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Abstract

The transition to high-renewable energy systems at the community level demands
optimisation frameworks that balance economic efficiency, operational flexibility, and
sustainability. While many existing studies focus on either static sizing or simplified dispatch
heuristics, they often fail to co-optimise key system parameters such as inverter capacity, grid
constraints, and hybrid storage integration under dynamic conditions. This thesis addresses
that gap by developing a deeply integrated optimisation architecture that unites long-horizon

sizing with short-horizon control, tailored for islanded and weak-grid energy communities.

The central objective is to design a techno-economically robust and energy sustainable hybrid
PV-battery—hydrogen system that minimises lifecycle cost and enhances renewable self-
consumption while accounting for real-world constraints. To this end, a nested optimisation
approach is proposed, integrating a Genetic Algorithm (GA) for capacity sizing with a Mixed
Integer Linear Programming (MILP) framework that embeds a Model Predictive Control (MPC)
dispatch strategy. The GA generates candidate system layouts, each of which is validated via
the MILP model that co-optimises hourly dispatch under fixed tariff structures and inverter-grid
limits with AC/DC nodal representation. To capture operational uncertainty and improve
flexibility, a rolling-horizon MPC layer executes every 12 hours using a 24-hour forecast
window, incorporating flexible loads up to 8% of daily average demand, a level selected to
reflect realistic load-shifting potential based on typical non-critical applications such as water

pumps.

Results show that the framework achieves Net Present Cost (NPC) and Levelised Cost of
Energy (LCOE) reductions of 10% and 10.2%, respectively, compared to static or rule-based
baselines. Grid-related operational charges fall by 46% under MPC with load flexibility, and
self-consumption rises to 44.56%. A novel, extended Energy Return on Investment (EROI)
metric is introduced to capture full energy pathways, revealing battery storage as the dominant
contributor to lifecycle efficiency. To explore trade-offs between system size, energy return,
and cost, generalisation heatmaps of EROI and NPC are developed around the optimised
Formentera case study design from Chapter 4, which serves as the baseline (i.e. the
configuration with the lowest NPC). These heatmaps identify design “sweet spots” around 1.0—
1.1x the baseline capacity, where high EROI (>5.0) and low NPC (<€610,000) are
simultaneously achieved. Beyond which oversizing leads to diminishing energy and cost

returns due to increased curtailment and underutilisation of grid infrastructure.

The proposed GA-MILP-MPC framework thus provides a replicable, scalable, and practical
tool for optimising community-scale energy systems. By tightly linking planning, operation, and

sustainability metrics, it enables planners to make data-driven decisions that are financially
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sound, operationally feasible, and environmentally justified. As distributed energy
infrastructures continue to evolve, such integrative methods will be crucial for shaping resilient

and sustainable energy futures.



Nomenclature and Abbreviations

Acronyms:

Acronym Definition

AC Alternating Current

AEM Anion Exchange Membrane

BIR Battery-to-Inverter Ratio

CapEx Capital Expenditure

DC Direct Current

DEAP Distributed Evolutionary Algorithms in Python
EROI Energy Return on Investment
ESOI Energy Stored on Invested

ESS Energy Storage System

GA Genetic Algorithm

H, Hydrogen

HRES Hybrid Renewable Energy System
IC Inverter-Capacity Optimisation
LCOE Levelised Cost of Electricity

LoH Level of Hydrogen

MILP Mixed Integer Linear Programming
MPC Model Predictive Control

NC Nominal Capacity

NPC Net Present Cost

NOCT Nominal Operating Cell Temperature
O&M Operation and Maintenance

PEM Proton Exchange Membrane

PS Peak Shaving

PV Photovoltaic

RH Rolling Horizon

SA Simulated Annealing

SH Static Hourly Dispatch



Acronym Definition

SOC State of Charge

SPT Smart Planning Tool

ToU Time-of-Use

TPR Tank-to-Inverter Ratio

VPP Virtual Power Plant

Variables:

Symbol Description Unit
c Vector of decision.\./ariables for system )

T component capacities

Ppy Photovoltaic array capacity kW
Nyt Number of wind turbines units
Nyt Number of battery modules (4.8 kWh each) units
Py Inverter rated capacity kW
By Grid exchange power limit (buy/sell) kW
Pr. Fuel cell electrical output power kW
Py Electrolyser electrical input power kW
Pyt Hydrogen tank capacity kg
CNPC Net Present Cost over the system lifetime €
CapEX ¢ Capital expenditure for component k at time t €
OpEX; Operational expenditure at time t €
RepEX,,, Enip;l?cement expenditure for component k at €
RecValy, ; Recovery value of component k at time t €

D, Discount factor at time ¢t -

i Real discount rate -or%
i Nominal discount rate -or%
f Inflation rate -or %
CRF Capital Recovery Factor -

R, Recovery value of component at project end €
CRep Replacement cost of a component €



Trem Remaining life of a component at project end years
Teom Expected lifetime of the component years
Eoad Total energy demand/load served kWh
Ppy — output [t] PV array output power at time t kW
fev PV derating factor -
Gmodule [t] Irradiance on tilted PV module at time t l:nlg
Grstc Standard test condition irradiance l:rl_V;/
K, Temperature coefficient of power % °C
T.[t] PV cell temperature at time t °C

T Standard cell temperature ( 25°C) °C

é Solar declination angle degrees
d Day of the year (1-365) -
Tambient [t] Ambient temperature at time t °C

T nocr Nominal Operating Cell Temperature °C
Tanocr Ambient temp. under NOCT conditions °C
GnocT Irradiance under NOCT conditions l:rl_V;/
Nmp,STC PV efficiency at standard test conditions -

ap Temperature coefficient of power %_D C
™™ Optical factor (transmissivity x absorptivity) -

T Set of time steps in the optimisation -

Tpyy (] Grid electricity buying price at time t €/kWh
Tsey [t] Grid electricity selling price at time t €/kWh
Pgrig puy [t] Power bought from grid at time ¢ kWh
Pgrid,sell [¢] Power sold to grid at time t kWh
penalty ,mmet Penalty cost per unit unmet energy €/kWh
penalty oycess Penalty cost per unit excess energy €/kWh
Ewmmet [t] Unmet energy demand at time t kWh
Eeycess [t] Excess energy at time ¢ kWh
Ppattery,charge [t] Battery charging power at time t kw



Ppattery , discharge [t] Battery discharging power at time t kW
Np— Battery charging efficiency -
np + Battery discharging efficiency -
Bn, Battery module capacity kWh
SoC[t] Battery state of charge at time t %
SoCpin Minimum state of charge %
SoCax Maximum state of charge %
LoH[t] Hydrogen level in tank at time ¢ % or kg
LoHmin Minimum allowed hydrogen tank level %
LoHax Maximum allowed hydrogen tank level %
Nel- Electrolyser efficiency -or %
Nrc+ Fuel cell efficiency -or %
H py Lower Heating Value of hydrogen kWh/kg
Xgrid [£] Binary gid direction (1 = buy, 0 = sell) Binary
Xoatery [t] Siigsrgrgzt)tery direction (0 = charge, 1 = Binary
Xhydrogen [t] Binary control for H, system operation Binary
Xron-gon [t] g(ier:]aerryla‘ itin:ricating the remaining DC renewable Binary
Xhydrogen [t] Binary control for H, system operation Binary
Xron-gon [t] S(ier:]aerryait?odr:cating the remaining DC renewable Binary
M Large number used in linearisation (Big-M

method)
€ Small positive value used in constraints -
Fep Fixed contracted power charge €
Rty Contracted rate for power at time t, period p €/kW/day
Dimonth Number of days in billing month days
E.. Electricity consumption charge €
Fep Peak power penalty charge €
PC{ Demand peak in billing interval j kW
Spe Selling back charge (revenue from selling €

electricity)



Penalty oxcess Penalty for total excess energy (if > 100 kWh) €

Penalty ,nmet Penalty for total unmet energy (if > 100 kWh) €

Peycess Large penalty value for excess energy €

Pymmet Large penalty value for unmet energy €

I):itness Value(p, g Final fitness function (NPC + penalties) €

w Index of the current rolling window -

h Starting hour of the current window in the global hours
8,760-hour timeline

T Local hourly set in a window (typically { hours
0,1,..,23})

Phiexible [t] Flexible (shiftable) load power at time t kW

Pfiexible rated Rated power of the flexible load kW

Xflexible,on [t]

Binary variable: 1 if flexible load is ON at time t

Binary (0 or 1)

off

Hfiexible,daily Required total operation time of flexible load per  hours/day
day

Ty Set of global hours that belong to day d hours

éw—l) Number of flexible-load hours already used for hours

day d in previous window

SoC[t] Battery state of charge in MPC formulation at %
time t

Soci(rm) Initial battery SoC passed into window w %

LoH][t] Hydrogen level in tank in MPC formulation at % or kg
time t

LoHi(n"in) Initial hydrogen level passed into window w % or kg

ESOI, Energy Stored on Invested for electricity-only -
storage (dimensionless)

Eout, st Total lifetime energy dispatched from storage MJ

Eemb | st Embodied energy used in manufacturing the MJ
storage system

EROl4en Energy Return on Investment of the generation -
subsystem

Eemb,gen Embodied energy required for constructing the MJ
generation subsystem

Ppv_load Fraction of generation directly consumed by the -

local load
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Ppat Fraction of generation routed through the battery -
system

®H, Fraction of generation routed through the -
hydrogen system

Pov_grid Fraction of generation exported to the grid -

Oourt Fraction of generation curtailed (unused or -
dumped)

Egisp total Total energy dispatched to end uses (load + MJ
grid) accounting for efficiency losses

ESOI; ESOI value for storage technology i (e.g., -
battery, hydrogen)

n; Round-trip efficiency of storage technology i -

Eemp i Embodied energy associated with storage MJ
technology i

Eemb total Total embodied energy (generation + all MJ
storages)

EROI' community Novel extended EROI metric for hybrid energy -
community system

Egen Energy intensity of generation (MJ embodied per MJ/MJ
MJ generated), equals EROT o

Est Energy intensity of storage (MJ embodied per MJ/MJ

. 1

MJ delivered), equals ESOL.

Q@ Fraction of generation Eye, routed through the -
storage system

EROl g Energy Return on Investment of the combined -
generation-plus-storage grid system

Egisp,gen Dispatched energy directly from generation MJ
(bypassing storage)

Egisp,st Dispatched energy from storage (after round-trip  MJ
losses)

Nst Round-trip efficiency of the storage system -

11



Table of Contents

DIECIAIALION. ...t e e e 2
ACKNOWIEAGMENES ...t e e e e e e e e e et eeaaeeeanee 3
ADSIFACT. ... 4
Nomenclature and ADDIreViations ...............uuuuieiiriiiiiiii e 6
Table Of CONTENTS ...t e e 12
LISt OFf FIQUIES ...ttt e ettt e e e e e e et aeeeea e e e e e 15
LISt OFf TADIES ...ttt e e e e e 20
T INEFOAUCTION ..t e e 22

1.1 MOBIVALION ...t 22

1.2 The Role of Regenerative Hydrogen Storage in Community Energy System

DECArbONISAtION ...t 25
1.3 Research Aim and ObJeCtiVES. .........vuiiiiiiiiiece e 29
14 Principal Research Contributions...............cooooviiiiiiiii 30
1.5 THESIS STTUCIUIE ... 30
1.6 List of PUDICAtIONS......cooiiiiie e 33
LIterature REVIEBW .........coiiiiiiiiiiiiiiiiiieeeee e 34
21 INErOAUCTION.....coiiiie e 34
2.1.1 Review Scope and Research Relevance ................oooeviiieiiiiieiiiieicceic e 34
2.1.2  Structure Of the CRAPLEL.............coeeiieeii e 35
2.2 Hybrid Renewable Energy Storage Systems: Concepts and Challenges............. 36
2.2.1 Hybrid Systems and Grid Integration ............cccooooiiiiiiiici e 36
2.2.2 Specific Challenges for Island Energy Communities ...............ccccccouuceeuuueeennenn. 38
2.3 Optimisation Methods for Hybrid System Sizing and Dispatch.............cccccccoeonie 41
2.3.1 Genetic Algorithms (GA) for System SizZing............ccccccouiieiiiiiiiiiiiiiiiiiieeeeen 42
2.3.2 Mixed Integer Linear Programming for Sizing and Hourly Dispatch.................. 45
2.3.3 Nested Optimisation APPrOACRES...............uuuuuuuuuueuniiineneenneeeeeenennennnnnnnnnennnnnnnnes 53
2.4 Theoretical Background: Penalty-Guided Nested Objective.............ccoovvvvvnennnn. 61

12



2.5 Life-Cycle Energy Assessment in Hybrid Renewable Systems ..............cccceeeeeee. 64
2.6 LIterature Gap.......cooeiiiiiii i e 70

3 System Sizing of Renewable Fuel Cell Battery Storage Systems with Hourly Dispatch

L0 o110 1 == 1 1 o] o PP 73
3.1 INErOAUCTION.....co i 73
3.2 System Description and GOVEIrNANCE..............uuiiiiiiiiiiiiiiiiiee e 74

3.2.1 Physical Configuration of the REC.............ooiiiiiiiiii e 74
3.2.2 Governance, Contracted-Power Limits, and Tariff Context...........cccocooviieeenenn. 75
3.3 Comparative Methods for Dispatch and Sizing ..............euuviiiiiiiiiiiiiiiiiiiiiiiiiiiiinnens 76
3.3.1  Overview of Comparative FrameworkK..............ccccceiiiiiiiiiiiiiiiie e, 76
3.3.2  GA-Yearly Horizon Method ..........coovuiiiiiiiiiiiee e 77
3.3.3 GA-Based Load Following and HOMER Pro Comparison............ccccccvvuueeenn... 89
3.4 Model Inputs and System Parameters...........cccooooiiiiiiiiiiiiiee e, 92
3.4.1 Geographical Location and Targeted Island .............ccccoooiiiiiiiiiiiiiiiee, 92
3.4.2  Grid Tariff SrUCIUIE.........oeeiiiiie e 95
3.4.3 Cost Assumptions and Sensitivity Analysis for Economic Inputs ...................... 96
3.5 RESUIES ... 98
3.5.1  SYSEM SIZING ..ciiiiiiiiit e 99
3.5.2 Energy FIow and DYyNamiCs .............ccciiieieiieiiiiiei e 103
3.5.3  ECONOMIC ANAIYSIS....cceiiiiiii it 106
3.6 S T0] 0] 4= YT 112

4  Improving Renewable System Sizing Accuracy through Model Predictive Control Concept

and Flexible Load Operation. ............oooiiiiiiii it 114
4.1 INEFOTUCTION. ... e 114
4.2 Y [=1 1 g ToTe (o] (o Te |V TSP PP PP P PP PPPPPPPTTPPPPPPPPPRt 114

4.2.1 MPC-Flexible Load Formulation............cccuuuiiiiiiiiiiiiiieicee e 116
4.2.2 Water Pump as aFlexible Load .............uiiiiiiiiiiii e 119
4.2.3  SUMMANY coiiiiiiiieiee ettt e e e e e ettt e e e e e e bbbt bt e e e e e e e e e annnbaneeeaeaeeaaannns 121
4.3 RESUILS ...t 121
4.3.1  SYSIEM SIZING ..coiiiiiii i 121



4.3.2 Energy FIow and DYNamiCs .............ccciiieieieeiiiiiei e 125

4.3.3 ECONOMIC ANGIYSIS .. .ot i et 130
4.3.4 GAand MILP Solvers parameter tunning...........ccouuvieeiiieeiiiiiiieee e, 138
4.4 SUMIMAIY ...ttt e e e e e e e bbb e et e e e e e e e e b s beeeeaeeeaaanans 142

5 Life-Cycle Energy Cost Analysis through a New Index for Hybrid Renewable-Fuel Cell

Battery Storage Systems in Energy Communities. .............oooeeiiiiiiiiiiii e 144
5.1 INErOAUCTION. ... 144
5.2 Novel Index for Energy Systems in Communities ............cccoiiiiiiiiiiiiiiiiniiiiene. 146
5.3 Applying the EROI Community Metric: Sensitivity and Scaling Analysis............. 150
5.4 RESUILS ... 155

5.4.1 Parametric Sensitivity Analysis with Fixed Capacities .............ccccvveeiiiieninnn, 155
5.4.2 Capacity Scaling and Generalisation Framework...............ccccoevviicieiiieenneenn, 161
5.5 S T0] 0] 4= YT 174

6 Integrated Analysis of Sizing, Operation, and Life-Cycle Performance........................ 176
6.1 Main Findings from Integrated System Design...........ccccuveiieiiiiiniiiiiiiiieeee e 176
6.2 Robustness Under Economic and Environmental Variability ...................ccccoo 183
6.3 Design Decision Support Using EROI-NPC Trade-offs ...........ccccovvvvvviviieinnnnnn. 185
6.4 Comparative Benchmarking with Literature ............ccoooiiiiiie 186

6.4.1 Sizing Ratios and Operational Load Matching ............ccccoooeiiiiiiiiiiiineees 190
6.4.2 Grid Dependency and Storage Utilisation Trends...........c...ooooviiiiiiieiiiiinnieen, 193
6.4.3 Seasonal Energy Balancing and Storage Role Separation ............................ 195
6.5 S T0] 0] 4= YT 196

A O o T [ o] o PRSPPI 196

8  Future Work and Research Directions WOrK ..........cccooooiiioiiiiiiieeeeeeeeeee e 199

S T Y o] o =1 T o= P 200
9.1 Literature Table NOMENCIAtUre...............ouiiiiiiiiiiiiiiie e 200
9.2 Algorithmic Setup and Implementation (Python) ...........ccccooiiiiii 203

9.2.1 Genetic Algorithm (GA) Implementation (DEAP) ..........coeiiiiiiiiiiiicei e, 203
9.2.2 MILP Implementation (PULP) .......cccooiiiiieee e 208

14



9.2.3 MILP Decision VariabIes ........oou oo 210

9.3 Rule-Based Load FOIOWING ..........couuuiiiiiiiiee e 211
9.4 The Foundational Theoretical FrameWorkK...........oco v oo 217
10 R O EINCE . ... e 219

List of Figures

Figure 1-1: Most recent carbon emissions world total (2024 ) with the 2 and 1.5 degrees IPCC
SCENANOS [2], [B], [A]-- - eeeeeeeermmaa e e e ettt e e e e e e ettt e e e e e e e eeeetnaa e e e e e e e e eeeennnnanns 22
Figure 1-2: The historical energy consumption by source in EJ and GTCO2 emissions [6]. 23
Figure 1-3: IEA Global hydrogen demand by production technology in the Net Zero Scenario,
202072030 [27]- e eeeeeeeameeee e ettt e e et eee e e ettt eee e e et ee e e e e aaaeee e e e aa et eeeaanaeeeeeeaneeeaeeaneeeaeaanreeaaanns 25
Figure 1-4: Hydrogen Production, consumption and transport pathways............cccccccceeeen. 26

Figure 1-5: Comparison of ESS in terms of storage capacity, discharge duration, and services

1)V e T=To I G 7 PP 27
Figure 1-6: Flow of information and chapter dependencies throughout the thesis ............... 31
Figure 2-1: Diagram of a typical HRES adapted from [57]........ccovvmiiiiiiiiiiiiiiieee e, 36
Figure 3-1: Energy flow for the integrated hybrid energy system and its energy vector. ...... 74
Figure 3-2: Nested optimisation approach with progressive parameter adjustment............. 76

Figure 3-3: Proposed Benchmarking GA-Yealy Horizon Methodological for two layers Grid

Time of Use driven Optimisation approach. The detailed algorithm implementation is provided

T Y o] 01T g [t G J PP 78
Figure 3-4: Flow Diagram for Load-Following Energy Management Strategy. ..................... 90
Figure 3-5: Geographical Context of Formentera Island location...............cccccoooviiiieiiiinnenn. 93

Figure 3-6: The geographical location of energy community buildings west of Sant Francesc
Xavier capital of Formentera Island. Building 1: Culture Building electrical demand 44,995
kWh/year. Building 2: primary school with electrical demand 47,189 kWh/year. Building 3:
Radio and Youth Centre with electrical demand 19,616 kWh/year. Building 4: Preschool with
electrical demand 26,596 kWh/year. Building 5: Vehicle inspection station with electrical
demand 11,486 kWh/year. Building 6: Fire station with electrical demand 23,584 kWh. Building

A R Y A AT 7A=Y 93
Figure 3-7: Data Input for Formentera case study............ccccoiiiiiiiiiiiiiciii e, 94
Figure 3-8: Endesa Grid Tariff structure adopted from [120].........coovviiiiiiiiiiiiiiiieee e, 95

Figure 3-9: Winter Operational Dynamics for Load Following (a), HOMER - Load Following

(b), and GA-Yealy Horizon (c). The positive values for hydrogen represent the fuel cell output

15



in kW, and the negative values indicate electrolyser consumption. For the battery, positive
values indicate discharge, and negative values indicate charging. Grid interactions show
positive values for electricity purchases and negative values for sales...............ccccevvevenees 104
Figure 3-10: Summer Operational Dynamics for Load Following (a), HOMER - Load Following
(b), and GA-Yealy Horizon (c). The positive values for hydrogen represent the fuel cell output
in kW, and the negative values indicate electrolyser consumption. For the battery, positive
values indicate discharge, and negative values indicate charging. Grid interactions show
positive values for electricity purchases and negative values for sales........................o.e. 105
Figure 3-11: Breakdown of Net Present Costs and Annualized Expenditures. a) Total system
costs by category, (b) GA-Load Following cost distribution, (c) HOMER-Load Following cost
distribution, (d) Annualized costs by component across all strategies. ...............ccoeeennnnnnnn. 107
Figure 3-12: Benchmarking Methods Monthly Escalated Grid-Related Financial Performance.
a) Monthly energy revenue from grid sales, (b) Monthly grid-related costs, including power
purchases and fixed charges across GA-Yearly Horizon, GA-Load Following, and HOMER-
LOA FOIOWING. ...ttt n e 109
Figure 3-13: Cumulative Discounted Cash Flow Over a 25-Year Horizon for Different Energy
MANAGEIMENT ...ttt e e e e 111
Figure 4-1: Proposed Novel GA-MILP-MPC Flexible Load Methodological for two layers Grid
Time of Use driven Optimisation approach...........cccccooeiiiiii i 115
Figure 4-2: Winter Operational Dynamics for MPC rolling horizon with 0% flexibility (a), 4%
flexibility (b), 6% flexibility (c), and 8% flexibility (d). The positive values for hydrogen represent
the fuel cell output in kW, and the negative values indicate electrolyser consumption. For the
battery, positive values indicate discharge, and negative values indicate charging. Grid
interactions show positive values for electricity purchases and negative values for sales. 125
Figure 4-3: Summar Operational Dynamics for MPC rolling horizon with 0% flexibility (a), 4%
flexibility (b), 6% flexibility (c), and 8% flexibility (d). The positive values for hydrogen represent
the fuel cell output in kW, and the negative values indicate electrolyser consumption. For the
battery, positive values indicate discharge, and negative values indicate charging. Grid
interactions show positive values for electricity purchases and negative values for sales. 127
Figure 4-4: Hourly load profiles and pricing dynamics for MPC 8% flexible operation across
four representative days: (a) 5" January 2022 and (b) 12" January 2022, representing winter
days with low PV availability, whereas (c) 20" July 2022 and (d) 21t July 2022, reflecting
summer days with abundant solar energy. Shaded regions indicate load shifts (green:
increase, blue: decrease), highlighting MPC’s adaptive strategy to minimize energy costs by
aligning demand with low-tariff hours and PV generation windows. Dual-axis plots show both

power demand (left y-axis) and electricity prices (right y-axis).........ccccceeeiiiiiniiiiiiiiennn. 129

16



Figure 4-5: Breakdown of Net Present Costs for the total system costs by category for MPC
rolling horizon with 0% flexibility (a), 4% flexibility (b), 6% flexibility (c), and 8% flexibility (d).

Figure 4-6: Monthly breakdown of grid escalated charges and revenues for MPC rolling
horizon with 0% flexibility (a), 4% flexibility (b), 6% flexibility (c), and 8% flexibility (d). ..... 135
Figure 4-7: Discounted Cashflow for the GA-MPC approach with different flexibility scenarios

Figure 4-8: The influence of solver parameter tunning in Gurobi MIPFocus parameter ..... 139
Figure 4-9: The Influence of MILPGap on accuracy and convergence speed.................... 139
Figure 4-10: Convergence plots for different mutation and crossover mutation. ................ 140
Figure 4-11: Interaction plot of final fithess versus crossover probability for different mutation
= 1ES TS (U TS PPN 141
Figure 5-1: Normalised measured hourly data for whole year days and their average values
for energy generation, prices and consUMPLioN.............ooouiiiiiii e 145
Figure 5-2: Energy flow comparison between (A) a simple grid-connected system with single
storage and (B) a hybrid energy community with multiple storage paths and direct load
consumption, highlighting the need for an extended EROI metric. ..........cccccconiiiiiiennnnn. 147
Figure 5-3: Two-stage methodological framework for applying the derived EROI-community
metric. Step A (left) conducts parametric sensitivity analysis using fixed, optimised system
capacities while varying key technical parameters, efficiency, durability, and embodied energy.
Step B (right) applies uniform scaling to system capacities to assess the impact of system size
on performance. Both steps use rolling-horizon MILP dispatch to extract operational metrics,
which are then used to compute and analyse the life cycle EROI and associated sustainability
T 1= 1 (o =P 151
Figure 5-4: Sensitivity of system EROI and storage ESOI to variations in round-trip efficiency.
The four subplots show that battery efficiency (R? = 0.99 for EROI and 1.00 for ESOI) has a
stronger impact than hydrogen efficiency (R? = 0.33 for EROI and 0.85 for ESQOI), with each
point coloured by NPC. ... ..o e e e e e e e e e e e eeae 156
Figure 5-5: Sensitivity of system-level EROI and component-specific ESOI to variations in
component durability (battery, fuel cell, electrolyser). Data points are coloured according to net

present cost (NPC), illustrating economic impacts associated with differing durability levels.

