
ON K-STABILITY OF ONE-NODAL PRIME FANO THREEFOLDS OF GENUS
12

ELENA DENISOVA AND ANNE-SOPHIE KALOGHIROS

To Professor Yuri Prokhorov on the occasion of his 60th birthday

Abstract. We show that general one-nodal prime Fano threefolds of genus 12 are K-polystable.

1. Introduction

1.1. Singular Fano threefolds of genus 12. LetX be a Fano threefold with terminal Gorenstein
singularities. By [12, 7], X ↪→ X has a smoothing and Xt for t ̸= 0 is a smooth Fano threefold
with Picard rank ρ(X) and anticanonical degree (−KX)

3. Unless mentioned otherwise, a prime
Fano threefold of genus 12 will refer to a terminal Gorenstein Fano threefold with Picard rank
1 and anticanonical degree 22. Recent advances in the theory of K-stability show that there
is a projective moduli space MKps

3,22 whose closed points over C parameterize K-polystable Fano
threefolds of anticanonical degree 22 that admit a smoothing (see [16] as a reference on the general
theory of K-moduli).
Let X be a prime Fano threefold of genus 12, then X is Q-factorial precisely when X is smooth
[11]. Smooth prime Fano threefolds of genus 12 form a 6-dimensional family, which contains both
K-polystable and strictly K-semistable members [2, Section 7.1]. A precise description of which
smooth prime Fano threefolds of genus 12 are K-polystable or semistable is still conjectural. Denote
by M the (non-empty 6-dimensional) component of MKps

3,22 parametrizing those K-polystable Fano
threefolds of anticanonical degree 22 with a smoothing to a prime Fano threefold of genus 12.
Prokhorov classifies prime Fano threefolds of genus 12 with one node and shows that they form
four 5-dimensional families [14]. The goal of this note is to show:

Theorem 1.1. A general one-nodal prime Fano threefold of genus 12 is K-polystable.
There are four boundary divisors of M parametrising K-polystable degenerations of one-nodal prime
Fano threefolds of genus 12.

We now describe the geometry of the four families of one-nodal prime Fano threefolds of genus 12
briefly.

Theorem 1.2. [14] Let X be a prime Fano threefold of genus 12, and assume that rkCl(X) = 2 (or
equivalently that Sing(X) consists of precisely one ordinary double point). Then X is the midpoint
of a Sarkisov link

X1 X2

Z1 X Z2

χ

f1 π1 π2 f2

where π1 and π2 are small Q-factorializations, χ is a flop, and f1 and f2 are K-negative extremal
contractions described as follows

(I) Z1 = P3 and Z2 = P3, f1 and f2 are the blowups of curves Γ1 ⊂ Z1 and Γ2 ⊂ Z2 respectively.
Both Γ1 and Γ2 are rational quintic curves that do not lie on quadric surfaces.
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(II) Z1 = Q ⊂ P4 and Z2 = P2, f1 is the blowup of a rational quintic curve Γ1 ⊂ Q that does
not lie on a hyperplane section of Q, and f2 is a conic bundle with discriminant δ of degree
3.

(III) Z1 = V5 a quintic del Pezzo threefold, Z2 = P1, f1 is the blowup of a rational quartic curve
Γ ⊂ V5 and f2 is a del Pezzo fibration of degree 6.

(IV) Z1 = P2 and Z2 = P1, f1 : PP2(E ) → P2, where E is a stable rank 2 vector bundle and f2 is
a del Pezzo fibration of degree 5.

Remark 1.3. These four families appear in [8, Table 2] under references (12na),(12nb),(12nc) and
(12nd). The blowup of a general member X of Family (I) (resp. (II), resp. (III), resp. (IV)) at

its node is a weak Fano threefold X̂ whose anticanonical model admits a smoothing in Family
MM2−12 (resp. MM2−13, resp. MM2−14, resp. MM3−5) in the classification of Fano threefolds [10].

Theorem 1.4. [2, Proposition 5.66] There is a K-stable member of Family (IV).

In this note, we prove:

Theorem 1.5. There exist K-stable members of Families (I) and (II). There is a K-polystable
member of Family (III).

Acknowledgements. We thank Ivan Cheltsov, Yuchen Liu, Antoine Pinardin, Junyan Zhao
and the anonymous referee for valuable discussions and comments. Anne-Sophie Kaloghiros was
supported by EPSRC grant EP/V056689/1, Elena Denisova is a PhD student at the University of
Edinburgh supported by the School of Mathematics Studentship (funded via EPSRC DTP).

2. Preliminary results on explicit K-stability of Fano threefolds

All varieties considered are defined over C. Let X be a Fano variety with at most Kawamata log
terminal singularities of dimension n ≥ 2, and let G be a reductive subgroup in Aut(X). Let Ξ be

a divisor over X, that is Ξ is a prime divisor on a normal variety X̃ with a birational morphism

φ : X̃ → X. Define β(Ξ) = AX(Ξ) − SX(Ξ), where where AX(Ξ) = 1 + ordΞ(KX̃/X) is the log
discrepancy of Ξ and

SX(Ξ) =
1

(−KX)n

∫ τ(Ξ)

0

vol
(
φ∗(−KX)− uΞ

)
du

for τ(Ξ) = sup{u ∈ R>0|φ∗(−KX)− uΞ is big }.

Theorem 2.1. [17, Corollary 4.14] Suppose that β(Ξ) > 0 for every G-invariant prime divisor Ξ
over X. Then X is K-polystable.

Recall the definition of the number αG,Z(X), where Z ⊂ X is a G-invariant subvariety:

αG,Z(X) = sup

{
λ ∈ Q

∣∣∣∣ the pair (X,λD) is log canonical at general point of Z for any,

effective G-invariant Q-divisor D on X such that D ∼Q −KX

}
.

Then αG(X) ⩽ αG,Z(X).

Lemma 2.2. [2, 1.44] Let f : X̃ → X be an arbitrary G-equivariant birational morphism, let Ξ be
a G-invariant prime divisor in X such that Z ⊆ f(Ξ), then we have

AX(Ξ)

SX(Ξ)
⩾

n+ 1

n
αG,Z(X).
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In particular, in dimension 3, the existence of a G-invariant divisor Ξ over X with β(Ξ) < 0
and Z ⊂ cX(Ξ) implies that αG,Z(X) < 3

4
, so that Z is contained in Nklt(X,BX) for some

BX ∼Q −λKX and rational number λ < 3
4
.

The next theorem is an application of the general inductive argument developed by Abban and

Zhuang to bound the ratio AX(Ξ)
SX(Ξ)

[1] to the case of smooth Fano threefolds.

Theorem 2.3. [2, Corollary 1.110] Let X be a smooth Fano threefold, let Y be an irreducible
normal surface in the threefold X, let Z be an irreducible curve in Y , and Ξ a prime divisor over
X with CX(Ξ) = Z. Then

AX(Ξ)

SX(Ξ)
⩾ min

{
1

SX(Y )
,

1

S
(
W Y

•,•;Z
)}

and

S
(
W Y

•,•;Z
)
=

3

(−KX)3

∫ τ

0

(
P (u)2 · Y

)
· ordZ

(
N(u)

∣∣
Y

)
du+

+
3

(−KX)3

∫ τ

0

∫ ∞

0

vol
(
P (u)

∣∣
Y
− vZ

)
dvdu

where P (u) is the positive part of the Zariski decomposition of the divisor −KX − uY , and N(u)
is its negative part.

Remark 2.4. Here, W Y
•,• is a N2 linear series defined as the refinement of the anticanonical ring

V X
• =

⊕
m∈N

H0(X,−mKX)

by the divisor Y . We refer to [1, Section 2] or [2, Section 1.7] for the definition of W Y
•,• and of

the associated invariant S
(
W Y

•,•;Z
)
. We take the expression in Theorem 2.3 as a definition of

S
(
W Y

•,•;Z
)
. Note that an expression for S

(
W Y

•,•;Z
)
can be computed in the more general context

of Q-factorial Mori Dream spaces [2, Theorem 1.106].

We recall a few results on nonklt centres of pairs (X,BX) where X ∼ −λKX for λ ∈ Q when X
admits morphisms to projective spaces.

Lemma 2.5 ([2, Corollary A.10]). Suppose X = P3 and BX ∼Q −λKX for some rational number
λ < 3

4
. Let Z be the union of one-dimensional components of Nklt(X,BX). Then OP3(1) · Z ⩽ 1.

In particular, if Z ̸= 0, then Z is a line.

Lemma 2.6 ([2, Corollary A.12]). Suppose that X is a smooth Fano threefold, BX ∼Q −λKX

for some rational number λ < 1, and there exists a surjective morphism with connected fibers
ϕ : X → P1. Set H = ϕ∗(OP1(1)). Let Z be the union of one-dimensional components of
Nklt(X,λBX). Then H · Z ⩽ 1.

Lemma 2.7 ([2, Corollary A.13]). Suppose that −KX is nef and big, BX ∼Q −λKX for some
rational number λ < 1, and there exists a surjective morphism with connected fibers ϕ : X → P2.
Set H = ϕ∗(OP2(1)). Let Z be the union of one-dimensional components of Nklt(X,λBX). Then
H · Z ⩽ 2.

3. Family I

Let X be a one-nodal prime Fano threefold of genus 12 that belongs to Family I of Theorem 1.2,
then X is the midpoint of a Sarkisov link associated to a Cremona transformation P3 99K P3 which

3



X̂

X1 X2

P3 X P3

σ1 σ2

π

f1 π1 π2 f2

is a degeneration of the cubo-cubic transformation [3]. We describe the associated birational
geometry briefly, see [3, 5, 14] and [8] for proofs and precise statements.

Denote by Hi = σ∗
i

(
f ∗
i OP3(1)

)
for i = 1, 2, and by H = π∗(−KX) the pullbacks to X̂ (or to any of

the models) of the ample generators of Pic(P3) and of Pic(X). Given a curve Γ ⊂ P3, we (sloppily)
denote by |nH1 −Γ| the linear system H0(P3,OP3(n)⊗IΓ) of surfaces of degree n on which Γ lies.
The morphism f1 is the blowup of a smooth rational quintic curve Γ1 ⊂ P3 that does not lie on
a quadric (|2H1 − Γ1| = ∅), and there is a unique quadrisecant line L1 to Γ1. The curve Γ1 lies
on a cubic surface, |3H1 − Γ1| has dimension 4 and Bs |3H1 − Γ1| = Γ1 ∪ L1. The birational map
associated to |3H1 −Γ1| = |H2| is precisely the Cremona transformation P3 99K P3 induced by the
Sarkisov link above. The threefold X1 is weak Fano,

−KX1 ∼ H ∼ 4H1 − E1,

where E1 = Exc f1, so that the proper transform of L1 (still denoted L1) is the unique flopping
curve on X1. The map π1 contracts L1 to a node {x0} = Sing(X) ∈ X.

