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Entomopathogenic fungi belonging to the Order Hypocreales are renowned for their ability to infect and kill insect hosts, while their
endophytic mode of life and the beneficial rhizosphere effects on plant hosts have only been recently recognized. Understanding the
molecular mechanisms underlying their different lifestyles could optimize their potential as both biocontrol and biofertilizer agents,
as well as the wider appreciation of niche plasticity in fungal ecology. This study describes the comprehensive whole genome sequen-
cing and analysis of one of the most effective entomopathogenic and endophytic EPF strains, Metarhizium brunneum V275 (commer-
cially known as Lalguard Met52), achieved through Nanopore and lllumina reads. Comparative genomics for exploring intraspecies
variability and analyses of key gene sets were conducted with a second effective EPF strain, M. brunneum ARSEF 4556. The search
for strain- or species-specific genes was extended to M. brunneum strain ARSEF 3297 and other species of genus Metarhizium, to identify
molecular mechanisms and putative key genome adaptations associated with mode of life differences. Genome size differed significant-
ly, with M. brunneum V275 having the largest genome amongst M. brunneum strains sequenced to date. Genome analyses revealed an
abundance of plant-degrading enzymes, plant colonization-associated genes, and intriguing intraspecies variations regarding their pre-
dicted secondary metabolic compounds and the number and localization of Transposable Elements. The potential significance of the
differences found between closely related endophytic and entomopathogenic fungi, regarding plant growth-promoting and entomo-
pathogenic abilities, are discussed, enhancing our understanding of their diverse functionalities and putative applications in agriculture
and ecology.
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Metarhizium spp. are ubiquitous in soil, exhibiting entomo-
pathogenic life phases following direct contact between an
arthropod host and fungal conidia (Butt et al. 2016; Mannino
etal. 2019; St Leger and Wang 2020). The genus includes both early
diverging species, which typically have a narrower insect host
range and are termed as specialists, and more recently diverged
species, such as M. brunneum, that tend toward generalists in
host range (Hu et al. 2014). Several of the latter species, however,
have recently been shown to exhibit alternate life modes, associ-

Introduction

Numerous fungal families contain specialized species that can in-
fect and kill a broad range of invertebrate hosts (Islam et al. 2021),
with over 750 entomopathogenic fungal (EPF) species of 85 genera
described to date (Paschapur et al. 2021). As such, there has been a
steady increase in interest, discovery, research, and development
of these species as biological control products. They have shown
high utility within pest and vector control markets (Paschapur

et al. 2021) as practical replacements for traditional chemical in-
secticides (Butt et al. 2016; Dauda and Maina 2018). Of the current-
ly described EPF species, the genus Metarhizium (Sordariomycetes:
Hypocreales: Clavicipitaceae) has been a leading participant in
global biological control products (Altimira et al. 2022), e.g.
Metarhizium anisopliae FI1-985 (Green Guard) and M. brunneum
V275 (Lalguard or Met52). In particular, strain V275 is among the
most widely applied and efficient EPF commercial products
(Long and Hunter 2005; Quesada-Morraga et al. 2006; Asan et al.
2017), while strain M. brunneum ARSEF 4556 has a similar high po-
tential for exploitation (Wood et al. 2022; Alkhaibari et al. 2023).

ating with a wide range of cultivated and wild plant species as
beneficial endophytes, rhizosphere colonizers, and saprophytes
(Meyling and Eilenberg 2007; Neiro et al. 2010; Garcia et al. 2011,
Lopez and Sword 2015; Clifton et al. 2018; Dash et al. 2018). This
relationship appears to be mutually beneficial; the plant offers
refuge, nutrition, and host-insect access (Pineda et al. 2017;
Mantzoukas and Eliopoulos 2020), while the fungus can confer a
range of benefits, including plant growth promotion, plant-
pathogen antagonism (Sasan and Bidochka 2013; Keyser et al.
2016; Jaber and Ownley 2018) and deterrence of invertebrate plant
pests (Canassa et al. 2020; Francis et al. 2022). While the infection
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process in invertebrates is well described and understood (Butt
et al. 2016; Hong et al. 2024), the mechanisms employed by EPF
when colonizing plant tissues and transition between nutritional
modes are poorly described (Fadiji and Babalola 2020; Ghosh et al.
2020; Mantzoukas and Eliopoulos 2020). Endophytic behavior and
capacity differ between fungal strains, underscoring the complex
nature of species interactions and a potential diversity in syn-
chronous processes driving endophytic colonization (Fadiji and
Babalola 2020; Mantzoukas and Eliopoulos 2020).

The increasing availability of whole genome sequences of
Metarhizium strains (25 to date) ultimately led to the discovery of
a range of fungal secondary metabolites including insecticides,
immunosuppressants, and antimicrobials (Wang et al. 2012; Hu
et al. 2014; Sbaraini et al. 2016). These metabolites are implicated
in a range of important adaptational functions and generally arise
from pathways that are not directly related to growth or reproduc-
tion but are key determinants of interactions and stress responses
within their environment (Roberts and St Leger 2004; Keller 2015).
The genes required for the biosynthesis of these compounds are
usually organized as biosynthetic gene clusters (BGCs) and in-
clude the core genes encoding the synthesis of the conserved
structural motif of each compound. Further tailoring enzymes,
transcription factors, and transporters regulate the synthesis,
modification, and targeting of the produced compound or its de-
toxification (Keller 2015). In addition, comparative analyses of
gene complement of Carbohydrate Active Enzymes (CAZymes),
pathogen-host interaction (PHI) genes, and other genome struc-
tural components, such as transposable elements (TEs), help de-
termine the enzymatic machinery and other evolutionarily
conserved factors that have shaped and continue to facilitate
both entomopathogenic and endophytic modes of life in EPF (De
Melo et al. 2013; Altimira et al. 2022).

In this study, a high-quality genome of the model EPF fungus
M. brunneum strain V275 is reported. In addition, intraspecies
comparative analyses with another high-quality genome of
M. brunneum strain ARSEF 4556 (Saud et al. 2021) are performed.
Both EPF strains present endophytic activity with differentiation
observed related to their efficacy in employing their different
modes of life. Therefore, in this study, their genomes’ comparative
analyses aim to explore the molecular mechanisms underlying
the unique endophytic and entomopathogenic characteristics of
each of the two M. brunneum strains. An emphasis will be given
on unique BGCs and CAZymes as well as gene singletons, TEs,
and other genetic elements. By comparing gene sets of these
strains with other Metarhizium species, our objective is to identify
key factors contributing to their efficacy as both endophytes and
entomopathogens. Through comparative bioinformatic analyses,
we seek to elucidate variability in gene and protein content, and
metabolic pathways associated with these attributes. The findings
of this research could have significant implications for under-
standing and enhancing the effectiveness of Metarhizium strains
in agricultural and biotechnological applications.

Materials and methods
DNA extraction and sequencing

M. brunneum strain V275 (ARSEF F52) strain was acquired from the
ARS collection of entomopathogenic fungal cultures (ARSEF), and
it was cultivated in potato-dextrose-agar medium for 7 days in the
dark at 25+1°C, before extraction. DNA was extracted with
HigherPurity Plant DNA Purification Kit (Canvax Biotech, Spain)
using 100 mg of fungal material, according to the manufacturer
protocol. DNA quality was assessed by electrophoresis (0.8%

agarose gel), as well as Nanodrop measurements and quantified
using a Qubit fluorometer.

Mlumina sequencing was performed using the INVIEW
Resequencing package (Eurofins Genomics, Germany) and 2 x
150 bp paired-end reads were obtained. Sequencing quality was
assessed using FASTQC (v0.11.9) (Babraham Bioinformatics
Cambridge, UK) and adapters were removed using Trimmomatic
(v0.39) (Bolger et al. 2014). To estimate genome size and other gen-
ome statistics, computational estimation was performed using
k-mer occurrence distribution. For this aim, Jellyfish (v2.3.0)
(Marcais and Kingsford 2011) was used with default parameters
(k=21) and Illumina PE reads as input, while the produced histo-
gram was visualized using GenomeScope (Vurture et al. 2017).

Sequencing with Nanopore was performed using the MinION
(MIN-101B) Oxford Nanopore Starter Pack (Oxford Nanopore
Technologies, UK) device and R.10.4.1 flow cell (FLO-MIN114, Kit
14 chemistry). The sequencing library was prepared using the liga-
tion sequencing kit SQK-LSK112 (Oxford Nanopore Technologies),
following the manufacturer’'s protocol. Sequencing was
carried out using MinKNOW (v4.2.5) software. Basecalling was
performed locally with Guppy Software (v6.4.6) (Oxford
Nanopore Technologies), using the super accurate (sup) model
and the following parameters: —config dna_r10.4.1_e8.2_400bps_
sup.cfg -bam_out cuda:0:95% -detect_adapter -trim_adapters
—-do_read_splitting -detect_mid_strand_adapter.

Genome assembly and statistics

The nanoporebasecalled reads that remained after quality control
(characterized as “pass’”’) were used to remove adapters using
Porechop (v0.2.4) (Wick et al. 2017), with 20.3 Gb of sequenced
reads retained (out of 21.5 Gb). Filtlong (v2.0.1) (Wick 2017) was
used to assess the quality and length of Nanopore reads by using
[llumina reads as an external reference and according to the re-
sults, 90% of reads were retained. Illumina reads were then used
to perform error correction of Nanopore long reads with FMLRC2
(Mak et al. 2023), using msbwt2 (Holt and McMillan 2014) to build
the burrows wheeler transform. The output of corrected reads
was used to perform read trimming with Canu (v2.2) (Koren et al.
2017) and the final hybrid assembly was performed using Flye
(v2.9.2) (Kolmogorov et al. 2019). Raw nanopore reads were aligned
to the assembly for manual inspection using Minimap2 (para-
meters: -ax -map-ont) (Li, 2018). Subsequent polishing was carried
out with Illumina reads using Pilon software (v1.24) (Walker et al.
2014) and the resulting assembly was used as a reference for an-
other round of polishing with Pilon (Walker et al. 2014). Further
rounds did not improve the assembly.