Figure 5-6: Sensitivity of system-level EROI and storage-specific ESOI to variations in
embodied energy intensity for PV, battery, and hydrogen storage components. Points are
coloured by the corresponding system-level EROI, illustrating how manufacturing energy

inputs influence overall energy life-cycle Metrics. ..., 159

17



Figure 5-7: Surrogate model accuracy shown via predicted vs. actual plots for NPC, EROI,
Unmet, and Excess energy (10-fold cross-validation)..............coocoiiiiiiiiiiiiniiiiieieeeeeee 162
Figure 5-8: System EROI and NPC across PV and battery scales, overlaid with unmet and
excess energy contours (MWh/year), highlighting trade-offs between cost, sustainability, and
ENEIrgY ULIlISATION. ... 163
Figure 5-9: System EROI and NPC across PV and hydrogen tank capacity scales, overlaid
with unmet and excess energy contours (MWh/year), illustrating the diffuse trade-offs between
cost, sustainability, and renewable energy utilisation in hydrogen-based storage
(odo] 0110 [UTr=11T0] g < TP 164
Figure 5-10: Capacity scaling analysis of PV and fuel cell systems showing trade-offs between
system EROI and NP C. ... e et a e e e ee s 165
Figure 5-11: Capacity scaling analysis of PV—electrolyser systems, illustrating trade-offs
between economic cost and energy sustainability. ..............cccceiiiei 166
Figure 5-12: Battery and hydrogen tank capacity scaling analysis showing four performance
regions that capture the trade-offs between system-level EROI and NPC......................... 168
Figure 5-13: Battery—Fuel Cell capacity scaling delineates four distinct regions of trade-off
between lifecycle energy efficiency (EROI) and economic cost (NPC), underscoring the
importance of balanced storage sizing for sustainable hybrid systems..................cccccco. 169
Figure 5-14: Battery—Electrolyser capacity scaling analysis showing how moderate storage
configurations yield optimal trade-offs between system-level EROI and NPC. .................. 170
Figure 5-15: Tank and fuel cell scaling reveals optimal cost—sustainability trade-offs near
baseline configurations, with under sizing or oversizing degrading performance............... 171
Figure 5-16: System EROI and NPC response to hydrogen tank and electrolyser capacity
scaling, highlighting cost-optimal and energy-efficient regions. ............ccccooceeeii e, 172
Figure 5-17: Balanced fuel cell and electrolyser scaling yields optimal cost—efficiency trade-
offs; extreme sizing degrades performance..............ccoeiiiiiiiiiiiiiice e 173
Figure 6-1: Comparison of solar-to-inverter (SIR), battery-to-inverter (BIR), and
tank-to-inverter (TIR) sizing ratios for the Load-Following baseline and MPC strategies with 0
%, 4 %, 6 %, and 8 % 10ad-Shifting. .............uuuuimiiiiiiiii 177
Figure 6-2: Annual hourly PV generation (yellow), theoretical AC (blue), and actual AC (red)
outputs, together with average battery (dashed blue) and hydrogen tank (dashed green) SoC,
for (a) Load-Following with a 120 kW inverter (Battery = 46 %, H, =23 %), (b) MPC 0 % with
a 77 kW inverter (Battery = 33 %, H, = 55 %), and (c) MPC 8 % with a 72 kW inverter and 8 %
load shifting (Battery = 34 %, Hz = 51 90). cooueeiieieeieeee e 179

18



Figure 6-3: Contracted-power ratios (SPR, BPR, TPR) for Load-Following vs. MPC (0-8 %);
MPC greatly boosts storage versus grid capacity, enabling higher PV capture and seasonal
DAIANCING. ...ttt n e e e e 180
Figure 6-4: PV vs. grid import/export for Load-Following (78 kW) and MPC 8 % (37 kW):
MPC achieves import-free operation 86 % of hours and uses storage discharge at zero PV,
flattening grid EXChaNGES. ......cooiiiiii e e 181
Figure 6-5: Annual dynamics of Battery SoC and Hydrogen LoH for (a) Load Following and (b)
MPC 8%. Each subplot shows hourly values (faded), daily means, and 30-day rolling
averages. MPC 8% maintains the battery at a lower SoC set point with reduced daily
fluctuation while using hydrogen for long-term seasonal storage, in contrast to Load Following
which underutilises hydrogen and experiences frequent battery saturation. ...................... 182
Figure 6-6: Interactive Cost—EROI dashboard. Baseline optimal mix with ability to compare
different @QUIPMENT SIZES ... 185
Figure 6-7: Interactive Cost—-EROI dashboard, PV-heavy what-if scenario........................ 186
Figure 9-1: Chromosome layout for capacity sizing showing the decision variables: PV
capacity, number of battery units, inverter rating, contracted grid limit, fuel cell power,

electrolyser power, and hydrogen tank capacity. The bounds of each variable are indicated

below the COrreSpPONAING GENE. .......uuiiiiiiiiiiiiiiee e nnanees 204
Figure 9-2: DEAP initialisation of decision variables...............coooiiiiiiiis 204
Figure 9-3: Population size setup in DEAP framework ............cccovvvvviiviiiiiiiiiiiiiiiiieieeeeeee 205
Figure 9-4: DEAP setup for the NPC fitness function ............ccoocoiis 205
Figure 9-5: Tournament setup for the DEAP library .........cccooooiiiiiiiiiii e 206
Figure 9-6: Crossover method selection and setup range of offsprings.........cc.cccccoooeeeieees 207
Figure 9-7: Mutation method selection and setup on DEAP .........c.oceiiiiiiiiiiiiicei e, 207
Figure 9-8: Pulp initialisation of the problem.............ccccciii e, 208
Figure 9-9: Objective problem method of implementation ............c..cccooooiiiiiicce e, 209
Figure 9-10: Grid Constraint method of application ...............coooviiiii e, 210
Figure 9-11: Focused snippet Between Process 1-3 ........cooiiiiiiiiiiiiiii e 211
Figure 9-12: Focused snippet Process 4 and its two main decisions 4.1and 4.2.............. 212
Figure 9-13: Focused on Decision Branches from4.1t04.1.4 .........cccooooiiiiiiiiiiiniieeeeee, 212
Figure 9-14: Focused on Decision Branch es from 4.1.8t04.1.12 ..., 214
Figure 9-15: Focused on Decision Branch es from 4.1.4t04.1.8 ..., 214
Figure 9-16: Focused on Decision Branches from 4.2t04.2.4 ...........cccoooiiiiiiiiiiciiieen. 215
Figure 9-17: Focused on Decision Branches from 4.2.4104.2.8..........ccccooeieiiiieeiincnennn. 216
Figure 9-18: Focused on Decision Branch es from 4.2.8t04.2.12 ..., 216
Figure 9-19: Focused on Decision Branch es from 5.t0 5.2.1 and 5. To5.1.......cccccoens 217

19



List of Tables

Table 2-1: Optimisation Methods for HRES Sizing with Objective Functions adapted from [84],

Table 2-2: Summary of recent studies on grid-connected PV-battery—hydrogen systems,
highlighting key components (BT: Battery, HR: Hydrogen, GR: Grid, WT:. Wind, PV:
Photovoltaic, INV: Inverter), methodologies, and limitations. ..............c....ooooiiiiiiee, 43
Table 2-3: Detailed MILP comparative summary of these studies, including their energy
balance formulations, bus structures, decision variables, and key findings (refer to appendix
9.1 for energy balance NOMENCIALUIE)...........cuuuiiiiiiiii e 46
Table 2-4: Overview of recent nested optimisation studies combining heuristic sizing (e.g., GA,
GWO) with short-horizon MILP dispatch for hybrid renewable energy systems (HRES).
System architectures are denoted using the following component codes: PV — photovoltaic
panels, WT — wind turbines, BT — battery storage, FC — fuel cells, EL — electrolysers, TK —
hydrogen storage tanks, IN — inverters or power electronics, GR — grid interface, OR — other
components such as heat pumps or thermal storage. Each study is assessed for control
structure, optimisation layers, component integration, and major limitations. ...................... 54
Table 2-5: Summary of key studies assessing life-cycle energy performance in hybrid
renewable systems, highlighting EROI, ESOI, and curtailment-related outcomes across
scales. Abbreviations: Li-ion = Lithium-ion Battery, PHS = Pumped Hydro Storage, CAES =
Compressed Air Energy Storage, RHFC = Regenerative Hydrogen Fuel Cell, PtG = Power-to-
Gas, EROI = Energy Return on Investment, ESOI = Energy Stored on Energy Invested, VRE

= Variable ReENEWabIE ENEIQY. .....ociiiiiiiiiiiie et e e e e e s 65
Table 3-1: Key Operational Assumptions and Regulatory References for REC Model......... 75
Table 3-2: Key design and standard parameters employed in the PV output and cell
temperature MOodelliNg. .......coooi i 82
Table 3-3: Sensitivity sweep for penalty selection across 21 edge-case designs................. 84
Table 3-4: Technical and Economic Data Inputs for the Modelling............cc.ooeeeeeiiiiniiinnnee. 97
Table 3-5: Financial Parameters Used in Economic Assessment ..., 98
Table 3-6: Comparison of the sizing outcomes for the three Benchmarking methods.......... 99
Table 3-7: Performance metrics for benchmarking methods............cccoooiiie, 100
Table 3-8: Key Financial Metrics of Benchmarking Approaches ............ccccccceeeeeieiiiiieeeeen. 112
Table 4-1:Flexible Load: Water Pump Specifications for the Formentera Energy Community
......................................................................................................................................... 119
Table 4-2 : Scenarios defined for the flexibility investigation.............ccccccooei i 120
Table 4-3: GA-MPC novel approach capacity sizing results.............ccccovceeeiiiiiiiiiiieeeeee, 122

Table 4-4 Performance metrics comparison for MPC approach with different flexibility %. 124

20



Table 4-5 Year-1 grid-trading cash-flow by scenario, separating export revenue from import
costs and reporting net grid cash-flow and avoided import cost (Grid-Only - scenario)..... 131

Table 5-1: Comparison of life-cycle energy-return metrics and their suitability for community

RYDFIA SYSIEMS ... nnnne 149
Table 5-2: Sample Parameter Ranges for Efficiency, Durability, and Embodied Energy
SENSILIVILY STUAIES ... e e a e 152
Table 5-3: lllustrative Capacity Variations Relative to the MPC-4% Baseline...................... 153
Table 6-1: Sensitivity Analysis of System Components under External Variations (MPC-4%
7= L= od (=T ) PP 184

Table 6-2: Comparison of optimisation studies, showing grid/island context, cost reductions (A
NPC, A LCOE) against each paper’s benchmark, and which advanced features are
implemented; shortcuts: GS = meta-heuristic sizing, DO = Dispatch Optimisation, RH = rolling-
horizon/MPC, SH = static-hourly assumption, LS = load-shifting, CG = contracted-grid
optimisation, IC = inverter-capacity optimisation, AD = detailed AC/DC buses, TO = time-of-
use tariffs, PS = peaK-SNAVING..........uuuuuiiiiiiiiiiiiiiiiiiiiii e eeeeeeeseeeaeeensnnnnsnnnne 189
Table 9-1: Type of variables and with pulp syntax example .............ccccooeiiiiiiii e, 209

21



1 Introduction

1.1 Motivation

Global energy demand is projected to rise in the coming years, driven by factors such as
urbanisation, increased access to electricity, and population growth. The 2023 COP28 summit
marked a pivotal moment in climate policy, with commitments to triple renewable energy
capacity by 2030 and accelerate the transition away from fossil fuels. Although the summit
marked the "beginning of the end of the fossil fuel era," it also confirmed that the earth is not
on track to keep global warming to 1.5 °C [1]. The IPCC projects two scenarios where
appropriate climate action will reduce emissions by 2050. Figure 1-1 displays the historical
carbon dioxide emissions and the projected two scenarios' ranges [2], [3], [4].- Researchers
quantified energy system changes between the different IPCC scenarios and explored
different metrics to identify whether global efforts were on track [5]. They concluded that the
world must likely deepen the decarbonisation of energy systems to limit temperature change

below 2°C.
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Figure 1-1: Most recent carbon emissions world total (2024) with the 2 and 1.5 degrees IPCC scenarios [2], [3], [4]
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The scientific community has emphasised the urgent need for accelerated mitigation efforts to
prevent severe climate impacts, driven by rising atmospheric concentrations of key
greenhouse gases such as carbon dioxide (CO;), methane (CH,), and nitrous oxide (N,O),
which are the principal contributors to global warming. Figure 1-2 presents the past global
energy consumption by type of fuel in EJ, as well as the carbon dioxide emissions in MTCO:
[6]. Over the past thirty years, global energy demand has increased by 76%, accompanied by
a 64% rise in greenhouse gas emissions. In 2020, the COVID-19 pandemic led to a temporary
decline, with energy consumption falling by 3.5% and emissions decreasing by 5.1%, the most
significant drop since 1965. However, by 2021 and 2022, emissions had rebounded sharply,
reaching their highest recorded levels, thereby underscoring the urgency for accelerated
climate action.
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Figure 1-2: The historical energy consumption by source in EJ and GTCOZ2 emissions [6].

Driven by population increase and economic development, worldwide energy consumption is
rising; hence, the construction industry ranks as one of the primary causes of greenhouse
emissions. About 26% of world emissions and 30% of world energy consumption come from
building sector activities [7]. In the EU, buildings are responsible for approximately 40% of
energy consumption and 36% of total greenhouse gas emissions, making the sector a key
focus of the EU’s strategy to achieve carbon neutrality by 2050, as outlined in the European
Green Deal and the 2024 Energy Performance of Buildings Directive [8], [9].

The electricity consumption in the EU remains high, notably in the building sector, despite the
growing commitment to renewable energy. With renewable energy accounting for 38.2% of
the EU's 2,824 TWh gross electricity generation in 2022, nuclear power and gas-fired plants

were second followed by [10]. The consumption of this electricity is distributed among
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households, services, and industry, with households alone accounting for approximately 25%
of the total consumption [11]. In residential buildings, electricity demand is primarily driven by
lighting and electrical appliances, which account for approximately 15% and 85% of total
residential electricity use, respectively [12]. However, in colder regions such as the UK, space
and water heating, often powered by gas or electricity, represent a substantial portion of overall
residential energy use [13]. This underscores the importance of adopting energy-efficient
appliances, improved heating systems such as heat pumps, and advanced control

technologies to manage and optimise residential energy consumption.

Many EU nations still struggle to reduce their dependency on fossil fuels for power generation,
despite attempts to decarbonise the energy supply [14]. The high energy consumption
patterns in the EU building sector highlight the urgent need for the integration of smart energy
systems into residential and commercial infrastructure. This need becomes even more critical
in geographically isolated regions, such as island communities, where limited energy
infrastructure and reliance on imported fossil fuels heighten their energy insecurity and make
them especially vulnerable to the impacts of global warming [15], [16]. Rising sea levels,
catastrophic weather events, and increasing energy prices resulting from their isolation make
islands front lines of climate change [17]. Their particular weaknesses draw attention to the

need for transformative energy solutions and resilience-building initiatives.

About 4% of the total EU population resides on these islands, which house nearly 16 million
people living on almost 2,200 inhabited islands spread over Europe alone [18]. Due in great
part to the logistical challenges of fuel delivery and maintenance of the energy infrastructure,
energy production on these islands can be up to ten times pricier than on the mainland [18].
This dependence on imported fuels also makes island people more sensitive to price

fluctuations and supply disruptions [19].

Seasonal population fluctuations, mostly related to tourism, cause considerable variations in
energy demand patterns on many islands depending on non-islanders’ consumption practices
[20]. These variations, especially in cooling, lighting, and other basic services, place additional
pressure on already fragile infrastructure during high travel seasons. Infrastructure stress on
islands is driven not only by tourism-related demand surges but also by persistent structural
challenges, such as the integration of intermittent renewable sources, the maintenance of
stable grid operations, and the logistical difficulties inherent to remote locations [21], [22].
Although islands play a strategic role in the global transition to clean energy, they often receive
inadequate investment in essential energy infrastructure. Efforts to scale up smart
technologies and energy storage systems are frequently constrained by outdated grid

networks, a shortage of technical expertise, and limited access to financial resources [23].

24



Tackling these challenges requires comprehensive energy planning that integrates advanced
system management, flexible demand-side responses, and robust storage capacity to ensure

long-term efficiency, reliability, and sustainability [24].

1.2 The Role of Regenerative Hydrogen Storage in Community Energy

System Decarbonisation

Hydrogen is a versatile energy carrier that may be converted into electricity, utilised as a
transportation fuel, heated and cooled, and employed in various other industrial uses.
Hydrogen is expected to play a key role in the future design of energy systems as part of
efforts to achieve green energy independence and enhance energy security [25]. Hydrogen
energy is increasingly being explored as a potential storable fuel and energy carrier,
particularly for long-duration or seasonal energy storage applications. Batteries offer high
efficiency and fast response and are well-suited for short-term grid stabilisation. However,
hydrogen storage may be more viable for extended durations and applications requiring very
low self-discharge or versatility across sectors [26]. Unlike batteries, which are limited by
shorter discharge durations, hydrogen can be scaled to meet multi-day energy demands,
making it especially valuable for deep decarbonisation of power systems with high renewable
penetration [27]. Hydrogen production is expected to double in the next eight years to fulfil the
IEA's Net-Zero scenario [28]. Figure 1-3 depicts the predicted global demand for hydrogen by
production technology between 2020 and 2030. Electrolysis from renewable sources is

expected to provide the most hydrogen (80 Mt).
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Figure 1-3: IEA Global hydrogen demand by production technology in the Net Zero Scenario, 2020-2030 [27].
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Colours are used to refer to different ways of producing hydrogen to couple the production
technology with the carbon footprint of hydrogen production [29]. Figure 1-4 depicts hydrogen
production, use and storage pathways. Black and brown-coloured hydrogen is produced with
high carbon emissions from coal and lignite through partial oxidation technologies such as
gasification. Grey and blue-tagged hydrogen are produced through steam methane reforming
at pressure up to 25 bar and a high temperature ranging from 700-1000 °C [30]. The difference
between Grey and Blue is that the latest is produced from fossil fuels with less CO2 emission
using carbon capture utilisation and storage. The carbon emissions of steam-reforming
methane sourced from natural gas are less than coal and lignite. The least impact hydrogen
is produced from renewable electricity. Electrolysis uses electricity and water to produce
hydrogen. It is important to mention that the environmental impact of these hydrogen
production ways can vary depending on the energy source, country, and type of carbon
capture technology deployed. The largest consumption segment of hydrogen is expected to
be mobility, industrial uses for heating and feedstock, accounting for around 90 % of the
demand by 2050 [31]. Increasing the share of renewable energy generation is expected to
play a central role in future decarbonisation efforts. However, the intermittent nature of sources
like solar and wind power necessitates both short- and long-duration energy balancing
solutions within the system. Hydrogen plays a vital role in decarbonising the electrical demand
since it can offer long-duration and seasonal storage and peak shaving, which will be essential

for grid stabilisation.
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Energy storage systems can provide different services to local stabilisation and management
of grid use depending on the application timescale. For instance, frequency and voltage
control require rapid response within milliseconds and up to seconds. By contrast, applications
such as peak shaving and seasonal storage operate on much longer timescales, ranging from
several hours to multiple months [32]. Hydrogen and battery storage systems are particularly
suited for grid stabilisation and short- to long-term storage applications [33], [34]. It has been
shown that if combined, they will provide higher reliability and lower cost than both
technologies standing alone for specific applications [35]. Batteries are preferred for short-
term storage, while hydrogen storage systems are better for seasonal ones, as shown in
Figure 1-5 [36].
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Figure 1-5: Comparison of ESS in terms of storage capacity, discharge duration, and services provided [34].

Hydrogen as energy carrier in regenerative hydrogen fuel cell systems, can be an answer to
smart grids' long-term storage dilemma since it can complement batteries. A typical
regenerative hydrogen integrated for grid support consists of an electrolyser, hydrogen
storage and a fuel cell. Electrolysis transforms surplus electricity to hydrogen, which is then
stored and used in fuel cells to produce power, therefore balancing supply and demand and
helping system stability [37]. Including hydrogen and battery storage into energy systems,
however, adds considerable complexity, especially in terms of system configuration and
operational control. Ensuring that these hybrid systems function reliably, efficiently, and cost-
effectively depends on their optimised sizing and operational strategies. A wide range of
methods, from traditional computational approaches to advanced metaheuristic algorithms,

have been explored to address these optimisation challenges. Chapter 2 of this thesis reviews

27



these methods in detail, summarises their limitations, and highlights the need for a more
integrated, hybrid optimisation approach, justifying the novel framework introduced in this
chapter. Before advancing to the optimisation methodology, it is important to first delineate
the target community energy system configuration, the role of aggregators, and the functional

scope of energy actors involved.

In this study, a community energy system refers to a decentralised, geographically defined
energy network where local actors collectively generate, consume, and manage energy, often
using distributed renewable sources, with shared economic and social benefits [38]. These
systems may be governed by community members, local authorities, or cooperative entities,
and are designed to support decarbonisation, enhance local resilience, and advance energy
justice [39], [40]. The focused area in this research targets a community-sized deployment
(e.g. a small island or town) comprising distributed PV, hydrogen, and battery storage under
aggregated energy management, aligning with academic definitions and recent European
implementations [41]. A virtual trading layer is assumed to allocate shared energy among
members, prioritising smaller loads, a flexible model adaptable to RED(III) REC policies. While
this logic is not location-specific, it provides a flexible baseline that can be adapted to different

REC governance policies [42].

Establishing these structural and governance parameters is fundamental to ensuring that the
subsequent modelling and optimisation strategies reflect both operational feasibility and
policy-aligned implementation. Numerous studies have investigated the optimisation of hybrid
renewable energy systems that combine hydrogen and battery storage, particularly through
classical methods such as MILP for component sizing and cost evaluation in off-grid or partially
connected environments [43], [44]. Metaheuristic and hybrid optimisation approaches, such
as PSO, GA, and their variants, have also been widely applied to tackle design complexity
under uncertainty [45], [46], [47]. While these methods represent notable advancements,
much of the existing research remains grounded in idealised planning scenarios, frequently
neglecting the practical challenges of system integration and day-to-day operations and
operational behaviour. This highlights the ongoing need for more unified frameworks, ones
that can bridge between architecture and operation, especially under the nuanced constraints

typical of distributed, community-scale energy systems.

Optimising the design and operation of hybrid energy storage systems that incorporate both
hydrogen and battery technologies requires innovative optimisation strategies, ones that
thoughtfully combine the strengths of classical and metaheuristic approaches. Enhancing
these methods can significantly support the effective integration of hybrid storage into smart

grids, contributing to improved system reliability, cost-effectiveness, and long-term
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sustainability. Nevertheless, many existing approaches struggle to reconcile the complexity of
real-world operations with economic and environmental constraints. With a particular focus on
energy communities and grid-connected applications, this study introduces a new optimisation
framework aimed at advancing the integration of PV-battery—hydrogen systems under

practical, scalable conditions.

1.3 Research Aim and Objectives.

Integrating hybrid energy storage systems, such as photovoltaic (PV), battery, and hydrogen
fuel cell configurations, into grid-connected energy systems is becoming more and more
important as the global effort for decarbonisation accelerates. Recent developments are
making these hybrid systems more appealing for energy communities trying to combine
renewable energy integration with grid stability, even if cost and technical constraints prevent
their broad deployment now. Optimising their design and operation is crucial to guarantee that

these systems are both sustainable and reasonably affordable.

The aim of this research is to develop a novel optimisation approach for energy community to
find the optimal design parameters for the hybrid PV- regenerative fuel cell-battery storage

based on grid driven unit commitment energy management.
Objectives:

O1. To Develop Novel Energy Optimisation Technique:

The first objective is to develop a layered optimisation approach combining yearly-horizon
mixed-integer linear programming (MILP) with genetic algorithms (GA) for capacity sizing.
Focusing on PV-battery-hydrogen storage, this hybrid system will combine grid-driven unit
commitment. This method co-optimises inverter rating, contracted grid power and time-of-use
tariffs while meeting hourly energy balance constraints. Validation versus HOMER Pro

confirms techno-economic gains.

02. To incorporate MPC and Flexible Load Optimisation:

Building on the first optimisation, the second objective is to introduce novel flexible loads
capabilities by including a model predictive control (MPC) layer. This layer will employ MILP
to improve operational optimisation for time-of- usage energy management. By integrating a
short-horizon MPC layer with flexible load shifting and peak shaving, this objective aims to

improve short-term reliability and minimise curtailment.
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03. Develop a New Environmental Performance Metric

Building on objective 1 and 2, this objective focuses on developing novel dynamic,
operationally coupled Energy Return on Investment and Energy Stored on Invested
(EROI/ESOQI) index that evaluates energy pay-back under the GA-MILP-MPC schedule,
capturing AC/DC losses, curtailment and multi-path storage flows. This novel index will
combine environmental and financial performance indicators to provide holistic measure for
evaluating hybrid PV-battery-hydrogen systems. It will provide a balanced view reflecting
environmental sustainability as well as financial viability as interactive visualisation for energy

communities.

1.4 Principal Research Contributions

1. A GA-MILP sizing framework that jointly optimises PV, battery, electrolyser, fuel-cell
capacities in conjunction with inverter rating and contracted grid power against realistic
time-of-use tariffs.

2. Atwo-stage unit-commitment and MPC dispatch architecture that incorporates flexible-
load shifting and AC/DC hybrid balancing, delivering peak-demand shaving and
seasonal-storage synergy.

3. Adynamic life-cycle energy metric (EROI/ESOI) explicitly linked to the rolling dispatch,
enabling planners to weigh energy sustainability against cost in community-scale
hybrid renewable energy systems (HRES).

4. Demonstration on the Formentera Island energy community, evidencing cost, and
energy-return improvements relative to conventional rule-based or single-layer

methods.

1.5 Thesis Structure

This thesis is organised into seven main chapters, each building upon the previous to develop
and evaluate a comprehensive optimisation framework for hybrid PV-battery—hydrogen
systems in community-based applications. The structure is designed to guide the reader from
conceptual foundations through methodological development, system implementation, and

comparative performance analysis as shown in Figure 1-6:
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Chapter 1: Introduction

v

Chapter 2: Literature Review

v

Chapters 3-5: Development &
Analysis

Chapter 3: System Sizing with
Hourly Dispatch Optimisation

v

Chapter 4: Improving Modelling
through MPC and Flexible
Load operation

v

Chapter 5: Post Optimisation
Life-Cycle Energy
Cost Analysis and Soluation
Mapping

v

Chapter 6: Integrated Analysis
and Literature Comparison

v

Chapter 7: Conclusion

v

Appendices (Methods,
Algorithms, Derivations,
Figures)

Figure 1-6: Flow of information and chapter
dependencies throughout the thesis
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e Chapter 1: Introduction outlines the motivation for the research, defines the central
aim and objectives, and introduces the core contributions of the study within the

broader context of renewable energy and decarbonisation strategies.

o Chapter 2: Literature Review critically evaluates existing work across hybrid energy
systems, optimisation techniques, and life-cycle energy assessment. It identifies
specific methodological limitations in current approaches, especially those related to

inverter treatment, hybrid dispatch, and sustainability metrics.

o Chapter 3: System Sizing with Hourly Dispatch Optimisation presents the initial
GA-MILP framework used to co-optimise component capacities and dispatch logic
under grid tariff constraints. Comparative simulations and baseline results are

discussed.

e Chapter 4: Improving Accuracy through MPC and Flexible Load Operation
introduces the rolling-horizon Model Predictive Control (MPC) layer, incorporating
flexible loads to refine operational realism. The chapter contrasts sizing outcomes and

dispatch performance with static control methods.

e Chapter 5: Life-Cycle Energy Cost Analysis develops a novel EROI-based metric
for hybrid systems, capturing multi-path energy flow and embodied energy
contributions. The new index is applied to conduct parametric sensitivity and capacity
scaling analyses, enabling deeper understanding of design and performance trade-

offs.

o Chapter 6: Integrated Analysis and Literature Comparison synthesises the results
from Chapters 3-5, analysing how system sizing, control, and energy return interact.
The proposed method is benchmarked against key peer-reviewed studies and tested

under scenario uncertainty to assess its robustness and planning relevance.

e Chapter 7: Conclusion summarises the research findings, highlights the original

contributions, and outlines limitations and potential directions for future work.

The thesis is supported by detailed appendices, including implementation notes, algorithm
descriptions, extended derivations, and additional figures that complement the main

discussion.
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2 Literature Review

2.1 Introduction

2.1.1 Review Scope and Research Relevance

The deployment of HRES, typically integrating renewable sources such as PV panels with
battery and hydrogen-based energy storage system, has been introduced to address the
challenges faces by climate change and the increased reliance on fossil fuels [48]. The
hybridisation between two storage technologies is often used to balance between cost and
environmental burden when compared individually [49]. These systems offer significant
potential for enhancing grid reliability, reducing intermittent renewable generation, particularly
for isolated communities and island-based microgrids that face unique operational and

technical constraints [50], [51].

Despite the various advantages of HRES, their effective implementation remains technically
challenging, particularly in the context of accurately sizing system components and ensuring
optimal operational management and realistic integration [52]. Conventional sizing
methodologies often overlook critical infrastructure limitations in accurately modelling the
contracted grid-power constraints or the power type (AC/DC) interactions and constraints in
the planning and operational methods [53]. Similarly, attempts at reducing strain on the grid
by introducing demand side management such as load shifting are not explored enough in a
planning context since the existing operational control strategies frequently rely on rule-based,
static dispatching strategies that limit the adoptability of flexible loads, thereby reducing their

practical relevance [47], [54].

Parallel to these operational and sizing challenges, the assessment of HRES is often
conducted using traditional targeted metrics such as life cycle cost, environmental indicators,
or technical performance measures. Energy life cycle indices are metrics used to evaluate the
efficiency and sustainability of energy systems. The Energy Return on Investment (EROI) and
Energy Stored on Invested (ESOI) are established metrics on large grid scale but remain
limited when applied to HRES with community-based applications that involve multiple
interacting storage pathways with diverse operational scenarios [55]. They typically do not fully
capture the complexity and interactive nature between the hybrid storage systems,
necessitating the development of new methodologies that better evolve with the current hybrid

storage community-based taxonomy.

Therefore, the main motivation of this literature review chapter is to critically analyse and study

the current body of knowledge on the sizing and operational management of HRES, together
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with evaluation techniques that measure their life-cycle energy performance. Thus, the scope
of the literature review specifically covers two interconnected areas: the sizing and
optimisation approaches for HRES with enhanced operational dispatch strategies focused on
multi-nested methods, and the study of EROI and ESOI derivation and their applications in
integrated hybrid configurations that combine multiple storage pathways and dispatch

mechanisms.

2.1.2 Structure of the Chapter

The literature review begins with the fundamental concepts of HRES and continues with
optimisation methods, operational planning, and energy lifecycle cost metrics. Section 2.2
outlines the major features of hybrid systems, the challenges of including them into the grid,
and the specific issues experienced by isolated or island communities, including intermittency,
seasonal variation, and cost concerns. Section 2.3 advances the understanding of the
optimisation methods by discussing established techniques such as Genetic Algorithms and
Linear Programming, and more sophisticated nested approaches. Recent developments in
adaptable load management are also reviewed, underscoring the benefits how flexible

operations can improve system reliability and reduce cost.

Section 2.4 focuses on energy life cycle metrics that are used to assess renewable system,
with closer look at EROI and ESOI and integrated methods. It also considers the limitations of
these metrics when applied to hybrid, community-based applications, and reviews emerging

approaches designed to address the complexity of multi-path energy flows.