Let π : X̂ → X be the blowup of x0, and σ1 the induced map to X1. Note that X1 and X2 are the
two small resolutions of the node x0, χ : X1 99K X2 is the associated Atiyah flop and L1 = σ1(F ),

where F = Excπ. Then, X̂ is a weak Fano threefold of ρ = 3 and we have [8]:

−KX̂ ∼ H − F ∼ H1 +H2

and from

H ∼ 4H1 − E1 ∼ 4H2 − E2

we deduce

H ∼ 2(H1 +H2)−
E1 + E2

2
and H1 +H2 ∼

E1 + E2

2
+ F.

For future reference, let T1 be a cubic surface containing Γ1, and denote by T its proper transform

on X̂. Since Bs |3H1 − Γ1| = Γ1 ∪ L1, L1 lies on T1 and:

T ∼ 3σ∗
1(f

∗
1OP3(1))− E1 − F ∼ 3H1 − E1 − F ∼ H2,

so that

−KX̂ − uT ∼ H1 +H2 − uH2 ∈ Z≥0[H1] + Z≥0[H2] ⊂ Nef(X̂)

is nef for 0 ≤ u ≤ 1. For u > 1, −KX̂ − uT is no longer nef. If C is the proper transform on X̂ of
a minimal rational curve contracted by f1, then H1 · C = 0 and H2 · C > 0, so that

−KX̂ − uT ∼ H1 · C − (u− 1)H2 · C < 0.

We may write for u ≥ 1

−KX̂ − uT ∼ uH1 − (u− 1)(H1 +H2) ∼ uH1 − (u− 1)(4H1 − E1 − F )

∼ (4− 3u)H1 + (u− 1)(E1 + F )

showing that the pseudo-effective threshold is u = 4
3
, and that −KX̂ − uT admits a Zariski

decomposition with nef positive part P (u) = (4−3u)H1 and negative part N(u) = (u−1)(E1+F ).
4



3.1. Construction of a member with Z2 × Z2-action. We now consider a special member of
Family (I). Let C(a,b) be the image of the embedding P1 ↪→ P3 given by

[x : y] → [x5 : ax4y + bx2y3 : bx3y2 + axy4 : y5] for a, b ∈ C∗;

then C(a,b) is a rational quintic curve that does not lie on a quadric surface for |a| ̸= |b|. The curve
C(a,b) is invariant under the action of G := Z/2Z× Z/2Z on P3 defined by:

τ1 : [x0 : x1 : x2 : x3] → [x3 : x2 : x1 : x0],

τ2 : [x0 : x1 : x2 : x3] → [x0 : −x1 : x2 : −x3].

In fact, the action of τ1 (resp. τ2) on C(a,b) is induced by that of the involution of P1 given by
[x : y] ↔ [y : x] (resp. [x : y] ↔ [x : −y]). We consider the element of Family (I) obtained by
taking the curve Γ1 = C(1,−4).
Since Γ1 is G-invariant, L1 is also G-invariant and X1 and X are endowed with a G-action.

Claim 3.1. The group Aut(X) is finite.

Proof. The curve Γ1 is not contained in a hypersurface of P3, the stabilizer of Γ in Aut(P3) is
Aut(P3; Γ1) ≃ Aut(Γ1) ≃ Aut(P1). By construction of X, Aut(X) is a subgroup of the group
Aut(P3,Γ1) ≃ Aut(P1) that preserves the four points of intersection Γ1 ∩ L1, so it is a finite
group. □

We will apply Theorem 2.1 to prove that X is K-stable. To do so, we first describe possible centres
of G-invariant divisors over X. In what follows, Ξ always denotes a G-invariant prime divisor over
X.

Claim 3.2. If the centre of Ξ on X is 0-dimensional, it is the singular point cX(Ξ) = {x0}.

Proof. There is no point of P3 fixed by the action of G. □

Claim 3.3. If the centre of Ξ on P3 is a line L, then

L = L[λ:µ] =

{
λx0 + µx2 = 0,

λx3 + µx1 = 0.
.

All G-invariant lines lie on the quadric Q = {x1x0 − x2x3 = 0}. Any two distinct G-invariant
lines are disjoint. A G-invariant line L ̸= L1 is either disjoint from Γ1 or meets Γ1 in precisely
two points.

Proof. Let L ⊂ P3 be a G-invariant line, and consider any two distinct hyperplanes H1 = {f1 = 0}
and H2 = {f2 = 0} containing L, so that L = H1 ∩H2 = {f1 = f2 = 0}. Then, L = BsH is the
base locus of the pencil H = {uf1 + vf2 = 0; [u : v] ∈ P1}.
The line L = BsH is G-invariant precisely when G fixes H , or equivalently when both τ1 and τ2
induce involutions on H , and on its base P1. Up to reparametrizing the pencil H we may assume
that [u : v] = [1 : 0] is a τ2-invariant hyperplane, that is, the linear form f1(x0, · · · , x3) is one of

λx0 + µx2 or λx3 + µx1 for [λ : µ] ∈ P1,

and H1 = {λx0 + µx2 = 0} or H1 = {λx3 + µx1 = 0}. The condition that H is G-invariant is
then that τ1 ·H1 is a fibre of the pencil, so that (noting that H1 is not fixed by τ1)

L = L[λ:µ] = H1 ∩ τ1 ·H1 =

{
λx0 + µx2 = 0,

λx3 + µx1 = 0.

which gives the desired expression.
5



Check that L[λ:µ] ⊂ Q for all [λ : µ] ∈ P1, that L[λ:µ] ∩ L[λ′:µ′] = ∅ for [λ : µ] ̸= [λ′ : µ′], and that
L[λ:µ] ∩ Γ1 = ∅ unless [λ : µ] ∈ {[0 : 1], [3 : 1], [−5 : 1]} and L[λ:µ] ∩ Γ1 consists of 2 points, or
[λ : µ] = [1 : 1] and L[1:1] = L1 is the unique quadrisecant to Γ1. □

Remark 3.1. Given that the Sarkisov link of which X is a midpoint is G-equivariant, E2 and
Γ2 = Γ+ are also invariant under the induced G-action. Since the map P3 99K P3 is induced by
|H2| = |3H1 − Γ1|, the fibres of E2 → Γ2 are the transforms of trisecant lines of Γ1. Since none of
these are G-invariant, the action of G on Γ2 does not fix Γ2 pointwise either.

Claim 3.4. Let H[λ:µ] be a general hyperplane containing L[λ:µ].
Then H[λ:µ] ∩ Γ1 = {b1, · · · , b5} and H[λ:µ] ∩ L1 = {b0}, where b1, · · · , b5 (resp. b0, · · · , b5) consists
of 5 (resp. 6) points in general position.

Proof. Fix [λ : µ] ∈ P1, and let H be the pencil of hyperplanes containing L[λ:µ]. We compute
that the general fibre of H intersects Γ1 ∪ L1 in 6 distinct points. Assume that for some fibre H
of H , 3 of the 5 points of H ∩ Γ1 lie on a line (resp. the 6 points H ∩

(
Γ1 ∪ L1

)
lie on a conic).

Then, this line (resp. conic) is contracted by the Cremona transformation P3 99K P3 to a point
lying on Γ2. If the points of intersection of a general hyperplane containing L[λ:µ] are not in general
position, then we define a dominant rational map P1 99K Γ2 from the base of H to Γ2, leading to
a contradiction.

□

We now turn to the proof that no G-invariant prime divisor Ξ over X with β(Ξ) ≤ 0 has 1-
dimensional centre Z = cP3(Ξ). If Z is 1-dimensional, then either Z = Γ1, or by Lemma 2.2, Z is
the union of 1-dimensional components of Nklt(P3, B) for some B ∼ OP3(4λ) with λ ∈ Q, λ < 3/4.
Then, by Lemma 2.5, Z can only be a line.

Lemma 3.2. If Z = cP3(Ξ) is a G-invariant line distinct from L1, β(Ξ) > 0.

Proof. We will use Lemma 2.5 to find a lower bound for β(Ξ). To this effect, we find an irreducible

normal surface S ⊂ X̂ containing Z and use the inequality

AX(Ξ)

SX(Ξ)
⩾ min

{
1

SX(S)
,

1

S
(
W S

•,•;Z
)}.

Let S1 ⊂ X1 and S ⊂ X̂ be the pullbacks to X1 and X̂ of a general hyperplane containing Z. By
Claim 3.4, S1 ⊂ X1 is a del Pezzo surface of degree 4 and S is a cubic surface. Recall that E1 and
E2 are the f1 and f2 exceptional divisors, and that F is the π-exceptional divisor. All these are
G-invariant, and E2 is covered by the (proper transforms of) trisecant lines of Γ1.

We first compute SX(S); on X̂, we have the following intersection numbers:

S3 = 1, S2 · E1 = 0, S · E2
1 = −5, E3

1 = −18,

S2 · F = 0, S · F 2 = −1, F 3 = 2,

S · E1 · F = 0, E1 · F 2 = −4, E2
1 · F = 0.

and relations [8]

S ∼ H1 ∼ 3H2 − E2 − F H ∼ 4H1 − E1 ∼ 4H2 − E2 H − F ∼ H1 +H2.

Define, for u ≥ 0, the divisor

Du = π∗(−KX)− uS ∼ (1− u)H + u(H − S) ∼ (1− u)H + u(H2 + F ) =

= (1− u)H + u
(H + E2

4
+ F

)
,

6



then Du is pseudo-effective for u ≤ 4/3, and has a Zariski decomposition with nef positive part

Du = P (u) +N(u), where

{
P (u) =

(
1− 3u

4

)
H,

N(u) = u(E2

4
+ F ).

and we compute:

SX(S) =
1

(−KX)3

∫ τ

0

vol(π∗(−KX)− uS)du =
1

22

∫ 4/3

0

11(4− 3u)3

32
du =

1

3
.

We now show that S
(
W S

•,•;Z
)
< 1 in order to apply Theorem 2.3.

