (1+u—21})2dv)du> == L.
We see that Sy (F) < 2 and S(W,F., Z) < 1 thus
SR b ol B
and 3(Z) = Ax(Z) — Sx(2) > 0. O

Finally, we exclude the case where Z C I'y.
Lemma 3.4. If the center Z = cx,(E) is one-dimensional and is contained in Ey, 5(Z) > 0.

Proof. Assume that Z C E), then since there is no G-fixed point on P2, ¢1(Z) = cps(Z) is the
curve I';. Denote by Y; — P3 the blowup of the line L; and by Y, — P! the morphism induced
by the projection P3 ——» P! away from L;. Let X+ — Y] be the blowup of the proper transform
of I'y, then Xt --»Xisa flop, and there is a morphism X — X. Denote by n the composition
X=X Y1 —> IP’l and by Z the centre cz(E). If T is a general fiber of n, T - Z > 5, hence, by

Lemma [2 - O

Lemma 3.5. There is no G-invariant prime divisor = over X with centre a prime divisor Dy =
cx(E) such that 5(Z) <0

Proof. By [2, Corollary 1.44], for any divisor = over X, if ag z(X) > 3/4, where Z = cx (=), then
B(Z) > 0. Assume now that there is a divisor Z over X with (Z) < 0 and ¢x(Z) = Dy a divisor,
so that g p, (X) < 3. First assume that o, p, (X) < 2, then Dy is the G-orbit of a minimal log
canonical centre of a suitable pair (X, 2D) for D C | — Kx|g a G-invariant linear system. By [2)
Theorem 1.52], Dy is a G-invariant irreducible normal surface with

—Kx ~g ADx + Ax

for Ax an effective Q-divisor and a rational number A\ > %.
We show that there is no such divisor Dx. Recall that 7: X; — X for « = 1,2 are small Q-
factorialisations so that

—Kx, ~9g ADx + Ax

where we still denote by Dx,Ax the pullbacks of these divisors to X;. We have W(Xz) =
RZO[El] +R20[E2], and E2 = 8H1 - 3E1 If DX == El, then AX ~ 4H1 - (1 + /\)El, but this
10



is impossible as (1 + \) > 3/2. If Dx # Ej, the image of Dy by f; is a G-invariant irreducible
surface of degree d € N on P?, and since

fi(4Hy) ~ M 1(Dx) + fi(Ax)

we have 4 > \d, and since \ > %, d < 2. Since there is no G-invariant hyperplane of P3, d = 2 and
fi(Dx) is a G-invariant quadric. Since I'y doesn’t lie on a quadric, Dx ~ 2H; and
AX ~ (4— 2/\)H1 — E1 ~ ZEHl — E1

for some = < 4/3, which is impossible for an effective divisor.

Now assume that ag p, (X) = 2, then since 7 is small, ag p, (X1) = 3 by [2, Lemma 1.47], and
B(E) = Ax(Dx) — Sx(Dx) = Ax,(Dx) — Sx,(Dx). Since X is smooth, as in the proof of [2]
Theorem 1.51], assuming that 3(Z) = 0 would imply X; ~ P? a contradiction. We conclude that
B(Z) > 0 for all G-invariant prime divisors = with ¢x(Z) = Dx a prime divisor on X. 0

We now have all the elements to prove

Main Theorem (I). The threefold X is K -polystable.

Proof. Assume that X is not K-polystable, then there is a G-invariant prime divisor = over X
such that 5(Z) < 0. Lemma shows that the centre of = on X is not a surface. If the centre
of Z on P? is a curve other than I'y, by Lemma this curve is a line. Lemma shows that
this line cannot be a G-invariant line that is not the unique quadrisecant of I';, while Lemma (3.3
excludes the quadrisecant line L. Lemma shows that the centre of = on IP? is not I';. As there
is no G-fixed point on P3| if cx(Z) is O-dimensional, it is the singular point zg € X, and its centre
on P? is Ly, so that this case is also excluded by Lemma 0

Since Aut(X) is finite, X is K-stable, and by openness of K-stability [4], this implies:
Corollary 3.6. A general one-nodal prime Fano threefold of genus 12 in Family I is K-stable.

Remark 3.7. Liu and Zhao have constructed a K-semistable degeneration of one-nodal prime Fano
threefolds in Family I, in which the curve I'y is taken to lie on a quadric (this corresponds to C,
with |a| = |b| above). The resulting prime Fano threefold of genus 12 has (non-isolated) canonical
singularities [9].

4. FamiLy 11

Let X be a one-nodal prime Fano threefold of genus 12 that belongs to Family II of Theorem [1.2]
then X is the midpoint of a Sarkisov link associated to a rational map Q C P* --s P2?; we describe
the associated birational geometry briefly, see [0l 14] and [§] for proofs and precise statements.

%
X1 ™ X2
QcPp X P2

Denote by Hy = o7 (ffOq(1)), by Hy = 03(f50p2(1)), and by H = 7*(—Kx) the pullbacks to
X (or to any of the models) of the ample generators of Pic(Q), Pic(P?) and Pic(X) respectively.

