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Abstract

Intelligent vehicles have the potential to revolutionise transport by enhancing safety,
reducing congestion, and improving efficiency. A critical component of IVs is per-
ception—the ability to accurately interpret the environment for informed driving
decisions. While multi-sensor systems are widely used, camera-only solutions offer a
cost-effective alternative but face challenges in recognising the intentions of diverse
traffic agents in complex urban environments. This thesis addresses limitations in
current mono-camera approaches, which often overlook explicit behavioural cues
and lack integrated pipelines for discrete intention behaviour recognition.

A literature review identified key gaps, including the absence of methods for pre-
dicting discrete intention behaviours across various traffic agents, insufficient public
datasets capturing complex urban scenes for intention prediction, and underutilisa-
tion of explicit cues such as vehicle light signals and object orientation. Additionally,
existing studies rarely consider integrated pipelines that combine detection, tracking,
and behaviour recognition while accounting for error propagation across stages.

To address these gaps, a monocular traffic hazard dataset was developed, captur-
ing diverse traffic agents and explicit behavioural cues relevant for hazard recogni-
tion. Deep learning models, including Vision Transformers and Convolutional Net-
works, were designed to leverage these features, demonstrating improved accuracy
in recognising complex traffic behaviours from single images. Experiments exploring
different input features, observation horizons, and class granularities revealed that
combining explicit and implicit cues enhances recognition performance.

A complete hazard recognition pipeline was implemented, integrating detection,
tracking, and behaviour recognition to assess system-level performance. Results
highlighted the challenges of error propagation across modules while demonstrat-
ing the feasibility of end-to-end monocular pipelines for complex traffic behaviour
recognition.

The key contributions of this thesis include the development of a targeted monoc-
ular dataset for behaviour recognition, the creation of models utilising underex-
plored visual cues, and the integration of these models into a unified hazard recog-
nition pipeline for camera-only IV systems. This work demonstrates the potential
of monocular approaches for traffic behaviour recognition and provides a foundation
for cost-effective, scalable intelligent vehicle solutions. Future research should fo-
cus on expanding dataset diversity, improving model robustness, and incorporating
multi-agent interactions to enhance real-world applicability.
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Chapter 1

Introduction

The rapid advancement of Intelligent Vehicles (IV)s has the potential to revolutionise
transportation by enhancing road safety, reducing congestion, and improving driving
efficiency. A critical component of IV technology is perception—the ability to ac-
curately interpret the surrounding environment to make informed driving decisions.
While multi-sensor fusion approaches incorporating LiDAR, radar, and ultrasonic
sensors are widely adopted, recent discussions in the autonomous vehicle commu-
nity have explored the feasibility of camera-only systems. This thesis investigates
the development of deep learning algorithms and a specialised dataset to enable
mono-camera [Vs to learn complex traffic behaviours, aiming to enhance perception
capabilities while reducing system cost and complexity.

According to the World Health Organisation (WHO) there were 1.19 million
road traffic fatalities in 2021 [1]. In the UK, 2,055 and 119,850 road casualties were
reported in 2020 and 2021, respectively, with 1,676 resulting in fatalities |2, 3]. The
European Commission reported over 20,000 traffic-related deaths in 2022 [4]. The
UK Department for Transport and the US National Highway Traffic Administration
reported that 94% of traffic collisions resulted from human error and imprudence,
including factors such as driver distraction, impairment, disobedience, and fatigue
[5, 6]. The American Transportation Research Institute reported that the freight
sector has a cost of $74.5 billion due to congestion issues [7]. Congestion greatly
impacted the UK in 2019, where drivers lost an average of 115 hours and cost the
country a value of £6.9 billion [7]. Other factors influencing road traffic collisions are
vehicle design, traffic conditions, geometric characteristics of the road, and weather
conditions [8].

Enforced legislation, other transportation methods, road improvements, and con-
gestion charges have been proposed to tackle these road traffic issues. Enforced
legislation includes road speed limit, drinking and driving, use of motorcycle hel-
mets, use of seat belts, and child restraints [9]. Different methods of transportation
include electric scooters and bicycle sharing |10} |11}, [12], and telecommuting trans-
portation [13| |14]. Road improvements include smart highways and smart roads,
[15, 16]. The congestion charge is an imposed fee for drivers to drive in areas prone
to congestion, such as main cities like London and Stockholm [17, (18, |19]. The fee
aims to reduce traffic congestion, improve air quality, and incentivise individuals to
use another method of transportation. Although these measures are in place, the
number of road users is expected to double by 2050 [20], and nearly two billion cars
are projected to be on the road within the next twelve years |21]. Therefore, these
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solutions may prove insufficient. Moreover, they do not directly address the primary
cause of traffic accidents: human drivers.

IVs have the potential to solve or mitigate the issues mentioned earlier. For
example, ADAS systems can take control of the vehicle in situations where humans
overlook a potential traffic collision. A fully automated vehicle is expected to op-
erate without any human intervention, eliminating the potential for human errors
and imprudence [6]. IVs are also expected to communicate with their environment
and other road users, enabling them to make better use of road space, reducing con-
gestion, pollution, and journey time [5]. The authors [22] evaluated the innovative
technologies integrated into vehicles to enhance driver safety and showed that auto-
mated technologies like automatic emergency braking and lane departure assistance
have already demonstrated prominent benefits.

Since IVs can offer the benefits mentioned above, many automotive companies
worldwide have been testing and deploying IV technologies. For instance, in the
United States companies such as Tesla [23] and Waymo [24]; in China, Baidu [25]
and Tencent [26]; in Germany, Mercedes-Benz [27], BMW [28] and Volkswagen [29);
in Japan, Toyota [30] and Honda [31], and in South Korea, Hyundai [32] and Kia
[33].

Recent debates in the IV community have centred on whether camera-only sys-
tems can eventually replace the need for additional sensors such as radar, lidar, and
ultrasonic devices [34} |35, [36, |37, |38, 39, 40, 41, 42, 43]. In a notable discussion,
former Tesla Al director Andrej Karpathy outlined Tesla’s rationale for eliminating
these extra sensors in favour of a vision-centric approach. According to Karpathy,
relying solely on cameras offers several potential advantages:

1. Cost and Complexity Reduction:
Karpathy and [41] argue that additional sensors not only increase the cost but
also add significant complexity to the hardware and software stacks. Extra sen-
sors demand elaborate calibration, sensor fusion algorithms, and maintenance
of multiple data pipelines. By focusing on cameras, manufacturers can stream-
line the design, reduce production costs, and simplify supply chain logistics—a
critical consideration for mass-market vehicles [41].

2. Software Simplification:
Removing sensors like radar and ultrasonics reduces the burden on software
systems. The fewer the sensor modalities, the less data fusion is required,
which can lead to a cleaner and potentially more robust perception pipeline.
Karpathy emphasises that an effective vision system could, in theory, extract
all the necessary information for safe driving, mirroring the human reliance on
vision.

3. Fleet Learning and Data Accumulation:
A camera-only approach can leverage a large fleet of vehicles to gather ex-
tensive visual data. Over time, this accumulated dataset can be used to con-
tinuously improve deep learning algorithms, potentially compensating for the
current limitations of a single-sensor modality. Tesla’s strategy relies on real-
world data to enhance the accuracy and reliability of its vision-based system.

4. Philosophical and Practical Considerations:
Tesla’s “no part” philosophy advocates for minimising system components to
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reduce potential points of failure. From this perspective, a camera-only system
is not only a cost-saving measure but also aligns with a broader strategic vision
of relying on deep learning to overcome the inherent limitations of sensor
hardware.

Despite these arguments, the broader autonomous driving community remains
divided. Critics point out that current camera-only systems face challenges in reli-
ably handling adverse weather conditions, poor lighting, and edge cases—scenarios
where redundant sensor modalities have traditionally provided valuable backup. For
instance, some teams argue that technologies like lidar offer superhuman sensing
capabilities that are crucial for detecting obstacles that cameras might miss. More-
over, while vision systems show promise, many researchers remain uncertain about
the timeline for achieving the required level of safety and reliability solely through
camera inputs.

In conclusion, while current implementations of camera-only systems have not
yet reached the robustness provided by multi-sensor fusion, ongoing advances in deep
learning and large-scale data collection may eventually bridge this gap. Karpathy’s
perspective highlights the potential benefits of reducing sensor complexity and cost,
suggesting that with continued improvement in vision algorithms and fleet learning,
cameras alone might suffice for future IV perception. This approach represents a
promising avenue for research, although its ultimate viability will depend on over-
coming the current limitations in challenging driving scenarios.

1.1 Challenges of IVs

The development and deployment of IVs represent a significant transformation in
transportation, offering the potential for enhanced safety, efficiency, and conve-
nience. However, despite notable technological progress, I'Vs still face substantial
barriers to widespread adoption. These challenges span several domains, including
regulatory compliance, safety standards, cybersecurity, and the ability to operate
in complex, unpredictable environments. Additional concerns—such as the need
for high-definition mapping (HDM), the modelling of rare and extreme scenarios,
and broader social responsibility—further complicate the integration of IVs into
real-world traffic systems. This section outlines the primary obstacles hindering
large-scale deployment and identifies key areas for future research and innovation.

Legislation and Regulation

The deployment of autonomous vehicles presents substantial legislative and regula-
tory challenges. As noted by [44] key issues include enforcement, compliance with
national and international policies, adherence to safety and environmental standards,
and meeting technical conformity requirements.

Safety Standards

The deployment of IVs has far-reaching implications across multiple domains, in-
cluding public safety, human behaviour, urban planning, economic systems, and
public health [45]. Regulatory frameworks are essential in managing these impacts;
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however, existing legislation is often insufficient to support the widespread adoption
of IVs. As [46] notes, there is a pressing need for harmonised social frameworks
and standardised regulations to enable large-scale deployment. Manufacturers must
also navigate a complex landscape of considerations, including human rights, data
privacy, fairness, transparency, ethical standards, cultural and legal norms, and po-
tential public resistance—such as opposition to banning non-autonomous vehicles
or concerns over the right to drive.

The growing integration of Al-driven features in IVs further complicates com-
pliance with safety standards. According to [47] Al algorithms introduce challenges
related to performance consistency, predictability, and reliability, particularly in
unforeseen scenarios. This underscores the need for a robust safety architecture,
including fail-soft mechanisms for Automotive Safety Integrity Level (ASIL) D, Al
system integration, and machine learning-based safety protocols [48].

Modelling Extreme and Rare Scenarios

One of the primary challenges in evaluating the safety of IVs lies not in the total
distance driven without incidents, but in the context and conditions under which
those miles are accumulated. Metrics such as “miles per shutdown”—which track
system failures—offer more meaningful insights into safety performance [46].

Despite accumulating thousands of miles without disengagements, IVs may still
lack the robustness required to handle rare and safety-critical scenarios [49]. Most
existing datasets are derived from naturalistic driving environments, which contain
very few such critical events, limiting the ability of models to learn from them.
Generating realistic safety-critical scenarios introduces several challenges, including
fidelity (balancing realism and difficulty), efficiency, diversity, transferability (adapt-
ing scenarios across environments), and controllability (targeting specific situations
rather than relying on randomness) [49].

Additionally, IVs often struggle in unfamiliar or uncertain environments, such as
unmarked roads, variable traffic conditions, or obstructed views. As [50] highlights,
current research tends to prioritise criticality and search efficiency over comprehen-
sive scenario coverage, leaving a gap in the validation of IV safety systems [48].

High-Definition Maps and Road Work Adaptation

Accurate perception of the driving environment is essential for the safe operation
of IVs. As [51] notes, achieving comprehensive and up-to-date knowledge of traffic
conditions is critical, which has led companies like Waymo to adopt HDMs as a core
component of their navigation systems.

However, HD maps require frequent and precise updates to reflect real-time
changes, such as road construction, lane reconfigurations, or temporary closures.
Maintaining this level of accuracy is both technically demanding and financially
costly, as it necessitates the deployment of fleets of sensor-equipped vehicles to
continuously scan and update the environment.

Cybersecurity Threats

Beyond the challenges of perception and navigation, IVs are increasingly vulnera-
ble to cybersecurity threats. As highlighted by [52, |53] these threats include sensor
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spoofing and hacking, particularly targeting critical components such as cameras, Li-
DAR, and GPS, as well as the interception or manipulation of vehicle-to-everything
(V2X) communications.

In addition, [54] emphasises that data privacy and protection remain significant
barriers to the widespread deployment of IVs. These concerns necessitate the devel-
opment of robust, multi-layered cybersecurity frameworks capable of safeguarding
both vehicle systems and user data [48].

Social Responsibility Considerations

In addition to regulatory, safety, and cybersecurity concerns, the development and
deployment of IVs must also address a range of social responsibility challenges.
As noted by [55], these include potential biases in detection algorithms, limited
accessibility for low-income or underserved populations, ethical concerns regarding
data usage, and the displacement of jobs in sectors such as transportation and
logistics [48, 44].

Addressing these issues requires a multidisciplinary approach that incorporates
perspectives from ethics, public policy, and social equity to ensure that IV tech-
nologies are developed and deployed in a manner that is inclusive, fair, and socially
sustainable.

Navigating Dynamic and Complex Environments

Despite substantial advancements, [Vs continue to face challenges in navigating
dynamic and unpredictable environments [56]. As [57] observes, IVs remain partic-
ularly vulnerable to edge cases—scenarios involving erratic driver behaviour, inter-
actions with emergency vehicles, and complex or poorly marked road conditions.

The California OL 316 Reports suggest that current U.S. IV prototypes may
overstate their operational capabilities, highlighting the need for further refinement
before large-scale deployment [6]. Similarly, evaluations of Waymo’s performance re-
veal limitations in collision avoidance, especially in response to unpredictable human
actions [58].

Although human error remains the leading cause of IV-related accidents [59],
autonomous systems must significantly improve their ability to anticipate and re-
spond to non-standard behaviours, such as failure to yield, sudden lane changes, or
disobedience of traffic signals |57, 60].

Traffic Hazard Events

Traffic hazard events represent scenarios that pose varying levels of risk to road
users and can be classified into three progressive stages [61]:

e Potential Events: Situations where no immediate collision threat exists, but
the conditions could evolve into one (e.g., a cyclist rapidly approaching an
intersection).

e Developing Events: Scenarios where a collision threat is imminent and requires
immediate corrective action (e.g., the cyclist does not decelerate, prompting
evasive manoeuvres).
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Materialised Events: The collision has occurred.

For IV systems to be effective, they must be capable of early detection and
response to potential events, thereby preventing escalation into developing or mate-
rialised stages. However, most current systems rely heavily on Time-To-X metrics

(e.g.,

Time to Collision), which often lack the predictive depth required to manage

the complexity of highly dynamic traffic environments |60, |62].

Limitations of Current IV Research

A review of current mono-camera IV systems designed to learn traffic road users’
behaviour reveals several critical limitations:

Limited focus on discrete intention recognition: Existing research has
paid insufficient attention to recognising and predicting the specific, discrete
intentions of traffic agents.

Narrow scope of traffic agent types: Most studies have focused exclusively
on pedestrians and vehicles, neglecting other important traffic participants
such as cyclists, traffic lights, and animals.

Restricted behavioural diversity: While vehicles can exhibit a wide range
of behaviours—such as cutting in, reversing, turning, emerging, and stop-
ping—the majority of current research has concentrated primarily on lane
change behaviour, overlooking other critical manoeuvres.

Insufficient datasets for discrete intention behaviour: There is a no-
table lack of datasets specifically designed for training and evaluating machine
learning algorithms to recognise and predict the discrete intention behaviours
of traffic agents. Moreover, existing datasets do not adequately represent het-
erogeneous traffic participants in complex urban environments.

Absence of algorithms for heterogeneous intention recognition: To
the best of the authors’ knowledge, no existing algorithms have been developed
to recognise the discrete intention behaviours of heterogeneous traffic agents,
such as cyclists, animals, or traffic light interactions.

Neglect of object-side visibility cues: No prior studies have addressed
the importance of recognising which side of a target object is visible to the
ego vehicle (EV). For instance, visibility of the right side of a vehicle may
indicate that it is about to cross the EV’s path or is emerging from a left-side
intersection.

Underutilisation of vehicle light signals: Although vehicles communicate
intentions through light signals—such as indicators, brake lights, reversing
lights, and hazard lights—most previous research has only implicitly consid-
ered these cues, without explicitly modelling them in behaviour recognition
systems.

Bias toward materialised hazard events: Existing datasets predomi-
nantly contain traffic hazard events that are already in the materialised stage,
limiting the ability to train models to detect and respond to earlier, preventable
stages.
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e Lack of multi-class hazard event recognition: There is currently no
research that investigates the recognition of multiple distinct types of traffic
hazard events, which is essential for comprehensive risk assessment.

e Limited exploration of full pipeline systems: Few studies have examined
a complete behaviour recognition pipeline, encompassing detection, tracking,
and recognition. This is critical, as the cumulative uncertainty from each
module can significantly impact the final prediction accuracy.

In conclusion, IVs have made considerable advancements, but key challenges re-
main in regulatory compliance, safety standards, cybersecurity, environmental adap-
tation, and predictive behaviour modelling. Future research should address these
gaps by developing more comprehensive datasets, enhancing Al-driven scenario mod-
elling, and refining safety-critical event recognition to improve the reliability and
trustworthiness of autonomous vehicles.

1.2 Research Questions

From the above discussion and the current limitations in IVs, the following research
questions were formulated:

Question 1: “What are the limitations of existing datasets used to study com-
plex traffic agent behaviour in urban scenarios, and how can these limitations be
effectively addressed?”

Question 2: “Can the performance of traffic agent behaviour recognition algo-
rithms be improved by introducing novel input features (e.g., object visible side from
the EV'’s perspective, alternative image representations, or explicit feature encod-
ing)?”

Question 3: “Are machine learning algorithms capable of accurately recognising
different rear light statuses and object visible sides when trained on an appropriately
designed dataset?”

Question 4: “Can machine learning models, when trained on a dedicated traffic
hazard dataset, effectively recognise various types of traffic hazard events in complex
urban environments?”

Question 5: “How does the performance of behaviour recognition algorithms
change when integrated into a complete pipeline system, and what are the implica-
tions of module-level uncertainties on overall system accuracy?”

1.3 Aims and Objectives

This research aims to address the limited capability of existing mono-camera IV
systems to navigate safely in complex urban scenarios by enabling them to recognise
traffic agent behaviours prone to potential traffic hazard events.

To address the research questions posed above and achieve the project’s aim, the
following objectives have been formulated:

e Objective 1: Explore existing methods for recognising and predicting the be-
haviour of traffic agents, as well as detecting traffic hazard events within traffic
scenarios.
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Objective 2: Create a Road Traffic Hazard Dataset.

Objective 3: Develop, implement, and evaluate a Vehicle Rear Light Signal
Recognition algorithm.

Objective 4: Develop, implement, and evaluate an Object Visible Side Recog-
nition algorithm.

Objective 5: Develop, implement, and evaluate a Vehicle Intention Recognition
and Prediction algorithm.

Objective 6: Develop, implement, and evaluate a Potential Traffic Hazard
Event Recognition algorithm.

Objective 7: Develop, implement, and evaluate a Complete Potential Traffic
Hazard Event Recognition Pipeline System.

1.4 Contributions

Based on the current limitations of IVs and the research questions outlined above,
the contributions of this research are as follows:

1.4.1 Novel Dataset

Created a novel dataset by combining existing public datasets to address the
challenge of recognising potential traffic hazard events in IVs.

Introduced the first Potential Traffic Hazard Dataset, featuring 16 distinct
types of traffic hazards.

The dataset includes 600 videos of traffic hazard samples and 300 videos of
no-hazard samples. Each video is annotated with detailed information, such
as object detection, object tracking, rear light status, object visible side from
the EV’s perspective, lane detection, and event timing (start and end).

Designed to be versatile, this dataset supports various research studies, in-
cluding detection, tracking, rear light status recognition, object visible side
analysis, and hazard type recognition.

1.4.2 Overlooked Cues

e Developed deep learning algorithms specifically for recognising overlooked cues,

such as the rear light status of target vehicles (TV)s and the visible side of
objects relative to the EV.

e Focused exclusively on classifiers developed after 2020 to ensure the use of the

latest advancements in the field.
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1.4.3 Vehicle Intention Recognition and Prediction Algo-

rithm

Enhanced existing algorithms by incorporating manually extracted features,
allowing for a deeper investigation into their performance. This method en-
ables explicit consideration of critical inputs such as rear light indicators and
object’s visible side, which were only implicitly addressed in previous studies.

Introduced a novel metric for evaluating the effectiveness of vehicle intention
recognition and prediction algorithms.

Conducted an ablation study to assess the impact of different components on
the algorithm’s performance.

1.4.4 Traffic Hazard Event Recognition Algorithm

Employed various machine learning models to recognise different types of po-
tential traffic hazard events, utilising the proposed novel dataset for evaluation.

Proposed two new input image representations:
— The Object of Interest (OOI) input image, which includes only the de-
tected objects and the road.
— The blended input image, which combines RGB and depth information

into a single image.

Unlike previous studies that implicitly considered discrete features such as rear
light indicators and object visible side, this research explicitly integrates them
into the potential traffic hazard event recognition process.

Utilised a state-of-the-art Transformer network in conjunction with LSTM to
recognise traffic hazard events.

1.4.5 Complete Potential Traffic Hazard Event Recognition

Pipeline

Developed a comprehensive potential traffic hazard event recognition pipeline,
incorporating modules for detection and tracking, rear light recognition, object
visible side recognition, and potential traffic hazard event recognition.

The pipeline allows for a detailed analysis of which modules require further
improvement and how each stage impacts the final result.

Provides a more realistic assessment of algorithm performance in real-world
scenarios, contributing to the design of more effective IV systems.
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1.5 Thesis Outline

The flow diagram depicted in Figure [1.1] was created to provide a clearer under-
standing of the chapters included in the thesis and how they are interconnected.

The literature review was used to identify gaps in the existing body of work,
which led to the development of the novel traffic hazard dataset, deep learning
models for rear light status detection and visible side recognition, vehicle lane change
recognition and prediction, the potential traffic hazard event recognition system,
and the complete potential traffic hazard event recognition pipeline. The results
and discussions of each chapter informed the conclusions and future work chapter.
Overall, the thesis is structured as follows:

e Chapter [2} Provides an overview of IVs, including their history, benefits,
challenges, and system architecture. It presents an in-depth review of existing
algorithms and datasets for recognising and predicting traffic agent behaviours,
as well as current methods for detecting road traffic hazards. Additionally, it
briefly discusses techniques for detecting and recognising rear lights and their
status.

e Chapter [3} Introduces the novel traffic hazard dataset, detailing the methods
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used for data collection and labelling, and describing the dataset’s format and
statistical characteristics.

e Chapter [4} Presents the rear light status and object visible side recognition
systems, which address cues that have been overlooked in previous research.

e Chapter [5} Describes the proposed vehicle intention recognition and predic-
tion system, which incorporates manually extracted features and introduces a
novel prediction metric.

e Chapter [6] Presents the proposed traffic hazard event recognition system,
which utilises various deep learning algorithms and input representations.

e Chapter [7} Describes the complete potential traffic hazard event recognition
system, including modules for detection and tracking, rear light status recog-
nition, object visible side recognition, and traffic hazard event recognition.

e Chapter [8] Summarises the key findings, discusses their implications, and
outlines the final conclusions and suggestions for future work.

1.6 Written Articles

During the thesis, two literature review papers were published and three contribution
papers were submitted. Below are the paper’s title and references:

e Galvao, Luiz G., et al. "Pedestrian and vehicle detection in autonomous ve-
hicle perception systems—A review.” Sensors 21.21 (2021): 7267.

e Galvao, Luiz G., and M. Nazmul Huda. ”Pedestrian and vehicle behaviour
prediction in autonomous vehicle system—A review.” Expert Systems with

Applications (2023): 121983.

e Galvao, Luiz G., and M. Nazmul Huda. ”"Deep Learning Vehicle Intention Pre-
diction for Autonomous Vehicles Using Onboard View Data” Expert Systems
with Applications. (Under Review)

e Galvao, Luiz G., and M. Nazmul Huda. ” An Al System and a Novel Dataset
for Recognising Potential Traffic Hazard Events in Complex Traffic Scene”
Expert Systems with Applications. (Under Review)

e Galvao, Luiz G., and M. Nazmul Huda. ” A Complete Potential Traffic Hazard
Event Recognition System for Intelligent Vehicle Systems” Neurocomputing.
(Under Review)



Chapter 2

Literature Review

This chapter aims to provide the research’s background and context, identify gaps
in the literature, and draw insights from previous works. It begins with a list of
key terms and their definitions commonly used in the realms of IVs, traffic agent
behaviour, and road traffic hazards. Next, it briefly overviews Intelligent Vehicle
(IV) systems, covering their history, benefits, challenges, and system architecture.
For a more comprehensive literature review on IVs, please refer to [63]. The chapter
then conducts an in-depth review of existing algorithms and datasets for recognising
and predicting traffic agents’ behaviours and current methods for detecting road
traffic hazards. Finally, it reviews the detection and recognition status of vehicle
rear lights.

Some of the commonly used terminologies in the pedestrian and vehicle behaviour
prediction and traffic hazard detection literature are listed below [64]:

e IVs: An IV is an automobile equipped with advanced systems integrating per-
ception, decision-making, and control mechanisms to automate various driving
functions, including lane-keeping, obstacle avoidance, overtaking, maintaining
traffic flow, responding to hazards, and planning optimal routes. [65, 66).

e Observation horizon (OH): The duration over which an algorithm analyses
past behaviours of an object to predict its future behaviour.|67, 68, 69, [70].

e Prediction horizon (PH): Prediction horizon refers to the time frame within
which an algorithm forecasts an object’s future behaviour before it occurs |67,
68, 69, 70]. Some works differentiate between prediction and anticipation,
where the latter refers to predicting behaviour before it begins [71]. This
project adopts the former definition.

e Ego Vehicle (EV): The vehicle equipped with onboard sensors that perceive
other traffic agents and surroundings. [64, 70].

e Target Object (TO): The specific object that the EV observes to predict
its behaviour. [64} 70].

e Surrounding Objects (SO): Objects in the environment that can interact
with or influence the behaviour of the target object [64, |70].

e Multi-modal behaviour: A situation where an observed history of be-
haviours leads to multiple possible future behaviours |64} 70].
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2 Literature Review

Object behaviour: The movement patterns or intentions exhibited by an
object [64}, 70].

Object trajectory: A sequence of data points representing an object’s move-
ment path, typically derived from tracking information [64, [70].

Trajectory prediction: Refers to predicting an object’s future motion within
a given time frame based on its past trajectory, contextual information, and
interactions with surrounding objects. [64} 70].

Object intention: The planned course of action an object intends to take
to achieve a goal. In the vehicle domain, these are known as manoeuvres
(e.g., turning, lane-changing, stopping), while in the pedestrian domain, they
include crossing, stopping, etc [64} [70].

Intention prediction: Uses historical trajectory and contextual information

to predict an object’s future discrete actions rather than its precise trajectory
(64, 70].

Interaction: the influence that one or more objects exert on each other’s
behaviour [70].

Cues: observable characteristics used to infer a traffic agent’s behaviour, for
example, past motions, scene context, interactions between multiple agents,
edges, gradients, coloured segments, or colour distribution [72, 73, [74].

Explicit feature: input features that are clearly stated, such as object speed,
position, and type. Another example would be the indicator light status of
a vehicle predicted by CNN that is specifically trained and evaluated for this
purpose |75} [76].

Implicit feature: An input feature that is not explicitly stated and must
be inferred, such as the status of a vehicle’s indicator lights from a raw RGB
image [77, [75).

Explicit factors: factors affecting a traffic agent’s behaviour that are evident,
for example, weather, road condition, lane marking, etc [60].

Implicit factor: factors affecting a traffic agent’s behaviour that are not
obvious, for example, traffic agent behaviour [60].

Traffic scenario: is a particular event within the context of road traffic, for
instance, driver manoeuvre, traffic accidents, traffic rules, pedestrian intention,
and surrounding vehicles’ intention [78].

Taillight lights: Red lights at the rear of a vehicle that illuminate when the
headlights are on, improving visibility in low-light conditions [79].

Brake lights: Red lights at the rear of a vehicle that illuminate when the
driver applies the brakes, signalling deceleration or stopping |79, 80].

Rear indicator lights: Amber or yellow lights at the rear of a vehicle that
flash when the driver signals a turn, lane change, or hazard [80, 81].
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e Rear lights: A general term referring to taillights, brake lights, and rear
indicator lights [82, |83].

e Rear lights detection: The process of detecting single or multiple rear lights
in an image, localising them with bounding boxes [81].

e Rear light pairing: The process of identifying and matching the left and
right rear lights of the same vehicle [84].

e Rear lights recognition status: Determining whether any of the rear lights
are 'ON’ or 'OFF’ in an image [81].

2.1 Intelligent Vehicle Systems

The concept of IVs originated around 1920. During this period, they were often re-
ferred to as “phantom autos” because they lacked a human driver and were instead
remotely controlled [85]. AVs only progressed in the 1980s when [86] created the
project “Autonomous Land Vehicle In a Neural Network”, where they concluded
that neural networks could significantly contribute to autonomous navigation sys-
tems. The Defence Advanced Research Projects Agency (DARPA) organised the
first Grand Challenge in 2004 to motivate research and development of AVs. DARPA
organised other grand challenge events in 2005 and 2007, also known as the Urban
Challenge [87]. In 2008, Rio Tinto started the trials of an autonomous haul truck
fleet to transport ore and waste material in Pilbara. Nowadays, they have more than
130 autonomous trucks [88]. In 2009, Google secretly started developing its first IV,
and they passed the first self-driving test on 1 May 2012 in Las Vegas [89]. The
UK government launched a driverless competition in 2014 to support and encourage
IV [5]. Between 2010 and 2017, major automotive manufacturers such as General
Motors, BMW, Nissan, Volkswagen, Tesla, Volvo, Mercedes-Benz, Toyota and Audi
recognised the potential benefits of AVs; therefore, they adopted the concept and
started their research and development [90, 91]. In 2019, the European Parliament
and Council released the Regulation (EU) 2019/2144 for the first time, specifying
requirements associated with automated and fully automated vehicles [92]. A big
step for IV was achieved when Waymo (Google’s self-driving vehicle became Waymo
in 2016) reported that their “Waymo Driver” reached 20 million self-driven miles
and 15 billion simulated miles [24]. This is an essential achievement since these
self-driven miles are considerable training experiences that can be used as a dataset
for other Al systems.

2.1.1 Benefits and Challenges

AVs are expected to offer many benefits. For example, they can follow traffic laws
and respond quickly to unexpected scenarios. Therefore, a significant reduction
in road traffic accidents is anticipated since most accidents are caused by human
error and imprudence. AVs are also expected to predict the behaviour of vehicles,
enabling them to reduce braking, acceleration, and consequently, fuel consumption,
air pollution, traffic shock-wave propagation, and congestion [93]. However, they
face many challenges that need to be addressed. For instance, AVs could replace
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taxi, truck, and bus drivers, potentially leading to an increase in unemployment.
Table 2.1 presents additional benefits and challenges of IV systems.

Table 2.1: Benefits and implications of AVs [94] 93].

Benefits

Challenges

e It is expected that AVs will be able to have vehicle
to vehicle/infrastructure (V2V, V2I) communication,
therefore, it would be able to choose more efficient
routes, reduce or even remove intersection delays and
collisions;

e Make the best use of the road lanes by maintaining
short gaps between vehicles;

e Improve social inclusion since unlicensed, young,
disabled and elderly people would be able to use them;
e Improve freight transportation, for example, travel
long distances in less time, offer cheaper freight since
drivers are not required, and trucks would drive more
efficiently;

e Increase economic opportunities;

e Reduce parking space;

e Enhance driver experience by offering comfort dur-
ing the trip by avoiding harsh braking and jerking;

e Currently, human drivers are better in recognising
pedestrians, cyclists, and other small traffic objects;
e Human driver is better at recognising different
types of materials, for example, if an object ahead is
made of cardboard, wood, or concrete.
e A reasonable quantity of AVs is required to validate
their benefits;
e Not everyone will be able to afford IV technology;
e Since unlicensed young, elderly, and vulnerable
people will be able to travel, this would increase the
number of trips and could cause more congestion;
e Initially, the public may have some resistance to
accept and become comfortable with AVs [95];
e Initially, conventional drivers would not predict IV
behaviour.
e Creating new legislation, regulations, certification,
testing standards and insurance for AVs;

e It is estimated that each year, driver spend 6 e Security against cyber-attacks.
working weeks driving [5]. IV could enable people to

have free time to relax or work while going to his/her

destination;

e Less CO2 emission;

e IV is expected to reduce traffic accidents, resulting

in lower expense for legal proceedings and compensa-

tion. Additionally, car insurance prices are anticipated

to decrease.

2.1.2 1V Taxonomy

Society of Automotive Engineers (SAE) created the J3016-2018 guidelines outlining
the taxonomy and definitions for driving automation systems. The document de-
scribes the six levels of driving automation: in Level 0, there is no automation; in
Level 1, there is some automation assistance, such as ADAS features that can control
the steering or speed. However, the driver is responsible for supervising and acting
when required. Level 2 enables partial driving automation, where the autonomous
system can control both steering and speed; however, the driver is still responsi-
ble for observing the environment and supporting the autonomous system. Level
3 enables conditional driving automation, where the car is fully automated when
certain conditions are met, such as good weather and visibility. When conditions
are not favourable, the driver must be in control; Level 4 enables high automation
where the automated system does not require the driver to be in control; however,
the system only works if certain conditions are met; and Level 5 enables full driving
automation where the automated system is always under control and can drive in
any condition [96, 97].

2.1.3 Intelligent Vehicles System Architecture

The functional requirements of an IV can be compared to those of an autonomous
mobile robot system, requiring perception, communication, localisation, path plan-
ning, trajectory, and motion control [98, (99, 100, |101]. In IV systems, these re-
quirements are commonly categorised as “sense, plan, and act,” or more formally,
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“perception, planning, and control” [98]. While typical IV system architectures in-
clude these modules, the Waymo Driver system introduces an additional behaviour
prediction module preceding the planning module [24]. This work adopts the Waymo
Driver approach, recognising behaviour prediction as a distinct module within the

IV system. The adopted IV system architecture is illustrated in Figure [2.1]

Software Modules
Road .
. Perception
Environment Hardware Detection
. Tracking
Non-Static Sensor Recognition
Objects: Camera Context
RADAR
Pedestrian Ultrasound
_ > IMU Behaviour Prediction
Vehicles LIDAR Future Trajectory
Tl Infrared Discrete Intentions
GPS
Animals
Static Objects: V2X Planning
V2V, v2i SLAM
Traffic signs V2P, V2N Path Plann!ng
o Sensor Fusion
Traffic lights
Pedest.rian Actuators Control
crossing < Electnc. Steering
i Hydraulic Accelerating
arked cars Drive-by-wire system Braking and
Junctions Signalling

Figure 2.1: IV architecture: hardware requirements are sensors, V2X communication
device and actuators. Software modules include perception, behaviour prediction,
planning, and control. Modified version from [98].

According to [24], the listed functional requirements above should answer the
following questions:

o “Where is the IV?”
o “What is around the IV 77

e “What will happen next ?”
e “What should the IV do ?”

Perception

The perception module should answer “Where is the IV?” and “What is around the
IV 77, For example, detection and tracking information about statics (e.g., traffic
lights, traffic signs, road works, etc.) and non-static (e.g., pedestrians, vehicles,
etc. ) objects, and traffic road contexts information (e.g., road lanes, edges, curbs,
pedestrian crossing, etc.). Furthermore, the raw data enables the IV to execute the
Simultaneous Localisation and Mapping (SLAM) task [96].
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Passive (receive and measure existing energy) or active sensors (measure re-
flected signals transmitted by it) can be used to perceive the environment. Pas-
sive sensors generally used are Charge-Coupled Devices (CDD) or Complementary
metal-oxide semiconductors (CMOS) cameras. Active sensors generally used are
Light Detection and Ranging (LIDAR), long/medium/short Radio Detection and
Ranging (RADAR), ultrasound/Sound Navigation System (SONAR), Inertial Mea-
surement Unit (IMU) and Global Navigation Satellite Systems (GNSS).

The advantages and disadvantages of each sensor are described in Table 2.2 It
is observed that each sensor has its strengths and weaknesses. For example, radar
sensors work well in dark environments, are not affected by extreme weather, and
can accurately detect speed but have low resolution. An approach to overcome the
deficiency of each sensor is to use sensor fusion technology, where data from multiple
sensors are combined to attain enhanced information.

Table 2.2: Advantages and disadvantages of various sensors used in AVs [96].

Advantages Disadvantages
CAMERA e Low cost. e Short range.
e Technology is mature. e Performance decreases in poor weather and low
e High Resolution. light conditions.
e Possible to generate a 3D stereoscopic e Does not provide accurate distance and position
view. of objects.
e Detect RGB information. e Usually does not provide depth information.
e Road markings and signs are designed  Depth information can be acquired but make the
for human eyes. system more complex (e.g., stereo camera and dis-
e Less chance of being affected by inter-  parity estimation algorithms).
ference from another vehicle.
e Wider field of view.
THERMAL e Distinguish between hot and cold tar- e More expensive than cameras.
gets. e The main target is pedestrians, but they can
e Can be used during the day and night.  get confused with hot air from the exhaust pipe
or other objects that generate heat.
e Cannot detect heat through the glass, for ex-
ample, detect drivers inside the car.
INFRARED e It can be used during the day and night. e It has a short range.
e They are cheaper and small.
SONAR e Cheap. e Affected by poor weather conditions.
e It is short-range and commonly used for auto-
mated parking and blind spot detection features.
RADAR e Its performance is not affected in bad e Limited resolution.
weather or low light conditions. e Limited to recognise objects.
e Long range (up to 300 m).
e Provide accurate distance, position, and
speed.
e Technology is mature.
Low cost
LIDAR 360-degree view of the environment. Low spatial resolution compared to cameras.

Wide field of view.
High accuracy.

Performance decreases in poor weather.
Complex and requires high processing power.
Expensive.

Affected by interference and external light.
Does not provide colour information.
Acquired information is sparse.

Recently, IV systems have been implemented using two main methods: a pure
vision-based approach where only cameras and computer vision techniques are em-
ployed, and a sensor fusion approach where information from multiple sensors and
computer vision techniques are used (e.g., cameras, LIDAR, RADAR, etc.) [102].
For example, Tesla uses a pure vision-based technique to acquire information from
the traffic scene, whereas Waymo uses computer vision and fusion of advanced sen-
sors. The primary advantages of a pure vision-based system are manifold. Firstly,
many modern vehicles come equipped with cameras, facilitating easy integration.



2.1 Intelligent Vehicle Systems 18

Once an Al computer vision system is developed, it can be readily deployed. Ad-
ditionally, cameras are more cost-effective than LIDAR systems and offer higher
resolution. Unlike LIDAR, which requires pre-mapping the environment, a pure
vision-based system operates in real-time, providing immediate processing. For these
reasons, the subsequent sections of this paper predominantly concentrate on a pure
vision-based approach.

Behaviour Prediction

The behaviour prediction module is responsible for answering “What will happen
next 7”. For example, predict future traffic agents’ behaviour (e.g., trajectories and
intentions). This module is the focus of this literature review, and an in-depth
discussion will be done in future sections of this chapter.

Planning

The plan module takes the perceived and predicted information to decide what ac-
tions and paths the IV should make to achieve its final goal. It should answer “What
should the IV do?” questions. The planning stage is subdivided into three tasks:
mission, behaviour, and motion planner [98|. The mission planner is responsible for
assigning a goal (e.g., pickup/drop-off task) to the IV and choosing the best routine
to complete the assigned goal. The behaviour planner considers the interaction be-
tween other traffic agents and the available traffic rules to decide what behaviour
the IV should perform, for example, should the IV change lane, stop, or turn. Ulti-
mately, the motion planner is tasked with generating collision-free paths to execute
the behaviours predetermined by the behaviour planner. The planning stage has
been implemented using traditional techniques such as the Voronoi diagram, occu-
pancy grid algorithm, or driving corridors diagram. However, these approaches are
unsuitable for complex urban scenarios where the interaction between traffic agents
and traffic rules needs to be considered. Many researchers have used machine learn-
ing (ML) such as CNN, Deep Reinforcement Learning, or hybrid systems where ML
and traditional techniques are jointly used [96].

Act

The control stage uses the information acquired from the planning stage to per-
form the actual movements of the IV, which are conducted by sending steering,
acceleration, braking, and signalling commands to the actuators. The drive-by-wire
system is the most appropriate and advanced way to transfer the commands to the
actuator. The control system generates and tracks trajectories and uses controllers
to perform the desired trajectories. Trajectories generation is usually achieved ei-
ther sensor-based or dynamics-based. Sensor-based approaches are more suitable for
robotics, while dynamic-based approaches are suitable for vehicles. The most used
methods to track trajectories are geometric or model-based. A feedback controller
such as Proportional-Integral-Derivative (PID) is usually utilised to ensure the IV
is not deviating from the target trajectories. However, feedback controllers have
their limitations, for example, the system will only respond to errors when they
occur [98]. Two degrees of freedom controllers, a combination of feedback and feed-
forward controllers, have been proposed to overcome the limitations of the feedback



19 2 Literature Review

controller. In this type of controller, a model reference of the system is also used,
which helps the system to predict the IV motion with more details.

2.2 Behaviour Recognition and Prediction

There are several literature reviews covering both traditional and DL techniques to
predict the behaviour of vehicles, for example, [103] [104} (105, 64]. Sivaraman and
Trivedi [106] briefly reviewed the behaviour prediction of vehicles, but at that time,
this topic was fairly new, and only traditional techniques were reviewed. Lefevre,
Vasquez, and Laugier [103] presents a survey and classifies vehicle prediction be-
haviour algorithms into physics-based, manoeuvre-based, and interaction-aware-
based algorithms. They concluded that a behaviour prediction algorithm needs
to consider the interaction between vehicles and the scene context to have a longer
prediction horizon. In addition, they reviewed the existing risk assessment methods
for IVs and concluded that a risk assessment module is highly dependent on the
behaviour prediction algorithm. In this review, the authors only covered traditional
techniques since DL techniques for vehicle behaviour prediction were still emerging.
Shirazi and Morris [104] reviewed techniques used to analyse vehicles, drivers, and
pedestrians’ behaviour at road intersections. However, only traditional techniques
were analysed, and the focus was not on the prediction behaviour of vehicles. Leon
and Gavrilescu [105] reviewed methods used for vehicle tracking, behaviour predic-
tion, and decision-making. Both traditional and DL techniques have been covered.
The authors concluded that DL techniques have better results since they are more
robust, flexible and have better generalisation ability. Mozaffari et al. [64] performed
a systematic and comparative review of the different DL methods used to predict
vehicle trajectories and intention behaviour. They presented a more detailed taxon-
omy of the prediction behaviour algorithms compared to [103]. They classified the
algorithms by what input information was used, the output type produced, and the
prediction method used. Although the review was extensive and very informative,
the authors do not detail what intention behaviour the works were trying to predict,
for example, lane change, overtaking, or making a turn, and do not provide specific
information on what dataset was used.