The surface S is a cubic surface obtained by blowing up a general hyperplane P2 at 6 points
{b0, · · · , b5} in general position. Let ℓ be the pullback of the generator of Pic(P2), and e0, · · · , e5
the exceptional curves. The Mori cone NE(S) is generated by e0, · · · , e5, by the proper transforms
li,j = ℓ − ei − ej of lines through two of the blownup points, and by the proper transforms
qi = 2l −

∑
ej + ei of the conics through any 5 of the blownup points {b0, · · · , b5}.

We want to evaluate

S
(
W S

•,•;Z
)
=

3

(−KX)3

∫ τ

0

(
P (u)2 · S

)
· ordZ

(
N(u)

∣∣
S

)
du+

+
3

(−KX)3

∫ τ

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vZ

)
dvdu.

Since there are noG-fixed points, Z ⊂ S is one of ℓ or the lines li,j. Recall that E2 ∼ 8H1−3E1−4F ,
and restricting to S gives E2

∣∣
S
∼ 8ℓ− 3(e1 + · · ·+ e5)− 4e0. From the description of NE(S),

ordZ

(
E2

∣∣
S

)
≤ 2

and

ordZ

(
N(u)

∣∣
S

)
≤

{
2 · 1

4
= 1

2
if Z ⊂ E2,

0 otherwise.

The first term of the expression S
(
W S

•,•;Z
)
is bounded by

3

(−KX)3

∫ τ

0

(
P (u)2 · S

)
· ordZ

(
N(u)

∣∣
S

)
du ≤ 3

22

∫ 4/3

0

11(4− 3u)2

16
· 1
2
du =

1

3
.

Case 1: Z ∩ Γ1 = ∅. In this case, Z ∼ ℓ, and the Zariski decomposition of

(−π∗(KX)− uS)|S − vZ = P (u, v) +N(u, v);

for u ∈
[
0, 4

3

]
is given by

N(u, v) =

{
0 for 0 ≤ v ≤ 3(4−3u)

8
,

8v−3(4−3u)
4

q0 for 3(4−3u)
8

≤ v ≤ 4−3u
2

.

and we compute:

P (u, v)2 =

{
v2 − 8v + 6uv + 99u2

16
− 33u

2
+ 11 for 0 ≤ v ≤ 3(4−3u)

8
,

5(2v−(4−3u))2

4
for 3(4−3u)

8
≤ v ≤ 4−3u

2
.

This yields:

S
(
W S

•,•;Z
)
≤ 1

3
+

3

(−KX)3

∫ τ

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vZ

)
dvdu ≤

7



≤ 1

3
+

3

22

∫ 4/3

0

(∫ 3(4−3u)
8

0

v2 − 8v + 6uv +
99u2

16
− 33u

2
+ 11dv+

+

∫ 4−3u
2

3(4−3u)
8

5(2v − (4− 3u))2

4
dv

)
du ≤ 1

3
+

53

132
=

97

132
< 1,

which is what we wanted.
Case 2: Z ∩ Γ1 ̸= ∅. As Z is one of the bisecant lines of Γ1, Z ∼ li,j = ℓ − ei − ej for
some 1 ≤ i < j ≤ 5. We may assume that Z ∼ l1,2. Write the Zariski decomposition of
(−π∗(KX)− uS)|S − vZ for 0 ≤ u ≤ 4

3
we have:

N(u, v) =


0 for 0 ≤ v ≤ 3(4−3u)

4
,

4v−3(4−3u)
4

(e1 + e2) for 3(4−3u)
4

≤ v ≤ 4−3u
2

,
4v−3(4−3u)

4
(e1 + e2) +

2v−3(4−3u)
2

(ℓ34 + ℓ35 + ℓ45) for 4−3u
2

≤ v ≤ 5(4−3u)
8

.

This time, we compute:

S
(
W S

•,•;Z
)
≤ 1

3
+

3

(−KX)3

∫ τ

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vZ

)
dvdu ≤

≤ 1

3
+

3

22

∫ 4/3

0

(∫ 4−3u
4

0

−v2 − 4v + 3uv +
99u2

16
− 33u

2
+ 11dv+

+

∫ 4−3u
2

4−3u
4

v2 − 8v + 6uv +
117u2

16
− 39u

2
+ 13dv+

+

∫ 5(4−3u)
8

4−3u
2

(8v − 5(4− 3u))2

16
dv

)
du ≤ 1

3
+

23

44
=

113

132
< 1.

and this finishes the proof in this case. □

Lemma 3.3. Let Ξ be a prime divisor over X with cP3(Ξ) = L1 then β(Ξ) > 0.

Proof. By [8], there are precisely 4 lines through x0 ∈ X. Since G fixes x0 and G sends lines

to lines, G sends a line through x0 to a line through x0. If L ∋ x0 is a line and L̂ is its proper

transform on X̂, −KX̂ · L̂ = 0 and L̂ is a flopping curve. Let ω : X̃ → X̂ be the blowup of the
proper transforms of the 4 lines through x0 ∈ X, and denote by Λ = Λ1 + Λ2 + Λ3 + Λ4 its

(G-invariant) exceptional divisor. Denote by F̃ = ω∗F , Ẽ1 = ω∗E1 − Λ the proper transforms of

F and E1 on X̃. On X̃, we have the intersection numbers:

Λ3 = 8, Λ2 · ω∗F = −4, Λ · ω∗(F )2 = 0, Λ · ω∗(F ) · ω∗(E1) = 0,

Λ2 · ω∗(E1) = 4, Λ · ω∗(E1)
2 = 0, ω∗F 3 = 2, ω∗E3

1 = −18.

We first show that the Zariski decomposition of ω∗π∗(−KX)− uF̃ exists and writes P (u) +N(u),
where P (u) is nef and

N(u) =

{
0 for 0 ≤ u ≤ 1,

(u− 1)Λ for 1 ≤ u ≤ 3.
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We have AX(F̃ ) = 2 and compute

SX(F̃ ) =
1

(−KX)3

∫ τ

0

vol(ω∗π∗(−KX)− uF̃ )du =(3.1.1)

=
1

22

(∫ 1

0

22− 2u3du+

∫ 3

1

2(u− 3)(u2 − 3u− 3)du

)
=

83

44
.(3.1.2)

So that β(F̃ ) > 0.

Now we assume that the centre of Ξ over X̃ is one-dimensional, so that Z = cX̂(Ξ) ⊂ F̃ is an

irreducible curve. The surface F̃ is the blowup of F ≃ P1 × P1 at 4 points, so it is a del Pezzo

surface of degree 4. Let ℓ1 and ℓ2 be the pullbacks to F̃ of the two rulings and e1, e2, e3, e4 the

exceptional divisors. Then NE(F̃ ) is generated by the proper transforms of rulings through one of
the blownup points (ℓ1,i = ℓ1 − ei or ℓ2,i = ℓ2 − ei) and by the proper transforms of (1, 1) curves
on F through 3 blownup points ℓi,j,k = ℓ1 + ℓ2 − ei − ej − ek. We use Theorem 2.3 to find a lower
bound for β(Ξ). We have

S
(
W F̃

•,•;Z
)
=

3

(−KX)3

∫ 3

0

(
P (u)2 · F̃

)
· ordZ

(
N(u)

∣∣
F̃

)
du+

+
3

(−KX)3

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vZ

)
dvdu.

Since Z ̸∈ {e1, e2, e3, e4} = ΛF̃ , ordZ

(
N(u)

∣∣
F̃

)
= 0. By construction, we may write

Z ∼ α1e1 + α2e2 + α3e3 + α3e4 +
∑

i∈{1,2,3,4},
j∈{1,2}

αijℓi(j) + α123ℓ123 + α124ℓ124 + α134ℓ134 + α234ℓ234.

Since there is no G-fixed point in P3 on either side of the link, one of α123, α124, α134, or α234 is
greater than 1. Without loss of generality we assume that α123 ≥ 1; by convexity of volume we
get the inequality

S
(
W F̃

•,•;Z
)
=

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vZ

)
dvdu ⩽

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vℓ123

)
dvdu.

so it is enough to show that the last integral is less than 1 to conclude.
We now assume Z ∼ ℓ123, and denote by P (u, v) and N(u, v) the positive and negative parts of

the Zariski decomposition of (ω∗π∗(−KX)− uF̃ )|F̃ − vZ. Then

• if u ∈ [0, 1] then for 0 ≤ v ≤ u N(u, v) = v(e1 + e2 + e3) so that P (u, v)2 = 2(u− v)2.
• if u ∈ [1, 2] then:

N(u, v) =


0 for 0 ≤ v ≤ u− 1,

(−u+ v + 1)(e1 + e2 + e3) for u− 1 ≤ v ≤ 1,

(−u+ v + 1)(e1 + e2 + e3) + (v − 1)(ℓ1,4 + ℓ2,4) for 1 ≤ v ≤ u+1
2
.

• if u ∈ [2, 3] then:

N(u, v) =


0 for 0 ≤ v ≤ 1,

(v − 1)(ℓ1,4 + ℓ2,4) for 1 ≤ v ≤ u− 1,

(−u+ v + 1)(e1 + e2 + e3) + (v − 1)(ℓ1,4 + ℓ2,4) for u− 1 ≤ v ≤ u+1
2
.
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We have

S
(
W F̃

•,•;Z
)
⩽

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vℓ123

)
dvdu =

=
3

22

(∫ 1

0

∫ u

0

2(u− v)2dvdu+

+

∫ 2

1

(∫ u−1

0

(−2u2 + 2uv − v2 + 8u− 6v − 4)dv +

∫ 1

u−1

(u2 − 4uv + 2v2 + 2u− 1)dv+

+

∫ u+1
2

1

(1 + u− 2v)2dv
)
du+

+

∫ 3

2

(∫ 1

0

(−2u2 + 2uv − v2 + 8u− 6v − 4)dv +

∫ u−1

1

(−2u2 + 2uv + v2 + 8u− 10v − 2)dv+

+

∫ u+1
2

u−1

(1 + u− 2v)2dv
)
du

)
=

29

44
< 1.

We see that SX(F̃ ) < 2 and S
(
W F̃

•,•;Z
)
< 1 thus

AX(Ξ)

SX(Ξ)
⩾ min

{
2

SX(F̃ )
,

1

S
(
W F̃

•,•;Z
)} > 1.

and β(Ξ) = AX(Ξ)− SX(Ξ) > 0. □

Finally, we exclude the case where Z ⊂ Γ1.

Lemma 3.4. If the center Z = cX1(Ξ) is one-dimensional and is contained in E1, β(Ξ) > 0.