The morphism f; is the blowup of a smooth rational quintic curve I'jy C @ C P* that does not lie

on a hyperplane section of @ (|H; — I'y| = ()), and there is a unique trisecant line L; to I';. The
11



curve I'y lies on a section of |2H;| on @, that is on a del Pezzo surface of degree 4, and the linear
system |2H; — T';| has dimension 3 and Bs|2H; — I';| = T'; U L;. The rational map associated to
|2H, — T'y| = | Ha| is precisely the Q --+» P? induced by the Sarkisov link above. The threefold X
is weak Fano,
—le NHN?)Hl —E1
where F; = Exc fi, so that the proper transform of L; (still denoted L;) is the unique flopping
curve on X;. The map 7 contracts L; to a node {xy} = Sing(X) € X.
Let m: X — X be the blowup of zy, and o7 the induced map to Xy, note that L; = o1(F'), where
F = Excm. The threefolds X; and X, are the two small resolutions of the node xy and y is the
induced birational map between these (the Atiyah flop associated to zy € X). Then, X is a weak
Fano threefold (—K ¢ is nef and big) with p = 3 and we have [§]:
and from H ~ 3H, — E; ~ Hy + H,, we deduce
Hy ~2H, — Fj.
The map f5 is a conic bundle (a Mori fibre space with one-dimensional fibres) and its discriminant
curve § = — fo, (Kx,p2)? = — fo,(H — 3H,)? has degree 12.
Denoting by € = ¢o,H, then Xy C P(€) is a section of 2H — 3H,, where, abusing notation, we
denote by H the tautological class of P(£) and by Hj the pullback of Opz(1)).
Since Hy - L; = 1, Ly maps to a line £ C P2, Let R = f, '¢ be its preimage on X5, and by abuse
of notation, also denote by R = ¢3(f, *¢) its proper transform on X. By construction, R is the
unique section of |2H, — Ey — 2F| = |Hy — F|.
4.1. Construction of a member with Z, x Zs-action. Let Q C P* be the smooth quadric
threefold
Q = {273 = z125 — 2074}

and let I'; be the image of the embedding P* < P* given by

[z :y] — [2°: 22%% +o° 2ty + 2yt 227 + 20 1 o),
I'; lies on @ but on no hyperplane section of Q).
Let w be a primitive cube root of unity, and define an action of G := Z/2Z x Z/3Z on P* by the
action of its generators:

To|we:xy i wy:xg: kg = [Ty 23 2oy 2 2],

0 [To Ty Tyt Tyt ] = [T WAHy  wxg w3 whay.
and observe that I'; is G-invariant, and that

L1 :{ZE0+I3=I4+ZL’1 :.172:0}

is G-invariant and trisecant to I'y (the intersection L; N Ty consists of the image of the points
[1: —w' for ¢ = 0,1,2). The threefolds X, X; and X, are equipped with a G-action and the
Sarkisov link above is G-equivariant. For instance, a G-invariant basis of |Ha| is

Sl = {513(2) — l’% + 2(.T1 — Z’4) = O},

Sy = {2? — 2% + 2(xg — x3) = 0},

Sy = {(xg — 22)? + (4 — 9)? + Tox1 + 27024 + T374 = 203 + (11 — X9)? + (23 — 22)%}.
and the only section of |Hs| that is singular along L; is fi (alR) ( which we still call R by abuse
of notation). We have:

R = {xow) + 22074 + 1374 = 205},
12



The discriminant curve of fs5 is the smooth plane cubic
§ = {2y; + Gyayr + Syoyi + Yoyrya + 3yi + dyiye + 6y1ys + 2y5 = 0} C P2
Claim 4.1. The group Aut(X) is finite.

Proof. Since Aut(X) is a subgroup of Aut(X;) = Aut(Q,I';), and since I'; does not lie on a
hyperplane section of Q, Aut(Q,T';) = Aut(X;) is a subgroup of Aut(T';) = Aut(P!) by [15, Lemma
2.1]. Consequently, Aut(X) is a subgroup of Aut(P!) preserving the three points of intersection
I'y N Ly, therefore it is finite. O

The intersection numbers associated to the Sarkisov link are

H? =2, H? B, =0, H,-E? = -5, B3 = —13,
H? . F =0, H, F?=—1, F3 =2,
E,-F-H =0, B, - F?= -3, E? F =0,
H3 =0, Hy H =2, Hy- H? =12 — deg 4.

We will apply Theorem to prove that X is K-stable. To do so, we first describe possible centres
of G-invariant divisors over X. In what follows, = always denotes a GG-invariant prime divisor over

X.
Claim 4.2. If the centre of = on X is 0-dimensional, it is the singular point cx(Z) = {zo}.
Proof. There is no point of QQ C P* fixed by the action of G. O

We now consider the case when the centre Z = co(Z) on () is one-dimensional. First, we assume
that Z lies on a (smooth) section S of the linear system |Hy| = |2H; — Fi|. As an intersection
of two quadrics in P4, S is a del Pezzo of degree 4, and p: S — P? is the blowup of five points
p1,- -+ , s in general position. Let £ be the pullback of a line on P2, and ey, - - - , e5 the p-exceptional
curves. Then the Mori cone NE(S) is generated by £, ey, -+ ,e5,€;; for 1 <i < j <5 and ¢ where
¢; ; is the proper transform of the line through p; and p; and ¢ that of the conic through py,-- -, ps.
For a smooth curve C' C S, if C' ~ kl + > m;e;, then

degC:—KS.C:Hl-C:?)k—Zmiandpa(C’): 5 _ZT

so that without loss of generality, we may assume that I'y =2/ —e; and L; = q.