Chromosome-level assembly was conducted using Reference-
Assisted Genome Ordering Utility (Ragout) (Kolmogorov et al. 2014,
2018). Ragout leverages phylogenetic information to reconstruct
probable chromosome rearrangements for the target genome, a
methodology previously employed in diverse studies (Andras et al.
2020; Corbo et al. 2022; Theelen et al. 2022). The chromosomes of
ARSEF 4556 as well as the final V275 assembly produced by Flye
were used as the reference genome and target assembly, respective-
ly. The genome of V275 was submitted to the NCBI Genome
Databank under BioProject Number PRJNA1057712 and Assembly
Accession number GCA_039795395.1.

Genome annotation

All assembly annotations were performed using GenSAS v6.0
pipeline, unless otherwise stated. Low complexity regions and re-
peats were detected and masked using RepeatModeler (v2.0.1)
(Flynn et al. 2020) and RepeatMasker (v4.1.1) (Smit et al. 2021),
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setting the DNA source to fungi and the speed/sensitivity
parameter to slow. A masked consensus sequence was generated,
on which ab initio gene prediction was performed using
GeneMarkES (v4.48) (default parameters) (Ter-Hovhannisyan
et al. 2008), Augustus (v3.4.0) (Species: Fusarium_graminearum,
Report genes on_strand: Both, allowed gene structure: Allow pre-
diction of incomplete genes on the sequence boundaries, and
using the soft masked sequence) (Stanke et al. 2006) and
GlimmerM (v2.5.1) (Kelley et al. 2012). BLASTn and DIAMOND
were used for DNA and protein alignments, respectively. By com-
bining ab initio gene predictions, as well as protein and nucleotide
alignments, EvidenceModeler was employed to create the consen-
sus gene set. After running BUSCO analyses, the official gene set
was produced using GeneMarkES (Ter-Hovhannisyan et al. 2008).
Ribosomal RNAs (rRNAs) were detected using RNAmmer
(v1.2) (Lagesen et al. 2007) and tRNAs were determined using
tRNAscan-SE (v2.0.7) (Chan and Lowe 2019). In addition, the
completeness of genome assembly and protein set was assessed
using BUSCO (v5.4.7) (Manni et al. 2021), with the assembly
and predicted protein sequences of V275 and ARSEF 4556 as re-
spective inputs. BUSCO analyses were performed by comparing
against conserved orthologues from the Hypocreales_odb10,
Pezizomycotina_odb10, and Ascomycota_odb10 lineages. Results
were simplified into categories of complete and single-copy, com-
plete and duplicated, fragmented, or missing BUSCOs.

The mitogenome was annotated using GeSeq (v2.03) (Tillich et al.
2017). Basic Local Alignment Tool (BLAT) reference sequences were
GenBank files containing mitogenome annotations for M. anisopliae
(NC_008068.1) and Metarhizium rileyi (NC_047289.1). The mitogen-
ome was visualized using OGDRAW (Greiner et al. 2019).

Comparisons of genome structure and synteny

OrthoFinder (v2.5.5) (Emms and Kelly 2019) was employed to de-
termine the orthologous genes of the 2 genomes and separate
them into groups. i-ADHoRe 3.0 (Proost et al. 2012) was used for
the alignment of the orthologous genes and based on their synteny,
homologous segments that showed conserved gene order and con-
tent were created. Circos (Krzywinski et al. 2009) was used to visual-
ize the conserved regions of the genomes. The same approach was
also employed with the pseudo-chromosome assembly created in
Ragout, to visualize chromosome-based comparisons.

Functional annotation

Predicted protein sequences were aligned to the functional data-
bases Swiss-Prot using blast2GO suite (Conesa et al. 2005),
Interpro (v5.53-87.0) and pfam (v1.6) as well as cluster of ortholo-
gous Genes (COG) database. using COGclassifier (Shimoyama
2022). Functional annotation was additionally performed using
KEGG database, and tools Blastkoala and Ghostkoala, to perform
GO and KEGG metabolic pathway enrichment analyses. Proteins
encoding signal peptides (secretory or transmembrane) were
identified using SignallP (as implemented in GenSAS). The poten-
tial pathogenic and virulence-associated genes were identified by
sequence alignment (BLASTp) against the pathogen-host inter-
action database (v3.5) (PHI-base) (Winnenburg et al. 2006), while
transporter proteins were predicted using the Transporter
Taxonomy Database (Saier et al. 2006). Proteases were identified
and classified into families by BLASTp (Altschul et al. 1997) against
the MEROPS peptidase (http://www.ebi.ac.uk/merops) database
(Rawlings et al. 2016). To explore the genetic potential of these fun-
gi for secondary metabolite production, the cluster predictor
AntiSMASH fungal (v.7.0.1) (Blin et al. 2023) was employed. Both

genomes were screened for the presence of genes and clusters re-
sponsible for the biosynthesis of secondary metabolites. Genome
sequence fasta files as well as gff gene prediction files from
EvidenceModeler were used as inputs, using the default (relaxed)
search parameter. All additional features were set to on, including
cluster-border prediction based on transcription factor binding
sites (CASSIS). An additional similarity network analysis was em-
ployed to investigate the similarity of BGCs between the 2 strains,
as well as with other plant-associated fungi, using the program
Big-SCAPE (v1.1.8) (Navarro-Muifioz et al. 2020). All reference
BGCs found in MIBIG database were included to identify similar-
ities with known products (Terlouw et al. 2023). Search for CAZy
enzymes was performed using dbCAN3 server (Zheng et al
2023), which performs automatic CAZyme annotation using
Diamond-CAZy, HMMER-dbCAN-substrate, and HMMER-dbCAN-
tools. Results supported by at least 2 tools were considered valid
and were used for further analyses. The conserved domains of
the predicted CAZymes were also characterized using CDD data-
base by NCBI.

To identify orphan genes and determine possible horizontal
gene transfer (HGT) events, the database NR was employed and
tBLASTn was performed with all V275 proteins as queries against
the full nucleotide sequences for all taxa in the Metarhizium genus
(taxid: 5529). Currently, there are 25 genomes publicly available.
This BLAST method was preferred over BLASTp, to take into con-
sideration coding regions that may not yet have been annotated.
The results were filtered using an in-house script that evaluates
these alignments based on identity and coverage criteria, collecting
significant alignments that satisfy a criterion of percentage identity
multiplied by coverage surpassing 45%. Consequently, proteins were
categorized based on their occurrence either in M. brunneum V275 ex-
clusively, additionally in M. brunneum ARSEF 4556, M. brunneum
ARSEF 3297, or in other Metarhizium spp. (among the 25 available).

Phylogeny

Phylogenetic analysis was performed using PhyloBUSCO. The tree
was constructed using BUSCO-based analysis on the proteomes of
15 Metarhizium strains available in Uniprot database. Predictions
were performed on each proteome using BUSCO (v.5.0) (Manni
etal. 2021) and OrthoDB (v.10) (Zdobnov et al. 2020). Sequence align-
ments were performed using Muscle (Edgar 2004) and trimAl
(Capella-Gutierrez et al 2009). Maximum likelihood (ML)
tree was inferred using IQ-TREE (v.1.6.12) (Nguyen et al. 2014;
Trifinopoulos et al. 2016) with the model selection from
ModelFinder (Kalyaanamoorthy et al. 2017) using the following
defaults parameters: “-bb 1000 -alrt 1000 -nt AUTO -ntmax”. The
tree file was visualized using the environment for tree exploration
Toolkit (Huerta-Cepas et al. 2016).

Results
General genome features of de novo assembly

Prior to assembly of the V275 genome sequence, relative genome
size estimation using k-mer analysis of the raw Illumina sequencing
data predicted a genome size of 39.8 Mb with 0.019% heterozygosity
(a characteristic “single peak” in the k-mer frequency distribution)
and 4.2% overall repeat content. Nanopore sequencing resulted in
1830 fast5 files and “271089244728” samples were base called to
an output of 20.3 Gb fastq files (500 x initial theoretical coverage).
After error correction, read trimming and polishing, the final hybrid
assembly pipeline resulted in 31 contigs (including the contig for the
mitochondrial genome) of a cumulative length of 40,108,809 bp
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Table 1. General genome features of M. brunneum V275 (V275) and
M. brunneum ARSEF 4556 (4,556).

Genome features V275 ARSEF 4556
Genome size 40,058,873 37,746,951
% GC (Guanine-Cytosine) 50.75% 50.40%
content
Contigs 30 7
Mean coverage 48x 100x
Contig N50 4,322,865 4,800,000
Genes 11,776 11,406
Proteins 11,769 11,405
tRNA/TRNA genes 141/30 149/29
Mt genome size 24,966 24,965

Intergenic regions (bp)
Exons

Introns

Transposable elements

19,228,384 (48%) 18,062,245 (47.9%)
17,006,338 (42.4%) 16,313,808 (43.2%)
1,871,758 (4.7%) 1,764,317 (4.7%)
1,977,363 (4.9%) 1,631,546 (4.3%)

BUSCO (fungi_odb10) 98.4% 98.2%
BUSCO (ascomycota_odb10) 97.6% 97.2%
BUSCO (hypocreales_odb10) 97.2% 96.6%
BUSCO protein 99.1% 99.1%

(hypocreales_odb10)

(final assembly’s mean coverage of 48x) and N50 contig length of
4,322,865 bp, with the largest fragment being 8,292,426 bp was
found (Table 1). Moreover, assembly integrity, measured by calcu-
lating the number and percentage of complete BUSCOs, showed a
high level of completeness of the final assembly, as well as of
the predicted protein set (Table 1) with 4,364 of 4,494, 1,665
of 1,706 and 746 of 758 complete gene copies conserved among
hypocreales_odb10, ascomycota_odb10, and fungi_odb10 lineages,
respectively. Assembly metrics and general genome features of
M. brunneum V275 and ARSEF 4556 are presented in Table 1 and
Supplementary Table 1.