Proof. Assume that Z ⊂ E1, then since there is no G-fixed point on P3, ϕ1(Z) = cP3(Ξ) is the
curve Γ1. Denote by Y1 → P3 the blowup of the line L1 and by Y1 → P1 the morphism induced

by the projection P3 99K P1 away from L1. Let X̂+ → Y1 be the blowup of the proper transform

of Γ1, then X̂+ 99K X̂ is a flop, and there is a morphism X̃ → X̂. Denote by η the composition

X̃ → X̂ → Y1 → P1 and by Z̃ the centre cX̃(Ξ). If T is a general fiber of η, T · Z̃ ⩾ 5, hence, by
Lemma 2.6, β(Ξ) > 0. □

Lemma 3.5. There is no G-invariant prime divisor Ξ over X with centre a prime divisor DX =
cX(Ξ) such that β(Ξ) ≤ 0.

Proof. By [2, Corollary 1.44], for any divisor Ξ over X, if αG,Z(X) > 3/4, where Z = cX(Ξ), then
β(Ξ) > 0. Assume now that there is a divisor Ξ over X with β(Ξ) ≤ 0 and cX(Ξ) = DX a divisor,
so that αG,DX

(X) ≤ 3
4
. First assume that αG,DX

(X) < 3
4
, then DX is the G-orbit of a minimal log

canonical centre of a suitable pair
(
X, 3

4
D) for D ⊂ | −KX |Q a G-invariant linear system. By [2,

Theorem 1.52], DX is a G-invariant irreducible normal surface with

−KX ∼Q λDX +∆X

for ∆X an effective Q-divisor and a rational number λ > 4
3
.

We show that there is no such divisor DX . Recall that π : Xi → X for i = 1, 2 are small Q-
factorialisations so that

−KXi
∼Q λDX +∆X

where we still denote by DX ,∆X the pullbacks of these divisors to Xi. We have Eff(Xi) =
R≥0[E1] + R≥0[E2], and E2 = 8H1 − 3E1. If DX = E1, then ∆X ∼ 4H1 − (1 + λ)E1, but this
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is impossible as (1 + λ) > 3/2. If DX ̸= E1, the image of DX by f1 is a G-invariant irreducible
surface of degree d ∈ N on P3, and since

f1(4H1) ∼ λf1(DX) + f1(∆X)

we have 4 ≥ λd, and since λ > 4
3
, d ≤ 2. Since there is no G-invariant hyperplane of P3, d = 2 and

f1(DX) is a G-invariant quadric. Since Γ1 doesn’t lie on a quadric, DX ∼ 2H1 and

∆X ∼ (4− 2λ)H1 − E1 ∼ xH1 − E1

for some x < 4/3, which is impossible for an effective divisor.
Now assume that αG,DX

(X) = 3
4
, then since π1 is small, αG,DX

(X1) =
3
4
by [2, Lemma 1.47], and

β(Ξ) = AX(DX) − SX(DX) = AX1(DX) − SX1(DX). Since X1 is smooth, as in the proof of [2,
Theorem 1.51], assuming that β(Ξ) = 0 would imply X1 ≃ P3, a contradiction. We conclude that
β(Ξ) > 0 for all G-invariant prime divisors Ξ with cX(Ξ) = DX a prime divisor on X. □

We now have all the elements to prove

Main Theorem (I). The threefold X is K-polystable.

Proof. Assume that X is not K-polystable, then there is a G-invariant prime divisor Ξ over X
such that β(Ξ) < 0. Lemma 3.5 shows that the centre of Ξ on X is not a surface. If the centre
of Ξ on P3 is a curve other than Γ1, by Lemma 2.5, this curve is a line. Lemma 3.2 shows that
this line cannot be a G-invariant line that is not the unique quadrisecant of Γ1, while Lemma 3.3
excludes the quadrisecant line L1. Lemma 3.4 shows that the centre of Ξ on P3 is not Γ1. As there
is no G-fixed point on P3, if cX(Ξ) is 0-dimensional, it is the singular point x0 ∈ X, and its centre
on P3 is L1, so that this case is also excluded by Lemma 3.3. □

Since Aut(X) is finite, X is K-stable, and by openness of K-stability [4], this implies:

Corollary 3.6. A general one-nodal prime Fano threefold of genus 12 in Family I is K-stable.

Remark 3.7. Liu and Zhao have constructed a K-semistable degeneration of one-nodal prime Fano
threefolds in Family I, in which the curve Γ1 is taken to lie on a quadric (this corresponds to Ca,b

with |a| = |b| above). The resulting prime Fano threefold of genus 12 has (non-isolated) canonical
singularities [9].

4. Family II

Let X be a one-nodal prime Fano threefold of genus 12 that belongs to Family II of Theorem 1.2,
then X is the midpoint of a Sarkisov link associated to a rational map Q ⊂ P4 99K P2; we describe
the associated birational geometry briefly, see [6, 14] and [8] for proofs and precise statements.

X̂

X1 X2

Q ⊂ P4 X P2

σ1 σ2

π

f1 π1 π2 f2

Denote by H1 = σ∗
1

(
f ∗
1OQ(1)

)
, by H2 = σ∗

2

(
f ∗
2OP2(1)

)
, and by H = π∗(−KX) the pullbacks to

X̂ (or to any of the models) of the ample generators of Pic(Q), Pic(P2) and Pic(X) respectively.
The morphism f1 is the blowup of a smooth rational quintic curve Γ1 ⊂ Q ⊂ P4 that does not lie
on a hyperplane section of Q (|H1 − Γ1| = ∅), and there is a unique trisecant line L1 to Γ1. The
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curve Γ1 lies on a section of |2H1| on Q, that is on a del Pezzo surface of degree 4, and the linear
system |2H1 − Γ1| has dimension 3 and Bs |2H1 − Γ1| = Γ1 ∪ L1. The rational map associated to
|2H1 − Γ1| = |H2| is precisely the Q 99K P2 induced by the Sarkisov link above. The threefold X1

is weak Fano,
−KX1 ∼ H ∼ 3H1 − E1

where E1 = Exc f1, so that the proper transform of L1 (still denoted L1) is the unique flopping
curve on X1. The map π1 contracts L1 to a node {x0} = Sing(X) ∈ X.

Let π : X̂ → X be the blowup of x0, and σ1 the induced map to X1, note that L1 = σ1(F ), where
F = Excπ. The threefolds X1 and X2 are the two small resolutions of the node x0 and χ is the

induced birational map between these (the Atiyah flop associated to x0 ∈ X). Then, X̂ is a weak
Fano threefold (−KX̂ is nef and big) with ρ = 3 and we have [8]:

−KX̂ ∼ H − F ∼ H1 +H2

and from H ∼ 3H1 − E1 ∼ H1 +H2, we deduce

H2 ∼ 2H1 − E1.

The map f2 is a conic bundle (a Mori fibre space with one-dimensional fibres) and its discriminant
curve δ = −f2∗(KX2/P2)2 = −f2∗(H − 3H2)

2 has degree 12.
Denoting by E = ϕ2∗H, then X2 ⊂ P(E) is a section of 2H − 3H2, where, abusing notation, we
denote by H the tautological class of P(E) and by H2 the pullback of OP2(1)).
Since H2 · L1 = 1, L1 maps to a line ℓ ⊂ P2. Let R = f−1

2 ℓ be its preimage on X2, and by abuse

of notation, also denote by R = σ∗
2(f

−1
2 ℓ) its proper transform on X̂. By construction, R is the

unique section of |2H1 − E1 − 2F | = |H2 − F |.

4.1. Construction of a member with Z2 ⋊ Z3-action. Let Q ⊂ P4 be the smooth quadric
threefold

Q = {2x2
2 = x1x3 − x0x4}

and let Γ1 be the image of the embedding P1 ↪→ P4 given by

[x : y] → [x5 : 2x3y2 + y5 : x4y + xy4 : 2x2y3 + x5 : y5];

Γ1 lies on Q but on no hyperplane section of Q.
Let ω be a primitive cube root of unity, and define an action of G := Z/2Z ⋊ Z/3Z on P4 by the
action of its generators:

τ : [x0 : x1 : x2 : x3 : x4] → [x4 : x3 : x2 : x1 : x0],

σ : [x0 : x1 : x2 : x3 : x4] → [x0 : ω
2x1 : ωx2 : x3 : ω

2x4].

and observe that Γ1 is G-invariant, and that

L1 = {x0 + x3 = x4 + x1 = x2 = 0}
is G-invariant and trisecant to Γ1 (the intersection L1 ∩ Γ1 consists of the image of the points
[1 : −ωi] for i = 0, 1, 2). The threefolds X,X1 and X2 are equipped with a G-action and the
Sarkisov link above is G-equivariant. For instance, a G-invariant basis of |H2| is

S1 = {x2
0 − x2

3 + 2(x1 − x4) = 0},
S2 = {x2

1 − x2
4 + 2(x0 − x3) = 0},

S3 = {(x0 − x2)
2 + (x4 − x2)

2 + x0x1 + 2x0x4 + x3x4 = 2x2
2 + (x1 − x2)

2 + (x3 − x2)
2}.

and the only section of |H2| that is singular along L1 is f1
(
σ1R

)
( which we still call R by abuse

of notation). We have:
R = {x0x1 + 2x0x4 + x3x4 = 2x2

2}.
12



The discriminant curve of f2 is the smooth plane cubic

δ = {2y30 + 6y20y1 + 5y0y
2
1 + y0y1y2 + 3y31 + 5y21y2 + 6y1y

2
2 + 2y32 = 0} ⊂ P2.

Claim 4.1. The group Aut(X) is finite.

Proof. Since Aut(X) is a subgroup of Aut(X1) = Aut(Q,Γ1), and since Γ1 does not lie on a
hyperplane section of Q, Aut(Q,Γ1) = Aut(X1) is a subgroup of Aut(Γ1) = Aut(P1) by [15, Lemma
2.1]. Consequently, Aut(X) is a subgroup of Aut(P1) preserving the three points of intersection
Γ1 ∩ L1, therefore it is finite. □

The intersection numbers associated to the Sarkisov link are

H3
1 = 2, H2

1 · E1 = 0, H1 · E2
1 = −5, E3

1 = −13,

H2
1 · F = 0, H1 · F 2 = −1, F 3 = 2,

E1 · F ·H1 = 0, E1 · F 2 = −3, E2
1 · F = 0,

H3
2 = 0, H2

2 ·H = 2, H2 ·H2 = 12− deg δ.