The following works have performed pedestrian behaviour prediction reviews,
[107, |108|, (109, 110, 111}, [112]. Kong and Fu [107] presented traditional and DL
techniques used to recognise and predict human action. Ahmed et al. |[112] presented
a survey on the detection and intention prediction of pedestrians and cyclists. A
review on pedestrian behaviour was given by [108], where they briefly described
the traditional and DL techniques that have been used. Chen et al. [113] discussed
the required architecture, the traditional and DL techniques to detect and predict
pedestrian actions. Although these works have reviewed DL techniques, only a
limited amount of work was considered. A detailed human trajectory prediction
survey was done by [109], where they reviewed a substantial amount of published
works to propose a taxonomy, identify the available datasets and evaluation metrics,
and the limitations of the current methods. However, the authors did not review
methods used to predict pedestrian intentions. A comprehensive survey was done
by [111] on pedestrian intention prediction for IV systems.

To the author’s knowledge, [74] is the only work that has reviewed behaviour
prediction for both pedestrian and vehicle agents. While the authors propose a
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novel taxonomy that unifies the behaviour prediction challenges for pedestrians and
vehicles, they do not delve into the evaluation metrics, datasets, features, or results
achieved by the reviewed studies.

Differing from all the previously cited review works, both for pedestrian and
vehicle behaviour prediction, this paper:

e Presents a behaviour prediction general problem formulation.

e Presents the most used terminologies in the pedestrian and vehicle behaviour
prediction domain.

e Reviews not only pedestrian or vehicle behaviour prediction algorithms but
both of them.

e Briefly presents the most important traditional techniques and focuses more
on the DL techniques for pedestrian and vehicle prediction algorithms.

e Summarises the main information acquired from the reviewed pedestrian and
vehicle behaviour prediction works in tables. The tables report the methods,
the problems the algorithms are trying to solve, the datasets used, and the
results acquired.

e Reviews works that have performed prediction behaviour of heterogeneous
agent traffic.

e Reviews the works to identify the requirements and challenges to design a
pedestrian and vehicle behaviour prediction system for IV. The techniques that
have been proposed and whether or not they meet the previously identified
requirements, and if not, propose future works.

2.2.1 Behaviour Prediction General Problem Formulation

A complete pipeline of an object behaviour prediction system, as depicted in Figure
comprises detection and classification, tracking, and prediction stages. This
paper only reviews works that studied the behaviour prediction stage. Literature
reviews on the detection and tracking can be found in the following works [101}, |114),
115 116} 117, {118, [119].

Based on the vehicle and pedestrian intention prediction problem formulation
proposed by [69, 120, (121, [122, [123, [124], |125] [126] |127] |128],|129| |130}, 131}, 132, 133,
134], and [135], a general intention prediction problem formulation is as follows: a
sequence of feature vector {F;_opm, ..., [} } extracted from a given sequence of video
frames {t—OH, ..., t} acquired from an image sensor is used by a model to determine
the probability of the target agent intention I'™"e{0, 1}, where ¢ is the specific time
of the last observed frame and n is the number of frames from the last observed frame
to the final frame of the event, also known as time-to-event (TTE). The prediction
intention estimation can be described by the equation

p(Lo|Fior,, 1) (2.1)

Based on the vehicle and pedestrian trajectory prediction problem formulation
proposed by [136} 137, 138, (139, 140, 141} 142, 73| (143|144, 145| |146, 147, {148, /149,
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Figure 2.2: Object behaviour prediction complete pipeline process. The detection
and classification stage outputs the object position, size, type, bounding box, seg-
mentation, and global and local context information. The object tracking stage
outputs the ID for each detected object and its dynamics (e.g., speed). The output
of the object behaviour prediction module can be the object’s intention and its fu-
ture trajectory.

1500|151} [152], and [153], a general trajectory prediction problem could use the same
sequence of feature vector used by intention prediction algorithm. However, in this
case, the sequence’s purpose is to predict the future path of the target agent, span-
ning up to the specified PH. The trajectory prediction estimation can be described
by the equation

p(FuturePathy.pg|Fi—1,,..t)- (2.2)

Figure depicts an example of predicting a vehicle’s lane change manoeuvre.
Here, image sequences from ¢t — N to t are used to extract a sequence of feature
vectors, which are subsequently used to make predictions. In this case, a successful
lane change manoeuvre prediction occurs when the vehicle’s intention is correctly
recognised before reaching the F1 stage.

The differences among the reviewed problem formulations of vehicle and pedes-
trian behaviour prediction are:

e Some problem formulations are for trajectories and others for intention.

e The input features used may be different, for example, some authors have
used only position and speed, while others have used local and global context
vectors.
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Figure 2.3: An example of lane change prediction problem: F0 is where the vehicle
manoeuvre starts, F1 is where the actual manoeuvre happens, and F2 is the end of
the manoeuvre.

e Some considered top-view, and others considered on-board view datasets.
e Authors have used different predictive models.

The listed items above are further discussed in the following sections [2.2.2] [2.2.3]
and 2.2.41

In the literature, some works use predicted intentions to improve the accuracy
of the future trajectories, and other works use predicted trajectories to improve the
accuracy of the predicted intention |64} [69]. These works will be discussed in the
upcoming sections.

Before discussing the behaviour prediction of pedestrians and vehicles, it is im-
portant to understand their potential interactions. As depicted in Figure [2.4] in-
teractions among different traffic agents can cascade and get very challenging, for
example, to predict the actions of object 1, it might be required to consider the
actions of the:

e Object 2, since it can change direction and velocity.

Object 3, since its action will affect the action of object 2.

Object 17, since it will affect the action of object 3.

Object 9, since it will affect the action of object 2.

Object 13, since it can make a right turn, which will affect the action of object
2.

Object 11 or 13, since they may break the law by not obeying the red traffic
light.

2.2.2 Vehicle Behaviour Prediction

In the vehicle behaviour prediction domain, the literature often uses the terms pre-
diction behaviour of drivers/vehicles or prediction behaviour of target/surrounding
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Figure 2.4: General interactions among traffic agents and their environments. Ob-
ject 1 is the target object (blue circled), the blue arrow shows the direct interaction
between the target object and object 2; the orange arrows show the interaction
between object 2 and objects 3, 9, 11, 12, and 13; the yellow arrow shows the inter-
action between object 17 and object 3.

vehicles. The former usually means to predict the behaviour of the EV using its
internal data, such as the steering angle, brake pedal position, velocity, speed, in-
dicators status, etc [154] |155] |156| |157]. This approach is suitable for IV systems
when considering vehicle-to-vehicle communication. The latter approach involves
the EV using on-board sensors to gather information from the surrounding vehicles
to predict their behaviour. Only the latter approach is reviewed in this review,
as vehicle-to-vehicle communication is not yet available, and AVs would still share
roads with conventional human drivers.

Vehicle behaviour prediction is a crucial component of the IV behaviour pre-
diction system as it would enable the IV to perform risk assessment, plan future
movements, and make appropriate decisions to avoid/mitigate the impact of colli-
sions. Ideally, a vehicle behaviour prediction algorithm should be fast, cost-effective,
accurate, generalise well in different traffic scenes, consider the interdependence be-
tween agents, and have a long prediction horizon. A long prediction horizon allows
more time for the IV to make decisions and take appropriate actions. A typical vehi-
cle behaviour prediction pipeline consists of multiple steps, including detecting the
target and surrounding vehicles. This detection information is used to obtain track-
ing information. Subsequently, this tracking information is used as an observation
feature to predict future trajectories. In order to enhance the quality and duration
of predictions, context information of the traffic scene and the intention manoeuvre
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Table 2.3: Motion, context and intention cues that can be used to predict vehicle
behaviour.

Information Features

MOTION Target Vehicle (TV): Lateral/longitudinal position, velocity, accel-
eration, yaw, yaw rate, and relative speed.

TV-to-lane: lateral offset, and lateral speed.
TV-to-Surrounding Vehicle (SV): distance from surrounding ve-
hicles.

CONTEXT Road: Lane marking, number of lanes, lane width, lane curvature,
type of lines, entries, exits, left/right/forward arrows, crosswalks,
traffic light, traffic signs, type of roads (urban, country, highway-
motorway), bumps, road holes, road works, left/right-hand side traf-
fic, and junctions.

Vehicle: indicators, brake lights, warning lights, type of the vehicle,
and sirens’ light status.

Other road agents: pedestrians, animals, cyclists, and trams.
Environment: sunny, snowing, rainy, foggy, and dark.

INTENTION Braking, turning left/right, lane keeping, left/right lane change,
speeding, normal driving, aggressive driving, abnormal driving, merg-
ing, exiting, cutting in/out, and yielding.

of other vehicles can be considered. Table provides the type of motion, context,
and intention information that has been and could be used by the researchers to
predict vehicle behaviour.

Vehicles possess specific characteristics that can simplify behaviour prediction,
such as limited movement due to inertia, the requirement to obey traffic rules, and
the necessity to navigate within road boundaries. However, predicting vehicle be-
haviour remains challenging because it depends on various factors, including the
actions of other vehicles, traffic regulations, road geometry, and varying driving
environments |103] |64]. Additionally, vehicles exhibit multimodal behaviour, with
different types of vehicles potentially providing distinct motion information. Pre-
diction can also be complicated if surrounding vehicles are occluded.

Top-view and on-board sensors are the primary data sources to predict vehicles’
behaviour. Top-view data are captured from static sensors usually installed on tall
buildings, while on-board sensors are captured from sensors installed on the EV.
Top-view data have the advantage of providing more precise information since the
acquired data have better quality, the vehicles surrounding the T'V are captured, and
vehicles are not easily occluded. However, it only covers a specific and fixed portion
of the traffic scene, limiting the algorithm from generalising to other traffic scenarios.
Top-view sensors are typically used in two types of traffic environments: highways-
motorways and complex traffic scenes, such as busy urban areas and junctions.
Highway-Motorway datasets can suffer imbalanced samples, with more instances of
constant velocity behaviour than the specific manoeuvres of interest [142].

On-board sensor data can capture different traffic scenarios, however, its data
quality can be affected by noises, surrounding vehicles can be occluded, and to
detect all the vehicles surrounding the EV and the TV, more than one sensor might
be required (e.g., front, rear, and sides cameras.) [121]. On-board sensor data
is particularly advantageous for IV applications because the algorithms that use
them, could be directly integrated into AVs, which are already equipped with on-
board sensors. Several sensors, such as cameras, radar, and LIDAR could be used to
acquire both top-view and on-board data [158], |159} |71} [160]. However, this research
mainly focuses on works that have used camera sensors. For more information about
the available datasets for vehicle behaviour prediction, please refer to |[121]. Table
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[2.4] summarises the most relevant vehicle trajectory and intention prediction works
from 2009 to 2022. From the table, it is observed the following:

e Shift to Deep Learning and NGSIM Dataset: Up to 2016, the majority
of the works used traditional techniques and their OWN datasets, however,
after 2016, most of the works adopted DL techniques and used the NGSIM
dataset.

e Expanding Information Sources: Vehicle behaviour prediction algorithms
have evolved from using only motion information to incorporating additional
sources, including manoeuvre, interaction, and driver-style information.

e Limited Use of Other Datasets: While the NGSIM dataset gained popu-
larity, other datasets such as Apollo, KITTI, LISA, INTERACTION, HighD,
and PREVENTION were rarely used.

e Trajectory Prediction Dominance: Most research efforts were to predict
trajectories. It was not until 2020 that more research addressed the prediction
and recognition of vehicle intentions.

e Focus on Lane Changing and Turning Maneuvers: Most research fo-
cused on predicting the trajectories and intentions related to lane changing and
turning manoeuvres. Other types of manoeuvres, such as reversing, braking,
and U-turns, were seldom used.

e Evaluation Metrics: The most common evaluation metric for trajectory
prediction was the Root Mean Square Error (RMSE), while for intention pre-
diction, accuracy was the predominant evaluation metric.

The following two subsections discuss the algorithms used to predict vehicle
behaviour. The first covers the algorithms used to predict trajectories, and the
latter, the algorithms used to detect and predict discrete vehicle intention.

Trajectory Prediction

Asreported in Table[2.4] vehicle trajectory prediction has been achieved using one or
more of the following approaches: physics-based, manoeuvre-based, or interaction-
aware motion models [103]. Physics-based motion models were one of the first
approaches to be proposed, and they used physics principles to predict vehicle mo-
tions. This approach is computationally efficient, meets real-time requirements, and
does not require the dataset to be human-labelled. However, they are less suitable
for complex scenarios like busy urban scenarios and junctions. This is because they
do not take into account the TV intentions, the contextual information of the scene,
or the interaction between the TV and the SVs. This lack of information limits the
prediction horizon for the EV to less than one-second [103]. In order to overcome the
limitation of a short prediction horizon associated with the physics-based approach,
manoeuvre-based approaches were introduced. In the manoeuvre-based approach,
the EV uses the TV’s predicted intention to predict future trajectories. This in-
creases the trajectory prediction horizon and accuracy, as the predicted trajectory
would match the predicted intention. However, if the predicted manoeuvre is incor-
rect, the whole predicted trajectory may also be inaccurate. The interaction-aware
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approach uses the trajectories and the intentions of both the TV and the SVs to
predict the TV trajectory. This approach further extends the prediction horizon and
improves the accuracy of the predicted trajectories. On the other hand, it comes
with complexities in implementation, demands greater computational power, and
raises questions about determining which vehicles should be considered as SVs. Not
all SV might be reliably detected by the EV.

Table 2.4: Relevant works for vehicle trajectory and intention prediction.

‘Work Methods Algorithm Objectives Dataset-Results
PF+RBF Trajectory prototype. Predict future trajectories of OWN
[161 Particle Filter (PF) to track and generate mo-  the ego and surrounding vehi-  See Table @
tion hypothesis. cles.
RBF to classify trajectories.
QRLCS to measure similarity between trajec-
tories.
Evaluation: RMSE.
162 Extended Kalman Filter Estimate Position and Veloc- OWN
Evaluation: Mean Distance Error. ity. Graphs.
163 Bayesian Networks. Detection of lane change ma- OWN
Occupancy Grid Map (OGM). noeuvre. Accuracy: 83.8%.
Evaluation: FP, FN, and Accuracy.
164 SVM. Predict lane change manoeu- OWN
Bayesian Filter. vres of the EV. Recall: 1
Evaluation: Recall, Precision, and F1-score. Precision: 0.8
F1-score: 0.9
APT: 0.97 s
165 Target lane model to predict in which lane the  Predict lane change of sur- NGSIM
TV will go. rounding vehicles. Absolute error: 0.7 m.
3rd Order Linear System to model trajectory.
Auto encoder to cluster the available trajecto-
ries into three prototype trajectories.
Multi-layer Perceptron (MLP) network to pre-
dict the target lane and the probability for
each one of the prototype trajectories.
OH/PH: (1s,2s,3s,4s,58)/5s.
Evaluation: Prediction time and absolute er-
ror of lateral position.
166 Features: linear changes, angular changes, and  Classify manoeuvre intention KITTI
angular changes histogram. at intersections. 2 classes: 85%.
Multi-layer LSTM. 3 classes: 75%.
Evaluation: Accuracy. 8 classes: 65%.
12 classes: 40%.
167 Detection: DMP + Feature Pyramid + HOG  Predict future trajectories of OWN
Tracking: MDP + TLD. the surrounding vehicles. Recall: 92%
Trajectory: KF.
Evaluation: Recall.
143 LSMT-RNN. Predict the future position of OWN
OGM. the surrounding vehicle using MAE:1.51 for 2 s; 0.88
Data-driven approach. OGM. for 1 s; and 0.59 for 0.5
PH: 0.5s, 1s, and 2 s. S.
Information: Position, the velocity of sur-
rounding vehicles, and velocity and yaw rate
of EV.
Evaluation: Mean Absolute Error(MAE).
168 CNN. Predict lane change manoeu- OWN

Evaluation: Accuracy.

vre.

Accuracy: 89.87%

Continued on next page
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Table 2.4 - Relevant works for vehicle trajectory and intention prediction (continued from the previous page).

‘Work Methods Algorithm Objectives Dataset-Results
DESIRE Observation, sample generation, and rank re- Predict the future position of SDD KITTI
\ finement. the surrounding vehicles con-  See Table
CVAE + RNN (GRU) to predict multi-modal sidering static and dynamic
trajectories considering latent variables. scene context and interaction
I0C (based on Reinforcement Learning) to  between agents.
rank and refine the predicted trajectories.
Spatial Grid-Based Pooling Layer to extract
interaction feature.
SCF to combine agents’ interactions and scene
context.
OH/PH: 2 s/4 s.
Evaluation: L2 distance error and miss rate.
142 LSTM encoder-decoder. Predict the TV’s future posi- NGSIM
Evaluation: average RMSE. tion by considering surround-  See Table
ing vehicles.
156 Two LSTM networks, one to encode past tra-  Predict vehicle trajectory us- NGSIM
jectories and predict intention manoeuvre, the ing past trajectories and pre- See Table
other to encode past trajectories, and the pre-  dicted manoeuvre intention.
dicted manoeuvre to decode future trajecto-
ries.
Evaluation: lateral and longitudinal RMSE.
169 LSTM encoder-decoder. Predict the future position of OWN
OGM. the target and the surrounding MAE (Grid): 1.27 for
Beam search algorithm. vehicles. 2 s; 1.14 for 1.6 s; 0.99
OH/PH: 3 s/2 s. for 1.2 s; 0.84 for 0.8 s;
Evaluation: MAE. and 0.64 for 0.4 s.
M-LSTM Tracking history and Manoeuvres classifica- Trajectory prediction of sur- NGSIM
140| tion (Lane change, brake, and normal driving) rounding vehicles considering See Table@
to allow multi-modal prediction. the interaction between traffic
LSTM encoder-decoder to encode tracked his-  agents.
tory motions and to decode multi-modal future
motions.
OH/PH: 3 s/5 s.
Evaluation: RMSE.
C- HMM for manoeuvre recognition. Manoeuvre Intention (lane LISA-A
VGMM+VIM IMM + VGMM to predict trajectories. change, overtaking, cutting-in, MAE overtakes and
170] Markov Random Field for vehicle interaction.  drift into ego lane) and Tra- cut-ins: 2.49 for 5 s;
PH: 5s jectory Prediction. 1.94 for 4 s; 1.39 for 3
Evaluation: Manoeuvre classification accu- s; 0.82 for 2 s; and 0.29
racy, mean and median error for the trajectory for 1 s.
prediction. MAE stop-and-go:
2.17 for 5 s; 1.65 for 4
s; 1.14 for 3 s; 0.64 for
2 s; 0.20 for 1 s.
Accuracy for overtakes
and cut-ins: 55.89%
Accuracy stop-and-go:
87.19%
Time: 6FPS.
CS-LSTM LSTM encoder-decoder to encode previous Predict future motions of sur- NGSIM
139] motion information and to decode future mo- rounding vehicles taking into  See Table 25l
tion. consideration motion, spatial Computation time:
Convolutional Social Pooling to learn agent’s  configuration, and interdepen- 0.29 s (reported by
interdependence motions. dence between agents. [144]).
Multi-modal prediction (6 classes: RLC, LLC,
NLC, brake, and normal).
OH/PH: 3s/5s.
Evaluation: RMSE and Negative log-
likelihood (NLL).
SA-LSTM Surrounding-Aware LSTM. Predict lane change manoeuvre NGSIM
171] OH: 6, 9, and 12 frames. and future trajectories. Avg. Accuracy:
Evaluation: Accuracy. 86.19%.

Continued on next page
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Table 2.4 - Relevant works for vehicle trajectory and intention prediction (continued from the previous page).

‘Work Methods Algorithm Objectives Dataset-Results
MATF Hybrid Model (LSTM + CNN) Trajectory prediction by con- NGSIM
[172 LSTM to encode past trajectories for multiple sidering social interaction and  See Table
agents. scene context.
CNN to encode context information.
MATTF to fuse interaction, spatial structure,
and context information.
Conditional generative adversarial training to
detect uncertainty in predicting manoeuvres.
Environment: Highway-Motorway and pedes-
trian crowd scenes.
OH/PH: 3s/5s.
Evaluation: RMSE.
173 Features: local position, velocity, acceleration, Predict lane change manoeu- NGSIM
distance to lane markings, yaw angle and rate, vres of the surrounding vehi- ANN Accuracy:
lateral velocity, and acceleration. cles. 98.8%.
ANN and SVM. Prediction: 2.4 s.
Evaluation: Recall, Accuracy, Precision, and SVM Accuracy:
Fl-score. 97.1%.
Prediction: 1.9 s.
ST-LSTM Spatio-temporal LSTM. Trajectory prediction by con- NGSIM I-80
[136 Short-cut connections to avoid gradient van-  sidering spatial and temporal See Table@
ishing. information.
Weighted sum to integrate the outputs.
Consider the 6 vehicles around the TV.
OH/PH: 3s/6 s.
Evaluation: RMSE.
GRIP Fixed Graph Convolutional (10 blocks) Model = Predict surrounding vehicle NGSIM
(144 to represent interactions between agents. trajectories considering the in-  See Table
Single LSTM encoder-decoder to make trajec- teraction between them. Computation time:
tory predictions. 0.05 s.
OH/PH: 3 /5 s.
Hardware: 4.0GHz i7, 32GB memory, and
NVIDIA Titan XP.
Evaluation: RMSE.
GRIP++ Dynamic Graph Convolutional (3 blocks) Predict surrounding vehicle ApolloScape
[138 Model to represent interactions between trajectories considering the in- WSADE: 1.2588.
agents. teraction between them. WSFDE: 2.3631.
Three GRU-RNN encoder-decoder to make NGSIM
trajectory predictions. See Table 251
OH/PH: 3 s/5 s. Computation time:
Hardware: 4.0GHz i7, 32GB memory, and 0.02 s.
NVIDIA Titan XP.
Evaluation: RMSE, WSADE, and WSFDE.
NLS-LSTM Local and non-local social pooling. Predict vehicle trajectory us- HighD
[141 LSTM encoder-decoder. ing local and non-local social  See Table 23]
Evaluation: RMSE. pooling. NGSIM
See Table 'ﬁl
174 Hybrid Model Manoeuvre classification and NGSIM
ANN to classify manoeuvres. trajectory prediction. See Table @
LSTM to predict trajectories.
OH: 3s,5s, and 6 s.
PH: 1s,3s,and 5 s.
Evaluation: RMSE and classification accu-
racy.
120 Two stream CNN (Disjoint). Recognition and prediction of PREVENTION
Spatio-temporal Multiplier Networks (ST) lane change/keep manoeuvre  Disjoint
(cross-stream connections). using stacked visual cues from  Classification  Accu-
ResNet-50 to extract both temporal and con-  videos. racy:89.46%.
textual information. Prediction Accu-
OH/PH: 2 s/(1-2 s). racy:91.02%.
4 Sizes of Rol are used x1, x2, x3 and x4. ST
Dense optical flow to extract movement con- Classification Accu-
text. racy: 90.30%.
Evaluation: Classification accuracy and Pre- Prediction  Accuracy:
diction Accuracy. 91.94%.

Continued on next page
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Table 2.4 - Relevant works for vehicle trajectory and intention prediction (continued from the previous page).

‘Work Methods Algorithm Objectives Dataset-Results
ARIMA-Bi- Off-line Bi-LSTM. Predict trajectories and turn- NGSIM-LP
LSTM Online ARIMA + Bi-LSTM. ing manoeuvres at intersec- GS: lateral 0.032; long.
|175] PH: 5 s. tions. 0.1093.
Evaluation: RMSE and Accuracy. TL: lateral 0.2719;
long. 0.1592.
TR: lateral 0.1168
long. 0.3954
Accuracy: 94.2% at 1
s, 93.5% at 2 s, and
74.5% at 3 s.
|121] TSM to differ between target and surrounding Detection and prediction of PREVENTION
vehicles. lane change performed by sur- Manoeuvre Detec-
TIM to extract motion pattern. rounding vehicles. Present  tion:
Greyscale image to extract context informa- a baseline to compare hu-  Accuracy: 82.7%.
tion. man performance against au-  Anticipation:2.28 s.
Compared various CNN models to detect and  tomated systems. Briefly com- Manoeuvre Pre-
predict manoeuvres. pared the available datasets. diction: Accuracy:
OH: 1s. 83.4%.
Evaluation: Accuracy, precision, recall, an- Prediction: 0.72 s.
ticipation (s), and AUC.
|69] 4 action recognition models were evaluated: Recognition and prediction of PREVENTION
Two-stream CNN, Two-stream Inflated 3D lane change/keep event us- Accuracy for STM:
CNN, STM network, and SlowFast Network. ing stacked visual cues from 91.91% for 2 s; 86.51%
4 Sizes of Rol. videos. for 1s.
Dense optical flow to extract movement con-
text.
OH:PH: 2 s/(1-2 s).
Evaluation: Accuracy (%).
ST-Conv- Spatial-temporal Convolutional LSTM. Predict lateral (lane change) BDD100K
LSTM OH/PH: 2.4 s/1 s. and longitudinal (holding, Accuracy: 57.9%.
|176] Evaluation: Accuracy. sharp acceleration, decelera-
tion, and stopping) intention.
IPTM- Intention encoder-decoder LSTM. NGSIM-LP
LSTM Trajectory encoder-decoder LSTM. Avg. Intention Accu-
|177] IPTM. racy: 90.94%
Evaluation: Accuracy and RMSE. RMSE: See Table
INTERACTION
Avg. Intention Accu-
racy: 86.92%.
LSTM-GAN LSTM + Generative Confrontation Network. Predict vehicle turning inten- OWN
[178] Evaluation: Accuracy. tion. Accuracy: 90.9%.
_[179] Game theory model to predict the intention of  Predict the trajectory of lane NGSIM
the driver. change maneuvers using driver ~ Graphs.
Recognise the vehicle behaviour using past ve-  style (aggressive or conserva-
hicle state. tive) and behaviour recogni-
Nash-optimisation function. tion.
Evaluation: Lateral position error, yaw rate
error, probability error.
AI-TP Approach: Data-driven. Trajectory prediction. NGSIM
|180] Features: Past trajectories. See Table@

Model(s): graph attention mechanism (AI-
TP), ConvGRU,
Evaluation: MSE.

The previously cited approaches have been implemented using either traditional
or DL techniques. Traditional techniques encompass Linear methods like KF and
Switching Linear Dynamic Models, as well as Non-linear methods such as EKF,
UKF, Switching Non-Linear Dynamic Models, Particle filters, Bayesian filtering,
Monte Carlo simulation, Naive Bayes Classifiers, Dynamic Bayesian Networks, HMM,
SVM, case-based reasoning, random decision Forest, Artificial Neural Network (ANN),
SVM, and Gaussian Process NN [69]. Traditional techniques have the advantage of
being fast to infer and not requiring an extensive dataset. However, they struggle
to generalise well and have limited prediction horizons. Additionally, most tradi-
tional techniques do not inherently account for vehicle interactions and may require
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additional features. The DL techniques used in the literature were based on ANNs,
Convolutional Neural Networks (CNN), Fully Connect Networks (FCN), Recurrent
Neural Networks (RNN), Graph Convolutional Neural Networks (GCNN), Gated
Recurrent Unit (GRU), or Long Short-Term Memory (LSTM) [69]. The main ad-
vantage of DL techniques is their ability to extract the required features to predict
vehicle behaviour implicitly. Some DL techniques even consider the interaction be-
tween vehicles by themselves, for instance, RNN and GCNNs. Yet, DL techniques
may not address the multi-modal behaviour of vehicles as they tend to average the
multiple possible modalities to minimise the regression error. They also require an
extensive dataset to generalise well, take longer to train, may suffer from gradi-
ent vanishing, and may not provide accurate trajectory prediction for longer time
horizons.

The following paragraphs will discuss the most relevant DL algorithms to predict
vehicle trajectories.

Altché and La Fortelle [142] and Kim et al. [143], to the authors’ knowledge,
were one of the first ones to use LSTM-RNN to predict the future trajectories of the
surrounding vehicles by using their past trajectories as input feature. Park et al.
[169] predicted future trajectories using an encoder-decoder LSTM. The encoder
encodes past trajectories of the surrounding vehicles, while the decoder decodes
future trajectories in an Occupancy Grid Map (OGM). The authors also applied
a beam search algorithm, to reduce the error propagation caused by the greedy
strategy that the decoder LSTM uses to maximise the output probabilities.

Deo and Trivedi |140] presented a Manoeuvre-LSTM model that encodes motion
and interaction of the surrounding vehicles to assign probabilities for each manoeu-
vre. The assigned probabilities enable multi-modal trajectory predictions. During
that period, the algorithm achieved better RMSE results than the state-of-the-art
algorithms, but the RMSE values for long PH were still high. Although the algo-
rithm considered vehicle interaction, it did not consider their inter-dependencies. In
order to overcome this limitation, |139] combined convolutional social pooling and
encoder-decoder LSTM to predict manoeuvres and future trajectories. The convolu-
tion social pooling can learn the interaction and interdependence of the surrounding
vehicles. The downside of the algorithm is that the social tensor of the convolutional
social network was fixed to the defined spatial grid around the TV, and it did not
consider visual context information. The disadvantage of the last two algorithms is
that the predicted trajectories depend on the manoeuvre classification performance.
For example, [139] compared their algorithm with and without considering manoeu-
vre intention, and they reported that the algorithm without manoeuvre had better
performance.

Dai, Li, and Li [136] claimed that the existing LSTM models suffered from vanish-
ing gradients and could not learn spatial interactions between traffic agents. There-
fore, they modified the conventional LSTM model by adding shortcut connections
and treated spatial interaction between traffic agents as time series. Their model
performed better than the M-LSTM [140] model, which considered manoeuvre pre-
diction information.

Li, Ying, and Chuah [144] presented the Graph-based Interaction-aware Tra-
jectory Prediction (GRIP) algorithm to predict future trajectories of the TV con-
sidering the SV information. GRIP used a GCNN to learn interaction patterns
between the TV and SVs. The learnt patterns were then fed to an encoder-decoder
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LSTM model to predict future trajectories. GRIP became the state-of-the-art algo-
rithm and was one of the few works to report inference times. The disadvantage of
GRIP is that it uses a fixed graph structure to learn the interaction between agents,
which may not be suitable for complex urban scenarios. In response, [138] pro-
posed GRIP++, an enhanced version that used fixed and dynamic graphs to learn
the interaction between agents. GRIP++ offered improved computational efficiency
compared to the existing algorithms.

Benterki et al. |[174] proposed a hybrid method combining ANN and LSTM.
ANN was first used to classify the TV’s manoeuvre (LLC, RLC, and NLC) using
the following manually selected features: yaw, yaw rate, lateral velocity, and lateral
acceleration. Subsequently, the LSTM used the vehicle’s position and the predicted
manoeuvre to predict future trajectories. While the authors tested their algorithm
in a real vehicle scenario, only three tests were performed: two for right lane changes
and one for left lane-change manoeuvre.

Luan et al. [179] used vehicle behaviour and driver style to predict future tra-
jectories. History trajectories of the surrounding vehicles were used to determine
the type of driver, whether aggressive or conservative. Then, the predicted type of
driver was used by a game theory model to predict the driver’s intention. Vehicle
behaviour was recognised by using past vehicle state. A comprehensive trajectory
was then predicted by feeding the predicted driver intention and the recognised ve-
hicle behaviour into two Nash-optimisation functions. The authors claimed that
with the inclusion of the type of driver information, the prediction of the vehicle
trajectory was improved. However, their results could not be directly compared to
state-of-the-art algorithms such as [144} 138, [139).

The previously cited works did not consider the scene’s visual context, which is
an important feature as it considers the constraints of the environment. Authors
[73] presented a Deep Stochastic Inverse Optimal Control RNN encoder-decoder
(DESIRE) network that considers scene context. The DESIRE uses an RNN encoder
to encode past trajectories, a Conditional Variational Auto-Encoder (CVAE) to
enable multi-modal predictions, an RNN decoder to decode future trajectories, and
a CNN to extract scene context information. In order to refine the predicted results,
DESIRE applies Inverse Optimal Control (IOC) to the predicted trajectories and the
extracted context information. The authors concluded that the model achieving the
best results was the one that considered both scene context and vehicle interactions.
Although their algorithm performs better than linear methods, it can not be directly
compared to other works in the literature, since they used different metrics and
datasets. Zhao et al. [172] aimed to predict future trajectories using interaction
information between agents and the scene context. An LSTM network was used to
encode multi-agent past trajectories, and a CNN was used to extract feature vectors
from the scene context. The outputs of the LSTM and CNN were fused using a
multi-agent tensor fusion (MATF) network, and the output of the MATF was then
fed into an FCN to predict future trajectories. While these last two cited works
considered visual context and achieved good performance, they did not outperform
algorithms that did not consider visual contexts, such as GRIP and ST-LSTM.

Table and Figure report the results for most algorithms reviewed in this
paper. Note that the graph only contains the works that have used the same dataset,

OH, PH, and evaluation metrics. The following observations can be made from the
table and the graph:
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Table 2.5: Results for the most relevant vehicle trajectory prediction works.

Work Dataset Metrics Axis Obs. 1s 2s 3s 4s 5s 6s
Hor.

CV NGSIM RMSE Both 3s 0.73 1.78 3.13 4.78 6.68 -

[139]

" S-LSTM NGSIM RMSE Both 3s 0.65 1.31 2.16 3.25 4.55 -
[181]

"~ GAIL-GRU NGSIM RMSE Both 3s 069 151 255 3.65 4.71 -
|182]

" C-VGMM+VIM NGSIM RMSE Both 3s 066 156 2.75 4.24 599 -
|170]

" M-LSTM NGSIM RMSE Both 3s 058 1.26 212 3.24 466 -
|140]

7CS-LSTM(M) NGSIM RMSE Both 3s 0.62 1.29 2.13 3.20 4.52 -
(139]

"~ CS-LSTM NGSIM RMSE Both 3s 061 127 2.09 3.10 4.37 -
[139]

MATF GAN NGSIM RMSE Both 3s 066 1.34 2.08 297 4.13 -
[172]

"~ ST-LSTM-1350 NGSIM RMSE Both 3s 056 1.19 1.93 2.78 3.76 4.84
[136] avg.

GRIP NGSIM RMSE Both 3s 0.37 0.86 1.45 221 3.16 -
(144]

" GRIP++ NGSIM RMSE Both 3s 0.38 0.89 145 214 294 -
[138]

AI-TP NGSIM RMSE Both 3s 0.47 0.1.05 1.53 1.93 2.31 -
|180]

" NLS-LSTM NGSIM RMSE Both 3s 056 1.22 2,02 3.03 430 -
[141] HighD 0.20 0.57 1.14 190 291 -
OGM-LSTM NGSIM RMSE Lateral 056 1.24 - - - -

J143| Longi. 3.05 6.70 - - - -
Dual LSTM NGSIM RMSE Lateral 5 s 0.15 026 038 045 049 -

J156| Longi. 047 139 257 4.04 577 -
(142 NGSIM RMSE Lateral 0.11 025 0.33 0.40 047 -

Longi. 071 198 3.75 596 9.00 -
ANN-LSTM NGSIM RMSE Lateral 3s 0.043 - 0.125 - 0.235 -
[174] Longi. 0.122 - 0.235 - 0.264 -

" IPTM-LSTM NGSIM-LP RMSE Both 3s 0.77 134 219 - - -
[177]

" MATF GAN Massachusetts RMSE Both 3s 0.75 1.4 2.0 2.7 - -
(172]

" PF+RBF OWN RMSE Both - 0.7 1.4 5.0 - - -

J161|
CS-LSTM (M) NGSIM NLL Both 3s 0.58 2.14 3.03 3.68 4.22 -
[139]

" C-VGMM+VIM LISA-A MAE Both 3s 024 069 1.18 1.66 2.18 -
[170]

" DESIRE KITTI DE Both 2s 0.28 0.67 1.22 2.06 - -

J?S] SDD PE 1.29 235 3.47 5.33

e Not all algorithms can be directly compared since they have used different
datasets, metrics, OH, and/or PH. Additionally, some of the works combined
the predicted lateral and longitudinal trajectories to calculate their metrics,
while others calculated the metrics for lateral and longitudinal trajectories,
separately.

e When comparing the algorithms that used the same dataset, metrics, OH, and
PH, it is observed that GRIP has the best performance for PTHs of 1 s, 2 s,
and 3 s; while AI-TP has the best performance for PTHs of 4 s and 5 s.

e With the exception of KITTI and LISA-A, all the other datasets are top-view
cameras, and the most frequently used dataset is the NGSIM.

e The most used metric is RMSE.
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e Most of the works adopted an OH of 3 s and PH of up to 5 s.

e [t is noticed that the algorithms’ performance worsens as the prediction horizon

increases.
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Figure 2.5: Vehicle Trajectory Prediction Performance using the NGSIM dataset,
with an OH of 3 s, and PH ranging from 1-5 s (See Table .

Intention Recognition and Prediction

The difference between intention recognition and prediction is that for intention
recognition, the manoeuvre can be recognised without any anticipation, while for
intention prediction, the manoeuvre event must be recognised before it happens.
Generally, the researcher specifies the desired anticipation time and then the ac-
curacy of the manoeuvre detection is calculated. The intention of a vehicle’s ma-
noeuvre can be recognised by using either prototype trajectories or the manoeuvre
intention estimation method.

The literature assumes that there is a motion pattern for the different types
of vehicle manoeuvres. Consequently, previous trajectory samples can be used to
define a set of prototype trajectories, which are then used to represent the different
motion patterns. Vehicle manoeuvres are then predicted by using initially observed
trajectories performed by the vehicle and matching them to the best available motion
patterns. However, this approach is computationally expensive because it requires
a substantial number of sample trajectories to determine the numerous possible
motion patterns.

In contrast, the manoeuvre intention estimation methods use vehicle motion
and road context features to classify the different types of manoeuvres, for instance,
stopping/non-stopping, turning left /right, etc. Although this method is less complex
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than calculating the numerous trajectory probabilities, a large training dataset is re-
quired to make the system robust to the different road scenarios. Another limitation
is that the manoeuvre classes may not be sufficient to cover the complexity of the
real vehicle intention. For instance, the system may predict a braking manoeuvre,
but the braking can be normal or harsh. A proposed solution is to sub-categorise
the manoeuvre, for example, normal/harsh stopping and normal/sharp right/left
turn; however, this adds complexity to the dataset labelling [64].

Intention prediction algorithms can also use predicted trajectories and vehicle
interaction to achieve better accuracy. Traditional methods used to predict vehi-
cle intentions are Heuristics, Bayesian Networks, HMM, and SVM. DL methods
commonly used are RNN, LSTM, and action recognition models.

The following paragraphs will discuss the most relevant DL algorithms used to
predict vehicle intention manoeuvre.

Khosroshahi, Ohn-Bar, and Trivedi [166] implemented a multi-layer LSTM net-
work to classify manoeuvre intentions at complex intersections. They extracted
samples representing manoeuvre intentions from the KITTI dataset to train and
test the algorithm. The input features included linear and angular changes, as well
as a histogram of angular changes in the vehicle trajectories. The authors performed
experiments with different numbers of manoeuvre classes: 2 (straight or turning), 3
(straight, turning left/right), 8 and 12 classes. The algorithm performed well with
2 and 3 classes, but the accuracy significantly decreased with 8 and 12 classes.

Lee et al. [168] transformed real-world images into a simplified version of Bird’s
Eye View (BEV) and fed them into a CNN to predict lane change behaviour. Zhang
and Fu [175] used an offline Bidirectional LSTM to learn driving behaviour and an
online Auto-Regressive Integrated Moving Average (ARIMA) to learn past trajec-
tories and predict future ones. The outputs of the offline Bi-LSTM and ARIMA
were then fed into another Bi-LSTM to recognise turning behaviour as left-turn,
right-turn, or going straight. The algorithm went through evaluation using the
NGSIM Lankershim and Peachtree Street dataset, and was able to meet real-time
requirements while achieving good accuracy recognition for the PH of 1 s and 2 s.
However, accuracy dropped when considering PH of 3 s, and it only considered turn-
ing left /right and going straight manoeuvres. Whereas vehicles at intersections can
perform more complex manoeuvres as reported by [166]. In addition, the dataset
used was acquired from top-view sensors while AVs are equipped with on-board
camera sensors. Benterki et al. |[173] compared two conventional methods to predict
lane-change manoeuvre, ANN and SVM. They concluded that ANN and SVM have
almost the same performance; however, ANN showed the best results.

Izquierdo et al. [121] used CNN, action recognition, and prediction methods to
recognise and predict lane-keeping/changing manoeuvres. Instead of using a se-
quence of images, they encoded context, interaction, and dynamic state information
in a unique enriched image. The enriched image was created by extracting the
red channel from a grey-scale version of the original image, using a target selec-
tion method (TSM), and a temporal integration method (TIM). The authors also
investigated human performance in recognising and predicting lane changes. Their
findings indicated that humans can detect 83.9% of the lane change events with an
average anticipation of 1.66 s before the manoeuvre is completed. Only 3 out of
72 users were able to predict the lane change events before they started, with an
average prediction horizon of 1.08 s. On the other hand, their best algorithm, which
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considers the trade-off between accuracy and anticipation, achieved 86.4% accuracy
with average anticipation of 2.09 s when considering TTE equal to 0. When TTE
was set to 1 s, their algorithm achieved an anticipation of 2.69 s, a prediction of 0.72
s, and an average accuracy of 83.4%.

Ferndndez-Llorca et al. [120] and Biparva et al. [69] recognised and predicted
lane-keeping/changing manoeuvres using video action recognition approaches. Bi-
parva et al. [69] used four types of video action recognition approaches: Two-stream
CNN, Two-stream Inflated 3D CNN, spatio-temporal Multiplier Networks, and
SlowFast Networks. All of the aforementioned networks used spatial and tempo-
ral information from a single image, a sequence of images, or a sequence of optical
flow images for recognition and prediction tasks. Moreover, four sizes of Rol were
used, denoted as x1, x2, x3 and x4, to consider the interaction between agents, and
to extract contextual information around the TV. The network with the best recog-
nition performance was the SlowFast CNN achieving an accuracy of 90.98% with an
OH of 2 s before the TTE. Meanwhile, the network with the best prediction perfor-
mance was the spatiotemporal multiplier, achieving an accuracy of 91.94% with an
OH of 2 s. The limitations of the previously cited works are as follows: the distribu-
tion of the manoeuvre classes was imbalanced, with more lane-keeping samples than
lane-changing ones; the time required to recognise and predict a single instance was
not provided; and some of the algorithms, such as the SlowFast network, was not
able to complete its training due to the GPU memory limitation.

Furthermore, it was observed from the previous vehicle intention prediction works
that the authors have selected a fixed PH to predict the vehicle’s intentions. The
drawback of using a fixed PH is that manoeuvre samples may vary in length. For in-
stance, the lane-change manoeuvre performed by an aggressive driver will be shorter
than a lane-changing manoeuvre performed by a normal driver.

2.2.3 Pedestrian Behaviour Prediction

At present, IV systems can effectively detect and track pedestrians, however, this
alone is not enough to prevent potential collisions. In order to avoid a collision,
IV systems must predict pedestrian behaviours. This section aims to provide a
literature review of the challenges and techniques used over the years for addressing
pedestrian behaviour prediction.