Lemma 4.1. If Z = cq(Z) is a G-invariant irreducible curve lying on S € |Hs|, and if Z ¢ T'1UL4,
then B(Z) > 0.

Proof. We use Theorem to bound [B(Z) below. Let D, = H — uS on X for u > 0, and write
its Zariski decomposition D, = P(u) + N(u), where for 0 < u < 3, P(u) is nef and

P(u) :H—uS—u<%+F> = (1—§u>(3Hl—E1) and N (u) :u<%+F>,

which gives:

1 T 1 [%222(3 - 2u)? 3
S)((S) (—KX)3 /O VO (7’1’ ( Kx) uS)du 59 ; o7 du 3 <

Note that since Z ¢ (E1 U F), ordy (N(u)|g) =



We now consider (H —uS);s —vZ on S and denote by P(u,v)+ N(u,v) its Zariski decomposition
for0<u< % We have

5
7~ Oég + Z Q€5 + Z aijgij + ﬁq
i=1 1<i<j<5
Since Z ¢ F, Z # q and at least one of the coefficients o, o;, o ; is > 1. If 1 is the corresponding
curve, since Z > 1, by convexity of volume:

S( oo L 22// Vol ~—vZ dvdu < —// Vol ~—vl>dvdu.

so it is enough to show that the last integral is less than 1 when Z =1, for each possible 1.
Case 1. Z~ (. For 0 <u <3 and 0 <v <32 N(u,v) = vg, and we compute

3/2
S( e Z 22/ / Vol —Ué)dvdu:

3/2 2u—|—3v—3)(6u—|—5v—9) 3
=<1
/ 5 dvdu T <

Case 2. Z ~¢;. For 0 <u < %,We have:

N(u, ) vq forOSvS@,
u,v) = —2u —2u
vq+ (U — 2+ %)(ﬁm +£13 +£14+£15) for 2(332 ) S v S 5(362 )

We obtain
3/2

S( ool 22/ / Vol —U61>dvdu =

3 (/( = (Qu — 3)(6u taw-9), /(3 2 5(3 — 2u) (10u + 6v — 15)2dv>du B

T2 0 3 2(3-2u) 6 9 B

182

=— <1

352 ©

Case 3. Z ~ ey (or ¢;, i # 1). For 0 <u < 3, we have:
vq for 0 < v < 3224,
N = 3
(U,U) {UQ+(U—1+%)(€23+£24+€25) fOI‘ % SUS @

In addition

3/2
S( ool ) 22/ / Vol —UeQ)dvdu:

2(3—-2u) 2u)

3 4 _
= — (/ (2u—3)(2u—|—2v—3)dv~l— (4u +3v - 6) dv)du:
22 0 0 3—3211 3
63
= — < 1L
176
Case 4. Z ~ (45 (or ¢4;). For 0 <u <3 5, we have:
f < < 3—2u
N(u,v) = ! 2 N 275 = 2537211)
(U—1+?u)<€34+£35+£45> forTugng.
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In addition

3/2
S( v Z 22/ / Vol —vﬁlg)dvdu:

3/2 5 94+ 30— 6)(2u+ v — 3
3 </ 4u? +8uv—12u—9 4v—v2dv+/ (du+3v JQu+v >dv>du
22 0 0 3 a2 3
75
=2 <1
176
Case 5. Z ~ la3 (or ;5,1 #1). For 0 < u < 2, we have:
0 for0<v < 3_32“,
N(u,v) = (v—1+ )45 for%ﬁvﬁ@,

v—1+2“€45—v—2+4—“ 6144—615 fOIMSUS?)—Zu.
3 3 3

In addition

3/2
S(Wes: 2—/ / VOl _M%)dvdu:
3 32 4
:E/O < i 4u? —|—3uv—12u+9—21}—02dv+
2(3— 2u)
2(2u — 3)(10u + 6v — 15 e
+/ (2u — 3)(10u + 6v )dv—l—/ 2(2u+v—3)2dv>du:
5o 3 2(3-2u)
5 3
111
=— <1
176
: : ) . 1 1
This finishes the proof, as in all cases we have min { Sx (5] S(W.S;.; Z) } >1 -

Lemma 4.2. If Z = c¢g(Z) is a line other than Ly, 5(Z) > 0.

Proof. Since there is no G-fixed point on ), Z NI} is empty or consists of two points. In the
second case, Hy - Z = 0, so that Z lies on a section S € |Hs| and 5(Z) > 0 by Lemma [4.1]

We now assume that Z is disjoint from I'; and denote by S¢ ~ P! x P! the general hyperplane
section of () containing Z, and by S its proper transform on X. The intersection S@ N (Fl U
Ll) = {p1, - ,ps} consists of six points, and these points are in general position because any line
through 3 of the points (respectively conic through 6 of the points) would be contracted by 7y, the
anticanonical map of X, but the only flopping curve on X; is L;. As S is the blowup of S€ at
{p1,--+ ,ps}, S a del Pezzo surface of degree 2. Denote by ¢y, {5 the pullbacks of the two rulings
of S¢ = P' x P!, and by ey, - - - , eg the exceptional divisors. The Mori cone NE(S) is generated by
l1,05,eq, -+ , €6, and by the classes of

the proper transforms /;1y and £ of rulings through the points p; for 1 <14 <6,
the proper transforms ¢; j, for 1 <i < j < k <6 of irreducible conics through 3 of the blownup
points (¢;jx = {1+l —e; — e; — ex),
the proper transforms x;1) and kj(9) of rational cubic curves though 5 of the p;s (where Kj1) =
200+ 0y — > e;+¢;) for 1 < j <6,
and the proper transforms g; of elliptic quartic curves through p1, - - - , ps, which have multiplicity
2at pjfor 1 <j <6 (g =20+20—) e —e¢j).
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The Zariski decomposition of 7*(—Kx) — uS writes P(u) + N(u) where P(u) is nef, and for
0<u<1, N(u) =uF. We have
1 1