We will apply Theorem 2.1 to prove that X is K-stable. To do so, we first describe possible centres
of G-invariant divisors over X. In what follows, Ξ always denotes a G-invariant prime divisor over
X.

Claim 4.2. If the centre of Ξ on X is 0-dimensional, it is the singular point cX(Ξ) = {x0}.

Proof. There is no point of Q ⊂ P4 fixed by the action of G. □

We now consider the case when the centre Z = cQ(Ξ) on Q is one-dimensional. First, we assume
that Z lies on a (smooth) section S of the linear system |H2| = |2H1 − E1|. As an intersection
of two quadrics in P4, S is a del Pezzo of degree 4, and p : S → P2 is the blowup of five points
p1, · · · , p5 in general position. Let ℓ be the pullback of a line on P2, and e1, · · · , e5 the p-exceptional
curves. Then the Mori cone NE(S) is generated by ℓ, e1, · · · , e5, ℓi,j for 1 ≤ i < j ≤ 5 and q where
ℓi,j is the proper transform of the line through pi and pj and q that of the conic through p1, · · · , p5.
For a smooth curve C ⊂ S, if C ∼ kℓ+

∑
miei, then

degC = −KS · C = H1 · C = 3k −
∑

mi and pa(C) =
(k − 1)(k − 2)

2
−
∑ mi(mi − 1)

2

so that without loss of generality, we may assume that Γ1 = 2ℓ− e1 and L1 = q.

Lemma 4.1. If Z = cQ(Ξ) is a G-invariant irreducible curve lying on S ∈ |H2|, and if Z ̸⊂ Γ1∪L1,
then β(Ξ) > 0.

Proof. We use Theorem 2.3 to bound β(Ξ) below. Let Du = H − uS on X̂ for u ≥ 0, and write
its Zariski decomposition Du = P (u) +N(u), where for 0 ≤ u ≤ 3

2
, P (u) is nef and

P (u) = H − uS − u
(E1

3
+ F

)
=
(
1− 2

3
u
)
(3H1 − E1) and N(u) = u

(E1

3
+ F

)
,

which gives:

SX(S) =
1

(−KX)3

∫ τ

0

vol(π∗(−KX)− uS)du =
1

22

∫ 3/2

0

22(3− 2u)3

27
du =

3

8
< 1.

Note that since Z ̸⊂
(
E1 ∪ F

)
, ordZ

(
N(u)|S

)
= 0.
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We now consider (H −uS)|S − vZ on S and denote by P (u, v)+N(u, v) its Zariski decomposition
for 0 ≤ u ≤ 3

2
. We have

Z ∼ αℓ+
5∑

i=1

αiei +
∑

1≤i<j≤5

αijℓij + βq.

Since Z ̸⊂ F , Z ̸= q and at least one of the coefficients α, αi, αi,j is ≥ 1. If l is the corresponding
curve, since Z ≥ l, by convexity of volume:

S
(
W S

•,•;Z
)
=

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vZ

)
dvdu ⩽

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vl

)
dvdu.

so it is enough to show that the last integral is less than 1 when Z = l, for each possible l.
Case 1. Z ∼ ℓ. For 0 ≤ u ≤ 3

2
, and 0 ≤ v ≤ 3−2u

3
, N(u, v) = vq, and we compute

S
(
W S

•,•;Z
)
⩽

3

22

∫ 3/2

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vℓ

)
dvdu =

=
3

22

∫ 3/2

0

∫ 1− 2u
3

0

(2u+ 3v − 3)(6u+ 5v − 9)

3
dvdu =

3

16
< 1.

Case 2. Z ∼ e1. For 0 ≤ u ≤ 3
2
, we have:

N(u, v) =

{
vq for 0 ≤ v ≤ 2(3−2u)

3
,

vq + (v − 2 + 4u
3
)(ℓ12 + ℓ13 + ℓ14 + ℓ15) for 2(3−2u)

3
≤ v ≤ 5(3−2u)

6
.

We obtain

S
(
W S

•,•;Z
)
⩽

3

22

∫ 3/2

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− ve1

)
dvdu =

=
3

22

∫ 3/2

0

(∫ 2(3−2u)
3

0

(2u− 3)(6u+ 4v − 9)

3
dv +

∫ 5(3−2u)
6

2(3−2u)
3

5(3− 2u)

6

(10u+ 6v − 15)2

9
dv
)
du =

=
182

352
< 1.

Case 3. Z ∼ e2 (or ei, i ̸= 1). For 0 ≤ u ≤ 3
2
, we have:

N(u, v) =

{
vq for 0 ≤ v ≤ 3−2u

3
,

vq + (v − 1 + 2u
3
)(ℓ23 + ℓ24 + ℓ25) for 3−2u

3
≤ v ≤ 2(3−2u)

3
.

In addition

S
(
W S

•,•;Z
)
⩽

3

22

∫ 3/2

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− ve2

)
dvdu =

=
3

22

∫ 3/2

0

(∫ 3−2u
3

0

(2u− 3)(2u+ 2v − 3)dv +

∫ 2(3−2u)
3

3−2u
3

(4u+ 3v − 6)2

3
dv
)
du =

=
63

176
< 1.

Case 4. Z ∼ ℓ12 (or ℓ1j). For 0 ≤ u ≤ 3
2
, we have:

N(u, v) =

{
0 for 0 ≤ v ≤ 3−2u

3
,

(v − 1 + 2u
3
)(ℓ34 + ℓ35 + ℓ45) for 3−2u

3
≤ v ≤ 2(3−2u)

3
.

14



In addition

S
(
W S

•,•;Z
)
⩽

3

22

∫ 3/2

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vℓ12

)
dvdu =

=
3

22

∫ 3/2

0

(∫ 3−2u
3

0

4u2 +
8

3
uv − 12u− 9− 4v − v2dv +

∫ 2(3−2u)
3

3−2u
3

2(4u+ 3v − 6)(2u+ v − 3)

3
dv
)
du =

=
75

176
< 1.

Case 5. Z ∼ ℓ23 (or ℓij, i ̸= 1). For 0 ≤ u ≤ 3
2
, we have:

N(u, v) =


0 for 0 ≤ v ≤ 3−2u

3
,

(v − 1 + 2u
3
)ℓ45 for 3−2u

3
≤ v ≤ 2(3−2u)

3
,

(v − 1 + 2u
3
)ℓ45 − (v − 2 + 4u

3
)(ℓ14 + ℓ15) for 2(3−2u)

3
≤ v ≤ 3− 2u.

In addition

S
(
W S

•,•;Z
)
⩽

3

22

∫ 3/2

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vℓ23

)
dvdu =

=
3

22

∫ 3/2

0

(∫ 3−2u
3

0

4u2 +
4

3
uv − 12u+ 9− 2v − v2dv+

+

∫ 2(3−2u)
3

3−2u
3

2(2u− 3)(10u+ 6v − 15)

3
dv +

∫ 3−2u

2(3−2u)
3

2(2u+ v − 3)2dv
)
du =

=
111

176
< 1.

This finishes the proof, as in all cases we have min
{

1
SX(S)

, 1

S
(
WS

•,•;Z
)} > 1 □

Lemma 4.2. If Z = cQ(Ξ) is a line other than L1, β(Ξ) > 0.

Proof. Since there is no G-fixed point on Q, Z ∩ Γ1 is empty or consists of two points. In the
second case, H2 · Z = 0, so that Z lies on a section S ∈ |H2| and β(Ξ) > 0 by Lemma 4.1.
We now assume that Z is disjoint from Γ1 and denote by SQ ≃ P1 × P1 the general hyperplane

section of Q containing Z, and by S its proper transform on X̂. The intersection SQ ∩
(
Γ1 ∪

L1

)
= {p1, · · · , p6} consists of six points, and these points are in general position because any line

through 3 of the points (respectively conic through 6 of the points) would be contracted by π1, the
anticanonical map of X1, but the only flopping curve on X1 is L1. As S is the blowup of SQ at
{p1, · · · , p6}, S a del Pezzo surface of degree 2. Denote by ℓ1, ℓ2 the pullbacks of the two rulings
of SQ = P1×P1, and by e1, · · · , e6 the exceptional divisors. The Mori cone NE(S) is generated by
ℓ1, ℓ2, e1, · · · , e6, and by the classes of

- the proper transforms ℓi(1) and ℓi(2) of rulings through the points pi for 1 ≤ i ≤ 6,
- the proper transforms ℓi,j,k for 1 ≤ i < j < k ≤ 6 of irreducible conics through 3 of the blownup
points (ℓi,j,k = ℓ1 + ℓ2 − ei − ej − ek),

- the proper transforms κj(1) and κj(2) of rational cubic curves though 5 of the pis (where κj(1) =
2ℓ1 + ℓ2 −

∑
ei + ej) for 1 ≤ j ≤ 6,

- and the proper transforms qj of elliptic quartic curves through p1, · · · , p6, which have multiplicity
2 at pj for 1 ≤ j ≤ 6 (qj = 2ℓ1 + 2ℓ2 −

∑
ei − ej).
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The Zariski decomposition of π∗(−KX) − uS writes P (u) + N(u) where P (u) is nef, and for
0 ≤ u ≤ 1, N(u) = uF . We have

SX(S) =
1

(−KX)3

∫ τ

0

vol(π∗(−KX)− uS)du =
1

22

∫ 1

0

(1− u)(u2 − 17u+ 22)du =
3

8
< 1.

Since Z is disjoint from Γ1, without loss of generality we may assume that Z ∼ ℓ1.
Using the same notation as before, for 0 ≤ u ≤ 5

7
, we have

N(u, v) =


0 for 0 ≤ v ≤ 4−3u

2
,

(2v − 4 + 3u)κ6(2) if 4−3u
2

≤ v ≤ 5−4u
2

,

(2v − 5 + 4u)
∑

κi(2) + (1− u)κ6(2) if 5−4u
2

≤ v ≤ 7−5u
3

.

For 5
7
≤ u ≤ 1, we have

N(u, v) =


0 for 0 ≤ v ≤ 4−3u

2
,

(2v − 4 + 3u)κ6(2) if 4−3u
2

≤ v ≤ 5−4u
2

,

(2v − 5 + 4u)
∑

κi(2) + (1− u)κ6(2) if 5−4u
2

≤ v ≤ 11−9u
4

.