Pedestrian behaviour prediction has been applied in three main types of datasets:
datasets that are recorded using drones, for example, ETH and UCY; datasets
recorded from static cameras; and datasets recorded from car dash cameras, for
example, Daimler, JAAD, and PIE or KITTI. Datasets from on-board cameras are
more appropriate for training models for IV because they provide a more realistic
representation. However, when the car is in motion, it may affect the position of
the pedestrian bounding box, and pedestrians can be easily occluded. On-board
datasets can be categorised as either naturalistic or non-naturalistic, as discussed
by [183]. In non-naturalistic datasets, the pedestrian behaviours and intentions are
performed by actors, whereas, in naturalistic datasets, behaviours and intentions
are recorded from actual road traffic scenarios.

Pedestrian behaviour prediction has been heavily investigated in the past years,
and it has many challenges. For instance, pedestrians are highly dynamic, they can
move in many directions and change them very quickly, and can be easily occluded
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Table 2.6: Features and information used to predict pedestrian intention.

Feature Information

Bbox coordinates Position, speed, height and width.

Bbox cropped image Pedestrian appearance, local and sur-
rounding context.

Full image Global context and some interaction be-
tween different traffic objects.

Body Pose Displacement, action, skeleton, and land-
marks.

EV position/speed Interaction between pedestrian and EV.
Pedestrian behaviour is affected by EV
speed.

by other objects. They can also become distracted by their own objects or external
environments, their movements may be influenced by other traffic agents, and they

can be difficult to detect in poor visibility conditions. As reported in Tables [2.6]

and [2.9] researchers have proposed various methods and features to address these
challenges over the years. From these tables, the following observations can be made:

e Until 2018, most of the works used traditional methods and their OWN dataset.
Thereafter, most authors adopted DL techniques and used the ETH and UCY
datasets for trajectory prediction, as well as JAAD and PIE datasets for in-

tention prediction.

e Pedestrian behaviour prediction algorithms have evolved, from solely using
motion information to using pedestrian appearance, body pose landmarks,

local/global context, interactions between agents, and EV dynamics.

e Prior to 2018, the focus was predominantly on trajectory prediction, there-
after substantial research efforts have been dedicated to predicting pedestrian

intentions.

e Most of the intention prediction works were to predict the crossing intention.

e The most used evaluation metrics for intention prediction were accuracy, F1-

score, precision, recall, Area Under the Curve (AUC), and Receiver Operating

Characteristic Curve (ROC-AUC).

e The most used evaluation metrics for trajectory prediction were Average Dis-
placement Error (ADE), Average Final Displacement Error (FDE), and MSE.
Other metrics are Average Non-linear Displacement Error (ANDE), Mean Av-

erage Displacement (MAD), and Final Average Displacement (FAD).

The following subsections discuss some of the algorithms reported in Tables

and [2.9] The first subsection provides an in-depth exploration of trajectory

prediction algorithms, while the subsequent subsection explores intention prediction

algorithms.



37

2 Literature Review

Table 2.7: Relevant works for pedestrian trajectory prediction.

‘Work Methods Dataset/Results

(184] Approach: Dynamic. Daimler
Features: constant velocity, acceleration, turn. IMM has not shown significant perfor-
Models: Recursive Bayesian filters — Compared  mance over simpler models.
EKF and IMM filters.
PH: < 2s.
Evaluation: MLPE.

[185] Approach: Dynamic. OWN (on-board)
Features: optical flow. GDPM and PHTM showed better ac-
Compared the performance between GDPMs, curacy, however, they are more com-
PHTM, KF and IMMKEF'. putationally expensive.
Provided human performance on classifying pedes-  10-50 cm Time Horizon 0.77 s.
trian behaviour prediction.
Evaluation: Mean Combined Longitudinal and
Lateral RMSE.

[68] Approach: Dynamic + Context. OWN (on-board)
Features: Head orientation, distance between ve-  Outperforms state-of-art algorithm
hicle and pedestrian, distance between pedestrian PHTM. Best result of -0.33 was
and curb. achieved in the critical, vehicle-seen
Models: Dynamic Bayesian Filters (SLDS). and stopping scenario using the full
Evaluation: Predictive log likelihood. context information.

Social- Approach: Data driven. ETH and UCY

LSTM |181] Features: Past trajectories. ADE/FDE/AND: 0.27/0.61/0.15.
Models: Social pooling layer, and LSTM.
OH/PH: 8 (3.2 s)/12 (4.8 s) frames.
Evaluation: ADE, FDE, and AND.

[186] Approach: Dynamic + Context. OWN (on-board) for training and
Features: pedestrian state (position, orientation, KITTI for evaluation.
and speed), predicted goals, environment context  Displayed in a graph.
(building, sidewalk, crosswalk, road and grass),
dynamic environments such as traffic lights, and
assumed rational behaviour for the agent.
Models: Jump-Markov Process, and Rao-
Blackwellized filter.
Evaluation: L2 error, and Average prediction er-
ror.

[187] Approach: Data driven + Goal-directed. OWN (on-board)
Features: visual cues, predicted pedestrian desti-  Outperformed IMM. Results were not
nations, and trajectories. clear, but from graph Prediction accu-
Models: RMDN, LSTM, topology network, and  racy 10(—1) for 1.5 s. Destination plays
Markov Decision Process. an important role when trying to pre-
Evaluation: Predicted probability distribution, dict pedestrian intention.
Average accuracy of predicted destination, and
prediction accuracy over time.

SR-LSTM Approach: Data driven and social behaviour. ETH and UCY

(188| Features: trajectories and current state of the MAD: 0.45; FAD: 0.94.
neighbours.
Model(s): SR-LSTM and attention mechanism.
Evaluation: MAD, and FAD.

Social-GAN  Approach: Data driven. ETH, UCY

(153] Features: Past trajectories. ADE: 0.39/0.58.
Model(s): GAN, Pooling Module, and LSTM. FDE: 0.78/1.18.
PH: 8 and 12 meters.
Evaluation: ADE and FDE.

Social at- Approach: Data driven. ETH and UCY

tention Features: Past trajectories. ADE: 0.30 m.

[150] Model(s): ST-Graph, LSTM, and Attention. FDE: 2.59 m.
OH/PH: 8 (3.2 5)/12 (4.8 s) time steps.
Evaluation: ADE and FDE.

SS-LSTM Approach: Data driven. ETH and UCY

[135] Features: Past trajectories, neighbour features ADE: 0.070 pixels.

(occupancy maps: grip, circle and log), and in-
dividual information.

Model(s): CNN, and Hierarchical-LSTM.
OH/PH: 8/12 frames.

Evaluation: ADE and FDE.

FDE: 0.133 pixels.

Continued on next page
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Table 2.7 — continued from the previous page.

‘Work Methods Dataset/Results
CIDNN Approach: Data driven. GC/ETH/UCY/CUHK/Subway
|151) Features: Past trajectories, and interactions. ADE: 0.012/0.09/0.12/0.008/0.016.

Model(s): stacked-LSTM, and MLP. Inference: 0.43 ms
OH/PH: 5/5 frames.
Hardware: Intel Xeon CPU E52643 4.40 and T1I-
TAN GPU.
Evaluation: ADE.
LSTM- Approach: Data driven. CityScapes(on-board)
Baysian Features: Bbox coordinates past trajectories and ~MSE/NLL: 505/3.92.
1189 EV odometry.
Model(s): Two stream architecture, Bayesian
RNN (LSTM), and CNN.
OH/PH: 0.5/1 s.
Evaluation: MSE in pixels and NLL.
DBN-SLDS  Approach: Data driven. OWN (on-board, non-naturalistic
1190] Features: context cues (VRU actions, and its  Graphs.
static and dynamic environment).
Model(s): DBN and SLDS.
TTE = [-15, 0]
PH:1 s.
Evaluation: Prediction error.
MX-LSTM Approach: Data driven. UCY
|191) Features: Past trajectories, and head pose esti- MAD/FAD: 0.49/1.12 m.
mation. Towncentre
Model(s): tracklets, vislets, VFO social pooling, MAD/FAD: 1.15/2.30 m.
and LSTM.
OH/PH: 8/12 frames.
Evaluation: MAD and FAD in meters.
Scene- Approach: Data driven. UCY and ETH
LSTM Features: Past trajectories and scenes are divided ~ADE/FDE/NDE: 0.7/0.7/0.9.
1192] into grid cells.
Model(s): Scene Data Filter, and Coupled-
LSTM.
OH/PH: 3.2/4.8 s.
Evaluation: ADE, FDE and NDE.
SoPhie Approach: Data driven. ETH, UCY
|152] Features: Past trajectories, social interactions, ADE: 0.54 m.
and images of the scene. FDE: 1.15 m.
Model(s): CNN, LSTM, GAN, Social and phys- SDD
ical attention mechanism. ADE: 16.24 pixels.
PH: 12 future timesteps. FDE: 29.38 pixels.
Evaluation: ADE and FDE.
StarNet- Approach: Data driven. ETH and UCY
DNN Features: Past trajectories. ADE/FDE: 0.30/0.57.
|149] Model(s): StarNet DNN (Host and hub net- Inference: 0.073 s.
works), and LSTM.
PH: 8 frames.
Hardware: Tesla V100 GPU.
Evaluation: ADE and FDE.
PECNet Approach: Data-driven and goal-directed. ETH and UCY
|146] Features: Past trajectories and estimated end ADE/FDE: 0.29/0.48 m.
point destination. SDD
Model(s): CVAE, attention mechanism, and so- ADE/FDE: 9.96/15.88 p.
cial pooling.
OH/PH: 3.2/4.8 s.
Evaluation: ADE and FDE.
ST-GCNN Approach: Data driven. ETH and UCY
|147) Features: Past trajectories and sequence of im- ADE/FDE: 0.44/0.75 m.
ages.
Model(s): GCN, and TXP-CNN.
OH/PH: 3.2/4.8 s.
Evaluation: ADE and FDE.
RSBG Approach: Data driven. ETH and UCY
|148| Features: Past trajectories and local context. ADE/FDE: 0.48/0.99 m.

Model(s): GCN, CNN, and LSTM.
OH/PH: 3.2/4.8 s.
Evaluation: ADE and FDE.

Continued on next page
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Table 2.7 — continued from the previous page.

‘Work Methods Dataset/Results
LVTA Approach: Data driven. ETH and UCY
(193] Features: Past trajectories and velocities. ADE/FDE: 0.46/0.92 m.
Model(s): attention mechanism, and LSTM.
OH/PH: 3.2/4.8 s.
Evaluation: ADE and FDE.
Holistic- Approach: Data driven. JAAD
LSTM Features: bbox past trajectories, crossing in- MSE: 389.
(194] tention, pedestrian scale, depth estimation, and PIE
global scene dynamics (depth and optical flow). MSE: 167.
Model(s): ConvLSTM, modified LSTM with S-KITTI
more inputs, and attention mechanism. MSE: 525/1.5 s.
OH/PH: 0.5/1 s.
Evaluation: MSE, CMSE, and CFMSE of the
bbox coordinates.
Bi-TraP Approach: Data driven and Multi-modal goal es- JAAD
(195] timation. ADE: 1206.
Features: bbox past trajectories. PIE
Model(s): CVAE, Gaussian distribution, GMM, ADE: 511.
and Bi-directional GRU. ETH-UCY
OH/PH (JAAD/PIE): 0.5/1.5 s. ADE/FDE: 0.18/0.35.
OH/PH (ETH/UCY): 3.2/4.8 s.
Evaluation: ADE and FDE.
BA-PTP Approach: Data driven. PIE
(67 Features: vehicle odometry, bbox, body, head MSE/CMSE/CFMSE: 420/383/1513.
orientation, and pose. ECP-Intention
Model(s): attention mechanism and Bi-GRU, MSE/CMSE/CFMSE: 768/680/1966
OH/PH (PIE): 0.5/1.5 s.
OH/PH (ECP): 0.6/1.6 s.
Evaluation: MSE, CMSE, and CFMSE.
SGNet Approach: Data-driven, and goal-directed. JAAD
(196] Features: Past trajectories. MSE/CMSE/CFMSE: 1049/996/4076
Model(s): Stepwise goal estimator, attention p (1.5 s).
mechanism, GRU, and CVAE. PIE
OH/PH (JAAD, PIE, HEV-I): 1.6/0.5,1.0,1.5, MSE/CMSE/CFMSE: 442/413/1761
s. p (1.5 s).
OH/PH (ETH & UCY): 3.2/4.8 s. ETH and UCY
OH/PH (NuScenes): 2/6 s. ADE/FDE: 0.35/0.83 Euclidean space.
Evaluation: MSE, CMSE, CFMSE, ADE and NuScenes
FDE. ADE/FDE: 1.32/2.50.
PTPGC Approach: Data driven. ETH and UCY
[197] Features: Past trajectories, length of attributes, ADE/FDE: 0.67/1.29.

and number of pedestrians.

Model(s): Graph attention, convLSTM, and
Temporal CNN.

OH/PH: 3.2/4.8 s.

Evaluation: ADE and FDE.

Trajectory Prediction

Both traditional and DL techniques have been used to predict pedestrian trajec-
tories. Traditional techniques rely on hand-crafted functions, such as EKF, IMM,
and social forces, to predict pedestrians’ future trajectories. However, these func-
tions have limitations in handling complex scenarios. To address this, several re-
searchers adopted DL techniques such as CNN, Generative Adversarial Network
(GAN), GCNN, LSTM, GRU, CVAE, attention mechanism, and/or MLP.
Although LSTM networks have many advantages, they struggle to learn depen-
dencies between multiple correlated sequences. For this reason, [181] proposed a
Social LSTM network to predict pedestrian trajectories. Social pooling layers were
introduced to enable LSTM networks to share their hidden state. This enables
the algorithm to learn interactions among pedestrians. Social-LSTM only considers
motion features to model human interactions, however, [151] argues that spatial po-
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sition should also be considered. For this reason, they presented a model where MLP
layers were used to encode location, and LSTM was used to encode motion for each
neighbour. Both sets of encoded information were then used as input to a crowd
interaction module to predict pedestrian displacement. In a different approach, [193]
used two LSTM layers to encode the pedestrian’s location and velocity, along with a
temporal attention (TA) mechanism to extract the most relevant features from the
velocity and location inputs.

Humans are highly dynamic, which makes the task of predicting their trajecto-
ries more challenging. In response to this, [187] implemented a DNN that would
first predict the future destinations of the pedestrians, and then predict their fu-
ture trajectories. They have used CNN, LSTM and Mixture Density Network to
predict potential destinations, and another CNN to plan and predict future trajec-
tories based on these potential destinations. CVAE was used by [146] to predict
future endpoints, these then were subsequently used to predict multi-modal longer-
term trajectories. They also presented a novel self-attention-based social pooling
layers that extract relevant features from the neighbours using non-local attention.
Yao et al. [195] also proposed a goal-direct method, where they combine CVAE
and bi-directional GRU to encode past trajectories and decode multi-modal future
trajectories. Goal-directed models have the disadvantage that only one goal is esti-
mated over a long-term prediction. For this reason, if a pedestrian changes direction,
the estimated goal may be incorrect, consequently affecting the estimated predicted
trajectories. Wang et al. [196] proposed a method where they model and estimate
goals continuously by using RNNs.

While many studies relied on historical trajectories to predict future ones, they
often overlooked the current state of the pedestrian. In order to overcome this
issue, [145] introduced a state refinement LSTM that considered both the current
and previous state of the target pedestrian and the surrounding pedestrians. This
state refinement module enables the network to incorporate interactions through a
message-passing mechanism. It also uses a motion gate as an attention mechanism
to focus on the most relevant features of the neighbours.

Previous research, when considering human-to-human interactions, would often
take into account only nearby neighbours, even though more distant neighbours
might also influence the behaviour of the target pedestrian. A GAN was presented
by [153] that not only considers local neighbours but all neighbours in the scene.
The GAN network comprises an LSTM generator to generate multi-potential tra-
jectories, a pooling module to learn human-to-human interactions, and an LSTM
discriminator to select acceptable trajectories from the generated ones. Similarly,
[150] considered all the pedestrians in the scene using a spatio-temporal graph and
LSTM. Additionally, they adopted an attention mechanism to learn the relevance
of each agent, regardless of how far they are from each other. A star-like network
was introduced by |149] to account for all agents in the scene. The network has a
centralised hub network, which gathers motion information from all pedestrians in
the scene, and a host network for each pedestrian. The host networks query the hub
network for social information to predict trajectories. Graph attention and convo-
lutional LSTM were also proposed by [197] to consider the surrounding neighbours.

Xue, Huynh, and Reynolds |135] emphasised the importance of considering scene
layout when predicting pedestrian trajectories. As a result, they used three differ-
ent LSTMs to learn information about individuals, social interactions, and scene
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layout. One LSTM used the trajectory of the target pedestrian as its input, an-
other used an occupancy map as its input, and the final one used feature vectors
extracted from the original image by a CNN as its input. Likewise, [192] took scene
layout into account, where they used a two-level grid structure of the original image
and trajectory information as inputs to a two-stream LSTM for predicting future
trajectories. CNN, LSTM, attention mechanism, and GAN were used by [152] to
predict trajectories using both past trajectories and scene context as inputs. The
CNN extracted scene-related features, the LSTM extracted motion-related features,
the attention mechanism extracted both the physical and position relevant features,
and the GAN generated multiple trajectories and then selected the most suitable
ones.

Mohamed et al. [147] classified methods such as social pooling or the combina-
tion of hidden state features, used to model human interactions, as “aggregation
methods”. They claimed that these types of methods have limitations in accurately
modelling human interactions because the aggregation occurs within the feature
space and does not directly model physical interactions. Furthermore, some of
these aggregation methods, such as pooling layers, may overlook to capture impor-
tant information. Given these considerations, the authors proposed a social spatio-
temporal GCN (ST-GCN) to model interactions among pedestrians. The ST-GCN
model’s output is subsequently used as input for a time extrapolate CNN to predict
future trajectories.

The above works have not considered group-based interactions, which involve
two or more individuals exhibiting similar movements, behaviours, or goals. A
recursive social behaviour graph and GCN were implemented by [148] to explore
and learn group-based interactions. The authors also used CNN and LSTM to
obtain an individual representation of each pedestrian in the scene. The individual
representations, along with the learned group-based features, were combined and
used by a decoder LSTM to predict future trajectories.

Bhattacharyya, Fritz, and Schiele [189] claimed that they were the pioneers in
using an on-board dataset to predict pedestrian behaviour. The authors used a
two-stream LSTM architecture to encode bounding box coordinates, ego-vehicle
odometry information, and feature vectors extracted from the original image by a
CNN. Another work that used an on-board dataset is [67], in which the authors
used a multi-stream RNN to individually encode bounding box coordinates, head
orientation, body orientation, pose skeleton, and past trajectories. The encoded
information from each stream is fused through an attention mechanism and subse-
quently input to an RNN decoder to predict future bounding boxes. The drawback
of the latter two algorithms is that they did not consider social interaction among
the agents.

Hasan et al. [191] argues that head orientation and movement are correlated.
Consequently, they proposed a two-stream LSTM to encode both trajectory and
head orientation information. The two encoded information, were then merged
using a View Frustum social pooling layer. The disadvantage of this method is that
it is only suitable for top-view and BEV datasets.

Usually, when a system adopts LSTM networks and requires the use of multiple
types of inputs, these inputs are first combined before being fed to LSTM cells.
This practice is required because LSTM cells are designed to accept only a single
input sequence, which can constrain their ability to capture relevant information
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Table 2.8: Results for the most relevant pedestrian trajectory prediction works.

Work Dataset OH PH ADE FDE AND MAD FAD MSE
Social-LSTM  ETH & 32s 48s. 027 0.61 0.15 - - -
|181) Uucy m m m

“Scene-LSTM  ETH & 32s 18s 07m 07m 09m - - -
[192] ucy

“Social-GAN ETH & 32s 18s 0.48 0.98 - - - -
|153] UcYy m m

" Social- ETH & 32s 48s 0.30 2.59 - - - -
attention UCY m m
[150]

. ETH & UCY 054m 1.15m - - -
ﬁgg]}"e SDD 32s 485 1624 pi 29.38 pi - - -
StarNet- ETH & 32s 48s 0.30 0.57 - - - -
DNN UCYy m m
[149)

ETH & UCY 029m 048 m - - -
ﬁfﬁfNet SDD 32s 485 996 pi 1588 pi - ; -

" ST-GCNN ETH & 32s 48s 0.44 0.75 - - - -
|147] UCY m m

"RSBG ETH & 32s 18s 0.48 0.99 - - - -
|148] UCY m m

TLVTA ETH & 32s 48s 0.46 0.92 - - - -
|193] UCY m m

o ETH & UCY 3.2s 48s 0.18 m 0.35 m -
Bi-TraP JAAD 0.5s 1.5s 1206 - - B ) -
[195] PIE 0.5s 1.5s 511 - B . -

ETH & UCY 32s 18s 0.35m 0.83 -
JAAD 1.6 s 15s - - - - 1049
lslgﬁll\let PIE 1.6 s 15s - - - - - 442
NuScenes 2s 6s 1.32 2.5 -
SGNet ETH & 32s 48's 0.35 0.83 - - - -
|196] UCY m m
PTPGC ETH & 32s 18s 0.67 1.29 - - - -
|197] UCY m m

TSS-LSTM ETH & 32s 48's 0.070  0.133 - - - -
|135] UCY npu npu
SR-LSTM ETH & 32s 18s - - - 0.45 0.94 -
[188] ucy

" CIDNN ETH & 4s 4s 0.11 - - - - -
[151) ucy
MX-LSTM ucy 3.2s 48s - - - 049m  1.12m -
[191] Towncentre - - 1.15m 230m -

o JAAD 1s 389
Holistic- PIE 0.5s 1s - - B 167
LSTM S-KITTI 1.5s B ) 525
[194]

PIE 05s 15s - - 420
|BG$|'PTP ECP 0.6 1.6s - - ; 768

from various input sources. Quan et al. [194] adapted the conventional LSTM cell
to accept four additional input sequences: vehicle speed, pedestrian intention, corre-
lation among frames, and bounding box location. The vehicle speed was estimated
by using optical flow and depth information; the pedestrian intention was estimated
using convLSTM; and the correlation among frames was derived from optical flow
images.

Table and Figure report the results for the most relevant studies in
pedestrian trajectory prediction. It is not possible to directly compare all of them
since some of them have used different datasets, metrics, OH, and PH. However,
when examining the results of the algorithms that used the same dataset, metrics,
OH, and PH, the Bi-Trap [195] algorithm outperformed others. Bi-Trap achieved
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ADE and FDE values of 0.18 m and 0.35 m, respectively.
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Figure 2.6: Pedestrian Trajectory Prediction Performance using the ETH and
UCY datasets, with an OH of 3.2 s, a PH of 4.8 s, and Average Displacement Error
(ADE) in metres (See Table .

Intention Recognition and Prediction

The difference between pedestrian intention recognition and prediction aligns with
what was explained in Section[2.2.2] Recognition does not require anticipation, while
prediction does. The main methods used to predict pedestrian intentions include
CNN, GCNN, GRU, LSTM, attention mechanism, multi-tasking, and transformer
networks.

CNN: Fang, Vazquez, and Lépez and Fang and Lépez used CNNs to
extract human skeleton features and used SVM/RF classifier to predict if the pedes-
trian is crossing the road. Abdulrahim and Salam also used CNNs, along with
depth information, to learn 3D human body landmarks, including additional infor-
mation such as the pedestrian shoulders, neck, and face. While CNNs can extract
spatial features, their capability to capture temporal dependencies is limited. To
overcome this limitation, [200] implemented a 3D-CNN to extract spatio-temporal
information. Additionally, [133] proposed an alternative model called FuSSI-Net, de-
signed to extract both spatio-temporal information. FuSSI-Net is a spatio-temporal
Dense-net that takes a sequence of bounding boxes and skeleton features as inputs
to predict crossing intention. Although these last two models can extract spatial
and temporal information, they are limited to short-time horizon prediction and
become computationally expensive as the input sequence length increases.

LSTM: Rasouli et al. used LSTM to encode local context, trajectories, and
EV information. Subsequently, the encoded information was decoded to estimate
the probability of a pedestrian crossing the road. Bouhsain, Saadatnejad, and Alahi
1131] used bounding box coordinates and velocities features as inputs for a sequence-
to-sequence LSTM, which was used to predict both the pedestrian intentions and
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the future position of the pedestrians’ bounding boxes. In a different approach,
[201], introduced a stacked-LSTM model, where appearance, context, and dynamic
features of the pedestrian were used to predict crossing intentions. LSTM networks
have the ability to learn and memorise features over the long term, as they capture
long-distance dependencies [202]. Nevertheless, they have limitations in extracting
spatial features, managing dependencies among the extracted features, exhibiting
longer training times, and assigning uniform attention to all inputs, even though
some inputs can be more relevant than others [111]. Ahmed et al. [203] used a 2D
pose estimator in conjunction with LSTM to predict the crossing behaviour of the

pedestrian.

Table 2.9: Relevant works for pedestrian intention prediction.

‘Work Methods Problem Dataset/Results

1184] Approach: Dynamic. Trajectory and inten- Daimler
Features: tion prediction. IMM has not shown
Recursive Bayesian filters — Compared EKF significant performance
and IMM filters (constant velocity/accelera- over simpler models.
tion/turn).

PH: < 2s.
Evaluation: MLPE.

1185] Approach: Dynamic. Trajectory and inten- OWN (on-board)
Features: tion prediction. GDPM and PHTM
Compared the performance between GDPMs showed better accuracy,
using optical flow information, PHTM, KF and however, they are more
IMMKEF. computationally expen-
Provided human performance on classifying sive.
pedestrian behaviour prediction. 10-50 cm Time Horizon
Evaluation: Mean Combined Longitudinal 0.77 s.
and Lateral RMSE.

1204] Approach: Dynamic + Context. Intention prediction OWN (on-board)
Features: distance and time to curb, distance  (crossing). Inner-city dataset, zebra
and time to the ego lane, distance and time to dataset and combination
the zebra crossing, distance and time to the of both ICZ.
collision point, a difference of time to the col- Inner-city model: 31%
lision point, face, global and relative orienta- TPR, 0.0 FPR, PH 0.72
tion. s for the zebra dataset.
A single neural network is used as a classifier TPR 29%, PH 0.67 s for
to learn the different features. the inner-city dataset.
Inner-city and zebra model. TPR 31%, PH 0.72 s for
PH: 1s. the ICZ dataset.
Evaluation: TPR and FPR. Zebra crossing model:

100% TPR, 3.23 s PH for
the zebra dataset. 86%
TPR, 28% FPR and 1.73
s PH for the inner-city
dataset.

CMT model: 62% TPR,
2.59 s PH for the ICZ
dataset.

1205] Approach: Dynamic + Context. Intention prediction. NTUC (OWN, on-
FLDCRF. board and actors)
Features: pedestrian position (distance to Average probability >

curb, and left or right side of the road),
pedestrian-vehicle interaction, optical flow.
Evaluation: average probability, time to stop
and time to cross.

0.7 predicting 1.2 s be-
fore the action.

Continued on next page
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Table 2.9 — continued from the previous page.

‘Work Methods Problem Dataset/Results

206 Approach: Dynamic. Predict pedestrian CMU-UAH
Balanced-GDPMs to reduce 3-D time relevant  actions. Achieved MED of 41.24
information into low dimensional information mm for TTE of 1 s,
and to assume future latent positions. for starting activity; and
Features: Skeleton motion analysis. MED of 238.01 mm for
Four models to predict start, stop, walk and TTE of 1 s for stopping
stand actions. activity.
HMM is used to select which model to use to
predict future pedestrian paths and poses.
Evaluation: MED against TTE.

198 Approach: Data Driven. Intention prediction Daimler
Features: Skeleton. (crossing/not  cross- 0.8 predictability with
CNN for pose estimation. ing). TTE=12 (750 ms).
Deep association for tracking.
Evaluation: Intention probability vs TTE.

CV Approach: Data Driven. Intention prediction See Table M

[183 Features: Skeleton. (crossing/not  cross-
CNN for pose estimation. ing).
Deep association for tracking.
Evaluation: Accuracy.

PIE Approach: Data driven. Intention prediction See Table M

(int) Features: bbox coord, image context, and im-  (crossing).

1128 age bbox.
RNN (LSTM).
Evaluation: Accuracy, and F1l-score.

131 Approach: Data Driven. Pedestrian intention  See Table|2.10]
Features: bboxes coordiantes adn velocities. and pedestrian bbox
PV-LSTM predictions  (cross-
Multi-task sequence to sequence learning ing).
Evaluation: ADE, FDE, Accuracy.

207 Approach: Context, Temporal, and Data Intention prediction Stanford-TIR
driven. (crossing). A: 79.10%.
Features: JAAD
Graph Convolution and GRU to learn spatio- A: 79.28%.
temporal relationships.
Evaluation: Accuracy.

208 Approach: Data driven. Intention prediction OWN (on-board)
Features: pedestrian body landmarks consid-  (walking and cross-  A: 89%.
ering depth information. ing).
CNN.
Evaluation: Accuracy.

FUSSI- Approach: Data driven, target-agent context. — Intention prediction  See Table|2.10|

net Features: Skeleton and bbox. (crossing).

1133 DenseNet.
Evaluation: Accuracy.

SFR- Approach: Data driven. Intention prediction See Table M

GRU Features: pose, 2D bbox, appearance, global  (crossing).

1132 context, and ego speed.

Stacked-RNN (GRU).
Evaluation: Accuracy, Precision, recall, F1-
score, and AUC.

C+B+S+Imkpproach: Data driven.

Intention prediction

See Table |2.10

1130 Features: surrounding, appearance, context, (crossing).  Studied
bbox, and EV speed. human performance.
single GRU.
PH: 2 s.
Evaluation: Accuracy, AUC, F1, Precision,
and recall.
209 Approach: Data driven and key body land- Recognition and JAAD
marks. Intention prediction Recognition: -0 s

Features: PAF and PIF.

Uses only one RGB image.

Multitask learning.

CNN (ResNet).

Evaluation: Precision for different prediction
horizons.

(crossing) in real-

time.

81.7%; -1 s: 83.6%; -2 s:
83.5%; -3 s: 83%; -4 s:
82.7%.

Prediction: -1 s: 42.6%;
2s: 46.1%; -3 s: 46.3%;
-4 s: 46.0%.

FPS: 5.

Continued on next page
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Table 2.9 — continued from the previous page.

‘Work Methods Problem Dataset/Results
210 Approach: Data Driven. Intention prediction CCTV
Features:: pose-key-points. (crossing at a red A: 92%: 1 s; 92%: 2 s
Compared SVM, RF, GBM, and XGBoost light). 88.9%: 3 s; 92.5%: 4 s.
models.
Evaluation: Accuracy.
PCIR Approach: Data driven, context, and be- Intention detection See Tablelm
[200 havioural. (crossing).
Features: pedestrians, EV, and environment.
3D-CNN.
Evaluation: AP.
211 Approach: Data driven. Intention prediction See Tablelwl

Features: bbox, body pose, road objects.
Graph encoder, CNN, and LSTM.

PH: 1.5 s.
Evaluation:
score.

Balanced Accuracy and F1

(crossing).

I+A+F+R Approach: Data driven, and multi-task.

[i22

ARN Attentive Relation Network.

CNN, MLP, and GRU.

PH: 1-2 s.

Features: bbox context and coordinates, re-
lation, and visual.

Evaluation: Accuracy, Fl-score, ROC-AUC,
precision.

Intention and action
prediction (crossing).

See Table [2.10]
Inference: < 6 ms.

PCPA

@

Approach: Data driven.

Features: bbox, pose, local context, and EV
speed.

3D CNN + single-RNN (GRU) + attention
mechanism.

Evaluation: Accuracy, AUC, and F1.

Intention
(crossing).

prediction

See Table [2.10

Approach: Data driven.

Features: local and global context, bbox,
pose-key-points.

Attention mechanism, 2D CNN, and RNN.
Evaluation: Accuracy, F1, and recall.

Intention
(crossing).

prediction

See Table [2.10

Graph+
P12

Approach: Data driven.

Features: context, EV velocity, and key body
landmarks.

Graph Convolutional Network.

Evaluation: Accuracy.

Intention Prediction

(crossing).

See Table [2.10]

Inference: 6 ms.

ST-

Approach: Data driven.

CrossingPoseFeatures: skeleton-based.

[124

Spatio-Temporal GCN.
Evaluation: Accuracy, AUC, Fl-score, Pre-
cision, and Recall.

Intention
(crossing).

prediction

JAAD
Recognition: 63%.
See Table [2.10]

123

Approach: Data Driven.

Features: bbox.

Transformer Networks.

PH: 1 s and 2 s.

Test human ability for pedestrian action pre-
diction.

Evaluation: Accuracy and F1-Score.

Intention recognition
and prediction (cross-

ing).

PIE A:91%.
F1:0.83.
CP2A A:91%.
F1:0.91.

Scene-
STGCN
[127

Approach: Data Driven.

Features:

Scene Spatio-Temporal GCN.

Evaluation: Accuracy, Fl-score, AP, and
ROC-AUC.

Intention recognition
(crossing).

See Table [2.10/

125

Approach: Data driven.

Features: body land-marks.

SqueezeNet and GRU.

Hardware: AMD Ryzen 5 3600, G Force RTX
3070.

Evaluation: Accuracy and ROC-AUC.

Intention prediction
(crossing). Light-
weight and inference
speed.

See Table [2.10

CA-
LSTM
[201

Approach: Data driven, context and dynamic.
Features: appearance, velocity, and walking
angle.

Attention LSTM.

Evaluation: Accuracy, Fl-score, recall met-
rics.

Intention Prediction
(crossing).

See Table [2.10

Continued on next page
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Table 2.9 — continued from the previous page.

‘Work Methods Problem Dataset /Results

(134] Approach: Data driven. Intention recognition See Table 2,10
Features: pedestrian localisation and envi- in real-time.
ronment contest (lane lines).
ML and DL.
Evaluation: Accuracy.

[213] Approach: Data driven. Intention prediction See Table M
Features: pedestrian pose (skeleton), pedes-  (crossing).

trian to vehicle distance, and EV information.
Multi-feature fusion.
Random forest classifier.

PH: 0.6 s.
Evaluation: Accuracy and AUC.

[203] Approach: Data driven. Intention prediction JAAD and PIE
Features: Past trajectories, velocity, and 3D  (crossing). Accuracy: 89%/91%.

joint estimation.

Model(s): Position and Velocity LSTM.
PH: 04 s.

Evaluation: Accuracy.

GRU: GRUs are an alternative to LSTMs, as they also learn temporal informa-
tion. Kotseruba, Rasouli, and Tsotsos [130] used pedestrian appearance features,
which were extracted using a VGG network, and EV velocity information as inputs
for a GRU network to predict pedestrian intentions. Rasouli, Kotseruba, and Tsot-
sos [132] used pedestrian appearance, global context, body pose, bounding boxes,
and ego-vehicle speed features as inputs to a stacked GRU network to predict pedes-
trian crossing behaviour. These features were gradually integrated into the GRU
network, starting with pedestrian appearance, followed by global context, body pose,
bounding boxes, and concluding with the EV speed. GRUs offer the advantage of
requiring less memory and being faster than LSTMs. However, they tend to be less
accurate when handling long input sequences [202].

GCN: A spatio-temporal GCN was presented by [124], where they used a se-
quence of skeleton features to predict crossing intentions. The skeleton joints were
connected by nodes and edges to learn both spatial and temporal features. Cadena
et al. [212] used two GCNs, which took human body key points, local context, and
ego speed information as inputs to predict crossing intentions. GCNs have the ad-
vantage of extracting interactions among the target pedestrian and its neighbours,
considering both spatial and temporal dependencies [111]. In addition, GCNs can
handle non-Euclidean data formats, such as scenarios where pedestrians are dis-
persed across a scene, which cannot be represented using a grid-like structure. How-
ever, they can only handle short-term sequences and perform poorly when applied
to regression tasks.

Attention Mechanism: [201] also used a self-attention mechanism to extract
the most relevant information from the pedestrian’s appearance, the pedestrian’s
surroundings, and dynamic features. Rasouli et al. [128] combined different attention
mechanism layers at different network locations to investigate their impact on the
model performance. Attention mechanism approaches enable networks like LSTM
to focus more on the most relevant features and less on redundant ones.

Transformers: Even though the attention mechanism has the ability to focus
on the most relevant features, it was reported by [123| that its effectiveness might
be reduced when coupled with LSTM networks. For this reason, [123] proposed a
framework based on three types of transformer networks: encoder-only, encoder-
pooling, and encoder-decoder architectures. The proposed framework used only the
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pedestrian bounding box information as its input. The authors argued that their
model outperformed other methods that used multiple input features. Transformer
networks offer the advantage of parallel input processing, accelerating the training
stage. On the other hand, the ability to process the input data in parallel restricts
the model from taking advantage of the input’s sequential nature.

Multiple Methods: many studies have used more than one method to predict
pedestrian intention. Liu et al. [207] used GCN to generate a pedestrian-centring
graph for each observation frame. These graphs connect the target pedestrian to its
surroundings, allowing the algorithm to learn the relation between the pedestrian
and the scene. In addition, edges were introduced between the pedestrian nodes in
each pedestrian-centring graph to allow the algorithm to learn temporal information.
The resulting interconnected graphs were then fed into a GRU network to predict
crossing intention. Chen, Tian, and Ding [211] used a combination of methods,
including a CNN to extract features from traffic objects and pedestrian appearance,
a GCN to auto encode the extracted features, another framework to extract human
skeleton, and an LSTM network to predict crossing intentions. CNN, ARN, MLP
and GRU were used by [122] to predict crossing intentions. CNN was used to
extract global features, ARN was used to extract relational features from detected
traffic objects, MLP was used for intention classification, and LSTM was used for
intention prediction. One major difference of this work is that the network also
takes the predicted intention output as input. Kotseruba, Rasouli, and Tsotsos [76]
used 3D-CNN, RNN, and attention mechanism. The 3D-CNN was used to encode
local features from a sequence of cropped bounding boxes, and the RNN was used to
encode the bounding-box coordinates, pose landmarks, and the ego-vehicle speed.
Finally, an attention mechanism was used to combine the most relevant features.
Yang et al. [126] used 2D-CNN;, stacked-RNN, and attention mechanism. Spatio-
temporal GCN was used by [127] to encode the input image, image class and location
information tensors. Then, the output of the spatio-temporal GCN was fed into an
LSTM network to generate long-term predictions. Zeng [125] used SqueezeNet to
extract visual features and used GRU to extract temporal dependencies. They also
used a multi-tasking approach to predict both pedestrians’ intentions and poses. One
primary advantage of using multiple models is that each model can compensate for
the limitations of others. For example, CNN, GCN, and attention mechanisms can
aid the limitations of an LSTM network in extracting spatial information, handling
non-Euclidian data, and prioritising relevant features, respectively.

Complete Pipeline: Gazzeh and Douik [134] presented a complete pipeline
model which includes detection, tracking, and crossing intention prediction. They
used YOLOV4 for object detection, DeepSort for tracking, Canny Edge for lane line
detection, and linear SVM for intention prediction. Another complete pipeline sys-
tem was implemented by [133], using YOLOvV3 for detection, DeepSort for tracking,
and spatio-temporal Densenet for intention prediction. YOLOv5, DeepSort, and an
LSTM network with an attention mechanism were used by [201] to detect, track,
and predict pedestrian intention, respectively. Razali, Mordan, and Alahi [209)
implemented a multi-task network designed to recognise pose states and predict
pedestrian intentions. In this network, ResNet was responsible for feature extrac-
tion. Part-Intensity Fields (PIFs) and Part-Association Fields (PAFs) were used to
generate channels and detect pose joints. A separate head network was then utilised
to predict pedestrian intentions.
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Table [2.10| presents the results achieved by the most relevant pedestrian intention
prediction works in the literature. Unfortunately, direct comparisons between these
studies are impossible due to variations in different problem formulations, OH, TTE,
datasets, and metrics. For example, the work that achieved the best accuracy was
[124]. However, the authors used their own dataset. The second best was [131], but
they used an OH and TTE of 0.6 s.

Table 2.10: Results for the most relevant pedestrian intention prediction works.

Obs. Acc AUC Fi Rec. Prec ROC-
‘Work Dataset Hor. TTE (%) (%) (%) (%) (%) AUC(%)
JAAD - Recog. 92.88 - - - - -
139
JAAD 0.5s Next-Frame 88 - - - - -
_[183)
STRR-Graph JAAD 0.5s  Next-Frame 76.98 - - - - -
_[207)
FUSSI-net JAAD 0.5s Next-Frame 76.6 - - - - -
[133]
PIEint PIE 05s Next-Frame 79 - 87 - 90 73
[128)
" CA-LSTM JAAD 0.5s Next-Frame  89.68 - 75.38 85.96 - -
[201]
PV-LSTM JAAD 0.6 s 0.6 s 91.48 - - - - -
_[137)
BPI - 06s 895  99.2 - - - -
[213]
SFR-GRU PIE 05 s 2s 84.4 829 721 30 65.7 -
[132)
" C+B+S+Int PIE 05 s 2s 83 85 81 85 79 -
[130]
PCIR JAAD - - 89.6 - - - - -
_ 200
PIE 0.5s 15s 79 - 78 - - -
[217]
o JAAD 05s 87 92 70 - 66 -
T;;;T‘FF"FR PIE , -2 84 88 90 . 96 :
- JAAD 33 82 63 81 51 -
0.5s 1-2 s
(26 PIE 89 86 30 81 79 -
o JAAD 86 88 65 75 58 -
SBIAPH“‘ PIE 05s 125 89 90 81 79 83 -
- PIE 05 s 1-2 s 91 91 83 - - -
123
Scene-STGCN PIE 0.5s 1-2 s 83 - 89 - 96 85
[127)
o JAAD 0.5s 85 86 68 - - -
ﬁgPA PIE - 0.5-1's 87 86 77 - - -
- ] 1s 92 84.9 83.7 8138 85.9 -
|Sl’§‘;]CrossmgPose OWN 05 2s 92 841 797 797  81.3 -
o JAAD -s -s 84 - - - - 85
[125]

2.2.4 Heterogeneous Road Agents

All the previously mentioned works primarily focused on predicting the behaviour
of either pedestrians or vehicles. However, in a real-world traffic scenario, complex
interactions occur among various types of agents, each with different dimensions and
dynamics. Consequently, it is crucial to consider the interaction between heteroge-
neous agents. Several works have addressed the detection and behaviour prediction
of heterogeneous agents.
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For example, authors [214] introduced the TrafficPredict algorithm, which was
developed to learn motion patterns and predict the trajectories of different types of
traffic agents, including pedestrians, bicycles and cars. They adopted the 4D Graph
network in conjunction with an RCNN LSTM to learn the movements and traffic
agents’ interactions. The authors used an OH of 2 s to predict a horizon of 3 s. They
achieved a state-of-the-art average displacement error of 0.085 and a final displace-
ment error of 0.141. DeepTAgent is another heterogenous system presented by
[215] in which they used Mask R-CNN to detect objects, a CNN to extract tracking
features, and a Heterogenous Interaction Model (HTMI) that considered collision
avoidance behaviour to predict the agents’ position, velocity and subsequently their
trajectory and interactions. The authors [216] presented a hybrid network for pre-
dicting the trajectory of road agents and modelling their interactions. They used a
CNN to capture local information, such as the agent’s shape and position, and an
LSTM network for trajectory prediction. In dense, diverse traffic situations, the al-
gorithm demonstrated a notable performance of 30% over state-of-the-art methods.
However, it did not outperform the state-of-the-art algorithms in sparse and homoge-
neous traffic scenes. Li et al. [217] presented a framework called EvolveGraph. In
this framework, they encoded an observation graph to infer an interaction graph and
decoded both the observation and interaction graphs to predict future trajectories.
Zhang et al. |180] implemented the Attention-based Interaction-aware Trajectory
Prediction (AI-TP) model. This model used a Graph Attention Network (GAT) to
represent interaction among heterogeneous traffic agents and used a Convolutional
GRU (ConvGRU) to make predictions. A multi-agent trajectory prediction system
was performed by [218] where a three-channel framework accounted for dynamics,
interactions and road structure. Moreover, a novel Heterogeneous Edge-enhanced
graph ATtention network (HEAT) was proposed to extract interaction features.
Dynamic features were extracted from the agents’ previous trajectories. Interac-
tion patterns were represented through a directed edge-feature heterogeneous graph
and extracted with the HEAT network. The road structure information was shared
among all agents using a gate mechanism. Finally, all the information acquired from
the previous process was combined to predict trajectories.