1 T 3
— I(m*(—Kx) — = — [ (1- 21 22)du = = < 1.
(_KX)3/0 vol(rm* (= Kx) — uS)du % . (1 —u)(u Tu+22)du g <

Since Z is disjoint from I'y, without loss of generality we may assume that Z ~ /5.
Using the same notation as before, for 0 < u < %, we have

SX(S) =

N(u,v) = ¢ (20 — 4+ 3u)rg() if 48 < g < Ootu
(20 =5 +4u) X ki) + (1 = u)ke)  if 25 < v < T8

For 2 <w <1, we have

N(ua U) = (27} — 4+ 3’&)1{6(2) if 4—23U <v< 5—24u7
(2U — 5+ 4U> Z Ki(2) —+ (1 — u)/{6(2) if 5*24U <v< 1119u‘

Since Z ¢ F, ordy (N(u)\s) — 0 and

( ool ) / / vol —vZ)dvdu:
22
3 5/7 4— 2u 572411
= E/ / u? 4+ 2uv — 12u — 6v + 13dv + / 10u? + 1duv — 36u + 4v? — 220 + 29dv+
7 35u
+/ 2(5u + 3v — 7)(9u + 4v — 11)d )
5—4u
2
3 1 4—22u
+ 35 (/ u? + 2uv — 12u — 6v + 13dv + / 10u2 + 1duv — 36u + 4v? — 220 + 29dv+
5/7
e 18969
2(5u + 3v — 7)(9u + dv — 11)d )
+/— (But+ 30 = T)(0u +4v 1108811
As above, this completes proof that 5(Z) > 0. O

Lemma 4.3. If cg(Z) = Ly, then (Z) >0

Proof. By [8], there are precisely 3 lines through zg IS X, and by construction, the set of lines
through ro € X is G-invariant. If L 3 x is a line and Lis its proper transform on X -K5 L=0
and L is a flopping curve. Let w: X — X be the blowup of the proper transforms of the 3 lines
through xp € X, and denote by A = Ay + Ay + A3 its (G-invariant) exceptional divisor. Denote
by F' = w*F, Ey = w"E; — A the proper transforms of /' and F; on X, and by R = w*R — A,
the proper transform of the unique section of |2H; — Ey — 2F| = |Hy — F|. On X, we have the
intersection numbers:

A® =6, AW F = -3, A-w*(F)* =0, A-w*(F)-w*(Ey) =0,

AW (E)) =3, A-w*(E)?* =0, W F? =2, w*E} = —13.

16



We first show that S(F) > 0. The Zariski decomposition of w*m*(—Ky) — uF can be written
P(u) + N(u), where P(u) is nef and

0 for 0 <u <1,
N(u) =< (u—1)A for 1 <u <2
(u—1DA+ (u—2)R for2<u<S3.

We have Ax(F) =2 and

Sx(F) = ﬁ /OT vol(w*n* (—Kx) — uF)du

1 ! 5 2 5 161
= — 22 — 2utdu+ [ (u+1)(u? —10u+19)du+ [ 3(u—3)(2u —T)du | = —.
22\ J, ! ) 88

So that S(F) = é—g > 0.

Now assume that = is not F' and denote by Z the centre of = on X. By construction, Z = c5(Z) C
Fisa curve, and Fisa blowup of P! x P! in three points in general position, so it is a del Pezzo
surface of degree 5. We denote by ¢, ¢ the proper transforms of the two rulings of P! x P!, and by
€1, ea, €3 the (—1)-curves The extremal rays of the Mori cone NE(F) are the (—1)-curves ey, es, €3,
the proper transforms £;1) and £;) of rulings through the blownup points for 1 <4 < 3, and the
proper transform of the conic through the three blownup points f193 = ¢1 + {5 — e; — e5 — e3.

We will estimate S(Z) by considering the flag Z C F C X; we write

S(W,F,,Z) = (—KLX)?’/; (P(u)?- f) -ordy (N(u)}ﬁ)du+

n ﬁ/j /OOO vol(P(u)| - — vZ)dvdu.

7, and ordy (N(u)|ﬁ> = 0 unless Z = }Aﬂﬁ

—_
—

Since cg(Z) i

We first assume that Z # é} P There are positive integers «;, a;; and ava3 so that
Z ~ aqe; + agey + azes + Z il + a13lios.