Since Z ̸⊂ F , ordZ

(
N(u)

∣∣
S

)
= 0 and

S
(
W S

•,•;Z
)
=

3

22

∫ 1

0

∫ ∞

0

vol
(
P (u)

∣∣
S
− vZ

)
dvdu =

=
3

22

∫ 5/7

0

(∫ 4−2u
2

0

u2 + 2uv − 12u− 6v + 13dv +

∫ 5−4u
2

4−3u
2

10u2 + 14uv − 36u+ 4v2 − 22v + 29dv+

+

∫ 7−5u
3

5−4u
2

2(5u+ 3v − 7)(9u+ 4v − 11)dv
)
du+

+
3

22

∫ 1

5/7

(∫ 4−2u
2

0

u2 + 2uv − 12u− 6v + 13dv +

∫ 5−4u
2

4−3u
2

10u2 + 14uv − 36u+ 4v2 − 22v + 29dv+

+

∫ 11−9u
4

5−4u
2

2(5u+ 3v − 7)(9u+ 4v − 11)dv
)
du =

18969

1108811
< 1.

As above, this completes proof that β(Ξ) > 0. □

Lemma 4.3. If cQ(Ξ) = L1, then β(Ξ) > 0.

Proof. By [8], there are precisely 3 lines through x0 ∈ X, and by construction, the set of lines

through x0 ∈ X is G-invariant. If L ∋ x0 is a line and L̂ is its proper transform on X̂, −KX̃ · L̂ = 0

and L̂ is a flopping curve. Let ω : X̃ → X̂ be the blowup of the proper transforms of the 3 lines
through x0 ∈ X, and denote by Λ = Λ1 + Λ2 + Λ3 its (G-invariant) exceptional divisor. Denote

by F̃ = ω∗F , Ẽ1 = ω∗E1 − Λ the proper transforms of F and E1 on X̃, and by R̃ = ω∗R − Λ,

the proper transform of the unique section of |2H1 − E1 − 2F | = |H2 − F |. On X̃, we have the
intersection numbers:

Λ3 = 6, Λ2 · ω∗F = −3, Λ · ω∗(F )2 = 0, Λ · ω∗(F ) · ω∗(E1) = 0,

Λ2 · ω∗(E1) = 3, Λ · ω∗(E1)
2 = 0, ω∗F 3 = 2, ω∗E3

1 = −13.

16



We first show that β(F ) > 0. The Zariski decomposition of ω∗π∗(−KX) − uF̃ can be written
P (u) +N(u), where P (u) is nef and

N(u) =


0 for 0 ≤ u ≤ 1,

(u− 1)Λ for 1 ≤ u ≤ 2,

(u− 1)Λ + (u− 2)R̃ for 2 ≤ u ≤ 3.

We have AX(F̃ ) = 2 and

SX(F̃ ) =
1

(−KX)3

∫ τ

0

vol(ω∗π∗(−KX)− uF̃ )du

=
1

22

(∫ 1

0

22− 2u3du+

∫ 2

1

(u+ 1)(u2 − 10u+ 19)du+

∫ 3

2

3(u− 3)(2u− 7)du

)
=

161

88
.

So that β(F ) = 15
88

> 0.

Now assume that Ξ is not F and denote by Z the centre of Ξ on X̃. By construction, Z = cX̃(Ξ) ⊂
F̃ is a curve, and F̃ is a blowup of P1 × P1 in three points in general position, so it is a del Pezzo
surface of degree 5. We denote by ℓ1, ℓ2 the proper transforms of the two rulings of P1×P1, and by

e1, e2, e3 the (−1)-curves The extremal rays of the Mori cone NE(F̃ ) are the (−1)-curves e1, e2, e3,
the proper transforms ℓi(1) and ℓi(2) of rulings through the blownup points for 1 ≤ i ≤ 3, and the
proper transform of the conic through the three blownup points ℓ123 = ℓ1 + ℓ2 − e1 − e2 − e3.

We will estimate β(Ξ) by considering the flag Z ⊂ F̃ ⊂ X̃; we write

S
(
W F̃

•,•;Z
)
=

3

(−KX)3

∫ 3

0

(
P (u)2 · F̃

)
· ordZ

(
N(u)

∣∣
F̃

)
du+

+
3

(−KX)3

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vZ

)
dvdu.

Since cQ(Ξ) is one-dimensional, Z ̸⊂ Λ
∣∣
F̃
, and ordZ

(
N(u)

∣∣
F̃

)
= 0 unless Z = R̃

∣∣
F̃
.

We first assume that Z ̸= R̃
∣∣
F̃
. There are positive integers αi, αij and α123 so that

Z ∼ α1e1 + α2e2 + α3e3 +
∑

αijℓi(j) + α123ℓ123.

Since Z ̸⊂ Λ
∣∣
F̃
, αij and α123 are not all simultaneously 0. Let l denote one of the (−1) curves

other than e1, e2, e3 such that Z ≥ l, then by convexity of volume:

S
(
W S

•,•;Z
)
=

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vZ

)
dvdu ⩽

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vl

)
dvdu.

so it is enough to show that the last integral is less than 1 when Z = l.
Case 1. Assume that Z ∼ ℓ123, and let P (u, v) andN(u, v) be the positive and negative parts of the

Zariski decomposition of (ω∗π∗(−KX)−uF̃ |F̃ −vZ. Then, for 0 ≤ u ≤ 1, N(u, v) = v(e1+e2+e3)
for 0 ≤ v ≤ u; for 1 ≤ u ≤ 2,

N(u, v) =

{
0 for 0 ≤ v ≤ u− 1,

(v − u+ 1)(e1 + e2 + e3) for u− 1 ≤ v ≤ u.

and for 2 ≤ u ≤ 3,

N(u, v) =

{
0 for 0 ≤ v ≤ 1,

(v − 1)(e1 + e2 + e3) for 1 ≤ v ≤ 4− u.
17



Putting things together, we get:

S
(
W F̃

•,•;Z
)
⩽

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vℓ123

)
dvdu =

=
3

22

(∫ 1

0

∫ u

0

2(u− v)2dvdu+

+

∫ 2

1

(∫ u−1

0

−u2 + 2uv + 6u− v2 − 6v − 3dv +

∫ u

u−1

2(u− v)2dv
)
du+

+

∫ 3

2

(∫ 1

0

2uv − v2 − 4u− 6v + 13dv +

∫ 4−u

1

2(v − 2)(v + u− 4)
)
du

)
=

29

44
< 1.

and β(Ξ) > 0.
Case 2. Now assume that Z ∼ ℓ1(2) (or any ℓi(j)). The positive and negative parts of the Zariski

decomposition of (ω∗π∗(−KX)− uF̃ )|F̃ − vZ are as follows.
For 0 ≤ u ≤ 1, N(u, v) = ve1 for 0 ≤ v ≤ u; for 1 ≤ u ≤ 2

N(u, v) =


0 for 0 ≤ v ≤ u− 1,

(v − u+ 1)e1 for u− 1 ≤ v ≤ 1,

(v − u+ 1)e1 + (v − 1)(ℓ2(1) + ℓ3(1)) for 1 ≤ v ≤ u.

In addition for 2 ≤ u ≤ 3

N(u, v) =


0 for 0 ≤ v ≤ 1,

(v − 3 + u)(ℓ2(1) + ℓ3(1)) for 3− u ≤ v ≤ 1,

(v − 3 + u)(ℓ2(1) + ℓ3(1)) + (v − 1)e1 for 1 ≤ v ≤ 4− u.

We have

S
(
W F̃

•,•;Z
)
⩽

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vℓ1(2)

)
dvdu =

=
3

22

(∫ 1

0

∫ u

0

2u(u− v)dvdu+

+

∫ 2

1

(∫ u−1

0

−u2 − v2 + 6u− 2v − 3dv +

∫ 1

u−1

−2uv + 4u− 2dv +

∫ u

1

2(2− v)(u− v)dv
)
du+

+

∫ 3

2

(∫ 3−u

0

−v2 − 4u− 2v + 13dv +

∫ 1

3−u

2u2 + 4uv + v2 − 16u− 14v + 31dv+

+

∫ 4−u

1

2(u+ v − 4)2dv
)
du

)
=

59

88
< 1.

This finishes the proof that β(Ξ) > 0 when Z ̸= R̃
∣∣
F̃
.

Assume that Z = R̃
∣∣
F̃
, so that ordZ

(
N(u)

∣∣
F̃

)
= 1 when 2 ≤ u ≤ 3. We have

3

(−KX)3

∫ 3

2

(
P (u)2 · F̃

)
· ordZ

(
N(u)

∣∣
F̃

)
du =

9

22
.

As before, denote by P (u, v) and N(u, v) the positive and negative parts of the Zariski decompo-

sition of ω∗π∗(−KX − uF̃ )
∣∣
F̃
− vZ. When 0 ≤ u ≤ 1, N(u, v) = v(e1 + e2 + e3) for 0 ≤ v ≤ u/2,

18



when 1 ≤ u ≤ 2,

N(u, v) =

{
0 for 0 ≤ v ≤ u− 1,

(v − u+ 1)(e1 + e2 + e3) for u− 1 ≤ v ≤ u/2,

and finally, when 2 ≤ u ≤ 3,

N(u, v) =

{
0 for 0 ≤ v ≤ 3− u,

(v − 3 + u)(ℓ1(1) + ℓ2(1) + ℓ3(1)) for 3− u ≤ v ≤ 2− u/2.

We have

S
(
W F̃

•,•;Z
)
=

9

22
+

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vZ

)
dvdu =

=
9

22
+

3

22

(∫ 1

0

∫ u/2

0

2(u− v)(u− 2v)dvdu+

+

∫ 2

1

(∫ u−1

0

−u2 + v2 + 6u− 6v − 3dv +

∫ u/2

u−1

2(u− v)(u− 2v)dv
)
du+

+

∫ 3

2

(∫ 3−u

0

2uv + v2 − 4u− 10v + 13dv +

∫ 2−u/2

3−u

(u+ 2v − 4)(3u+ 2v − 10)dv
)
du

)
=

3

4
< 1.

We see that SX(F̃ ) < 2 and S
(
W F̃

•,•;Z
)
< 1, so that β(Ξ) > 0. □

Now we need to consider G-invariant prime divisors Ξ whose centre on Q lies on Γ1.

Lemma 4.4. If Z = cX̃(Ξ) ⊂ E1, then β(Ξ) > 0.