Genome annotation predicted a total of 11,763 proteins, a slightly
higher number than those of ARSEF 4556 (Saud et al. 2021). 1,336
proteins had a secretory signal domain (Supplementary Table 2),
and 2,981 transporters (Supplementary Table 3) were identified
using a 1x 107° threshold. The number and types of proteases of
both genomes were identified (Supplementary Table 4). Protein as-
signment of accession numbers from Interpro and Pfam databases
was obtained (Supplementary Table 4). KEGG orthology assign-
ments classified 4,004 (30.2%) of V275 proteins into 23 functional
categories, with the highest abundance of genes assigned to genetic
information processing, carbohydrate metabolism, signaling
and cellular processing, and amino acid metabolism (Fig. 1;
Supplementary Table 5). ARSEF 4556 proteins were classified into
the same categories with minimal differences in the number of pro-
teins in certain categories (Fig. 1; Supplementary Table 5). KEGG
Mapper Reconstruction Results showed that proteins were involved
in 410 metabolic pathways and 83 modules (Supplementary
Table 5). COG annotation showed that 39.79% (4,681 of 11,763) of
the total proteins were classified into 26 COG functional categories
(Fig. 1; Supplementary Table 5). The tRNAscan-SE tool predicted a
total of 124 tRNA genes and RNAmmer predicted a total of 30
rRNA genes present in the genome assembly. The assembly process
produced a complete circular mitochondrial genome of 24,966 bp,
containing sequences that encode 25 tRNAs, 2 ribosomal RNA sub-
units, and the 14-core protein-coding genes (Supplementary Fig. 1).
As expected with previous findings regarding variations in mt gen-
omes of Metarhizium spp. (Kortsinoglou et al. 2020), mitochondrial
genomes of the 2 strains of the same species present minimal
differences.

Interestingly, V275 exhibited some structural peculiarities.
Contig 25 (of the 30 assembled chromosomal contigs) showed
sequence identity with the plasmid pECQ4552_IHUO08 (NCBI
Accession number: CP077071.1), previously described in
Escherichia coli strain Q4552 (Hamame et al. 2022). This plasmid
was not identified as circular, aligning with similar findings in a
Klebsiella sp. strain by Sushenko et al. (2022). Moreover, it encom-
passed 7 genes encoding a Ylcl/YnfO family protein, a hypothetic-
al protein, a DUF1398 domain protein, a serum resistance
lipoprotein Bor, a glycoside hydrolase family protein with a
conserved domain of muramidase (phage lambda lysozyme;
cl44109), and a prophage endopeptidase RzpD (NP_415088.1).
The endopeptidase, originating from a bacteriophage, featured a
phage lysis conserved domain (pfam03245) implicated in host ly-
sis and a signal peptide, indicative of its potential involvement in
membrane targeting or extracellular secretion. To date, a similar
plasmid has not been found in M. brunneum ARSEF 4556, as well as
in all the other whole genome sequences available from strains of
genus Metarhizium.

Furthermore, 3 additional fragments of 1.9 (contig 19), 19.19
(contig 21), and 20.92 (contig 2) kb, exhibited significant similarity
with the genome of the mutualistic endophyte Epichloé glyceriae
E2772 (coverage/identity was 71/87%, 88/88.21%, 43/91.68%,
respectively), as confirmed by comparison with the NCBI
nr/nt database using a stringent percentage similarity filter.
Intriguingly, these fragments were not fully identified in other
M. brunneum genomes (including ARSEF 4556), except for species
of Metarhizium acridum, albeit, with lower percentages of similarity
(20/86, 23/88, and 20/88% coverage/identity, respectively). The
first of these fragments contained a single gene matching with
E. glyceriae strain E2772 (coverage 94%/identity 87%), M. album
ARSEF 1941 (coverage 100%/identity 76%), and M. acridum CQMa
102 (coverage 100%/identity 81%) strains. The second fragment
comprised 5 predicted genes that encoded hypothetical proteins
without a conserved domain and therefore have yet unknown
functions. The third fragment contained 4 genes, out of which
only one contained a conserved domain. It corresponded to an
orsellinic acid biosynthesis cluster protein (OrsD) found in
Emericella nidulans. This gene was also found in M. anisopliae
(Acc. No: AF291909.2), where it is termed as M. anisopliae recQ heli-
case gene (coverage 100%/identity 95%), and the rhizosphere-
associated species Ilyonectria robusta (coverage 93%/identity 71%).

Phylogeny and mating type genes

The phylogenetic tree showed that V275 strain is basal to the other
2 M. brunneum strains ARSEF 3297 and ARSEF 4556 with excellent
bootstrap support (100%), but altogether comprise the M. brun-
neum species with 100% bootstrap support (Fig. 2). Strain V275 in-
cludes a complete MAT1-2 gene at Contig 5. ARSEF 4556 and
ARSEF3297 present a similar MAT gene content, indicating thus,
that M. brunneum has solely the MAT1-2 gene. Strains of M. rileyi,
M. majus, M. anisopliae, and M. humberi were all found to harbor
both MAT1-1 and MAT1-2 genes. A sole MAT1-2 gene was also
found in M. acridum and M. album strains. Interestingly, M. brun-
neum is phylogenetically placed as a sister group to the subclade
of Metarhizium robertsii, M. anisopliae, and M. humberi that present
both MAT1-1 and MAT1-2 genes, suggesting a putative homothal-
lism, despite having no known teleomorph (Pattemore et al. 2014).

Chromosome scaffolding as defined by
“pseudo-chromosome” analysis—synteny

Seven pseudo-chromosomes, assembled out of the 30 V275 con-
tigs, were identified using Ragout software (Fig. 3). Due to the
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Fig. 2. Phylogenetic tree of Metarhizium strains. All the available proteomes of Metarhizium strains in Uniprot database were used. ML tree was constructed
using the BUSCO dataset using Hypocreales_odb10 lineage. Numbers correspond to bootstrap values. Protein similarity search (Blastp) was performed for
the detection of MAT genes, using M. robertsii strain ARSEF23 MAT1-1-1 (EFZ01122), M. anisopliae isolate Ma69 MAT1-1-2 (BAE93597), MAT1-1-3
(BAE93596), and M. acridum strain CQMa 102 MAT1-2 (EFY86728) proteins as queries.

current availability of only one M. brunneum strain (ARSEF 4556) at
chromosome-level assembly and given that pseudo scaffolding
led to alower BUSCO assessment score (97%), the reference-based
assembly created by Ragout software was used only for visualiz-
ing genome synteny and rearrangements. It was evident, how-
ever, that except for three chromosomes of ARSEF 4556, i.e. C1,
C3, and C6, which seem identical, excluding unique additional re-
gions seen in the V275 sequence; the rest of the chromosomes pre-
sent several different syntenic rearrangements that indicate
intraspecies variations (Fig. 3).

Characterization of selected functionally
important gene groups

Predicted genes for synthesis of volatile organic compounds
Two functionally important volatile organic compounds (VOCs) are
produced by M. brunneum, 1l-octen-3-ol and 3-octenone (IUPAC
synonym: octan-3-one) (Wood et al. 2022, 2023). In the V275 gen-
ome, there were 4 predicted genes encoding a putative protein
needed for the deoxygenation of linoleic acid, the first step on
8-C VOC production (Mb.00g043120.m01, Mb.00g025310.m01,
Mb.00g090640.m01, and Mb.00g004080.m01 and each showed
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Fig. 3. Genome synteny comparison between V275 and ARSEF 4556. a) Comparison using ARSEF 4556 chromosomes and mt genome (blue) and V275
pseudo-chromosomes and mt genome (orange). b) Comparison between ARSEF 4556 chromosomes (blue) and V275 contigs and scaffolds (orange).
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identity > 98.5% with previously reported dioxygenase genes of M.
brunneum and M. anisopliae) and only one fatty acid hydroperoxide
lyase (Mb.00g106540.m01) which was orthologous (99-100%)
with respective proteins from genomes of Metarhizium species.
Five putative genes showed similarity to the conserved domain of
enone reductase for the final production of 3-octanone, but a full
gene orthologue could not be confidently identified.

Carbohydrate-active enzymes

The genome of M. brunneum V275 contained 391 genes encoding
CAZ enzymes (predicted by 2 or more tools on dbCANS3), respon-
sible for either the assembly (glycosyltransferases, GTs), or the
breakdown (CEs, carbohydrate Esterases; PLs, polysaccharitic
lyases; and GHs, glucosyl hydrolases;) of carbohydrate complexes

(Fig. 4). In addition, enzymes with auxiliary activity (AAs) and 11
different carbohydrate binding modules (CBMs) were described
(Fig. 4). Differences with ARSEF 4556 were minimal, with the latter
strain containing 389 CAZymes belonging to the same main fam-
ilies (Supplementary Table 6).

In detail, CAZyme annotation revealed that the genome of V275
contains 113 GTs dispersed in 34 families, which are involved in
the biosynthesis of oligosaccharides, polysaccharides, and glyco-
conjugates (Breton et al. 2006). Families GT2, GT1, and GT31 are
overrepresented with more than 10 members each, while half of
GT families (17 out of 34) have only 1 or 2 members.