All the previously cited works have predicted the trajectories and interactions
among the agents. However, they have not taken into consideration their inten-
tions, such as crossing/not crossing or braking/non-braking. Also, they have not
incorporated information from static road objects such as traffic lights and road
signs. Static road traffic objects are crucial in directing, informing, and controlling
road users’ behaviour. Furthermore, there is limited research on using detection and
prediction information to identify potential and developing hazards.

The authors [219] proposed a multi-task learning model that combines both
object detection and distance prediction to identify dangerous traffic road objects.
They used SSD CNN to detect cars, vans, and pedestrians. The input image was
divided into a grid map with four vertical and three horizontal distances. Depending
on the category of the TV and its location, the network assigned a danger level
using blue, green, yellow, and red bounding boxes, where blue and red represented
the least and the most dangerous levels, respectively. However, predicting the TV’s
velocity using a grid map limits the velocity resolution and might not give realistic
measurements. Also, relying solely on the distance between the ego and the target
vehicle is insufficient. For example, an EV might maintain a safe distance from the
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TV, but the TV can suddenly brake and change its velocity. Therefore, it would be
beneficial for the EV to predict and recognise instances when the TV is braking or
experiencing a sudden change in velocity.

Authors [220] considered themselves pioneers in combining object detection and
intention recognition to assess the risks in complex traffic scenarios. Their objective
was to detect both non-static objects, such as vehicles and pedestrians, and static
objects, such as traffic lights, and then use the gained information to evaluate poten-
tial hazards ahead. In order to detect the objects, they used the YOLOv4 and the
BDD100K dataset and achieved an mAP of 52.7%. For recognising the pedestrian
intention (crossing or not-crossing), they used VGG-19 CNN and Part Affinity fields,
achieving an accuracy of 97.5%. To predict vehicle intentions, including braking and
turning, they employed the EfficientNet CNN, achieving a recognition accuracy of
94%. Lastly, for recognising traffic lights’ state (red, green, or amber), they used
the MobileNet CNN, achieving an accuracy of 97.75%. Nevertheless, using only the
brake and the turn signal lights information to predict vehicle behaviour and assess
danger is not sufficient since braking behaviour can exhibit varying intensities. For
example, normal braking, characterised by a gradual decrease in the vehicle’s veloc-
ity, is typically considered a potential hazard. In contrast, harsh braking, involving
a sudden and significant change in the vehicle’s velocity, is considered a developing
hazard. Furthermore, there are situations where the TVs abruptly change their
direction without using their turn signal, posing a developing hazard. Therefore,
the EV must be capable of detecting sudden changes in the vehicle’s direction and
velocity. Similarly, depending only on pedestrian crossing/not crossing intentions
limits the system to make a long prediction horizon, as pedestrians can cross at
different velocities, and may suddenly change their goal destination.

2.2.5 Traffic Behaviour Dataset

There are many publicly available datasets to deal with the different IV tasks such
as processing raw sensor data, perceiving low-level features (stereo vision, 3D vi-
sion, optical flow), perceiving high-level features (object detection, object tracking,
lane/road detection, semantic segmentation), and analysing the behaviour of other
traffic road users (activity, attention, intent, and style). However, [60] performed
an in-depth study to compare 45 traffic road datasets, and concluded that most of
the available datasets are to solve low-level and high-level perception tasks. The re-
viewed datasets, including behavioural label information, are Brain4cars, DIPLECS,
DR(eye)ve, EISATS, JAAD, PIE, PREVENTION, and UAH.

The Braindcars dataset was developed to predict the behaviour of the EV’s
driver, including left lane change, right lane change, left turn, right turn, and driving
straight. The ADAS system then uses the predicted behaviour information to alert
the driver if their intended manoeuvre would pose a traffic hazard. This dataset
comprises images capturing the road ahead and the driver’s face inside the EV.
The dataset consists of 1180 miles driven by 10 different drivers. The driven miles
include motorways and urban environments [221].

The DIPLECS project comprises three datasets: one dataset was recorded on a
Swedish road, another on an English countryside road, and the third from an indoor
track. All the datasets were acquired using camera sensors and were designed to
predict the turning and braking intention of the EV’s driver [222].
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The DR (eye)ve dataset was developed to predict where the EV’s driver pays more
attention in a traffic scene. The dataset was acquired using a front camera to record
the road ahead and eye-tracking glasses to extract the EV’s driver’s eye-tracking
information. It comprises 74 videos of 5 minutes each [223].

The EISATS dataset has been archived, and it is no longer available.

The JAAD and PIE datasets were developed to recognise and predict the cross-
ing behaviour of pedestrians. It provides labels for crossing and not crossing, for
pedestrian action behaviour such as looking, standing, and walking, and for scene
contexts such as narrow or wide roads, pedestrian crossing signs, stop signs, traffic
lights, parking lots signs, and zebra crossing. The JAAD dataset contains 346 video
clips with a length of 5 to 10 seconds [224], and the PIE dataset contains 300K
labelled video frames with 1842 pedestrian samples, and it is one of the largest
datasets studying pedestrian behaviour [128§].

The PREVENTION dataset was developed to study the surrounding vehicles’
lane change behaviour. It provides annotations of vehicle trajectories, vehicle types,
and lane information. The dataset was recorded in a motorway environment and
contains approximately 356 minutes of recording. The sensors used to acquire the
dataset were LIDAR, radar, and cameras.

The Honda Research Institute Driving Dataset (HDD) was created by [225] to
enable studies on learning the behaviour of the EV’s driver in real traffic scene
environments. The dataset has 30 classes that belong to one of the following driving
behaviours: goal-oriented action, stimulus-driven action, cause, and attention.

2.2.6 Discussion

This paper has surveyed several works that investigate the prediction of pedestrian
and vehicle behaviour. Based on the findings, this section presents a general frame-
work diagram, outlines risk assessment, discusses challenges, examines techniques,
outlines requirements, and suggests potential future directions for pedestrian and
vehicle behaviour prediction systems.

General Framework for a Behaviour Prediction System

A proposed general framework for a behaviour prediction system is depicted in
Figure[2.7] The camera sensor outputs RGB images, which are used by the detection
and image processing algorithms.

The detection algorithm detects both static and non-static road objects, includ-
ing road lanes, vehicles, vulnerable road users, traffic lights, and road signs. The
position information of the detected objects, represented by bounding boxes, is then
used by a tracking algorithm to assign each object a unique ID. This ID assignment
enables the system to track past trajectories of each detected object, which serves
as input for subsequent processing.

The image processing algorithm uses the RGB images from the camera sensor
and the past trajectories of the detected objects to generate optical flow, depth,
appearance, global and local context images. An example of how image processing
uses past trajectories is using the bounding box information to crop the RGB image
at the specific location of the detected object. This cropping operation provides local
context information for further analysis and decision-making within the system.
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Figure 2.7: General behaviour prediction framework. The behaviour prediction
module consists of an automated feature extractor (CNN, 3D-CNN, GCN, FCN,
CVAE, GAN, etc.), an embedding layer (FCN and ANN), and a time series al-
gorithm (RNN, GRU, and LSTM). It is dependent on the perception module
(Detection, tracking, image processing, interaction representation, and feature engi-
neering), which is dependent on the EV sensors (camera, GPS, and wheel encoder).
Additionally, the outputs of the behaviour prediction modules are sent to the plan-
ning module.

The interaction representation algorithm uses the objects’ past trajectories to
calculate distances between the traffic agents, construct graph networks with vertices
and edges, and generate grid maps that account for interactions between traffic
agents.

The feature engineering algorithm uses objects’ past trajectories and internal
sensor data from the IV (e.g., steering wheel angle, yaw rate, wheel encoder, etc.) to
derive additional features. For example, it uses the differences between the objects’
positions between consecutive frames to calculate their velocities.

The outputs of the perception module are then fed into the automated feature
extractor and the embedding algorithms within the behaviour prediction module.
Automated feature extractors are deep learning algorithms designed to generate
feature vectors representing spatial properties of the inputs. Embedding uses a
linear transformation to transform the inputs into a desired output feature size. The
time series algorithm uses the combined feature vectors generated by the automated
feature extractor and the embedding layer to learn temporal information, enabling
it to predict various aspects of object behaviour, including future trajectories, future
intentions, goals, and current intentions. Note that the embedding layer and the
time series algorithm can use the predicted goals and recognised intentions as extra
information for predicting future trajectories.

Finally, the outputs of the behaviour prediction module are then used by the
IV’s Planning module, which in turn uses this information to plan the IV’s actions
to achieve its final goal.

Risk Assessment for Behaviour Prediction System

Authors [226] proposed a risk assessment for an IV. They mentioned that IV failures
can arise from various aspects, including vehicular components such as hardware,
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software, mechanical systems, communication infrastructure, and interactions be-
tween the passenger and the IV Human Machine Interface system. Based on their
findings, this paper presents a risk assessment for an IV behaviour prediction system.
This assessment identifies, analyses, and provides recommendations for mitigating
and controlling these identified risks.

Risk Identification

Based on the general framework for a behaviour prediction system depicted in
Figure [2.7], the following risks have been identified:

e Camera sensor failure: this includes hardware malfunctions, blocked field of
view, and noise (electricity, heat, and illumination).

e Computing components failure: computer or GPU failure.

e Sensor Failure: Failure in the steering wheel, wheel encoder, GPS, and IMU
Sensors.

e Detection algorithm failure: missed detections, poor intersection over union,
false-positive and false-negative classification.

e Tracking algorithm failure: missed tracking and incorrect association of objects
between frames. For instance, an object might not be tracked in the next
frame, or objects might swap their IDs due to overlap.

e Image processing failure: incorrect optical flow and depth estimation.

e Interaction representation failure: noisy and incorrect distance calculation and
incorrect graph or grid representation of the object interactions.

e Feature Engineering failure: redundant features, noisy estimates speed and
acceleration due to poor detection and tracking performance.

e Cybersecurity failure: remote hacking, vehicle spoofing, insider threat, and
tampering with sensor data.

Risk Analysis

The authors [226] discussed several methods for analysing risks in automotive
contexts, including situation-based analysis, ontology-based analysis, failure modes
and effects analysis (FMEA), and fault tree analysis (FTA). Their investigation con-
cluded that FTA is the most suitable method for conducting a risk assessment on IV
features. For this reason, this paper also adopts FTA to perform a risk analysis on
the behaviour prediction system. FTA methods have the following advantages: be-
ing event-orientated, enabling the diagnosis of the root cause of failures, facilitating
an understanding of how subsystems can impact each other, having a straightfor-
ward and graphical nature for ease of comprehension, and aiding in decision-making
regarding the control of identified risks. The proposed FTA is depicted in Figure
A qualitative analysis of the proposed FTA reveals that the system is highly
vulnerable because any failure occurrence of the basic events (EVX) can lead to the
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failure of the behaviour prediction system. For instance, if the detection algorithm
fails, it can cascade failures throughout the tracking algorithm, image processing,
interaction representation, and feature engineering, resulting in the failure of the
behaviour prediction system.

Behavior Prediction
System Failure

TOP GATE

Cyber Security
Hardware Attack Software Failure
Failure

GT3
(GT1) (GT2) (GT3)

Steering wheel

Camera Sensor Computer and sensors, GPS, Remote Vehicle Image Feature
Failure GPU Failure and IMU Hacking Spoofing Processing Engineering
Failure

Tampering Tracking
with Sensor Insider Threat Algorithm
Data Failure

Interaction
Representation

Detection
Algorithm
Failure

Figure 2.8: Fault tree analysis for a Behaviour Prediction System. The circle shapes
with the square shapes are the basic events that may lead to failures on the top
events. The square shape after the TOP GATE is the top event, which indicates
the failure of the behaviour prediction system. The “OR” gates mean that if one of
its input events occurs, it will output an event that is true.

In order to quantitatively analyse the behaviour prediction system, it is required
to know the probability of failure for each event (EVX), which depends on the
hardware, software, and cybersecurity in use. However, a general mathematical
model to calculate the overall system failure from an FTA diagram depicted in

Figure is given by the following equation , ,
Qo(t) < (1 =I5, [1 — Q;(1)]) (2.3)

where Qo(t) is the top event (failure of the behaviour prediction system), Q;(t)
is the failure probability of a minimal cut-set. For instance, the probability that the
TOP GATE in the proposed FTA diagram happens is given by,

Qo(t) < (1 —[1—P(GT1)]*[1 — P(GT2)] x [1 — P(GT3)]) (2.4)

where
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P(GT1) = (1—[1 - P(EV1)] % [1 — P(EV2)] [l — P(EV3)])  (2.5)

and,
P(GT2)=(1—-[1—P(EV4)|*x[1 — P(EV5)|*[1 — P(EV6)]
(2.6)
x[1 — P(EVT)))
and
P(GT3)=(1—-[1—-P(EV8)]*[1—P(EVI)]*[1— P(EV10)] 2.7)

«[1 — P(EV11)]).

Risk Control

Based on the identification and analysis of risks, it has been concluded that a
behaviour prediction system is vulnerable. Below are some recommendations to
mitigate these risks:

e Given that any hardware failure can cause a top event, it is recommended to
have backups for hardware components with a high probability of failure, for
example, to have an extra camera sensor. The disadvantage of this approach
is that it is expensive and requires more space in the vehicle.

e For the general prediction behaviour system in question, it is observed that
it relies on three types of information (RGB image, engineering feature, and
interaction) for predictions. Therefore it is recommended to enable the system
to function in a degraded mode by using one or two pieces of information if
one of them fails.

e The detection and tracking algorithms are important for the system, as their
outputs are used by the other algorithms. Thus, it is recommended to use
sensor fusion since if one of the hardware or the algorithms responsible for
detecting and tracking the object fails, the system can work in a degraded
mode.

Behaviour Prediction System Challenges

Table [2.11| summarises the main challenges in the research of behaviour prediction
of traffic agents. These challenges are categorised into target agents, systems, re-
sources, and uncertainties. Target agents refer to the unique characteristics of these
agents that make their behaviour challenging to predict. System challenges are
related to the inherent characteristics of the system, considering its design and eval-
uation. Resource challenges are associated with the hardware and data required for
training and operating the system. Uncertainties include events such as hardware
malfunctions, cybersecurity vulnerabilities, and software failures.
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Table 2.11: Behaviour Prediction Research Challenges.

Type of Challenge Class Challenges

Target Agents Pedestrian Highly dynamic, can move in many directions and change them very

quickly, be easily occluded, be distracted by their own objects or
external environments, their motion can be affected by other traffic
agents, might be under the influence of drugs or alcoholic drinks, and
they are hard to see in poor visibility condition.

Vehicle Dependent on other vehicles’ actions, traffic rules, road geometry,
different driving environments, vehicles have multi-modal behaviour,
different types of vehicles have different motion properties, drivers
might be under the influence of drugs or alcoholic drinks, and TVs
might be occluded.

System Destign To achieve a good evaluation metric performance, long PH, real-time

inference, low hardware resources, and robustness.

Evaluation Works have used different types of datasets, evaluation metrics, ob-
servation and prediction horizons, and hardware setups. Therefore,
works cannot be directly compared, and the actual progress of pedes-
trian and vehicle behaviour prediction research cannot be measured.

Resources Hardware Smaller size GPUs that can process deep learning algorithms in real-

time, sensors that enable the IV to perceive 360-degree road view, and
affordable hardware to enable all social classes to afford AVs.

Data Several existing datasets are not publicly available and are not stan-
dardised to enable cross-dataset evaluation and progressive training
pipeline techniques.

Uncertainties Hardware Failure  Camera, GPS, IMU, steering wheel, and wheel encoder sensor failure.

Cyber Attack Remote hacking, vehicle spoofing, insider threat, and tampering with
sensor data.

Software Failure Perception module (detection, tracking, image processing, interaction
representation, and feature engineering) failure.

Behaviour Prediction System Requirements

An IV behaviour prediction system needs to meet several key requirements to ensure
its effectiveness:

Good Evaluation Metric Performance: IV behaviour prediction system is
a safety-critical system, therefore it must perform well in terms of evaluation
metric performance to prevent traffic collisions. For example, if the system
fails to predict that a pedestrian will cross the road, it could lead to a serious
collision.

Long (PH): A system with a long PH can plan and react well in advance,
reducing the chances of collisions and improving overall safety.

Fast Inference Time: Given that an IV behaviour prediction system must
operate in a real-time, it must have a low inference time and require a low
hardware resource.

Low Cost: To make AVs accessible to a wide range of people, the behaviour
prediction system should be cost-effective, ensuring that AVs are affordable
for all social classes

Low Hardware Resource Requirement: Efficient utilisation of hardware
resources is important, as it allows the system to run on hardware with limited
capacity.

Robustness: The system should be robust and able to handle various sce-
narios and conditions on the road, ensuring reliable performance in different
situations.
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e Prediction of Various Non-Static Objects: The system should be capable
of predicting the behaviour of different types of non-static objects on the road,
including pedestrians, vehicles, animals, and cyclists, to ensure comprehensive
safety.

Evaluation metrics, long prediction horizons, and robustness are interrelated.
For instance, as the prediction horizon increases, the evaluation metric performance
tends to decrease. In addition, as a system becomes more robust, its evaluation
metric performance is expected to increase. The major challenges that limit be-
haviour prediction algorithms from meeting the previously mentioned requirements
stem from the fact that an agent’s behaviour depends on other agents in the scene,
the local and global context, and their final goal. Various approaches have been
proposed to address these challenges:

e Social pooling layers [139] |181], Graph representation, GCN, self-attention
based social pooling [146], message passing mechanism |145], occupancy maps
[135, |163] 169], view frustum social pooling [191], and star-like networks to
model interactions between agents [149).

e CNNs to extract agents’ appearance, body pose, local context, global context,
and to classify intentions [211] (126} 198, 122, [172, |120], 121}, 69].

e Attention mechanisms and transformer networks to focus on the most relevant
information 201, (128, 123].

e 3D-CNNs and temporal-Densenet to learn short-term temporal information
[76, 169, 200} 133].

e LSTMs and GRUs to learn long-term temporal information [128, [131], [202,
130}, |132].

e A modified version of the LSTM cell that accepts more than one input sequence
set [194].

e CVAE was used to estimate the final goals of the agents to extend the predic-
tion horizon |73} |146| 195, [196].

e Heterogeneous agent behaviour prediction works have been presented to enable
the system to predict the behaviour of different non-static object behaviour
[218, 214} 215, 216, 217, 219, 220]. However, these works have primarily
focused on pedestrians, cyclists, and vehicles, while there are other objects
such as animals, disabled individuals, scooters, toys (balls), skate riders, etc.

e Combination of two or more methods to compensate their limitations [207,
211}, 1122, |76, |126|, 127, [125].

e Systems that can predict the behaviour of heterogeneous agents 214}, [215] 216,
217, 220].

Inference time, low cost, and low hardware resource requirements are also in-
terrelated. For example, a system that consumes less memory and computational
power results in cheaper hardware requirements, making the overall system more
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cost-effective. Typically, when a system requires less memory, such as for processing
image inputs, the system’s overall inference time is expected to be shorter. How-
ever, there may be a trade-off between accuracy and inference time. For example,
using multiple-feature information can increase the system’s accuracy but may lead
to longer inference times than a system using a single feature type. The follow-
ing methods have been proposed to achieve low inference time, low cost, and low
hardware resource requirements:

e GCN, which represents interactions between agents effectively without relying
on additional information like original images, cropped images, or contextual
information |144, [138].

e Dual-LSTM allows the system to learn more information from past trajectories
without requiring extra input features [137].

e Fusion of multiple input features (context, interaction, trajectories, and ap-
pearance) into an enriched image representation, rather than processing a
sequence of images [121].

Behaviour Prediction System Further Work

Despite the techniques presented to meet the specified requirements, work is still to
be done from the authors’ perspective. For example:

e Most of the works for pedestrians and vehicles were implemented using either
a top-view or BEV dataset, which may not be ideal for an IV system. Re-
searchers have only started implementing algorithms using on-board datasets
such as PREVENTION, Appolo, JAAD, and PIE in the past five years. More-
over, most of the works that used onboard datasets focused on implementing
intention prediction algorithms, and most of the proposed algorithms cannot
be directly compared.

e While some works have used the same datasets, evaluation metrics, OH,
and prediction horizon, these works were implemented on top-view and BEV
datasets. For example, many vehicle trajectory predictions have used the
NGSIM dataset with an OH of 3 s, a PH of 5 s, and the MSE evaluation
metric. Several pedestrian prediction trajectory algorithms adopted the ETH
and UCY dataset, with an OH of 3.2 s, a PH of 4.8 s, and the ADE and FDE
evaluation metric. If these datasets were ideal for IV systems, then the best
vehicle trajectory prediction algorithms would be GRIP [144], GRIP++ [13§],
and AI-TP [180]. The best pedestrian trajectory prediction algorithm would
be the Bi-Trap algorithm [195].

e There is a lack of research on unusual behaviour exhibited by pedestrians
and vehicles. For example, pedestrians might exhibit unusual behaviour when
under the influence of toxic substances, involved in fights, or disoriented. Sim-
ilarly, vehicles may display unusual behaviour when the driver is under the
influence of toxic substances, distracted with their personal belongings, or if
the vehicle is an emergency vehicle, garbage truck, road sweeper, carrying an
abnormal load, or experiencing mechanical malfunctioning.
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There is limited research on decreasing inference time, and more emphasis
should be placed on addressing this demand.

Standardising datasets would enable cross-dataset evaluation and the devel-
opment of progressive training pipeline techniques.

Introducing universal metrics would allow for direct comparisons of algorithm
performance.

When considering a complete pipeline system (detection, tracking and be-
haviour prediction), it is necessary to account for perception uncertainties due
to sensor noise, fuzzy features, or unknown inputs|229]. Since a limited number
of works have implemented a complete pipeline system, more works consid-
ering the entire pipeline process are recommended to investigate the effect of
possible noise.

Based on the literature review, the following suggestions are given to further
improve and accelerate the development of the IV Behaviour Prediction System:

Encourage more research works to adopt on-board view datasets for predicting
both pedestrian and vehicle behaviour, including intention and trajectories.

Standardise existing dataset to enable cross-dataset evaluation and progressive
training pipeline techniques.

Choose or create a standard evaluation metric to enable direct comparison
among algorithms.

Develop datasets with instances of abnormal pedestrian and vehicle behaviours
to enable research on the recognition and prediction of abnormal pedestrian
and vehicle behaviour.

Implement behaviour prediction algorithms on resource-constrained hardware,
such as Jetson Orin, and Jetson Xavier GPUs, which are low-cost, small in
size, lightweight, and consume low power.

Investigate more methods to select the target object and the objects that
directly interact with the target object.

The general object detection problem exemplifies the importance of having a
large dataset and standard evaluation metrics. The field has achieved an acceptable
level of maturity because researchers have access to publicly available large image
benchmark datasets, such as the ImageNet [230] and COCO [231]. These datasets
enabled the authors to directly compare their detection algorithm performance and
measure object detection research’s advancement.

2.2.7 Conclusion

IV systems must not only detect pedestrians and vehicles but also predict their
behaviour to avoid or mitigate collisions. Therefore, the purpose of this literature
review, was to survey the most relevant pedestrian and vehicle behaviour prediction
algorithms to identify the requirements for a behaviour prediction algorithm, the
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challenges associated with predicting pedestrian and vehicle behaviour, whether
current techniques have met these requirements, and what steps are needed to enable
AVs to predict pedestrian and vehicle behaviours. In conclusion, the review shows
that:

e An IV behaviour prediction system must have a good evaluation metric perfor-
mance, long prediction horizon, and fast inference time, must be cost-effective
and robust, require minimal hardware resources, and must predict various
types of non-static objects on the road.

e The main challenges in predicting the behaviour of traffic agents involve mod-
elling their interactions, establishing a relationship between the agents and the
scene, and achieving a balance between good evaluation metric performance
and low inference times.

e Current techniques do not fully meet these requirements for several reasons:

— when predicting for long-term horizons, evaluation metric performance
significantly decreases;

— while top-view and BEV datasets are commonly used in the literature,
there are limited works that adopted on-board datasets, which are more
suitable for AVs;

— on-board datasets usually only use a single forward-facing camera, lim-
iting the behaviour prediction system to consider only agents ahead,
whereas considering agents around the EVs using multiple cameras is
essential [232];

— more investigation is required to develop models that can predict in-
tention and trajectory simultaneously; although some authors [144, [13§]
claimed that their system has achieved real-time inference times, they
have used top-view cameras, whereas systems that use on-board sensors
may require more processing time;

— there are no works that consider abnormal behaviour exhibited by traffic
agents.

e Most of the reviewed works have not considered the complete pipeline be-
haviour prediction process, which consists of detection, classification, and
tracking. More research should focus on the complete pipeline process to
assess the performance of each stage and its impact on the final prediction
results.

2.3 'Traffic Hazard Events Detection and Recog-
nition

A traffic hazard event can be defined as a traffic situation that could cause harm
to others. Authors Xiao et al. [61] have categorised traffic hazard events into three
stages: potential event, developing event, and materialised event. Each stage de-
scribes a progression of traffic-related risks.
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A potential event can be defined as a traffic scenario wherein no immediate
collision threats are present. Nonetheless, the latent possibility exists for a situation
to evolve, triggering a collision threat. For example, a road scenario where the EV
is on the main road, and a cyclist is approaching from the intersecting road on the
right. While the cyclist remains a considerable distance from the intersection, no
current threats exist. However, a threat could evolve if the cyclist does not decrease
their speed.

Developing events can be defined as a traffic scenario where an identified collision
threat is imminent and corrective measures, such as braking or steering, are required
to avoid a collision. For example, if the cyclist from the above example fails to reduce
its speed, the EV has to intervene by braking and steering to avoid a collision.

Materialised Events can be defined as the stage where a collision has happened.
In the above examples, the cyclist and the EV collided.

This categorisation framework provides a structured approach for evaluating and
responding to traffic hazards on the road. Therefore, IVs such as autonomous vehi-
cles (AVs) and advanced driver assistance systems (ADAS) must learn to recognise
and detect a traffic hazard event at the potential event stage, respond to develop-
ing situations, and critically take pre-emptive action to avoid collisions before they
materialise.

Detecting and recognising traffic hazard events is challenging for the following:

e Traffic environments are complex and dynamic: several types of traffic scenes
exist, such as urban, country roads, and highways, each with distinct cues.
For example, urban scenes have high traffic densities, complex intersections,
complex traffic sign roads and traffic lights. Highways are less complex, but
vehicles are driving at high speeds. Country roads lack traffic signalisation,
such as road marks. In addition, weather and illumination conditions can
change quickly.

e Traffic agents diversity: There are numerous types of traffic agents, each with
particular appearance and motion features. Traffic agents such as pedestrians
and animals are very dynamic, and their behaviour can be unpredictable.

e Perception limitation: An IV system would require a perceptions module to
detect, track, and recognise traffic agents, traffic objects, and weather condi-
tions to assess if there is a potential traffic hazard event. Perception modules
have uncertainties due to sensor limitations, environmental conditions, and
occlusions.

e Numerous traffic hazard events exist: A comprehensive dataset is required
to represent the various types of traffic hazard events, which can be time-
consuming and expensive. Furthermore, the development of algorithms gets
more challenging as the number of classes to classify increases.

e Resources requirements: hazard detection and recognition must meet real-time
requirements since the decision module uses the information acquired to avoid
or mitigate a potential collision. Also, it must be computationally efficient
since automotive hardware usually has a small footprint.

The following sections discuss the techniques and available datasets designed to
train and validate algorithms for detecting and recognising traffic hazard events.
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2.3.1 Traffic Hazard Detection and Recognition Algorithms

The following techniques have been used to recognise and detect traffic hazard
events: Bayesian Network, Graph Convolutional Network, CNN, Unsupervised ma-
chine learning, RNN, and multiple models.

Bayesian Network: Russo et al. [233] studied the risky probability of a rear-
end collision by implementing a Bayesian Network (BN). The BN takes as input the
EV reaction time, the maximum available deceleration, and the braking intention
of the vehicle in front, which is available through V2V communication. Although
the Bayesian network deals well with uncertainties and captures the relationships
between variables, it may oversimplify interactions in complex traffic scenes.

GCN: A Spatio Temporal Action Graph (STAG) network was performed by
[234] to predict near-collision events. First, ResNet and RPN networks are used to
generate object-bounding boxes. The feature of the generated bounding boxes and
features of every possible pair of the generated bounding boxes are used as input to
the STAG network to predict near-collision events. GCN has the advantage of learn-
ing spatial and temporal dependencies and captures the complex interactions among
traffic agents well due to its graph representation structure. However, the system
can become very complex to develop, requiring more computational resources.

CNN: The near-miss incident dataset (NIDB) was used to train and evaluate a
two-stream CNN by [235] to recognise near-miss incidents. One of the two-stream
networks learns spatial features from RGB images, while the other learns temporal
features from semantic flow-generated images. Kim et al. Kim et al. [236] used CNN
to classify if the detected objects are dangerous or not using the YouTubeCrash and
the GTACrash datasets. Although two-stream CNN was used to consider spatial
and temporal information, CNN’s primary excellency is in learning spatial features.
In addition, two-stream CNN might become computationally expensive.

Unsupervised: Yao et al. [237] proposed an unsupervised machine learning
algorithm to detect traffic accidents. The unsupervised algorithm was first trained
on normal driving behaviour samples, and then the trained algorithm was used to
predict future trajectories of the traffic agent. The algorithm decides if an abnormal
event occurs when considerable differences exist between the accuracy of the pre-
dicted bounding boxes and the past observed bounding boxes, the accuracy between
the predicted bounding box mask and the observed bounding box mask, and the
consistency values of the predicted bounding boxes. The unsupervised technique
does not require labelled data; however, interpreting the results might be more
challenging.

RNN: CNN LSTM [78] presented a new multi-modal LSTM network to predict
actions in six types of traffic scenarios included in the Virtual Environment for Ac-
tion Analysis (VIENA) dataset. The considered feature modalities were appearance
from RGB images, motion from optical flow images, and dynamics measurements.
Authors Yurtsever et al. [238] adopted the CNN LSTM network to classify danger-
ous lane change behaviour. A dynamic spatial-attention RNN was implemented by
[239] to predict traffic accidents from dash-cam recorded videos. The LSTM with
attention mechanism was trained and evaluated using the Anticipating Accidents
in Dashcam (AAD) dataset. RNNs are a good candidate for learning temporal de-
pendencies and dealing with sequential events. However, their internal processing
requires a fixed-length vector, limiting the number of interacting traffic agents they
can manage. Additionally, as the number of traffic agents increases, the system im-
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plementation becomes more complex and demands more significant computational
resources.

Multiple Models: Bao, Yu, and Kong [240] proposed a uncertainty-based traf-
fic accident prediction model considering spatio-temporal relationship. A GCN
combined with an RNN was used to learn traffic agents’ relationships from a se-
ries of graph-embedded representations of the present traffic agents. In addition,
a Bayesian Neural Network was used to predict the accident score. Malawade et
al. [241] predicted collision by proposing a scene graph representation of the traffic
scene and feeding it to a GCN and LSTM. The application of multiple models has
the advantage of combining the strengths of each model to improve prediction per-
formance. However, integrating multiple models can be complex, and since some
models require different types of input presentation, advanced data fusion methods
may be required.

2.3.2 Traffic Hazard Dataset

Traffic hazard datasets are developed to train and evaluate algorithms to detect
and predict traffic road hazards. The available traffic hazard datasets, as listed in
Table 2.12] can be categorised as real or synthetic data. Real data consists of data
directly acquired from front camera sensors installed in EVs or indirectly gathered
from dashcam videos from various YouTube channels. On the other hand, synthetic
data is generated using the Grand Theft Auto V (GTA V) game. These datasets
either contain samples that led to a collision or near-misses, in other words, led to
a developing or materialised hazard stage.

Table 2.12: Information about the various traffic hazard datasets.

Dataset Dataset Domain Dataset Event Num. of Num. of Hazard
Source Type Type Accidents N. Misses Stage
1\‘121‘];;]]3 D\;Z}}lnlc(ifn Private Real near-misses n/a 4595 developing
?2?’17:]) (:1{:;111{1;‘;; Public Real collision 1500 n/a materialised
]:‘)22’;‘? (21(:;11;1;1;:) Public Real collision 4677 n/a materialised
?2‘;? (31(:31:{}::) Public Real collision 678 n/a materialised
‘CQZ:;A (21[::}:{;1::) Public Real collision 1935 n/a materialised
\0214:1)(5) (?1{2:}:{‘];?‘?) Public Real collision 1500 n/a materialised
GTACK-‘aSh GTA 5 Public Synthetic  collision 7720 n/a materialised
1236 (game)
VIENA GTA 5 . . collision + o
78] (game) Public Synthetic 5 types of actions ~1200 n/a materialised
Collision Vehicle . collision + . . materialised/
|161] Dashcam Public Real near-misses 743 60 developing

The Near-miss Incident Database (NIDB) was designed to study the recognition
and detection of traffic near-miss incidents [235]. The dataset was captured using
camera sensors installed in more than 100 taxis, and the records were made over
ten years. The recording yielded 4595 near-misses video samples of 10 to 5 seconds
each. The dataset contains annotations about the high and low danger levels for the
following traffic objects: bicycle, pedestrian, and vehicle. The high-level danger can
be considered a developing hazard event, and the low-level danger can be regarded
as a potential hazard event. Unfortunately, the dataset is not publicly available due
to copyright reasons.

The Collision dataset comprises 743 collisions and 60 near-collision video samples
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collected from connected dashcam sensors [161]. The dataset classifies the samples as
“negative”, where there are no accidents, and “positive”, where there is an accident.

The AnAn Accident Detection (A3D) and Detection of Traffic Anomaly (DOTA)
datasets are composed of recorded dashboard videos extracted from a YouTube
channel containing collision events [237, 242]. Each video includes information on
when and where a collision event happened and what caused it to happen. The
collision events are categorised as follows:

e Collision with a parked vehicle.

e Collision with a vehicle moving ahead or waiting.

e Collision with a vehicle moving horizontally in the same direction.
e Collision with a vehicle approaching from the opposite direction.
e Collision with a vehicle making a turn or crossing a road.

e Collision with a pedestrian.

e Collision with an obstacle on the road.

e Vehicle is out of control and leaving the road.

e Unknown event.

The Anticipating Accidents in Dashcam (AAD), Causality in Traffic Accident
(CTA), and the Car Crash Dataset (CDD) are other datasets composed of recorded
dashcam videos extracted from YouTube channels [239, 243, [240]. These datasets
only contain two classes: the positive samples, where there is an accident event, and
the negative samples, where there are no accidents.

The GTACrash and VIENA datasets are synthetic datasets generated and col-
lected from the Grand Theft Auto V video game [236| 78]. The GTACrash dataset
contains two types of samples: accident and non-accident events. VIENA dataset
aims to predict actions in traffic scenarios. There are 25 classes spread across six
types of scenarios, including driver manoeuvre, accidents, traffic rule, pedestrian
intention, front car intention, and manoeuvres performed by heavy vehicles.

The previously cited traffic hazard dataset only considers hazards that involve
motor vehicles or non-motor vehicle actors. Static and dynamic environmental cues,
such as obstacles, objects on the road, road type, adverse weather, and illumination,
should also be considered. As well as regulatory traffic laws such as rule breaks,
traffic lights, and traffic signs [61].

2.3.3 Conclusions

This section delves into the challenges, current techniques, and datasets used to de-
tect and recognise traffic hazard events. It concludes that while there are numerous
techniques and datasets, they primarily focus on classifying the presence of traffic
hazard events. However, for an IV system to comprehensively understand a traf-
fic situation and make informed decisions, it is crucial that potential traffic hazard
events be recognised. Moreover, existing studies tend to focus on detecting and
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recognising traffic hazard events in their developed or materialised stages, whereas
recognising them in their potential stages is more pertinent for the IV system.

This chapter’s findings underscore the necessity of a novel dataset that includes
a wider range of traffic hazard event classes in their potential event stage. Such
a dataset would significantly enhance the Al system’s ability to comprehend the
intricacies of traffic road scenes and make decisions to prevent collisions resulting
from other traffic agents’ behaviours.

2.4 Vehicles’ Rear Light Detection and Status Recog-
nition

Rear lights and their status are important visual cues that human drivers use to
predict the intent behaviour of the surrounding vehicles and decide their actions to
navigate complex traffic scenes. Therefore, it is crucial that IVs acquire this human
driver skill. This section discusses the challenges of detecting and recognising them
and what inputs, methodologies, and outputs have been used in the literature.

2.4.1 Challenges

Detection and recognition of rear lights are challenging tasks for the following rea-
sons:

e Rear lights are small and can be easily occluded by other road objects.

e Rear light design, location, light intensity, and blinking frequency can differ
depending on the vehicle’s make and model.

e Vehicles can be in different angles in an image.

e One image can have rear lights from multiple vehicles, making it harder to
pair rear lights.

e Images with rear lights are affected by poor illumination and weather condi-
tions.

e Indicator lights status is dynamic.

e It is hard to discern if a brake or a rear light is on. Although new cars have a
mid brake light to help discern between brake and rear light activity, they are
too small, some old vehicles do not have it, and some may not be working.

The primary sensors used to detect and recognise rear lights are mono [244],
stereo [245], and high dynamic cameras [246]. However, most of the reviewed works
are based on monocular camera sensors as they are cheaper and have been adopted
by most car manufacturers.

The following discussion regarding the inputs, methodologies, and outputs to
detect rear lights and recognise their status is based on 24 reviewed works from
2012 to 2022. Since detection and recognition are two different tasks, they will be
discussed separately.
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2.4.2 Rear Lights Detection
Input

The input to a rear light detection system could be the original image captured
by the camera sensors, which might contain more than one vehicle, or the cropped
portion of the original image containing only one vehicle.

Methodologies

Two main methods are used to detect rear lights: traditional or Deep Learning (DL)
techniques.

Traditional techniques include segmentation, symmetry, morphology, colour thresh-
old, haar-like features, or colour clustering. Li, Cai, and Tang [247| used segmenta-
tion and geometry to localise rear lights. Casares, Almagambetov, and Velipasalar
[82] used colour and morphology to identify the rear light region and 2-D symmetry
to perform rear light pairing. Frohlich, Enzweiler, and Franke [248] adopted the
Absolute image difference and Gaussian mixture model to detect light spots from
the rear lights. A new lamp response technique was presented by [249], where they
measure red pixel intensity to detect rear lights. Cui, Yang, and Tsai [83] used red
pixel clustering and convex Hull to detect rear lights. Grey level image, Haar-like
features, geometry and colour properties were used by [250] to detect vehicles and
their respective rear lights. Fully Connect Network (FCN), colour transformation,
morphology and binarisation were used by [251] to detect rear lights. Wang et al.
[252] adopted colour space conversion and location correlation principle to segment
tail lights. Gradient histogram, colour, and distance were used by [253] to detect
rear lights. Nava, Panzani, and Savaresi [254] used L*a*b colour space and geom-
etry to identify rear lights. Yan et al. [79] detected vehicle rear lights using image
segmentation, morphology, and contour extraction. Traditional methods are usu-
ally computationally efficient. However, their performance decreases when applied
in complex scenarios with poor illumination, occlusion, noise, and objects too far
away.

Currently, most authors have adopted DL techniques to detect rear lights be-
cause they have outperformed traditional techniques in general object detection and
recognition tasks. The DL techniques used to detect rear lights were the CNN and
Recurrent Rolling Network (RCC). Authors [255] detected rear lights using Fast R-
CNN and Nakagami images. Li et al. [256] adopted YOLOv3-tiny, Spatial Pyramid,
and focal loss. Liu et al. [257] used ResCat, which is a combination of ResNet and
DenseNet. Chang and Zhang [258] used CSPRexNext-40, Bi-Feature Pyramid Net-
work, and integrated high-level semantic mask. Authors [259, 260] used YOLOv2
and RRC. DL techniques have outperformed traditional ones. However, they require
more computational power and a substantial amount of data.

Output

The rear lights have their respective bounding boxes for each object in the original
image or for the single vehicle in the cropped portion of the TV.
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Evaluation Metrics

The evaluation metrics used in the literature were accuracy, true positive, mean
average precision (mAP), average precision (AP), precision, and recall. Accuracy
was the most used metric, followed by precision and recall.

2.4.3 Rear Lights Status Recognition

Input

It was noticed in the reviewed works that two pipelines were used to recognise the
status of the rear lights. Most of the works would first detect the vehicle, then
the rear lights, and finally recognise the rear light status [247, |82 248| 249, 83,
250, 251}, 255, 252, 253, [254) 256, (79, 257, [259] 260]. Some of the recent works
would use the bounding box information of the detected vehicle to crop the image
where the detected vehicle is and subsequently recognise the rear light status by
appearance-based approach [84, [246| 81} 244]. The appearance-based approach can
eliminate the stage of detecting the rear lights, which usually involves hand-crafted
feature extraction and requires more computational time. Furthermore, it enables
the vehicle detection network to share its feature vector with the rear light status
recognition network, automatically considers the brake mid-light, and is more robust
against occlusions [84]. In conclusion, the inputs to a rear lights recognition status
algorithm can be the cropped image, where the detected vehicle is with/without
the bounding boxes where the rear lights are located. In addition, the input can be
a single frame or a sequence of frames. Sequences of frames are used if temporal
dependencies are required.

Methodologies

Rear light recognition status has also been implemented using traditional or DL
techniques, and it has been done using either a single image or a sequence of images
as input. Single image methods have the advantage of being computationally afford-
able but lack temporal information, such as the action of the left or right indicator
blinking.

Traditional techniques include adaptive threshold, High pass Mask, Sparse rep-
resentation, mean channel values and threshold, Nakagami Histogram, X direction
projections of the Nakagami image, histogram distribution, AdaBoost, SVM, and
random forest classifiers. Authors [247] used adaptive threshold, and [250] used
mean channel values and threshold to recognise rear light status. Comparison be-
tween adjacent images was used by [261], high pass mask was used by [249], and
sparse representation was implemented by [83]. Histogram distribution was used by
[252] and [253]. Authors [248| 254} 262] used AdaBoost, SVM, and Random Forest
classifiers, respectively.