Since Z ¢ A! 7+ @ij and aqg3 are not all simultaneously 0. Let 1 denote one of the (—1) curves
other than ej, €5, e3 such that Z > 1, then by convexity of volume:

S( o L 22// Vol —UZ dvdu < // Vol —vl)dvdu.

so it is enough to show that the last integral is less than 1 when Z = 1.
Case 1. Assume that Z ~ {93, and let P(u,v) and N (u, v) be the positive and negative parts of the

Zariski decomposition of (w*m*(—Kx) —uF|z—vZ. Then, for 0 <u <1, N(u,v) = v(er +ex+e3)
for 0 <ov<w;forl<u<?2,

0 for0 <ov<wu-—1,
N(u,v) =
(v—u+1)(e;+ex+e3) foru—1<wv<u.
and for 2 < wu < 3,

N(u,0) 0 for 0 <wv <1,
u,v) =
(v—1)(e; +ea+e3) forl<wv<4—u.
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Putting things together, we get:

S(Wﬁ'Z) < El 3 Oovol(P(u) = — ol )dvdu—
(X} X 29 0 0 F 123 -

1 u
:%(/0 /0 2(u — v)*dvdu+
1

2 u— u
+ / (/ —u® 4 2uv + 6u — v* — 6v — 3dv + / 2(u — v)2d0> du+
1 o u—1

3 1 4—u 29
—I—/ (/ 2uv—v2—4u—60+13dv+/ 2(1}—2)(v+u—4)>du>:ﬁ<1.
2 0 1

and B(Z) > 0.
Case 2. Now assume that Z ~ fy(5) (or any /;(;)). The positive and negative parts of the Zariski

decomposition of (w*n*(—Kx) — uF)|z —vZ are as follows.
For 0 <u <1, N(u,v) =vey for 0 <v <w;forl <u<?2

(

0 for0 <v<wu-—1,
N(u,v) =< (v—u-+1)e foru—1<wv <1,
(v —u+ e+ (v —1)(lq) +l3y) for1 <o <

In addition for 2 <u <3

;

0 for 0 <wv <1,
N(u,v) = < (v =34 u) (o) + 31)) for3—u<wv<1,
| (v =3+ u)(loqy + b)) + (v —1)er for 1 <v <4 —u

We have

S(I/Vﬁ'Z)<i ’ oovol(P(u)’~—v€ )d’udu—
(XY X 22 0 0 F 1(2) =

3 1 u
= — 2 —
5 (/0 /0 u(u — v)dvdu+
2 u—1 1 u
—l—/ </ —u2—v2+6u—2v—3dv—l—/ —2uv—|—4u—2dv+/ 2(2—@)(u—v)dv>du—|—
1 0 u—1 1

3 3—u 1
+/ (/ —v2—4u—2v—|—13dv+/ 2u? + duv + v2 — 16u — 14v + 31dv+
2 0 3

—Uu

4—u 59
+/ 2(u+v—4)2dv)du =— <L
! 88

This finishes the proof that (=) > 0 when Z # }N%’ﬁ
Assume that Z = R 7> so that ordyz <N(u)‘ﬁ) =1 when 2 < u < 3. We have

3 9

m/j (P(u)*- F) - ordy <N(u)‘ﬁ)du - =

As before, denote by P(u,v) and N(u,v) the positive and negative parts of the Zariski decompo-

sition of w*n*(—=Kx —uF)|z —vZ. When 0 <u <1, N(u,v) = v(er + ez + e3) for 0 < v < /2,
18



when 1 < u < 2,

N(u, ) 0 for0<v<u-—1,
u,v) =
(v—u+1)(es +ea+e3) foru—1<wv<u/2,

and finally, when 2 < u < 3,

N(u,v) = 0 for 0 <ov <3—u,
T (v =34+ w) () F by + lay) for 3—u <o <2 —u/2.

We have

S(W,F,, ——+—// Vol ~—vZ>dvdu:

—_+—(// 2(u — v)(u — 2v)dvdu+

2 u/2
—l—/ </ —u? + v +6u—6v—3dv—|—/ 2(u—v)(u—2v)dv>du+
1 0 u

-1

3 3—u 2—u/2
+/ (/ 2uv+y2—4u—100+13dv+/ (u+2v—4)(3u+2v—10)dv>du) :%<1.
2 0 3

—Uu

We see that Sy (F) < 2 and S(WF

e.0)

Z) < 1, so that B(Z) > 0. O
Now we need to consider G-invariant prime divisors = whose centre on () lies on I';.
Lemma 4.4. If Z = cx(2) C By, then 5(2E) >

Proof. Assume that Z C Fj, then since there is no G-fixed point on Q C P4, f1(Z) = co(Z) is the
curve I';. Denote by @)1 — @ the blowup of the line L, and by Q; — P? the morphism induced by
the projection Q C IP’4 ~-» P? away from L;. Let X+ — @1 be the e blowup of the proper transform
of I'y, then Xt-5Xisa flop, and there is a morphism X — X. Denote by n the composition
X 5 X —Q — P

If T is a general fiber of n, T - Z> 5, hence, by Lemma |2 . 7, (2 0J

Lemma 4.5. If = is a G-invariant prime divisor over X with centre a prime divisor Dx = cx(Z)
such that B(Z) < 0, then Dx € |Hs|.

Proof. The centre cx(Z) = Dx is the G-orbit of a minimal log canonical centre of a suitable pair
(X,3D) for D C | — Kx|g a G-invariant linear system, so that Dy is a G-invariant irreducible
normal surface with
_KX ~Q )\DX + AX

for some effective Q-divisor Ay and rational number A\ > % (see proof of [2, Theorem 1.52]). We
show that then, Dy is linearly equivalent to Hs (here since X; — X is a small map, we also denote
¢x,(E) by Dx).
Recall that Eﬁ(Xl) = RZO[EI] + RZO[HQL and H2 ~ 2H1 — El. If DX = El, then

A~3H — (1+NE; ~ ;(2H1 — B+ (g —(1+N)E
and since A > %, this is impossible.
Now assume that Dx # Ej, so that fi(Dy) is a G-invariant surface on @, and let d be its degree.