Additionally, CAZyme analyses showed that V275 genome
contains 169 GHs that belong to 59 families (Fig. 4). Several
chitin-targeting GHs were found, as expected considering the


http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae190#supplementary-data

Comparative genomics of M. brunneum strains | 7

20

18

16

14

12

10

GH5 I
GH3 -
GH5 -

GH76 I—

o N & o ©
CE1 Il
CE16 I
CE3
CE4 Imm
CE5 Imm
GH16 I——

| [ | |IIII [ | III IIIII

hut PPN PR gﬁggﬁigﬁ
TIJIIIIQIISIQ IIr-=x T

g I5°5556°506%0 55325

B Hemicellulose B Pectin L

B Cellulose u B Metabolism

GH15
GH135

GH47 I

MOANO M O UVTITSTTTONONTAND O NNMNONTONOW

5235855 5555255585555058005553200
o o CX] Coo0

] B Chitin B Unknown

m Fungal cell wall L H Cutin
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entomopathogenicity of these fungi. All other encoded GHs are
linked to a range of substrate specificities, including cellulose and
cellobiose, hemicelluloses, pectins, p-1,3 glucan, starch, cutin,
and bacterial proteins (Fig. 5). Out of all the individual families,
GH16 (active on B-1,4 or B-1,3 glycosidic bonds in various glucans
and galactans), GH18 [catalytically active chitinases (EC 3.2.1.14)
and endo-B-N-acetylglucosaminidases (EC 3.2.1.96)], as well as
family GH76 (endo o-1,6-mannanase) were the most abundant in
this genome (Figs. 4 and 5). V275 genome also encodes an GH114
family enzyme with endo-a-1,4-polygalactosaminidase activity.
The homolog protein Ega3 from A. fumigatus is found to disrupt
the formation of microbial biofilms, which is related to its patho-
genicity (Bamford et al. 2019). Both V275 and ARSEF 4556 genomes
encode an endo-p-1,2-glucanase (GH164, EC 3.2.1.71), an enzyme
that was primarily found in eukaryotes in the soil fungus
Talaromyces funiculosus (Tanaka et al. 2019). In that fungus, the
enzyme was found to hydrolyze linear and cyclic pB-1,2-glucans
to sophorose. Sophorose is known to be the most potent inducer
of cellulases (Sternberg and Mandels 1979; Bazafkan et al. 2014),
and thus, V275 can putatively hydrolyze plant cellulose as a car-
bon source. Blastp results of the protein sequence showed a very
high similarity (100% identity and > 90% similarity with all the
available Metarhizium spp. genomes), with all hits being hypo-
thetical proteins. Matches were also found with other endophyt-
ic and plant-related fungal hypothetical proteins, such as
Epichloé festucae FI1 (QPG94255.1), Moelleriella libera RCEF4871
(KZZ99403.1), Purpureocillium lilacinum (GJN82308.1), Claviceps af-
ricana (KAG5920958.1), but with lower similarity percentages
(71-84%). The V275 strain also encodes sialidases that are used
to break down sialic acids. V275 carries also a gene encoding
N-acetylglucosaminidase, which hydrolyzes N-acetylglucosamine
(GlcNAc), an enzyme found as a component within the cell
wall of bacteria, chitin in fungi and in the exoskeletons of
arthropods (Sullivan et al. 1984). The GH92 family has one repre-
sentative protein in the V275 genome belonging to exo-acting
a-mannosidases, with specificity toward o-1,2-, a-1,3-, and
a-1,6-linked mannooligosaccharides.

Furthermore, the V275 genome contains 67 AAs, belonging to
13 families (Fig. 4) that mainly consist of ligninolytic enzymes.
Most of these enzymes (50 out of 67) belong to families AA1 (EC
1.10.3.2, 1.10.3—multicopper oxidases and laccases), AA3, includ-
ing cellobiose dehydrogenases (EC 1.1.99.18) that are exclusively
found in wood-degrading and phytopathogenic fungi, AA7 (EC
1.1.3.—glucooligosaccharide oxidases), chitooligosaccharide oxi-
dases (EC 1.1.3.-), and cellooligosaccharide dehydrogenases (EC
1.1.99.-) (Figs. 4 and 5).

CEs are enzymes that remove esters from saccharides
(Cantarel et al. 2009). 12 enzymes classified in 6 families were pre-
dicted, including 6 enzymes for cutin (cutinase, EC 3.1.1.74) and
chitin (chitin deacetylases, EC 3.5.1.41) degradation, 2 of which
would have specificity to acetic ester (acetyl esterases, EC
3.1.1.6), alongside one N-acetylglucosamine-6-phosphate deace-
tylase (3.5.1.25) which catalyzes the first step in the biosynthetic
pathway to amino-sugar-nucleotides and 3 acetyl-xylan esterases
(EC 3.1.1.72), with specificity for xylan (Figs. 4 and 5).

The 3 PLs found were equally dispersed in 3 PL families of V275.
Families PL8_4 and PL20 are associated with activities of a pectin
methylesterase (EC 3.1.1.11), for degradation of plant cell wall
component pectin and of an endo-B-1,4-glucuronan lyase
(EC 4.2.2.14) which catalyses the depolymerization of linear
B-(1,4)-polyglucuronic acid (glucuronan), respectively (Fig. 4).
Due to the poor characterization of these enzyme families and
the absence of an Enzyme Commission number (EC number),
the protein belonging to PL7_4 family was searched in CDD data-
base to assign a function. CDD and NCBI search recognized a con-
served alginate lyase that degrades the linear polysaccharide
alginate.

Transposable elements and genomic intraspecies
differentiation

TEs are classified into 2 broad categories: Class I retrotransposons
(LTR, SINES, and LINES) and Class II DNA transposons (DNA and
Helitron TEs) (Finnegan 1989). RepeatModeler predicted 4,124
(covering 4.9% of the genome length) and 3,129 (4.3%) TEs for
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a Transposable Element Locations
s7 [l L AR O ||||||||| (R BRI WA TR
s12 LLONRICT R e

TURE T I8 S 1w |
[T TR VATIITT T LTV L [ TRARTY TR
LRI TR T AR AT T

C4 (I

L RUTIUNN |

W Ginger2/Tdd
EEl hAT-Restless
N MULE-MuDR
B Tcl/mariner-Fotl
Tadl
Il Tyl-copia-like
B Ty3-Gypsy-like
EEl Helitron-like
B Unknown

T T T T T

4 5 6 7 8

le6

Conserved Domain Transposable Element Locations
s7 I 1
s12 | I I | I T
c9 [
c8 I
e I | I 1
C5
Ca6
cas
caa
c40
ca I
c39
c38
C36
c35
c34
c32
€3 (I e
c29
c28
c25
Ei‘} W Ginger2/Tdd
& BB hAT-Restless
c19 EEE MULE-MuDR
cs B Tcl/mariner-Fotl
c6 i1l Tadl
c1s 1 I o
Ca B Tyl-copia-like
c11 | | B Ty3-Gypsy-like
c1o n W Helitron-like
0 1 2 3 4 5 6 7 8

le6

Fig. 7. Predicted TEs. a) Location of predicted TEs in each contig of V275, b) location of predicted TEs with a conserved domain in each contig of V275.

V275 and ARSEF 4556, respectively, with most of them in both gen-
omes being of unknown type (Fig. 6; Supplementary File 7). V275
genome was abundant in 8 types of TEs belonging to both
Class I RNA transposons (LTR/Copia, LTR/Gypsy) and Class II
DNA transposons (Line/Tad1l, DNA/MULE, DNA/Ginger-2, DNA/
TcMarFotl, DNA/hAT Restless, and RC/Helitron). On the contrary,
ARSEF 4556 appeared to have a high abundance of only Class I TEs,
an LTR/Gypsy type, and Class Ilof RC/Helitron (Fig. 6).

TEs can be further classified according to whether they can
move autonomously or not, by encoding the necessary enzymes
for their transposition (Wells and Feschotte 2020). Thus, all pre-
dicted TEs (excluding the unknown types) were searched in CDD
database tolocate reverse transcriptase or transposase conserved
domains indicative of putatively active mobile TEs. Conserved do-
mains were identified in a relatively small proportion of each TE
type (Fig. 6—overall 28% for V275 and 9% for ARESF 4556). The

remaining TEs were either too small or did not contain a con-
served domain, representing remnants of a previous transposition
(Supplementary Table 7).

An additional examination of the insertion preference of these
mobile TEs was performed to assess whether insertion tended to-
wards regions that would not disrupt genes associated with cell
function (Fig. 7; Supplementary Table 8). The presence of un-
known TEs was widespread across contigs of V275 and TEs with
conserved domains did not show a clustering pattern. Contig 3
of V275 genome displayed a notable density of TEs, averaging ap-
proximately one transposon per 16 kb, and contained genes with
TE-mediated transfer potential (Fig. 7). There were several cases
of TEs belonging to all types which were located next to unique
genes of M. brunneum V275, within the Metarhizium lineage
(Supplementary Table 8—red color), with others only detected
within M. brunneum strains (Supplementary Table 8—green).
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V275 harbored 108 MULE/MuDR TEs with 14 having a
conserved transposase domain, compared with none in ARESF
4556. One MULE/MuDR TE (no 18 of TEs presented in the
Supplementary Table 8) was identified between a purple acid
phosphatase involved in Phosphorus (P) mobilization from organ-
ic compounds and an major facilitator superfamily (MFS) trans-
porter, as well as a M. brunneum lineage-specific serine/
threonine kinase and a ferric reductase gene. A second Mule/
MuDR TE (no 19; Supplementary Table 8), not found in other
Metarhizium strains, was identified next to a patatin-like phospho-
lipase plant gene, which was also unique to V275. This TE presents
a high identity with a respective Mule sequence from P. chlamydos-
poria, P. lilacinum, and Epichloé sp., other entomopathogenic and
plant-related fungi, but not any other Hypocrealean species.
Another TE (no 20; Supplementary Table 8) was found next to a
gene encoding 3 domains, an integrase (pfam00665), which med-
lates integration of a DNA copy of the viral genome into the host
chromosome, an ASF1-like histone chaperone (cl22451) and a gag-
polypeptide of LTR copia type (cl26047).

Overall, 6, 2, and 3 genes unique to V275 were located
next to Line/Tad, LTR/Gypsy, and Rc Helitron TEs, respectively
(Supplementary Table 8).