Proof. Assume that Z ⊂ E1, then since there is no G-fixed point on Q ⊂ P4, f1(Z) = cQ(Ξ) is the
curve Γ1. Denote by Q1 → Q the blowup of the line L1 and by Q1 → P2 the morphism induced by

the projection Q ⊂ P4 99K P2 away from L1. Let X̂
+ → Q1 be the blowup of the proper transform

of Γ1, then X̂+ 99K X̂ is a flop, and there is a morphism X̃ → X̂. Denote by η the composition

X̃ → X̂ → Q1 → P2.

If T is a general fiber of η, T · Z̃ ⩾ 5, hence, by Lemma 2.7, β(Ξ) > 0. □

Lemma 4.5. If Ξ is a G-invariant prime divisor over X with centre a prime divisor DX = cX(Ξ)
such that β(Ξ) < 0, then DX ∈ |H2|.

Proof. The centre cX(Ξ) = DX is the G-orbit of a minimal log canonical centre of a suitable pair
(X, 3

4
D) for D ⊂ | − KX |Q a G-invariant linear system, so that DX is a G-invariant irreducible

normal surface with
−KX ∼Q λDX +∆X

for some effective Q-divisor ∆X and rational number λ > 4
3
(see proof of [2, Theorem 1.52]). We

show that then, DX is linearly equivalent to H2 (here since X1 → X is a small map, we also denote
cX1(Ξ) by DX).
Recall that Eff(X1) = R≥0[E1] + R≥0[H2], and H2 ∼ 2H1 − E1. If DX = E1, then

∆ ∼ 3H1 − (1 + λ)E1 ∼
3

2
(2H1 − E1) +

(3
2
− (1 + λ)

)
E1

and since λ > 1
2
, this is impossible.

Now assume that DX ̸= E1, so that f1(DX) is a G-invariant surface on Q, and let d be its degree.
Since

3H1 ∼ λf1(DX) + f1(∆X),
19



3 ≥ λd and d = 1 or d = 2. As there is no G-invariant hyperplane section, d = 2 and

∆ ∼ (3− 2λ)H1 + (λm1 − 1)E1

where m1 is the multiplicity of f1(DX) along Γ1. Since

∆X ∼ 3− 2λ

2
(2H1 − E1) +

(3− 2λ

2
+ λm1 − 1

)
E1

we see that m1 ≥ 1 and DX ∈ |H2|. □

Lemma 4.6. Let Z = cX̃(Ξ) be an irreducible curve that is not contained in E1. Then, β(Ξ) > 0
unless cQ(Ξ) is a line.

Proof. By Lemma 4.5, a G-invariant surface containing Z is either F or the G-invariant element
of |H2|. We have seen that for such Z, β(Ξ) > 0. If Z ̸⊂ H2, as in the proof of Lemma 4.4, there

is a surjective morphism X̃ → P2 and H2 · Z ≤ 2. Since L1 is in the base locus of H2, this implies
that H1 · Z ≤ 1. □

Main Theorem (II). X is K-polystable.

Proof. Assume that X is not K-polystable, and denote by Ξ a G-invariant prime divisor over
X with β(Ξ) ≤ 0. If cX(Ξ) is 0-dimensional, it is {x0}, and cQ(Ξ) = L1, so that β(Ξ) > 0 by
Lemma 4.3. If cQ(Ξ) is a curve and lies on a section S of |H2|, then β(Ξ) > 0 by Lemma 4.1. If
cQ(Ξ) is a line, then β(Ξ) > 0 by Lemma 4.2 and Lemma 4.3. If cX̃(Ξ) is a curve lying on E1, then
β(Ξ) > 0 by Lemma 4.4, and if cX̃(Ξ) is a curve not lying on E1 and such that cQ(Ξ) is not a line,
then β(Ξ) > 0 by Lemma 4.6. This exhausts the cases where cX(Ξ) is 1-dimensional. Assume now
that cX(Ξ) is a prime divisor. Then, by Lemma 4.5, β(Ξ) > 0 unless cX(Ξ) ∈ |H2|. We have seen
that β(S) > 0 for S ∈ |H2| in the proof of Lemma 4.1, and this concludes the proof. □

As in the case of Family I, since Aut(X) is finite, X is K-stable and this implies by openness of
K-stability [4]:

Corollary 4.7. A general one-nodal prime Fano threefold of genus 12 in Family II is K-stable.

5. Family III

Let X be a one-nodal prime Fano threefold of genus 12 that belongs to Family III of Theorem 1.2 is
the midpoint of a Sarkisov link associated to a rational map V5 99K P1; we describe the associated
birational geometry briefly, see [6, 14] and [8] for precise statements.

X̂

X1 X2

V5 X P1

σ1 σ2

π

f1 π1 π2 f2

Denote by H1 = σ∗
1

(
f ∗
1OV5(1)

)
and H2 = σ∗

2

(
f ∗
2OP1(1)

)
, and by H = π∗(−KX) the pullbacks to

X̂ (or to any of the models) of the ample generators of Pic(V5), Pic(P1) and Pic(X) repsectively.
The morphism f1 is the blowup of a smooth rational quartic curve Γ1 ⊂ V5 ⊂ P6, and there is a
unique bisecant line L1 to Γ1. The linear system |H1−Γ1| has dimension 2, Bs |H1−Γ1| = Γ1∪L,
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and the rational map associated to |H1−Γ1| = |H2| is precisely V5 99K P1 induced by the Sarkisov
link above. The threefold X1 is weak Fano, and

−KX1 ∼ H = 2H1 − E1

where E1 = Exc f1, so that the proper transform of L1 (still denoted L1) is the unique flopping

curve on X1. The map π1 contracts L1 to a node {x0} = Sing(X) ∈ X. Let π : X̂ → X be
the blowup of x0, and σ1 the induced map to X1; χ is the Atiyah flop associated to x0 ∈ X and

L1 = σ1(F ), where F = Exc π. Then, X̂ is a weak Fano threefold of ρ = 3 and we have [8]:

−KX̂ = H − F ∼ H1 +H2

and from H ∼ 2H1 − E1 ∼ H1 +H2, we deduce

H2 ∼ H1 − E1.

The map f2 is a del Pezzo fibration (a Mori fibre space with two-dimensional fibres) of degree

H2 ·H2 = 6. For later reference, the intersection numbers on X̂ are:

H3
1 = 5, H2

1 · E1 = 0, H1 · E2
1 = −4, E3

1 = −6,

H2
1 · F = 0, H1 · F 2 = −1, F 3 = 2,

E1 · F ·H1 = 0, E1 · F 2 = −2, E2
1 · F = 0.

5.1. Construction of a member with Gm ⋊ Z2-action. Recall from [2, Section 5.8] that the
quintic threefold V5 ⊂ P6 can be defined scheme theoretically by

x4x5 − x0x2 + x2
1 = 0,

x4x6 − x1x3 + x2
2 = 0,

x2
4 − x0x3 + x1x2 = 0,

x1x4 − x0x6 − x2x5 = 0,

x2x4 − x3x5 − x1x6 = 0.

and is endowed with an action of G = Gm ⋊ Z2 defined by the involution

τ :
[
x0 : x1 : x2 : x3 : x4 : x5 : x6

]
7→
[
x3 : x2 : x1 : x0 : x4 : x6 : x5

]
,

and by the automorphisms λs[
x0 : x1 : x2 : x3 : x4 : x5 : x6

]
7→
[
s3x0 : s

5x1 : s
7x2 : s

9x3 : s
6x4 : s

4x5 : s
8x6

]
.

Consider the curve Γ1 ⊂ V5 defined by the embedding P1 ↪→ P4 given by

[x : y] → [0 : ix3y : ixy3 : 0 : −x2y2 : −x4 : −y4],

where i2 = −1, then Γ1 is a G-invariant rational curve of degree 4. The line L1 = {x0 = x1 =
x2 = x3 = x4 = 0} is the unique bisecant line to Γ1 and it is also G-invariant. Note that Γ1 lies on
{x0 = x3 = 0} ∩ V5, and the pencil of hyperplanes containing Γ1 is the restriction of

H =
{
H[λ:µ] = {λx0 + µx3 = 0}; [λ : µ] ∈ P1

}
to V5. Denote by S[λ:µ] = H[λ:µ]∩V5, and note that for any hyperplane in the pencil, L1∪Γ1 ⊂ S[λ:µ].
The midpoint X of the Sarkisov link above is endowed with a G-action. Finally, denote by
S = {x4 = 0}∩V5 the onlyG-invariant hyperplane section of V5, and observe that S has multiplicity

2 abong L, so that S̃[λ:µ] = H1 −E1 − F and S̃ = H1 − 2F are the proper transforms of S[λ:µ] and

S on X̃.

Claim 5.1. The group Aut(X) = G, and in particular, it is reductive.
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Proof. Since
G ≃ Gm ⋊ Z2 ⊂ Aut(X) ≃ Aut(V5; Γ1) ⊂ Aut(V5) = PGL2(C),

by [13], Aut(X) = G or Aut(X) = Aut(V5) = PGL2(C). The second case is impossible because Γ1

is not Aut(V5)-invariant. □

We will apply Theorem 2.1 to prove that X is K-polystable. To do so, we first describe possible
centres of G-invariant divisors over X. In what follows, Ξ denotes a G-invariant prime divisor over
X.

Claim 5.2. If the centre of Ξ on X is 0-dimensional, it is the singular point cX(Ξ) = {x0}.
Proof. There is no point of V5 ⊂ P6 fixed by the action of G. □

We now consider those G-invariant prime divisors over X which have one-dimensional centre
Z = cV5(Ξ) on V5. By [2, Corollary 5.39], the G-invariant curves on V5 are precisely the line L1,
the conic C defined parametrically by [x : y] 7→ [x2 : 0 : 0 : y2 : xy : 0 : 0], the twisted cubic
defined parametrically by [x : y] 7→ [x3 : x2y : xy2 : y3 : 0 : 0 : 0] and a family of sextic curves Cγ

for γ ∈ C∗ in each of the hyperplane sections {x4 = 0} ∩ V5 and {λx0 + µx3 = 0} ∩ V5.

Lemma 5.1. Let Ξ be a G-invariant prime divisor with centre Z = cV5(Ξ) a curve. Then Z = L1,
Z = Γ1 or β(Ξ) > 0.