Finally, Section 2.5 synthesises key gaps in the literature, specifically in system sizing,
operational control, and sustainability assessment. This structured review thus provides a
clear foundation for the technical methodologies developed in chapters 3, 4, and 5. By means
of this methodical process, the literature review offers a strong basis on which the new

techniques and studies of this dissertation are constructed.
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2.2 Hybrid Renewable Energy Storage Systems: Concepts and
Challenges

2.2.1 Hybrid Systems and Grid Integration

HRES are systems that combine various storage technologies, like batteries and hydrogen
systems, with renewable energy sources, like wind and photovoltaics to reduce the effects of
intermittency and variability inherent in renewable generation. Various microgrid topologies
are used to structure hybrid energy systems depending on the number and type of power
buses involved, as outlined in [56], [57]. Some configurations assign a dedicated AC/DC
converter to each major component. While this modular approach increases flexibility and
control granularity, it also adds to system cost and coordination complexity. Figure 2-1
illustrates three representative architectures: Figure 2-1A shows a DC microgrid, where all
components, including PV panels, battery storage, fuel cells, and loads, interact via a common
DC bus with appropriate DC-DC or DC-AC converters. In contrast, Figure 2-1B illustrates an
AC microgrid, where a single AC bus connects all components, and converters are used to
manage the interface between DC sources and AC loads. Finally, Figure 2-1C shows a hybrid

setup that includes both AC and DC buses. This hybrid bus configuration helps reduce
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Figure 2-1: Diagram of a typical HRES adapted from [57].
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conversion losses and boosts reliability, as emphasised in [58]. While it is suitable for both
residential and industrial uses, it also demands careful coordination and precise inverter

control, as discussed in [54].

Hydrogen storage can act as a complementary long-duration energy buffer in hybrid
renewable energy systems, helping to mitigate multi-day to seasonal mismatches between
renewable generation and demand. In the so-called “power-to-gas-to-power” loop, surplus PV
or wind electricity is channelled through a DC-coupled electrolyser, producing hydrogen that
is compressed and stored in tanks for later use [59]. During extended low-irradiance or low-
wind periods, a fuel cell stack reconverts the hydrogen into electricity, injecting it into the AC
side through the same bidirectional inverter used by the battery bank [60]. Integrating
hydrogen storage becomes especially effective in systems with high seasonal variability and
where renewables supply over 80% of total electricity demand, complementing batteries by
addressing longer-duration storage needs [61]. A study modelled an islanded Canadian
microgrid combining PV, wind, batteries, and a 700 kg hydrogen storage tank. The hydrogen
tank maintained levels above 200 kg for over 5,000 hours each year [62]. These results
suggests that hydrogen can effectively support extended energy storage needs, working well
alongside traditional batteries, especially in hybrid renewable setups operating in isolated or

weak-grid environments.

Reviewing the wider body of research, the main obstacles to deploying HRES include
intermittency, high capital expenditure, and complex integration [63]. The critical role of
sophisticated modelling tools and adaptive operational strategies in sustaining energy
reliability and maintaining grid balance, given the unpredictability of renewable resources, has
been highlighted in the literature [60]. Reliability remains a major technical issue for HRES, as
it requires sophisticated forecasting methods, improved storage solutions, and enhanced

grid-management strategies, as noted in [64], [65].

A pivotal aspect in the deployment of hybrid renewable energy systems is the
techno-economic optimisation of inverter stages. Acting as the interface between the DC
produced by photovoltaic arrays and battery banks and the AC requirements of utility networks
and building loads, inverters have a decisive influence on overall efficiency and power-quality
compliance [66], [67]. For instance, A study of an off-grid PV/Wind/Tidal/Fuel Cell hybrid
system tailored to the Urmia region found that a 425 kWp PV array paired with a 54.98 kW
inverter yielded the lowest net present cost under reliability constraints [68]. However, the
inverter was treated as an independent decision variable, unconstrained by PV size and
optimised only to meet peak load, resulting in an extreme DC/AC ratio (7.7:1). This raises

concerns about implicit curtailment, as excess PV beyond the electrolyser’s capacity was not
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penalised or quantified in the model. Inverter sizing in HRES configurations must be precise.
Oversizing adds unnecessary capital cost, while under sizing restricts renewable utilisation
and reduces overall project revenues through clipping and curtailment. Apart from internal
component sizing, HRES's interaction with the utility grid introduces another important degree

of complexity.

Most studies on grid-connected microgrids have treated the power grid as an infinite power
supply or power sink, guaranteeing the energy balance inside the microgrid when energy
storage systems are either full or empty. A grid-linked PV/fuel-cell/lhydrogen storage system
sized using HOMER Pro for a university lab demonstrated that a 54.7 kW PV array, 7 kW fuel
cell, 3 kW electrolyser, and 8 kg H, tank could supply 96.7% of the laboratory’s annual
electrical demand with renewable energy at a cost of just 0.0418 $/kWh [69]. In the simulation,
the utility grid was treated as an infinite sink for excess generation and an unlimited import
source, as the sell-back price was set to zero. However, distribution-network constraints such
as maximum contracted power or feeder thermal limits frequently prevent that idealised
flexibility. When renewable output exceeds these limits, utilities may curtail generation or
impose demand penalties to maintain balance. Hence a realistic techno-economic
optimisation must include the full tariff structure, particularly the fixed charge for contracted
power and the variable penalties for demand peak overruns, so that the selected operating
strategy respects those network constraints throughout the project life cycle [67]. In the
Spanish industrial sector, even a 10—20% reduction in contracted power can significantly
increase penalties under coincident tariff systems. In one study [70], reducing the contracted
capacity from 260 kW to 220 kW in a meat-processing plant led to a €564 increase in annual
variable charges, from €1,263 to €1,827, due to more frequent peak overruns. This largely
offset the expected savings and revealed a U-shaped cost relationship between contracted

power and total demand charges.

2.2.2 Specific Challenges for Island Energy Communities

There are approximately 11,000 permanently inhabited islands globally with 730 million people
across various oceans, lakes and seas as of 2020 [71]. Europe has 2200 inhabited islands
with a total of approximately 16 million residents, which corresponds to nearly 4% of the total
EU population [18]. The energy generation on these islands has difficulties and has high costs,
reaching up to ten times the expenses incurred on the mainland [72]. Furthermore, relying on
non-renewable energy sources produces enormous greenhouse gas emissions and other

pollutants, which have a detrimental impact on the ecology and human health.
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Island communities have recently demonstrated growing interest in solar and wind energy as
part of a transition toward more sustainable power sources. However, high-renewable
penetration systems often experience pronounced seasonal mismatches between energy
supply and demand, necessitating long-duration energy storage solutions. Hybrid systems
that combine hydrogen fuel cells with battery storage are especially appealing as they provide
short term and seasonal storage [73]. The prompt adoption of these renewable solutions
requires a focus on the optimisation for the community renewable generation and
management at the planning phase to ensure technical performance, cost-effectiveness, and

environmental sustainability.

Many island power systems operate on diesel, which produces very high LCOE by generating
high share of their power. For example, Galapagos' diesel plants produced 91.5% of its power
in 2021 at up to 500 $/MWh, about an order of magnitude higher than mainland Ecuador’s
average wholesale cost. Despite subsidised retail prices, Fernando de Noronha imports more
than 6.6 million litres of diesel annually, which raises wholesale generation costs to 310 $/MWh
[74]. Due to severe supply fragility, Principe Island experiences scheduled blackouts of up to
12 hours per day when diesel supplies run low [74]. A 25-year techno-economic assessment
of a proposed zero-emission community microgrid in Arandun, Nigeria shows how radically
costs and emissions can fall when diesel is displaced [75]. The renewable configuration
(photovoltaic, concentrated solar power, micro-hydro and battery energy storage) lowered the
net present cost from $408 million (diesel) to $55.7 million and cut the LCOE from 1.01 $/kWh
to 0.26 $/kWh. Importantly, it eliminated all operational CO, emissions, replacing an annual

output of approximately 7.45 kilotons.

In response to these high costs and reliability challenges, islands have also emerged as
strategic platforms for testing next-generation hybrid renewable systems. Islands can serve
as proving grounds for cutting-edge operational models by integrating deep reinforcement
learning for hybrid hydrogen-battery energy management, thereby validating new control
methods under real-world microgrid conditions [76]. Furthermore, European projects such as
REACT', IANOS?, and LOCALRES? illustrate the innovative role of islands in piloting
community-integrated renewables and storage, yet emphasize the continued need for custom-
tailored energy planning that considers local load profiles and tariff structures [23]. While
academic and policy interest in island energy systems is growing, recent literature reviews

suggest that only a limited number of island-specific energy models have been developed.

' https://react2020.eu/
2 https://ianos.eu/
3 https://localres.eu/
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Many existing studies tend to focus on technical aspects and may not fully capture real-world
challenges such as political instability, constrained financing, and the complexities of pursuing
energy autonomy [77].These findings highlight islands not only as urgent cases of energy
transition but also as replicable test beds for the global shift toward decentralised, hybrid

renewable systems.

Orkney, a Scottish archipelago with approximately 20,000 residents, exemplifies both the
promise and complexity of advanced renewable integration in island communities. Since 2013,
Orkney has consistently met more than 100% of its annual electricity demand through local
renewable generation [78]. It hosts the highest density of community micro-wind turbines in
the UK, prompting the launch of Britain’s first distribution-level Active Network Management
(ANM) system in 2009 [79]. By 2012, the island’s 33 kV distribution feeders were saturated,
and ANM now curtails nearly 30% of the output from North Isles turbines [79]. To recapture
lost revenue, Shapinsay’s Development Trust joined the €10.9 million EU-funded BIG-HIT
project, deploying a 1 MW proton exchange membrane (PEM) electrolyser that converts
otherwise curtailed wind energy into hydrogen for school heating, local council vehicles, and
ferry auxiliary loads [80], [81]. However, life cycle costing analyses show that hydrogen
remains expensive due to high input electricity costs, meaning grid congestion and curtailment

risks persist even after integrating storage technologies.

The Isle of Wight, home to around 140,000 people and connected to the UK mainland via
cable, presents a contrasting case where grid stability constraints still limit renewable
deployment despite interconnection [82]. Using the REACT-DECARB planning platform,
researchers assessed two main development scenarios. The first, a fully autonomous design,
requires 663 MWop of solar PV and 1,731 MWh of batteries, resulting in a LCOE between €0.45
and €0.58/kWh, roughly ten times current wholesale prices [82]. A more moderate, grid-
connected configuration with 405 MWp of PV, 187 MW of wind, and 400 MWh of battery
storage offers better economic performance but still struggles to undercut prevailing market
rates [82]. Nevertheless, multi-criteria decision analysis consistently ranks the autonomy
pathway highest when metrics such as per-capita energy yield and CO, reduction are
prioritised over cost [83]. This underscores the continuing challenge: storage expansion alone
cannot make high-renewable systems viable without coordinated demand response and smart

controls.

In summary, the development of hybrid renewable storage systems, especially for isolated
grids, calls for solutions that are efficient, robust, and cost effective. The present study seeks
to contribute by examining advanced control concepts, refined grid integration methods, and

financing models tailored to small, resource-constrained communities. Overcoming these
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hurdles would position hybrid renewables as a cornerstone of sustainable energy supply in
communities that need it most. Having discussed the foundational components and unique
challenges of HRES, particularly in island settings, the next section explores the suite of

optimisation methods used to size and manage these systems effectively.

2.3 Optimisation Methods for Hybrid System Sizing and Dispatch

A variety of methods has been advanced for determining the optimal size of HRES, each tuned
to design goals and levels of model complexity. Table 2-1, compiled from recent surveys, sets
these approaches side by side [84], [85]. Metaheuristic, especially GA and Particle Swarm
Optimisation (PSO) are popular for strongly nonlinear problems because their global searches
are less likely to stall in local optima. Deterministic formulations such as MILP can deliver
mathematically exact solutions when discrete choices dominate, but they often perform poorly
in the presence of complex nonlinearities. New hybrid strategies (for instance, GA-PSO
combinations or mathematical with Metaheuristic) blend the strengths of their originating
algorithms and often reach high-quality solutions more rapidly, though at the cost of greater
computational effort. Commercial packages like HOMER Pro remain valuable for early-stage
feasibility checks, though their built-in solvers allow only limited algorithmic customisation.
Collectively, these trends point toward the need for integrated optimisation frameworks

capable of tackling both design-phase sizing and operational management in a unified fashion.
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Table 2-1: Optimisation Methods for HRES Sizing with Objective Functions adapted from [84], [85].

Optimisation

Method Category Use Case Strengths Limitations
. . Component sizing Handles nonlin- | Parameter sensitive,
Genetic Algorithm - L i .
Metaheuristic and reliability cost earities, wide may converge prema-
(GA) .
trade-offs adoption turely
Particle Swarm Sizing + dispatch un- Fast conver- Prone to local optima,
Optimisation Metaheuristic g+ disp gence, simple weak in multi-objective
der varying load ) .
(PSO) coding scenarios
Simulated Anneal- _ Optimal cost under Global search . .
ing (SA) Heuristic limited design space potential Slower, high tuning effort
Grey Wolf Opti- Cost-efficient storage Balanced Limited experimental
. Metaheuristic . . search-exploit C
mizer (GWO) integration trade-off validation

Multi-objective
Evolutionary Algo-
rithms (NSGA-II)

Multi-objective

Pareto-front design
(cost vs. emissions)

Efficient Pareto
ranking, elite se-
lection

Complex implementation

Mixed Integer Lin-
ear Programming

Deterministic/

Dispatch optimisation,

Accurate, con-

Struggles with nonlinear-

(MILP) Classical inverter sizing straint-friendly ities

Stochastic Pro- I Uncertainty in Real-world mod- | Requires data, hard to
Probabilistic

gramming load/solar generation | elling solve large instances

A:r:\:;gl?“)n/t ?\:II:- Soft Compu- Forecasts and deci- Learns complex Data-intensive; prone to

ghine Learning ting P sion-making via patterns from overfitting P

(ML) trained models data

Hybrid Techniques - . . .

) . . Optimized design with | Synergistic . .
gGveoF;SO, PSO Combined better convergence strengths High computational cost
Software Tools Simulation + \T{iﬁ id;ﬁiﬁ&jﬁg}i- ;J:eer:;rriigr;drgi : Limited customization,
(HOMER, iHOGA) Optimisation . P ) y black-box nature

1es

SIS

2.3.1 Genetic Algorithms (GA) for System Sizing

HRES that combine both batteries and hydrogen storage is increasingly dimensioned with

metaheuristic algorithms, especially when the installation remains grid connected. Algorithms

such as the GA and PSO are well suited to the non-linear, high-dimensional search space that

arises when multiple storage facilities share power flows. This review examines recent single-

objective studies, each centred on either cost or performance, to highlight the current state of

the art and the limitations still present in grid-connected battery-hydrogen configurations as

summarised in Table 2-2.
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Table 2-2: Summary of recent studies on grid-connected PV-battery—hydrogen systems, highlighting key components (BT: Battery, HR: Hydrogen, GR: Grid, WT: Wind, PV:

Photovoltaic, INV: Inverter), methodologies, and limitations.

System
Ref. Study Strengths BT THR TGR [WT TPV T INV Results Limitations
Early comparative analysis of hy- Useful baseline for demonstrating
Zhang et drogen vs. battery in a grid-con- economic role of hydrogen, but Uses fixed, rule-based operation;
[86] g nected PV system; employs rule- v v v x N X outdated methodologically for to- lacks stochastic or forecast-driven
al. (2017) . S . . o :
based operation logic with cost sen- day’s dynamic load management control; simple load profile
sitivity needs
Applies hybrid ABC-PSO to grid- Highlights grid-limit integration in
[87] Singh et al. | connected PV-hydrogen-battery v v v N v N hybrid optimisation; demonstrates | Assumes flat tariff, omits inverter dy-
(2020) system; includes grid exchange lim- feasibility under static tariff as- namics and demand flexibility
its as decision variables sumptions
Strona focus on seasonal dvnam- Excellent techno-economic frame-
. 9 . y work for long-term planning, but Metaheuristic method not detailed;
Le et al. ics, storage degradation, and LCOE . . ) :
[88] T . v | Vv v x v x | lacks algorithmic novelty; could more of a parametric approach than
(2023) minimization; multi-year load sce- ) . R :
Lo benefit from hybrid GA-MILP style | algorithmic innovation
narios included .
nesting
Pushes boundaries on cost mod-
Introduces novel waste-reuse as- . . S
Hassanza- ect in cost modelling; uses im- elling scope (waste reuse), but still | Simplified energy flow and control
[89] | dehFard et P R s v v v v N X omits key operational constraints strategy; no consideration of AC/DC
proved PSO variant; grid participa- X ; . . )
al. (2021) AN for hybrid hydrogen-battery sys- interactions or inverter constraints
tion is included
tems
Applies Levy Flight Algorithm (LFA) Rule-based operation is only Most recent work in the set — marks a
[90] Modu et al. | in real seasonal RES scenarios; in- v v v N v N slightly optimized via LFA; lacks step toward adaptive seasonal strate-
(2023) cludes stochastic resource profiles demand-side flexibility or price-re- | gies, but still falls short of full dispatch
and grid logic sponsive dispatch realism (e.g., MPC integration)
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A recent study examined a grid-connected PV-hydrogen—battery system for a Gothenburg
apartment complex, using the NSGA-II algorithm to optimize cost versus self-sufficiency ratio
across four rule-based dispatch scenarios. In their study energy flows were simulated on an
hourly basis using linear programming, accounting for a 100 kW PV export limit and Nord Pool
electricity prices (0.83 SEK/kWh retail). The setup achieved uninterrupted power supply (LPSP
= 0) and also quantified financial gains from peak shaving at a rate of 1500 SEK/kW-year.
Inverter and grid exchange capacities were treated as fixed inputs during capacity planning
[86]. Expanding the optimisation criteria, A study examined capacity sizing for a campus-scale
PV-hydrogen—battery microgrid in India using a hybrid Artificial Bee Colony—Particle Swarm
Optimisation approach. Their optimal design yielded a levelized cost of electricity of 0.104
$/kWh. A distinctive aspect of the study is that the upper bounds on grid imports (30 kW) and
exports (25 kW) were themselves treated as decision variables. Even with an export tariff (0.80
$/kWh) exceeding the import tariff (0.70 $/kWh), the model still favoured purchasing power
from the grid (37,660 kWh/year) over selling (12,352 kWh/year), underscoring the influence of
temporal mismatches between demand and on-site generation. Nonetheless, the reliance on
a flat tariff and the omission of inverter reduce the direct applicability of the results to

operational settings, though the methodological contribution remains noteworthy [87].

Over a 25-year horizon, a hybrid PV-battery—hydrogen system in tropical Vietham was
optimised using a Multi-Objective Modified Firefly Algorithm [88]. The optimal setup included
a 2360 kWp PV array, a 1890 kWh battery bank, a 362 kW electrolyser, and a 90 kg hydrogen
tank, achieving a levelised cost of electricity (LCOE) nearly 50% lower than comparable
systems in the literature, along with a 98.7% self-sufficiency ratio and a net present value
(NPV) of $0.27 million [88]. In comparison, a battery-only configuration reached 75% self-
sufficiency (NPV $3.00 million), while the hydrogen-only system achieved 95% but resulted in
a negative NPV, highlighting the hybrid system’s superior balance between energy autonomy
and economic performance. However, inverter and grid limits are not planning variables; grid
access is assumed unlimited, and feed-in tariffs are excluded, overlooking export revenue.
Their rule-based seasonal dispatch limits adaptability, despite realistic ageing and storage

modelling [88].

A grid-connected hybrid microgrid including PV, wind, battery, and hydrogen was optimised
using PSO over 20 years [89]. The system achieved a 27% fuel saving and 19% cost-of-
energy reduction via municipal waste reuse. However, dispatch logic is schematic and static;
inverter and grid limits (e.g., max import/export) are imposed as constants but not decision
variables, limiting operational flexibility. Forecasting, dynamic tariffs, or adaptive scheduling
are not considered [89]. The Levy Flight Algorithm was applied to size and manage a

standalone PV-wind-hydrogen—-battery microgrid under seasonal scenarios [90]. The
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annualised system cost reaches $1.86 million, approximately 10% lower than the HOMER
benchmark, while the LCOE reaches 0.93 $/kWh, undercutting the diesel baseline by 8% and
HOMER by 13%, all while meeting a 5% loss-of-power-supply threshold. Dispatch is governed
by static, rule-based logic rather than an optimised, forecast-driven energy management
system. Inverter rating and grid-connection capacity are treated as fixed inputs rather than
decision variables, and the model ignores contractual grid interactions and time-varying tariffs,

which reduces the practical realism of an otherwise season-aware optimisation [90].

Despite their strength in global exploration, current metaheuristic-based sizing studies fall
short in integrating dispatch-aware operational constraints. Grid limits, inverter capacities, and
tariff dynamics are often predefined rather than co-optimised, while dispatch strategies tend
to rely on static or rule-based heuristic strategies. As summarised in Table 2-2, even the most
recent and season-aware studies neglect co-optimisation of grid-integration variables, storage
flexibility, and contractual constraints. This disconnects between design-phase optimisation
and operational feasibility restricts the real-world applicability of these methods, particularly in
community or islanded systems. These observations motivate the transition to more rigorous
formulations like Mixed-Integer Linear Programming (MILP), which can explicitly model hourly
dispatch, enforce power balance, and embed infrastructure limits. The following section

explores MILP’s role in bridging this critical optimisation gap.

2.3.2 Mixed Integer Linear Programming for Sizing and Hourly Dispatch

GA techniques coupled with rule-based energy-management heuristics dominated the early
hybrid-microgrid literature because they explored extensive design spaces with only modest
mathematical effort [91], [92]. Their primary limitation, however, is that every candidate system
is judged under a fixed schedule of dispatch rules that cannot adjust to the subtle, hour-by-
hour interplay among batteries, hydrogen loops, and time-varying grid tariffs. MILP has
become the prevailing analytical framework for sizing and dispatching hybrid renewable-
energy systems: its linear structure accommodates on/off logic, physical constraints, and
layered cost terms while retaining global optimality [93], [94], [95]. A close reading of the
literature shows both the trajectory of that transition and the outstanding gaps it leaves behind.
A detailed comparative summary of these studies, including their energy balance formulations,

bus structures, decision variables, and key findings, is provided in Table 2-3.
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Table 2-3: Detailed MILP comparative summary of these studies, including their energy balance formulations, bus structures, decision variables, and key findings (refer to
appendix 9.1 for energy balance nomenclature)

Bus

No. Reference Horizon Energy Balance Energy Balance Inverter Limits Grid Con- Struc- Dec_:lswn Key Findings Limitations
commentary nected ture Variables
Pres(t) + Perac (D) P_erfect fore-
+ Pec(t) + Pys(©) . PV, bat- T sight, no de-
Full 8760 = pF t) + pN t DC-side strict bal- _ImpI|C|t thr(_)ugh tery, elec- Loaod flexibility tailed inverter or
LD( ) BT,ch ( ) _ )
Marocco et al. ! : inverter effi . (30%) reduces bat "
[43] hours (1 + Py () + Pop (D) ance + binary ex- . Off-grid DC bus trolyser, H, - o network limits,
(2021) ear) L (D) + Per(t olusivit ciency, not de- tank. fuel tery sizing by 35%, | AC/IDG not
y y tailed limits ' LCOE by ~12%
cell sizes clearly sepa-
rated
Ppy (t) + Pyr(t) . . . )
24-hour | +Pypet(6) + Poy(t) | Aggregated DC | Single inverter DCbus | PV, wind, | Batterycheaper | No device dis-
synthetic | =P, (t) + P.4(t) | side balance with- | \"Mit modelled, with AC | battery, hy- | NOW: hydrogen patch disaggre-
[96] | Zhang et al. (2020) tvpi ibat LH . e but shared Off-grid . ’ only becomes gation, AC/DC
ypical + Py (t) + Egis (2) out device-specific side load | drogen o 3
da inv is allocation among all de- matchin svstem competitive with not clearly sep-
y vices 9|y 53% CAPEX cut | arated
B V. Clustering intro-
Z Wy + P = Vie duces small
Full year 1_6];[, )= Ly =0 Grid-con- PV, bat- Hydrogen essential | (1%) sizing er-
- clustered Jrt Tt Generalised multi- | Not detailed for Multi- tery, H for full decarboni- rors, oversimpli-
Gabirielli et al nected
[97] (2020) ’ into 24 energy carrier bal- | individual com- neighbour- carrier PtG sys- zation; heat and fied real dynam-
"design ance ponents hoc?d AC/DC tems, heat | electricity coupling ics (full year
days" pumps save 80% CO, horizon), AC/DC
not clearly sep-
arated
DPous (ti)
=pP(t) — vy (e Perfect full year
Pulti id- icti
- exptct merer | 590 9 ot | i comecton | Pedcion
Full8760 | “Prv  (t) +—%5 Detailed DC-side efficiencies mod- : DC mi- ' cuts LCOE from : !
[98] | Kassab et al. (2024) Vo . and off-grid . contract grid constraint,
hours d 0. balance elled, but fixed . crogrid €0.98/kWh to
+05(t) V5’ ta values options peak (sen- | 0’50 wh AC/DC not
() -y + pg(ty) compared sitivity) ‘ clearly sepa-
Pglti) Vg o rated
Yg
<0
8760 Wind tur- . Simplified con-
. . Full 8760 max E®) ], LIB and H, stor- Inverter limit ap- DC bus, | bines, bat- Hybrid storage re- | 4| \ithout dy-
Giovanniello & Wu hours i ’ age energy bal- . L . . . duces cost by ;
[99] — & ) plied but simpli- Off-grid fully is- teries, hy- o P namic re-
(2023) (no clus- t=1 i ances inde- ! ~40%, overbuilding .
tering) € {LIB, HS} pendently tracked fied landed drogen ratio 2.6x sponse, no grid
tanks ) backup, AC/DC
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not clearly sep-
arated

Per(t) + Ppy () Single AC-bus
+ Pp.ais(6) balance couples Sizes of Annual cost mod- 24h window
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A comprehensive MILP framework tailored for off-grid PV—battery—hydrogen systems was
developed to jointly optimise the sizing of photovoltaic arrays, battery banks, electrolysers,
hydrogen tanks, and fuel cells, while performing a full dispatch over all 8,760 hours of the year
[43]. A notable strength of this work is the detailed treatment of component performance
through piecewise-affine (PWA) representations of stack efficiencies and capital costs,
embedded directly into the MILP. In addition, operating costs are linked to component
degradation, and a simple demand-response program (DRP) is included to allow 30% of the
load to shift based on time-of-use electricity rates with the off-grid configuration [43]. The
system’s energy balance enforces strict supply-demand matching on a singular DC bus
topology, reflecting limited accounting for power type conversions and providing minimal
details regarding inverter functionality. In this Mediterranean island case study (Stromboli
Island, Italy), a LCOE reduction from €0.455/kWh to €0.402/kWh when flexible load shifting is
enabled, mainly through a 35% downsizing of battery capacity. The results highlight that
introducing even basic load flexibility at the design stage can substantially improve economic

outcomes for isolated renewable hydrogen systems.

Building upon their earlier work, [103] explored the optimal design of PV-based grid-connected
hydrogen production systems using a detailed MILP framework. This study significantly
advanced the methodology by shifting from a single DC bus topology to a more nuanced multi-
node approach distinguishing between DC power, AC power, and hydrogen balances [103].
The model separately tracks DC-side balances for PV-battery subsystems and AC-side
balances for grid-electrolyser interactions. Crucially, electrolyser partial-load behaviour is
modelled using PWA approximations to capture efficiency variations over the operating range.
Sensitivity analysis across grid electricity prices shows that at prices above €120/MWh, it
becomes economically optimal to oversize PV arrays and electrolyser capacities to minimise
grid reliance. The study finds that grid availability substantially reduces the need for large
hydrogen storage capacities, with hydrogen levelized costs ranging between €3.5 and €7 per

kilogram depending on market conditions [103].

Despite these enhancements, the mathematical model presented in [103] still exhibits limited
detail concerning power conversion components such as inverters, along with relatively
sparse treatment of grid constraints and inverter operational parameters. This progression
clearly shows growing recognition of the importance of explicitly distinguishing AC/DC power
balances in system optimisation models, though future work may benefit from a more thorough
consideration of inverter operations and grid interaction constraints to further enhance techno-

economic results.
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Building upon a related framework, the authors in [96] proposed a MILP model that co-
optimises PV, wind, battery and hydrogen storage over a single 24-hour window derived from
averaged annual weather data. The formulation minimises total annualised cost (capital,
replacement and O&M) while meeting both electrical and thermal loads. It enforces binary
exclusivity between battery charging/discharging and electrolyser/fuel cell operation, ensuring
operational realism. Under current technology costs, the optimiser selects a battery-only
system at approximately 6,989 $/year, outperforming a hydrogen-only configuration at $7,764
$/year. However, if hydrogen CAPEX falls to around 47% of present levels, the two
configurations achieve cost parity [96]. Incorporating fuel-cell cogeneration reduces annual
costs by a further 3-5% when thermal demand is substantial, highlighting hydrogen’s longer-
term promise. A notable simplification is that the DC-side energy balance aggregates all
generation and storage outputs into a single inverter stream, which is forced to match total AC
demand and is capped by the inverter limit. Because this flow is not disaggregated by source,
the model cannot resolve the hourly contribution of each technology to the AC load, leaving

the detailed energy mix unidentified [96].