Deep learning techniques include CNN, RNNs, or both. Most works have treated
rear light status recognition as a sequence problem. For example, authors [81] com-
bined CNN and LSTM to recognise rear lights’ status using a sequence of images.
The CNN was responsible for extracting spatial features, and the LSTM was re-
sponsible for extracting temporal dependencies. Lee et al. [244] proposed a CNN
with spatial attention and LSTM with a TA mechanism. A Siamese CNN and GRU
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network was implemented by [257]. Kitchat et al. [263] proposed a system that uses
a sequence of images to classify rear light status. The VGG16 network was adopted
for feature extraction, and WaveNet [264] was used to capture temporal features.
Song et al. [80] proposed an action-state joint learning-based rear light recognition
system. They used YOLO and DeepSort algorithms to detect and track the vehi-
cles, Gaussian Mask Segmentation to extract brightness features from the vehicle
rear light, then CNN LSTM to classify the rear light actions, and finally, a linear
Conditional Random Field (CRF) to classify the twilight status.

Only a few works studied rear light status recognition as a single-frame prob-
lem. For example, Authors [84] and [246] used AlexNet to classify the rear light
status based on using as input a single image. Apart from the reason that sequence
techniques consider temporal information, most works adopted sequence techniques
because of the availability of datasets.

Output

The rear lights can have the following status: all rear lights are “OFF” (OOO), the
right indicator is “ON” (OOR), the Left indicator is “ON” (OLO), the brake lights
are “ON” (BOO), right indicator and brake lights are “ON” simultaneously (BOR),
left indicator and brake lights are “ON” simultaneously (BLO), hazard lights are on,
where both left and right indicator lights are “ON” simultaneously (OLR), hazard
and brake lights are “ON” simultaneously (BLR), reverse light is “ON”. In the
literature, most works investigate the recognition of the brake lights and the status
of the right and left indicators. Only a few works have tried to recognise the other
categories, and no one has investigated the recognition status of the reversing lights.

Dataset

Most of the proposed works have created their own datasets to investigate rear light
recognition status. According to the authors [84, 246, 257, [256, 250], there are no
public datasets to train and validate rear lights recognition status.

To the authors’ knowledge, there are only three publicly available datasets that
provide information about some of the rear lights’ status: the PREVENTION
[71], the Laboratory for Intelligent and Safe Automobiles-Night (LISA-Night) Low-
Density, and the UC Merced [81] vehicle rear signal datasets. The PREVENTION
dataset is not specific to the vehicle’s rear signal recognition; it only informs if the
rear light indicators are “ON/OFF” and does not specify whether it is the right
or the left one. In addition, the dataset does not provide cropped images of the
TV or information about other rear light statuses (e.g., brake light status). The
LISA-Night Low-Density dataset was only recorded at night and provided rear light
activity for turning and braking. The UC Merced dataset does not specify the rear
light indicator status for each one of the frames; it instead provides labels for a
sequence of frames. Hence, it is specific for systems that recognise the rear light
status in videos. The UC Merced dataset has all the rear light statuses cited above,
apart from the reversing light status. It has 649 sequences and 63637 frames and
was recorded under various road conditions.

An essential experimental stage of the deep learning system is splitting the
dataset samples. Although the cited works mention the percentage a train and
a validation set have from the complete dataset, they do not detail how the dataset
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Video Sequence 1
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Figure 2.9: Frames of the same video samples exhibit significant similarity. For
instance, frames 3 and 4, as well as frames 5 and 6 from video sequence 1, are very
similar to each other. Likewise, frames 3 and 4, and frames 5 and 6 from video
sequence 2, also display considerable similarity to each other

was split. To the author’s knowledge, the dataset split could be reached by applying
an image, sequence, or video data split technique.

Train Set
L
' .
L .
Frame_001 Frame_003 Frame_005 Frame_002 Frame_004 Frame_006

Validation Set

Frame_002 Frame_004 rame_| Frame_001 Frame_003 Frame_005

Figure 2.10: The train and the validation set have similar frames belonging to the
same video sample. For example, frames 3 and 4 from video sequence 1 are in the
train and the validation set, respectively.

For example, a rear light dataset comprises frames from different video samples
recorded by monocular cameras. As depicted in Figure 2.9 a video sample can have
two or more consecutive frames very similar. Therefore, as illustrated in Figure [2.10},
during an image dataset split, one of these similar frames can be placed at the train
set and the other at the test set, which will facilitate the algorithm in predicting
the class that the frame belongs to. Although this might yield a high training and
validation accuracy, the algorithm might not generalise well when applied to unseen
video samples. This phenomenon also applies to sequence splitting since some of the
sequences of frames belonging to the same video samples can be placed in the train
and validation set. On the other hand, as illustrated in Figure 2.11] when applying
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the video-splitting technique, there is less chance of placing very similar images in
both the train and the validation set.

Train Set
Frame_001 Frame_002 Frame_003 Frame_004 Frame_005 Frame_006

Validation Set

Frame_001 Frame 002 Frame_003 Frame_004 Frame_005 Frame_006

Figure 2.11: The train and the validation set have less chance of having similar
images.

2.4.4 Conclusions

This section investigated the application of current strategies to detect and recognise
the light status of surrounding vehicles. It highlighted that although the status
of a vehicle’s rear light is crucial for providing information about other vehicles’
intentions, there is limited research on this topic. This observation was also noted
by Song [80]. The lack of available datasets appears to be a significant contributing
factor; only three publicly available datasets exist, each designed for a different
purpose and not conducive to transfer learning techniques or dataset merging.

The findings of this chapter underscore the need for more research focused on
using single images for rear light status recognition, which would enhance compu-
tational efficiency and be used as one of the modules in a complete IV system.
Moreover, studies using state-of-the-art feature extraction algorithms such as Vi-
sion Transformer (ViT) are recommended, as the currently adopted algorithms are
outdated.

These insights contribute to the broader objective of improving IV systems by
enhancing their ability to understand and react to the intentions of surrounding
vehicles. Future research should focus on developing and sharing more detailed
datasets and exploring advanced feature extraction techniques.

2.5 Knowledge Gap

Despite substantial progress in IV systems, behaviour recognition, and traffic hazard
detection, several critical research gaps persist:
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2.5.1 Discrete Intention Behaviour Recognition and Predic-
tion
e Existing research primarily addresses general behaviour recognition, with lim-

ited focus on the prediction of discrete intention behaviours (e.g., turning,
stopping, merging) of traffic agents.

e Most studies concentrate on either pedestrians or vehicles, often overlooking
other essential traffic participants such as cyclists and traffic control elements
(e.g., traffic lights).

e Although vehicles exhibit a wide range of behaviours (e.g., cutting in, revers-
ing, turning), the majority of research is narrowly focused on lane-changing
behaviour.

2.5.2 Data Limitations

e There is a notable lack of publicly available datasets specifically designed for
training and evaluating models on discrete intention behaviour prediction.

e Existing datasets often fail to capture the complexity and heterogeneity of
urban traffic environments, limiting their applicability to real-world scenarios.

2.5.3 Algorithmic Gaps

e Current algorithms do not explicitly address the recognition of discrete inten-
tion behaviours across diverse traffic agents.

e The visibility of target objects to the EV is frequently overlooked. For example,
partial visibility (e.g., viewing only the right side of a vehicle) may indicate an
imminent crossing or intersection entry, yet this contextual cue is underutilised.

2.5.4 Traffic Communication and Hazard Recognition

e While vehicles communicate intentions through light signals (e.g., indicators,
brake lights), these cues are often implicitly or insufficiently integrated into
behaviour recognition models [265].

e Most datasets capture hazard events only after they have materialised, lacking
data on the progression and early indicators of such events.

e There is a lack of comprehensive studies categorising and recognising various
types of traffic hazards in real-world conditions.

2.5.5 Integrated Behaviour Recognition Pipelines

e Few studies have proposed a holistic behaviour recognition pipeline that inte-
grates detection, tracking, and recognition components.

e The issue of error propagation across pipeline stages remains underexplored,
despite its potential to significantly affect prediction accuracy.



Chapter 3

Novel Traffic Hazard Dataset

Datasets for studying discrete traffic agent behaviour and potential traffic hazard
event recognition are limited. Existing datasets typically focus on either pedestrian
or vehicle behaviour and often cover only a narrow range of behavioural categories.
Datasets that include a broader spectrum of behaviours tend to focus on the ac-
tions of the EV’s driver rather than those of surrounding traffic agents. Moreover,
most traffic hazard datasets are designed for binary hazard detection (e.g., colli-
sion or no collision) rather than for classifying different traffic behaviours or hazard
types. Some datasets, such as VIENA, do consider a wider variety of traffic agent
behaviours but are synthetically generated. Additionally, these datasets often em-
phasise near-miss or collision events, focusing on hazards in their developing or
materialised stages.

This chapter introduces and analyses a novel dataset designed to enhance the un-
derstanding of potential traffic hazard behaviours in complex traffic environments.
Compiled from multiple existing sources, the dataset provides diverse traffic sce-
narios and includes sixteen potential hazard classes. Each sample contains detailed
detection information for all objects in the scene, tracking data for each target ob-
ject, timestamps marking the start and end of specific hazard events, rear light
status for each vehicle, and the side of each target object visible to the EV.

The chapter details the dataset’s composition, offering an overview of the data
collection and annotation methods. It explains the dataset format, including its
directory structure and data storage. Additionally, the dataset’s statistics are pre-
sented, outlining the types of classes, the number of samples per class, and a com-
parison with related datasets.

The chapter is organised as follows: Section describes the dataset collection
and annotation processes. Section details the dataset’s directory structure and
storage format. Section outlines potential applications for the dataset. Finally,
Section presents statistical information and compares the novel dataset with
existing ones.

3.1 Novelty and Contributions of the Traffic Haz-
ard Dataset

The dataset presented in this study introduces several novel aspects that distinguish
it from existing discrete traffic behaviour and hazard recognition datasets:
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1. Multi-Agent Diversity: Unlike traditional datasets that often focus solely
on vehicles or pedestrians, this dataset captures behaviours from a wide range
of traffic agents, including trucks, riders, individual and group pedestrians,
animals, traffic signs, and temporary road objects such as cones and barriers.

2. Granular Behaviour Labels: It incorporates over 15 types of discrete
behaviours, including nuanced traffic interactions such as overtaking, lane
changes, and object crossing—many of which are underrepresented or absent
in prior work.

3. Multi-View Annotations: The dataset provides annotations for both rear
light status and the visible side of target objects, each with single-image gran-
ularity, enabling real-time perception and classification tasks.

4. Potential Hazard Emphasis: The dataset emphasises potential hazard
states rather than active or ongoing incidents, addressing a gap in predictive
hazard recognition and early behaviour anticipation.

5. Real and Synthetic Fusion: By combining data from both real-world
sources (including PREVENTION and JAAD) and synthetic environments,
the dataset captures a broad spectrum of scenarios, enhancing model general-
isability and robustness.

6. Environmental and Geographical Variety: The dataset includes diverse
scenarios from urban and highway environments across multiple countries,
helping to mitigate geographical and environmental biases common in traffic
datasets.

These characteristics collectively make the proposed dataset a comprehensive and
novel resource for modelling complex traffic scenarios. It supports the development
of intelligent systems capable of understanding and predicting traffic agent behaviour
in a more holistic, proactive, and context-aware manner.

3.2 Dataset Collection and Annotation

Collecting datasets from real-world environments is expensive, time-consuming, po-
tentially hazardous, and requires authorisation from both public and private sectors.
Synthetically generating a dataset can be a viable alternative; however, synthetic
data often fails to accurately capture the complexity and diversity of real-world
scenarios and can also become resource-intensive. For these reasons, the novel
dataset presented in this study was compiled from several publicly available existing
datasets, incorporating both real-world and synthetic sources.

The datasets used include KITTI, JAAD, Oxford RobotCar Dataset, DVSA
hazard perception clips, and PREVENTION. Details for each dataset are provided
in Table 3.1} Note that data governance and ownership were taken into consider-
ation, and it was confirmed that the authors of the datasets used permit sharing
and adaptation under the Attribution-NonCommercial-ShareAlike 4.0 International
License [266]. Additionally, all datasets used in this thesis are properly referenced.
Clips containing DVSA hazard perception material were used to generate the results
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Table 3.1: Information for the datasets used to generate the potential traffic hazard
dataset.

Dataset Resolution FPS Format N. of Extracted Original Purpose Dgt.a.
Samples Acquisition
JAAD 1920x1080 30 PNG 12 Pedestrian Crossing Real-world
PREVENTION 1920x600 10 MP4 177 Vehicle Lane Change Real-world
DVSA 1920x1080 25 MP4 38 Traffic Hazard Synthetic
KITTI 1242x375 10 PNG 7 Detection and Tracking Real-world
oxfordRobotDataset  1280x960 16 MP4 412 SLAM Real-world

presented; however, to comply with the terms and conditions set by the DVSA, any
samples containing DVSA hazard perception clips will not be included in the dataset
when it is made publicly available for further research.

In line with DVSA’s licensing terms, I include the following required statement:

“The Driver and Vehicle Standards Agency (DVSA) has given permis-
sion for the reproduction of Crown copyright material. DVSA does not
accept responsibility for the accuracy of the reproduction.”

Using multiple publicly available datasets offers the advantage of combining real-
world and synthetic data, covering both highway and urban environments, different
driving sides, and various purposes. However, these datasets differ in image resolu-
tion, frame rate, format, and camera calibration properties. The following procedure
was followed to construct the novel dataset from the aforementioned sources:

e Each dataset was downloaded and converted into frames if originally in video
format. Due to varying frame rates (FPS), normalisation was necessary. A
standard FPS of 10 was chosen, as it was the lowest among the datasets.
Normalisation was implemented using the modulus operator.

e Traffic behaviour samples prone to potential traffic hazard events were iden-
tified from the normalised datasets. For each identified event, the following
information was recorded in a CSV file: dataset name, starting frame, end-
ing frame, hazard type, hazard description, and the directory containing the
original frames.

e The recorded information was used to generate video samples for each identi-
fied traffic hazard event. Each sample included 20 frames before the starting
frame and 10 frames after the ending frame, allowing algorithms to observe
up to 2 seconds before and 1 second after the event. Sample durations varied
depending on the behaviour type and driver response. All frames were resized
to 1280x 600 pixels to ensure consistency across datasets.

e Although current detection and tracking algorithms are reasonably accurate,
they still fail to detect or track some road objects. Accurate recognition of a
target traffic agent’s behaviour requires precise detection and tracking. There-
fore, the target agent performing the behaviour was manually labelled using
the YOLO label software [267]. The YOLOvS algorithm was then used to
detect and track the remaining objects. To prevent duplicate detection of the
target agent, it was extracted from the original image by replacing its pixels
with green, as shown in Figure [3.1b|
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(a) Raw image. (b) Image without target object. (C) Depth information image.

(d) Blended image. (e) Image with lane information. (f) Object of interest image.

(g) Local context image. (h) Motion-based image. (1) Local-context blended image.

Figure 3.1: Different types of input images generated from the raw image.

e The visible side of the target object from the ego vehicle’s perspective was
manually labelled.

e The rear light status of each target vehicle (TV) was manually annotated.

e Various image representations were generated from the original images, in-
cluding:

— Images without the target object to capture global context as illustrated

in 3.10]

— Monocular depth estimation images using the Iterative Elastic Bins (IEB)
algorithm [268] to capture motion and 3D structure as illustrated in[3.1d

— Blended images combining RGB and depth information using OpenCV’s
cv2.addWeighted () function as illustrated in [3.1d|

— Lane detection images using the YOLOP algorithm [269] to define EV
boundaries as illustrated in B.1d

— Object of Interest (OOI) images retaining only the pixels corresponding to
the target object, surrounding objects, and lane information as illustrated
in [3.11

— Bounding box images to capture local context as illustrated in |3.1g]

— Local context motion-based images, cropped using both bounding box
and motion direction to align with the object’s movement as illustrated

in 3.10l
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Potential Traffic Hazard Dataset
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Figure 3.2: Potential Traffic Hazard Dataset directory tree diagram.
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3.2.1 Annotation Process and Ground Truth Validation

The author performed all data labelling to ensure consistency and domain-specific
accuracy. Although a single annotator carried out the annotation process, the fol-
lowing measures were implemented to maintain the reliability of the ground truth:

e Annotation Guidelines: A detailed annotation protocol was established
prior to labelling. This protocol defined class boundaries, provided visual ex-
amples, and outlined procedures for handling edge cases to minimise subjective
interpretation and ensure consistent annotation logic.

e Iterative Refinement: The annotation process followed an iterative re-
view strategy. Initial annotations were frequently revisited—particularly in
the early stages—to refine labelling definitions and resolve ambiguities. This
approach improved the overall quality and consistency of the dataset.

e Tooling and Visual Inspection: Annotation tools with image overlays and
class consistency checks were employed to reduce human error. Manual in-
spection of samples across all classes was routinely conducted to validate the
annotations.

e Expertise and Domain Knowledge: The annotator (author) possesses
substantial domain expertise in traffic behaviour and intelligent vehicle sys-
tems, which informed the labelling of complex scenarios such as rear light
combinations, partial occlusions, and ambiguous object orientations.

e Label Audits: A representative subset of annotations was audited multiple
times at different stages of dataset creation. Any inconsistencies identified
during these audits were corrected and used to refine the annotation strategy.

While multi-annotator consensus or inter-annotator agreement metrics are com-
mon in large annotation teams, the consistent application of a well-defined labelling
protocol by a domain-aware annotator provides strong reliability in this context.

3.3 Dataset Format

This section provides information about the dataset directory structure and how the
data are stored.

Figure depicts the dataset directory structure. After the root directory, each
sample has a directory, ranging from 000 to 645. Inside each sample directory, there
are the following directories and files:

e det/predict/labels: containing text files, with detection and tracking informa-
tion, for each frame. The data is stored as follows [object_Type, z, y, w, h,
object_ID].

e img depth_info: contains the depth estimation frames in .png format. See

Figure [3.1d

e img_global OOl _context: contains the object of interest frames in .png format.

See Figure 3.11]
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e img local context: contains the frames of the target object bounding box in
.png format. See Figure [3.1g]

e img local_depth_context: contains the frames of the target object bounding
box with depth estimation in .png format. See Figure [3.11

e img no_target: contains the frames without the target object in .png format.

See Figure [3.1b]

e img original: contains the raw frames in .png format. See Figure [3.1a]
e img overlayed: contains the blended frames in .png format. See Figure [3.1d]

e img_with_lane_info: contains the frames with lane information in .png format.
See Figure [3.1€|

e tracking: contains three Excel files, one has the information about the sur-
rounding objects, another has the target object information, and the last has
merged information of the surrounding and the target objects. The data is
stored as follows [video_n, frame_n, start_frame, end_frame, hazard_type_int,
hazard_type_name, hazard_flag, target_obj_id, ID, object_type, xc, yc, xc_speed,
ye_speed, w, h, bbor_area, x_1, y_1, .2, y_2].

e object_position_labels: contains the TV side labels. The data is stored as
follows [video_n, frame_n, object_type, target_object, vehicle_position)

e all roadHazardDataset_videos.csv: the file containing the merging information
of all videos.

e train\recognition_dataset_split.csv: the file containing the videos selected to
train the model.

e test\recognition_dataset_split.csv.: the file containing the videos selected to
test the model.

3.4 Dataset Applications

The dataset includes annotations for object detection, tracking, traffic hazard classes,
rear light status, and the visible side of each object, making it versatile for a wide
range of real-world intelligent traffic system applications.

For instance, the object detection annotations are particularly useful for advanc-
ing research in traffic-specific object detection across diverse environments, including
highways, rural areas, and urban settings. The tracking information supports re-
search in object tracking and trajectory prediction, which is essential for developing
more accurate and reliable intelligent vehicle systems.

A key distinguishing feature of this dataset is the inclusion of traffic hazard
annotations, which enable targeted research on the recognition and prediction of
potential traffic hazard events. This is especially relevant for enhancing the safety
features of intelligent vehicle systems operating in complex traffic scenarios. Ad-
ditionally, the rear light status and visible side annotations—explored in detail in
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subsequent chapters—provide valuable data for understanding vehicle intent and be-
haviour from the ego vehicle’s perspective. These cues can serve as supplementary
inputs for recognising and predicting traffic hazards or traffic agent behaviours.

Overall, the proposed dataset supports research in real-world applications such
as improving the ability of [Vs to safely navigate complex urban environments and
enhancing traffic management systems.

3.5 Dataset Statistics

This section provides information about the total number of classes, the number of
samples per class, and the types of traffic agents considered in the dataset for each
potential application, including traffic hazard event recognition, rear light status
recognition, and object visible side recognition. For the traffic hazard and object
visible side recognition applications, the following objects were considered: pedestri-
ans, bicycles, cars, motorcycles, groups of pedestrians, buses, road crossings, trucks,
road work, traffic lights, riders, stop signs, dogs, and horses. For the rear light status
recognition application, only vehicles were considered.

3.5.1 Traffic Hazard Application

The dataset contains sixteen types of hazard classes, including:

e Object crossing: the object moves across the observer’s path (Figure [3.3a)).

e Object emerging: a traffic situation where an object moves from a minor side
road, driveway, or parking lot onto a main road (Figure [3.3b]).

e Left/right cut-in: the object enters the lane directly in front of another object

with limited space (Figures and [3.3d]).

e Object meeting: two objects approach each other from opposite directions and
come into proximity or pass each other (Figure |3.3¢]).

e Object stopping: the object reduces its speed to a halt (Figure [3.3f)).

e Object reversing: the object moves backward, typically when parking or driv-
ing through a driveway (Figure [3.3g).

e Vehicle hazard lights activated: pairs of lights on a vehicle flash simultaneously
in an intermittent pattern, activated by the driver to warn surrounding road
users of a potential hazard or emergency ahead (Figure |3.3h)).

e Red traffic light is on: the red traffic light is illuminated, indicating that road
users must come to a complete stop (Figure [3.31)).

e Object turning: an object changes direction, usually by turning at an inter-
section, navigating a curve, or executing a U-turn (Figure [3.3j]).

e Road works: road construction or maintenance activities, typically signaled
through signs, cones, and barriers (Figure (3.3k).
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(a) Object Crossing. (b) Object Emerging.

(e) Object meeting.

(m) Object pulling up. (Il) Object on the side of the road. (0) Pedestrian near parked car.

(p) Object on the middle of the
road.

Figure 3.3: Traffic hazard categories on the potential traffic hazard dataset.

e Object coming out: the object exits from a location on the side of the road
onto the roadway (Figure [3.3l)).

e Object pulling over: the object slows down and stops at the side of the road,
such as a bus stopping at a bus stop (Figure [3.3m)).

e Moving object on the side of the road: an item in motion located alongside

the EV’s lane (Figure [3.3n)).

e Pedestrian near parked vehicle: an individual walking or moving near a sta-
tionary vehicle, including pedestrians unloading their cars, walking between
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parked vehicles, or entering/leaving their vehicles (Figure [3.30)).

e Object in the middle of the road: an item obstructing the EV’s path (Figure
3.3D)).

The dataset contains more than 645 potential traffic hazard events. The number
of samples per class is shown in Table 3.2l Some events occur more frequently
than others—for instance, the right cut-in, left cut-in, object stopping, and object
crossing classes have more samples than the rest.

The higher number of samples for the right cut-in, left cut-in, and object crossing
classes can be attributed to the targeted design of the PREVENTION and JAAD
datasets, which focus on studying these specific traffic agent behaviours. In con-
trast, the absence of dedicated datasets for the remaining classes results in fewer
available samples for those categories. Among the more frequently occurring traf-
fic hazard events—excluding those lacking dedicated datasets—are object stopping,
object turning, red traffic light, object meeting, object emerging, pedestrian near
parked vehicles, and road works. This class imbalance presents a challenge for ma-
chine learning training and validation.

As part of the dataset design, the inclusion of a “no hazard” class was considered
essential to enable the model to distinguish between hazardous and non-hazardous
situations—a critical requirement for real-world deployment. The total number of
hazard samples across all classes is 600, with individual class frequencies ranging
from as few as 3 to as many as 113, introducing a significant class imbalance. To
mitigate further bias, 300 “no hazard” samples were deliberately selected. This
600:300 case-control ratio (hazard vs. no hazard) provides a moderate inclusion of
non-hazardous scenarios without overwhelming the minority hazard classes.

The decision to include 300 “no hazard” samples was guided by both practical
and methodological considerations. First, it ensures the model is exposed to a mean-
ingful number of non-hazard examples, reflecting real-world conditions where most
traffic scenes are non-hazardous. Second, it avoids introducing a disproportionate
number of control samples that could lead the model to favour predicting the major-
ity “no hazard” class—an issue known as class dominance. By setting the number
of “no hazard” samples to 300, the dataset maintains a more balanced distribution
across all classes, improving the model’s ability to generalize and avoid overfitting.
This strategy aligns with common practice in case-control learning setups, where
the number of control samples is increased judiciously to ensure adequate learning
without skewing the classification boundary.

3.5.2 Vehicles’ Rear Light Application
As depicted in Figure [3.4] the possible rear light statuses are:

e BLO: both the left indicator and brake lights are ON simultaneously (Figure
3.4a)).

e BOO: the brake lights are ON (Figure [3.4b)).

e BLR: the left and right indicators, along with the brake lights, are ON simul-

taneously (Figure [3.4c)).
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Table 3.2: Number of samples per Potential Traffic Hazard Event Classes.

Class Name N. of Samples
no_hazard 300
right_cut_in 113
object_stopping 63
left_cut_in 61
object_crossing 60
object_turning 51
object_hazard_light_on 48
red_crossing_traffic_light 40
object_meeting 38
object_emerging 37
pedestrian_near_parked_vehicles 34
road_works 34
object_reversing 20
object_pulling_up 14
object_on_the_side_of the_road 11
object_coming_out 11
green_crossing_traffic_light 8

object_on_the_middle_of the_road 3

e BOR: the right indicator and brake lights are ON simultaneously (Figure|3.4d)).
e OLO: the left indicator is ON (Figure [3.4€]).

e OLR: both the left and right indicator lights are ON simultaneously (Figure
3.1).

e OOQ: all rear lights are OFF (Figure [3.4g)).
e OOR: the right indicator is ON (Figure [3.4h]).
e REVERSE: the reverse lights are ON (Figure .

e UNK: although a vehicle is detected, the rear lights may not be visible. For
example, in Figures and [3.4]] vehicles are detected, but their rear lights
are not visible due to orientation or occlusion. Figure [3.4k|shows another case
where the rear side of the vehicle is visible, but the image quality is too poor
to discern the rear lights.

The dataset contains more than 49,637 samples of rear light statuses. Table (3.3
shows the number of samples per class. It reveals that some classes occur far more
frequently than others. For instance, the “O00,” “BOO,” “OOR,” “OLO,” and
“UNK?” classes each have between six and fifteen thousand occurrences. In contrast,
the remaining rear light classes have significantly fewer samples, ranging from just
a few hundred to around two thousand.

Due to this discrepancy in class distribution, two versions of the dataset were
created: the Rear Light Status with six classes (RLS-6), which includes the “BOO,”
“OLO,” “OLR,” “O00,” “O0R,” and “UNK?” classes; and the RLS-10, which in-
cludes all ten classes. Note that some samples from RLS-10 classes not present in
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Figure 3.4: Rear lights possible status and unknown examples.

RLS-6 were mapped to their corresponding RLS-6 classes. For example, “BLR” was
converted to “OLR,” “BOR” to “OOR,” “BLO” to “OLO,” and “REVERSE” to
“UNK.”

Table 3.3:  Number of samples per available classes for the RLS-6 and RLS-10
datasets.

Categories RLS-6 RLS-10

BLO - 621
BOO 8468 8468
BLR - 291
BOR - 1208
OLO 7231 6610
OLR 2453 2162
000 15148 15148
OOR 9491 8283
REVERSE - 300
UNK 6846 6546

3.5.3 Object Visible Side Application
As depicted in Figure the possible visible sides of a target object are:
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Front-left: as illustrated in Figure[3.5a, the object is viewed from an angle that
shows both the front and the left side. The front face is visible but slightly
rotated, allowing part of the left side to be seen. This angle reveals the corner
where the front and left sides meet, highlighting features such as the front-left
edge, the left front wheel (if it’s a vehicle), and portions of both the front and
left sides.

Front: as illustrated in Figure [3.5D] the object is viewed head-on, capturing
the entire front face. Only the front surface is visible, with no side details.
This angle emphasises features such as the object’s front center, frontal design
elements (e.g., headlights, grille, or emblem on a vehicle), and the symmetry
of the front view.

Front-right: as illustrated in Figure [3.5d, the object is viewed from a position
that shows both the front and the right side. The front face is visible but
slightly rotated to reveal part of the right side. This angle highlights the
front-right edge, the right front wheel (for a vehicle), and partial views of both
the front and right sides.

Right: as illustrated in Figure [3.5¢] the object is viewed directly from the
right, showing the entire right side. The front and rear are not visible. This
angle captures the full length of the object from this side, including features
such as windows, doors (if it’s a vehicle), or any markings specific to the right
side.

Rear-right: as illustrated in Figure [3.51 the object is viewed from an angle
that shows both the rear and the right side. The rear is visible but slightly
rotated to reveal part of the right side. This perspective shows the rear-right
edge, the right rear wheel (if it’s a vehicle), and parts of both the rear and
right sides.

Rear: as illustrated in Figure this is a direct view of the object’s back,
showing the entire rear face. Only the rear surface is visible, with no side
details. This view emphasises rear design features such as tail lights, exhausts
(for a vehicle), or any rear-specific elements.

Rear-left: as illustrated in Figure [3.5h] the object is viewed from a position
that shows both the rear and the left side. The rear is visible but slightly
rotated to reveal part of the left side. This view captures the rear-left edge,
the left rear wheel (for a vehicle), and partial views of both the rear and left
sides.

Left: as illustrated in Figure [3.5d] the object is viewed directly from the left,
showing the entire left side. The front and rear are not visible. This angle
captures the full length of the object from this side, including features such as
windows, doors (if it’s a vehicle), or any markings specific to the left side.

Table reports the number of samples per class type. There is a noticeable

imbalance in the number of samples among the classes. The rear, rear-right, and
rear-left classes have the highest number of samples. This is primarily because TVs
in the novel dataset are typically positioned in front of the EV and moving in the
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(a) Front left side. (b) Front side.
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Figure 3.5: Possible sides of the TV that can be observed by the EV.

same direction. For instance, the most common object type encountered in front
of an EV is another vehicle traveling in the same direction, making the rear side
the most frequently observed. Additionally, the PREVENTION dataset—one of
the sources used to construct the novel dataset—was specifically designed to study
lane change behavior in highway scenarios, further contributing to the prevalence of
rear-side views.

Table 3.4: Number of samples per available classes for the target’s object visible
side datasets.

Categories N. Of Samples
front_side 2185
front_left_side 1739
front_right_side 1387
left_side 3738
right_side 2525
rear_side 34481
rear_left_side 23061
rear_right_side 27864
UNK 11273

3.6 Comparison to Related Datasets

The novel dataset differs from the datasets discussed in Chapter [2| Sections
and in the following ways:

e [t includes discrete behaviours from multiple types of traffic agents, such as
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cars, trucks, pedestrians, traffic lights, road work signs, cones, barriers, ani-
mals, groups of pedestrians, and riders.

e [t considers more than 15 types of discrete behaviours.
e The samples focus on traffic hazard events in their potential stage.

o [t features a wide variety of traffic scenarios, including highways and complex
urban scenes from different countries.

e [t includes a mixture of real and synthetic data.

Regarding rear light annotation, as discussed in Section [2.4] existing datasets
typically provide rear light status across sequences of images, making them unsuit-
able for systems that require single-image rear light status recognition. Moreover,
datasets that do offer per-image annotations are often limited to nighttime con-
ditions and may only indicate whether an indicator is active—without specifying
which side.

In contrast, the proposed dataset includes the full range of rear light categories
described in Section Each annotation corresponds to an individual image, mak-
ing the dataset suitable for both single-image and sequence-based systems. Addition-
ally, it encompasses a wide variety of traffic scenarios and environmental conditions.

3.7 Conclusions

This chapter presented a novel dataset designed to enhance the understanding of
traffic agent behaviour, with a particular focus on identifying and analysing agents
that pose potential hazards. The proposed dataset is highly versatile, supporting a
wide range of research areas, including rear light status recognition, object visible
side analysis, traffic agent behaviour modelling, and potential traffic hazard event
recognition.

Despite the large number of samples, the dataset is characterised by class im-
balance, as certain traffic agent behaviours—such as objects emerging into traffic or
pulling over—and specific rear light statuses—such as active brake lights combined
with indicators or reverse lights—are inherently less frequent.

Compared to existing datasets focused on traffic agent behaviour and hazard
detection, the proposed dataset captures the complexity of traffic scenes more ef-
fectively. It includes a broader variety of traffic agent behaviours, agent types,
explicit cues, and environmental contexts, making it a more comprehensive resource
for research. This complexity more accurately reflects real-world traffic scenarios
and provides a richer foundation for developing and evaluating models capable of
handling such challenges.

However, the presence of unbalanced classes remains a limitation. Future work
could address this issue through methods such as data augmentation or targeted
data collection to improve class balance.

In conclusion, this dataset makes a significant contribution to the field, offer-
ing a robust resource for advancing research in traffic agent behaviour and hazard
detection. Its development supports the broader goals of this thesis by providing
a foundation for more accurate and comprehensive studies—essential for improving
traffic safety and enabling the development of intelligent vehicle systems.



Chapter 4

Deep Learning for Rear Light
Status Detection and Visible Side
Recognition

This chapter aims to develop and evaluate deep learning algorithms to independently
recognise rear light status and the visible side of objects from the ego vehicle’s
perspective. The goal is to create additional modules for a comprehensive potential
traffic hazard event recognition pipeline, where the output of these algorithms can
serve as supplementary input cues for predicting potential hazard events.

The chapter revisits the possible visible sides of target objects, the various rear
light statuses of vehicles, and the challenges associated with recognising them. The
potential impact of this research on the development of deep learning algorithms is
promising and could significantly enhance the performance of traffic hazard recog-
nition systems. Both cues are discussed within the same chapter, as the model
architecture, hardware, and evaluation metrics used are consistent across both tasks.

The chapter is structured to provide a comprehensive understanding of the re-
search. It begins with a brief introduction in Section (.1} followed by a detailed
explanation of the model architecture in Section 4.2} Section [4.3] presents the exper-
imental evaluation. Section discusses the results for rear light status recognition,
while Section presents the findings for object visible side recognition.

4.1 Background

In the field of traffic agent behaviour recognition, a wide range of input features has
been explored, including categorical, numerical, and image-based inputs. Common
categorical inputs include object type, while numerical inputs often involve bounding
box position, speed, width, height, and area distances. Image inputs range from
raw images to optical flow representations. However, some important cues that
conventional drivers rely on have been overlooked and not explicitly considered.
These include:

e Rear light status, which drivers use to communicate their intentions to others.

e The visible side of a target object, which drivers use to assess the direction in
which the object is moving.
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As discussed in Section prior research has highlighted the importance of
recognising rear light status to better understand the intent of surrounding traffic
agents. Similarly, the visible side of a target object is a critical, though often over-
looked, cue. For example, an object crossing in front of the EV typically reveals its
left or right side. An object making a left turn in front of the EV may transition
from showing its rear side to rear-left, and finally to the left side. Likewise, a vehicle
changing lanes from left to center may shift from rear-right to rear as its visible side.

Recognising the visible side of a target object presents several challenges:

e Image quality may be degraded due to distance, occlusion, or poor lighting
conditions.

e Class boundaries between similar categories (e.g., rear vs. rear-right, front vs.
front-left) can be difficult to distinguish.

e Object complexity varies—pedestrians are small and dynamic, while vehicles
are larger and more rigid.

e Relative motion between the EV and the target object can alter the visible
side, even if the object is stationary.

e Lack of dedicated datasets for visible side classification further complicates the
task.

Rear light cues also convey important information:
e An active left or right indicator signals an intention to turn.
e Brake lights indicate that the vehicle is slowing down or has stopped.

e Simultaneous activation of both indicators suggests a hazard ahead, prompting
caution from following vehicles.

While various methods have been proposed for rear light recognition, most rely
on image sequences rather than single-image inputs. Existing datasets often lack per-
image annotations, focus primarily on nighttime conditions, or provide only partial
information (e.g., indicator status without specifying the side). Additionally, many
use outdated feature extractors and do not clearly describe their dataset-splitting
strategies.

To address these challenges, this chapter proposes a series of contributions:

e Vehicle Rear Light Status Recognition (VRLSR) using the dataset introduced
in Chapter 3| which includes categories such as all lights off, left /right indica-
tors on, brake lights on, and combinations of indicators and brake lights.

e Vehicle Visible Side Recognition (VVSR) using the same dataset, which in-
cludes categories such as front, front-right, front-left, left, right, rear, rear-
right, rear-left, and an unknown category.

These categories are used to develop and evaluate deep learning recognition algo-
rithms tailored to each task.
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4.2 Model Architecture

The tasks of recognising a vehicle’s rear light status and identifying the visible
side of the TV are treated as two distinct processes, each handled by a dedicated
recognition system. Although these systems operate independently, they share a
common architectural structure.

As illustrated in Figure[4.1] both pipelines consist of three primary components:

e Input image: cropped from the EV’s front-facing camera.

e Feature extractor and classifier module: typically a convolutional neural net-
work (CNN) or Transformer model, followed by a FC layer.

e Output layer: a set of predefined categories specific to each task.

4.2.1 Input Image

The architecture begins with the input image, typically captured by the EV’s front-
facing camera. This image includes the surrounding environment, such as nearby
vehicles, road markings, and other relevant objects. To prepare the image for down-
stream analysis, several preprocessing steps are applied.

First, the region of interest—specifically, the bounding box containing the TV—is
cropped from the original frame. The cropped region is then resized to a fixed
resolution of 224 x224 pixels, aligning with the input requirements of standard deep
learning architectures.

Next, normalization is applied to standardize the pixel value distributions. This
is done using the transforms module from the PyTorch library, with mean and
standard deviation values matching those used during the training of the respective
pretrained backbone models (e.g., ImageNet statistics).

To further enhance model generalization and robustness, data augmentation
techniques are applied to the cropped images. These include random transforma-
tions and an AutoAugment policy tuned for the ImageNet dataset, enabling the
model to learn more invariant features under varying lighting conditions and occlu-
sions.

4.2.2 Classifier

To effectively encode visual information from the input image, this work inves-
tigates two primary families of feature extractors: CNNs and Transformer-based
architectures. Each offers distinct advantages based on their architectural design
and inductive biases.

CNNs—such as ResNet-18, EfficientNet-V2-S,; and ConvNeXt-Small-—are built
on the principles of spatial locality and translational invariance. They use convo-
lutional filters to progressively extract hierarchical features, from low-level edges
and textures in early layers to high-level semantic patterns in deeper layers. This
design is computationally efficient and well-suited for visual tasks with relatively
constrained receptive fields. For instance:
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Figure 4.1: Parallel pipelines for recognising the visible side of the TV and its rear
light status from an EV front-facing camera. Each pipeline consists of a dedicated
feature extractor (CNN or transformer) and a FC layer to output class probabilities.
These outputs can be used as high-level input features for other tasks such as lane
change prediction and traffic hazard recognition.

e EfficientNet employs compound scaling to balance model depth, width, and
resolution.

e ConvNeXt modernises traditional CNNs by incorporating design elements in-
spired by Transformers, such as inverted bottlenecks and GELU activation.

Transformer-based models, including ViT-B/16 and Swin-S, take a fundamen-
tally different approach. Rather than relying on local kernels, they divide the input
image into patches and apply self-attention mechanisms to capture long-range de-
pendencies across the entire image. This global attention mechanism makes them
more adaptive to varied visual patterns, such as asymmetric occlusions or com-
plex lighting conditions, common in driving scenarios. Swin Transformers further
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enhances efficiency by introducing hierarchical representations and windowed self-
attention.

In this study, both CNNs and Transformers are employed to evaluate their re-
spective strengths in recognising rear light status and the visible side of TVs. Each
model is initialised with ImageNet-pretrained weights and fine-tuned end-to-end to
adapt to the domain-specific characteristics of vehicle-centric visual cues.

4.2.3 Categories

The final output of the classifier is a set of categories corresponding to either the
TV’s rear light status or its visible side.

For rear light status recognition, the categories include: “BLO”, “BOO”, “BLR”,
“BOR”, “OLO”, “OLR”, “O00”, “OOR”, “REVERSE”, and “UNK”.

For visible side recognition, the categories include: Front, Front Right, Front
Left, Left, Right, Rear, Rear Right, Rear Left, and Unknown.

The classifier outputs a probability distribution over these categories, with the
highest probability indicating the predicted class for the given input image.

4.3 Experimental Evaluation

4.3.1 Classifiers

In contrast to existing research on VRLSR using single-image inputs—which of-
ten relies on traditional techniques and outdated CNNs—this chapter evaluates the
performance of classifiers introduced from 2020 onward.

The selection of feature extractors was guided by several criteria: architectural
diversity, proven performance in recent literature, computational feasibility, and
suitability for fine-tuning on domain-specific tasks.

Transformer-based models include:

e ViT-B/16 |270], a pioneering vision transformer (ViT) that serves as a baseline
for evaluating self-attention mechanisms.

e Swin-S [271], which improves upon ViT with a hierarchical design and win-
dowed self-attention, offering a balance between performance and efficiency,
particularly useful for interpreting small or partially occluded rear light con-
figurations.

CNN-based models include:

e ResNet-18 [272], a well-established baseline known for its simplicity and inter-
pretability.

e EfficientNet-V2-S [273], which uses compound scaling for efficient performance.

e ConvNeXt-Small [274], a modern CNN that incorporates Transformer-inspired
design elements.

e RegNetY-8GF [275], a highly optimised CNN architecture known for its reg-
ular design space, efficient training, and robustness.
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This curated selection ensures a broad comparison across architectural families,
enabling a comprehensive evaluation of how design differences influence model per-
formance in real-world driving scenarios. All models were implemented using the
PyTorch framework and fine-tuned under consistent training protocols to ensure fair
benchmarking.

The dataset was randomly split into 80% for training and 20% for validation.

4.3.2 Training Hyperparameters

The training of the VRLSR and VVSR models was conducted using a consistent
architecture, with slightly tailored hyperparameters to better suit each task.

Both models used a batch size of 48 and input images resized to 224 x224 pixels,
ensuring compatibility with pre-trained CNN and Transformer-based backbones.
Training was performed over 15 epochs with an initial learning rate of 0.0001 and a
learning rate step size of 7.

However, some hyperparameters were adjusted between tasks:

e Weight decay was set to 0.0001 for VRLSR and 0.001 for VVSR, with the
stronger regularization in VVSR aimed at mitigating overfitting.

e A learning rate scheduler was applied, using a gamma factor of 0.1 for VRLSR
and 0.01 for VVSR.

Both models were optimized using Stochastic Gradient Descent (SGD) with a
momentum of 0.9, and trained using cross-entropy loss, which is well-suited for multi-
class classification tasks. These configurations were selected based on preliminary
tuning experiments to optimize convergence and generalization performance for each
recognition objective.

4.3.3 Hardware

The hardware used for the experiment was the NVIDIA GeForce GTX 1080Ti 12GB
and an Intel(R) Core(TM) i7-10750H CPU @2.60GHz.