Since

3H1 ~ )\fl(DX> + fl(AX)’
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3> X and d=1 or d=2. As there is no G-invariant hyperplane section, d = 2 and
A~ (3—=2\N)H, + (Amy —1)E;
where m; is the multiplicity of fi(Dx) along I';. Since
3—2)\ 3—2X\
2
we see that m; > 1 and Dy € |H|. O

Ax ~ (2H; — Ey) + ( +Amy — 1) E;

—_
—

Lemma 4.6. Let Z = c3(Z2) be an irreducible curve that is not contained in Ey. Then, 5(Z) > 0
unless cg(Z) is a line.

Proof. By Lemma [£.5], a G-invariant surface containing Z is either F' or the G-invariant element
of |Hs|. We have seen that for such Z, () > 0. If Z ¢ H,, as in the proof of Lemma [4.4] there

is a surjective morphism X — P? and H, - Z < 2. Since L, is in the base locus of Hs, this implies

Main Theorem (II). X is K-polystable.

Proof. Assume that X is not K-polystable, and denote by = a G-invariant prime divisor over
X with 5(Z) < 0. If ¢x(E) is 0-dimensional, it is {zo}, and cg(E) = L1, so that S(Z) > 0 by
Lemma If ¢g(Z) is a curve and lies on a section S of |Hs|, then S(Z) > 0 by Lemma If
¢o(E) is a line, then S(Z) > 0 by Lemma 4.2 and Lemma[d.3] If c¢(Z) is a curve lying on Ej, then
B(Z) > 0 by Lemma [.4] and if ¢¢(Z) is a curve not lying on E; and such that ¢o(Z) is not a line,
then 3(Z) > 0 by Lemma[4.6] This exhausts the cases where cx(Z) is 1-dimensional. Assume now
that cx(Z) is a prime divisor. Then, by Lemma {4.5[ 5(Z) > 0 unless cx(Z) € |Hy|. We have seen
that 5(S) > 0 for S € |Hs| in the proof of Lemma (4.1} and this concludes the proof. O

As in the case of Family I, since Aut(X) is finite, X is K-stable and this implies by openness of
K-stability [4]:

Corollary 4.7. A general one-nodal prime Fano threefold of genus 12 in Family II is K-stable.

5. FamiLy III

Let X be a one-nodal prime Fano threefold of genus 12 that belongs to Family IIT of Theorem[1.2]is
the midpoint of a Sarkisov link associated to a rational map Vi --+ P'; we describe the associated
birational geometry briefly, see [0, [14] and [8] for precise statements.

X
2%
X L €t
NN

X P!

Denote by H; = o} (ffOv(1)) and Hy = 03(f30p1 (1)), and by H = 7*(—Kx) the pullbacks to
X (or to any of the models) of the ample generators of Pic(Vs), Pic(P!) and Pic(X) repsectively.
The morphism f; is the blowup of a smooth rational quartic curve I'y C V5 C P%, and there is a

unique bisecant line L; to I';. The linear system |H; —I'q| has dimension 2, Bs |H; —T'y| =T UL,
20
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and the rational map associated to |H; —I'1| = |Ha| is precisely V5 --» P! induced by the Sarkisov
link above. The threefold X; is weak Fano, and

—Kx, ~H=2H, — F,

where F; = Exc fi, so that the proper transform of L; (still denoted L;) is the unique flopping

curve on X;. The map m contracts L; to a node {xo} = Sing(X) € X. Let 7: X — X be
the blowup of g, and o1 the induced map to Xi; x is the Atiyah flop associated to xg € X and
Ly = 01(F), where F' = Excn. Then, X is a weak Fano threefold of p = 3 and we have [g]:

and from H ~ 2H, — E; ~ Hy + H,, we deduce
H2 ~ H1 —El.

The map f> is a del Pezzo fibration (a Mori fibre space with two-dimensional fibres) of degree
H? - H, = 6. For later reference, the intersection numbers on X are:

H} =5, H? - By =0, H, - B} = —4, E} = -6,
H? - F =0, H, F?*=—1, F3 =2,
E,-F-H, =0, E, - F?= -2, E}-F=0.

5.1. Construction of a member with G,, x Zs-action. Recall from [2, Section 5.8] that the
quintic threefold V5 C P% can be defined scheme theoretically by

( 2
T4y — ToTo + €Ty = O,
2
T4Tg — T1X3 + Ty = O,
2
Ty — ToT3 + X1%2 = O,

T1T4 — ToTg — Toxs = 0,

(L2T4 — XT3T5 — T1xe = 0.
and is endowed with an action of G = G,, X Zy defined by the involution
T: [1'021’11{5221’321]42%52]36} — [1535.%'221’12[5051'421’61%'5},
and by the automorphisms A
[l’o X1 X X3 T4 Ty . .CE6} — [ngo . S5ZE1 . 87272 . 89[E3 . 86113'4 . 84.175 . 881'6].