Pathogenicity-related genes

Comparative analysis with the PHI database was conducted
to elucidate common and different potential virulence factors
of the 2 strains. In V275, a total of 5,250 proteins (e-value
cutoff 1x 107°) exhibited similarity with experimentally verified
pathogenicity-associated genes in other fungi. These proteins
were linked to diverse activities, including reduced virulence
(48%), unaffected pathogenicity (37%), loss of pathogenicity (6%),
lethality (4%), increased virulence (3%), and some classified as
effector-plant avirulence determinants (2%) (Supplementary
Fig. 2). The identified genes originated from various modes of
life, spanning entomopathogens (e.g. M. robertsii and B. bassiana),
phytopathogens (e.g. Fusarium oxysporum, Verticillium dahliae, and
Ustilago maydis), and human pathogenic fungi (e.g. Cryptococcus
gattii and Candida glabrata). Additionally, similarities were ob-
served with pathogenesis-related genes of bacteria and parasites
(e.g. E. coli and Trypanosoma sp.). Detailed information for each
PHI gene is provided in Supplementary Table 9.

The comparison with predicted genes of ARSEF 4556 revealed
many common proteins, yet 82 and 79 unique pathogenesis-
related genes were identified in the genomes of the V275 and
ARSEF 4556 strains, respectively. Among these, only 37 out of 82
genes in V275 had conserved domains (Supplementary Table 9),
while the remaining were hypothetical proteins. Notably, several
of these genes exhibited similarity with genes from phytopatho-
genic microbes, such as a nitrate/nitrite transporter (ntrl) impli-
cated in increased virulence of tomato (Solanum lycopersicum) by
F. oxysporum (similarity 87%) (Gomez-Glil et al. 2018), a reductase
protein (MoARGS5,6) implicated in loss of pathogenicity of
Magnaporthe oryzae in barley (Hordeum vulgare) (Zhang et al. 2015),
a serine/threonine protein kinase (cocbk1) linked to virulence in
Colletotrichum orbiculare (similarity 74%) in cucumber (Cucumis sati-
vus) (Kodama et al. 2017), an RXLR effector gene (SFI4) of
Phytophthora infestans (similarity 43%) associated with increased
virulence in Nicotiana benthamiana (Zheng et al. 2014), an
FKBP-type peptidyl-prolyl cis-trans isomerase (BcPIC5) (similarity
67%), responsible for protein folding and posttranslational modi-
fications, which was found to cause reduced virulence of Botrytis
cinerea in tomato (Gioti et al. 2006), and an AM toxin synthase
(similarity 46%), related to the pathogenicity of apple tree (Malus
domestica) by Alternaria alternata (Johnson et al. 2000). The latter
protein possesses a conserved domain of nonribosomal peptide
synthetase component F (implicated in secondary metabolites
biosynthesis, transport, and catabolism).

Some interesting cases from ARSEF 4556 include similarity
with a gene responsible for loss of pathogenicity (fga2) seen in
F. oxysporum against tomato plants (similarity 80%) (Jain et al.
2005), a transcription factor (GzHOMEL026) causing lethality in
wheat by F. graminearum (68%) (Son et al. 2011), as well as the tran-
scriptional regulator ZtRIm1 (Mohammadi et al. 2020) and the lig-
ase Myco4 (Yemelin et al. 2017), implicated in reduced virulence
of Zymoseptoria tritici in wheat (similarity 60 and 67%). Even though
the domains of the PHI genes have been retained, as this in silico
study showed, experimental verification is still required to ascer-
tain their expression.

Focusing on genes experimentally verified in mutualistic
endophytes, a great similarity is exhibited between genes impli-
cated in fungal colonization of E. festucae. More specifically, V275
encodes genes with 71, 69, and 77% similarity with genes noxA,
noxB, and noxR, respectively necessary for the development of
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Table 2. (continued)

Reference doi

Organism

% Identity

% Identity

Cluster type

Biosynthetic

MIBiG accession

Compound

—V275

—ARSEF

class

4556

10.1038/s41467-020-15664-4

T1PKS, terpene 50 66 M. robertsii ARSEF 23

Polyketide/

BGC0002427

Subglutinol A/Subglutinol B

Terpene

RiPP

10.1073/pnas.1522907113

14 Diaporthe toxica

14

Fungal-RiPP

BGC0001398

Phomopsin A/b/E

(Phomopsis sp.)

Hypholoma

10.1016/j.fgb.2008.12.002

100

100

Terpene Terpene

BGC0001248

Clavaric acid

sublateritium

Phoma sp.

10.1016/j.fgb.2019.04.004

T1PKS 36

Terpene

BGC0001976

Eupenifeldin

10.1128/AEM.68.5.2148-2154.

Fusarium

8

Phosphonate

Terpene

BGC0001278

Nivalenol/deoxynivalenol/

2002

sporotrichioides (F.
graminearum)

(BGCO001277)

3-acetyldeoxynivalenol/

15-acetyldeoxynivalenol/neosolaniol/

calonectrin/apotrichodiol/

isotrichotriol/15-decalonectrin/T-2

toxin/3-acetyl T-2 toxin/trichodiene

Terpendole E

10.1016/j.chembiol.2012.10.010.

10.1128/AEM.01040-07

Tolypocladium album
Claviceps fusiformis

100

100

Indole, Terpene

Terpene

BGC0001260

23
58

Fungal-Ripp-like
Indole, NRPS

Terpene

BGC0001267

Lysergic acid/elymoclavine

Ergotamine

10.1016/j.phytochem.2005.04.011

Claviceps fusiformis/

58

Terpene/

BGC0001241

Alkaloid

Claviceps purpurea

20.1

appressorium-like hyphae termed as expressorium, for the estab-
lishment of an epiphyllous net on the plant host and exiting leaf
tissue. In addition, genes associated with the lethality of plant
hosts were detected in V275 genome, such as the transcription
factor GzOB030 (97%) (Son et al. 2011) and FgVPS2 (94%) which is
part of the endosomal sorting complex (Xie et al. 2019).

Biosynthetic gene clusters

Cluster prediction using AntiSMASH showed that V275 and
ARSEF 4556 exhibit a variety of putative biosynthetis gene clusters
(BGCs), encoding 74 and 71 clusters, respectively. Predominantly,
these clusters feature type i polyketide synthase backbones
(T1PKS), although a diverse array of 10 different classes of nonri-
bosomal peptide synthetases (NRPS), NRPS-like, terpene, indole,
Fungal-RiPP-like, and hybrid clusters (harboring combinations of
2 or more backbones) were also detected (Fig. 8; Supplementary
Table 10). The genome of ARSEF 4556 has more NPRS, T1PKS, and
terpene clusters, whereas V275 has more indole, Fungal-Ripp,
Ripp-like and hybrid clusters (Fig. 8). Both genomes contain a high
number of genes corresponding to synthases for each BGC type,
with V275 presenting a higher number in 6 out of 14 synthase types
(Fig. 8b). Intriguingly, only around half of the total predicted V275
and ARSEF 4556 BGC clusters could be linked to a known product
(Table 2), while the rest are cryptic.

Annotated BGCs of NRPS and NRPS/polyketide type, associated
with the production of compounds destruxin A, serinocyclin, and
swainsonine, which are insecticidal and mycotoxic compounds of
Metarhizium spp., were identified in both M. brunneum strains and
have been previously identified in other EPF strains (Skrobek and
Butt 2005; Krasnoff et al. 2007; Luo et al. 2020). Another important
BGC found in V275 genome is that of the NRP cluster of metache-
lin. It has also been described in M. robertsii (Zhang et al. 2020), but
not in other genomes of the Metarhizium genus. Additional NRP
clusters encoding antimicrobial CIML compounds (A to C), which
are fungal macrolide natural products that exhibit antifungal ac-
tivity, have also been previously described (Morishita et al. 2020),
as well as in both V275 and ARSEF 4556 genomes. In M. brunneum
strains, a newly described BGC comprising 12 genes has been pre-
dicted in this study. This cluster includes a choline synthase, a
choline transporter, an amino acid permease, as well as a tran-
scription factor potentially regulating choline biosynthesis
(Fig. 9). Notably, a protein processing both cytoplasm to vacuole
targeting domain and a toxin-10 domain, which is found in in-
secticidal bacterial proteins, is also part of this cluster (Fig. 9).
Besides choline, enniatins was another class of compounds found
in V275 and ARSEF 4556 (Fig. 9). In M. brunneum, the cluster ap-
pears to be comprised of 19 and 20 genes in V275 and ARSEF
4556, respectively. Both Metarhizium strains have a cluster asso-
ciated with the production of a thioclapurine analog from
Claviceps purpurea (Dopstadt et al. 2016). Comparison of synteny
and protein sequences of these genes in both clusters showed a
high similarity. Remarkably, both V275 and ARSEF 4556 strains
harbor 2 BGCs, i.e. peramine and e-Poly-L-lysine, which are asso-
ciated with plant colonization. These clusters are involved in in-
sect feeding deterrence and inhibition activity against plant
pathogens, during plant colonization of the mutualistic endo-
phyte E. festucae (Tanaka et al. 2005; Purev et al. 2020). The gene in-
volved in peramine biosynthesis, a perA synthase orthologue with
the same domain order and identity, has also been detected in M.
rileyi and M. majus (Berry et al. 2019). Intriguingly, while production
of e-Poly-L-lysine has not been previously reported in the genus,
comparison of aminoacid sequences against NR NCBI database
revealed the presence of the respective synthase gene (epls) in
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Fig. 9. Gene organization of the VOC and betalactone clusters as well as the BGCs related with choline, and enniatins production in V275 strain.

several Metarhizium spp., along with several plant-related fungi
like Fusarium spp., Emericellopsis spp. and P. chlamydosporia and my-
cophilic fungi like Cladosporium mycophilum. Direct comparison of
the protein sequences between epls gene of E. festucae and the re-
spective gene in V275 exhibited a percent identity of 65% with
98%, coverage, indicating the presence of an orthologue gene.