4.3.4 Metrics

To evaluate classifier performance, the following metrics were adopted: accuracy,
precision, recall, F1-score, and the confusion matrix.

e Accuracy was used to measure how closely the predicted results match the
ground truth labels.

e Precision was used to assess how consistent the predictions are within each
class—i.e., how many of the predicted instances for a class are actually correct.

e The confusion matrix provides a visual representation of misclassifications,
helping to identify whether the classifier is confusing similar classes (e.g., pre-
dicting left indicator instead of the ground truth right indicator).

It is important to note that, apart from accuracy, all other metrics were applied
only to the best-performing classifier for each task.
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4.4 Rear Light Recognition Results and Discus-
sion

This section presents and discusses the results of the rear light recognition models
evaluated on two distinct datasets: VRLSR-6 and VRLSR-10. The performance of
various classifiers is compared based on their accuracy, and a more detailed analysis
is provided for the best-performing model, including precision, recall, F1-score, and
confusion matrix.

Classifier Performance on VRLSR-6 and VRLSR-10 Datasets

Table [4.1] shows the classification accuracy of the models listed in Section 4.3 when
tested on the VRLSR-6 and VRLSR-10 datasets. The following observations can be
made:

VRLSR-6 Dataset:

e ViT-B/16 achieved the highest accuracy at 77%, making it the best-performing
model for this dataset.

e Swin-S followed closely with 76%, while EfficientNet-V2-S and ConvNeXt-
Small both achieved 74%.

e ResNet-18 and RegNetY-8GF had the lowest accuracy, each at 72%.
VRLSR-10 Dataset:

e ViT-B/16 again led with an accuracy of 70%. EfficientNet-V2-S and ConvNeXt-
Small also performed well, each achieving 70%.

e ResNet-18 achieved a moderate 66%, while RegNetY-8GF and Swin-S trailed
with 58% and 56%, respectively.

These results suggest that ViT-B/16 is particularly effective for rear light recog-
nition, especially when handling a larger number of classes (VRLSR-10). However,
all models experienced a drop in accuracy when transitioning from VRLSR-6 to
VRLSR-10, highlighting the increased complexity and difficulty of the task as the
number of classes grows.

Table 4.1: VRLSR accuracy performance for various classifiers from 2020 onward,
and for Resnet_18 as the baseline.

Classifier VRLSR-6 Acc(%) VRLSR-10 Acc(%)
ResNet_18 72 66
ViT_B_16 7 70
RegNet_Y_8GF 72 58
Swin_S 76 56
EfficientNet_V2_S 74 70

ConvNeXt_Small 74 70
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Detailed Performance Analysis of ViT_B_16 on the VRLSR-6 Dataset

Table presents a detailed breakdown of the ViT_B_16 model’s performance on
the VRLSR-6 dataset, offering insights into how well the model performs across
individual classes. The table includes precision, recall, and F1-score, which are
essential metrics for evaluating classification effectiveness.

Precision measures the proportion of correctly predicted instances among all
instances predicted as a given class. Recall measures the proportion of actual in-
stances of a class that were correctly identified. A model with high recall but low
precision tends to produce more false positives, while one with high precision but
low recall may miss actual positive cases, resulting in false negatives. The F1-score
provides a harmonic mean of precision and recall, offering a balanced measure of a
model’s performance, especially in the presence of class imbalance. This analysis
helps identify which rear light statuses are more challenging for the model to classify
and where improvements may be needed.

e “BOO” Class: The model achieved a precision of 61.31% and a recall of
59.96%, resulting in an Fl-score of 60.63%. This indicates moderate per-
formance, with a slight bias toward precision over recall.

e “OLO” Class: This class achieved a precision of 77.67% and a recall of 79.78%,
leading to a strong Fl-score of 78.71%. The high values for both precision and
recall suggest that the model reliably identifies instances of the “OLO” class.

e “OLR” Class: The model struggled with this class, achieving a low precision
of 59.03% but a high recall of 78.01%, resulting in an Fl-score of 67.21%.
The low precision indicates a significant number of false positives, meaning
the model often misclassified other classes as “OLR.” One possible reason for
this performance could be the relatively small number of samples compared
to other classes.

e “O0Q0” Class: This class showed robust performance, with a precision of
80.40%, a recall of 81.42%, and an F1-score of 80.90%. The balanced precision
and recall indicate that the model effectively recognises the “O0Q0” class.

e “OOR” Class: The model achieved a precision of 82.72% and a recall of
74.07%, resulting in an Fl-score of 78.16%. The lower recall compared to
precision suggests some difficulty in identifying all instances of the “OOR”
class.

e “UNK?” Class: The model performed exceptionally well on this class, achieving
high scores across all metrics: 80.16% precision, 83.13% recall, and an F1-
score of 81.62%. This indicates that the model is particularly effective at
distinguishing the “UNK” class from others.

In the field of intelligent vehicles (IV)s, recognising the rear light status of other
road users requires balancing high recall and high precision, as both impact safety
and driving efficiency. A system with high recall accurately detects most rear light
signals (e.g., brake lights, turn signals), even if it occasionally misidentifies a signal
that is not present (false positives). High recall is particularly important for safety-
critical functions, such as:
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e Brake Light Detection: If an IV fails to detect a vehicle’s brake lights
(false negative), it may not slow down in time, increasing the risk of rear-end
collisions. A high-recall system ensures that nearly all actual braking events
are detected, even if it occasionally identifies braking when none is occurring.

e Turn Signal Recognition: If an IV does not recognise another vehicle’s turn
signal, it may fail to anticipate lane changes or turns, leading to hazardous sit-
uations. A high-recall system ensures that almost all turn signals are detected,
enhancing response time and decision-making.

On the other hand, high precision ensures that when an IV detects a rear light
signal, it is highly confident in its accuracy, reducing false positives. This is essen-
tial to prevent unnecessary or incorrect responses that could compromise driving
efficiency and safety, such as:

e False Brake Light Detection: If an IV incorrectly detects a brake light
when none is present (false positive), it may slow down unnecessarily, resulting
in abrupt driving behaviour or even increasing the risk of being rear-ended.
A high-precision system ensures that braking is only detected when a vehicle
ahead is genuinely slowing down.

e Turn Signal Misinterpretation: If an IV mistakenly identifies a turn sig-
nal, it may yield or adjust its trajectory unnecessarily, disrupting traffic flow.
A high-precision system minimises such errors, ensuring smoother and more
predictable vehicle behaviour.

Table 4.2: Precision, recall, and F1-score results achieved by the ViT_B_16 classifier
when tested with the VRLSR-6 dataset version.

Class Precision% Recall% F1-Score%

BOO 61.31 59.96 60.63
OLO 77.67 79.78 78.71
OLR 59.03 78.01 67.21
000 80.40 81.42 80.90
OOR 82.72 74.07 78.16
UNK 80.16 83.13 81.62

A confusion matrix was also generated on the test dataset to further analyze the
performance of the ViT_B_16 classifier. Figure provides a detailed breakdown
of the classifier’s predictions compared to the actual labels. Each row of the matrix
represents the true label, while each column represents the predicted label.

The confusion matrix reveals the following insights into the classifier’s perfor-
mance across different categories:

e BOO Class: The model correctly predicted the “BOO” status in 930 out of
1,551 instances, resulting in a moderate true positive rate. However, 621 sam-
ples were misclassified, with the most significant errors involving the “O00”
(198), “OLO” (142), “OOR” (137), and “OLR” (113) classes. This suggests
the classifier struggles to distinguish between active brake and indicator lights.
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Qualitative analysis (see Figure shows that brake lights were often mis-
classified as “O0Q0” due to sunlight obscuring their brightness or because the
lights appeared too small relative to the vehicle size. Reflections from sunlight
on the rear lights also led to misclassifications as indicators. Additionally,
motorcycles with a single brake light were frequently misclassified, and vehicle
angles sometimes caused left lights to appear on the right side of the image.

e OLO Class: The model correctly predicted the “OLO” status in 1,294 out
of 1,622 instances, yielding a high true positive rate. The 328 misclassifi-
cations were primarily with “BOO” (162) and “O00” (90). This indicates
difficulty in distinguishing between left indicators, brake lights, and inactive
lights. Qualitative analysis (see Figure shows that simultaneous activa-
tion of brake and indicator lights often led to confusion, and dim or small
indicators—especially on trucks—were sometimes missed.

e OLR Class: The model correctly predicted the “OLR” status in 330 out
of 423 instances. The 93 misclassifications were mostly with “O00” (40),
suggesting difficulty in distinguishing hazard lights from inactive lights. Qual-
itative analysis (see Figure indicates that distant vehicles or dimming
indicators during their cycle contributed to these errors.

e OOO Class: The model correctly predicted the “O0OQ” status in 2,686 out of
3,299 instances. The 613 misclassifications were primarily with “UNK” (189),
“BOO” (145), “OLO” (134), and “OOR” (119). This suggests challenges in
distinguishing inactive lights from other statuses. Qualitative analysis (see Fig-
ure shows that poor visibility of rear lights led to confusion with “UNK.”
while illuminated tail lights or sunlight reflections caused misclassifications as
active signals.

e OOR Class: The model correctly predicted the “OOR” status in 1,671 out
of 2,256 instances. The 585 misclassifications were mainly with “BOO” (251)
and “O0Q0” (187). This indicates difficulty in distinguishing right indicators
from brake lights and inactive lights. Qualitative analysis (see Figure
shows that simultaneous activation of brake and indicator lights, as well as
dim or small indicators, contributed to these errors.

e UNK Class: The model correctly predicted the “UNK” status in 1,079 out
of 1,298 instances. The 219 misclassifications were mostly with “O00” (140).
The “UNK” class includes samples where the rear lights are obscured by sun-
light, the reverse light is on, or the front side of the vehicle is visible. Qualita-
tive analysis (see Figure shows that confusion often arose from misidenti-
fying the vehicle’s orientation or mistaking bright reflections for inactive lights.

4.5 Visible Side Results and Discussion

This section presents and discusses the results of the VVSR models tested on the
proposed novel dataset. Like the VRLSR, various classifiers are compared based
on their accuracy, and a more detailed analysis is provided for the classifier that
achieved the best result, including precision, recall, F1-score, and confusion matrix.
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Figure 4.2: Confusion matrix for the ViT_B_16 classifier when using the test set of
the VRLSR-6 dataset.

Classifier Performance Across Models

Table presents the classification accuracy of the models listed in Section [£.3]
evaluated on the proposed novel dataset. The following observations can be made:

e The ConvNeXt_Small model achieved the highest accuracy at 83%, making
it the best-performing model.

e The ViT_B_16, ResNet_18, EfficientNet_V2_S, and Swin_S models also
performed well, achieving accuracies of 82%, 81%, 80%, and 79%, respec-

tively.
e RegNet_Y_8GF was the least accurate, with an accuracy of 70%.

These results suggest that the ConvNeXt_Small model is particularly effective
for object visible side recognition tasks.
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Table 4.3: VVSR accuracy performance for various classifiers from 2020 onward,
and for Resnet_18 as the baseline.

Classifier Acc(%)
ResNet_18 81
ViT_B_16 82
RegNet_Y_8GF 70
Swin_S 79

EfficientNet_V2_S 80
ConvNeXt_Small 83

Detailed Performance Analysis of ConvNeXt_Small

Table provides a breakdown of the ConvNeXt_Small model’s performance, offer-
ing insights into how well the model performs across different classes.

e UNK Class: The model performed exceptionally well on this class, achiev-
ing a precision of 91.66% and a recall of 90.32%, resulting in an Fl-score of
90.98%. The high precision and recall indicate that the model reliably identi-
fies instances of this class.

e front_left_side Class: This class had a precision of 61.87% and a recall of
51.25%, leading to an F1-score of 56.06%. This reflects fair performance, with a
bias toward precision over recall—indicating that while the model is reasonably
accurate in its predictions, it misses nearly half of the actual instances.

e front_right_side Class: The model struggled with this class, achieving a low
precision of 55.17% and a recall of 52.98%, resulting in a poor Fl-score of
54.05%. This suggests the model frequently misclassifies instances and fails to
detect many true positives.

e front_side Class: The model’s performance on this class was moderate, with
a precision of 56.02% and a high recall of 72.88%, resulting in an F1-score of
63.35%. The significantly higher recall suggests that the model detects most
instances but also produces many false positives.

e left_side Class: The model struggled with this class, achieving a low precision
of 44.90% but a high recall of 76.52%, resulting in a fair Fl-score of 56.59%.
The very low precision indicates a high number of false positives, meaning the
model often incorrectly classifies other instances as belonging to the “left_side”
class.

e rear_left _side Class: The model performed exceptionally well on this class,
achieving high scores across all metrics: 90.09% precision, 86.08% recall, and
an Fl-score of 88.04%. This indicates that the model is particularly effective
at distinguishing the “rear_left_side” class from others.

e rear_right _side Class: The model also performed well on this class, with
84.30% precision, 89.04% recall, and an Fl-score of 86.60%. This suggests the
model effectively distinguishes the “rear_right_side” class from others.
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e rear_side Class: The model achieved strong performance on this class, with
87.04% precision, 78.58% recall, and an Fl-score of 82.59%. The slight bias
toward precision over recall indicates that while the model misses a few in-
stances, it is generally reliable.

e right_side Class: The model showed moderate performance on this class,
achieving a fair precision of 60.39% and a high recall of 71.74%, resulting in
an Fl-score of 65.58%. The higher recall suggests that the model detects most
instances, though at the cost of some false positives.

In the development of IVs, accurately recognising the visible side of target ob-
jects from the EV’s perspective is essential for assessing traffic dynamics and iden-
tifying potential hazards. Achieving an optimal balance between high recall and
high precision in this recognition process is crucial for ensuring both safety and ef-
ficiency within an advanced traffic hazard event recognition system. A system with
high recall correctly identifies most visible sides of surrounding objects, even if some
classifications are incorrect (false positives). Prioritising recall is particularly impor-
tant when missing a visible side (false negative) could result in inaccurate trajectory
predictions or safety-critical errors. For example:

e Obstacle Avoidance and Path Planning: If the system fails to detect a
visible side (false negative), it may incorrectly assess an object’s orientation,
leading to inaccurate motion predictions. For instance, if a pedestrian’s right
or left side is not correctly detected, the IV might fail to anticipate their
movement across the vehicle’s path, increasing the risk of a collision.

e Intersection and Turning Scenarios: At intersections, failing to recognise
a turning vehicle’s visible sides (e.g., transitioning from rear side to rear-left
and then to left side) may lead to incorrect assumptions about its intended
path. High recall ensures the system captures these transitions, improving
predictive accuracy and decision-making.

On the other hand, high precision ensures that when the IV classifies a visible
side, it is highly confident in its correctness, reducing false positives. This is partic-
ularly important for preventing misleading detections that could result in inefficient
or unsafe driving behaviour. For example:

e Minimising Incorrect Manoeuvrers: If the system misclassified a vehi-
cle’s rear side as its front, it may assume the vehicle is approaching rather
than moving away. This misinterpretation could lead to unnecessary braking
or evasive actions, disrupting traffic low. High precision helps prevent such
errors, ensuring more accurate decision-making.

Overall, the classifier performs well on classes such as UNK”, rear_lef side”, and
rear_right_side”. However, performance significantly drops for classes like front _left -
side”, front_right_side”, front_side”, and “left_side”. A potential explanation for the
reduced performance in these classes is the smaller number of available samples
compared to other classes.

A confusion matrix was generated using the test dataset to further evaluate the
performance of the ConvNeXt_Small classifier in identifying the visible side of the
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Table 4.4: Precision, Recall, and Fl-score values for each class when using the
ConvNeXt_Small classifier.

Class Precision% Recall% F1-Score%
UNK 91.66 90.32 90.98
front_left_side 61.87 51.25 56.06
front_right_side 55.17 52.98 54.05
front_side 56.02 72.88 63.35
left_side 44.90 76.52 56.59
rear_left_side 90.09 86.08 88.04
rear_right_side 84.30 89.04 86.60
rear_side 87.04 78.58 82.59
right_side 60.39 71.74 65.58

target object. Figure presents a detailed comparison between the predicted and
actual labels. In the matrix, each row corresponds to the true label, while each
column represents the predicted label.

The confusion matrix provides the following insights into the classifier’s perfor-
mance across different categories:

e UNK class: The model correctly predicted the “UNK” class in 2,220 out
of 2,458 instances, yielding an exceptional true positive rate. However, 202
samples were misclassified, primarily as “rear_right_side” (79 instances) and
“rear_side” (62 instances). Qualitative analysis (see Figure [B.9) indicates that
misclassifications often occurred due to the presence of multiple objects within
the target bounding box. Although these instances were manually labelled
as “UNK.,” the model based its prediction on one of the objects, leading to
incorrect classifications.

e front_left_side class: The model correctly predicted the “front_left_side”
class in 185 out of 361 instances, resulting in a fair true positive rate. A
total of 114 samples were misclassified, most notably as “front_side” (86) and
“right_side” (51). Qualitative analysis (see Figure shows that confusion
with “front_side” occurred when only a small portion of the left side was visi-
ble. Misclassification as “right_side” often happened when only a small portion
of the front side was visible.

e front_right _side class: The model correctly predicted the “front_right_side”
class in 80 out of 151 instances, indicating a poor true positive rate. Of the 65
misclassified samples, the most significant confusion was with “front_side” (17
instances). Qualitative analysis (see Figure suggests that this confusion
arose when only a small portion of the right side was visible.

e front_side class: The model correctly predicted the “front_side” class in 465
out of 638 instances, resulting in a fair true positive rate. However, 365 sam-
ples were misclassified, most notably as “left_side” (66 instances). Qualitative
analysis (see Figure indicates that these errors occurred in blurred images
where the subject was too far away, reducing visibility.
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Figure 4.3: Confusion matrix for the ConvNeXt_Small classifier when using the test
set proposed novel dataset.

e left_side class: The model correctly predicted the “left_side” class in 339 out

of 443 instances, indicating a poor true positive rate. A total of 416 sam-
ples were misclassified, most frequently as “front_right_side” (27), “front_side”
(25), and “right_side” (22). Qualitative analysis (see Figure reveals that
“left side” was often confused with “front_right_side” when images included
both the left and a small portion of the front side. Misclassifications as
“front_side” typically involved multiple objects or distant subjects. Confu-
sion with “right_side” was common when the object was a walking person, as
their posture made it difficult to distinguish between sides.

rear_left_side class: The model correctly predicted the “rear_left side” class
in 3,735 out of 4,339 instances, resulting in a high true positive rate. How-
ever, 411 samples were misclassified, primarily as “rear_side” (402 instances).
Qualitative analysis (see Figure shows that confusion occurred when only
a small portion of the left side was visible, making it difficult to distinguish
between “rear_left_side” and “rear_side.”
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e rear_right _side class: The model correctly predicted the “rear_right_side”
class in 5,311 out of 5,965 instances, also indicating a high true positive rate.
However, 989 samples were misclassified, most notably as “rear_side” (329) and
“right_side” (163). Qualitative analysis (see Figure [B.6)) reveals that confusion
with “rear_side” occurred when only a small portion of the right side was
visible. Misclassification as “right_side” happened when only a small portion
of the rear side was visible.

e rear_side class: The model correctly predicted the “rear_side” class in 5,492
out of 6,989 instances, resulting in a high true positive rate. However, 818 sam-
ples were misclassified, primarily as “rear_right_side” (819) and “rear_left_side”
(315). Qualitative analysis (see Figure indicates that confusion arose
when images of the rear side included small portions of either the right or left
side.

e right_side class: The model correctly predicted the “right_side” class in 523
out of 729 instances, resulting in a moderate true positive rate. A total of
343 samples were misclassified, most significantly as “left_side” (95 instances).
Qualitative analysis (see Figure shows that confusion between the right
and left sides was common when the object was a walking person, as their
posture made side differentiation more challenging.

4.6 Conclusions

This chapter aimed to develop deep learning algorithms for recognising the rear light
status and the visible side of a target object. The approach involved evaluating
the performance of various classifiers introduced since 2020 and selecting the most
effective model for each specific task.

The results demonstrate that classifier performance varies depending on dataset
complexity. Notably, the ViT_B_16 model consistently outperformed others across
both datasets, highlighting the advantage of transformer-based architectures in com-
plex visual recognition tasks such as rear light detection.

A detailed analysis of the ViT_B_16 model on the VRLSR-6 dataset revealed
class-specific performance challenges. Variability in precision, recall, and F1-score
across different classes indicates that, while the model performs well overall, it strug-
gles with certain classes, particularly “OLR,” which shows high recall but low pre-
cision, suggesting frequent false positives.

Misclassifications in rear light status were primarily influenced by factors such
as sunlight reflection, occlusion, similar signals across different rear light statuses,
vehicle angle and position, disproportionate rear light size relative to the vehicle,
proximity of rear lights, weak brightness, and confusion between the rear and front
sides of the vehicle.

In IV applications, safety remains the top priority, making high recall essential
to avoid missing critical rear light or visible side classifications. However, precision
is equally important to prevent false alarms that could lead to inefficient or erratic
driving. An optimal system must balance recall and precision to ensure both safe
and smooth navigation.
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These findings suggest that while current models achieve reasonable accuracy
in rear light recognition, there is room for improvement, particularly in handling
challenging classes and maintaining performance as the number of classes increases.
Future work could explore advanced techniques such as ensemble learning or data
augmentation to enhance model robustness and accuracy. Additionally, investigat-
ing the underperformance of models like RegNet_Y _8GF and Swin_S on the VRLSR-
10 dataset may offer insights for further refinement. Incorporating headlight status
into the analysis could also prove beneficial.

The ConvNeXt_Small model demonstrated strong performance in object-visible
side recognition, particularly excelling in the “UNK,” “rear_left_side,” and “rear_right-
_side” classes. However, challenges remain with classes such as “front_left_side,”
“front_right_side,” and “left_side,” often due to limited visibility and the presence of
multiple objects. Ambiguities in class boundaries—such as between “rear_right_side”
and “rear_side,” or ‘“rear_left_side” and “rear_side”—further complicate classifica-
tion.

Addressing these challenges may involve improving image quality, enhancing the
model’s ability to handle partial visibility, increasing sample sizes for underrepre-
sented classes, and refining the training dataset with more diverse examples.



Chapter 5

Vehicle Lane Change Recognition
and Prediction

This chapter presents a vehicle intention recognition and prediction system that in-
tegrates a deep learning algorithm, manually extracted features, and a novel evalua-
tion metric. Leveraging the onboard PREVENTION dataset, the proposed approach
employs Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs) to
predict lane change (LC) manoeuvres. Unlike previous studies that relied on top-
view datasets, this method utilises onboard data, which is more representative of
real-world scenarios in Intelligent Vehicle (IV) Systems.

The algorithm incorporates several distinctive manually extracted features, in-
cluding indicator light status, object bounding box areas, the distance between the
Target Vehicle (TV) and lane boundaries, lane identification, and the visible side of
TVs within the ego vehicle’s (EV) perception field. This marks the first application
of some of these features within an LSTM-based framework for LC prediction.

A key innovation of this system is the introduction of the Prediction Horizon
Time Ratio (PHTR), a novel metric designed to evaluate the algorithm’s effective-
ness in forecasting future LCs. An ablation study was also conducted to assess
the impact of different input features and hyperparameters, including a comparison
between LSTM and GRU network architectures.

The chapter is structured as follows: Section [5.1]formulates the problem of vehicle
intention recognition and prediction. Section describes the selected input fea-
tures and model architecture. Section outlines the experimental setup, including
dataset details, parameters, hardware, and evaluation metrics. Finally, Section
presents and discusses the results.

5.1 Problem Formulation

In a highway environment, a TV can perform three primary manoeuvres: No Lane
Change (NLC), also known as Lane Keeping (LK); Right Lane Change (RLC); and
Left Lane Change (LLC). As described by [71] and illustrated in Fig. [5.1 a LC
manoeuvre consists of three main stages: the starting point (FO0), the Lane Change
Event (LCE) stage (F1), and the endpoint (F2).

The starting point occurs when the TV begins to approach one of its lane bound-
aries or when its indicator light is activated. The LCE stage, as defined by [71], is
the moment when the centreline of the TV crosses the highway lane boundary,
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transitioning from the current lane to the target lane. Finally, the endpoint stage
corresponds to the phase in which the TV aligns itself within the target lane and
continues driving straight.

Based on these stages, an LC prediction manoeuvre can be defined as the ability
of an algorithm to recognise a LC before the LCE stage occurs. Therefore, to predict
an LC manoeuvre, the algorithm must first identify the type of manoeuvre the TV is
performing and then determine how early it can recognise the LC manoeuvre prior
to the LCE stage.

Figure 5.1: Lane change stages: The start point (t), LCE, and endpoint are rep-
resented by green, yellow, and red lines and borders, respectively. The Observation
Horizon Time (OHT) refers to the number of frames preceding the start point.
Frames with orange borders indicate those with greater displacement

Given that LC manoeuvres fall into three main categories, this study treats
LC recognition as a classification problem. In this context, recognition refers to
the algorithm’s ability to classify the specific LC manoeuvre being executed by the
TV. The LC recognition problem is formulated as follows: a series of feature vectors,
{Fi—om, ..., F;}, extracted from a sequence of consecutive video frames {t—OH, ..., t}
obtained from an image sensor, is used by the proposed model to determine the type
of LC manoeuvre the TV is performing. This can be expressed as:

LCt {0, 1,2}, (5.1)

where t is the timestamp of the last observed frame, n denotes the next frame
after ¢, and the values 0, 1, and 2 represent NLC, RLC, and LLC, respectively. The
features used in this study are described in Section 5.2}

It is important to note that during the prediction process, the recognition al-
gorithm must be applied sequentially, with the observation time horizon shifting
forward by one frame at each step, as illustrated in Figure (a). The overall
equation for recognising an LC manoeuvre is given by:

P(LCo|Fio1, ) (5.2)

In this study, prediction is defined as the instance in which the algorithm cor-
rectly recognises an LC manoeuvre between the starting point and the LCE stage.
Figure b) shows an example of LC prediction, where the PHT is 0.9 seconds, as
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the first correct recognition occurs at frame 12—nine frames before the LCE. The av-
erage recognition accuracy from the first correct prediction to the LCE is calculated
to evaluate how consistently the algorithm continues to make correct predictions. In
this example, the average recognition accuracy is 90%, with 7 correct recognitions
out of 9 frames.

L1 ]. [10

| OH
| OH
| OH

b)

Figure 5.2: LC prediction example: The orange cells represent the frames of a
complete LC manoeuvre sequence. The green cells indicate the ground truth labels
between the starting point and the endpoint stages. The purple cell marks the
first frame where the predicted LC matches the ground truth. Blue cells represent
subsequent correct recognitions, while red cells indicate incorrect recognitions.(a)
The recognition OH (grey cells) shifts one frame to the right at each prediction
step. (b) The PHT is 9 frames before the LCE, as the first correct recognition
occurs at frame 12.

5.2 Methods

Understanding the distinction between discretionary and mandatory LCs is essential
when designing IV systems capable of recognising complex traffic behaviours. Dis-
cretionary LCs are typically initiated by the driver based on personal preferences or
contextual advantages, such as overtaking slower traffic or moving into a faster lane.
In contrast, mandatory LCs are driven by external factors, such as upcoming exits,
lane terminations, or road obstructions. These two manoeuvre types differ not only
in intent but also in the temporal patterns and contextual cues that precede them.
Therefore, selecting an appropriate modelling framework is critical for accurately
recognising and predicting such behaviours.

LSTM networks are a compelling choice for this problem due to their ability
to capture and retain temporal dependencies in sequential data. Lane change be-
haviours evolve over time—particularly in discretionary cases where the intent may
be subtle and influenced by surrounding traffic dynamics—and LSTMs are well-
suited to learn such progression patterns. Their memory architecture enables the
model to process sequences of observations while maintaining contextual awareness
across multiple time steps. This makes LSTMs effective at distinguishing between
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structured, externally driven mandatory changes and more variable discretionary
ones. By leveraging this capability, LSTM-based systems can enhance prediction
performance and support more adaptive, reliable decision-making in IVs.

This work introduces novel input representations and a deep learning framework
named Vehicle Intention Prediction LSTM (VIP_LSTM), specifically designed to
address the LC recognition and prediction problem using an onboard camera per-
spective. The following subsections describe the proposed input features and the
architecture of the developed model.

5.2.1 Inputs

Previous research has primarily used vehicle type, position, and the velocity of
the centre coordinates of the TV bounding boxes as input features for predicting
LC manoeuvres. However, other important features—such as indicator light status,
highway lane boundary information, and the distance between the corners of the TV
bounding box and the lane boundaries—have often been considered only implicitly.
Typically, these features are learned indirectly by applying a convolutional neural
network (CNN) to raw RGB images. A significant drawback of this approach is
that CNNs function as black boxes, making it difficult to determine which specific
features are being utilised. The limited explicit use of these features is partly due
to the lack of datasets that provide this information directly.

This work explicitly incorporates the aforementioned features by manually la-
belling samples from the existing PREVENTION dataset. Additionally, several
new features are introduced: the bottom-right and bottom-left corners of the TV
bounding box, which indicate whether the TV is approaching the right or left lane
boundaries; the height, width, and surface area of the TV bounding box, which
better capture the TV’s longitudinal distance relative to the EV; and road lane
identification, which provides insight into the TV’s potential travel path. For ex-
ample, on a three-lane highway, if the TV is in the left lane, it can only perform
an RLC to move to the middle lane. Conversely, if the TV is in the right lane and
there is no upcoming junction, it can only perform an LLC to move to the middle
lane. Figure illustrates these input features.

Another feature proposed in this study —previously unmentioned in the liter-
ature—is the visible side of the TV from the perspective of the EV. Figure 5.4
presents examples of the possible visible sides. This feature is relevant because it
provides visual cues about the TV’s motion.

For instance, the top row of Figure illustrates a scenario where the EV is in
the middle lane and the TV is in the right lane. While the TV remains in the right
lane and the EV maintains its position, the visible side of the TV is categorised as
“rear-left.” However, once the TV initiates a LC from the right lane to the middle
lane, its visible side shifts, and only the rear of the TV becomes visible from the
EV’s perspective.

5.2.2 Model Architecture

Although LSTM networks have been used to predict LC manoeuvre in previous
works, they were mostly used on top-view datasets. The VIP_LSTM network de-
picted in Fig. is a conventional vanilla LSTM that uses different combinations
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R_distLin

L_distLin

Figure 5.3: Features used as inputs to predict a LC manoeuvre include: red and
blue dots representing the bottom-left and bottom-right corners of the TV bounding
box (bbox), respectively; red and blue squares indicating the status of the left and
right indicator lights of the TV; red and blue arrows showing the distances from the
left and right corners of the TV bbox to the highway lane boundaries; pink lines
representing the highway lane boundaries; a transparent blue square denoting the
surface area of the bbox; and white labels (“Left”, “Mid”, “Right”) indicating lane
information.

Rear-left

Rear-right Rear-right Rear

Figure 5.4: The first two figures in the top row are labelled “rear-left” because both
the left and rear sides of the TV are visible from the EV’s perspective. Similarly,
the first two figures in the bottom row are labelled “rear-right,” as the right and
rear sides of the TV are visible. The remaining images are labelled “rear” since only
the rear side of the TV is visible.

of the input features discussed in Section to make recognition and predictions.
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The input tensor to the system is given by

X c RBXTXdin

where B is the batch size (number of sequences processed in parallel), e.g., B =
32, T is the sequence length (number of time steps per sequence), and dj, is the
input feature dimension (number of features per time step), e.g., di, = 7.

The input tensors are initially embedded using a linear transformation to map
din dimensional input to a hidden dimension expressed by:

HY =X - W7 4+ by, (5.3)

where W € Rmodetxdin and by € R%medel are the weights and biases of the linear
transformation layer, and dy,oqe s the dimension of the transformed features (i.e.,
the hidden size). This results in a transformed tensor H(®) € REXT*dmode which is
then passed into an LSTM layer to capture the temporal dependencies:

HY (hp,cr) = LSTM(H©), (5.4)

where HV is the sequence of hidden states, and hy € RB*%stm ig the final hidden
state at the last time step, and cp € RP*%stm final cell state.
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Figure 5.5: The input features are first passed through embedding layers, followed
by the application of dropout. The resulting output is then fed into LSTM cells.
The output from the LSTM layer is passed through a Fully Connected (FC) layer,
after which another dropout is applied. Finally, the data flows through a second FC
layer, and a SoftMax function is used to classify the manoeuvre.

A basic LSTM cell unit is illustrated in Figure |5.6] containing three inputs: the
previous cell state ¢<!~1> previous hidden state h<!='>, and the current transformed
input sequence H® € RBE*Txdmoaer ~ Additionally, three outputs: the current hidden
state h<">, current cell state ¢<'>, and the current prediction output §=<*> [276]. The
previous hidden state and the current input sequence are used by the forget gate
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f<t>, the update gate i<'>, the candidate function ¢<*>

The forget gate is expressed as,

, and the output gate o<,

i = o(WiH® + big + Wighy 1 + biy) (5.5)

and it decides if the information from the previous cell state should be kept or
discarded. The candidate function is expressed as,

&= = tanh(WicH® + bie + Wichy_1 + bpe) (5.6)

it uses a hyperbolic tangent activation function (tanh) to propose new informa-
tion for the current cell state. The update gate is expressed as,

1y = U(Wn’HEO) + bi; + Whihi—1 + bpi) (5.7)

decide if the newly generated information should be considered for the cell state.
The output gate is expressed as,

0r = c(WieH'” + bio + Wiohy_1 + bo) (5.8)

it determines what information from the previous hidden state, current input
sequence, and the current cell state should be used as the output of the current
LSTM cell unit. Using the previous equations, the current cell state ¢! is given by
the following equation,

Ct = ft O+ it ® 6<t> (59)
® is a Hadamard product, and the current hidden state h; is given by

hy = oy ® tanh(c). (5.10)

The hidden output of the last LSTM cell unit is then fed into two FC layers,
to learn non-linear combinations of the extracted features from the previous LSTM
cell unit, given by,

z =hy - W1 + by, (5.11)

where Wy € R3*%sm  and by, € R? are the weights and the biases of the FC
layers. The process of the FC operation is followed by a SoftMax activation function
to yield the final class probabilities, which are expressed by:

y = SoftMax(z), (5.12)

where y € R5*3 represents the predicted probabilities over the output classes.
This architecture allows the model to learn temporal patterns from the sequence of
features and classify each instance into one of three predefined categories.

The neural network model in this study employs two key activation functions:
Leaky ReLU and Softmax. Leaky ReLU is used in the hidden layers to address
the “dying ReLU” problem. Unlike the standard ReLLU, which outputs zero for all
negative inputs, Leaky ReLU allows a small, non-zero gradient when the input is
negative. This helps the model continue learning even when some neurons receive
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Figure 5.6: LSTM basic unit.

negative values, making it more robust in deep networks, especially when working
with datasets that include negative inputs|277].

The Softmax function is applied in the output layer for multi-class classification.
It transforms raw output scores into probabilities that sum to 1, making it ideal for
tasks where each input must be classified into one of several categories [277].

Both Leaky ReLLU and Softmax are widely used in machine learning applications.
Leaky ReLU helps mitigate the vanishing gradient issue, while Softmax is a standard
choice for multi-class classification problems. Their modular nature also enhances
the adaptability of the model, making it suitable for a wide range of domains beyond
the specific problem addressed in this thesis.

5.3 Experimental Evaluation

This section outlines the dataset splitting strategy, the combinations of input fea-
tures evaluated, the different OH values explored, the network hyperparameters that
yielded the best results, and the hardware used to conduct the experiments.

5.3.1 Dataset

The dataset used in this study is derived from the PREVENTION dataset. A
summary of its characteristics is provided in Table .1} The data was split into
80% for training, 10% for validation, and 10% for testing. Importantly, the split
was applied at the video clip level rather than at the individual sequence level to
prevent overfitting. This ensures that sequences from the same video do not appear
across the training, validation, and testing sets. Key observations about the dataset
include:
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e The video clips vary in length—some contain more than 50 frames, while others
have fewer than 30. As a result, the number of sequence samples per video
varies.

e All features were pre-processed by normalising them using the mean and stan-
dard deviation.

e As shown in Table [5.1] the number of NLC sequences is significantly higher
than those of the other classes, despite a similar number of video clips. This
is because LLC and RLC videos also include NLC frames before and after the
LC manoeuvre.

e Only videos with at least 19 observation frames prior to the start of the LC
manoeuvre were included in the dataset.

Table 5.1: Main statistics information for the dataset before and after splitting.

ALL NLC LLC RLC

Video Clips 494 171 160 163
Training Videos 399 137 127 135
Validating Videos 43 16 16 11
Testing Videos 52 18 17 17
Sequences 32385 14789 8493 9103
Training Sequences 26318 11927 6824 7567
Validating Sequences 2658 1161 893 604
Testing Sequences 3409 1701 776 932

Note: Non-Lane Change (NLC), Left Lane Change (LLC), and
Right Lane Change (RLC).

5.3.2 Parameters

This subsection describes the different input feature combinations used, the OH
values explored, and the hyperparameters selected after fine-tuning the model.

Input Features

The VIP_LSTM algorithm was trained, validated, and tested using various com-
binations of input features to evaluate their impact on recognition and prediction
performance. The network was trained with the following feature sets:

e Position only (P).

Position and speed (P+S).

Position, speed, and indicator light status (P+S-+I).

Position, speed, and the distance from the bottom corners of the TV’s bound-
ing box to the highway lane boundaries (P4+S+LiDist).

Position, speed, indicator light status, and lane boundary distances (P4S+I+LiDist).
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e Position, speed, indicator light status, lane boundary distances, and lane iden-
tification (P+S+I+LiDist+LanlInfo).

e Position, speed, indicator light status, lane boundary distances, lane identifi-
cation, and the visible side of the TV (P+4S+I+LiDist+LanInfo+VehAngl).

Observation Horizon Time

When using the full feature set (P+S+I+LiDist+LanInfo+VehAngl), the OH was
varied from 5 frames (0.5 seconds) to 19 frames (1.9 seconds) to assess its effect
on model performance. The OH value that yielded the best results was then used
consistently in all subsequent experiments.

Model Hyperparameters

The VIP_LSTM model underwent fine-tuning, and the final hyperparameters are
reported in Table [5.2]

Table 5.2: Parameters used to train the VIP_LSTM network.

Parameter Value

Random Seed 469

Input Sequence (N) 5-19 frames (05s - 1.9s)
Embedding Layer 256

Dropoutl 0.02

LSTM hidden Size 128

LSTM nu. of Layers 1

FC1 128

Dropout2 0.71

FC2 3

LeakyRelu negative slope 0.1

Batch Size 64

Num Epochs 20

Optimiser Adam

Loss criterion Cross-Entropy Loss
Learning rate 0.000029

LR step size )

LR gamma 0.1

Clip Grad. 5

Weight Decay. 0.001

5.3.3 Hardware

All the experiments were executed using an Intel(R) Core(TM) i7-1075 CPU @
2.60GHz and an NVIDIA GeForce GTX 1080 Ti.
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5.3.4 Metrics

The LC manoeuvre recognition model’s performance was evaluated by calculating
the accuracy score between the predicted results ¢ and the ground truth values y,
which is expressed as follows:

Nsamples — 1

accuracy(y, g) = 1/nsamples Z 1(@1 = yz> (513)
1=0

Unlike other works that have calculated the accuracy score only from the FO to
F1 stage, this study also calculates accuracy scores between the F to FO and F1 to F2
stages. The accuracy between F and F1 measures how well the algorithm continues
to correctly recognise the remaining frames after the first correct recognition until
the LCE.

The proposed and employed metric to measure PHT performance is the PHTR,
which is expressed as:

PHTR = (F1 — F)100/(F1 — F0), (5.14)

where F' is the frame where the first correct LC recognition is made between
the FO and LCE stages. This metric is used to avoid the weighting effects between
longer and shorter manoeuvres |121].

In summary, the following metrics are used to measure recognition and prediction
performance:

e Acc-FOtoF2: Accuracy score from the FO to F2 stage, i.e., across all frames
in a given video sample.

e Acc-FtoF1: Accuracy score from the first correct prediction (F) to the F1
stage.

e Acc-FOtoF1: Accuracy score from the FO to F1 stage.
e Acc-F1toF2: Accuracy score from the F1 to F2 stage.
e PHTR: Prediction Horizon Time Ratio.

It is important to note that NLC video samples are not included in the calcula-
tions for Acc-FtoF1, Acc-FOtoF1, Acc-F1toF2, and PHTR values.

5.4 Results and Discussions

The proposed algorithm’s performance was first analysed in terms of its ability to
classify different LC manoeuvre classes. Next, its capability to predict LC manoeu-
vres was evaluated. Finally, the results were compared with those from relevant
studies in the literature. As a baseline for comparison, the first row of Table [5.3
shows the human performance in classifying and predicting LC manoeuvres, as re-
ported by [121].
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Table 5.3: Accuracy and PHTR results for the different types of input features and
different LC manoeuvre stages. OH set as 1.9s

Acc(%) Acc(%) Acc(%) Acc(%)

Input Features FOtoF2 FOtoF1 FtoF1 FltoF2 FHIR
Human Performance 83.9 - - - 1.66s

P 71.5 70.1 73.7 70.7 0.920
P+S 74.6 73.3 78.7 86.5 0.870
P+S+I 82.1 84.7 88.0 77.6 0.928
P+S+LiDist 79.6 78.6 81.7 86.1 0.888
P+S+I+LiDist 85.8 88.7 90.6 88.2 0.947
P+S+I+LiDist+LanInfo 85.3 88.8 91.0 87.6 0.946
P+S+I+4LiDist+LanInfo4+VehAngl 86.4 87.8 90.0 89.2 0.944

5.4.1 Lane Change Recognition Results

The LC recognition results using different combinations of input features are re-
ported in Table [5.3] and the following observations can be made:

e In most scenarios, the recognition accuracy increases with the inclusion of
more input features. For example, when using only the “position” feature,
the algorithm achieved an Acc-FOtoF2 value of 71.5%. However, with the
P+S-+I+LiDist+LanInfo+VehAngl feature set, the accuracy improved to 86.4%.
The lower accuracy scores observed with P, P+S, and P+S+LiDist are due to
these features being more related to the TV’s motion. As shown in Figure[5.1]
the most significant displacement during an L.C manoeuvre typically occurs in
the frames just before and after the LCE. Consequently, the algorithm may
misclassify portions of the manoeuvre where there is minimal movement.

e The Acc-FtoF1 values are higher than the Acc-FOtoF2 values, indicating that
recognising the initial frames of an LC manoeuvre is more challenging.

e The Acc-F1toF2 values improve when speed and lane distance features are in-
cluded. For example, using P+S, P4+-S+LiDist, P+S+I+4LiDist, P4+-S—+1+LiDist-
+LanInfo, and P+S-+I+4LiDist+LanInfo+VehAngl yields Acc-F1toF2 values
of 86.5%, 86.1%, 88.2%, 87.6%, and 89.2%, respectively. The limited im-
provement with P4+S+1 is likely due to the algorithm’s reliance on indicator
lights, which are often deactivated in the final frames before the end of the L.C
manoeuvre or may be incorrectly activated. The best result is achieved with
P+S+I+LiDist+LanInfo4+VehAngl, as the algorithm benefits from integrating
indicator status, lane distance, lane information, and the TV’s visible side.

e The addition of the T'V’s visible side feature improves only the Acc-FOtoF2 and
Acc-F1toF2 values, suggesting that this feature helps the algorithm determine
when the TV is realigning within the highway lane.

e Although the P+S+I+LiDist+LanInfo+VehAngl feature set yields the best
Acc-FOtoF2 and Acc-F1toF2 values, the P+S+I+LiDist+LanInfo combina-
tion performs best for Acc-FOtoF1 and Acc-FtoF1. In the context of LC ma-
noeuvre recognition, achieving higher performance during the FO to F1 and
F to F1 stages is more critical, as these stages mark the initiation of the ma-
noeuvre—information that is essential for the EV to make timely decisions.
Furthermore, while P4+S+I+LiDist provides the best PHTR value, it is only
marginally better (by 0.001) than P+S+I+LiDist+LanInfo.
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e The proposed algorithm outperforms human performance in recognising LC
manoeuvres by 2.5%.
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Figure 5.7: Confusion matrix for the different combinations of input features.