Consider the curve I'; C V5 defined by the embedding P! < P* given by

[z :y] = [0: i’y ixy® : 0 —2y® : —2* 0 —y],
where i = —1, then T'; is a G-invariant rational curve of degree 4. The line L, = {zg = z; =
ro = x3 = x4 = 0} is the unique bisecant line to I'; and it is also G-invariant. Note that T'; lies on

{zo = 23 = 0} N V5, and the pencil of hyperplanes containing I'y is the restriction of
H = {H[/\?M = {/\ZL‘Q + ULz = 0}7 [)\ . u] € ]P)l}

to V5. Denote by Sp.) = Hx,,) N Vs, and note that for any hyperplane in the pencil, L; UI'y C S}y,
The midpoint X of the Sarkisov link above is endowed with a G-action. Finally, denote by
S = {x4 = 0}NV5 the only G-invariant hyperplane section of Vs, and observe that S has multiplicity
2 abong L, so that 5[,\:“] =H;— F; — F and S = H, — 2F are the proper transforms of S}y, and

S on X.

Claim 5.1. The group Aut(X) = G, and in particular, it is reductive.
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Proof. Since

G~ G,, X Zy C Aut(X) ~ Aut(Vs;T1) C Aut(V;) = PGLy(C),
by [13], Aut(X) = G or Aut(X) = Aut(Vs) = PGLy(C). The second case is impossible because I'y
is not Aut(V;)-invariant. O

We will apply Theorem to prove that X is K-polystable. To do so, we first describe possible
centres of G-invariant divisors over X. In what follows, = denotes a G-invariant prime divisor over

X.
Claim 5.2. If the centre of Z on X is 0-dimensional, it is the singular point cx(Z) = {zo}.
Proof. There is no point of V5 C PS fixed by the action of G. O

We now consider those G-invariant prime divisors over X which have one-dimensional centre
Z = ¢y, () on V5. By [2, Corollary 5.39], the G-invariant curves on Vj are precisely the line Ly,
the conic C' defined parametrically by [z : y] — [z : 0: 0 : y? : xy : 0 : 0], the twisted cubic
defined parametrically by [x : y] — [ : 2%y : 2y® : 4 : 0: 0: 0] and a family of sextic curves C,
for v € C* in each of the hyperplane sections {z4 = 0} N V5 and {Azo + pxs =0} N V5.

Lemma 5.1. Let = be a G-invariant prime divisor with centre Z = ¢y, (Z) a curve. Then Z = Ly,
Z =T1 or B(2) > 0.

Proof. Assume to the contrary that S(Z) < 0, then by Lemma 2.2] Z = cx,(E) is contained
in NkIt(X,, By,) for some Bx, ~g —AKx, and rational number A < 2. By Lemma [2.6] the
degree Hy - Zo < 1, and we exclude the curves with Hy - Z > 1 by considering Z; = ¢=(Z) and
its intersections with I'; and L;. If Z is a rational sextic curve constained in {x4y = 0} or in
{Azy +pxs =0}, I''NLy =0, s0 (H — Ev) - Zy = Hy - Z and T'y N Z consists of at most 2 points,
so Hy - Zo > 1. Similarly, if Z = C is the G-invariant conic or twisted cubic , CNT'y =CNL; =0
and Hy - Z5 > 1. The only possibilities for Z are L; and I';. ]

Lemma 5.2. Let = be a G-invariant prime divisor with centre Z = c%(Z) a curve lying on F,

then B(=Z) > 0.

Proof. Consider the G-invariant blowup w : X — X of the two flopping lines (these are the
transforms of the lines through the singular point on X'), and denote by A = A;+ A, its exceptional
divisor G. Let F = w*F, ﬁl = w*H; and El = w*E; — A be the proper transforms of F', H; and
E,. We also have S = w*S — 2A and §[>\1M] =w"Sy\, — A
If we write the Zariski decomposition of w*m*(—Kx ) — uF = P(u) + N(u), then P(u) is nef for all
0<wu<3and
0 for 0 <u <1,
N(u) =< (u—1)A for 2 <wu <3,

(u—DA+ (u—2)S for2<u<3.

We now compute

- 1 T * * - _
1 ! 2 3 39
(5.1.2) = — / 22 — 2uPdu + / —6u® + 6u + 20du +/ 2(6 — u)(u —3)*du | = —.
22\ Jo . ) 22
So that S(F) = Ax(F) — Sx(F)=2—-2 =25 >0,

We now assume that Z = ¢ (Z) C F. The surface F is the blowup of F ~ P! x P! at two distinct

points, that is a del Pezzo surface of degree 6. Let ¢1 (resp. f3) be the full transform of the ruling
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of class (1,0) (resp. (0,1)) on P! x P!, and let ey, e5 be the two exceptional curves. The Mori cone

NE(F) is generated by e; and ez, and by the (—1)-curves ;) = £; — e;

We have:
S(WE,; 2) =

. 0)

i ) (PP conds (Vs

3 [e'e)
_1_%// Vol(P(u)‘ﬁ—vZ)dvdu.
—Kx)

As there is no G-fixed point on Vs, ¢y, (Z) is not a point and Z ¢ {e1, ez}, so that Z ¢ A|z. When
in addition, Z # S|F, ordz (N (u )!F) = (0. Write

Z ~ aye; + agey + Z aiilicyy,
Bje{l,2}
and observe that at least one of the coefficients a;; # 0. By convexity of volume, if the nonzero
coefficient corresponds to the curve 1, we get:

S( ee: Z 22// vol ~—UZ dvdu < —// Vol ~—vl>dvdu.

so it is enough to show that the last integral is less than 1 to deduce a contradiction.
Case 1. Assume that Z # S|z, and let Z ~ (), for 7,7 € {1,2}. To fix notation, we consider
{1(2). Denote by P(u,v) and N(u,v) the positive and negative parts of the Zariski decomposition

of (w*r*(—Kx) —uﬁ)h;—vZ.
e For 0 <u <1, N(u,v) =ve; for 0 <v < u.
e For 1 <u <2,

(0 for0 <ov<u-—1,

N(u,v) =< (v—u+1)e; foru—1<wv<1,
\(v—u—kl)el—l—(v—l)fg(l) for 1 < v <.

e For 2 <u <3,

(0 for0 <v<3-—u,

N(u,v) = ¢ (v —3+u)e; for 3—u<wv<1,
\(v—3—|—u)el—|—(v—1)€2(1) forl <ov<4-—u.