Reference [97] extended the multi-carrier optimisation paradigm by formulating a MILP that
captures the interactions among electricity, heat, gas, and hydrogen flows within a
neighbourhood-scale system. The energy-balance formulation generalises supply-demand
matching across all carriers, incorporating imports, on-site generation, feed-in exports, and
device fuel requirements. To maintain computational tractability over the full 8,760-hour
horizon, daily profiles are clustered into a limited number of “design days” using k-means
techniques, preserving critical peak demand values. Coupling rules are introduced to pass
each storage device’s state from one design day to the next, allowing the optimiser to plan
multi-day and seasonal charging cycles [97]. In a case study for a Zurich neighbourhood,
around 24 design days were sufficient to recover storage sizing within 1% accuracy compared
to a full-year model. Results indicate that CO, emissions can be reduced by up to 80% using
only heat pumps and thermal storage, while deeper decarbonisation requires integrating
battery and hydrogen-based power-to-gas (PtG) systems. Hydrogen becomes indispensable

for achieving long-term seasonal shifting and near-zero carbon operations.

In [100], a reliability-oriented MILP framework is presented to co-optimize the sizing of gas
turbines, PV arrays, battery storage, and a standby backup unit, while performing hourly
dispatch. To maintain computational feasibility, the 8,760-hour year is condensed into six
“typical” days (average conditions) and four “extreme” days (periods of peak demand or very
low renewable output) using a clustering algorithm. The formulation imposes explicit reserve
and starts-up constraints so the islanded microgrid can still cover demand if any one major

generator unexpectedly goes offline. Meeting this explained reliability requirement raises total
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annual cost by 2.8 % for a remote gas plant and 10.4 % for an isolated airport yet guarantees
uninterrupted service during such an outage. The optimised design shifts investment toward
a larger battery and a slightly smaller PV array, allowing the battery to supply spinning reserve
without oversizing conventional generators. Inverter losses are modelled by a fixed efficiency
factor, and no contracted-peak charges are included due to the fully off-grid nature of the

system [100].

A notable contribution is presented in [99], where a single-layer MILP simultaneously
optimizes the sizing and dispatch for a fully islanded, 100% wind-powered microgrid combining
lithium-ion batteries and hydrogen storage. The model captures all 8,760 hours without
clustering, offering a credible representation of both daily and seasonal balancing
requirements [99]. Hybridising lithium-ion batteries with hydrogen storage reduces the
annualized system cost from $75 million per year (battery-only) or $59 million (hydrogen-only)
down to $43 million per year for the combined system, achieving a 40% cost reduction. Under
projected 2050 technology costs, this drops further to $19 million per year. In the optimised
hybrid configuration, lithium-ion batteries operate for 90% of the time, while hydrogen systems
support around 27%, bridging long-duration winter deficits. The results also reveal that 84 MW
of installed wind capacity supports a peak demand of 33 MW, resulting in a generation-to-
demand overbuild ratio of approximately 2.6 times, essential to maintain supply reliability
without grid backup The results also reveal that 84 MW of installed wind capacity supports a
peak demand of 33 MW, resulting in a generation-to-demand overbuild ratio of approximately

2.6 times, essential to maintain supply reliability without grid backup [99].

A detailed MILP method is introduced in [101] for planning and scheduling the use of PV-
battery systems under two pricing structures: time-of-use (TOU) and demand-based pricing.
The model first maximises the net present value (NPV) of capacity selection over a 10-year
horizon, followed by hourly dispatch to minimise first-year electricity bills using half-hourly load
data. To maintain tractability across 17,520 time periods per year, PV and battery sizes were
discretised into a small, actionable decision set [101]. In both residential and commercial
scenarios, the optimiser favoured the largest PV capacity with minimal or no battery storage,
highlighting limited value for batteries under current tariff regimes. A fixed inverter efficiency of
97% is assumed whenever power crosses the DC/AC boundary, but no upper limit or
associated cost is imposed, allowing the inverter to act as an unrestricted conduit. Grid-
contracted power is also fixed, eliminating clipping risk and enabling oversized PV outputs to
remain uncurtailed. This helps explain the model’s bias toward large PV and minimal storage.
Overall, the study provides strong evidence that tariff structure, rather than storage economics,
plays a dominant role in capacity decisions, an insight with major implications for both policy-

makers and investors [101].
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A MILP-based optimisation framework is developed in [102] for sizing and dispatch strategies
in a DC microgrid, primarily examining the trade-offs between isolated and grid-connected
scenarios over a full-year horizon. The results show that grid support significantly reduces PV
and battery sizing requirements, yielding a cost of €0.28/kWh compared to €0.85/kWh for the
isolated case. Sensitivity analysis reveals that lower battery costs favour greater battery
capacity, whereas higher battery prices incentivise PV oversizing and curtailment to minimise
storage reliance [102]. Across all scenarios, battery replacement costs, due to their 5-year
operational life, emerge as the largest contributor to total system expenditure. The study also
confirms that incorporating PV curtailment into the optimisation process helps avoid
unnecessary battery oversizing, thereby enhancing the economic feasibility of microgrids

without compromising reliability [102].

Building significantly on [102] initial contribution, [98] further advanced their MILP framework
by incorporating more realistic grid constraints and market conditions, explicitly introducing
TOU electricity tariffs, grid subscription charges based on contracted power peaks, and
detailed modelling of inverter sizing constraints. The model uses single DC bus bar topology
with inverter/converter ratings as explicit decision variables, limiting instantaneous power
flows according to rated inverter/converter capacities, though without associating
inverter/converter sizing with explicit capital or replacement costs [98]. Simulating a PV-
battery microgrid under French electricity market conditions, they find that grid-connected
designs achieve an LCOE of approximately €0.22/kWh, compared to €0.98/kWh for fully
isolated systems. Furthermore, tightening contracted peak limits from 36 kVA to 18 kVA (36,
30, 24 and 18 kVA as sensitivity limits) reduces dependence on grid electricity but increases
both costs and emissions due to the need for larger local generation and storage [98]. The
study highlights that carefully choosing the contracted grid subscription level is crucial to
balancing cost and environmental targets and confirms that inverter sizing constraints and

TOU tariff structures strongly influence system design.

Overall, the progression from [102] to [98] reflects a clear transition from simplified economic
optimisation towards comprehensive techno-economic and environmental modelling, explicitly
incorporating grid limit constraints, dynamic tariffs, inverter sizing decisions, and
environmental metrics. Nevertheless, remaining simplifications, such as the assumption of
perfect foresight and the omission of inverter capital and lifetime costs, highlight important

methodological gaps, aligning closely with the research advancements proposed in this thesis.

Across the reviewed literature, a recurring structural limitation emerges co-optimising system

sizing and hourly dispatch in a single MILP formulation becomes increasingly complex when
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both long-term coverage and detailed operational modelling are pursued together. To manage

this, most studies adopt one of two modelling strategies.

The first strategy retains the full 8,760-hour horizon but simplifies the operational layer. Several
[43], [98], [99], [102], [103] follow this approach. These models preserve hourly resolution
across the year but adopt structural simplifications, for instance, by fixing inverter capacity
outside the model, aggregating all power flows on a DC bus, or avoiding binary
charge/discharge exclusivity. While most of these studies do not explicitly discuss how
dimensionality is controlled, their formulations are typically binary light, relying on continuous
sizing variables and restricting integer variables to a handful of logical switches such as
PV/load imbalance or electrolyser on/off states. Importantly, this approach also assumes
perfect foresight of demand, generation, and market conditions across the full year, an
assumption that may lead to overly optimistic dispatch and sizing decisions compared to what

could be achieved under limited or real-time information

The second strategy preserves more operational realism but reduces the temporal scope.
Some studies [96], [97], [100] compress the year into synthetic or representative days. For
instance, [96] uses a single 24-hour synthetic day; [97] clusters the time series into 24 “design
days” and introduces continuity constraints to maintain storage behaviour; and [100]
approximates the year with ten representative days—six typical and four extremes—
preserving key peaks while keeping the model compact. These models accommodate features
such as partial-load efficiency, battery cycling penalties, and inverter performance, but the time
compression inherently limits their ability to capture long-term storage dynamics and rare high-

demand periods.

Across both groups, the underlying constraint is structural: maintaining fine operational detail
over an extended horizon leads to an increase in variables and constraints that most MILP
frameworks avoid by design. This helps explain why inverter sizing and grid contract
parameters are frequently treated as exogenous inputs, and why component sizes are often

selected from continuous ranges or predefined list.

To address these trade-offs, the next section introduces frameworks that hybridise
metaheuristic sizing loops with mathematical-programming dispatch submodule. In this
configuration, outer loop explores capacity configurations, while an inner loop evaluates each
size proposal using short-horizon dispatch with detailed operational constraints. This
decoupled structure provides a way to reintroduce operational complexity without significantly
expanding the overall model scale. The next subsection therefore critically reviews state-of-
the-art nested models, evaluating their claims and highlighting persistent gaps: fixed or

neglected inverter sizing alongside effectively unlimited contracted grid power; reliance on full-
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year, perfect-foresight horizons; oversimplified tariff structures; and the absence of explicit

AC/DC nodal representation.

2.3.3 Nested Optimisation Approaches

Nested optimisation techniques, which couple long-term sizing heuristics with short-horizon
dispatch models, have emerged as a powerful strategy for hybrid renewable energy systems
(HRES) that must navigate complexity across timescales, resource variability, and technical
constraints. In particular, the integration of GA, Evolutionary Programming, or Grey Wolf
Optimisation (GWO) at the outer loop with MILP at the inner loop has become a common
structure in recent studies. These approaches bridge the common disconnect between static
design-phase models and dynamic operational constraints, especially relevant in systems with
multi-path energy flows and grid-tied operation. Table 2-4 and discussion critically examine
recent studies that exemplify this nested framework, highlighting their methodological

strengths, techno-economic outcomes, and persistent modelling limitations.

One of the earliest fully implemented examples of a coupled nested framework combines a
GA-based sizing layer with a 24-hour rolling-horizon MILP-MPC dispatch strategy across an
off-grid DC-coupled microgrid [104]. Across a simulated full-year horizon (365 x 24 h
subproblems), the integrated strategy reduced the annualised system cost by 7% (from
$18,095 to $16,819 per year) and levelized cost of electricity (LCOE) by 8.7% (from $0.599 to
$0.547/kWh) compared to a rule-based dispatch baseline. Component downsizing followed:
PV capacity was reduced from 23 to 20 kW, and battery capacity from 80 to 76 kWh [104].
Simultaneously, reliability improved, with the loss-of-load probability reduced by 75% (from
0.0032 to 0.00079). However, the modelling assumes a perfectly ideal DC bus, omitting both
inverter losses and any explicit AC layer, limiting the applicability of the results in real-world

systems that require AC supply or bidirectional grid exchange [104].
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Table 2-4: Overview of recent nested optimisation studies combining heuristic sizing (e.g., GA, GWO) with short-horizon MILP dispatch for hybrid renewable energy systems
(HRES). System architectures are denoted using the following component codes: PV — photovoltaic panels, WT — wind turbines, BT — battery storage, FC — fuel cells, EL —
electrolysers, TK — hydrogen storage tanks, IN — inverters or power electronics, GR — grid interface, OR — other components such as heat pumps or thermal storage. Each
study is assessed for control structure, optimisation layers, component integration, and major limitations.
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Earlier foundational work introduced a bi-level system sizing framework in which a GA acts as
the upper-level leader, proposing candidate plant configurations [106]. These are
subsequently evaluated by a lower-level, hourly mixed integer linear programming unit
commitment (UC-MILP) model with the objective of minimising total annual cost. To reduce
computational effort, the GA is applied to weekly-averaged profiles of demand and solar
irradiance. Once an optimal configuration is identified, it is subjected to a more granular 1-
hour rolling-horizon simulation, executed daily over an entire year. If the simulation reveals
energy shortages, the fuel cell and electrolyser capacities are iteratively adjusted. When a
10% forecast error is introduced, the robust analysis produces a cost range from €174k (best-
case) to €279k (worst-case), highlighting a 38% range attributable to uncertainty rather than
to changes in the optimisation strategy [106]. Comparing the MILP dispatcher with classic rule-
based control method nearly triples the battery size, from 189 kWh to 407 kWh, and raises the
capital cost from €128k to €175k. This result underscores the inefficiency of fixed heuristic
approaches in hybrid microgrid applications. Although the model accounts for battery ageing
and enforces strict constraints on state-of-charge (SOC), level-of-hydrogen (LOH), and power
limits, it assumes ideal, lossless static converters, thereby neglecting AC/DC conversion

losses and their associated operational impacts [106].

The work in [107] builds directly on earlier foundations by extending the same GA + UC-MILP
co-optimisation approach to a stand-alone multi-vector micro-grid with parallel AC, hydrogen,
and thermal buses. A GA-driven sizing layer is coupled to an hourly UC-MILP solved on 12
representative days and validated in a year-long rolling-horizon run. The preferred design
contains 121 kWp of PV, a 396-kW electrolyser and a 1065 N-m? hydrogen store, giving 25
hours of fuel-cell autonomy and keeping capital costs below €0.4 million. Eliminating the last
instances of PV curtailment requires scaling the hydrogen tank to approximately 1.4 x 10°
N-m?3, pushing the CAPEX to €2.26 million [107]. However, the simplification of using just 12
representative days may hinder global optimality. Additionally, no aggregate limit or dynamics
are applied to the AC interface. Effectively, the inverter linking devices to the electric bus is
treated as loss-less and unconstrained, potentially overlooking performance bottlenecks

present in practical deployments [107].

To address the scale and runtime challenges of full-year optimisation, the authors in [108]
introduced a two-level hybrid model using Real-Time Grey Wolf Optimisation (RT-GWO) for
sizing and a clustered MILP schedule based on 30 “typical days,” representing an entire year.
Applied to an island microgrid with seasonal hydrogen storage, their model revealed that
substituting the seasonal H, tank with batteries would increase the capital investment from
¥5.6 million to ¥29.7 million, a more than fivefold jump [108]. Inclusion of degradation models

raised overall lifecycle costs by 13.1%, underscoring the financial implications of ageing. While
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the model captures thermal, battery, and hydrogen interactions effectively, it simplifies the
power electronics by assuming ideal inverters. The absence of rolling horizon or demand

forecasting limits the adaptability of the dispatch algorithm to extreme or atypical days [108].

Further enhancing temporal resolution, the authors in [111] propose a recent nested
framework that couples a PSO outer loop with a linear programming (LP) inner loop executing
rolling 72-hour dispatch, a departure from the 24-hour look-ahead used in most prior co-
optimisation models. Applied to a grid-tied, DC-coupled community microgrid, the PSO
determines optimal sizes for PV, wind turbines, and lithium-ion batteries, while the LP
leverages three-day forecasts to co-optimise arbitrage revenue and battery degradation costs.
Compared to their own baseline PSO + 24 h model, their 72-hour dispatch strategy reduces
life-cycle cost by up to 8% and lowers the risk of PV overbuild by preserving battery headroom
across multi-day price cycles [111]. The model achieves computational efficiency by solving
72 sub-problems per year, instead of tackling the entire year in a single large-scale
optimisation, though it retains common simplifications, notably fixed inverter efficiencies and
the absence of explicit AC-bus constraints. Consequently, phenomena like inverter clipping or

peak penalties remain outside the optimisation scope.

Pursuing computational efficiency, the authors in [110] introduced an innovative nested Lotus
Effect Algorithm (LEA) with Artificial Neural Network (ANN) surrogates, cutting the
computational runtime from 21.3 hours to just 0.23 hours, about 1.08% of the full loop, while
maintaining an LCOE near $0.057/kWh. Their system, set within a smart-grid context, uses
real-time pricing and demand response [110]. The study stands out for balancing
computational efficiency with techno-economic rigour, showing that integrating ANN models
can dramatically reduce optimisation time without major loss in fidelity. However, their inverter
models remain idealised and the ANN lacks interpretability, making sensitivity analysis difficult
[110].

In a similarly performance-conscious approach, the authors in [109] merged a Multi-Objective
GA (MOGA) with a 3-hour economic MPC (EMPC) layer to model grid-connected residential
HRES under seasonal variability. In this study, the summer week emerged as the optimal
configuration, yielding an annualised cost of $99,484 (10% less versus the next-cheapest
spring week) and the highest renewable energy fraction while maintaining the lowest
aggregated degradation index of ¥ = 50 (a reduction of 72 % versus winter) [109]. Their
inverter efficiencies were fixed (between 90-95%), and clipping was ignored, an omission that
may underestimate the true LCOE and misrepresent periods of surplus generation. The model
horizon spans only four weeks, limiting the ability to extrapolate to long-term operation and

seasonal variability [109].
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Culminating recent advances, the authors in [105] advanced the state-of-the-art by embedding
a multi-objective e-constraint GA within a rolling-horizon 3-day MPC-MILP scheme tailored for
grid-connected residential systems. Their setup evaluates 3-day forecasts with daily re-
optimisation, emulating real operational settings under dynamic pricing. The case study
demonstrated a 44.4% reduction in operating cost and a 54.7% cut in CO, emissions
compared to static dispatch, confirming the potential of predictive control when co-optimised
with system sizing [105]. Yet, grid interaction is simplified by infinite import/export capacities,
and inverter dynamics are omitted. The assumption of unconstrained grid exchange
significantly affects the model’s flexibility, risking unrealistic cost reductions in high-penetration

scenarios [105].

In comparing these nested models, several patterns emerge. First, coupling heuristic sizing
methods like GA or GWO with short-horizon, constraint-rich dispatch models (MILP, MPC)
consistently outperforms static or sequential approaches in both cost and reliability. However,
most models assume infinite size for the inverters, neglect power rating limits, and oversimplify
AC/DC interactions. This can obscure operational limits such as curtailment due to undersized
inverters or overloading of DC links. Only a few studies, such as [105], model demand-side
flexibility forward-looking scheduling mechanisms, and even fewer incorporate contracted grid
constraints or dynamic tariffs, despite their potential influence on system design and
investment outcomes. Second, system performance and cost sensitivity are tightly linked to
the granularity and realism of temporal modelling. Studies relying on representative or typical
days risk under-capturing rare but critical stress periods, especially in island systems where
energy autonomy must span full seasonal cycles. While clustering reduces computational
burden, it must be paired with robust cross-day storage coupling or validation to retain
credibility. Third, hydrogen storage consistently proves its value for long-duration, low-
frequency balancing, reducing battery size, curtailment, and life-cycle cost, particularly when
paired with electrochemical storage for short-term flexibility. The results in [108] and [99]
reinforce this synergy quantitatively. Still, hydrogen systems introduce a second layer of
conversion losses and require precise inverter planning to ensure peak demands are met.
Inverter oversizing to accommodate fuel cell peaks can inflate CAPEX unless modelled jointly

with power-sharing strategies and peak-shaving algorithms.

Despite the advances in computational strategy, incomplete modelling of inverter and grid
interfaces remains the most persistent and consequential omission in nested HRES
optimisation. Even when rolling horizons or stochasticity are present, assuming infinite grid
exchange or ideal conversion masks significant techno-economic trade-offs. As energy
systems become increasingly integrated and prosumer-oriented, these assumptions erode the

external validity of simulation results.
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In conclusion, while nested optimisation frameworks offer a powerful pathway to co-optimise
HRES sizing and operation, their full potential is unlocked only when grid constraints, inverter
dynamics, and demand-side flexibility are explicitly incorporated. This thesis addresses
several of these gaps by incorporating MILP-based formulations that embed contracted power
limits, partial-load inverter constraints, flexible load scheduling, and high-fidelity AC/DC hybrid
modelling into the sizing and dispatch process. Additionally, the approach integrates realistic
tariff structures to better reflect techno-economic constraints in grid-connected scenarios.
Moreover, incorporating elements inspired by adaptive control models such as MPC
framework allows this approach to simulate anticipatory, constraint-aware dispatch strategies
within the design phase, enhancing the alignment between techno-economic planning and

operational feasibility.

The preceding review has surveyed decomposition strategies and practical implementations
of nested sizing-and-dispatch frameworks in the literature. To make explicit the theoretical
mechanism that underpins many of those implementations, the next subsection formalises a
penalty-guided formulation that links hourly dispatch outcomes to long-term design objectives.
The aim is to show, at a conceptual level, how aggregated reliability indicators produced by
the dispatch layer can be used to shape the design search in a manner that is both tractable

and consistent with common practice in the field.

2.4 Theoretical Background: Penalty-Guided Nested Obijective

In nested metaheuristic-MILP frameworks, the upper-level design problem can be expressed
as a penalised objective that couples economic cost with annual reliability indicators computed
by the dispatch layer. This provides a clean theoretical mechanism by which the design search

(e.g. GA) is guided by the total annual unmet and excess energy arising from hourly operation.

Let x € X be the capacity vector and let y(x) be the optimal hourly dispatch over a
representative year returned by the MILP. Define the annual indicators from the lower layer

as:

UG =Y wALEC) = Y (At (2-1)

teT teT
where u; and e; are, respectively, unmet-load and excess-energy slacks at hour t. A general

penalised upper-level problem can then be written as:

min NPC(x; y(x)) + AyU(x) + AE (%) (2-2)

economic term annual penalty guiding the search
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with U, E taken as either the raw annual totals U, E or normalised versions, for example as
fractions of annual demand, and with weights 1, Az = 0 that set the selection pressure. The

lower-level dispatch is a MILP of the form:

buy buy

y(x) € arg_min Z " g0 — v g2 ) + cyue + czee (2-3)
teT

where the coefficients ¢y, cp enforce operational feasibility for a fixed x. The upper-level
weights Ay, A then steer design choices by penalising the annual totals returned by the

dispatch solution y(x).

This structure guides a GA in a transparent way. If A, is large relative to marginal changes in
capital and operating costs, any design with non-zero annual unmet U (x) becomes dominated,
so the population drifts toward capacity mixes that allow the lower layer to meet demand over
the year. A moderate A5 discourages chronic curtailment and nudges the search to right-size
generation, inverter and storage so that production is absorbed efficiently. Because U(x) and
E(x) are annual aggregates rather than hourly quantities, the GA receives a stable fitness

signal that reflects the whole year rather than hour-to-hour noise.

There are equivalent theoretical variants of the same idea. An e-constraint form minimises
NPC(x; y(x)) subject to U(x) < gy, E(x) < €. A guard-rail or hinge-penalty form replaces hard
penalties by []; = max(-,0), for example NPC + A,[U(x) — sU]+ + Ag|E(x) — sE]+, which is
often numerically gentler than very large fixed penalties. A multi-objective view treats (NPC,
U,E ) directly and then uses a scalarisation such as a weighted sum or an e-constraint to

obtain a single fitness value. The penalised form in (equations 2-2 and 2-3) is precisely such

a scalarisation.

Weight selection should be unit consistent, and theory aligned. Normalising first, for example
U=U/D and E = E/D with D the annual demand, yields dimensionless percentages and
makes A, and Az comparable across different cases. An ordering with 1; > Az encodes the
fact that unmet demand is more critical than curtailment. If raw kWh units are kept, the weights
can be set in Euros/kWh as present-value costs, with A, approximating a value of lost load
and Ap approximating the opportunity cost of curtailed energy. Robustness should be
confirmed by simple sensitivity checks, for example scaling A by factors of 1/10, 1 and 10;
designs that remain stable across this range indicate adequate selection pressure rather than

artefacts of arbitrary scaling.

It is helpful to be clear about the role split between layers. The lower layer uses cy, cg to resolve
operational feasibility for a given x and if feasibility exists the MILP will typically drive u; to

zero at most hours. The upper layer then uses 1,1z on the annual aggregates to steer the

62



design toward regions where the dispatch can keep those slacks acceptably small throughout

the year. Writing the upper-level objective as:

minNPC(x; y(x)) + AyU(x) + A:E (%) (2-4)

The formulation above therefore provides a compact, literature-grounded mechanism by
which annual aggregates of unmet and excess energy influence design search through
penalty-weighted objectives, while preserving a clear separation between high-fidelity

operational evaluation and global design exploration.

While penalty-guided objectives reconcile operational fidelity with tractable design search,
economic metrics alone do not capture the full sustainability implications of competing storage
strategies. This observation underscores the need to move beyond purely financial indicators
like LCOE or net present cost. Metrics such as Energy Return on Investment (EROI) and
Energy Stored on Invested (ESOI) provide a complementary and essential dimension to
performance evaluation, shifting focus from “cost-effectiveness” to “energy effectiveness.”
These life-cycle metrics quantify how much usable energy a system returns relative to what it
consumes or embodies across its entire lifespan, including manufacturing, maintenance, and
eventual decommissioning. In doing so, they introduce a distinct ‘energy life cycle’ perspective
that is particularly well suited to multi-vector systems with layered energy storage and

seasonal variability.

For community energy planners, especially in remote or island settings, EROI and ESOI are
not just abstract metrics, they are practical tools for identifying design pathways that maximise
energy autonomy, system resilience, and environmental return. They help quantify how wisely
energy is invested across competing storage strategies (batteries vs. hydrogen), and how
operational patterns like curtailment or inverter clipping affect not just cost, but overall system
sustainability. Moreover, they provide a language to anticipate performance bottlenecks, test

design robustness, and guide transition strategies under real-world constraints.

Building on the operational and optimisation models explored in this section, the next section
introduces these energy-centric metrics, reviews their application in the HRES context, and
evaluates their role in supporting long-term sustainability, especially for decentralised and

community-based systems.
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2.5 Life-Cycle Energy Assessment in Hybrid Renewable Systems

A growing body of literature has applied life-cycle energy metrics, particularly Energy Return
on Investment (EROI) and Energy Stored on Energy Invested (ESOI), to evaluate the long-
term sustainability of renewable generation and storage technologies. These indicators
quantify the net energy performance of a system over its lifetime by relating usable energy
output to the energy required for its manufacturing and deployment. However, in most
applications, these metrics are computed under simplified conditions that overlook the
dynamic interactions present in hybrid energy systems, especially at the community scale,
where generation, demand, curtailment, and storage operate under fluctuating, sub-hourly
profiles. This section reviews a broad body of contributions spanning various system scales
and modelling approaches, with the aim of identifying common assumptions, methodological
gaps, and their implications for community-scale hybrid energy systems. The studies reviewed

are summarised in Table 2-5.

The Energy Stored on Investment (ESOI) metric was first introduced at the device level in
[112], which benchmarked seven storage technologies, including pumped hydro storage
(PHS) and lithium-ion batteries, by comparing cycle life, efficiency, and depth of discharge.
The methodology translated lifecycle energy data into clear ESOI ratios. For instance, the
results showed that compressed air energy storage (CAES) and PHS had ESOI values of
approximately 240 and 210, respectively, far exceeding battery-based technologies. However,
the analysis was static, excluding balance-of-system elements and operational constraints

pertinent to case study- or community-scale implementations [112].

While the ESOI was originally established as a device-level benchmark in [112], a subsequent
study in [107] analytically coupled ESOI with generation-side Energy Returned on Investment
(EROQI), shifting the focus toward system-level energy logic [113]. This study developed a
mathematical framework for integrating EROI and ESOI to identify conditions under which
energy storage is preferable to curtailment. Based on literature averages, the authors derived
an inequality that predicts whether storage increases or reduces net energy return. In a
representative case, photovoltaic (PV) systems with an EROI of 8 could benefit from battery
storage, while wind systems with an EROI of 86 would require storage technologies with an
ESOI exceeding 700, effectively restricting viable options to pumped hydro [113]. While this
formulation provides a theoretical boundary for storage viability, it omits practical
considerations such as inverter efficiency, grid constraints, and real-world load dynamics,

limiting its relevance for community-scale microgrids.
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Table 2-5: Summary of key studies assessing life-cycle energy performance in hybrid renewable systems, highlighting EROI, ESOI, and curtailment-related outcomes across
scales. Abbreviations: Li-ion = Lithium-ion Battery, PHS = Pumped Hydro Storage, CAES = Compressed Air Energy Storage, RHFC = Regenerative Hydrogen Fuel Cell, PtG =
Power-to-Gas, EROI = Energy Return on Investment, ESOI = Energy Stored on Energy Invested, VRE = Variable Renewable Energy.