Polyketide clusters that have been detected in both strains and
have been previously reported in Metarhizium include the cluster
responsible for the production of BAB/BAA compound (Sbaraini
et al. 2021). V275 also harbors polyketide clusters that are
associated with phytotoxic compounds (Table 2). A characteristic
example is the cluster responsible for the compound UNII-
YC2Q1094PT (synonyms: ACR-toxin I) production. Initially
characterized in A. alternata, this cluster includes the homologous
gene ACRTS?2, pivotal for biosynthesis of host-selective ACR-toxin
inlemon pathotype of A. alternata (Izumi et al. 2012). The V275 core
biosynthetic protein of this cluster shows 46.82% similarity with
ACRTS2 and a 99% alignment coverage, suggesting that it is its
homolog, and they share the same protein domains, increasing
the possibility of producing the same product.

Several terpene clusters were predicted, that had a relatively
low similarity with existing compounds (Table 2). However,
BGCs of clavaric acid and terpendole E presented a high similarity
with the respective clusters from Hypholoma sublateritium and
Tolypocladium album. Terpendole E is a kinesin Eg5 inhibitor, and
thus, a potent anticancer drug (Motoyama et al. 2012).

A newly characterized class of fungal natural products corre-
sponding to isocyanide synthase (ICS) BGC was also detected.
Products of the cluster mediate pathogenesis, microbial

competition, and metal homeostasis through metal-associated
chemistry (Nickles et al. 2023). The main synthase gene in V275
contained 2 conserved domains, i.e. DIT1_PvcA and TauD.

To characterize the unknown BGCs, above mentioned as cryp-
tic, MiBIG cluster family prediction was employed. Clusters
encoding the compound UNII-YC2Q1094PT, subglutinol A/B,
cryptosporioptide B, monoascorubin, exist in both strains but
were placed in different families due to rearrangements. Out of
the unknown clusters, 29 were found to be common in both
strains and were placed in the same families (Supplementary
Table 10). In addition, 8 and 9 unique clusters were detected in
V275 and ARSEF 4556 genomes, respectively (Supplementary
Table 10). These are not associated with an existing compound,
nor do they present syntenic similarity that would justify the pro-
duction of similar compounds. This is an indication of the diverse
secondary metabolic potential of closely related strains of the
same species.

cryptic BGCs found in V275 (and its relatives) were further ana-
lyzed due to their potential intriguing function: One of the un-
known common clusters between the 2 strains contains a gene
with vicinal oxygen chelate superfamily domain, offering glyoxa-
lase/bleomycin resistance (Clusters 37_3, 8_5 in Supplementary
Table 10) (Fig. 9). This gene was solely found in M. brunneum strains
ARSEF 4556, V275, and ARSEF 3297 and it seems to be a species-
specific gene. Downstream of this gene, a gene encoding a mono-
oxygenase was also detected only in M. brunneum strains. This
cluster could potentially be used for resistance to antifungal drugs
or resistance to the compound produced by the same strains.
The function of glyoxalase/bleomycin resistance protein is to
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ameliorate the toxicity of methylglyoxal, a by-product of glycoly-
sis (Kargatov et al. 2018). A respective ARSEF 4556 cluster is
grouped in the same family, but V275 cluster appears to be ex-
panded upon with the addition of multiple genes.

The V275 strain also contains a BGC cluster of 8 genes with a
core biosynthetic gene related to the production of a nonNRPS
related siderophore. Whereas siderophores have been asso-
ciated mainly with environmental iron acquisition under iron
starvation (Chareyre and Mandin 2018), they may be implicated
in a variety of other processes (Ritschlin et al. 2018). The core
biosynthetic enzyme of this cluster in M. brunneum belongs to
IucA/IucC family related to aerobactin biosynthesis and pos-
sesses a RhbC domain. Notably, tblastn analysis reveals the
presence of this cluster solely in M. brunneum and M. robertsii
strains among all Metarhizium species (similarity above 55%)
and it can be detected in taxa within Eurotiales, Agaricales and
Hypocreales (specifically, only in Metarhizium, Cladobotryum,
and Fusarium spp.) within the Kingdom of Fungi, with lower
similarity.

A distinctive feature of V275 is the presence of a betalactone
cluster which is absent from ARSEF 4556 (Fig. 9). This 37Kb cluster
found in V275 contains 12 genes, including 2 core biosynthetic en-
zymes and 2 additional biosynthetic genes. It also encodes a
fungal-specific transcription factor, proteins implicated in fatty
acid biosynthesis and a G protein-coupled receptor that transmits
extracellular signals into the cell. Betalactones natural products
have been recognized for their potential antibacterial and
antifungal activities (Robinson et al. 2018). Interestingly, the
betalactone cluster has also been found in entomopathogenic
nematode-related bacteria where it serves as proteasome inhibi-
tor (Shi et al. 2022). This cluster comprises proteins with the
same domains as the V275 cluster (acyl-CoA synthetases and
transcription factor).

Identification of Metarhizium strain- and species-specific
genes

The search for unique proteins was extended in all the available
Metarhizium strains. The set of predicted proteins of V275 was
searched to detect those that can only be found in M. brunneum
strains, among all Metarhizium species, as well as proteins that
are unique to M. brunneum V275, compared to all the available
Metarhizium strains. Results revealed 224 proteins that can only
be detected in all M. brunneum strains V275, ARSEF 4556, and
ARSEF 3297 within Metarhizium lineage. Out of these proteins,
104 had either a known conserved domain or a conserved domain
of unknown function (Supplementary Table 11). GO term annota-
tion allocated these proteins into nineteen categories based on
biological function, with most of the proteins corresponding to
transmembrane transport, proteolysis and regulation of DNA
transcription (Supplementary Fig. 3). In addition, 28 GO terms
were assigned for molecular function, with the majority belonging
to oxidoreductase activity, ion binding/monooxygenase activity
and protein binding (Supplementary Fig. 3). Interestingly, all
M. brunneum strains contain a protein with an endotoxin_N super-
family domain (cl04339), which contains insecticidal toxins pro-
duced by the bacterial genus Bacillus spp. Once activated, the
endotoxin binds to the gut epithelium and causes cell lysis leading
to death. Another interesting protein belonged to the GRDP-like
superfamily (cl42056) which is found in glycine-rich domain pro-
teins of Arabidopsis. Besides M. brunneum strains, the protein was
identified in the Xylariaceae endophyte Xylaria bambusicola,
Microascaceae mold Wardomyces moseri, with around 75%

coverage and 43% identity, and in several Colletotrichum sp. strains
with a slightly lower identity score (37%). This protein is involved
in stress responses in Arabidopsis plants, since experimental over-
expression led to improved stress tolerance and accelerated plant
growth, with indications that the auxin pathway may be involved
(Ortega-Amaroetal. 2015). An additional protein harboring a GH18
chitinase domain, with the additional transcription factor and
chitin recognition protein domains, was shared among the 3
strains.

Interestingly, M. brunneum V275 was found to harbor 414 unique
proteins among all other available Metarhizium strains, out of which
around half (219) had a conserved domain of a known function.
These proteins were categorized in 61 GO terms for biological pro-
cesses, with most of them belonging to DNA integration and pro-
tein phosphorylation (Supplementary Fig. 3). In addition, 55 GO
terms were assigned for molecular functions, mainly belonging to
protein and nucleic acid binding functions. These proteins are in-
volved in a variety of functions, among which transportation
(MFS transporters, multidrug resistance-associated proteins/ABC
transporters, and K" potassium transporters) and RGD2-like pro-
teins with RhoGAP (GTPase-activator protein for Rho-like small
GTPases) domain, that activate effectors involved in a wide variety
of developmental processes. Alsoidentified were HET proteins, pro-
tein kinases, a regulatory locus for aflatoxin biosynthesis (AflR)
(Woloshuk et al. 1994), a patatin-like phospholipase with lipid
acyl hydrolase activity, cytochrome P450 superfamily proteins,
CAP domain superfamily proteins, which include PR-1, NADP-
Rossman superfamily proteins, a jacalin-like plant-associated
sugar-binding superfamily protein, an integrase associated with
viral DNA integration in to host chromosomes, and transcription
factor domain proteins. Moreover, a protein with a heavy-
metal-associated domain which is found in several heavy metal
transport or detoxification proteins and has been associated with
abiotic stress tolerance in Saccharomyces cerevisiae (Sun et al. 2014)
was detected in V275 genome. A protein with aerolysin domain
may be implicated in insecticidal activities since members of this
family include enterolobin, a cytolytic, inflammatory, and insecti-
cidal protein from the Brazilian tree Enterolobium contortisiliquum
(Lima et al. 1999).

Discussion

This study presents a comprehensive genome analysis of the
highly effective entomopathogenic and endophytic fungal strain
M. brunneum V275. The analysis includes a detailed comparative
intraspecies genomic investigation, incorporating another inter-
esting for commercial exploitation strain, M. brunneum ARSEF
4556, as a reference (Saud et al. 2021). Interestingly, V275 pos-
sesses the largest genome among M. brunneum strains, although
it falls within the range of genomes documented for Metarhizium
species and other Hypocrealean Ascomycetes (Gao et al. 2011;
Saud et al. 2021). Synteny analyses showed a great gene order con-
servation between the strains, with few rearrangements and some
unique fragments. Previous Whole Genome analyses have re-
vealed high levels of synteny between different Metarhizium spe-
cies, such as M. anisopliae and M. acridum (Gao et al. 2011), while
the existence of these relocations within M. brunneum strains, as
well as the unique genome fragments that render V275 genome
larger than the ones of ARSEF 4556 and ARSEF 3297, indicate
that genomes of this lineage have a dynamic genomic organiza-
tion, with smaller scale evolutionary events shaping the intraspe-
cies relationships.
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Phylogenetic relationships and MAT gene
composition

The tree produced by the ML method (Fig. 2) is in accordance with
Metarhizium species’ phylogeny proposed by the employment of
traditional molecular markers for the taxonomy of the genus,
like ITS1-5.8S-ITS2 (ITS) in combination with EF-1, or mitochon-
drial genes and regions (Bischoff et al. 2009; Kortsinoglou et al.
2020). Even though the three M. brunneum strains group together
when compared with the other Metarhizium species, strain V275
is placed basally to the other two M. brunneum strains. This topology
which is based on the BUSCO single-copy protein matrix, indicates
that there may be several changes in the amino acid sequences of
these proteins which has led to the differentiation of this strain
compared to the other 2 M. brunneum strains, or vice versa. The
higher level of diversification of V275 is also evident by other gen-
omic attributes, since its genome is larger than the respective
genomes of the other two strains and thus, it also shows different
gene content and synteny (Fig. 3) which might be an indication of
carrying some elements, regions and genes which their common
ancestor had and were lost during evolution. Another plausible ex-
planation may be the acquisition of the unique V275 genomic frag-
ments through HGT events later in evolution, which leads to an
expansion of the genome through interactions with its different
hosts and differentiates this genome from the other strains.