We have

S(Wk. 2) < 22// vol 5 — vl )dvdu:

~ (] 2t oy

1 u
/ / —v +4u—211—2dv+/ u2—2uv+2u—1dv—|—/ (u—v+2)(u—v)dv>du—i—
u—1 1
1
/ / 2u? 4 2uv — v? —16u—6v—|—30dv+/ (=3 + u)(3u + 4v — 13)dv+
3—u

4—u

17
(u+v—4 (3u—|—v—10)dv>du> :§<1

23
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which is what we wanted. B
Case 2. Now assume that Z = S|z so that ordy (N(u)|ﬁ) =1lonuwue€[23], and

T / (P2 F) -ord (N(w)] ) = 7.

As before, denote by P(u,v) and N (u,v) the positive and negative part of the Zariski decomposition
of (w'n*(—=Kx) — uF)|z —vZ, so that

e For 0 <u <1, N(u,v) =v(e; +ez2) for 0 < v < u/3.

e For 1 <u<2,

N(u, ) 0 forOSvS“T_l,
u,v) = -
(v—u+1)(e; + e2) for”Tlgvgg
o For 2 <u < 3,
N(u, ) 0 for 0 <wv < 354,
u,v) = -
(v—3+u)(es+e) for35t<v<2-2

We now compute

S(W.F., _—+—// Vol ~—vZ>dvdu:

——+—<// 2(u — 2v)(u — 3v)dvdu+

2 (u—1)/2 u/3
+ / </ —2uv + 4v° + 4u — 8v — 2dv + / 2(u — 2v)(u — 32})d1}> du+
1 0 (

u—1)/2
3 (3—u)/2 2-2u/3
+/ (/ 2u2—|—6uv—|—4112—16u—24v+30dv+/ 2(u+2v—4)(2u+3v—6)dv>du =
2 0 (3-u)/2
2
> < 1.
44
and this finishes the proof since

. 2 |
<@~ mm{SX(F) S(W,F,,Z)} -1
0

Lemma 5.3. Let = be a G-invariant prime divisor with centre Z = cx,(Z) a curve lying on Ej,

then B(Z) > 0

Proof. Assume to the contrary that §(Z) < 0, then by Lemma 2.2 Z; = cx,(E) is a one-
dimensional component of (Xs, By,), where By, ~ —AKx, for some A < 3/4. By Lemma
Hy - Z5 < 1. This is impossible as Z; = ¢y, (Z) cannot be mapped to a point by ¢; because there
is no G-invariant point on Vi, and Hy - Z7 > Hy - Z7 > 4. O

Remark 5.4. For the sake of completion, observe that X; itself is divisorially K-polystable. Indeed,
for0<u<1

—le — UE1 ~Q H — UE1 ~Q 2H1 — (1 —|—U)E1
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is a mobile divisor, that is the pullback of a nef divisor on X5, and for u > 1, this divisor is not
effective. We have

(—KX1)3 . SX1 (El) =22 SX1 (El) = /1 V01(2H1 - (1 + u)El)du =

— /1 (1 —u)(—Kx, + 2uH2)3du = /1 (1—uw)H + 2uH2)3du

! 17
= / (1 —u)?(22 + 14u)du = 5
0

so that B(E;) > 0.

Lemma 5.5. There is no G-invariant irreducible surface Dx such that —Kx ~g ADx + Ax for
some positive rational number \ > % and effective Q-divisor A.

Proof. Let Dy be such a surface, and denote by Dy, A; the proper transforms of Dy and Ax on
X1. We have:
H ~Q 2H1 —|— El ~Q )\Dl + Al'

Recall that the pseudo-effective cone Eff(X,) is Rso[E1] + Rso[Hs], where Hs ~o Hy — By If
D, = E;, we see that
Al ~Q 2H2 + (1 - )\)El

cannot be an effective divisor. We may now assume that D; € R5o[H;] + Rso[Hz], that is D =
xHy —yFy, for x;y € Nand x > y. Since A\D; < —Kx,, A\a <2,sothata=1andb=0or b= 1.
As Dy is mapped to a G-invariant surface of Vi, ¢1(D;) is the hyperplane section {z4, = 0} N Vj,
and b = 0. Now, Ay ~g (2 — X\)H; — Ey, but this cannot be effective as 2 — X < 1. O

As in the previous two cases, we conclude:
Main Theorem (III). X is K-polystable.

This time X is not K-stable as Aut(X) = G,,, X Zy, but using [2, Corollary 1.16] (which still holds
in the case of a nodal Fano threefold), we conclude:

Corollary 5.6. A general one-nodal prime Fano threefold of genus 12 in Family I11 is K-polystable.
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