. Curtailment
Ref Study Storage Type Application Scale E\xliﬁ::fed Base EROI EROI with Storage ESOI Mentioned Scenario Key Takeaways
Considered
Davidsson Storage increases self-con-
Kurland & I ) ) 14-27 (PV- o Implicit (Battery sumption but reduces overall
[114] Benson Lithium-ion Battery Residential EROI only) Decreased by >20% Production Energy) Yes EROI: in curtailment scenarios,
(2019) EROI can fall as low as 7
) L Yes — detailed for Developed inequality showing
Batteries (Li-ion, PbA, PRI PV improves; Wind each technology (Li- when storage is preferable; PV
Barnhart et al. NaS), Pumped Hydro . PV: ~8; Wind: . L s
[113] (2013) (PHS), Compressed Grid-scale EROI + ESOI ~86 decreases unless using ion: 32, NaS: 20, Yes supports even low-ESOI stor-
Air (CAI‘E)S) high-ESOI storage like PHS PHS/CAES: ~700— age, wind requires high-ESOI
800) like PHS
. Grid-scale L . . A Yes, directly RHFCs outperform batteries in
Pellow et al. Regenerative (Wind/PV E.SO|’ Rpund- PV: 8, Wind: P\./' rﬁalntamed/lmprovgd, RHFC'_ 59, Li-ion: 3_5’ compared us- ESOle but lag in round-trip effi-
[55] Hydrogen Fuel Cell ) trip Efficiency, Wind: reduced unless high PHS: 830, CAES: . ) ) ) o )
(2015) overgeneration . ~86 ing derived in- ciency; suitable for PV curtail-
(RHFC) 2 EROI_grid ESOle storage used 1100 ) -
mitigation) equality ment recovery, less so for wind.
- ) PbA often lowers EROI; Li-ion
Ghiassi- ) Varies by tech: PbA < s Yes (access ) g
[115] | Farrokhfal et Li-ion, PbA, CAES Grid-scale (RE EROI PV: 9, Wind: 18 baseline, Li-ion/CAES > Implicit via storage line capacity | 2nd CAES improve i, solar re-
farms) . parameters . quires more grid capacity to stay
al. (2014) baseline constraint) .
above the net-energy cliff
Limpens & ) . . ) Storage-heavy 100% RE drops
National grid Gross and Net ~11 (wind), ~7 22-36 (batt), ~700 Yes, opti- A o
[116] J?g(r;;rg;rt Battery, PHES, PtG (Belgium) EROI (PV) Down to 5.37 (PHES) mized ~3.5% EROI; PtG nee}g;d beyond 40%
Yes (captured PHS is energetically viable at
117] Palmer Li-ion. PHS Grid-scale EROI ~20-30 Li-ion: 0.8 at 60% VRE; Implicit via embodied via sto‘r)a e high VRE levels; Li-ion loses via-
(2017) ’ (ERCOT) PHS: ~7.2 at 60% VRE energy ge, bility quickly as VRE share
VRE surplus) grows
Yes (curtail- Demonstrates how deep decar-
Multiple (battery, National (Belgium, ment affects bonlza.tl_on reduces system-wide
Dumas et al. power-to-gas, etc., 3.9 (when GHG targets are EROI; imported renewable gas
[118] R h 2035 energy EROI 8.9 ) No storage and o )
(2022) implicitly via system most stringent) ; : significantly affects EROI varia-
i system) import deci- IR .
modelling) sions) bility; highlights trade-offs in net
energy vs. emissions goals.
Hydro: 41-78 Demonstrates that hybrid mini-
Kittner et al Mini hydro and PV Community-scale (up to 1.45—284 Indirectly, via grids can rival or exceed fossil
[119] (2016) ’ hybrid systems in mini-grid (village- EROI wﬁh extended Hybrid mini-grid: 21-62 No integration of grid EROI; rich in empirical data
Thailand level) life), PV: 6-30 PV with hydro | but limited treatment of load vari-
o ability and network dynamics.
ESOI highlights energy-intensity
Barnhart & i No load
[112] Benson Li-ion, Na$S, PbA, Grid-scale ESOI Not used N/A Yes (2-100+) model; yes | 92Ps between battery and geo-
CAES, PHS directly . logical storage; long cycle life
(2013) curtailment i na b
critical for viability
Indirect via re- .
. . . . . - ESOI > 1 for Li-ion (hours—
[120] Clerjon & Li-ion, PHS, CAES, National _(France) ESOI by time Not single- Time-scale dependent Yes (per device) sidual de- days), PHS (days-weeks), P2P
Perdu (2018) P2P grid scale valued mand smooth- . .
ing (seasonal) if H, storage is free
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To address temporal variability and storage applications across different timescales, a step
forward was taken in [120], where a frequency-domain decomposition of residual demand was
introduced. The authors applied Haar wavelet decomposition to four years of residual demand
data (load minus variable renewables), breaking it into seven-time bands ranging from 45
minutes to one year. For each band, they extract three sizing metrics, peak power, energy
capacity and cycle count, and use these to size storage options and compute ESOI ratio. Their
dynamic ESOI profiles show that lithium-ion batteries peak at sub-daily scales (up to ESOI 8.0
in the hybrid mix), pumped hydro excels at weekly scales (up to ESOI 7.2 in the wind mix),
and power-to-gas-to-power becomes competitive at multi-day to seasonal scales (up to ESOI
4.5 in the hybrid mix). Despite these valuable insights across hourly to seasonal scales, their
analysis does not include detailed dispatch modelling or local network constraints, both of

which are critical for community-scale applications.

While wavelet analysis mapped storage technologies to temporal bands, more granular
operational realism was introduced in [115], where physical constraints such as power limits,
degradation, and export caps were embedded into ESOl-aware dispatch modelling. The
authors evaluated the impact of energy storage on the life-cycle energy return of a 3 MW wind—
solar farm by imposing a fixed export limit on the feeder; any generation above this cap was
diverted into storage [115]. Using a recursive state-of-charge model that captures
charge/discharge power limits, round-trip efficiency, self-discharge losses, and
depth-of-discharge constraints, they calculate system EROI as the long-term ratio of total
delivered energy (direct generation to be exported plus discharged from the battery) to the
embodied energy invested in both the PV farm and storage [115]. For a 10 MWh storage
system, they demonstrate that lithium-ion batteries elevate the farm’s EROI above the critical
threshold of 8 when the export limit is approximately 0.5 MW for wind and 0.9 MW for solar;
compressed-air storage yields comparable gains, whereas lead-acid batteries never exceed
an EROI of 8 under realistic export constraints. Although this work accurately captures storage
physics (power limits, efficiencies, and cycle life) and applies export-or-curtailment logic at the
grid scale, it does not model how stored energy could be dispatched into community loads
[115].

Yet, the framework in [115] abstracted away from long-duration storage. In contrast, [55]
shifted focus to seasonal balancing, comparing hydrogen, batteries, and pumped hydro across
daily and multi-month surpluses. A net-energy framework was adopted to evaluate
regenerative hydrogen fuel cell (RHFC) systems against lithium-ion batteries and pumped
hydro storage for both daily and seasonal applications. In a reference case with a wind farm
generating 5 MW of surplus power for eight hours per day, the authors sized an RHFC system

comprising a 5 MW electrolyser, a 2.6 MW fuel cell, and 84 MWh of hydrogen storage, yielding
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an ESOI of 59, compared to 35 for lithium-ion batteries and approximately 830 for pumped
hydro storage. When scaled to handle four months of surplus electricity, the RHFC’s ESOI
dropped into single digits with steel tanks, though improved to about 78 when using
underground salt caverns [55]. These results effectively capture the energy trade-offs and
round-trip efficiency penalties of hydrogen-based seasonal storage. However, the model in
[55] assumes a constant daily overgeneration profile and idealised storage durations, omitting
real-world load variability, dispatch constraints, and temporal resolution, thus offering useful
conceptual insight but lacking the operational depth required for practical community-scale

hybrid energy systems.

Building on these system-scale insights, a study re-centred the analysis on household-scale
PV-battery systems, highlighting how storage oversizing erodes EROI even under modest
self-consumption improvements [114]. They evaluate the energy impact of integrating a 12-
kWh lithium-ion battery with a 6 kWp residential PV system using hourly SAM simulations
across five U.S. climates. In a “grid-available” case all excess PV is exported to an assumed
infinite sink, whereas in a “curtailment” case surplus must charge the battery or be lost. In their
work, system EROI is defined as the lifetime ratio of delivered electricity (direct
load/export + battery-discharged) to embodied energy inputs for PV and battery components
[114]. Results highlight that adding the 12 kWh battery boosts self-consumption from 40—66%
to 72-93% but lowers EROI by 21% (27 to 21 in Arizona) and by 50% (14 to 7 in Alaska) under
curtailment; doubling to 24 kWh further cuts EROI by 34% due to poor utilisation of oversized
storage. While the study offers valuable insights into the autonomy—EROI trade-off across
climates, its simplified demand representation and absence of grid-export constraints limit its

applicability to more complex, community-scale systems [114].

Moving beyond residential systems, [119] evaluated real-world micro-hydro and PV projects
in Thailand, comparing empirical life cycle EROI values and showing how hybridisation affects
overall system energetics . They apply a comprehensive life cycle EROI framework to five run-
of-river mini hydro plants (1.15-5.1 MW each) in northern Thailand and to a 3 MWp grid-
connected solar PV system modelled in PVSYST, compiling embodied energy inputs for
manufacturing, operation, and other phases over each technology’s lifespan [119]. They
calculate EROI as the ratio of total lifetime electricity output to the sum of all energy
investments, finding that mini hydro plants deliver EROI values between 41 and 78 under base
assumptions, rising to 145-284 if plant life is extended to 100 years and transport energy
halved, while PV systems range from 6—12 for crystalline modules to 11-30 for amorphous
silicon [119]. When these resources are combined in hybrid mini-grid scenarios with PV
contributing 20-50% of annual generation, the overall mini-grid EROI falls into the 21-62

range, rivalling or exceeding that of conventional coal-based grids (EROI = 46). While the

67



study offers detailed life cycle accounting at the village scale, its treatment of local demand
and network dynamics is simplified, limiting its ability to fully capture operational realities in

community-based systems.

While authors in [119] used real-world infrastructure data, [117] returned to a modelled
approach, introducing a reliability-constrained system EROI framework that captures
diminishing returns from increased storage capacity. They build a system level framework
tying net energy accounting to reliability by defining inclusive EROI as gross lifetime energy
from renewables plus storage divided by their embodied energy, aligned with a loss of load
expectation (LOLE) of 0.1 days per decade [117]. Using three years of hourly loads (2010—-
2012) and wind/solar profiles, they runs a capacity expansion and dispatch model that
minimises using linear programming embodied energy under hourly balance, state of charge
dynamics and reliability constraints, drawing inputs from assumed EROI ratios (30 wind, 25
PV) and energy intensities (400 MJ/kWh PHS, 960 MJ/kWh Li ion) [117]. The EROI curves
show steeply diminishing returns: early storage yields high marginal gains but beyond modest
renewable shares storage’s embodied energy drags system EROI below practical thresholds,
for instance 7.2 with PHS and 0.8 with Li ion over fifty years. Despite its rigor, the model
abstracts from local grid dynamics and assumes uniform reliability constraints, making it less
suited for capturing the operational diversity and control needs typical of community-scale

systems.

However, the model in [117] was still limited in spatial detail. Researchers in [116] introduced
a geographically resolved, hourly-optimised national model, illustrating how high renewable
shares drive down net EROI without diverse storage. They build an hourly-resolution,
cell-based linear optimisation model of the Belgian electricity system, split into mainland and
offshore cells, to size and dispatch a mix of PV, wind, batteries, PHS and power-to-gas (PtG)
to maximise net EROI [116]. The model’s decision variables include hourly power flows
(generation, storage charge/discharge, imports/exports) and installed capacities (PV, wind,
batteries, PHS, PtG), while constraints enforce hourly energy balance, transmission and
pipeline capacities, storage state-of-charge dynamics (round-trip efficiency, power limits,
depth-of-discharge, self-discharge, cycle life), minimum PtG capacity factor, and periodicity of
storage (start-end SoC match) [116]. They distinguish gross EROI, total renewable generation
including curtailed energy over embodied energy of renewables, from net EROI, which
subtracts the energy costs and losses of storage and curtailment and cast EROI maximization
as a linear program. Applied across scenarios from 10 % to 100 % renewable share (with
imports fixed at 10 %), the optimised net EROI falls by up to 50 % as storage and curtailment
grow, batteries driving the steepest decline, while a diverse storage portfolio becomes

indispensable beyond =40 % renewables [116]. While this top-down approach offers valuable
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insights into system-level energy return dynamics, its spatial and operational abstractions limit
its resolution for analysing the finer-grained, context-specific behaviours of community-scale
hybrid systems. Notably, as in [111], [116] evaluate storage options in isolation, examining
batteries, PHS and PtG individually, rather than exploring potential synergies from their

simultaneous deployment.

Finally, the work in [118] built upon this with a full-sectoral model that directly embeds EROI
into a national-scale optimisation, marking the methodological frontier, though at the cost of
sub-hourly resolution and community-level relevance[118]. Their study represents a
comprehensive endpoint in this review. They embed EROI directly into a comprehensive,
multi-sector, hourly-resolved optimisation of Belgium’s entire energy system, thereby
combining the temporal granularity seen in earlier power farm and microgrid studies with
national-scale scope. By framing their model as a linear program that maximises final-stage
EROI under real-world constraints, hourly balances, storage dynamics, emissions caps, and
technology limits, they show how deep decarbonisation decisions (e.g. importing renewable
gas) can halve system EROI even while satisfying service demands [118]. A global sensitivity
analysis reveals that imported renewable gas accounts for over two-thirds of the uncertainty
in system EROI, and that cutting emissions by 80% reduces it from 8.9 to 3.9, suggesting
potential socio-economic implications of deep decarbonisation. However, like other top-down
models, it abstracts away sub-hourly operational dynamics and local grid constraints that are
vital for distributed energy systems [118]. As such, it illustrates the potential of integrating net
energy metrics into whole-system planning, while also indicating the relevance of
complementary bottom-up models to resolve the local dynamics essential for community-scale

systems.

The reviewed studies collectively trace the methodological evolution of life-cycle energy
metrics from static, device-level ratios to increasingly integrated, system-wide evaluations.
Early work introduced ESOI as a benchmark for comparing storage technologies [112], while
subsequent research extended this concept by linking it analytically to generator EROI [113].
However, both relied on static assumptions and excluded dynamic operational features such

as curtailment, inverter losses, or dispatch flexibility.

The field advanced by decomposing residual demand into temporal bands, aligning ESOI to
the time scales best served by specific storage types [120]. Further developments
incorporated sub-hourly dispatch constraints, and round-trip efficiency, illustrating how export-
limited systems dynamically alter EROI [115]. Seasonal hydrogen-based storage was
introduced, showing that ESOI collapses under long-duration assumptions unless supported

by low-energy-intensity storage such as hydrogen underground salt cavern [55]. Then authors
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in [114] demonstrated how oversizing storage in residential PV-battery systems reduces EROI,
especially under curtailment. Further scaling the scope, [119] calculated empirical life cycle
EROIs for real-world hybrid mini-grids in Thailand, while [111] introduced system-level EROI
linked to reliability constraints, revealing diminishing returns as storage capacity expands.
[116] embedded net EROI into a national linear optimisation model, and [118] extended this
by integrating final-stage EROI into a multi-sector MILP for Belgium under emissions

constraints.

Collectively, the reviewed studies demonstrate a gradual shift in the application of life-cycle
energy metrics, from static, technology-specific indicators to more integrated, system-level
evaluations. Nonetheless, most applications treat EROI and ESOI as static outcome metrics,
typically calculated after fixed system designs are established, rather than as tools for
exploring trade-offs or informing iterative design adjustments within broader techno-economic
planning frameworks. Operational factors such as inverter sizing, contracted grid exchange
limits, and temporal resolution are often treated simplistically or omitted entirely. Moreover,
existing work tends to examine storage technologies independently, evaluating batteries or
hydrogen systems separately, rather than analysing their combined use within hybrid
configurations. Few studies assess how different energy storage pathways interact with
curtailment, grid exports, or demand patterns to shape overall energy life cycle costing
performance. The next section discusses the knowledge gaps that must be addressed to fully
align energy metrics with the operational and planning needs of community-scale hybrid

renewable systems.

2.6 Literature Gap

The literature on HRES, particularly those integrating battery and hydrogen storage, has
advanced significantly in terms of optimisation algorithms, operational strategies, and energy
sustainability metrics. However, several methodological limitations persist and continue to
affect the practical relevance and applicability of most frameworks, especially in community-

based and islanded contexts with complex operational constraints.

A notable shortcoming is the static treatment of inverter sizing and contracted grid power. In
several studies, including [86], [87], [88], inverter capacities are fixed during design-phase
optimisation, without being dynamically linked to system costs or grid interaction dynamics.
Even in detailed MILP-based models such as those in [43] and [98], inverter constraints are
simplified to infinite throughput or constant efficiency penalties without accounting for clipping
losses or cost-driven trade-offs. Contracted grid power is similarly simplified; for instance, [69]
assumes an unconstrained grid exchange, neglecting real-world cost penalties and capacity

limits. Even when grid contracts are considered, such as in[70], they are only evaluated after
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the optimisation, rather than being embedded within the optimisation framework. This
disconnection can lead to PV oversizing or underestimation of curtailment, reducing the

practical value of the derived system configurations.

Operational dispatch modelling also remains predominantly static. Several studies, including
[90], [89], and [88], apply heuristic dispatch logic, which cannot adapt to load variability and
renewable generation availability. Although more advanced control strategies are evident in
the works of [104] and [105], these remain uncommon. Even when predictive frameworks like
MPC are employed in system sizing, integration with load shifting or demand response
remains limited, as demonstrated by [43], where it was applied only in an off-grid system.
Consequently, most models limit the ability to capture the potential of flexible loads to reduce

peak demand or storage requirements, especially under tariff-driven operating constraints.

Hybrid storage dynamics are often oversimplified. While many studies simulate battery-
hydrogen combinations, their interactions are usually modelled on a common DC bus or
through idealised converters. The works by [99] and [86] use simplified energy balances where
AC and DC flows are aggregated, omit AC/DC prioritisation and dynamic switching, or inverter
constraints. Even in multi-bus frameworks like those of [103], nodal interactions are treated
abstractly, and inverter capacities are not co-optimised across storage pathways. This
abstraction may reduce the fidelity of dispatch simulations, particularly for systems that rely
on dynamic switching between battery and hydrogen storage to cover short- and long-duration

deficits.

Further, life-cycle energy performance metrics such as EROI and ESOI are typically derived
from fixed system designs, with minimal operational coupling. Similar studies like [55], [112],
[117] present valuable methodologies but apply them under idealised load and generation
profiles. Researchers in [115] made important progress by incorporating grid export
constraints and battery degradation, but even this work isolates storage dynamic dispatch
decisions. Similarly, while [114] demonstrate how storage oversizing can reduce EROI, but
do not link these outcomes to dispatch or grid constraints. As a result, energy return metrics
are often used as post-optimisation diagnostics rather than being integrated into design

decisions, limiting their utility for real-world HRES planning.

Across these themes, there is a clear convergence of gaps: inverter sizing is often omitted or
simplified; grid contracts are rarely embedded within the optimisation loop; operational control
remains predominantly heuristic; and energy performance metrics are decoupled from system
dynamics with hybrid storage streams. These limitations are particularly consequential for
small-scale, islanded, or tariff-sensitive communities, where marginal changes in design or

dispatch can yield outsized impacts on reliability and cost. This thesis addresses these
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limitations by proposing a unified optimisation framework that embeds inverter sizing, grid
constraints, and adaptive dispatch into both techno-economic and energy return evaluations,
tailored specifically to the operational and planning realities of community-scale hybrid

renewable systems.
In summary, the key knowledge gaps identified in the literature include:

o The absence of explicit inverter sizing co-optimisation within integrated sizing
and dispatch frameworks.

¢ Inadequate integration of contracted grid exchange constraints and dynamic
tariff structures into optimisation routines.

¢ The limited integration of rolling-horizon dispatch strategies, including flexible
load management within system sizing frameworks.

¢ Insufficient modelling of AC/DC nodal behaviour and hybrid battery—hydrogen
storage interactions at operational time scales.

o The use of static EROI and ESOI metrics that are not dynamically integrated into

energy dispatch and planning models with hybrid storage streams.

These gaps collectively underscore the necessity for a comprehensive, integrated
methodological framework. The subsequent chapters in this thesis propose and validate novel
strategies explicitly designed to simultaneously resolve these gaps, enabling the practical
deployment of effective, sustainable, and economically viable hybrid renewable energy

solutions in island-based communities.
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3 System Sizing of Renewable Fuel Cell Battery
Storage Systems with Hourly Dispatch Optimisation

3.1 Introduction

This chapter presents a novel approach for sizing and operating renewable-based hybrid
energy systems, using a nested Genetic Algorithm (GA)-Mixed Integer Linear Programming
(MILP) framework. Building on the foundations of optimisation techniques introduced in
Chapter 2, here the GA conducts a global search over potential capacities, photovoltaic (PV),
battery banks, and fuel cells, while the MILP subproblem enforces realistic hour-by-hour
dispatch constraints across a full year. Combining a high-level search with thorough
operational cycles helps the layered approach to find reasonably priced system designs that
is applied on real-world case study of resource and load patterns.

The chapter compares this annual GA-MILP approach versus two often used, shorter-horizon
approaches. First is a straightforward rule-based load-following scheme, which makes
reactive decisions using local hourly steps only. Second is the well-known HOMER Pro tool,
widely used in microgrid planning. These comparisons offer perspective on how long-horizon
foresight compares to simpler, hour-to-hour logic. Recognising that an annual, single-horizon
view can be optimistic in practical terms, because real systems often operate with rolling

forecasts or limited foresight, this framework is further improved in Chapter 4.
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3.2 System Description and Governance

3.2.1 Physical Configuration of the REC

The integrated energy system presented in Figure 3-1 is designed to combine renewable
energy production assets focused on PV, and hybrid energy storage units at the community
level with a connection to the grid at a nodal or transformer level. Three main power flow types
of DC power, AC power, and Hydrogen Energy flows are distinguished through different
colours in the figure. On the DC side, the PV system, battery, and PEM fuel cell are connected
to a common DC bus whose power is balanced on the DC bus at each time step with the
ability to invert from DC to AC when required (one direction). On the AC side, the grid interacts
bidirectionally with the AC bus, enabling energy exchange based on the load demand,
generation, and storage conditions, while also responding to a typical six-period tariff structure.
Different physical constraints, such as maximum contracted power and the three phases being
equally balanced since power levels are high, are represented in this study as aggregated
power. On the hydrogen side, the electrolysers are powered with AC electricity converting
power to hydrogen to store in a hydrogen tank that has a regenerative hydrogen design,
feeding this stored hydrogen to the fuel cell when needed. The complex energy system
requires accurate modelling of the physical system behaviour, constraints, and technical and
economic performance of an optimisation problem, to ensure precise planning for energy

communities and accurately gauge investment scales.

Community <
buildings Load e

Renewable
Energy systems

E

Inverter

Electrolyser

DC Electricity === H2 w3
AC Electricity )

Figure 3-1: Energy flow for the integrated hybrid energy system and its energy vector.
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3.2.2 Governance, Contracted-Power Limits, and Tariff Context

All distributed energy resources (DER), building-mounted PV arrays, the communal lithium-
ion battery, electrolyser, and fuel-cell are dispatched by a single centralised community-level
Energy Management System (EMS). The EMS executes the MILP schedules generated by
the optimisation engine, refreshes forecast each hour, and issues set points to inverter and
BESS controllers. In regulatory terms, the EMS functions as the aggregator under Spain’s
Royal Decree 244/2019 (Art. 11), which enables collective self-consumption and surplus
compensation for organized communities [121], [122], [123]. Physically, the Renewable
Energy Community (REC) is grid-connected at a single point-of-common-coupling (PCC) on
the low-voltage side of transformer. All community participant buildings share this PCC, which
is constrained by a contracted power limit P7?* € [50,100] kW that the MILP selects to
minimise the overall NPC, subject to the step-wise access-charge schedule in 3.3.2.2.

Because the optimiser restricts F;7%* to values below 100 kW, the REC remains in the
simplified collective self-consumption export bracket [121]. Any surplus is credited by the
supplier/retailer at the applicable price (0.051 €/kWh reference value here), capped each
billing period (monthly) by the energy imported in that same period. There is no carry-over of
credits between periods. The DSO provides metering and allocation to participants; settlement
is performed by the supplier, as shown in Table 3-1. The MILP enforces that cap for both
import and export and prices energy using the six-period 3.0 TD tariff that is explained in
section 3.4.2. Although the present study is a planning and sizing exercise, it incorporates
detailed operational constraints to ensure that the chosen capacities are technically feasible
under real dispatch conditions. Internal trading layer is treated as a virtual ledger applied as
described in the energy community definition in section 1.2; because it does not influence
technical dispatch and sizing at community scale, it is kept outside the MILP to avoid
combinatorial growth, a structure consistent with Spanish LEC pilot projects [124], [125], [126].
With the physical architecture and regulatory boundaries established, the next section

compares alternative sizing-and-dispatch strategies that operate within these constraints.

Table 3-1: Key Operational Assumptions and Regulatory References for REC Model

Element Specification in Model Purpose / relevance Regulatory [Ref]
Controller type Centralised community EMS Single decision-maker —
EMS as REC representative; supplier settles Manages grid contracts and
Aggregator role . . . . RD 244/2019 Art. 11 [121]
compensation, DSO handles metering/allocation surplus credits
Defines where imports/exports are  UNE EN 50549 1/ general PCC
Grid interface One PCC, bidirectional smart meter on LV side
constrained definition [127]
o . . Keeps REC < 100 kW for simplified
Contracted limit Optimised variable, range 50-100 kW RD 244/2019 Art. 4 [121]
compensation
Tariff class Six-period 3.0 TD tariff for imports Mandatory threshold > 15 kW CNMC Circular 3/2020 [128]
Surplus Simplified compensation at 0.051 €/ kWh (2022 . o .
. . Provides realistic export pricing RD 244/2019 Art. 7 [121]
remuneration average), capped at annual imports
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3.3 Comparative Methods for Dispatch and Sizing

3.3.1 Overview of Comparative Framework

In this section, a detailed structure of the energy system including PV systems, batteries, and
fuel cells is presented. These components are modelled to facilitate realistic, grid-connected

operational strategies for commercial microgrids. Figure 3-2 shows the optimisation approach

Nested Optimisation Strategy

Global loop

GA- Sizing optimisation

OpEX G

MILP - Grid Time of Use-driven
optimal control

Local loop

Figure 3-2: Nested optimisation approach with progressive parameter adjustment
where the global search for the minimum Net Present Cost (NPC) interacts with the local loop
by passing different component sizes C,. to find the minimum grid operation OpEX.
For a thorough evaluation in this section, two different energy management (local loop)
methods are compared:

1. GA-Yearly Horizon: Single-year, hourly energy management unit commitment.

2. GA-Load Following (Rule-based): Utilises GA with traditional load-following, rule-

based energy management validated with HOMER Pro.