The phylogeny of M. brunneum may be correlated with the mat-
ing type organization of each strain (Fig. 2). M. brunneum V275 pre-
sents a complete MAT1-2 gene at Contig 5, in a similar gene
organization seen in the M. brunneum strains ARSEF 4556 and
ARSEF3297 genomes (Saud et al. 2021). Strains of M. anisopliae,
M. guizhouense, M. humberi, M. majus, M. rileyi, and M. robertsii
were all found to harbor both MAT1-1-1 and MAT 1-2 genes, in
contrast with previous work that supported the concept that M.
majus would be the sole species that harbors both genes and
thus, it is homothallic (Hu et al. 2014). Therefore, V275 genome
analysis verifies the previous finding that M. brunneum along
with M. pingshaense, M. acridum and M. album are haploid and pre-
sumed heterothallic (Kepler et al. 2015).

Genes implicated in the dual (entomopathogenic
and endophytic) mode of life of M. brunneum
strains

The in silico analyses of V275 and ARSEF 4556 revealed notably
elevated BUSCO scores, along with the lowest count of contigs
and chromosomes among all currently sequenced Metarhizium
genomes, respectively. The comparative genome analyses un-
veiled significant diversity, not only in genome size (~2 Mb) but
also in gene content. While the variation in gene numbers was
marginal, the presence of distinct singletons in each genome
(Supplementary Table 11) was particularly intriguing. This phe-
nomenon suggests that these singletons might be associated
with functions that differentiate the adaptive mechanisms em-
ployed by these strains despite sharing similar lifestyles and cap-
abilities (Wood et al. 2022). Moreover, the identified genes common
to all M. brunneum genomes were found to be unique when com-
pared with other taxa of the genus Metarhizium, further emphasiz-
ing the species-specific genetic repertoire. Therefore, in this study,
the finding of several genes and genetic elements may help in the
better understanding of the mechanisms employed in entomo-
pathogenicity and endophytism. The origin of these strain- or
species-specific genes can only be speculated. Their variation
may be associated with TE-mediated transposition, since many
of these unique genes were located next to active TEs with

conserved domains. They may also be a result of HGT events, or
they may even constitute de novo evolved genes. Another possible
explanation could be that these genes are fast evolving and thus,
show low homology with the respective genes from other strains.
To exclude this possibility, we chose to set low similarity criteria
during our tBLASTn search. Even though there are strong indica-
tions of HGT events in certain cases, an extensive study of their
phylogenetic distributions is required to establish the origin of
these genes.

Additionally, this analysis presents the first evidence that a
plasmid of phage origin exists within the M. brunneun V275 gen-
ome, probably acquired through a HGT event. Its existence, along
with the genes it harbors, indicates its potential involvement in
the antimicrobial activity exhibited by the fungus, when found
in a soil environment or in a plant or insect host and their indigen-
ous microbiomes. It is well documented that Metarhizium species,
as well as other entomopathogens and endophytes present an an-
tagonistic behavior against microbes found in the same niches
(St Leger and Wang 2020 and references therein). Therefore, this
plasmid and its genes may be an additional weapon in the arsenal
of the strain for better adaptation to the environment and elimin-
ating antagonism.

Additionally, our detailed analysis of CAZymes revealed a sub-
stantial number of CAZymes in both genomes of M. brunneum
strains, including enzymes necessary for insect pathogenesis,
but also numerous plant cell wall degrading enzymes (PCWDESs).
Overall, the metabolic enzyme arsenal of M. brunneum V275
(Figs. 4 and 5), and similarly of ARSEF 4556, is in accordance
with the general notion that substrate metabolism has a vital
role in promoting fitness for growth and reproduction and there-
fore, likely plays a significant role in evolutionary speciation and
selection (Hage and Rosso 2021). The diverse range of genes en-
coding enzymes for degrading various substrates present in
M. brunneum genomes, underscores their complex ecological roles,
since it has been previously shown that the number and diversity
of GHs present in fungal genomes are correlated with their life-
style (Hage and Rosso 2021; Bradley et al. 2022). It is estimated
that fungus-plant associations originated around 750 million
years ago (Douzery et al. 2004), and thus, the established
association of Metarhizium species with plants may predate
their entomopathogenic activity (Hu et al. 2014). Within the
Clavicipitaceae family, recognized for encompassing both plant
pathogens and symbionts (Kepler et al. 2012), recent estimates in-
dicate that the divergence of the Metarhizium from the plant endo-
phyte Epichloé lineage occurred ~ 307 million Years Ago (St Leger
and Wang 2020). However, beneficial plant endophytes, like
Epichloé, typically encode a relatively lower number of PCWDs tar-
geting plant cell walls (e.g. pectinases, cellulases, and hemicellu-
lases) (Hane et al. 2020) compared to plant pathogens (Rafigi et al.
2023). Cellulase, xyloglucanase, and pectinase genes were part of
the ancestral fungal toolkit, since they were presentin early diver-
ging fungi that were associated with streptophytes (Douzery et al.
2004; Hage and Rosso 2021) and as shown in this work, they have
been retained in the M. brunneum genomes (Figs. 4 and 5). Some of
these enzymes are related to the activation of plant immunity in
plant pathogenic fungi (de Azevedo Souza et al. 2017), since cellu-
lases, xylanases, and cutinases have been linked with plant viru-
lent infection of Fusarium sp. and M. oryzae on wheat and rice,
respectively (Kikot et al. 2009; Quoc and Bao Chau 2017; Rafiei
et al. 2021). Moreover, pectin lyases have been linked with the
pathogenicity of phytopathogenic fungi such as Colletotrichum cos-
sodes and V. dahliae (Ben-Daniel et al. 2012; Yang et al. 2018), and 2
of the 3 V275 pectin lyases had conserved domains and a signal
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peptide domain for membrane localization or extracellular secre-
tion (Fig. 4). Consequently, the presence of PCWDEs coupled with
the overall larger abundance of CAZymes in M. brunneum, when
compared to grass endophytes, like Epichloé spp, challenges their
characterization as mutualistic endophytes with beneficial effects
on plants. In that sense, the mechanism employed by EPF to avoid
triggering plant defense responses during endophytic coloniza-
tion remains elusive. It is already known that endophytic EPF
induce plant systemic resistance through the expression of meta-
bolites (Jaber and Ownley 2018) and the possibility that these
plant-degrading enzymes are involved in the mechanism of plant
immunity activation described in several works remains to be
further explored. However, in this study, several of these CAZ
enzymes were found to contain secreted signal domains
(Supplementary Table 2), and such enzymes have been linked to
the promotion of host colonization and activation of host re-
sponses (Kubicek et al. 2014). Secreted GH16 enzymes have been
associated with translocation into the host and activation of plant
defense responses in tomato and N. benthamiana (Bi et al. 2021).
Alternatively, the abundance of PCWDE CAZymes in EPF may be
explained by the strains’ potential inability to express these genes
or to the level of silencing during their invasion or colonization of
their plant host. This aligns with the hypothesis proposing the
evolution of endophytism from the saprophytic state of EPF, as
these enzymes were essential for substrate decomposition in the
soil (Brundrett 2002). The early divergence of the saprophyte
and occasional mushroom pathogen species Metarhizium mar-
quandii further supports this notion (Rehner and Kepler 2017).
However, the absence of a genome sequence for this phylogenet-
ically basal Metarhizium species leaves the adoption of different
modes of life for EPF unclear. All the above provide indications
that comparison of enzymes that fungi secrete can or should be
associated with fungal evolution (Barrett et al. 2020), since they
may provide useful information about the taxonomy and evolu-
tionary relationships of organisms, especially those with multiple
modes of life.

Moreover, our study has identified a specific chitinase gene
that encodes a GH18 domain. This chitinase is implicated in ma-
nipulating a plant’s chitin-triggered immunity, as previously
documented (Fiorin et al. 2018). This discovery indicates that
M. brunneum, while not posing a threat toits plant host, has poten-
tial to confer protection as an endophyte by activating the host
plant’s defense mechanism. EPF do not trigger plant defense re-
sponses towards their own, which indicates that they are not con-
sidered a threat (Hao et al. 2017). It is also plausible that these
genes are remnants of ancestral genes, suggesting the evolution
from a plant pathogenic mode of life to a mutualistic one.

The identification of unique V275 genes (among M. brunneum
strains), such as those encoding patatin-like phospholipases, a
jacalin-like superfamily protein, and a protein with a heavy-
metal-associated domain typically found in plant genomes, sug-
gests a potential contribution of the fungus to additional biotic
and abiotic stress tolerance in their plant hosts, as shown for
these genes when located in the plant genome (Gigon et al.
2004). Patatin-like PLA, enzymes have been found to act as effect-
or molecules in several pathogenic bacteria to target host cellular
membranes (Anderson et al. 2014). Although more experimental
data are needed, it may be suggested that these genes may render
M. brunneum a valuable partner for plants, providing adaptive ad-
vantages under diverse environmental conditions.