The confusion matrix depicted in Fig. reveals the following:

e When using only the position feature, the algorithm frequently confuses NLC
with LLC and RLC, and RLC with LLC. Additionally, it sometimes misclas-
sifies LLC as RLC.

e Incorporating the speed feature improves the classification of LLC and RLC
samples. However, it also increases the misclassification of NLC samples as
LLC and RLC, and vice versa.

e Adding the indicator light status enhances the algorithm’s ability to classify
all samples, particularly NLC. Nonetheless, a considerable number of NLC
samples are still misclassified as LLC and RLC, and many RLC samples are
misclassified as NLC and LLC.

e Introducing the LiDist feature significantly improves the classification of RLC
samples and slightly improves the classification of other samples. However, it
reduces the algorithm’s ability to distinguish LLC from NLC.

e Combining the P+S+1+4LiDist features significantly enhances the algorithm’s
performance, especially in distinguishing LLC and RLC samples. However, it
still struggles with NLC samples, misclassifying some as LLC and RLC.

e Including the LanInfo feature slightly improves the classification of NLC and
LLC samples but increases the misclassification of RLC samples.

e Finally, the addition of the VehAngl feature results in notable improvements
in correctly classifying all samples compared to the P+S+I+LiDist+LanInfo
feature set.
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Table [5.4] and Figure present the LC recognition results for varying OHT
values. It is evident that, in most cases, recognition accuracy improves as the OHT
increases.

Table 5.4: Accuracy and PHTR results when varying the OHT values from 5 (0.5
seconds) to 19 frames (1.9 seconds)

Acc Acc Acc Acc

OHT  potoF2(%) FOtoF1(%) FtoF1(%) FltoF2(%) F IR
5 78.9 71.0 74.8 78.6 0.917
6 78.7 70.5 74.8 79.2 0.908
7 80.1 74.2 7T 80.0 0.919
8 81.1 74.7 80.5 80.6 0.885
9 82.1 75.8 81.4 81.6 0.893
10 82.9 81.8 84.9 84.7 0.929
11 82.8 81.0 84.7 83.4 0.919
12 83.3 84.0 87.5 86.0 0.923
13 83.3 82.9 87.9 84.2 0.904
14 83.7 82.5 85.8 83.6 0.926
15 84.0 84.8 87.8 86.0 0.930
16 84.5 84.3 87.5 85.6 0.927
17 85.7 86.9 89.2 87.2 0.944
18 86.4 86.2 88.1 87.4 0.947
19 86.4 87.8 90.0 89.2 0.944
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Figure 5.8: Relationship between OHT and LC recognition accuracy score.

Table presents the recognition accuracy values obtained using GRU and
LSTM networks. The results indicate that LSTM outperformed GRU in recognising
LC manoeuvres at various stages. This superior performance may be attributed to
LSTM’s enhanced capability to learn long-term dependencies.

Table 5.5: Recognition accuracy and PHTR achievement when using LSTM or
GRU networks.

Acc(%) Acc(%) Acc(%) Acc(%) PHTR
FOtoF2 FOtoF1 FtoF1 FltoF2

GRU 85.6 88.4 89.6 88.2 0.957
LSTM 86.4 87.8 90 89.2 0.944

Framework
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5.4.2 Lane Change Prediction Results

By analysing Table [5.3] Table [5.4] and Fig. the following observations were
made regarding the PHTR results:

e An ideal system would achieve a PHTR value of 1.0 and an Acc-FtoF1 value of
100%, indicating that all frames between FO and F1 are correctly recognised.
The feature combination that achieved the best results was P+S+I+LiDist,
with a PHTR value of 0.946 and an Acc-FtoF1 value of 91.0%.

e The highest PHTR values were obtained when the indicator light status was in-
cluded as a feature. For instance, using the feature sets P4+-S+I, P+S+I+LiDist,
P+S+I+LiDist+LanInfo, and P4+S+I+LiDist+LanInfo+VehAng resulted in
PHTR values of 0.928, 0.947, 0.946, and 0.944, respectively. This underscores
the importance of indicator status in predicting LLC behaviour, as drivers typ-
ically activate indicators to signal their intentions before executing a manoeu-
vre.

e Although there is some fluctuation in PHTR values as OHT increases, a clear
trend emerges: PHTR generally improves with longer OHs.
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Figure 5.9: Relationship between OHT and PHTR.

Table reports the PHTR values obtained using GRU and LSTM networks.
The results reveal that GRU outperformed LSTM in predicting LC manoeuvres.
One possible explanation for GRU’s superior performance is its ability to capture
short-term dependencies, which is particularly relevant when predicting LC manoeu-
vres. For instance, in a sequence of features with an OHT of 20 frames, the most
informative frames indicating the beginning of a LC are likely the last 5 frames.

On the other hand, accurately recognising an LC manoeuvre once it has been
initiated requires an algorithm capable of capturing long-term dependencies, which
is where LSTM excels.

Both batch and online inference tests were conducted for the proposed algorithm.
The batch inference time was 0.01 seconds, while the online inference time was 0.69
seconds.
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5.4.3 Comparison With Other Works

A direct comparison between the proposed work and existing studies is not feasible
due to differences in datasets, methodologies, and evaluation metrics. However, this
section briefly presents the results reported by other works and discusses how they
differ from the proposed approach.

Authors [69, [120] reported classification and LC prediction accuracies of up to
90.98% and 91.94%, respectively. However:

e They only considered two classes: LC and lane keeping, whereas this work
distinguishes between LLC, RLC, and NLC.

e They used 3,110 NLC, 342 LLC, and 430 RLC sequences. In contrast, this
work used a significantly larger number of samples, as shown in Table [5.1]

e Their dataset is heavily imbalanced, with a much higher number of NLC
events.

e They used a minimum OH of 20 frames (2 seconds), while this work used 19
frames (1.9 seconds). Using fewer frames reduces computational requirements.

e Their models used raw images as input, which demands significantly more com-
putational power. In contrast, the proposed approach uses manually extracted
features such as position, velocity, distance, and discrete vehicle signals, which
are computationally more efficient.

e They fixed the prediction horizon time (PHT) at 1 or 2 seconds. In contrast,
this work does not fix a PHT value. Instead, it evaluates prediction perfor-
mance based on the first correct recognition and the recognition accuracy. This
approach is more realistic, as LC manoeuvres vary in duration, and a correct
prediction 1 or 2 seconds before the LCE may still be followed by incorrect
classifications in subsequent frames.

Author [121] reported a classification accuracy of 86.9% and a manoeuvre predic-
tion length of 83.3%. They used the term “anticipation” instead of “prediction,” and
their work is the most closely related to the proposed approach. They normalised
the manoeuvre duration and calculated the percentage of correctly classified frames.
However, they did not evaluate classification accuracy for frames after the prediction
period or following the LCE.

5.5 Conclusions and Future Works

This chapter introduced an LSTM-based algorithm for recognising and predicting
various types of LC manoeuvres in highway scenarios, including LLCs, RLCs, and
NLC, from an onboard perspective. Specifically, this study manually extracted
different motion and contextual input features to investigate their impact on the
recognition and PHTR of LC manoeuvres.

The motion features used include position, speed, and bounding box surface
area, while the contextual features include the TV’s indicator light status, the TV’s
visible side from the EV’s perspective, the distance between the TV’s bounding
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box corners and the highway lane boundaries, and highway lane identification. It
is worth noting that previous works predominantly relied on top-view datasets. In
cases where onboard datasets were used, they typically relied on raw images and
CNNs to implicitly extract these features.

The main advantages of the proposed approach are twofold: (1) the use of on-
board datasets aligns more closely with the real-world context of an IV system,
and (2) manually extracted features require significantly less computational power
and time compared to deep learning techniques that learn features from raw image
data. Additionally, this approach enables a detailed investigation into the individual
contribution of each feature to the final results.

Moreover, a novel evaluation metric—PHTR—was introduced to accommodate
LC manoeuvres of varying lengths. Beyond assessing PHT, this work also evalu-
ates how well the algorithm continues to recognise the remaining frames of an LC
manoeuvre after the first correct prediction.

This study concludes that:

e The indicator light status is a crucial feature for effective LC recognition and
prediction. However, it must be combined with other features, as some drivers
may not use their indicators correctly, and in some cases, the TV’s indicator
lights remain on after completing the manoeuvre.

e Combining indicator light status with the distance between the TV and the
highway lane boundaries yields notable improvements in recognition accuracy.

e Despite the promising results achieved with the P4+S+I+LiDist feature set,
challenges remain. For example, several NLC samples were misclassified as
LLC or RLC, and vice versa.

e Using only manually extracted features, the algorithm achieved a recognition
accuracy of 86.4%, outperforming the human benchmark of 83.9%. In terms
of prediction, the algorithm achieved a PHTR of 0.946.

e LSTM achieved the best recognition accuracy, while GRU achieved the best
PHTR value.

e By identifying the most relevant features for recognising and predicting LC
manoeuvres, this research provides valuable guidance for future studies. For
instance, given the importance of indicator light status and lane distance,
future work could explore CNNs with attention mechanisms tailored to these
features. Additionally, the significance of the TV’s visible side suggests that
algorithms for classifying vehicle visibility from the EV’s perspective could be
developed.

The following directions are suggested for future research:

e Incorporate surrounding vehicle information to assess its impact on LC ma-
noeuvre recognition and prediction.

e Investigate methods for automatically detecting the TV among the surround-
ing traffic. In this study, the TV was manually labelled, but in real-world
applications, the IV should be capable of identifying the TV autonomously.
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e Explore the use of images from cameras installed in different vehicle locations,
such as rear and side cameras. As mentioned in Section [5.3] only samples
with at least 19 frames of OH were considered. However, some TVs initiated
LC manoeuvres while not visible to the EV, as they were located behind
it. Including a rear camera would enable the algorithm to account for such
scenarios.



Chapter 6

Potential Traffic Hazard Event
Recognition System

This chapter investigates the performance of various proposed machine learning
model architectures in recognising different potential traffic hazard behaviours , us-
ing the novel dataset introduced in Chapter [3] The goal is to identify the most
effective machine learning strategies for recognising traffic agent behaviours in com-
plex traffic scenes by conducting a series of experiments. These experiments explore
different types of input features, observation horizon time (OHT) s, and varying
numbers of potential traffic hazard classes. This analysis contributes to understand-
ing why current algorithms struggle to recognise traffic agent behaviour in complex
environments and highlights the strengths and limitations of the proposed dataset.

The chapter is organised as follows: Section formulates the traffic agent be-
haviour recognition problem. Section explores the types of input features used
in the literature and those adopted in this thesis. Section presents the pro-
posed machine learning models for recognising potential traffic hazard behaviours.
Section details the experimental setup. Section reports and discusses the
results. Section presents an ablation study. Finally, Section summarises
the conclusions and outlines potential directions for future work.

6.1 Problem Formulation

In complex traffic scenarios , both static and dynamic traffic agents can exhibit a
variety of behaviours. As illustrated in Fig. [6.1] a traffic agent’s behaviour consists of
two main stages: the starting point (F0) and the endpoint (F1). The starting point
marks the moment when the traffic agent begins to perform a specific behaviour,
while the endpoint corresponds to the moment the behaviour concludes.

Based on these stages, an Al-based traffic agent behaviour recognition system
can be defined as a model’s ability to correctly identify the frames in which a specific
behaviour occurs—from its initiation at FO to its conclusion at F1.

Since traffic agent behaviour falls into multiple categories, this study treats be-
haviour recognition as a classification problem. In this context, recognition refers
to the algorithm’s ability to classify the specific behaviour being executed by the
traffic agent.

The behaviour recognition problem is formulated as follows: a series of fea-
ture vectors {F;_on, ..., F; }, extracted from a consecutive sequence of video frames
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Figure 6.1: The frames belonging to a lane change behaviour are between the FO to
the F1 stage.

{t—OH,...,t} obtained from an image sensor, is used by the proposed model to de-
termine the type of behaviour the traffic agent is performing. This can be expressed
as:

Behaviourt™e{0,n + 1}, (6.1)

where t is the timestamp of the last observed frame, n denotes the next frame
after the previously observed frame, and 0,n + 1 represents the different behaviour
categories, respectively. The features used in this work are described in Section [6.2
Fig. [6.2 illustrates the process of applying the behaviour recognition model to the
frames associated with the behaviour event.

1] .10

| OH
| OH

Figure 6.2: The orange cells represent the frames of a video sample, while the green
cells indicate the frames in which the traffic agent behaviour event occurs. The
red and blue cells denote an incorrect and a correct recognition, respectively. The
grey cells correspond to the frames used as the OH. The recognition OH frames are
employed to predict the behaviour in the subsequent frame (cell 11). Thereafter,
the OH is shifted forward by one frame to recognise the next frame (cell 12). This
process continues iteratively until the final frame of the current event is reached.

6.2 Inputs

Previous research has predominantly utilised object type, position, and the velocity
of the centre coordinates of the target objects’ bounding boxes as explicit input
features for recognising traffic agent behaviours. These features are referred to in
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this work as conventional features. Additionally, various representations of raw im-
ages—such as images without target objects, images with lane information, images
of the bounding box, and optical flow images—have been employed as implicit fea-
tures.

However, other types of explicit and implicit input features, such as the vehicle’s
indicator light status, the side of the target object observed by the EV, blended
image representations, and OOI image representations, have not been considered,
as no publicly available datasets provide them.

This work considers the following explicit features as input: x and y position
and speed, the width and height of the target object’s bounding box, the side of the
target object visible to the EV, and the target vehicle’s rear light status.

The following implicit features are also considered as input in this work: raw im-
ages, images without target objects, depth information images, blended images, im-
ages with lane information, object-of-interest images, local context images, motion-
based context images, and local context blended images.

6.3 Proposed Model Architectures

As discussed in Chapter 2] various models have been explored to study traffic agent
behaviour, including both time series and non-time series approaches. Time se-
ries models, such as Recurrent Neural Networks (RNNs)—including Gated Recur-
rent Units (GRUs) and Long Short-Term Memory (LSTM) networks—as well as
Transformer-based architectures, are commonly employed due to their ability to
capture temporal dependencies. In contrast, non-time series models include Convo-
lutional Neural Networks (CNNs), graph-based models, probabilistic models (e.g.,
Bayesian Networks), and Reinforcement Learning.

Graph-based models are well-suited to modelling spatial and relational depen-
dencies between multiple traffic agents, but they require complex graph construc-
tion processes and are less effective at capturing temporal dynamics unless com-
bined with temporal extensions. Probabilistic models offer interpretable outputs
and can explicitly model uncertainty; however, they often require substantial prior
domain knowledge and become computationally expensive when applied to large
and complex datasets. Convolutional models are effective at extracting spatial fea-
tures and can be extended to 3D CNNs to capture temporal patterns, although this
significantly increases computational cost. Reinforcement Learning approaches are
adaptive and capable of improving with experience, but they typically require large
volumes of data and considerable computational resources to train effectively.

Despite the strengths of these alternative approaches, a key limitation they share
is the absence of a natural mechanism for learning temporal dependencies. Since
potential traffic hazard recognition is inherently a temporal problem—where traffic
scenes evolve sequentially over time—time series models are more appropriate for
this task. As supported by studies referenced in Chapter [2, time series models con-
sistently outperform non-temporal models in tasks involving sequential prediction.
For this reason, this study adopts time series models, as well as hybrid models that
combine time series and non-time series components, to address the challenge of
traffic hazard recognition.

Several types of machine learning architectures were implemented in this work,
including Artificial Neural Networks (ANNs), CNNs, Vision Transformer Networks
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(ViT)s, and LSTM networks. As illustrated in Fig. [6.3 these architectures were
used to develop multiple model variants, including an embedded Temporal Attention
(TA) LSTM model (Figure [6.34), a standalone CNN-LSTM model (Figure [6.3D)),
a ViT-LSTM hybrid model (Figure , a combined embedded and single-stream
CNN-LSTM model, and a multi-stream CNN-LSTM model (Figure .
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Figure 6.3: .

6.3.1 Embedding LSTM Model

The Embedding LSTM model is depicted in Fig. It is a conventional vanilla
LSTM enhanced with a TA mechanism, utilising the previously mentioned explicit
features as input. Each sequence of input features is initially embedded using a
linear transformation to obtain a more expressive representation of the inputs. This
process is described by the following equation:

H? =X .- W7 +b,, (6.2)

Subsequently, each embedded feature sequence is fed into an LSTM unit, where
the hidden output of one unit is passed to the next in the sequence. The hidden
output of the final LSTM unit is then passed through FC layers followed by a Sigmoid
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activation function to learn TA weights. These attention weights are multiplied by
the LSTM outputs, enabling the model to focus on the most relevant features of
the input sequence at different time steps. Finally, the last hidden output of the
final LSTM unit is selected and used as input to an FC layer to learn non-linear
combinations of the extracted features.

6.3.2 CNN LSTM Model

The CNN-LSTM model, depicted in Fig. [6.3b] comprises a CNN that extracts fea-
ture vector representations from the input sequence of images. These feature vectors
are subsequently input into an LSTM network to capture temporal dependencies.
The output of the LSTM network is passed through a dropout layer and then fed
into a FC layer. Finally, the resulting feature vector from the FC layers is processed
using an argMax function.

6.3.3 ViT LSTM Model

The ViT, introduced by [278], is based on the standard Transformer architecture
[279]. The model was adapted to process 2D images by reshaping the input image
z € RPXWXC into a sequence of flattened 2D patches z, € RN*(P*C) where H x W
denotes the image resolution, C' is the number of channels, and N = I?QV is the
number of patches. These patches are projected into a latent dimension D via a
learnable linear layer, resulting in patch embeddings. A learnable class embedding is
prepended to this sequence, and its output from the Transformer encoder represents
the image. During pre-training, a classification Multi-layer Perceptron (MLP) head
is used, while a single linear layer is employed during fine-tuning. Positional informa-
tion is preserved using 1D learnable position embeddings. The Transformer encoder
alternates between multi-headed self-attention (MSA) and MLP blocks, with Lay-
erNorm applied before and residual connections after each block. Owing to the
self-attention mechanism, ViT can learn global relationships, capturing long-range
dependencies within an image.

However, the standard ViT is not designed to process sequences of images. To
address this, [280] adopted the Video Vision Transformer (ViViT), which extends
ViT to handle video data by processing image sequences. Nevertheless, ViViT de-
mands significant computational resources. In this work, a hybrid model is proposed
that combines ViT with LSTM. The MLP layers from the ViT architecture are re-
moved, and the sequence of features generated by the Transformer is used as input
to an LSTM network to capture temporal dependencies. The model architecture is
illustrated in Fig. [6.3D} it follows the structure of a CNN-LSTM model but replaces
the CNN with ViT as the feature extractor.

6.3.4 Embedding CNN LSTM model

The Embedding CNN-LSTM model, shown in Fig. [6.3d, integrates the Embedding
LSTM and CNN-LSTM models. Feature vectors from the CNN and embedding
layers are each fed into separate LSTM networks to capture temporal dependencies.
The outputs of these LSTM networks are concatenated, passed through a dropout
layer for regularisation, and then processed by a FC layer. Finally, the output vector
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from the FC layer is passed through an argMax function to produce the model’s final
prediction.

6.3.5 Multi Stream CNN LSTM

The multi-stream CNN-LSTM model uses two parallel CNN streams to extract
information from different types of input images. For example, in Fig.[6.3d] the top
CNN stream processes a sequence of raw images, while the bottom stream uses a
sequence of depth estimation images derived from the raw inputs. Each CNN stream
includes its own LSTM network to capture temporal dependencies. The output
from each LSTM is passed through a dropout layer before being concatenated. The
concatenated feature vectors are then fed into an FC layer, and the resultant feature
vector is processed using an argMax function.

6.4 Experimental Evaluation

This section outlines the dataset used and its preprocessing, the parameters applied
to the models discussed in Section [6.3] the hardware configuration, and the metric
adopted to evaluate model performance.

6.4.1 Dataset

The novel dataset introduced in Chapter |3 was used to train and evaluate the
models described in Section [6.3] As previously mentioned, the dataset exhibits class
imbalance. To address this, all samples from classes with fewer than 63 instances
were retained, while 63 samples were randomly selected for classes exceeding this
threshold. Additionally, classes with fewer than 11 samples were excluded. In total,
14 classes were considered for the experiments: right cut-in, object stopping, left cut-
in, object crossing, object turning, object hazard light on, red crossing traffic light,
object meeting, object emerging, pedestrian near parked vehicles, road works, object
reversing, object pulling up, and object coming out.
Experiments were conducted using four different class groupings:

e All (14 classes): Includes all the classes listed above.

e Motion-dependent (10 classes): Some classes rely more on visual features
than motion cues (e.g., red traffic lights, vehicle hazard lights, road works, and
pedestrians near parked vehicles). These were excluded when training and
evaluating the Embedding LSTM model, resulting in a subset of ten classes.

e Literature (5 classes): Includes classes commonly investigated in prior stud-
ies—right cut-in, left cut-in, object stopping, object crossing, and object turn-
ing. Note that although these classes have been studied, previous works did
not consider all of them simultaneously.

The dataset was split into two portions: 80% for training and 20% for testing.
Importantly, the split was performed at the video sample level rather than at the
sequence level to prevent redundancy between training and testing phases. All
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numerical explicit features were normalised, and categorical explicit features were
converted into indicator variables.

For all experiments involving image inputs, the image size was set to 224 x224
pixels. During training, image data augmentation was applied using the RandAug-
ment [281] and AutoAugment [282] methods available in the PyTorch framework to
mitigate overfitting.

6.4.2 Models Parameters

All the used models underwent fine-tuning, and the final parameters are reported

in Table [6.1].

Table 6.1: Parameters values for each model.

Parameters Embedding LSTM CNN LSTM Embedding CNN LSTM

General
Random Seed 100 205 100
FC output Size 128 N. of Classes N. of Classes

Embedding Network
Embedding Layer Output Size 112 None 576
CNN Network
CNN None ResNetl18, ViT ResNet18
LSTM Network
LSTM Layers 1 1 1
Dropout 0 0 0
Input Sequence Length 10-18 10-13 10-13
Encoder Hidden Size 112 128 128
Hyperparameters

Dropout Rate 0.8 0.8 0.8
Momentum 0.9 0.9 0.9
Loss function Cross Entropy Cross Entropy Cross Entropy
Batch Size 128 50 50
Number of Epochs 15 15 40
Clip Gradient 5 5 5
Weight Decay 0.0006 0.0001 0.0001
Learn Rate 0.0001 0.0003 0.0002
LR Step Size 4 15 40
Gamma, 0.01 0.01 0.01
Optmiser Adam SGD SGD
Number of Classes 5, 10, 14 5, 10, 14 5, 10, 14

6.4.3 Software and Hardware Configurations

All experiments were conducted using an Intel(R) Xeon(R) Gold 5118 CPU @
2.30 GHz and an NVIDIA Quadro RTX 6000 GPU with 24 GB of memory. All

code and experiments were implemented in Python using the PyTorch framework.

6.4.4 Metrics

In order to evaluate the performance of traffic hazard event recognition, the follow-
ing metrics were adopted: accuracy, precision, recall, Fl-score, and the confusion
matrix.

Accuracy was chosen to indicate how closely the predicted results § match the
ground truth values y, and it is expressed as follows:

nsamplesfl
Accuracy(y,y) = 1/Nsampies Z 19 = yi). (6.3)
i=0
Precision measures the proportion of predicted positive cases that are correct,
and it is expressed by:

Precisi TruePositives (6.4)
recision = ) )
TruePositives + FalsePositives
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Recall measures the proportion of actual positive instances that the model cor-
rectly classifies, and it is expressed as follows:

TruePositives
Recall = : 6.5
ced TruePositives + FalseNegatives (6:5)

The Fl-score is the harmonic mean of precision and recall, and it is used to
evaluate the balance between the two. It is expressed as follows:

(Precision x Recall)
(Precision + Recall)’

F1_score =2 x (6.6)

The confusion matrix is a valuable tool for visualising and understanding the
types of errors a model makes. It provides a clear breakdown of how predictions align
with actual classes, making it easier to identify patterns in misclassifications. For
instance, it helps in analysing how frequently a specific class is incorrectly classified
as another, offering insights into potential weaknesses or biases in the model.

6.5 Results and Discussions

The models described in Section [6.3| were subjected to various experiments to evalu-
ate their performance using the novel dataset. These experiments involved variations
in input types, input sequence lengths, and the number of classes.

6.5.1 Embedding TA LSTM Model

Table presents the results of the Embedding TA LSTM model across different
combinations of input features, using an input sequence length of 13 frames. The
model’s performance was evaluated using several explicit feature sets: conventional
features alone; conventional features combined with the visible side; conventional
features combined with rear light status; and a combination of conventional features,
visible side, and rear light status.

Table 6.2: Results for the Embedding TA LSTM model when using different input
types, number of classes, and an input sequence length of 13.

Input Type N. of Classes Acc (%) Prec (%) Rec (%) F1 (%)
Conventional 10 51.8 51.0 38.0 37.0
Visible Side 10 70.8 66.0 63.0 63.0
rear light Status 10 70.8 62.0 60.0 59.0
rear light Status + Visible Side 10 77.9 75.0 69.0 69.0
rear light Status 4+ Visible Side 5 90.4 90.0 90.0 90.0

Using only conventional input features results in the lowest performance across
all metrics, with an accuracy of 51.8%, precision of 51%, recall of 38%, and an F1
score of 37%. This highlights the model’s difficulty in making reliable predictions
when provided with limited input data.

In contrast, incorporating additional features significantly improves accuracy and
other performance metrics. For instance, adding either the visible side or rear light
status to the conventional features increases accuracy by up to 19.0%. These addi-
tional features also enhance precision, recall, and F1 scores. The most substantial
improvement—up to 26.1%—is observed when both the visible side and rear light
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status are combined with conventional features. This improvement aligns with ex-
pectations, as these features are closely associated with specific manoeuvres. For
example:

e Objects performing a stopping manoeuvre often reveal their rear or rear-side
views.

e Crossing manoeuvres typically display an object’s left or right side.
e Turning manoeuvres are indicated by active left or right indicator lights.

When considering the ”literature classes” set, which includes only five classes,
the model achieves significantly better performance, with accuracy, precision, recall,
and F1 score all reaching approximately 90%. The variation in performance across
class sets can be attributed to the number of classes: a larger number increases
classification complexity. Additionally, the ”motion-dependent classes” set, which
includes 10 classes, includes several classes with fewer samples, further challenging
the model. This performance disparity also suggests that prior studies focusing on a
limited number of behaviours or agent types may overestimate model performance,
as expanding the number of classes and agent types can reveal reduced accuracy in
more complex, realistic scenarios.

The confusion matrices in Fig. [6.4] illustrate the model’s performance using dif-
ferent feature sets. In Fig. [6.4a], the model struggles to classify classes such as object
emerging, object meeting, object coming out, and object pulling up when using only
conventional features. Additionally, many instances of object turning are misclassi-
fied as object stopping, and vice versa, while a significant number of object reversing
instances are misclassified as object turning.

Incorporating visible side information (Fig. improves classification across
most classes, with the exception of the object stopping class. The most notable im-
provements are observed in the object crossing, emerging, meeting, reversing, coming
out, and pulling up classes.

Adding rear light status (Fig. further enhances classification for all classes
except object emerging. Notably, rear light status features help distinguish between
object turning and object stopping, as these classes are associated with distinct rear
light signals.

Combining conventional features with visible side and rear light status (Fig.[6.4d))
achieves the best overall performance across all classes. However, some confusion
remains, particularly in distinguishing:

e Object emerging from object crossing, object meeting, object turning, and object
TEVersing.

e Object coming out from object meeting and object turning.
o Object reversing from object turning.

This highlights the need for further refinement to address residual ambiguities
between these closely related classes.

Fig. [6.5] shows how accuracy varies with input sequence length. These fluctu-
ations may be attributed to variations in the occurrence of visible side and light
status features. The model achieved its highest accuracy of 77.9% with a sequence
length of 13 frames.
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Figure 6.4: Confusion matrices for the explicit feature experiments.

6.5.2 CNN LSTM model
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The results presented in Table demonstrate the performance of the CNN-LSTM
model, using ResNet18 as the feature extractor, under various configurations of input
sequence lengths and class numbers. Only the local context image was considered as
input, as it yielded the best results compared to other image input types. A detailed
comparison with other input image types is discussed in the ablation study section.

Table 6.3: Results for the CNN LSTM model when using different input sequence
lengths and number of classes. The ResNet18 CNN network was used as the feature

extractor.
Network Input Seq N. of Classes Acc (%) Prec (%) Rec (%) F1 (%)
Resnetl8 (pretrained) 13 14 68.5 67.0 61.0 60.0
Resnet18 13 14 68.7 66.0 60.0 60.0
Resnet18 13 10 69.4 62.0 62.0 60.0
Resnet18 13 5 77.3 79.0 77.0 77.0
Resnet18 18 14 69.2 68.0 67.0 66.0

Increasing the input sequence length from 13 to 18 results in modest improve-
ments across all metrics when considering 14 classes. For example, accuracy in-



133 6 Potential Traffic Hazard Event Recognition System

78

-3
D

Accuracy (%)

\]
N

~e~ ARA(%)

4 6 & 10 12 14 16 18
OHT (Frames)

Figure 6.5: Relationship between OHT and LC recognition accuracy score for the
Embedding TA LSTM model when using the combination of the conventional, visible
side, and the rear light statuses information.

creases from 68.7% to 69.2%, precision rises from 66% to 68%, and both recall and
F1 score improve significantly—from 60% to 67% and 60% to 66%, respectively.
This suggests that providing more temporal information enhances the model’s abil-
ity to distinguish between classes. However, this improvement comes at the cost of
increased computational complexity.

The highest accuracy (77.3%) is achieved when the model is tested with five
classes. This aligns with the general observation that reducing the number of classes
simplifies the classification task, thereby improving accuracy.

Another experiment involved training the CNN model with the ResNet feature
extractor, initially using the UCF101 action recognition dataset, and then fine-
tuning the model on the novel dataset by initialising the CNN model parameters
with the learned weights from UCF101 [283]. As reported in Table[6.3] this transfer
learning approach did not significantly improve accuracy. There was only a slight
increase in precision (67% vs. 66%) and recall (61% vs. 60%) compared to the
non-pretrained version when considering 14 classes. The lack of improvement can
be attributed to the differing nature of the datasets: UCF101 focuses on human
actions, whereas the novel dataset pertains to traffic-related objects (e.g., vehicles),
which may not share sufficient common features to benefit from pretraining.

The results for the CNN-LSTM model were also reported when considering
the dataset with 10 classes to allow a fair comparison with the Embedding TA
LSTM model. The best accuracy achieved by the Embedding TA LSTM model was
77.9%, whereas the CNN-LSTM model achieved 69.4%. Although the Embedding
TA LSTM model outperformed the CNN-LSTM in terms of accuracy, it relies on
explicitly selected features. In contrast, the CNN-LSTM model requires only input
images, making it simpler and more flexible.

The confusion matrices shown in Fig. illustrate that the CNN-LSTM model
performs better at correctly classifying certain classes, such as object crossing, object
emerging, left cut-in, object reversing, and object pulling up. However, it struggles
more with other classes, suggesting that features like the target object’s visible side



6.5 Results and Discussions 134

and rear light status help improve classification accuracy. It is important to note
that the visible side and rear light information used by the Embedding TA LSTM
model was manually labelled. If this information were instead extracted using a
recognition algorithm, it would introduce additional uncertainties, potentially lead-
ing to a decrease in accuracy.

6.5.3 ViT LSTM Model

Table reports the results of the ViT-LSTM model when trained and evaluated
using the local context image as input. The ViT-LSTM model outperformed the
CNN-LSTM model by 1.1% and 5.6% when trained and tested on the dataset of
14 classes and 5 classes, respectively. Additionally, the model achieved relatively
balanced precision, recall, and F1 scores for both sets—ranging from 66% to 68%
when considering 14 classes, and from 83% to 84% when considering 5 classes.

On the other hand, when considering the dataset with 10 classes, the CNN-
LSTM model outperformed the ViT-LSTM by 9.6% in accuracy. Furthermore, the
ViT-LSTM'’s precision, recall, and F1 scores dropped significantly, falling within the
range of 52% to 53%.

Table 6.4: Results for the ViT LSTM model when using different input sequence
lengths and number of classes. The CNN used were ResNet18 and ViT.

Network Input Seq. N. of Classes Acc. (%) Prec. (%) Rec. (%) F1 (%)

ViT 13 14 69.8 68.0 67.0 66.0
ViT 13 10 59.8 53.0 53.0 52.0
ViT 13 5 82.9 84.0 83.0 83.0

Although the ViT-LSTM models outperformed the CNN-LSTM models for cer-
tain dataset configurations, the remaining experiments were conducted using the
CNN model due to limited GPU memory resources. For instance, the other exper-
iments involved multi-stream methods, which require multiple streams of diverse
input data, making them more resource-intensive.

6.5.4 Embedding CNN-LSTM Model

The results in Table illustrate the performance of the Embedding CNN-LSTM
model across various input types, sequence lengths, and numbers of classes. Ex-
periments were conducted using the dataset with 10 classes (”motion-dependent
classes”) to facilitate a direct comparison with the Embedding TA LSTM model.
Consistent with the findings from the Embedding TA LSTM model, the best perfor-
mance for the Embedding CNN-LSTM model was achieved by incorporating both
the visible side of the target object and the rear light status.

Including only the visible side improved accuracy by 8.4%, while using only the
rear light status resulted in an 8.3% increase. Combining both features led to a
10.1% improvement, yielding the highest precision, recall, and F1 score values.

When comparing the Embedding TA LSTM and Embedding CNN-LSTM mod-
els, the latter achieved the highest accuracy (78.2% vs. 77.9%). However, the Em-
bedding CNN-LSTM model had lower precision (71% vs. 75%), while both models
achieved the same recall (69%) and F1 score (69%).
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Figure 6.6: Confusion matrices for different models.

The confusion matrices in Fig. highlight how the Embedding CNN-LSTM
model combines the strengths and limitations of the Embedding TA LSTM and
CNN-LSTM models. For instance, while the Embedding TA LSTM model strug-
gles to classify the object emerging class, it performs well on object meeting and
object coming out. Conversely, the CNN-LSTM model accurately classifies object
emerging but struggles with object meeting and object coming out. The Embedding
CNN-LSTM model balances these strengths, yielding intermediate classification re-
sults across classes—for example, achieving 18, 57, and 27 correct classifications
for object emerging with the Embedding TA LSTM, CNN-LSTM, and Embedding
CNN-LSTM models, respectively.

Further experiments examined the Embedding CNN-LSTM model’s performance
across different input sequence lengths and class sets, as shown in Table [6.5 The
highest accuracy, 77.9%, was achieved with a sequence length of 18 frames when
using a combination of conventional features, visible side, and rear light status.
Notably, even when using only conventional features, the model achieved an accuracy
of 76.1%, suggesting that the CNN layers may be implicitly learning aspects of the
visible side and rear light status. When transitioning from the motion-dependent
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classes set to the more comprehensive all classes set, accuracy generally decreases
slightly for individual input types, though combined features still maintain high
accuracy.

As the sequence length increases, accuracy improves slightly, indicating that
longer sequences help the model capture temporal dependencies more effectively.
However, this improvement comes at the cost of increased computational demands,
highlighting a trade-off between accuracy gains and resource requirements.

Table 6.5: Results for the Embedding CNN LSTM model when using different input
sequence lengths and the number of classes. The CNN used was ResNet18.

Input Type Input Seq. N. of Classes Acc. (%) Prec. (%) Rec. (%) F1 (%)
Conventional 13 10 68.1 60.0 58.0 58.0
Visible Side 13 10 73.5 69.0 63.0 64.0
Rear light Status 13 10 76.4 71.0 67.0 67.0
Rear light Status + Visible Side 13 10 78.2 71.0 69.0 69.0
Conventional 13 14 76.1 72.0 69.0 69.0
Visible Side 13 14 74.0 73.0 67.0 68.0
Rear light Status 13 14 4.7 71.0 68.0 68.0
Rear light Status + Visible Side 13 14 77.2 73.0 70.0 69.0
Rear light Status + Visible Side 10 14 75.7 73.0 67.0 67.0
Rear light Status + Visible Side 12 14 76.2 74.0 68.0 68.0
Rear light Status + Visible Side 15 14 77.3 74.0 70.0 69.0
Rear light Status + Visible Side 18 14 77.9 76.0 70.0 70.0

6.5.5 Multi-stream CNN-LSTM Model

Different input image combinations were used to train the Multi-stream CNN-LSTM
model. The best performance was achieved using motion-based and local context
images, yielding an accuracy of 67.8%. The second-best result was obtained using
original and local context images, with an accuracy of 60.5%. Further details on
experiments with other input types are provided in the ablation study section.
The lower performance of the Multi-stream CNN-LSTM model compared to the
single-stream CNN-LSTM model can be attributed to the following factors:

e Limited Data: Although the dataset contains 645 samples, it spans 16 dif-
ferent classes, with some classes having fewer than 20 samples. Given the
increased complexity of the Multi-stream CNN architecture compared to the
CNN-LSTM model, the limited data may lead to overfitting or reduced gen-
eralisation capability.

e Computational Resources: Multi-stream CNN-LSTM models demand sig-
nificantly more computational resources, which restricts the batch size and the
number of training iterations available for model optimisation.

6.5.6 Comparison With Other Works

Although there is no direct comparison between our work and existing studies, we
have presented the accuracy metrics from prior research on pedestrian and vehicle
intention recognition in Tables and [6.7], respectively. These studies demonstrate
reasonable performance in recognising the discrete behaviours of traffic agents; how-
ever, most focus on narrow aspects, such as pedestrian intentions to cross or vehicle
lane changes. Furthermore, many of these studies examine pedestrian or vehicle
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behaviours in isolation, without accounting for interactions between multiple agents
in real-world traffic scenarios.

Our proposed novel dataset addresses this limitation by encompassing a more
comprehensive range of behaviours and agent types. As shown by our results, there
is a noticeable drop in accuracy as the complexity of the dataset increases. For
instance, when using the full dataset with 14 behaviour classes (the ’all classes’
set), the best accuracy achieved was 77.9%. In contrast, when using the ’literature
classes’ set, which contains only five behaviour classes, accuracy reached 90.4%.
It is important to note that even the ’literature classes’ set includes more classes
and object types than those reported in prior works. This suggests that while
high accuracy rates in pedestrian and vehicle intention recognition may indicate
progress in these tasks, they may not fully reflect the complexities of real-world
traffic scenarios.

Table 6.6: Pedestrian discrete intention recognition accuracy for different works
when using different types of datasets, intention types, and models.

Work Intention Types Model Dataset Acc(%)
T 128 C,NC, W LSTM PIE, JAAD 79.0
[284]  C,NC/TL, TR, STOP CNN JAAD 88.0/96.0
[285]  C, NG, ST GON+Conv-LSTM PIE 81.0
[286) C, NC LSTM PIE/JAAD 91.0/83.0
211) C, NC LSTM+GCN PIE 79.0
1287] C, NC Transformer PIE/JAAD 89.0/86.0
1288| C, NC 3DCNN JAAD 84.9
1289] C, NC STGCN+LSTM PepScenes 94.4
[05] C,NC Factor-CRF JAAD 70.0
[22] C,NC CNN+MLP PIE/JAAD 84.0/87.0
1209] C, NC 3DResNet50 JAAD 75.2
(76| C, NC 3DCNN+GRU-Attention  PIE, JAAD 87.0/85.0
1290] C, NC CNN+GRU JAAD 75.7
[o1] c, NC ViT PIE, JAAD 86.2/85.5
|210] C, NC SVM Self-Collected 92.4
|212] C, NC GCN+CNN PIE, JAAD 89.0/86.0
|124] C, NC GCN JAAD 63.0
[i26) C,NC CNN+GRU JAAD 83.0
1123] C, NC Transformer PIE 91.0
1271 C,NC GCN PIE 83.0
[92] C, NC CNN+GRU PIE, JAAD 87.6/91.2
1293 C, NC CNN+GRU PIE 91.0
1294] C, NC Transformer PIE, JAAD, PSI 92.0/88.0/85.0
[295]  C,NC CNN+MLP JAAD 85.0
[296) C, NC CNN+MLP Self-Collected 90.23
1297] STOP/GO Stacked GRU PIE, JAAD, TITAN 76.85/67.8/64.35
1298 C, NC Transformer PIE, JAAD 91.0/87.0
[203]  C, NC LSTM PIE, JAAD 91.0/89.0
Ours 5 classes ViT+LSTM Novel Dataset 82.9
Ours 14 classes Embedding+CNN+LSTM  Novel Dataset 77.9

6.5.7 Ablation Study

CNN-LSTM Model

The CNN-LSTM model was trained and evaluated using the input image types
described in Section [6.4] The results are reported in Table The best perfor-
mance was achieved when using input image types that contain more local context
information, such as the local context, local depth, and motion-based local context
images.
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Table 6.7: Vehicle discrete intention recognition accuracy for different works when
using different types of datasets, intention types, and models.

Work Intention Types Model Dataset Acc(%)
1299 LLC, RLC, LK ANN NGSIM 73.33
|1171) LLC, RLC, LK Surrounding-Aware LSTM NGSIM 86.19
[300] LLC, RLC, LK Hybrid GMM+CHMM OWN 94.4
[301] LLC, RLC, LK CNN+LSTM PREVENTION 74.46
1173] LLC, RLC, LK ANN and SVM NGSIM 98.8
1173] LLC, RLC, LK ANN and SVM NGSIM 97.1
|120] LLC, RLC, LK Spatio-Temporal CNN PREVENTION 91.94
1302] LLC, RLC, LK BLLC NGSIM 66.41
[303] LK, TL, TR, UT  LSTM-+Attention NDS 99.6
[304  LC,LK LSTM HighD 98.8
|305] LLC, RLC LSTM INTERACTION  95.2
|306] LLC, RLC RNN Self-Collected 96.0
1307] LLC, RLC, LK LSTM NGSIM 86.21
[305] LLC, RLC, LK Fuzzy+LSTM NGSIM 92.40
1308| LLC, RLC, LK Two-level CNN OWN 73.97
(69] LLC, RLC, LK Spatio-Temporal CNN, 3DCNN  PREVENTION  91.91 / 86.51
|121] LLC, RLC, LK CNN PREVENTION 83.4
[309] LLC, RLC, LK Random Forest + SVM NGSIM 82
[310] LLC, RLC, LK CNN+ViT PREVENTION 81.23
[311] MRD, Y, M Variational RNN INTERACTION  82.97
[312]  LLC, RLC, LK KNN HighD 98.02
[313] LLC, RLC, LK Temporal CNN+Attention CitySim 98.2
1314] LLC, RLC, LK Dual Transformer NGSIM 93.57
[314] LLC, RLC, LK Dual Transformer HighD 98.98
[315] LC, ACCE, DECE  Transformer NGSIM, HighD 84.38
1280] LLC, RLC, LK Video ViT PREVENTION 85.0
|316] LLC, RLC, LK Bi-LSTM+Attention NGSIM 92.2
Ours 5 classes ViT+LSTM Novel Dataset 82.9
Ours 14 classes Embedding+CNN+LSTM Novel Dataset 77.9

Local context information is less susceptible to variations caused by lighting
conditions, viewpoint changes, occlusion, and complex backgrounds typical of traffic
scenarios. As a result, the CNN model can learn features that are more robust to
these variations, leading to improved generalisation performance.