The Load Following method adopts a rule-based, heuristic approach to energy management.
It relies on predefined operational logic to make decisions based on the current state of
generation, demand, and storage at each time step. The method prioritises local energy
consumption, followed by battery usage, hydrogen conversion, and grid exchange, depending
on resource availability. In contrast to the GA-Yearly Horizon method, this approach does not
incorporate long-term optimisation but operates reactively in hourly increments. While it offers
a simpler and more intuitive control structure, it may not capture potential cost-efficiency
improvements that could arise from long-horizon coordination. To facilitate validation and
benchmarking, this method is implemented in Python and cross-compared using HOMER Pro,

a widely recognised microgrid simulation tool.
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3.3.2 GA-Yearly Horizon Method

A layered bi-layer optimisation strategy was developed, combining a GA with MILP to optimise
an energy system over a single year. Figure 3-3 illustrates the flowchart of the proposed
layered optimisation framework. In the global loop, the GA generates a population of candidate
solutions at each generation, where each individual encodes capacity values for system
components, solar PV, battery storage, contracted power, and inverter systems, treated as
decision variables. These capacity sets are passed to the MILP-based local loop, which
performs hourly dispatch optimisation over a single representative year. The MILP determines
optimal hourly scheduling decisions by minimising operating costs while satisfying system
constraints under a six-period time-of-use tariff. It models energy flows among generation
sources, storage units, and grid interaction to meet the hourly electrical demand. The MILP
returns performance indicators, including energy shortages and curtailment, which are used
to assess the feasibility and efficiency of each GA-generated configuration. Following MILP
convergence, the GA evaluates each individual’s fithess based on a full 25-year discounted
cash flow analysis. Although the MILP simulates only a single representative year, its outputs,
hourly energy balances, grid usage, and storage behaviour, are extrapolated over the project
horizon. This allows the GA to estimate Net Present Cost (NPC) and Levelized Cost of
Electricity (LCOE) while iteratively refining system capacities to converge toward a technically
robust and economically optimal configuration. Although the MILP evaluates system
performance over a single representative year, this annual operation is assumed to repeat
consistently over the full 25-year project horizon. This assumes load and generation patterns
are statistically representative and remain stable over time a simplification that balances
fidelity and computational demands. This approach effectively decouples long-term
investment planning from short-term operational optimisation, enabling a practical trade-off
between dispatch resolution and computational tractability. In this study a population-based
Genetic Algorithm is used as the global optimiser for capacity sizing. Population search
samples multiple attraction basins in parallel, while selection, crossover and mutation
progressively assemble high-performing gene combinations. Classical schema results explain
why short, fit building blocks tend to proliferate under moderate variation, and evolutionary
algorithms converge in probability to globally optimal solutions under mild conditions when
computational effort is unbounded. In practice, near-optimality is achieved by maintaining
diversity, preserving elites, and coupling the GA to a deterministic MILP evaluator that
provides stable, near-optimal dispatch costs within a solver tolerance. This coupling reduces
fitness noise and improves selection decisions, so the outer search intensifies around

genuinely good designs rather than artefacts of noisy evaluation. The following section
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presents the implementation details of the GA global loop, including its objective function,

decision variables, and the financial modelling structure.

| Start
N— Global loop: Capacity Sizing
/®  Hourly electrical demand / ‘
. Locathn meteorologmél / Loading Sceriario
e Technical and economical /
e Grid Tariff Structure / l
/e Maximum Generation (Gen)
Initialise Genetic Algorithm: / e Population Size (Num)
’ Minimise Net Present Cost /e Upper & lower bounds
DEAP * /e Crossover and Mutation /
Gen=0and Num=0
:I
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Individual Setup and Evaluation (Cr)
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r _ 7 1
| / Solversetine: / Initialise MILP : .I‘
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/ and Time limit / Gurobi
| ‘ Optimization |
| Grid Time of Use-driven Constraints,
Variables and Constants Setup |
|
| v |
| Operation of Fuel Cell, Battery, and |
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O S
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Optimal Sizing, Cash flow
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\ End
Figure 3-3: Proposed Benchmarking GA-Yealy Horizon Methodological for two layers Grid Time of Use
driven Optimisation approach. The detailed algorithm implementation is provided in Appendix 9.2.
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3.3.2.1 Genetic Algorithm (GA): Upper Loop for Capacity Sizing

This study employs a comprehensive 25-year cash flow model that accounts for capital
investment, grid operating expenses, maintenance, component replacement, and salvage
value for the hybrid energy system. Grid prices are escalated annually over the 25-year
planning horizon to reflect realistic operational cost trends. To evaluate the present value of
future cash flows, all costs and revenues are discounted using a real discount rate derived
from the nominal interest rate and expected inflation. The optimisation process uses NPC as
the primary objective function, guiding the search for the most cost-effective system
configuration. Following optimisation, the LCOE is calculated as a secondary financial metric
to assess the economic performance of the resulting design. Together, this cash flow analysis

provides a comprehensive basis for financial evaluation in community-scale energy systems.

Metaheuristic methods such as Particle Swarm Optimisation (PSO) and GAs are often used
because their resilience in generating global solutions for complicated, nonlinear problems,
such as those found in to the system modelling and cashflow analysis generated [129], [130].
In this study, a single-objective GA is implemented to minimise the NPC of the energy system.
The algorithm is developed using DEAP (Distributed Evolutionary Algorithms in Python), an
open-source Python framework for evolutionary computation. DEAP has been widely applied
in energy system optimisation, including in [131], [132], [133]. The GA performs a global
search across capacity sizing variables and evaluates each candidate’s NPC to identify the
most cost-effective configuration. Guided by principles of natural selection, the GA operates
as the upper-level loop in the optimisation framework. Equation (3-1) defines the GA decision

variables as follows:

G = [PPV: Npt) Pinv, Fygrs Prcs Pers PHT] (3-1)

Where Ppy, is the photovoltaic capacity in (kW), N,,; is the number of battery modules, each
with a commercially available capacity of 4.8 kWh, P;,,, is the inverter capacity in kW, £, is the
maximum power that can be bought or sold to the grid in kW, P is the fuel cell electrical power
output in kW, P, is the electrolyser electrical power input in kW, and finally Py is hydrogen
tank capacity in kg. The GA fitness function minimises the net present cost of the system

during the project’s lifecycle and its calculated using the equation (3-2):

Rproj

Minimise Cypc = z z (CapEX + OpEX, + RepEX,,; — RecValy,) - D, (3-2)
kecCr t=0

Where Cyp¢ is the total net present cost of the system, expressed in euros (€), accumulated

over the entire project duration defined by R,,,; years, CapEX;, represents the capital
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expenditure for component at time t, OpEX, is the operational expenditure at time t, including
maintenance, RepEX , is the replacement expenditure; and RecVal, . denotes the recovery
(salvage) value of component k near the end of the project. D; is the discounted factor at time
t. The cash flow analysis is computed for each component k over each year t of the project.
The discount factor D, is calculated using the following equation:
D — 1
LT A+t (3-3)

Where the discounted factor at time t is calculated for each year, i is the real discount rate
considering inflation rate. The real discounted rate i is calculated using the following equation:

= f
Y (3-4)

Where i’ is the nominal discounted rate and f is the expected inflation rate. The capital
recovery factor CRF is calculated using the following equation:
i (14 i)Rvroj

CRF = (1 n i)Rproj — 1 (3_5)

Where the CRF is used to convert NPC to annualised payments. Near the end of the lifetime
of the project, the recovery value of an equipment, R, is considered and the following equation
is used to calculate it:

Trem

Rv = CREPT— (3'6)

com

Where Cg,, is the replacement cost of an equipment, T,..,,, is the component remaining life at
the end of the lifecycle of the project, and T, is the expected lifetime of the component. The

levelized cost of electricity is calculated using the following equation:

CNPC : CRF
LCOE = ————
Eload (3-7)

To enhance the financial analysis, two financial metrics are computed: Discounted Payback
Period (DPP) and Internal Rate or Return (IRR). The DPP indicates the number of years
required for the cumulative discounted cash flow difference between the base case and the
optimised system to become positive. The IRR represents the discount rate at which the Net
Present Value (NPV) equals zero, thereby reflecting the effective return on investment. A
higher IRR suggests a more profitable project and serves as a key indicator of financial
viability, particularly useful when comparing alternative investment options. The PV model is

integrated into the GA upper loop and implemented in detail, with hourly solar generation
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simulated for each candidate capacity configuration. This generation profile is passed to the
MILP as available energy to be balanced against the load and storage components. In
contrast, the operational behaviour of the electrolyser, fuel cell, battery, and hydrogen tank are
modelled in the MILP operation layer using fixed component efficiencies. Each of these
technologies is represented with a constant conversion efficiency (e.g., electrolyser, fuel cell,
battery), where energy losses are applied deterministically at each hour based on defined
rates. A full description of MILP operations and component modelling is provided in section
3.3.2.2.

The PV array output every time step t is calculated using Duffie-Beckman model with

temperature correction as follows [134]:

Gmodule [t]

Ppy— output [t] = Ppy fPV( ) (14 ap(Telt] — Ts)] (3-8)

GT,STC

In this equation, Ppy_output [t] represents the actual electrical power output of the PV system at
time step t. The term Pp;, denotes the rated power output of the PV module under standard
test conditions (STC), while fpy is a system-wide derating factor accounting for losses such
as soiling, shading, wiring resistance, and inverter inefficiencies. The variable Goque [t] is the
effective solar irradiance incident on the tilted module surface, and Gstc is the standard
irradiance under test conditions. The final bracketed term corrects for the impact of
temperature on power output, where ap is the temperature coefficient of power, T,.[t] is the
cell temperature at time t, and Ts is the reference cell temperature under STC. The model
captures both irradiance-dependent scaling and temperature-induced deviations in panel
efficiency. To determine Goquie [t], Which reflects the irradiance on the tilted plane of the PV
module, the following transformation is applied to the global horizontal irradiance [134]:

sin(a + f3)

Gmodule [t] =Gy [t] : sin(oc)

(3-9)

Where G [t] is the global horizontal irradiance measured in kW/m? at time step ¢, a is the
solar altitude angle and g is the tilt angle of the single PV module. The solar altitude angle «
is itself computed based on the geographic location and time of year using the expression
[134]:

a=90"—- @-6 (3-10)

Where 0 is the site’s geographic latitude, and § is the solar declination angle, which depends

on the day of the year, and it’s calculated as following:
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6 = 23.45 -si 360 (284 + d)
= 23. sin| 7= (3-11)

Where d is the number of the day of the full year, ranging from 1 to 365 days. The PV cell
temperature T, [t] at each time step is estimated using the following semi-empirical formulation
[134]:

G t Nmp,stc(1 — apTestc
Tambient [t] + (Tc,NOCT - Ta,NOCT) (_ngs;/;[ ]) [1 — et ( Ta — )] (3-12)
T |t] =
C[ ] Gmodule [t] ApNmp,sTC
1+ (T, nocT — Ta, noCT ) GnoGT [ T ]

Where Tampient [t] In this expression, Tampient [t] 1S the ambient air temperature at time t. The
terms T, noct @nd T, nocT represent the nominal operating cell temperature and corresponding
ambient temperature under NOCT (Nominal Operating Cell Temperature) conditions,
respectively. GyocT is the reference irradiance used in NOCT testing procedures. The quantity
Nmp,stc indicates the module's peak power efficiency under standard conditions, and a, is the
temperature coefficient of power, reflecting the sensitivity of power output to temperature
deviations. T, st is the reference cell temperature at STC, and ra encapsulates the combined
effect of the module's optical properties, specifically transmittance and absorptance. This
thermal model accounts for the non-linear dependency of module temperature on irradiance
and provides a realistic estimation of cell temperature, which significantly impacts power

generation accuracy.

Table 3-2 summarises the PV model parameter assumptions used in this work. Selection
rationale varies by parameter type: industry-standard assumptions are used where high
consensus exists (e.g., optical loss factor, derating factor); empirical approximations are used
where grounded in prior system deployments (e.g., tilt angle = latitude); and manufacturer
datasheets inform performance-related parameters (e.g., module efficiency, temperature
coefficient). This mixed-source approach ensures realistic modelling while maintaining model

transparency and traceability.

Table 3-2: Key design and standard parameters employed in the PV output and cell temperature modelling.

Sym-

bol Parameter Unit Value Source Source Type
fov Derating factor . 08 [135] Industry default assumption
B Panel tilt angle Degrees 38.7 [136] Empirical value
mp.stc | Module efficiency at STC % 20 [137] Manufacturer datasheet median.
T Optical loss factor . 0.9 [42] Industry default assumption
ap Temperature coefficient %/°C 045 [138] Industry default assumption
of power
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3.3.2.2 MILP for Hourly Dispatch Optimisation

The unit commitment problem is formulated as a MILP model to minimise operational costs at
the lower optimisation layer of the GA—Yearly Horizon framework. The MILP model operates
on a fixed hourly time step (At = 1 h), meaning all energy flow quantities are expressed in
kilowatt-hours (kWh). For consistency with the MILP literature, power-based symbols are
retained under the assumption of consistent units across all hourly intervals. The model is

executed over an annual time horizon t € T, encompassing hourly time steps denoted by:

7 =401, 2,...,8759} 3-13)

The obijective of the MILP is to determine optimal dispatch decisions that minimise total grid-
related expenditures over the year. This includes electricity purchases from the grid, revenue
from energy exports, and penalties associated with unmet demand or curtailed excess energy.
The objective function is presented in equation (3-14) as follows:

L min z (mpuy [t] - Pgria, buy [t] — Tsen [t] - Pgrig, senlt] + penalty ..

ter (3-14)
* Eunmet [t] + penalty excess Eexcess [t])

Where my,, [t] and mg [t] represent the electricity buying and selling prices in €/kWh, and
Pgrid, buy [t] @nd Pgrig senlt] represent the respective power exchanges in kWh. The terms

Eynmet [t] and Egycess [t] denote unmet load and surplus generation, which are penalised to

discourage infeasible dispatch.

Slack penalties are applied in the objective to guarantee feasibility while strongly discouraging
unmet demand and excessive curtailment. A penalty of 1000 €/kWh is applied to unmet energy
(penalty ,...), and 100 €/kWh to excess generation Egcess [t]. These magnitudes were
selected through a grid-sweep sensitivity analysis over both penalty types, tested on 21
deliberately stressed “edge-case” system designs. Edge cases push the MILP to invoke unmet
or excess slack variables by constraining capacities to extreme but feasible levels (e.g., very
low battery, undersized inverter, large PV with small hydrogen storage), thus revealing the
minimum penalty values that still eliminate unnecessary slack use. Results Table 3-3 show
that guaranteeing the minimum attainable unmet energy across all edge cases requires 1000
€/kWh, while only 10 €/kWh is needed to achieve minimum excess. a ratio of 10:1 is retained
between unmet and excess penalties, consistent with common MILP practice in energy and
industrial optimisation [139], [140], by setting excess to 100 €/kWh.
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Table 3-3: Sensitivity sweep for penalty selection across 21 edge-case designs

Penalt Tested penalt Edge Minimum penalty | Cases meet- Selected
t y P y 9 meeting all ing target at <10 | =100 value
ype range (€/kWh) | cases(n) | ;565 (€/kWh) <1 (€/kWh)

Unmet {0, 0.1, 1,10,

energy 100, 1000} 21 1000 3 3 5 1000

Excess {0, 0.1, 1, 10,

energy 100, 1000} 21 10 21 21 21 100

These penalty parameters steer the GA-MILP framework toward feasible and balanced
system configurations by penalising excessive unmet demand or curtailment. After solving the
annual dispatch problem, the MILP provides the GA with operational outcomes, specifically
the total unmet and excess energy associated with a given capacity design. These outcomes
reflect how well a candidate system can meet demand and utilise generation under real-world
constraints. The GA then uses this feedback to evaluate fithess and iteratively refine its
capacity choices, avoiding over- or under-sized systems. The specific thresholds and penalty
values used to guide this process are detailed in the subsequent section 3.3.2.3 on penalty

functions.

The energy balance constraint is formulated to ensure that at each time step ¢, the total energy
generated through renewable systems such as PV and exchanged within the system equals
to the energy consumed responding to the load, accounting for any unmet and excess energy.
It meant to distinguish between AC and DC components connected through an inverter,
ensuring accurate tracking of energy flows. The energy balance equation is formulated and
designed to distinguish between AC and DC components connected through the decision

variable of the inverter capacity as follows in equation (3-15) and (3-16):

P ren, DC inverted [t] +P ren, DC remaining [t] + P battery, discharge [t] + P fuel-cell [t]

Pinverter [t] © (1 + 1 —npc/ac inverter)

- P battery, charge [t] - (3-15)
— Eexcess [t] =0, VteT
P inverter [t] +P grid_buy [t] —P grid_sell [t] —P load [t] —P electrolyser [t] + Eunmet [t] =0, (3-16)

VteT

Where the Prep, pcinveres [t] IS PV renewable generation that is consumed by AC load, or used
to start the electrolyser, or sold to the grid, giving priority to responding community electricity
demand first. Any remaining renewable generation at the same time step is represented as
Pren, DC remaining [t] Which is available at the DC bus side that can be used either to charge the
battery or recorded as excess. Pgyig pyy [t] and Pgg sen[t] capture the system interaction from

external grid.
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The objective function and the energy balance constraint overlaps with the grid interaction
variables, and unmet and excess energy are recorded each time steps. Every time step t
decision is driven by the objective and in compliance with this energy balance constraint.
Similarly, Ppattery, discharge [t] @Nd Ppattery, charge [t] represent the energy discharged and charged
to the storage battery in kWh at time t. Pgercenlt] @and Pejectroyser [t] manages the
electrochemical conversion of energy between electrical and chemical form of hydrogen in
kWh at time t.The total electrical load represented by P,,,4 [t] must be satisfied at each time

step. npc/ac inverter S the inverter efficiency, set to 95 %.

Any excess that can’t be utilised locally or be sent back to the grid is recorded as Egycess [t],
while any shortfall in meeting this load is represented by E,,qe[t]. These penalty terms,
embedded in the MILP formulation, reinforce the objective function by discouraging
configurations with frequent curtailment or unmet demand. This supports more balanced
dispatch outcomes and enhances self-consumption and cost-effective grid interaction. In order
for this energy balance constraints provide mutually exclusive interaction that replicates the
physical behaviour, the grid interaction is constrained, limiting direction and maximum values
in equations (3-17) and (3-18):

Pgrig, buy [t] < PP~ xgrig [t],  VEET (3-17)

Pgrid, sell < Pgr?ax ' (1 - xgrid [t])' VteT (3_18)

The energy system at a given time step t either can buy or sell, but not both, and is limited to
the max contracted power P;7#* . The binary decision x4y [t] governs the grid interaction in

the power system acting like a switch helping in deciding the direction of the power flow
between the grid and energy system. Similarly, the battery interaction constraints can either
charge or discharge, but not both, and are limited to the allowable battery power as shown in
equation (3-19) and (3-20):

Pbattery,charge [t] = Pb_maX ) (1 — Xpattery [t]): VteT (3-19)
Pbattery,discharge [t] < Pl;'-max ' xbattery [t]' VteT (3_20)

Where Pygtterymax @Nd Ppattery,min are the allowed power for charging and discharging in kW
at time t. The charging and discharging state of charge SoC [t] are limited to the allowed state

of charge limits as following in equation (3-21):

SoCpin < SoC [t] < SoChayx, VteT (3-21)

85



Where SoC,,, is the lowest state of charge that the battery is bounded to 5%, and SoC iS
the highest state of charge of 100%. Each time step, the battery State of Charge SoC|[t] is

calculated using this equation (3-22):

i t] X np- x 100
SOC[t] = SOC[II _ 1] + < battery,charge [ ] Np >

Ny X By,

-22
_ <Pbattery,discharge [t] X 100 (3 )

, VteT
Np+ X Npe X By )

Where SoC[t — 1] is the state of charge for the previous time step, n,_and n,, are the
charging and discharging efficiencies, N, is number of batteries, and B, is the single battery
energy capacity in kWh. Since the battery operation is mutually exclusive, at time step t, the
battery state of charge can only increase its charge due to charging or decrease due discharge
activity. Similarly, the level of hydrogen LoH[t] in the tank is tracked through this energy

balance constraint as following in equation (3-23):

P t] X ng— X 100 Psielcell [t] X 100
LoH[t] = LoH[t — 1] + < electrolyser [t] X 7¢y ) _ < fuel-cell [t] ) (3.23)

Pyr X Hppy Nfc+ X Pyr X Hppy

Where LoH[t — 1] is the level of hydrogen at the previous time step, Pejectrolyser [t] @nd

Psuelcen [t] are electrical input power for electrolyser and electrical output of the fuel cell at time
t, ne— and ng. are the efficiency of the electrolyser and fuel cell, Py is the hydrogen tank
capacity in kg, and H; gy is the Lower Heating Value of hydrogen in kWh/kg. The operation of
the fuel cell and electrolyser is mutually exclusive, in a similar manner to the battery and grid

bounded by the binary decision binary xnygrogen[t] and by the rated power of the fuel cell P,
and the electrolyser Py as following in equations (3-24) and (3-25):
Pelectrolyser [t] < Pel ' (1 — Xhydrogen [t]): vteT (3_24)
Pryelcen [t] < Prc * Xhydrogen [t], VteT (3-25)

LoH[t] in the tank is bounded by the tank lowest level of hydrogen LoH ,,;, of 5% and the
highest possible LoH __ is 100%, as showing in equation (3-26):

LOHm,‘n < LOH[t] < LoH max ’ VteT (3'26)

The sum of the possible DC power of the battery discharging Ppattery, discharge [t], fuel cell
Pt,e1cen [t] @and the portion of the renewable generation at the AC side P,.., pc inverteqlt] at time

step t can be less or equal to the inverter power limit P;,, as following in equation (3-27):

Pinverter [t] = Pirr?\?x ’ VtET (3-27)
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After bounding AC and DC side to the inverter limit P;,, , it is important to establish that the
total renewable generation Py..,_ oupput [t] is fully accounted for in the model. This is achieved
by ensuring that it equals the sum of the portion consumed on the AC bus P, ac [t] and the

remaining portion available on the DC bus Py, pc remaining [t], @ shown in equation:

Pren, DC inverted [t] + Pren, DC remaining [t] = ren— output [t], VteT (3_28)

After establishing this constraint, the remaining renewable generation at the DC side
Pren pc [t] is either encouraged to be charged to the battery, if available, or recorded at this
time step as excess FEgycess [t], accomplishing correct energy balance as following in equation
(3-29):

Pren, DC remaining[t] = Pbattery, charge [t] + Eexcess [t]: VteT (3_29)

The battery is prevented from discharging when there is still remaining power at the DC bus
which is limited by the inverter capacity conversion, prioritising charging and achieved by
linearised big M-method for conditional situations as following in the equations (3-30), (3-31),
and (3-32):

Pren, DC remaining [t] < (M * Xren—gen [t]) t¢ VteT (3-30)
Pren, DC remaining [t] = €- Xren—gen [t], VteT (3-31)
Pbattery, discharge [t] < (1 — Xren—gen [t]) ) Pgmax, vteT (3-32)

Where M and e are large and small numbers, X,.,_, [t] is a binary variable to capture the

remaining renewable power at the DC side P..;,, pc remaining [t]-

3.3.2.3 Penalty Function
Penalties are very important in the GA-MILP hybrid optimisation process in steering the

algorithm toward practical and optimum answers. These penalties apply when system
configurations violate important operational limits, including unmet energy demand or too high
energy generation. These are meant to deter system designs that either fail to satisfy demand
or produce too much unneeded energy, therefore guiding the optimisation toward dependable

and reasonably priced solutions.

When the total excess energy accumulated over the year exceeds a predefined threshold, a
penalty is imposed to discourage system configurations that lead to substantial energy
curtailment. The penalty for excess energy is determined based on the total excess energy

calculated as follows:
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- 3-33
E = Eexcess ®) ( )

T
t=1
Where T is the total number of time steps in the optimisation (8760 hours for a yearly horizon)
and E,cess (t) is the excess energy at time t. If the total excess energy exceeds a predefined
design criteria 100 kWh, a penalty is added to the fitness function before passing this to value

to GA evaluate function as following:

Penalty _, .cc = {P excess, If the E > 100kWh

0, otherwise (3-34)

Where Pgycess IS @ large constant penalty, typically set to discourage and guide the GA away
any significant violation (e.g., € 10,000,000). When the system fails to provide the needed load
at any one moment, an unmet energy demand results. Similar to the penalty for excess
energy, the penalty for unmet energy is determined based on the total unmet energy calculated

as:

— 3-35
U= Eunmet ) ( )

T
t=1

Eunmet (t) is the unmet energy at time t. and similar to the excess of energy, the Penalty unmet

is calculated at the end of each iteration as follows:

Penalty - {Punmet: if 0 > 100kWh

unmet (), otherwise (3-36)

Punmet 1S @nother significant constant penalty number (e.g., €10,000,000) which guarantees the
system avoids under-sizing system capacities. Then after that both penalties for excess

Penalty , ... and unmet Penalty . are added as following to the final a fitness function:

Fitness Value (p,g) = NPC + Penalty . ... + Penalty . (3-37)

NPC represents the Net Present Cost of individual p at generation g. Ultimately, the hybrid
GA-MILP (GA-Yearly horizon) optimisation framework integrates the strengths of Mixed-
Integer Linear Programming for detailed operational dispatch and Genetic Algorithms for
global capacity sizing. This combination enables both long-term financial assessment and
enforcement of operational constraints in hybrid energy systems. By incorporating penalties
for unmet demand and excess generation, the framework encourages designs that are both
feasible and reliable. The resulting approach offers a structured and adaptable method to

address the complexities of hybrid energy system optimisation.
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Equation (3-37) defines a scalar fitness equal to NPC plus hard annual penalties that activate
when total unmet or excess energy exceed design thresholds. Because NPC is in euros and
the triggers are expressed in €/kWh, the scaling is unit-consistent; the chosen magnitudes
make any violating design strictly dominated by feasible alternatives. In parallel, the MILP
layer applies large per-hour slack costs (1000 €/kWh for unmet, 100 €/kWh for excess), so for
a fixed chromosome the dispatch solution already drives slacks toward zero whenever
feasible. Together, these mechanisms yield strong selection pressure: tournament selection
prefers individuals with (U, E) — 0, and only then discriminates on NPC within the feasible set.
This is exactly the pattern observed in the convergence/interaction plots, where parameter

settings that sustain diversity also achieve lower NPC after 20—30 generations

3.3.3 GA-Based Load Following and HOMER Pro Comparison

3.3.3.1 GA-Rule-Based Load Following Method

The rule-based energy management has been used extensively in literature for energy
planning and optimisation of energy systems. The technique allocates energy according to
predefined rules, prioritising certain means to match or follow the energy production to the
fluctuations in the load throughout the day. Rule-based load-following is a widely adopted
control strategy in hybrid energy system planning and simulation. It operates through a
predefined hierarchy of dispatch decisions to balance renewable energy production with
hourly electrical demand. The logic prioritises local energy utilisation by sequentially
dispatching available resources in the following order: (1) direct PV-to-load supply, (2) battery

storage, (3) hydrogen production or consumption, and (4) grid interaction.
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Figure 3-4: Flow Diagram for Load-Following Energy Management Strategy.
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Figure 3-4 illustrates the flowchart of the implemented load-following control logic used in this
study. At each time step, the algorithm calculates the net power (NP), defined as the difference
between renewable generation (REN) and load demand. Depending on whether the system
experiences surplus or shortage, the flow branches into two primary paths. If NP > 0, the
system attempts to store or convert the excess energy, beginning with battery charging,
followed by hydrogen generation through the electrolyser, and finally grid export. If NP < 0, the
model sequentially discharges the battery, operates the fuel cell, and finally imports from the
grid, if necessary. Any remaining mismatch is recorded as unmet or excess energy. This logic
is deterministic and rule-based, making it computationally efficient and transparent, though
limited in its ability to anticipate future states or perform multi-period optimisation. Importantly,
this rule-based dispatch scheme is embedded within the same upper-layer GA framework
described in Section 3.3.2. The GA conducts global capacity sizing by searching across PV,
battery, fuel cell, electrolyser, hydrogen tank, and grid contract values. Its objective remains
the minimisation of NPC over a 25-year horizon. However, instead of using MILP to simulate
hourly dispatch, this configuration evaluates each candidate using the rule-based load-
following strategy. Operational results such as unmet and excess energy are computed for
each annual simulation and passed to the GA for fitness evaluation. This substitution allows a
direct comparison between MILP-based and heuristic dispatch strategies, while maintaining a
consistent outer-loop optimisation structure. For full implementation details of this flowchart,
including component prioritisation, SOC updates, and conditional constraints, refer to

Appendix 9.3, which provides an expanded step-by-step description.

3.3.3.2 Validation Using HOMER Pro
To assess the implementation of the rule-based load-following control logic used in this study,

a comparative exercise was carried out using HOMER Pro, a widely used microgrid simulation
platform known for its capability to model hybrid energy systems. The primary objective was
to benchmark the Python-based GA-Load Following model against an established tool,
examining the consistency of technical and economic outcomes across both modelling
environments. The validation began by configuring HOMER Pro to approximate the same
system specifications, operational constraints, and economic parameters as the Python
model. Key components, including PV arrays, battery systems, fuel cells, electrolysers, and
grid interaction terms, were aligned as closely as possible between both platforms to establish

a comparable reference.

HOMER Pro was then used to simulate dispatch behaviour under its internal load-following
logic, which prioritises renewable utilisation, storage management, and grid exchange. This
served as a reference baseline for evaluating the Python model’s output under similar rule-

based conditions. Performance indicators such as NPC, unmet demand, excess energy,
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battery SOC, and LoH were compared. Particular attention was given to assessing whether
the Python implementation reproduced key aspects of HOMER Pro’s operational logic,

especially in the handling of storage and hydrogen subsystems.

In addition, GA-optimised capacity configurations generated in the Python model, including
PV sizing, battery count, fuel cell and electrolyser ratings, and contracted grid limits, were
manually replicated in HOMER Pro. Although HOMER Pro does not include evolutionary
optimisation, this approach enabled a consistent evaluation of those configurations under the
same dispatch logic for comparative analysis. Overall, the results revealed close agreement
in key dynamic trends such as battery charging behaviour, PV energy use, and hydrogen LoH
evolution. Some differences in indicators like unmet load or cycling frequency were
investigated further as potential effects of variation in constraint modelling or degradation
assumptions. These comparative outcomes support the applicability of the GA-Load Following
model under the assumed conditions, offering a reference point for the broader optimisation
results presented in the next chapter. Comparative performance results for the GA-Load
Following, GA-Yearly Horizon, and HOMER Pro implementations are provided in Chapter 3 of
the result section 3.5, where each method is evaluated across technical, economic, and
operational metrics. Having benchmarked the alternative control schemes, the discussion now
turns to the site-specific inputs and economic parameters that underpin the subsequent

optimisation runs.