Proof. Assume to the contrary that β(Ξ) < 0, then by Lemma 2.2, Z2 = cX2(Ξ) is contained
in Nklt(X2, BX2) for some BX2 ∼Q −λKX2 and rational number λ < 3

4
. By Lemma 2.6, the

degree H2 · Z2 ≤ 1, and we exclude the curves with H1 · Z > 1 by considering Z1 = cΞ(Z) and
its intersections with Γ1 and L1. If Z is a rational sextic curve constained in {x4 = 0} or in
{λx) + µx3 = 0}, Γ1 ∩L1 = ∅, so (H1 −E1) ·Z1 = H2 ·Z2 and Γ1 ∩Z consists of at most 2 points,
so H2 ·Z2 > 1. Similarly, if Z = C is the G-invariant conic or twisted cubic , C ∩Γ1 = C ∩L1 = ∅
and H2 · Z2 > 1. The only possibilities for Z are L1 and Γ1. □

Lemma 5.2. Let Ξ be a G-invariant prime divisor with centre Z = cX̃(Ξ) a curve lying on F̃ ,
then β(Ξ) > 0.

Proof. Consider the G-invariant blowup ω : X̃ → X̂ of the two flopping lines (these are the
transforms of the lines through the singular point on X), and denote by Λ = Λ1+Λ2 its exceptional

divisor G. Let F̃ = ω∗F , H̃1 = ω∗H1 and Ẽ1 = ω∗E1 − Λ be the proper transforms of F , H1 and

E1. We also have S̃ = ω∗S − 2Λ and S̃[λ:µ] = ω∗Sλ:µ − Λ.

If we write the Zariski decomposition of ω∗π∗(−KX)− uF̃ = P (u) +N(u), then P (u) is nef for all
0 ≤ u ≤ 3 and

N(u) =


0 for 0 ≤ u ≤ 1,

(u− 1)Λ for 2 ≤ u ≤ 3,

(u− 1)Λ + (u− 2)S̃ for 2 ≤ u ≤ 3.

We now compute

SX(F̃ ) =
1

(−KX)3

∫ τ

0

vol(ω∗π∗(−KX)− uF̃ )du =(5.1.1)

=
1

22

(∫ 1

0

22− 2u3du+

∫ 2

1

−6u2 + 6u+ 20du+

∫ 3

2

2(6− u)(u− 3)2du

)
=

39

22
.(5.1.2)

So that β(F̃ ) = AX(F̃ )− SX(F̃ ) = 2− 39
22

= 5
22

> 0.

We now assume that Z = cX̃(Ξ) ⊂ F̃ . The surface F̃ is the blowup of F ≃ P1 ×P1 at two distinct
points, that is a del Pezzo surface of degree 6. Let ℓ1 (resp. ℓ2) be the full transform of the ruling
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of class (1, 0) (resp. (0, 1)) on P1 ×P1, and let e1, e2 be the two exceptional curves. The Mori cone

NE(F̃ ) is generated by e1 and e2, and by the (−1)-curves ℓi(j) = ℓj − ei.
We have:

S
(
W F̃

•,•;Z
)
=

3

(−KX)3

∫ 3

0

(
P (u)2 · F̃

)
· ordZ

(
N(u)

∣∣
F̃

)
du+

+
3

(−KX)3

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vZ

)
dvdu.

As there is no G-fixed point on V5, cV5(Ξ) is not a point and Z ̸∈ {e1, e2}, so that Z ̸⊂ Λ|F̃ . When

in addition, Z ̸= S̃|F̃ , ordZ

(
N(u)

∣∣
F̃

)
= 0. Write

Z ∼ α1e1 + α2e2 +
∑

i,j∈{1,2}

αijℓi(j),

and observe that at least one of the coefficients αij ̸= 0. By convexity of volume, if the nonzero
coefficient corresponds to the curve l, we get:

S
(
W F̃

•,•;Z
)
=

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vZ

)
dvdu ⩽

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vl

)
dvdu.

so it is enough to show that the last integral is less than 1 to deduce a contradiction.

Case 1. Assume that Z ̸= S̃|F̃ , and let Z ∼ ℓi(j), for i, j ∈ {1, 2}. To fix notation, we consider
ℓ1(2). Denote by P (u, v) and N(u, v) the positive and negative parts of the Zariski decomposition

of (ω∗π∗(−KX)− uF̃ )|F̃ − vZ.

• For 0 ≤ u ≤ 1, N(u, v) = ve1 for 0 ≤ v ≤ u.
• For 1 ≤ u ≤ 2,

N(u, v) =


0 for 0 ≤ v ≤ u− 1,

(v − u+ 1)e1 for u− 1 ≤ v ≤ 1,

(v − u+ 1)e1 + (v − 1)ℓ2(1) for 1 ≤ v ≤ u.

• For 2 ≤ u ≤ 3,

N(u, v) =


0 for 0 ≤ v ≤ 3− u,

(v − 3 + u)e1 for 3− u ≤ v ≤ 1,

(v − 3 + u)e1 + (v − 1)ℓ2(1) for 1 ≤ v ≤ 4− u.

We have

S
(
W ẼL

•,• ;Z
)
⩽

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
ẼL

− vℓ1(2)

)
dvdu =

=
3

22

(∫ 1

0

∫ u

0

2u(u− v)dvdu+

+

∫ 2

1

(∫ u−1

0

−v2 + 4u− 2v − 2dv +

∫ 1

u−1

u2 − 2uv + 2u− 1dv +

∫ u

1

(u− v + 2)(u− v)dv
)
du+

+

∫ 3

2

(∫ 3−u

0

2u2 + 2uv − v2 − 16u− 6v + 30dv +

∫ 1

3−u

(−3 + u)(3u+ 4v − 13)dv+

+

∫ 4−u

1

(u+ v − 4)(3u+ v − 10)dv
)
du

)
=

17

22
< 1,
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which is what we wanted.
Case 2. Now assume that Z = S̃|F̃ so that ordZ

(
N(u)

∣∣
F̃

)
= 1 on u ∈ [2, 3], and

3

(−KX)3

∫ 3

2

(
P (u)2 · F̃

)
· ordZ

(
N(u)

∣∣
F̃

)
du =

4

11
.

As before, denote by P (u, v) andN(u, v) the positive and negative part of the Zariski decomposition

of (ω∗π∗(−KX)− uF̃ )|F̃ − vZ, so that

• For 0 ≤ u ≤ 1, N(u, v) = v(e1 + e2) for 0 ≤ v ≤ u/3.
• For 1 ≤ u ≤ 2,

N(u, v) =

{
0 for 0 ≤ v ≤ u−1

2
,

(v − u+ 1)(e1 + e2) for u−1
2

≤ v ≤ u
3
.

• For 2 ≤ u ≤ 3,

N(u, v) =

{
0 for 0 ≤ v ≤ 3−u

2
,

(v − 3 + u)(e1 + e2) for 3−u
2

≤ v ≤ 2− 2u
3
.

We now compute

S
(
W F̃

•,•;Z
)
=

4

11
+

3

22

∫ 3

0

∫ ∞

0

vol
(
P (u)

∣∣
F̃
− vZ

)
dvdu =

=
4

11
+

3

22

(∫ 1

0

∫ u/3

0

2(u− 2v)(u− 3v)dvdu+

+

∫ 2

1

(∫ (u−1)/2

0

−2uv + 4v2 + 4u− 8v − 2dv +

∫ u/3

(u−1)/2

2(u− 2v)(u− 3v)dv
)
du+

+

∫ 3

2

(∫ (3−u)/2

0

2u2 + 6uv + 4v2 − 16u− 24v + 30dv +

∫ 2−2u/3

(3−u)/2

2(u+ 2v − 4)(2u+ 3v − 6)dv
)
du

)
=

=
25

44
< 1.

and this finishes the proof since

AX(Ξ)

SX(Ξ)
⩾ min

{
2

SX(F̃ )
,

1

S
(
W F̃

•,•;Z
)} > 1.

□

Lemma 5.3. Let Ξ be a G-invariant prime divisor with centre Z = cX1(Ξ) a curve lying on E1,
then β(Ξ) > 0.

Proof. Assume to the contrary that β(Ξ) < 0, then by Lemma 2.2, Z2 = cX2(Ξ) is a one-
dimensional component of (X2, BX2), where BX2 ∼ −λKX2 for some λ < 3/4. By Lemma 2.5,
H2 · Z2 ≤ 1. This is impossible as Z1 = cX1(Ξ) cannot be mapped to a point by ϕ1 because there
is no G-invariant point on V5, and H2 · Z1 ≥ H1 · Z1 ≥ 4. □

Remark 5.4. For the sake of completion, observe that X1 itself is divisorially K-polystable. Indeed,
for 0 ≤ u ≤ 1

−KX1 − uE1 ∼Q H − uE1 ∼Q 2H1 − (1 + u)E1
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is a mobile divisor, that is the pullback of a nef divisor on X2, and for u > 1, this divisor is not
effective. We have

(−KX1)
3 · SX1(E1) = 22 · SX1(E1) =

∫ 1

0

vol(2H1 − (1 + u)E1)du =

=

∫ 1

0

(
(1− u)(−KX2 + 2uH2

)3
du =

∫ 1

0

(
(1− u)H + 2uH2

)3
du

=

∫ 1

0

(1− u)2(22 + 14u)du =
17

2

so that β(E1) > 0.

Lemma 5.5. There is no G-invariant irreducible surface DX such that −KX ∼Q λDX +∆X for
some positive rational number λ > 4

3
and effective Q-divisor ∆.

Proof. Let DX be such a surface, and denote by D1, ∆1 the proper transforms of DX and ∆X on
X1. We have:

H ∼Q 2H1 + E1 ∼Q λD1 +∆1.

Recall that the pseudo-effective cone Eff(X1) is R≥0[E1] + R≥0[H2], where H2 ∼Q H1 − E1. If
D1 = E1, we see that

∆1 ∼Q 2H2 + (1− λ)E1

cannot be an effective divisor. We may now assume that D1 ∈ R≥0[H1] + R≥0[H2], that is D1 =
xH1 − yE1, for x, y ∈ N and x ≥ y. Since λD1 ≤ −KX1 , λa ≤ 2, so that a = 1 and b = 0 or b = 1.
As D1 is mapped to a G-invariant surface of V5, ϕ1(D1) is the hyperplane section {x4 = 0} ∩ V5,
and b = 0. Now, ∆1 ∼Q (2− λ)H1 − E1, but this cannot be effective as 2− λ < 1. □

As in the previous two cases, we conclude:

Main Theorem (III). X is K-polystable.

This time X is not K-stable as Aut(X) = Gm ⋊Z2, but using [2, Corollary 1.16] (which still holds
in the case of a nodal Fano threefold), we conclude:

Corollary 5.6. A general one-nodal prime Fano threefold of genus 12 in Family III is K-polystable.
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