Table 6.8: Results for the CNN LSTM model when using different input image

types.

Input Image 1 Acc (%)
Raw 37.6
Local Context 69.1
Depth 41.7
Local Depth 64.5
Object of Interest 40.8
No Target 42.1
Blended 40.8
Lane Information 38.9
Motion-based Local Context 65.4

Multi-stream CNN-LSTM Model

The Multi-stream CNN-LSTM model was trained and evaluated using the different
input image types described in Section [6.4f The results are reported in Table [6.9)
Since the best performance of the CNN-LSTM model was achieved using the local
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context input image type, it was set as the default for input image 2. The best
results for the Multi-stream model were obtained when input image 1 was either
the raw image or the motion-based local context image.

Table 6.9: Results for the Multi-stream CNN LSTM model when using different
combinations of input image types.

Input Image 1 Input Image 2 Acc (%)
Raw Local Context 60.5
Depth Local Context 51.5
Local Depth Local Context 54.2
Object of Interest Local Context 51.6
Object of Interest Graph Local Context 51.8
No Target Local Context 50.0
Blended Local Context 57.2
Lane Information Local Context 56.3

Motion-based Local Context Local Context 67.8

6.6 Conclusions

This chapter presented a comprehensive evaluation of various machine learning mod-
els trained on a novel traffic hazard dataset. The experiments investigated three
key factors influencing recognition performance: class granularity, input types, and
model architectures.

The results revealed a trade-off between class diversity and model accuracy.
Using the ‘literature’ class set with five behaviours categories, the best-performing
model achieved an accuracy of 90.4%. In contrast, expanding to the ‘all’ class set
with 14 categories reduced accuracy to 77.9%, underscoring the increased complexity
of recognising a broader range of traffic agent behaviours and the need for more
balanced training data.

Regarding input types, images providing local contextual information (e.g., crop-
ped views centred on the target agent) outperformed those with global context.
Furthermore, combining explicit and implicit features led to notable performance
gains compared to using either feature type alone, highlighting the value of multi-
modal feature integration.

Model comparisons showed that ViTs consistently outperformed CNNs, particu-
larly when both feature types were utilized. However, ViTs demanded significantly
more computational resources, which constrained their scalability in this study.

The experiments also demonstrated that recognising the visible side (front or
rear) of traffic agents enhanced prediction accuracy, especially when relying solely
on explicit features. This directional cue proved useful in disambiguating similar
behaviourss.

Finally, incorporating vehicle light indicators (e.g., brake and turn signals) im-
proved model performance, suggesting their practical utility in real-world intelligent
vehicle systems—particularly in environments lacking widespread V2X infrastruc-
ture.
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These findings offer valuable insights into the factors affecting hazard recognition
and provide a foundation for future improvements in model design and dataset
development.



Chapter 7

Complete Potential Traffic Hazard
Recognition Pipeline

This chapter presents a complete pipeline for recognising potential traffic hazard
events. It includes modules for object detection and tracking, rear light status recog-
nition, identification of the visible side of objects from the ego vehicle’s perspective,
and the recognition of potential traffic hazard events. As concluded in Chapter
few studies have addressed a comprehensive pipeline system for understanding the
behaviour of road users. Implementing such a system is essential, as it enables per-
formance assessment of each module and its influence on subsequent stages in the
pipeline. This facilitates targeted improvements, particularly in modules with lower
performance. Moreover, a complete pipeline can automatically extract a greater
number of traffic hazard samples, helping to address data imbalance and improve
generalisation during machine learning development. Additionally, it supports the
evaluation of real-time system performance.

The structure of this chapter is as follows: Section provides an overview of
the complete pipeline system, including details of the modules and their functions.
Section discusses the object detection, tracking, and overlooked cues recognition
modules. Sections [7.3] and cover the minimum trajectory filtering and poten-
tial traffic hazard event recognition modules, respectively. Section outlines the
experimental evaluation methods. Finally, Section presents and discusses the
results.

7.1 Complete Pipeline Overview

Figure presents a general flow diagram of a complete potential traffic hazard
event recognition system pipeline. The diagram illustrates two possible methods:
one that includes only the blue stages, and another that incorporates an additional
stage highlighted in orange. Both methods involve input data, object detection and
tracking, rear light and visible side recognition, target object filtering based on a
minimum trajectory sequence length, and potential traffic hazard event recognition
modules.

In the method with the additional orange stage, the detected and tracked target
objects are filtered based on specific rear light statuses and visible side classes before
applying the potential traffic hazard event recognition. For example:
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Figure 7.1: Hazard perception complete pipeline.

A braking rear light status could indicate a braking manoeuvre.

A left or right rear light status could indicate a right or left turn or cut-in.

Simultaneous left and right rear light indicators could suggest that a vehicle
has stopped or broken down on the road.

A visible left or right side could suggest that the target object is crossing in
front of the EV.

This approach consumes fewer computational resources, as the potential traffic
hazard event recognition algorithm is applied only to the filtered objects. However,
it may overlook other objects that do not exhibit these characteristics but are still
relevant based on their motion or other visual cues—such as reversing vehicles,
construction equipment, traffic lights, or vehicles turning or cutting in without using
rear light indicators. Additionally, it may still include objects that do not pose any
hazard, such as stationary vehicles.

Conversely, the method containing only the blue stages considers every detected
and tracked object. While this reduces the chance of overlooking a hazardous ob-
ject, it also includes many non-hazardous ones, such as stationary vehicles and
pedestrians walking on the pavement. This significantly increases computational
and memory requirements. Despite the higher resource consumption, this method
is likely to yield higher accuracy, as all detected and tracked objects are considered.

In conclusion, the proposed complete pipeline includes the blue stages, where:

e The input data consist of a sequence of frames from a traffic scene.

e The object detection and tracking module generates bounding boxes, assigns
object classes, and tracks each object over time within the input data.

e The rear light status recognition module assigns a rear light status to each
detected and tracked vehicle.

e The visible side recognition module determines which side of the target object
is visible from the EV’s perspective.

e The target object filtering module retains only those with a minimum trajec-
tory sequence length.

e Finally, the potential traffic hazard event recognition module classifies whether
the filtered target objects represent a hazard and identifies the type of hazard.

The following challenges should be considered when developing the complete
pipeline system:
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e The complete pipeline is evaluated using the test set of the proposed road
hazard dataset. Each dataset sample contains information about a specific
target object performing a particular behaviour. However, the detection and
tracking module considers all objects in the frame and assigns different object
IDs. Not all objects in the frame—including some target objects in the test
set—are detected and tracked.

e Incorrect object type classification may occur; for example, a pedestrian could
be misclassified as a vehicle and subsequently considered for rear light status
recognition.

e Objects may be mistracked due to occlusion or changes in appearance across
frames. For instance, objects may appear smaller or larger, and lighting vari-
ations can alter their appearance.

e Some video frames include the front of the EV, which is detected and tracked
by the detection and tracking module.

e Several objects are tracked only briefly, resulting in insufficient sequence length
to recognize their behaviour.

e An object might meet the minimum tracking length requirement but not in
a continuous sequence, meaning it may be absent in some frames within the
sequence.

7.2 Detection, Tracking and Recognition Mod-
ules

The goal of the object detection and tracking, rear light status recognition, and
object visible side recognition modules is to acquire the necessary information to run
the potential traffic hazard event recognition algorithm. This information includes
the cropped image of the object, the object class, the object bounding box, the
object ID, the object’s rear light status, and the object’s visible side. For this
reason, these modules are implemented as a single function.

Figure depicts the stages of these modules. First, all models are initialised
with pre-trained weights obtained from previous sections. Each frame of a traf-
fic scene video is fed into the detection and tracking module to acquire bounding
boxes and object classes, and to assign tracking IDs to all objects. The acquired
information for each object is then used to crop the input image at the location of
the detected objects. Each cropped image is subsequently input into the rear light
status recognition and visible side recognition modules.

Note that only cropped objects classified as vehicle types are fed into the rear
light status recognition module; other objects are assigned a value of -1 (unknown)
for their rear light status.

The output of these processes is a file named detected tracked objects.csv,
which contains the following columns:

e clip_source
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e dataset

e framen

e target obj_id

e object_type

e tailight_status

e tailight status_int
o x 1 y1,x2 y2

e img path

® object_visible_side
e object_visible_side_int
e hazard type_int

e hazard type_name

e hazard flag

e img width, img height

e ID

7.2.1 Object Detection and Tracking Module

The detection and tracking stages are crucial in the complete pipeline system, as all
other stages depend on their output. The YOLO algorithm was chosen to imple-
ment these stages due to its state-of-the-art object detection performance and its
capability to integrate tracking tasks. YOLO provides an out-of-the-box solution
with several versions and models, including pre-trained weights available through
the Ultralytics Python library. These features make it versatile and easy to set up
and run.

The YOLO version 9 model ‘e’—the latest available in the Ultralytics Python
library and the one with the best performance—was chosen for this task. The cur-
rent mAP(50-95) and mAP(50) performance metrics for the YOLOv9e model, when
validated with the COCO dataset, are 55.6% and 72.8%, respectively. YOLOv9e
offers two types of tracking algorithms: BoT-SORT [317] and ByteTrack |318]. The
BoT-SORT tracker is robust against occlusion and supports re-identification, al-
though it is computationally intensive. In contrast, ByteTrack is simpler and more
efficient but struggles with occlusion and lacks re-identification capabilities. Since
this research prioritises accuracy over efficiency, the BoT-SORT tracker was selected.

YOLOv9e can detect all object categories available in the COCO dataset. How-
ever, the traffic road hazard dataset includes additional categories not covered by
the pre-trained detection weights, such as groups of pedestrians, road crossings, road
work objects, and riders. Therefore, the traffic objects considered during the de-
tection stage were pedestrians, bicycles, cars, motorcycles, buses, trucks, dogs, and
horses.
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Figure 7.2: Hazard perception detection, tracking and recognition stage.

7.2.2 Rear Light Status Recognition Module

The proposed rear light status recognition algorithm, which adopts the state-of-
the-art Vision Transformer (ViT) network described in Section [ was chosen to
predict the rear light status of detected and tracked vehicles. The model classifies
the following rear light statuses: brake light on, left indicator on, right indicator on,
both indicators on, all lights off, and an unknown class, achieving an accuracy of
77.0%.

Although image sequence-based methods have demonstrated higher accuracy
, their reliance on multiple consecutive images limits their suitability for in-
tegration into a complete pipeline. The selected model was chosen for its ability
to perform recognition using a single input image, making it a more practical and
efficient solution.
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7.2.3 Object Visible Side Recognition Module

The proposed object visible side recognition algorithm, based on the ConvNeXt
model described in Section[d], was selected to predict the visible side of each detected
and tracked object. The model distinguishes between the following visible sides:
front side, front left side, front right side, left side, right side, rear side, left rear
side, right rear side, and unknown side, achieving an accuracy of 83.0%.

To the best of the researcher’s knowledge, this study is the first to explore the
recognition of target objects’ visible side as an input feature for traffic object be-
haviour recognition.

7.3 Minimum Trajectory Sequence Length Filter-
ing Module

The potential traffic hazard event recognition algorithm proposed in Section [6] re-
quires a minimum OH of 13 frames. Therefore, only target objects with a trajectory
sequence length of at least 13 frames were considered. To enforce this requirement,
the filtering approach illustrated in Figure [7.3| was proposed.

The process begins by reading the detected_tracked_objects.csv file gener-
ated by the detection and tracking modules. Next, the algorithm determines the
number of frames in which a particular object appears in the sequence of traffic
frames. If this number exceeds the minimum specified trajectory sequence length,
the algorithm checks for any significant gaps between consecutive frames in which
the object is present. If the gaps are within the defined limits, the information for
the current object is retained; otherwise, the algorithm proceeds to the next object.

Each filtered object is treated as a separate video sample. For example, if a
traffic scene video contains eight objects that meet the filtering requirements, each
will be considered a distinct video clip. This approach is necessary because the
potential traffic hazard event recognition algorithm accepts only one object per run.

The information for each object is recorded in the all extracted videos.csv
file, which contains the following fields: video n, frame n, start_frame, end frame,
hazard_type_int, hazard_type_name, hazard flag, target_obj_id, ID, object_type,
XC, yc, xc_speed, yc_speed, w, h, bbox_area, x_1,y_1,x 2 y 2, img path, img width,
img height, tailight status, tailight status_int, object_visible_side, ob-
ject_visible_side_int, clip_source, and dataset.

This file includes additional information compared to the one created by the ob-
ject detection and tracking module. For instance, it contains video_n, start_frame,
end frame, xc, yc, xc_speed, yc_speed, w, h, and bbox_area. The video n is an
integer value assigned to each video clip corresponding to a filtered object. The
start_frame and end frame indicate the frames where tracking begins and ends,
respectively. The other values are derived from x_1, y_1, x 2, and y_2. These ad-
ditional values are generated because they are required as input for the potential
traffic hazard event recognition algorithm.



147 7 Complete Potential Traffic Hazard Recognition Pipeline

detected_tracked_objects.csv file.
previous frame = -1

v

N Target
object ID info

v

s target object ID
trajectory sequence > Min
Trajectory?

Target Object N frame

Previous frame = N frame Is Previous
Start frame = N frame frame ==-1?

Frame difference = (N
frame — previous frame)

End frame = previous frame
Save video info based on start
frame and snd frame
Previous frame = -1
Start frame =-1

frame difference < Ma
Allowable Diff and N frame |=
last frame?

s the N target
object ID 1:7he last Previous frame =
one? N frame

v
all_extracted_videos.csv

Figure 7.3: Target object filtering based on target object minimum trajectory.

7.4 Potential Traffic Hazard Event Recognition
Module

The Embedding LSTM, CNN LSTM, and Embedding CNN LSTM models presented
in Chapter [6] were investigated as potential traffic hazard event recognition modules
in the complete pipeline.



7.5 Experimental Evaluation 148

read all_extracted_videos.csv

v No
Apply Hazard
Recognition Model
for each frame

s

v

s N video clip the
last one?

Yes

v
predicted_complete_pipeline_results.csv
«<D

Figure 7.4: Potential traffic hazard event recognition flow diagram.

The flow diagram shown in Figure [7.4] illustrates the processes of the Poten-
tial Traffic Hazard Event Recognition Module. The process begins by reading the
all extracted videos.csv file. Each video clip generated by the Minimum Tra-
jectory Sequence Length Filtering Module is used as input to the recognition model,
and each frame is assigned an integer value representing the predicted hazard type.

The output of this process is stored in the predicted hazard results.csv file,
which contains the following fields: frame n, all together_all, pred_hazard type-
_int, img dir_all, video nu all, f0_all, f1 all, and clip_source. The all toge-
ther_all field includes all numeric and categorical input types, such as speed, object
class, etc. The f0_all and f1_all columns store the start and end frames, respec-
tively. These columns are required for computing the evaluation metrics.

7.5 Experimental Evaluation

This section describes the experimental setup, including the dataset, models, soft-
ware and hardware, and metrics.

7.5.1 Dataset

The road hazard dataset test set was used to evaluate the complete pipeline algo-
rithm, as it was not used to train the rear light status recognition, object visible side
recognition, or potential traffic hazard event recognition algorithms. Additionally,
it contains all the ground truth values necessary to measure the performance of the
complete pipeline. However, not all hazard classes from the road hazard dataset
were included, as some object classes—such as traffic lights, groups of pedestrians,
road crossings, road works, and riders—were not supported by the pre-trained de-
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tection and tracking model. Consequently, hazard classes such as red crossing traffic
lights and road works were excluded.

As reported in Chapter [3] the novel potential traffic hazard event dataset did
not include any no-hazard samples. However, no-hazard samples are essential for
a complete pipeline system, as real-world scenarios often include non-hazardous
events. Therefore, 300 no-hazard video samples were extracted: 250 were used for
training, and the remaining 50 for testing.

The complete pipeline was also evaluated using three different class groupings,
as discussed in Chapter [3} all classes, motion-towards classes, and literature-based
classes. The input data to the system consists of sequences of RGB traffic scene
frames, resized to (1280, 640).

7.5.2 Models

As discussed in Section [7.2.2] three potential traffic hazard event recognition models
were used to evaluate the complete pipeline: the Embedding LSTM, CNN_LSTM,
and Embedding CNN LSTM models. The pre-trained weights with the best accuracy
results were selected for evaluation.

For instance, the best pre-trained weights for the Embedding_ TA_LSTM model
included both rear light status and the target object’s visible side features. The
best CNN_LSTM model used the ResNet network with the local context image as
input. Lastly, the best pre-trained weights for the Embedding. CNN_LSTM model
were trained using the local context image, rear light status, and object visible side
features.

The best accuracy achieved by each model, along with the dataset type used,
is reported in Table (7.1} under the column titled Potential Traffic Hazard Event
Recognition Accuracy with True Values (PTHERATYV).

7.5.3 Software and Hardware

All experiments were executed using an Intel(R) Core(TM) i7-10750H @ 2.60GHz
and an NVIDIA GeForce GTX 1080 Ti 12GB. All the codes and experiments were
done using Python and the PyTorch Framework.

7.5.4 Metrics

To evaluate the performance of the complete pipeline, the following metrics were
used: Target Object Detection Accuracy (TODA), Rear Light Status Recognition
Accuracy (RLSRA), Object Visible Side Recognition Accuracy (VSRA), and Hazard
Type Classification Accuracy.

The TODA measures the proportion of objects identified by the detection and
tracking module that are correctly matched with the objects labeled in the test set
of the road hazard dataset. It is defined as:

present_target_objects

TODA = (7.1)

all_target_objects

where present_target_objects is the number of target objects retained by the

filtering module that are present in the test set, and all_target_objects is the
total number of target objects in the test set.
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The RLSRA measures how often the rear light status recognition module cor-
rectly predicts the actual rear light status as labeled in the test set. The Object
VSRA measures the accuracy of the visible side predictions. The Hazard Type
Classification Accuracy evaluates how often the hazard types predicted by the
complete pipeline match the ground truth labels.

All these accuracies were computed using the accuracy_score function from the
sklearn.metrics Python library, defined as:

1 Nsamples -1

Accuracy(y, ) = (0 = yi) (7.2)

Nsamples 5
where y; and ¢; are the true and predicted values for the i-th sample, and Ngampies
is the total number of samples.

Figure illustrates the flow diagram for calculating performance metrics. The
process begins by reading two key files: predicted hazard results.csv, which
contains the output from the hazard recognition module, and ground_truth_informa-
tion.csv, which holds the actual ground truth data. To ensure accurate evaluation,
the intersection method is used to identify common frames between the two files, al-
lowing calculations even when some objects are missed by the detection and tracking
module.

Since object IDs in the test set may not align with those generated by the
detection and tracking algorithm, the Intersection over Union (IoU) metric is used
to match bounding boxes. An IoU threshold of 0.35 is applied, meaning that if
the overlap between predicted and actual bounding boxes is at least 35%, they are
considered a match. This threshold balances avoiding false matches with neighboring
objects and accepting partially occluded objects.

Once an object meets the IoU threshold, it is counted as correctly detected, and
the corresponding predicted and actual values for rear light status, visible side, and
hazard type are recorded.

After processing all video clips, the system calculates the key metrics. It is
important to note that the TODA is computed over all predicted target objects
compared to the full test set, while the other metrics are calculated only for correctly
detected objects.

7.6 Results and Discussion

Table presents the results of the complete pipeline, comparing different input
types, models, and class groupings. It details the performance metrics for TODA,
RLSRA, and VSRA. Additionally, the table reports the accuracy of the potential
traffic hazard event recognition module, evaluated using both predicted values and
actual ground truth data for detection and tracking, rear light status, and visible
side recognition.

Detection Performance

The achieved TODA remained relatively stable across different class groupings, rang-
ing from 67.19% to 69.87%. The lowest performance was observed when all classes
from the traffic hazard dataset were included, likely due to the increased sample
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Figure 7.5: Flow diagram to calculate the corrected detection, tracking, and recog-
nition accuracy.

size and diversity of object types. This result aligns with expectations, consider-
ing that YOLOv9e’s pre-trained weights achieve an accuracy of 72.8%. While the
detection ratio was reasonable, the accuracy was insufficient for deployment inlV
systems, which require higher reliability due to their safety-critical nature. Further-
more, since detection and tracking modules typically serve as the initial stage in
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Table 7.1: Complete Pipeline results when using different input types, models, and
different numbers of classes.

Input Type Model N. Of. Classes TODA"(%) RLSRA®(%) VSRA%%) PTHERA®(%) PTHERATV/(%)
Explicit Embedding_ TA_LSTM 10 69.87 75.0 70.0 51.0 76.5
Single Image CNN_LSTM 10 69.87 75.0 70.0 60.0 65.8
Single Image CNN_LSTM 14 67.19 74.0 71.0 55.0 64.1
Explicit + Single Image Embedding.CNN_LSTM 10 69.87 75.0 70.0 54.0 79.9
Explicit + Single Image Embedding. CNN_LSTM 14 67.19 74.0 71.0 52.0 79.7

2Frame Ratio, ®Target Object Detection Accuracy, “Rear Light Status Recognition Accuracy, ¢Visible Side
Recognition Accuracy, ¢Potential Traffic Hazard Event Recognition Accuracy (using predicted values), fPotential

Traffic Hazard Event Recognition Accuracy with True Values.

a multi-step process, any inaccuracies at this stage can propagate and negatively
impact subsequent modules.

Rear Light Status Recognition Performance

The RLSRA ranged between 74% and 75%. Datasets with more hazard classes,
such as the ‘motion towards’ and ‘all classes’ sets, yielded the lowest accuracy. This
outcome is consistent with expectations, given that the pre-trained model for rear
light recognition has a baseline accuracy of 77%.

Object Visible Side Recognition Performance

The object VSRA achieved by the complete pipeline ranged between 70.0% and
71.0%, which is lower than expected. This is notable considering that the best-
performing pre-trained model for visible side recognition achieved an accuracy of
83.0%.

Hazard Type Recognition Performance

The CNN LSTM model performed best in the potential traffic hazard event recog-
nition task when using predicted values in the ‘motion towards’ and ‘all classes’
datasets. However, the Embedding CNN LSTM model outperformed others when
using actual ground truth values. Notably, models incorporating rear light status
and object visible side information—such as the Embedding LSTM and Embedding
CNN LSTM-—exhibited the largest discrepancies in accuracy between predicted and
actual input values.

For example, the Embedding LSTM model achieved 76.5% accuracy with true
values in the ‘motion towards’ set but only 51.0% with predicted values, resulting
in a significant drop of 25.5%. Similarly, the Embedding CNN LSTM model showed
a difference of 25.4%. In contrast, the CNN LSTM model exhibited a much smaller
difference of 5.8%. This trend was also observed in the ‘all classes’ set, where the
accuracy differences for the CNN LSTM and Embedding LSTM models were 9.1%
and 27.7%, respectively.

These results indicate that while true rear light status and visible side values
can significantly enhance the accuracy of potential traffic hazard event recognition,
inaccuracies in these predictions can drastically degrade performance. This sen-
sitivity underscores the importance of accurate rear light status and visible side
recognition for effective hazard detection. On the other hand, although the CNN
LSTM model may underperform compared to others when using true values, it
demonstrates greater robustness to inaccuracies in predicted inputs.
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7.6.1 Error Propagation, Interpretability, and Transferabil-
ity

An important observation in this study is the propagation of errors across pipeline
stages. Due to the modular architecture—starting with detection and tracking,
followed by rear light and visible side recognition, and concluding with hazard clas-
sification—errors introduced at early stages have a cascading effect on downstream
modules. For example, misdetections reduce the number of correctly identified tar-
get objects, leading to missing or erroneous inputs for the hazard classification task.
This was quantitatively demonstrated by significant drops in hazard recognition
accuracy (up to 27.7%) when using predicted versus ground truth inputs. These
findings underscore the compounding effect of early-stage inaccuracies on final haz-
ard prediction performance.

Regarding interpretability and explainability, interpretability refers to how easily
humans can understand the internal mechanics of a model. Simple models like
linear regression offer direct interpretability through their parameters. However, the
deep learning models used in this pipeline—such as CNN-LSTM architectures for
hazard classification—are inherently complex and non-transparent. Explainability,
although related, focuses on the ability to provide understandable reasons for specific
model decisions, even when the internal workings are opaque. While the current
system is modular and transparent at the architectural level, it remains a black box
in terms of understanding the rationale behind individual predictions.

In terms of transferability, the reliance on pre-trained models—particularly YOLO-
vOe trained on the COCO dataset—presents challenges for generalisation. Many
traffic hazard-relevant object categories are underrepresented or absent in COCO,
leading to suboptimal detection performance in this context. Additionally, the rear
light and visible side recognition modules may not generalise well across varied envi-
ronmental conditions, such as changes in lighting, occlusion, or camera perspectives.
These limitations highlight the system’s susceptibility to domain shift, where dif-
ferences between training and deployment environments can significantly degrade
performance.

7.7 Conclusions

This chapter evaluated the performance of a complete potential traffic hazard event
recognition pipeline, analysing the impact of each module on overall system perfor-
mance.

The system achieved moderate accuracy across detection, rear light status recog-
nition, visible side recognition, and hazard classification tasks. However, the results
highlight that inaccuracies—particularly in the early detection stage—substantially
degrade overall system performance. Models that leverage auxiliary cues, such as
rear light status and visible side information, can improve hazard recognition accu-
racy but remain highly sensitive to upstream errors.

The study also identified several limitations, particularly related to the use of
pre-trained models not optimized for traffic-specific contexts. Future work should
focus on retraining detection models using domain-specific datasets, improving inter-
pretability, and enhancing the robustness and generalizability of the system across
diverse real-world scenarios.
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To improve interpretability and explainability, techniques such as SHAP or
Grad-CAM could be employed to increase transparency and trust, especially for de-
ployment in safety-critical applications. Enhancing transferability can be achieved
through methods such as domain adaptation, fine-tuning models with domain-
specific data, and applying data augmentation techniques to expose models to a
broader range of real-world conditions.



Chapter 8

Conclusions and Future Work

This thesis addresses the limited capability of existing IV systems to navigate safely
in complex urban environments by enabling them to recognise traffic agent be-
haviours that may lead to potential traffic hazard events. To achieve this goal,
a novel dataset was introduced, specifically designed to capture the complexity of
urban traffic scenarios and to support the recognition of various discrete intention
behaviours exhibited by different types of traffic agents.

In addition to the dataset, the thesis proposed and investigated two novel in-
put features to enhance traffic agent behaviour recognition: the vehicle’s rear light
status and the object’s visible side—one of which has not been previously studied.
Both features were shown to significantly improve recognition performance. These
contributions were used to train and evaluate various machine learning models for
their ability to recognise potential traffic hazard events.

Finally, a complete potential hazard event recognition system was developed
to assess how system performance is affected when ground truth values—such as
detection, tracking, rear light status, and object visible side information—are not
available.

This chapter summarises the work conducted in this thesis by evaluating each
research question and objective, and by suggesting directions for future work.

8.1 Research Questions and Objectives Evalua-
tion

This thesis addressed five research questions and outlined several objectives aimed
at enhancing the ability of IV systems to navigate complex traffic scenarios. This
section evaluates the extent to which these research questions and objectives have
been fulfilled.

Research Question 1, Objectives 1 and 2 — Limitations of Existing Datasets

To address the research question, “What are the limitations of existing datasets
used to study complex traffic agent behaviour in complex scenarios? How can these
limitations be addressed?”, and to fulfil the objectives of “Explore existing methods
to recognise and predict the behaviour of traffic agents, along with the detection of
traffic hazard events within traffic scenarios,” and “Create a Road Traffic Hazard



8.1 Research Questions and Objectives Evaluation 156

Dataset,” a comprehensive literature review was conducted and a novel traffic hazard
dataset was developed.

The literature review revealed significant limitations in existing datasets, par-
ticularly their inability to represent a wide range of discrete traffic agent intention
behaviours. The novel dataset introduced in this thesis offers a more diverse and de-
tailed representation of traffic events, supporting tasks such as detection, tracking,
rear light status recognition, object visible side recognition, and potential traffic
hazard event recognition. However, the dataset suffers from class imbalance due
to the rarity of certain behaviours. While it includes more classes than existing
datasets, some behaviours—such as those caused by health impairment or intoxica-
tion—remain unrepresented. Thus, while the research question has been addressed
and the objectives fulfilled, further improvements are possible.

Research Question 2, Objectives 5 and 6 — Improvement Through New
Types of Input

The implementation of the proposed vehicle intention and hazard recognition sys-
tems aimed to answer the research question: “Does traffic agent behaviour recog-
nition algorithm performance improve with the introduction of new input features
(e.g., object visible side relative to the EV, different input image representations,
explicit features)?” This also addressed the objectives of “Develop, implement, and
evaluate a Vehicle Intention Prediction algorithm,” and “Develop, implement, and
evaluate a Potential Traffic Hazard Event Recognition algorithm.”

The results showed that incorporating overlooked cues—such as rear light sta-
tus and object visible side—significantly improved the performance of behaviour
recognition models, especially when these cues were accurately predicted. This was
confirmed by comparing system performance using both predicted and ground truth
values.

Regarding input image representations, the study found that local context im-
ages were most relevant to model accuracy. Combining multiple image types did
not yield further improvements, suggesting that novel representations did not en-
hance performance. While relying solely on local context has limitations, integrating
relevant global context remains a challenge.

The best results were achieved by combining explicit and implicit features, high-
lighting the importance of leveraging both in designing effective recognition algo-
rithms.

Research Question 3, Objectives 3 and 4 — Machine Learning for Over-
looked Cues Recognition

The rear light status and object visible side recognition systems were developed
to address the research question: “Can machine learning algorithms, using an ap-
propriate dataset, recognise different types of rear light statuses and object visible
sides?” This also fulfilled the objectives of “Develop, implement, and evaluate a
Vehicle Rear Light Signal Recognition algorithm,” and “Develop, implement, and
evaluate a Target Object Visible Side Recognition algorithm.”

The findings indicate that modern deep learning techniques can reasonably recog-
nise rear light status and object visible sides. However, the achieved performance
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is not yet sufficient for reliable use in a complete hazard recognition pipeline, as
inaccuracies in these modules significantly degrade overall system performance.

Rear light misclassifications were often caused by factors such as sunlight reflec-
tion, occlusion, similar light patterns, object positioning, disproportionate light size,
proximity of lights, weak brightness, and confusion between front and rear views.
Visible side misclassifications were mainly due to the difficulty in distinguishing
between similar classes, such as rear right and rear sides.

Research Question 4, Objective 6 — Machine Learning for Potential Traffic
Hazard Event Recognition

The development of hazard recognition models addressed the research question:
“Can machine learning algorithms, with an appropriate traffic hazard dataset, recog-
nise different types of traffic hazard events in complex urban scenarios?” This also
fulfilled the objective of “Develop, implement, and evaluate a Potential Traffic Haz-
ard Event Recognition algorithm.”

The results demonstrated that machine learning-based hazard recognition sys-
tems perform well with a limited number of hazard categories but show reduced
accuracy as the number of categories increases. While current models can achieve
high accuracy (up to 90%) in simplified scenarios, their performance declines in
complex, real-world urban environments.

Qualitative analysis revealed that many misclassifications were due to poor image
quality caused by lighting conditions and the distance between the target object and
the EV. These issues, also noted in related studies, may be mitigated through sensor
fusion techniques, such as multi-focal cameras, infrared imaging, radar, or LIDAR.

Although the proposed model implicitly considered neighbouring agents through
global context images, no significant performance gains were observed. Future work
should explore methods that explicitly model interactions among traffic agents.

Research Question 5, Objective 7 — Performance in a Complete Pipeline
System

The complete hazard recognition pipeline was developed to address the research
question: “How is the behaviour recognition algorithm performance affected when
applied to a complete pipeline system?” and to fulfil the objective of “Develop, imple-
ment, and evaluate a Complete Potential Traffic Hazard Event Recognition Pipeline
System.”

The findings show that system performance significantly declines when using
predicted values for detection, tracking, rear light status, and visible side recognition,
due to error propagation across modules. For instance, if target objects are not
accurately detected and tracked, subsequent modules relying on this information
may fail. In this context, models like CNN LSTM, which rely solely on image
inputs, demonstrated greater robustness and may be preferable.

Overall, the results highlight the challenges of enabling I'Vs to recognise potential
traffic hazard events, particularly when multiple discrete behaviour categories are
involved. The study emphasises the need for research that addresses a broader
range of behaviours, as real-world scenarios are inherently diverse. Moreover, the
complete pipeline evaluation shows that even well-studied tasks like object detection
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and tracking require further improvement, given their critical impact on downstream
modules.

8.2 Limitations

While this thesis has made significant contributions, several inherent limitations
must be acknowledged, particularly regarding dataset size, causal inference, mod-
elling performance, and system complexity.

Dataset Limitations: Despite the introduction of a novel traffic hazard dataset
designed to represent a diverse range of traffic agent behaviours, certain behaviour
categories remain underrepresented due to their natural rarity (e.g., driver impair-
ment or unusual pedestrian behaviours). This class imbalance can affect model
performance and generalisation, particularly for rare hazard events, and poses a
challenge for achieving consistent accuracy across all classes. Moreover, although
the dataset is larger than many existing ones, it may still be insufficient for training
highly complex deep learning models, which typically require extensive data to avoid
overfitting and to improve generalisability.

Modelling Performance: Although several machine learning models devel-
oped in this thesis demonstrated improved recognition accuracy when leveraging
novel features such as rear light status and object visible side, their performance
remains suboptimal for real-world deployment. For instance, error propagation
through the pipeline reduced the accuracy of potential hazard event recognition
by up to 27.7%. Furthermore, models with performance metrics such as recall or
precision in the 70-80% range are not sufficient for safety-critical applications like
autonomous driving, where near-perfect reliability is required. These results indi-
cate that further improvements in detection, tracking, and behaviour recognition
are necessary before practical implementation.

Causal Inference: The methodologies employed in this research rely primarily
on observational data and machine learning techniques, which identify correlations
between input features and behaviour classes. However, these models cannot estab-
lish causal relationships. As a result, while they can predict potential hazard events
based on patterns in the data, they cannot explain causality with certainty. This
limits the interpretability and explainability of the system, particularly in scenar-
ios where understanding the underlying causes of specific behaviours is essential for
decision-making.

Transferability: The models developed in this thesis, particularly those reliant
on pre-trained detection systems such as YOLOv9e trained on the COCO dataset,
face challenges in generalising to new environments. Domain shifts—such as differ-
ences in road structures, vehicle types, or lighting conditions—can degrade model
performance. This limitation underscores the need for domain adaptation techniques
and further data collection efforts to improve the robustness and transferability of
the proposed system.

System Complexity and Computational Constraints: The modular pipeline
approach, while beneficial for analysing the impact of individual components, also
introduces complexity that exacerbates error propagation. Additionally, applying
the behaviour recognition system to every observed traffic agent is computationally
infeasible in real-world scenarios due to resource constraints.



159

& Conclusions and Future Work

8.3 Future Works

While this study has made significant contributions to discrete behaviour recogni-
tion, several areas remain open for future research:

1.

Dataset Enhancement: Although the proposed novel dataset captures many
potential traffic hazard events in real-world traffic scenes, some event types are
underrepresented or entirely absent. Future work should focus on collecting
more samples for these categories. This could involve enhancing the proposed
hazard recognition system to automatically extract additional samples from
other traffic datasets, followed by manual verification. Additionally, research
should explore methods for collecting data on unusual behaviours, such as
those exhibited by pedestrians or drivers under the influence of substances or
experiencing health impairments.

. Improving Recognition Algorithms: Misclassifications in rear light sta-

tus and object visible side recognition are often caused by poor image quality,
occlusion, object angle, distance, and class similarity. Advanced techniques
should be explored to improve these recognition tasks. For instance, using
segmented portions of the object instead of the full bounding box could reduce
occlusion effects and focus attention on relevant features. Combining visible
side information with rear light status may also help mitigate errors caused
by object orientation. Additionally, investigating headlight status recogni-
tion—an overlooked cue—could provide valuable insights, as headlights may
indicate the intentions of oncoming vehicles.

Incorporating Traffic Agent Interactions: The current vehicle intention
and hazard recognition models do not account for interactions between traffic
agents. Future research should explore techniques such as graph neural net-
works or Voronoi diagrams to model these interactions, which can significantly
influence a target object’s behaviour and intention.

Expanding the Scope of Data Sources: Most behaviour recognition stud-
ies rely on front-facing dash camera footage. However, relevant behaviours
may occur outside this field of view. For example, a vehicle cutting in front of
the EV may initiate its manoeuvre from the rear or side. Future work should
investigate the use of additional cameras placed at the rear and sides of the
vehicle to capture a more comprehensive view of traffic agent behaviour.

Target Object Selection: Applying the hazard recognition system to ev-
ery traffic agent is computationally impractical, as many agents (e.g., parked
vehicles, stationary bicycles, pedestrians on sidewalks) are non-hazardous. Fu-
ture research should develop methods to prioritise and select relevant objects
before applying behaviour recognition. For instance, in real-world scenarios,
the EV’s intended path is known and can be used to identify relevant target
objects. However, most existing datasets lack this trajectory information.

These recommendations aim to address current limitations and enhance the ca-
pabilities of IV systems, enabling them to navigate complex urban environments
more safely and efficiently.
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8.4 Summary

In conclusion, this thesis has made significant contributions to advancing IV systems
by improving their ability to recognise potential traffic hazards. The novel dataset
and input features introduced have enhanced the recognition of various discrete in-
tention behaviours exhibited by different types of traffic agents. However, challenges
remain, particularly regarding dataset scope and the need for further improvements
in recognition algorithms and complete system pipelines. Future research directions
have been outlined to address these challenges, paving the way for more effective
and comprehensive solutions in IV systems.



Appendix A

Rear Light Status
Miss-classification Examples

This appendix provides supplementary information to support the qualitative anal-
ysis of the rear light status recognition algorithm results discussed in Chapter [ It
includes examples where the actual rear light status was misclassified into different
classes. These examples represent a small sample, focusing on the classes with the
highest number of misclassifications.

Figure shows instances where the OLR class was misclassified as the OOO
class.

Vi

(a) PRED:000O (b) PRED:000

Figure A.1: Examples of OLR misclassified as OOOQ.

Figure shows instances where the BOO class was misclassified as other
classes.

Figure shows instances where the OLO class was misclassified as other
classes.

Figure [A.4] depicts instances where the OOO class has been misclassified by the
other classes.

Figure shows instances where the OOR class was misclassified as other
classes.

Figure shows instances where the UNK class was misclassified as other
classes.
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(a) PRED:OLO (b) PRED:OLO

ST=RMN
(c) PRED:OLR (d) PRED:OLR

(e) PRED:OOO

=

(h) PRED:OOR (i) PRED:OOR

(k) PRED:OOR (1) PRED:OOR

Figure A.2: Examples of BOO misclassified as other classes.
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(a) PRED:BOO (b) PRED:BOO

(d) PRED:BOO (e) PRED:000 (f) PRED:000O

(g) PRED:OOO

Figure A.3: Examples of OLO misclassified as other classes.
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(a) PRED:BOO

) PRED:BOO (c) PRED:BOO (d) PRED:OLO

) PRED:OLO (f) PRED:OLR (g) PRED:OOR

(h) PRED:UNK (i) PRED:UNK

Figure A.4: Examples of OOO misclassified as other classes.



165 A Rear Light Status Miss-classification Examples

(b) PRED:BOO

(c) PRED:000 (e) PRED:000

(f) PRED:000

Figure A.5: Examples of OOR misclassified as other classes.
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) PRED:BOO ) PRED:OLO
) PRED:OOO ) PRED:0OO

lm

) PRED:000 (h) PRED:000 (i) PRED:OOR

Figure A.6: Examples of UNK misclassified as other classes.
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Object Visible Side

Miss-classification Examples

This appendix provides supplementary information to support the qualitative anal-
ysis of the object visible side recognition algorithm results discussed in Chapter [4]
It presents examples where the actual visible side of an object was misclassified
as a different class. These instances represent a small subset of the dataset, with
emphasis on the classes that exhibited the highest number of misclassifications.

Figure illustrates cases where the front_left_side class was incorrectly
classified as other classes.

.

ELfront® —

( ) PRED:front_side PRED front_side (C) PRED:front _side

T A
‘ o N

(d) PRED:right side (€) PRED:right side (f) PRED:right_side

Figure B.1: Examples of misclassifications involving the front_left_side class.

Figure illustrates instances where the front _right_side class was misclas-
sified as the front_side class.
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GT:front_right_si

(a) PRED:front_side (b) PRED:front_side

Figure B.2: Examples of misclassifications involving the front_right_side class.

Figure illustrates instances where the front_side class was misclassified as
other classes.

£ "

) PRED:left_side ) PRED:left_side (C) PRED:rear left side

Figure B.3: Examples of misclassifications involving the front_side class.

Figure [B.4] illustrates instances where the left_side class was misclassified as
other classes.

Figure[B.5 illustrates instances where the rear_left_side class was misclassified
as other classes.

Figure illustrates instances where the rear right_side class was misclassi-
fied as other classes.

Figure [B.7] illustrates instances where the rear_side class was misclassified as
other classes.

Figure illustrates instances where the right_side class was misclassified as
other classes.

Figure illustrates instances where the UNK class was misclassified as other
classes.
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. . ) .
) PRED:UNK (b) PRED:UNK ) PRED:UNK

) PRED: front side (€) PRED:right side ) PRED:rear left side

¢
GT:left_sida

PRED:front_right_side PRED front_right_side
g g g

Figure B.4: Examples of misclassifications involving the left_side class.
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(a) PRED:rear_side (b) PRED:rear_side (C) PRED:rear_side

-

(d) PRED:rear_side

Figure B.5: Examples of misclassifications involving the rear left _side class.
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PRED rear_side (b) PRED:rear_side (C) PRED:rear_side

PRED rear_side (e) PRED:rear_side

(g) PRED:right_side (h) PRED:right side (i) PRED:right_side

Figure B.6: Examples of misclassifications involving the rear right_side class.
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(e) PRED:rear_left_side (f) PRED:rear_right_side

(g) PRED:rear_right_side (h) PRED:rear_right_side (1) PRED:rear_right_side

Figure B.7: Examples of misclassifications involving the rear_side class.
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(a) PRED:left side (b) PRED:left side

(C) PRED:left_side

Figure B.8: Examples of misclassifications involving the right_side class.

(a) PRED:rear_side PRED right_side

(d) PRED:rear_right_side PRED rear_right_side (f) PRED:rear_right_side

Figure B.9: Examples of misclassifications involving the UNK class.
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