Our analyses of PHI genes revealed a notable proportion
of genes associated with arthropod pathogenicity, underscoring
the multifaceted nature of these fungl. While earlier

investigations in Metarhizium spp. suggested a smaller percentage
for these genes (Gao et al. 2011), itis essential to note the exponen-
tial growth in the number of experimentally studied genes impli-
cated in fungal pathogenicity over the past decade (for review see
Wangetal. 2012 and references therein). For instance, a significant
identity (80%) was found with gene so the deletion of which leads
to disruption of mutualistic symbiosis with the plant host
(Charlton etal. 2012). Surprisingly, in several cases, alarge similar-
ity against genes associated with reduced virulence of F. grami-
nearum was detected. Some of these cases involve FgAP2mu, a
gene mediating fungal polarity during plant infection (identity
100%) (Zhang et al. 2019) and elp3, an elongator complex gene in-
volved in the development and oxidative stress response of the
fungus (identity 98%) (Lee et al. 2014). Consequently, the expand-
ing dataset within the PHI database aligns with the enhanced un-
derstanding of the intricate genetic underpinnings governing the
pathogenic potential of these fungi.

VOCs are produced by both plants and fungi. In the case of
M. brunneum it is well established that two VOCs, i.e. 1-octen-3-ol
(common name: Mushroom/Matsutake alcohol) and 3-octanone
(IUPAC synonym: octan-3-one), are produced and act as biostimu-
lants to the growth of plants (Wood et al. 2022) and/or pest repel-
lents, especially for wireworms in small quantities (Wood et al.
2023) and lethal in larger concentrations (Khoja et al. 2019). Our
whole genome analysis showed that M. brunneum strains do not
contain a BGC cluster related to their production. It is now known
that the precursor for both these VOCs is linoleic acid. Linoleic
acid is dioxygenased to form 10(s)-hydroperoxide (10-HPOD)
from a dioxygenase containing a cytochrome P450-related do-
main [DOX-(CYP)] and 10-HPOD is subsequently cleaved in
1-octen-3-ol and 10-oxo-(E)-9-decenoic acid (10-ODA) by a hydro-
peroxide lyase (Teshima et al. 2022). 1-octen-3-ol is transformed to
3-octanone due to the activity of enone reductase in S. cerevisiae
(Darriet et al. 2002). In Aspergillus species the gene producing
10-HPOD has been determined as the ppoC gene (Brodhun et al.
2010; Kataoka et al. 2020).

This study successfully identified a substantial portion of BGCs
and associated metabolites previously documented within the
Metarhizium genus, i.e. in M. anisopliae (Gao et al. 2011; Sbaraini
et al. 2016), M. acridum (Gao et al. 2011), and M. robertsii (Zhang
et al. 2020; Sun et al. 2022). The number of predicted clusters in
both V275 and ARSEF 4556 strains closely resembled that of M. an-
isopliae, totaling 73 clusters (Sbaraini et al. 2016). While common
BGCs encoding enzymes to produce destruxins, swainsonine,
and other well-known secondary metabolites, including products
from NRPS and polyketide clusters, were identified for M. brun-
neum (Gao et al. 2011; Saud et al. 2021), both strains analyzed in
this work, exhibited shared and unique clusters not associated
with known compounds. These nonassociated BGCs were
designated as “cryptic” in this work. The observed variations in en-
tomopathogenic and endophytic activities are postulated to be
correlated with different compounds linked to the predicted
BGCs (Supplementary Table 10). However, as recommended in a
review on BGCs (Keller 2015), further exploration into the tran-
scriptional activity and extent of transcription of these clusters
is warranted for a more comprehensive understanding.

Several metabolites such as choline and enniatins were previ-
ously acknowledged to exist in Metarhizium spp (Zhang et al.
2020). However, for the first time, this study established a correl-
ation between these metabolites and specific BGCs or relevant
genes in M. brunneum (Fig. 9; Supplementary Table 10). This repre-
sents a novel contribution to the understanding of the genetic basis
underlying the biosynthesis of these metabolites in M. brunneum.
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While in previous studies, certain known secondary metabo-
lites implicated in endophytism, such as peramine (Berry et al.
2019), were confirmed in M. brunneum, this study additionally
identified clusters utilized in pathways for metabolites novel to
Metarhizium and previously implicated in the endophytic or myco-
philic activity of other fungi, such as e-poly-L-lysine (Christinaki
et al. 2024). Moreover, the identification of phytotoxic compounds,
such as BAB/BAA compounds (Table 2, Fig. 8), raises intriguing
questions about their potential activity while M. brunneum resides
within the plant host or acts as a rhizosphere colonizer. The in-
depth in silico characterization of these compounds opens ave-
nues for further investigation into their specific roles and impacts
on the host plant. In addition, a newly characterized class of fun-
gal natural products corresponding to ICS BGC was detected
(Table 2). The latter is a commonly found domain in ICS cluster,
while the presence of dit domain represents the ancestral ICS clus-
ter form. Studies have shown that dit ICS is more closely related to
bacterial ICSs than to other fungal ICSs and it is speculated that
fungal and bacterial dit ICSs are remnants of a common ancestor
(Lim et al. 2018; Nickles et al. 2023).

Intraspecies diversity of TEs

In this study, genomic intraspecies variability was well estab-
lished, but the mechanisms leading to this genome diversity can
only be speculated. TEs may be responsible for the observed vari-
ation. TEs are known to be important drivers of genome evolution
since they induce genomic alterations associated with insertions,
deletions, duplications, or translocations and in extent with gene
structure and expression of nearby genes (Finnegan 1989;
Marifio-Ramirez et al. 2005). The genomic TE distribution of both
strains was different in both TE numbers and types, which, in ex-
tent, may explain the size augmentation of V275 vs the size of
ARSEF 4556. V275 genome is abundant in 8 types of TEs belonging
to both Class I RNA transposons and Class II DNA transposons,
while ARSEF 4556 appears to have only Class I, with an abundance
of TEs belonging to the type LTR/Gypsy as well as RC/Helitron TEs
thatbelong to Class II (Fig. 6). V275 presented a significant number
of MULE/MuDR TEs while ARSEF 4556 none (Supplementary
Table 8). MULE elements were first identified in maize, but they
have been found in several members of animals, protozoans,
other plants and fungi (Feschotte and Pritham 2007). Among
these, MuDR-MULEs have the highest transposition frequency in
maize and a tendency to insert into or near genes (Cresse et al.
1995). This result was also found in this work, and it is in accord-
ance with a previous study in which it was shown that the distri-
bution of TEs in fungal genomes can vary significantly among
strains of the same species (Daboussi and Capy 2003).
Furthermore, this different TE distribution in closely related
strains (of the same species) may be attributed to an insertion
event and subsequent multiplication through the mechanisms
of transposition. The abundance of LTR/Gypsy TEs in the genome
of ARSEF 4556 indicates an extensive replication by copy and
paste mechanism compared to V275. This idea is further sup-
ported by the high number of small-sized MULE/MuDR TEs found
in the genome of V275 that may have remained after transposition
(Supplementary Table 7 and Supplementary File 1). Furthermore,
previous studies have shown that TE distribution may play an im-
portant role in the evolution of fungal genomes, since they have
been found to cluster in regions with high duplication and recom-
bination events (Thon et al. 2006) and are involved in inversion of
genomic regions (Braumann et al. 2008). Analysis of TEs in this
work showed that several TEs of all major types are located
next to genes that are exclusively found either in V275, or in

M. brunneum lineage, suggesting that TEs are major generators of
genetic diversity between these strains (Fig. 7; Supplementary
Table 8). Most of these lineage-specific genes are associated with
pathogenicity or stress responses and do not belong to the
typical housekeeping genes, in accordance with previous work
(Klosterman et al. 2011). The investigation of such genes can pro-
vide insights regarding specific traits exhibited by these strains
that may allow adaptation to new host niches, as suggested previ-
ously for the phytopathogen V. dahliae (Klosterman et al. 2011).
Additionally, these V275 and M. brunneum lineage-specific genes
may be independent evolutionary incidents as revealed by this
analysis. This hypothesis agrees with the one proposed for genus
Metarhizium which suggests that a great inter and intraspecies
genetic variability may be linked to their ability to adapt in various
habitats (Bidochka et al. 2001). Further research is warranted to
evaluate the expression of these strain-specific genes, as well as
genes associated with secondary metabolite production, to better
understand the mechanisms underlying the observed variations.

Concluding remarks

Overall, presented herein is the first report of a detailed compara-
tive whole genome analysis of 2 strains of the endophytic
entomopathogenic species M. brunneum showing a remarkable in-
traspecies diversity. While in the last few years, advancements
have been made in researching the interactions between patho-
gens and hosts, a significant portion of genes are associated
with secondary metabolite production in Metarhizium spp. which
remains uncharacterized. Additionally, there is limited knowl-
edge about the genomic organization, expression, and regulation
of these genes. In detail, content diversity was identified in genes
related to secondary metabolism affecting insect pathogenicity
mechanisms, endophytism, and antagonism with other microor-
ganisms that also have the same niche. Therefore, this study of-
fers new insights on the genes involved in the adoption of the
M. brunneum dual mode of life. As previously suggested, HGT
events may have played a role in shaping the observed variations
in metabolic potential (Khaldi et al. 2008; Sbaraini et al. 2016) and
genomic features found in this work may be related to the differ-
entiation in the endophytic or entomopathogenic abilities of the 2
strains examined here. Thus, an evolution of gene families and
mechanisms that are pivotal in modulating response to ecological
interactions is unveiled through this study. Furthermore, the ex-
istence of several plant pathogenesis-related genes, biosynthetic
gene clusters associated with phytotoxic compounds as well as
the variety of CAZy enzymes for plant-degrading material high-
lights the complicated relationships of Metarhizium strains, and
in extent EPF, with plants. In addition, the investigation of lineage-
specific genes is a useful tool to determine putative genetic
mechanisms implicated in the differential efficacy of each strain
regarding entomopathogenicity and endophytism. This investiga-
tion can also shed light on the evolutionary events that have
shaped each Metarhizium species and their association with both
plants and insects.
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