3.4 Model Inputs and System Parameters

In accordance with the European Directive on Renewable Energy, Sustainable Development
Goal (SDG) 7: Affordable and Clean Energy, energy communities are encouraged to be
renewable self-sufficient by generating, consuming, storing or selling electricity through
community installation [141], [142]. The Balearic Island of Formentera, home to approximately
12,000 residents is part of this initiative under the VPP4islands project, employing innovative
development of smart energy communities [143]. The following sections provide details of the
case study, and the key information used, starting with the location and description of the
energy community, grid tariff structure, and followed by the economical and performance

model inputs.

3.4.1 Geographical Location and Targeted Island

Formentera (shown in Figure 3-5), the smallest of the Balearic Islands, is located in the
Mediterranean Sea, just south of Ibiza. Two underwater cables from Ibiza to Mallorca connect
it: a more robust 132 kV double circuit cable to handle rising power demand and a 30 kV HVAC

line. Although the island has a 2 MW solar capacity, seasonal demand sees variations from 7
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Figure 3-5: Geographical Context of Formentera Island location

MW in winter to 18 MW in summer, which are usually met by these island links with

considerable non-renewable energy capacity.

The selected case study is located west of Sant Francesc Xavier Village on the island. Figure
3-6 shows two different sites A and B that are approximately 600 meters away from each other.
The community buildings are the council building of Formentera, two schools, a youth centre,

a vehicle inspection station, a fire station and a slaughterhouse. The community buildings

Figure 3-6: The geographical location of energy community buildings west of Sant
Francesc Xavier capital of Formentera Island. Building 1: Culture Building electrical
demand 44,995 kWh/year. Building 2: primary school with electrical demand 47,189
kWh/year. Building 3: Radio and Youth Centre with electrical demand 19,616
kWh/year. Building 4: Preschool with electrical demand 26,596 kWh/year. Building 5:
Vehicle inspection station with electrical demand 11,486 kWh/year. Building 6: Fire
station with electrical demand 23,584 kWh. Building 7: 29,437 kWh/year
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exhibit different usages that would reflect a variety in the electrical demand during the day, at

night and even during the weekends.

Figure 3-7 provides a visual summary of key input data used in this study. Subfigure 3-7a
presents the historical hourly electricity consumption profile of the Formentera energy
community in 2022. These real-world demand values were collected through the
VPP4lslands* project and reflect aggregated load behaviour across public and residential
buildings. The data was essential for initiating system planning and simulation under the
VPPA4lslands project. It was collected through collaborative efforts with the local DSO and
project partners, using system-level measurements and non-invasive monitoring with clamp-
type current transformers (CTs). The Formentera Council’s Engineering Department cleaned
and validated the dataset before distributing it to partners for modelling and use case
development. The data capture clear seasonal variation, with elevated demand during the
summer period, primarily due to increased cooling needs. The total annual demand amounts
to 202,905 kWh, with a daily average of approximately 555.90 kWh and a peak demand of
67.91 kW.
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Figure 3-7: Data Input for Formentera case study

4 https://vpp4islands.eu/
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Subfigure 3.7b illustrates the electricity pricing structure applied in the model. ToU tariff was
derived from local partner inputs within the VPP4lIslands project and reflects the six-period
pricing scheme currently implemented on Formentera. The tariff data were used to model
operational costs and guide energy dispatch optimisation, with further details on the tariff
configuration provided in Section 3.3.3. For solar generation modelling, Subfigures 3.7c and
3.7d show the corresponding solar irradiance and ambient temperature profiles. These
meteorological data were obtained from NASAs POWER database for the geographic
coordinates of Formentera and cover the full year of 2022 [144]. The irradiance dataset was
used to simulate PV energy yield, while temperature data informed thermal performance

adjustments in the PV model.

3.4.2 Grid Tariff Structure

The grid tariff model used in this study is based on Endesa’s business tariff structure, which is
currently applied to public buildings on the island of Formentera as shown in Figure 3-8 [145].
This structure was provided through local collaboration under the VPP4lslands project, where
Formentera serves as a demonstration site. The tariff data were sourced from municipal
infrastructure—specifically the Formentera Council buildings, and cross-validated with the
applicable taxes, including the general electricity tax (5.11%) and value-added tax (VAT) at
21%. The feed-in (selling) price for exported electricity was set at 0.051 €/kWh, while the
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Figure 3-8: Endesa Grid Tariff structure adopted from [120]

average grid purchase price was 0.382 €/kWh, ranging from a minimum of 0.353 €/kWh to a
maximum of 0.478 €/kWh. Electricity costs were observed to peak during the summer months

(June to September), particularly across two high-demand time blocks: 10:00-14:00 and
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18:00-21:00. Weekends and public holidays follow a reduced off-peak pricing schedule. The
tariff model incorporates four distinct monthly charges to reflect commercial consumption
patterns: the fixed contracted power charge F.p, the electricity consumption charge E,., the
peak power penalty charge Fzp and the selling back charge Sg. . These cost components are

integrated into the financial model using the following formulations [128]:

p=i

Fep = Z Pcp - Rt,p * Dinonth (3-38)
p=1
T
Eee = Z (Pgrid, buy [¢] - Thuy [t]) (3-39)
t=1
P=i
Fop = 2 t, x 2% (Pd; — 1.05 x Pcp) (3-40)
p=1
T
Spc = Z (Pgrid, sell [t] " Tself [t]) (3-47)
t=1

The energy system’s main breaker was configured to allow grid import and export flows up to
40% above the contracted power limit. However, penalty charges are applied whenever the
instantaneous demand exceeds this contractual threshold, in accordance with the utility’s
pricing scheme. To account for long-term cost evolution, an annual electricity price escalation
rate of 3% was applied over the 25-year project horizon, consistent with observed historical
trends since 2007 [146].

3.4.3 Cost Assumptions and Sensitivity Analysis for Economic Inputs

The economic and performance inputs form a critical part of the optimisation model,
influencing both system design and operational decision-making. These parameters directly
affect the objective function of the MILP layer and the fitness evaluation in the GA loop,
primarily through the calculation of NPC. The data presented in this section reflects a
combination of sources, including manufacturer specifications, academic literature, and
insights from the VPP4lslands demonstration activities in Formentera. The data used in this
study were sourced from a combination of literature, direct communication with manufacturing
companies, and project-specific insights from the VPP4lslands pilot activities in Formentera.
The assumptions reflect current market trends and component availability relevant to island

energy systems.

Table 3-4 summarises the key technical and economic input parameters for the main energy

system components. All capital costs were directly obtained through the VPP4lIslands project
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for the Formentera Island case study and reflect supplier quotations or actual pilot project
estimates. For example, the PV and battery costs were taken from site-specific procurement
figures that incorporate not only equipment prices but also local installation, manpower, and
system integration costs. Although the PV CAPEX (1,600 €/kW) is higher than typical values
reported in literature, it was retained as it best represents the realistic deployment context of
the case study. Battery cost (230€/kWh) similarly reflects fully installed costs in the
VPP4Islands® pilot. Inverter prices were also based on average supplier quotations relevant
to the project. For hydrogen-related components, fuel cell, electrolyser, and H, tank, the cost
inputs were likewise based on supplier quotations and design estimates used during the
project’s technical planning phase. This project-driven sourcing strategy ensures that the
economic model remains rooted in real-world deployment conditions rather than theoretical

assumptions that drive lifecycle cost evaluations over the 25-year planning horizon.

Table 3-4: Technical and Economic Data Inputs for the Modelling

Com- Cost O&M Effi- Lifetime Ref / source A A
ponent | (unit) (unit-yr™*) | ciency type NPC | LCOE
PV 1,600 o [147] Local pro- o o
el | €xw | 10€kW | 20% | 25yr oot | 4.00% | 4.00%
230 o 8,000 cy- | [148] Manufac- o o
Battery | cron | 10 €kWh | 959 | ©:000 O | 1ad] anctace 5 g0, | 3000
inverter | S0, | 10€KW | 95% | 20yr | [147] Datasheet | 0.49% | 0.49%
[149], [150]
ruel 1 e | epne, | 43% | 15000h | Datasheet/ | 0.14% | 0.14%
study
trE:;gér ueN | o2 | 63% | 35,000n | [151] Datasheet | 0.13% | 0.13%
H tank | o /ﬁgoH 10 €/kg — 15yr | [152] Datasheet | 0.06% | 0.06%
2

To validate the robustness of these selections, a +10% sensitivity sweep was applied to each
component’s CAPEX while keeping all other parameters fixed. The resulting variations in Net
Present Cost (NPC) and Levelised Cost of Energy (LCOE) are presented in the final two
columns of Table 3-4. Results show that PV and battery CAPEX have the most significant
influence on economic outcomes, causing changes of +4.00% and +3.00% in NPC and LCOE
respectively. These technologies dominate the investment profile and are frequently
dispatched in the optimised system. In contrast, hydrogen-related components exhibit
marginal influence, typically below £0.2%, reflecting their limited capacity sizing and lower

utilisation under the model’s cost-optimised regime.

5 https://vppdislands.eu/
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The component cost assumptions are based on real quotations and pilot study data from the
Formentera case, ensuring alignment with site-specific conditions. Sensitivity analysis using
+10% CAPEX variation shows that resulting changes in NPC and LCOE remain below 5%,
supporting the robustness of the economic model and highlighting the greater financial

influence of PV and battery costs compared to other components.

In addition to technical inputs, financial modelling assumptions are summarised in Table 3-5.
The nominal discount rate, varied between 6-10%, was the most influential parameter,
causing changes of up to £10% in both metrics. Inflation and electricity price escalation, varied
+1% from baseline, produced smaller effects in the range of +4-6%. In contrast, statutory
values such as Spain’s general electricity tax (5.11%) and VAT (21%) were held fixed, as they
are non-recoverable and set by regulation. These results confirm that the selected
assumptions are reasonable and that model outcomes remain robust under expected financial

variability in the 2025 Spanish context.

Table 3-5: Financial Parameters Used in Economic Assessment

Parameter Value Ref ANPC ALCOE Note
Nominal discount o _ o _ o o Low=6%,
rate 8 [152] +9.61% 7.21% 10.05% | +10.87% High=100%
. Low=1%,
Inflation rate 2 [153] -4.10% +4.68% +5.72% | -5.38% High=3Y%
. Low=1%,
Escalation rate 3 [146] -3.98% +5.27% -3.98% +5.27% High=5%
Genetral electricity 511 Statutory; non-recoverable; not swept
ax rate
VAT rate 21 Statutory; non-recoverable; not swept

These input parameters collectively support a consistent and realistic techno-economic
evaluation of hybrid energy system configurations. The following sections present results

based on the application of these inputs within the GA-MILP framework.

3.5 Results

This section presents the comparative results of the proposed GA-MILP optimisation
framework under two different energy management strategies, GA-Yearly Horizon and GA-
Load Following, and benchmarks them against the established HOMER Pro software using
its standard load-following approach. The optimisation problem was implemented using the
PuLP library in Python to ensure consistency in solver syntax [154]. Gurobi 11.1.1 employed
to solve the MILP-based lower operational layer for the GA-Yearly Horizon strategy [155].
Simulations were executed on a desktop computer equipped with an Intel(R) Core (TM) i7-
11700 processor running at 2.50 GHz and 16 GB of RAM.

The results are structured into four main parts. Section 3.4.1 outlines the system sizing

outcomes for each method, highlighting differences in component capacities, NPC, and LCOE.
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Section 3.4.2 delves into the operational behaviour and energy flow dynamics, using
representative winter and summer periods to analyse how each method allocates renewable
generation, storage, and grid interaction. Section 3.4.3 shifts to a financial perspective,
comparing capital, operational, and grid-related costs over the full project lifecycle, along with
key financial metrics such as Internal Rate of Return (IRR) and payback period. Finally,

Section 3.5 concludes with a summary of key insights.

3.5.1 System Sizing
The GA-Load Following and GA-Yearly Horizon approaches are benchmarked to highlight the

differences in decision-making paradigms and their impact on system sizing and performance.
The GA-Yearly Horizon method bases its decisions on knowledge of the entire year’s horizon,
optimizing capacities with a long-term view. On the other hand, the GA-Load Following method
is more passive since it bases decisions on the available power at the present hour without
considering future situations. Furthermore, HOMER s utilised as a validation tool to evaluate

the dependability of the optimisation outputs and outcomes for identical input conditions.

Table 3-6 displays the size results for every method of energy allocation. By use of an 8-
kilogram hydrogen tank, the GA-Yearly Horizon method balances intermittent renewable
energy with storage, therefore optimizing 86 battery strings with a PV capacity of 156 kWp.
Conversely, the GA-Load Following approach chooses reduced capacities of 124 kWp for PV
and 58 battery strings, reflecting the trade-offs resulting from the lack of foresight in energy
consumption. HOMER-based validation shows similar tendencies for system size, thus

supporting these conclusions further.

Table 3-6: Comparison of the sizing outcomes for the three Benchmarking methods

Component Units GA- Yearly Horizon GA- Load Following HOMER-
Load Following

Solar PV [kWp] 156 124 123

Battery [Strings] 86 58 58

Inverter [kW] 75 120 121

Contracted Power  [kW] 52 78 77

Fuel cell [kW]

Electrolyser [kW]

Tank [Ka] 8

NPC [€] 625,776 665,236 661,677

LCOE [€/kWh] 0.228 0.243 0.241

Likewise, the differences in system sizing are reflected in the Levelized Cost of Energy (LCOE)
and Net Present Cost (NPC). Compared to the GA-Load Following technique’s NPC of
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€665,236 and LCOE of €0.243/kWh, the GA-Yearly Horizon method achieves a lower NPC of
€625,776 and LCOE of €0.228/kWh. Moreover, HOMER’s validation yields NPC and LCOE
values (approximately €661,677 and €0.241/kWh, respectively) that closely align with GA-
Load Following, reinforcing the dependability of the proposed framework and increasing

confidence in these results.

Table 3-7 summarises the main performance indicators for GA-Yearly Horizon, GA-Load
Following, and HOMER-Load Following. With its larger 156 kWp PV system, GA-Yearly
Horizon generates the highest solar energy of 285,499.66 kWh compared to 226,935.63 kWh
in GA-Load Following and 227,138.72 kWh in HOMER-Load Following. Although GA-Yearly
Horizon achieves the highest absolute PV consumption by the load (123,924.70 kWh),
covering 61.07% of the total load, its Renewable Self Consumption Rate of 43.40% is lower
than the 52.45% in GA-Load Following and 51.65% in HOMER, illustrating how a larger

system can boost total generation but yield a smaller on-site usage fraction.

Table 3-7: Performance metrics for benchmarking methods.

Metrics Units GA- Yearly GA- Load HOMER-
Horizon Following Load Following
PV Generated kWh 285,499.66 226,935.63 227,138.72
PV Directly Consumed kWh 123,924.70 119,044.06 117,332.41
PV Contribution to Load % 61.07 56.24 57.82
Renewable Self Consumption % 43.40 52.45 51.65
Battery Throughput kWh 85,062.90 67,868.35 67,425.86
Electrolyser Capacity Factor % 15.61 9.63 10.94
Fuel Cell Capacity Factor % 517 2.25 2.54
PV Excess Energy kWh 169,088.38 107,891.57 109,806.31
Electrolyser Usage kWh 8,205.53 4,216.72 4,791.18
Fuel Cell Usage kWh 2,263.01 985.95 1,110.99
Grid Dependence % 7.21 14.62 15.63
Grid Import kWh 15,265.58 30,952.49 33,103.77
Grid Export kWh 61,686.44 30,224.30 28,060.84

Likewise, GA-Yearly Horizon records 169,088.38 kWh of PV excess, substantially above the
107,891.57 kWh in GA-Load Following and 109,806.31 kWh in HOMER, highlighting the trade-
off between maximising renewable production and managing higher surplus. Although none
of the methods wastes renewable energy outright, GA-Yearly Horizon’s long-term optimisation
approach enables greater overall production and potentially more profitable export

opportunities.
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According to Table 3-7, GA-Yearly Horizon also experiences a higher battery throughput of
85,062.90 kWh, in contrast to 67,868.35 kWh in GA-Load Following and 67,425.86 kWh in
HOMER. Assuming each battery string provides 14,400 kWh of total lifetime throughput, GA-
Yearly Horizon (86 strings) offers a combined capacity of 1,238,400 kWh. At the current usage
rate, this suggests a battery lifetime of about 15 years before replacement, leading to about
one or two replacements over a 25-year span. Meanwhile, Load Following’s 58 strings
(835,200 kWh total capacity) and annual throughput of 67,868.35 kWh imply a shorter lifetime
of approximately 12 years, increasing replacement frequency. These findings underscore the
trade-offs: while Load Following reduces up-front battery costs, GA-Yearly Horizon’s larger

battery bank requires fewer replacements over the long run.

The Electrolyser and Fuel Cell Capacity Factors demonstrate GA-Yearly Horizon’s further
advantages. GA-Yearly Horizon attains a 15.61% electrolyser capacity factor (8,205.53
kWh/year) and a 5.17% fuel cell capacity factor (2,263.01 kWh/year), compared to 9.62%
(4,216.72 kWh/year) and 2.38% (985.94 kWh/year) in Load Following. HOMER closely aligns
with these, yielding capacity factors of 10.94% for the electrolyser (4,791.18 kWh/year) and
2.54% for the fuel cell (1,110.99 kWh/year). By strategically allocating surplus renewable
power to hydrogen production and usage, GA-Yearly Horizon leverages foresight to enhance
hydrogen storage integration, whereas Load Following’s short-horizon approach limits

component utilisation.

Despite the relatively small selected capacities for the electrolyser, fuel cell, and hydrogen
tank, the GA-MILP optimiser made this choice based on a clear economic trade-off. The
levelised cost of storage (LCOS) for the battery system was calculated at approximately 0.18
€/kWh, while the hydrogen system, based on the combined usage of the electrolyser and fuel
cell, yielded an LCOS of over 0.80 €/kWh. This cost discrepancy stems not only from higher
capital and replacement costs but also from significantly lower energy conversion efficiency.
The battery system operated at an estimated round-trip efficiency of 95%, whereas the
hydrogen subsystem, accounting for both the electrolyser (63%) and fuel cell (43%)

efficiencies, achieved a combined round-trip efficiency of only 27%.

This stark performance gap, both in cost and energy efficiency, made it economically
unfavourable to increase the hydrogen system's capacity. This explains why the GA-MILP
optimiser selected a small hydrogen subsystem that it was economically suboptimal to expand
it further. Nonetheless, hydrogen still contributed meaningfully to the overall system by
absorbing excess PV generation during peak midday hours (approximately 8,205 kWh
annually) and supporting grid independence during selected winter periods, as shown in the

operational plots in Section 3.4.2. Its inclusion also aligns with the VPP4lslands project
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requirement for hybrid battery regenerative hydrogen integration and supports seasonal
storage, as discussed in Section 6.3. Furthermore, it contributes to broader sustainability goals
related to EROI, which are further analysed in Chapter 5, Section 5.4.2. Therefore, even in
modest quantities, hydrogen adds system-level value that extends beyond cost minimisation

alone.

GA-Yearly Horizon method's grid dependence is 7.21%, well below Load Following's 14.62%
and HOMER's 15.63%. Annually, GA-Yearly Horizon imports mainly 15,265.58 kWh from the
grid, well below 30,952.48 kWh for Load Following and 33,103.77 kWh for HOMER.
Meanwhile, GA-Yearly Horizon exports 61,686.44 kWh of surplus energy, more than the
30,224.30 kWh in Load Following or the 28,060.84 kWh in HOMER, thus generating additional
revenue. If GA-Yearly Horizon’s higher capacities were operated under Load Following rules,
curtailment would rise markedly to 31,164.13 kWh, illustrating the drawbacks of short-horizon

decision-making for large-scale renewable penetration.

This comparison highlights the trade-offs inherent in the three optimisation strategies. The GA-
Yearly Horizon method is best interpreted as an optimistic benchmark, representing idealised
energy allocation based on perfect foresight across the full year. In contrast, the GA-Load
Following strategy serves as a conservative reference, constrained by real-time decision-
making without anticipation of future states. HOMER further validates this short-horizon
behaviour. To build on these insights, the next section investigates the energy dynamics
across representative seasonal periods. This analysis focuses on the hourly operational
decisions and their implications for system behaviour, resource utilisation, and overall

performance under varying temporal and environmental conditions.
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3.5.2 Energy Flow and Dynamics

Winter Days Analysis:

Figure 3-9 shows the hourly operational decisions for GA-Yearly Horizon, GA-Load Following,
and HOMER-Load Following during three typical winter days starting on the 13th day of the
year. All techniques depend on grid imports in early morning hours (00:00-07:00) when PV
generation is absent. Unlike the reactive decisions of HOMER and Load Following, Yearly

Horizon regularly maintains a higher battery SOC%, indicating its foresight-driven approach.

From 08:00 to 10:00 Yearly Horizon minimises grid imports by efficiently using increased PV
generating (124.14 kWh on Day 1, 77.99 kWh on Day 2, and 216.06 kWh on Day 3).
Particularly on Day 2, where it imported 102.15 kWh against Yearly Horizon's 40.81 kWh,
HOMER's dependence on synthetic solar data resulted in lower PV generation and higher

imports.

Emphasising Yearly Horizon's cost-sensitive energy distribution, midday hours (11:00-15:00)
charge batteries strategically to reduce grid reliance. For example, on Day 3 it produced
534.73 kWh and charged 343.37 kWh into its battery, surpassing HOMER and Load Following

in both generation and storage measures.

Often lowering grid reliance (8.65 kWh on Day 2), Yearly Horizon shows in the evening (16:00—
23:00) its strategic balancing of grid imports and battery discharges, so exporting surplus
energy during low-tariff times. By comparison, Load Following shows strong reliance on grid
imports (140.76 kWh on Day 2), and HOMER discharges notable battery energy (121.55 kWh
on Day 3).

By using foresight to reduce grid reliance and operational expenses, GA-Yearly Horizon shows
overall cost optimisation, improved PV use, and smart energy allocation. These approaches,
however, are benchmarked as models of optimistic (Yearly Horizon) and pessimistic (Load
Following and HOMER) scenarios of energy planning, therefore providing important new
perspectives on the possibilities and constraints of hybrid energy systems under many

paradigms of decision-making.
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Figure 3-9: Winter Operational Dynamics for Load Following (a), HOMER - Load Following (b), and GA-Yealy Horizon
(c). The positive values for hydrogen represent the fuel cell output in kW, and the negative values indicate electrolyser
consumption. For the battery, positive values indicate discharge, and negative values indicate charging. Grid
interactions show positive values for electricity purchases and negative values for sales.
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Summer Days Analysis:

Figure 3-10 presents the energy dynamics of GA-Yearly Horizon, GA-Load Following, and

HOMER-Load Following during three typical summer days. While the winter analysis

highlighted energy allocation strategies under minimal PV generation, the summer analysis

looks at how these approaches handle periods of significant PV excess, with a focus on
optimizing energy storage, grid exports, and demand satisfaction.
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Figure 3-10: Summer Operational Dynamics for Load Following (a), HOMER - Load Following (b), and GA-Yealy
Horizon (c). The positive values for hydrogen represent the fuel cell output in kW, and the negative values indicate
electrolyser consumption. For the battery, positive values indicate discharge, and negative values indicate charging.

Grid interactions show positive values for electricity purchases and negative values for sales.
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All methods on the first summer day (Day 1) depend on grid imports in early hours (00:00—
07:00) to satisfy a requirement of 110.77 kWh. While Yearly Horizon maintains its battery
SOC% at 30.22%, giving future cost minimization top priority, HOMER and Load Following
substantially discharge batteries with 101.54 kWh and 100.87 kWh respectively. Yearly
Horizon uses the highest PV generating (248.23 kWh) between 08:00 and 10:00 to charge
34.98 kWh into its battery and export 73.02 kWh. Load Following charges 57.69 kWh from its
PV production of 197.31 kWh while HOMER generates 159.96 kWh charging 28.22 kWh.
Midday (11:00—15:00) shows the most significant PV output; Yearly Horizon generates 595.82
kWh and exports 156.99 kWh. HOMER generates 454.05 kWh, charges 173.71 kWh and
exporting 50.31 kWh. From its 473.60 kWh generation, Load Following charges 136.87 kWh
and exports 98.18 kWh. With just 6 kWh imported and 62.57 kWh exported vs HOMER's grid
import of 22.70 kWh and Load Following's 30.98 kWh, evening hours (16:00-23:00)

demonstrate Yearly Horizon's superior grid reliance minimizing.

The second and third days highlight Yearly Horizon's strategic energy consumption, always
maximizing battery storage and grid exports. Day 3, Yearly Horizon exported 208.17 kWh
noon, for example, compared to HOMER's 222.62 kWh, therefore demonstrating its cost-
conscious focus. These results show that the foresight-driven technique of Yearly Horizon
greatly improves operational efficiency and PV use over the reactive methods of Load
Following and HOMER.

3.5.3 Economic Analysis

A thorough financial assessment of hybrid energy systems is essential for understanding their
long-term viability, particularly when evaluating different strategies for energy allocation and
storage. In this section, three methods, GA-Yearly Horizon, GA-Load Following, and HOMER-
Load Following, are compared as benchmarks to show how varying planning horizons and
decision-making paradigms affect Net Present Cost, Levelized Cost of Energy, Internal Rate
of Return, and Payback Period. Beyond these high-level indicators, a closer look at the
detailed cost structure reveals how each approach balances capital investments, operational
expenditures, and grid purchases over the system’s lifetime. Figure 3-11 provides four
perspectives on these costs: subplot (a) separates total expenditures into capital investments,
O&M expenses, replacements, and salvage values; subplots (b) and (c) explore GA-Load
Following and HOMER-Load Following in greater detail; and subplot (d) compares annualized

costs across all three strategies.

From subplot (a), the most substantial capital spending occurs in PV panels (€249,600) and
battery storage (€94,600). Although these outlays are considerable, they help reduce the

system’s reliance on the grid and can lower ongoing operational expenses. Even so, grid-
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related O&M costs rise to €97,756, close to the battery replacement cost of €118,400, and
notably higher than the annualized grid expense of €7,561 in GA-Yearly Horizon (subplot d).
This highlights the delicate balance in storage utilization: excessive cycling drives up battery

wear, but excessive dependence on the grid inflates day-to-day expenses.
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Figure 3-11: Breakdown of Net Present Costs and Annualized Expenditures. a) Total system costs by category, (b) GA-
Load Following cost distribution, (c) HOMER-Load Following cost distribution, (d) Annualized costs by component
across all strategies.

Turning to GA-Load Following in subplot (b), the capital investments for PV and batteries drop
to €198,400 and €63,800, respectively, easing the immediate financial burden. However, the
trade-off is higher O&M expenditures (€245,234) due to greater reliance on purchased
electricity. This is reflected in GA-Load Following’s grid import figure of 30,952.49 kWh, double
the 15,265.58-kWh imported under GA-Yearly Horizon. Although GA-Load Following incurs a
lower battery replacement cost (€64,148), this mainly stems from less battery usage rather
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than more efficient dispatch. In fact, GA-Yearly Horizon’s higher battery throughput (85,062.90
kWh compared to 67,868.35 kWh) illustrates how strategic cycling can yield fewer

replacements over the full lifespan.

A similar pattern emerges in HOMER-Load Following (subplot c), where capital costs resemble
GA-Load Following, yet O&M expenses reach €260,524. This increase likely arises from
conservative scheduling based on synthetic solar data, evidenced by a 33,103.77-kWh grid
import, again more than double that of GA-Yearly Horizon. While HOMER achieves the lowest
battery replacement cost (€56,363), this advantage is cancelled out by the higher reliance on

the grid.

Subplot (d) underscores GA-Yearly Horizon’s advantage through its substantially lower
annualized grid cost of €7,561, relative to GA-Load Following (€18,969) and HOMER-Load
Following (€20,152). By operating with a broader planning horizon, GA-Yearly Horizon
coordinates solar generation with battery dispatch more effectively, reducing day-to-day
expenses and extending battery life. It's lower Net Present Cost (€625,776) offsets the initial
delay even if it has a somewhat longer payback period (5.00 years instead of 4.48 for GA-
Load Following). GA-Yearly Horizon also exports more surplus energy (61,686.44 kWh,
compared to 30,224.30 kWh in GA-Load Following and 28,060.84 kWh in HOMER), hence

highlighting its more efficient utilization of renewable output.

These results show the more fundamental difference between foresight-driven and near-term
approaches. Although short-horizon approaches like GA-Load Following and HOMER call for
lesser upfront budgets, they rely more on the grid and over time generate more running costs.
By contrast, GA-Yearly Horizon's proactive method reduces total dependency on outside
power by means of more consistent, long-term savings even when it raises initial expenditure.
Although it represents a best-case benchmark assuming accurate forecasts and optimal
dispatch, GA-Yearly Horizon’s results highlight how strategic planning and efficient resource
allocation can vyield a more financially resilient system. By mapping out the strengths and
limitations of each approach, this analysis lays the groundwork for introducing novel
optimisation strategies, where these benchmarks will provide a valuable point of reference for

enhanced system design.

Grid-related operating expenses and their monthly breakdown reveal clear differences among
the GA-Yearly Horizon, HOMER, and GA-Load Following strategies as shown in Figure 3-12
(a) and (b). In January, GA-Yearly Horizon records a total monthly charge of €3,494.59 with
4,306 kWh purchased and 1,887 kWh sold, translating into a net import of 2,419 kWh.
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Although the bought volume is relatively high, sales revenue mitigates much of the burden.
HOMER, by contrast, posts a higher charge of €5,057.52 based on 5,914 kWh imported and
only 446 kWh exported, while GA-Load Following peaks at €5,540.50, reflecting 6,587 kWh
bought against 1,582 kWh sold. These stark discrepancies reflect the influence of planning

horizons and the degree of coordination between storage dispatch and grid interactions.

February offers a further illustration of how closely matched import and export figures can
lower costs. GA-Yearly Horizon’s monthly total of €1,855.98 stems from 2,110 kWh purchased
and 2,141 kWh sold, producing a slightly negative net purchase of —-31 kWh. HOMER’s
charges reach €3,828.73, with 4,397 kWh imported and 1,392 kWh sold, whereas GA-Load
Following records a similar total of €3,822.75, importing 4,379 kWh and exporting 1,523 kWh.
March continues to highlight GA-Yearly Horizon’s ability to run at an energy surplus. It holds
monthly charges to €1,104.43 by buying just 1,214 kWh and exporting 4,030 kWh, achieving
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a net negative purchase of —2,815 kWh. In comparison, HOMER sees €3,504.32 for the same
period, after importing 4,090 kWh and selling 2,981 kWh, while GA-Load Following settles at
€2,975.74 with 3,338 kWh in purchases and 2,237 kWh in exports. This pattern persists
through the spring and summer months, where GA-Yearly Horizon’s costs frequently drop well
below €200 per month thanks to significant net negative purchases (—7,909 kWh in April, —
9,129 kWh in May, and comparable figures in June through September) that are otherwise not
replicated by HOMER or GA-Load Following.

April shows the importance of robust surplus production: GA-Yearly Horizon spends only
€36.90 for buying 26 kWh and selling 7,935 kWh, highlighting how perfectly timed battery
discharges and export decisions may drastically cut costs. Conversely, depending on at least
several hundred thousand kilowatt-hours of monthly imports and less strong export
management, HOMER and GA-Load each incur expenditures exceeding €1,000. May remains
similarly revealing, with GA-Yearly Horizon’s net negative purchase of —9,129 kWh dropping
its total charge to about €47.91, while HOMER still spends €879.96 and GA-Load Following
€795.56. Over the middle months of the year, GA-Yearly Horizon nearly always holds monthly
costs between roughly €70 and €330 by strategically drawing from or sending energy to the
grid at optimal times. HOMER and GA-Load Following rarely match this performance, and
even in periods where they do export a respectable amount of solar energy, they still carry

more substantial grid purchases.

Shifting toward autumn, an example emerges in October, when GA-Yearly Horizon’s monthly
charge grows to €311.34 due to a more modest net export of —3,889 kWh. Yet HOMER and
GA-Load Following both surpass €1,600 that month, indicating how an increase in import
requirements quickly drives up monthly bills. Similar outcomes appear in November and
December as solar availability wanes, with GA-Yearly Horizon’s costs climbing to €2,775.23
in November and €2,705.43 in December. HOMER, however, rises beyond €4,000 in both
months, and GA-Load Following consistently hovers around that same level. Even in these
higher-load conditions, the broad scheduling horizon of GA-Yearly Horizon still yields lower
costs thanks to a more nuanced use of stored energy. In total, the GA-Load Following strategy
accrues approximately €29,625 in annual grid-related charges, underscoring how limited
foresight and passive dispatch compound costs over time, particularly in months of low solar

availability and reduced export potential

From the monthly data, it is clear that the GA-Yearly Horizon approach systematically reduces
grid reliance, captures higher revenues from surplus exports, and avoids steep peak-demand
penalties through proactive scheduling. In contrast, HOMER and GA-Load Following, which

operate with shorter planning windows, show significantly higher import volumes and less
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precisely timed exports, causing their monthly costs to sometimes exceed €5,000. Over the
course of a year, such differences accumulate into notably higher total charges for the short-
horizon benchmarks, confirming that long-horizon optimisation can yield sustained financial
benefits despite added complexity. These findings provide a valuable reference future practical
novel methods, which aims to combine the strengths of extended foresight with the practical

flexibility of load-following schemes.

Figure 3-13 depicts year-by-year evolution of cumulative present costs highlights how initial
investments in PV and storage can ultimately yield substantial long-term savings when
compared to a Grid-Only scenario. At the outset, GA-Yearly Horizon invests €384,200, while
both HOMER and GA-Load Following spend about €313,000. Grid-Only’s nominal entry cost
of €2,500 looks appealing initially but escalates rapidly over time, culminating in a final net
present cost of about €1,608,050 by Year 25. In contrast, GA-Yearly Horizon finishes with the
lowest net present cost of €625,776, followed by HOMER at €661,677 and GA-Load Following
at €665,236 as shown in Table 3-8.
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Figure 3-13: Cumulative Discounted Cash Flow Over a 25-Year Horizon for Different Energy Management
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Table 3-8: Key Financial Metrics of Benchmarking Approaches

HOMER-
Financial GA- Yearly GA- Load
Units Load
Metric Horizon Following
Following
NPC [€] 625,776 665,236 661,677
LCOE [€/kWh] 0.228 0.243 0.241
IRR [%] 17.05 19.68 19.74
Payback
[Years] 5.00 4.48 4.54
Period

These end values reflect the compounding effect of operational savings, especially from
reduced grid purchases and optimised surplus energy sales, which offset GA-Yearly Horizon’s
higher upfront outlay. The corresponding financial metrics reinforce the trade-offs in each
approach. GA-Yearly Horizon achieves the lowest LCOE of €0.228/kWh yet has a moderately
lower IRR of 17.05% and a slightly longer payback period of five years. Both HOMER and GA-
Load Following realise higher IRRs of about 19.7% and slightly faster payback times around
4.5 years, but their LCOEs remain above €0.24/kWh, and their final net present costs exceed
GA-Yearly Horizon’s by roughly €35,000 to €40,000. These patterns confirm that longer-
horizon planning can secure deeper lifetime cost reductions, albeit with more substantial
upfront spending. Considering previous findings, which showed that GA-Yearly Horizon
minimises month-to-month grid expenditures, the overall financial picture now confirms that
strategic coordination of energy resources ultimately translates into lower lifetime expenses,

even if the initial investment is higher and the return takes a little longer to materialise.

3.6 Summary

This chapter presented a comprehensive framework that brings together Genetic Algorithms
(GA) and Mixed Integer Linear Programming (MILP) for both long-term planning and hourly
dispatch of hybrid renewable energy systems. The GA scans a wide range of possible layouts,
varying in photovoltaic, battery, and hydrogen capacities, seeking to minimise total project
costs. Each candidate layout then goes through a MILP-based check to verify it can meet the
full set of hourly demands across a calendar year. By packaging capacity decisions and
operational constraints into a single, year-long optimisation, the proposed approach can
uncover configurations that use resources more efficiently than simpler, short-horizon

methods.
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Nevertheless, this full-year optimisation operates under the assumption of perfect foresight.
That assumption often improves the outcomes on paper but does not always mirror real-world
conditions, where demand forecasts and renewable outputs evolve in shorter cycles. For that
reason, the chapter concludes by comparing the GA—-MILP approach with two alternatives that
focus on more immediate decision-making: a rule-based load-following method and the
HOMER Pro software. These analogies underline useful benefits and constraints of several
temporal periods in system operation. The techno-economic results in this chapter are based
on perfect foresight of hourly solar irradiance, load demand, and static time-of-use tariffs
across a full deterministic year. Component efficiencies and financial inputs are treated as

fixed, with no degradation modelling or multi-year uncertainty included in the optimisation.

Through an analysis of these opposing paradigms, the chapter clarifies how long-horizon
optimisation might provide significant financial benefits yet depends on assumptions that might
not always apply in operational settings. This investigation naturally emphasises the
requirement of implementing realistic operational layer concepts such as rolling-horizon or
Model Predictive Control (MPC) techniques with flexible load approaches, which more
dynamically change schedules. Leveraging these ideas, the next chapter introduces MPC and
flexible load-shifting strategies more realistically reflecting the daily reality of balancing

renewable energy, storage, and end-user expectations.
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4 Improving Renewable System Sizing Accuracy
through Model Predictive Control Concept and

Flexible Load Operation.

4.1 Introduction

In Chapter 3, a nested GA-MILP approach was proposed and validated to determine optimal
component sizes and an annual dispatch for a hybrid energy system, making use of a single,
large-scale optimisation that assumed year-round knowledge of resources and loads. While
that one-shot approach demonstrates how a system could theoretically minimise costs given
perfect foresight, day-to-day operations in practice rarely enjoy such complete information.
This chapter introduces an improved methodology intended to capture more realistic decision-
making by dividing the year into smaller intervals and re-optimising repeatedly with partial
forecasts. In addition, part of the electrical load is allowed to shift within each day described
as flexible load in the coming sections, further enhancing operational efficiency. For the ease
of modelling and to align with the real load from the Formentera case study, a selected water

pump is modelled as flexible load.

4.2 Methodology

The novel framework keeps the familiar two-layer structure. The GA still handles long-term
capacity choices, such as how large the battery bank or electrolyser should be, while the MILP
determines an hourly dispatch. What changes is that the MILP is no longer solved over 8,760
consecutive hours at once; instead, it works in rolling windows of 24 hours. Only a subset of
each solution (e.g., the first 12 hours of each 24-hour window) is “committed” to the final
schedule, and then the process advances by half a day. By doing so, this approach more
closely resembles a Model Predictive Control (MPC) scheme, where the horizon is gradually
shifted as time progresses. The following sections detail the mathematical equations that are

added or revised relative to Chapter 3’s single-horizon MILP.

Figure 4-1 offers a schematic view of how the upper loop (GA) and local loop (rolling-horizon
MILP) operate in unison. In each generation of the GA, an individual (i.e., a candidate set of
capacities) is tested by running the MILP in sequential daily windows, each covering 24 hours.
The MILP’s solution for each window, complete with hour-by-hour decisions, yields an
operating cost for that segment. These costs are aggregated across the full year, producing
an annual operating profile that is then combined with capital costs, replacement schedules,

and salvage values to compute the system’s NPC. The GA’s evolutionary operators, selection,
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crossover, and mutation, rely on this NPC value to guide the search toward more cost-effective

designs.
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The MILP solved in each 24-hour window is identical to the yearly MILP of Chapter 3: the
same unmet- and excess-energy slack variables and the same per-kWh penalties (1 000
€/kWh unmet, 100 €/kWh excess) ensure that every window is feasible. The rolling horizon
therefore produces 730 feasible sub-schedules, but after stitching the first 12 h of each window
the GA receives one complete 8 760-hour schedule, exactly as in the GA-Yearly Horizon
method. Solution quality is evaluated with the same annual indicators described in section
3.3.2.3 and the same fitness function (NPC plus the annual slack penalties) described in
Section 3.3.2.2. No additional repair or replacement is required: if the stitched year still
contains slack, the penalty already inflates NPC and the GA naturally pushes the population
toward designs whose daily windows—and therefore the stitched year—drive both slacks to
zero. In this way the rolling-horizon local loop inherits the feasibility guarantee and the
evolutionary pressure of the Chapter 3 formulation while allowing limited-look-ahead
operation. The next section, the detailed modelling is explained with focus on the rolling

horizon with flexible load implementation.

421 MPC-Flexible Load Formulation

Instead of solving for the entire year at once, the timeline is split into overlapping windows.
Each window is set to 24 hours in length, though only the initial 12 hours of each solution are
locked in before shifting to the next window. If a given window is indexed by w, its local hourly

set is denoted by:

T €{0,1,...,23}. 4-1)

In the global timeline of 8,760 hours, the starting hour of window w might be labeled h. Once
the MILP determines a dispatch for hours h through h + 23, only the results for hours h to h +
11 become final, and the model moves on to the next window starting at h + 12. Within each

24-hour slice, the immediate goal is to minimise the operating cost:

Z [ﬂbuy [t] - Pyrid,buy [t] — msen [t] - Pyrid sell [t] + penalty unmet * Eunmet [t]
teT (4-2)

+ penalty excess Eexcess [t]]

min
all variables

where my,,, [t] and mee [t] are the time-varying grid prices for purchasing and selling electricity,
and E nmet [t], Eexcess [t] capture any shortfall or surplus energy at hour t. Since the
overarching objective is to minimise total costs for the entire year, these 24 -hour solutions are
ultimately pieced together, and their aggregated operational cost is added to the investment

and maintenance costs in the GA's global net present cost (NPC) calculation.
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Much like the formulation in Chapter 3, power flows on the DC side (where the battery and
fuel cell reside) and the AC side (where the main load and grid connection are located) must

balance each hour. If P, pc remaining [t] is the portion of renewable power left on the DC bus

after any direct usage represented by P, pcinverted [t], the DC node balance is:

Pren, DC inverted [t] + Pren, DC remaining [t] + Phattery, discharge [t] + Pruel-cenlt]
— Phpattery, charge [t] = Pinverter [t] + (1 + 1 —npc/ac inverter ) (4-3)
— Eoxcess[t] =0,  VLET
On the AC node, the inverter's output ( P erer [t]), @any electricity bought from the grid (
Pgriq_buy [t]), and unmet load (Enmet [t]) are balanced with the main load, flexible load, any

electrolyser usage, and any selling back to the grid Pg/ig ey [t]:

Pinverter [t] + Pgrig buy [t] = Pgrig_seir [t] — (Pioad [t] + Phexivie [t]) — Pejectrolyser [t] (4-4)
+ Eypmet [t] = 0, VteT
Here, Psexibie [t] iS @ Nnew term introduced in this chapter, reflecting that part of the load can be
scheduled flexibly. A crucial difference from Chapter 3's single-shot solution is that each 24-
hour window receives initial states for the battery and hydrogen tank from the final partial

commitment of the previous window. The battery state of charge is redefined as following:

Soc™)

init’ t=0
SoCp[t] = Ny — Pbattery discharge [t] (4-5)
SoClt = 1] +——P - : ,
oC[ ] Ny, B,, battery , charge [t] Mos - Npp - Bo

The term SoC(i;Vit) indicates that if window w begins at global hour h, its initial SoC for the battery

equals the final SoC from the midpoint shift (h — 12) of the previous window. The hydrogen

tank Level of Hydrogen is redefined as following:

LoH™),
LoH[t] = Nel Pryel —ce [1] (4-6)

LoH[t — 1] + P t] — , t>0
oH[ ] Pur X Hypy electrolyser[ ] Mres X Pur X Hypy

Here, LoHig‘i‘? is likewise set to the hydrogen tank level from the previously committed hours.
At the end of each 24 -hour window's MILP, only the first 12 hours are appended to the final
schedule, and the LoH values at hour t = 12 become the initial states for the next window. To
allow part of the load to be shifted for cost advantage, the model introduces a binary variable

Xfiexible, on/off [£] @nd an associated power:

Piexible [t] = Pfiexiblerated * Xflexible,onioff [t], ~ Vt €T (4-7)
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If Piexible, rated IS the rated power in KW and xiexiie, on [t] = 1 makes the load draw this power
off

(kW) in hour t. The daily run-time requirement Hyexiple, daily 1S €nforced by summing the "on"

hours across each calendar day:

z Xiiexible,on/off [K] = Hiiexible,daily ,  Vd (4-8)
keTqy
where T, is the set of global hours belonging to day d. A complication arises because each

rolling window might intersect multiple days. The code handles this by tracking how many
flexible-load hours for each day were already used in a previous window. Let ¢>C(lw_1) be the

flexible-load hours assigned to day d before window w. Then, if a window covers hours from

day d, the MILP imposes:

-1
Xfexible,onfoft L] + 9§ ™ = Hfiexible,daily, ~ Vd (4-9)

(w)
kETd

Thus, ensuring day d meets exactly the daily requirement by the time it finishes. The mutually
exclusive constraints are applicable for this method for each window w , and it is given as

following for the grid buy/sell exclusivity:

Pyrid , buy () < Pgr?ax " Xgrid ®),

4-10)
Pyrid sell () < Pgr?ax ) (1 — Xgrid (t)) ) vVteT
Battery Charge/Discharge exclusivity:
Pbattery,charge (t) < Pb_maX (1 — Xbattery (t))' 4-11)
Phattery, discharge () < Pl;l—maxxbattery @®), VteT
Electrolyser and Fuel Cell exclusivity:
Pelectrolyser () < P (1 — Xhydrogen (t)), 4-12)
Pryel-cell (t) = angaxxhydrogen (t): VteT
DC to AC limit and DC side constraints:
Pinverter (t) = Pirrrll\?x'
4-13)

Pren ,DC-inverted (t) + Pren,DC-remaining (t) = Pren-output (t):

Pren, DC- remaining (t) = Pbattery,charge (t) + Eexceess (t)' vteT

Renewable availability to charge battery:
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Pren, DC remaining [t] < (M " Xren—gen [t]) +¢, VteT

Pren,DC-remaining () = €Xren-gen (®), vteT 4-14)

Pbattery,discharge (t) < (1 — Xren-gen (t)) ' Pb+,max: VteT

All the mutual exclusivity constraints from Chapter 3, such as preventing simultaneous battery
charging and discharging or blocking simultaneous buying and selling on the grid, and
hydrogen remain valid in this rolling-horizon model. These physical and operational restrictions
govern each 24-hour window w in the MPC-based framework. In other words, the method
preserves all the prior constraints that define feasible operation at each hour, simply
partitioning the year’s timeline into segments and shifting states forward after every 12 hours

of committed dispatch.

4.2.2 Water Pump as a Flexible Load

In this work, we model the flexible load of a swimming pool water pump from the Formentera
energy community. Essential for maintaining appropriate water circulation and filtration, the
pump must run eight hours a day altogether. As long as the 8-hour daily run is attained, the
exact timing of its operation is not constant and flexible; so, the model lets the start and stop
times of the pump to be changed depending on renewable availability and grid prices signals.
The active status of the pump is indicated by a binary decision variable, which guarantees
that, on, it draws power at its rated value (3 kW). Table 4-1 offers a summary of the primary

pump-related specs and input values.

Table 4-1:Flexible Load: Water Pump Specifications for the Formentera Energy Community

Parameter Value Units Description
Rated Power 3 W Power draw when the pump is
Pfexivle rated active.

Daily Operating
. Minimum number of operating
Requirement 8 hours
hours per day.
Hiexible,daily

Non-critical load with flexible
Pump Type Swimming Pool - .
scheduling.

_ _ Can be scheduled at any time,
Operational Flexi-

bt Fully shiftable - provided the 8-hour require-
ility

ment is met.
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The MPC framework incorporates this flexible scheduling, which lets the optimisation move
the operation of the pump to times of more or less renewable availability or reduced grid
charges. Such dynamic scheduling improves general system efficiency without endangering
water quality criteria. Moreover, for better understanding, two scenarios of increased rated
power of 4.35 and 5.8 kW were introduced to study the impact of an increased rated power of

the flexible load.

While the community originally relies on a fixed 3 kW water pump, the present investigation
assumes future expansions of similar load-sensitive equipment (for instance, additional
pumps) to create larger flexible loads: 4.35 kW for MPC 6% and 5.8 kW for MPC 8%. These
higher loads allow an expanded study into how adding flexibility influences both operating

efficiency and overall economic returns. The scenarios are defined in Table 4-2.

Although the rated power of the current pump is modest (3 kW), the higher-rated scenarios
(4.35 kW and 5.8 kW) allow the model to explore a meaningful flexible share of total daily
energy use. In fact, in the MPC 6% and 8% scenarios, the flexible energy accounts for up to
6-8% of the community’s average daily energy demand, which is significant from a system
perspective. This supports a more robust evaluation of how load shifting affects capacity

sizing, hydrogen utilisation, and economic outcomes.

Table 4-2 : Scenarios defined for the flexibility investigation

Flexible load Total non- Hours Compared
Flexible load Total Flexible
scenarios flexible load of the to Fixed
Power (kW) energy (kWh)
(kWh) day start (am)
GA- MILP -
0.00 211,665.3 0 0
MPC 0% 08:00
GA- MILP -
3.00 202,905.3 8760 8
MPC 4% 08:00
GA- MILP -
4.35 198,963.3 12,702 8
MPC 6% 08:00
GA- MILP -
5.80 194,729.3 16,936 8
MPC 8% 08:00

These higher loads allow an expanded study into how adding flexibility influences both
operating efficiency and overall economic returns. The scenarios are defined in Table 4 2.
These flexibility levels correspond to approximately 4%, 6%, and 8% of the community’s
average daily demand (=579.9 kWh/day), with the highest case approaching 10%, a relatively

high value compared with typical demand-side management studies.
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4.2.3 Summary

This rolling-horizon framework adds a realistic layer of adaptive control to the original GA—
MILP model. By scheduling a flexible load within daily windows, the system can mitigate both
unmet energy and renewable curtailment more effectively, taking advantage of near-term
conditions rather than relying on year-long certainty. The next section will present numerical
results comparing this rolling-horizon, flexible-load method to both the single-horizon solution
from Chapter 3 and simpler rule-based dispatch algorithms. Through these comparisons, one

can observe the distinct advantages when the model is made more dynamic.

4.3 Results

This section presents the outcomes of the enhanced rolling-horizon MPC approach with
flexible load integration, building on the methodology and findings of Chapter 3. Chapter 3
illustrated a full-year GA-MILP optimisation whereas the new method re-optimises in daily
periods and allows dynamic load shifting. The results are arranged below: Section 4.3.1
describes system sizing and technical performance improvements; Section 4.3.2 investigates
energy flows and dynamic behaviour; Section 4.3.3 addresses economic performance
metrics; and Section 4.3.4 evaluates the effects of tuning both GA and MILP solver
parameters. These results, put together, illustrate how a more realistic and adaptive
optimisation framework benefits over the two benchmarking methods: the single-horizon

technique and the short-horizon rule-based load-following approach.

4.3.1 System Sizing

The results in Table 4-3 show how the newly deployed GA-MPC rolling-horizon method
determines component capacities for flexibility levels of 0%, 4%, 6%, and 8%, in contrast to
the single-horizon GA-MILP approach from Chapter 3 (Table 3-6). Previously, a year-long
global optimisation with perfect foresight often led to higher photovoltaic (PV) capacity
(156 kWp) and a large battery bank (86 strings), while simpler load-following strategies
undersized both PV and batteries, boosting dependence on the grid. The rolling-horizon
scheme, which re-optimises daily and, in some cases, allows part of the load to be
rescheduled, avoids some of the oversizing observed with perfect foresight but still lowers grid

imports more than do short-horizon heuristics.
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Table 4-3: GA-MPC novel approach capacity sizing results.

GA-MILP - GA-MILP - GA-MILP -  GA-MILP -MPC
Component Units
MPC 0% MPC 4% MPC 6% 8%

Solar PV [kWp] 155 152 154 150
Battery [Strings] 76 74 76 80
Inverter [kW] 77 75 75 72
Contracted

[kW] 41 40 39 37
Power
Fuel cell [kW]
Electrolyser [kW]
Tank [Ka]
NPC [€] 612,945 606,879 604,305 599,134
LCOE [€/kWh] 0.224 0.221 0.221 0.218

At 0% flexibility, the GA—MPC solution selects a 155 kWp PV array, close to the 156 kWp from
the annual optimisation but still far larger than the 124 kWp load-following benchmark. Even
without load shifting, daily re-optimisation preserves most of the benefits of a year-long view.
As flexibility rises from 0% to 8%, the PV rating declines slightly, reaching 150 kWp once a
fraction of demand shifts to match solar production. Although the difference is only about
5 kWp, this shift highlights a design principle: nudging loads into midday hours eases pressure

for extremely large PV arrays.

Battery sizing follows a subtler trend. The GA Yearly-horizon run selected 86 strings from
Chapter 3, whereas rule-based load following chose around 58. Under GA-MPC, the system
first adopts 76 strings at 0% flexibility, stays around 74-76 strings through 4%—-6% flexibility,
then jumps to 80 strings at 8%. Rolling-horizon scheduling plus limited load shifting avoids
over-investment in battery storage at lower flexibility levels yet ultimately deploys a slightly
bigger bank at 8%. Shifting demand toward daylight hours can diminish the need for excessive
evening storage unless flexibility grows enough to justify adding more capacity to capture
surplus solar power. Moving from 76 to 80 strings at the highest flexibility indicates that once
shifting surpasses a threshold, a larger battery is advantageous for further minimising grid

exchanges.

The contracted grid power and hydrogen elements show comparable patterns. While the
single-horizon solution assigned up to 52 kW of contracted power, the new approach scales it
back to 41 kW (0% flexibility), then to 37 kW (8%). Rolling-horizon control plus partial load

shifting lowers grid peaks below either perfect foresight or purely reactive methods.
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Meanwhile, the electrolyser rating moves from 6 kW to 5kW as soon as any flexibility is
introduced, reflecting reduced need to capture every midday surplus. The hydrogen tank,
however, expands from 7kg to 9kg by 8% flexibility, signifying that fewer kilowatts of
electrolyser capacity can be balanced by a slightly larger tank, which stores hydrogen for later

use.

These capacity decisions translate directly into NPC differences. In Chapter 3, perfect
foresight produced around €625,776 in NPC, while load-following solutions ranged from about
€661,000 to €665,000. Under the rolling-horizon GA-MPC, even at 0% flexibility, the NPC
drops below €613,000, reflecting that daily re-optimisation alone remedies certain
inefficiencies of annual sizing. Moving to 8% flexibility brings the NPC down to €599,134, well
below the Chapter 3 benchmarks, and reduces the Levelised Cost of Electricity to about
€0.218/kWh. Breaking the year into 24-hour MPC windows and permitting modest flexible
demand thus curbs oversizing, leverages local solar effectively, and delivers lower total project
costs than either full-year or passive short-horizon methods. Table 4-4 compiles the principal
performance indicators for the MPC-based method under four different levels of flexibility,
providing a direct parallel to Table 3-7 in Chapter 3. In that earlier chapter, the GA-Yearly
Horizon scheme yielded roughly 285 MWh of annual PV generation, covering approximately
61 percent of the electricity demand, while simpler load-following algorithms produced closer
to 227 MWh but attained higher self-consumption percentages by virtue of smaller arrays.
Under the present rolling-horizon technique, total PV output hovers at 280 MWh across all
flexibility scenarios, and the share of load met directly by solar averages over 58%, marginally
below the 61% recorded for the single-horizon approach. This little variation implies that MPC-
based scheduling still efficiently uses solar resources even if it divides the year into daily

windows.
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Table 4-4 Performance metrics comparison for MPC approach with different flexibility %.

GA-MILP - GA-MILP - | GA-MILP - | GA-MILP -
Metrics Units
MPC 0% MPC 4% MPC 6% MPC 8%
PV Generated kWh | 283,669.53 | 278179.15 | 281600.73 | 274518.90
PV Directly Consumed
kWh | 123802.20 122563.30 | 122914.93 | 122328.25
by load
PV Contribution to Load % 58.48 57.90 58.07 57.79
Renewable Self
. % 43.64 44.05 43.64 44.56
Consumption
Battery Throughput kWh 83,739 84,303 84,840.85 85,201
Electrolyser Capacity
% 30.45 23.99 25.54 23.46
Factor
Fuel Cell Capacity Factor| % 9.97 6.55 7.01 6.57
PV Excess Energy kWh | 159,867.33 155615.9 158,686 152,190
Electrolyser Usage kWh 16,008.27 10,508.42 11,188.64 10,464.32
Fuel Cell Usage kWh 4,369.67 2,871.04 3,073.36 2,879.93
Grid Dependence % 9.47 10.14 9.96 10.5
Grid Import kWh 20,061.72 20,576.70 19825.76 20,459.23
Grid Export kWh 59,002.69 58,281.19 60,243.08 | 54,728.35

Beyond the overall PV production, the most pronounced distinctions arise in the operational
patterns of the electrolyser and fuel cell. In Chapter 3, the single-horizon optimisation often
kept these hydrogen components running at modest capacity factors (around 15 % for the
electrolyser and 5 % for the fuel cell). Now, as Table 4-3 reveals, the electrolyser capacity
factor reaches approximately 30 percent even with no load flexibility, then falls to the mid-
twenties once partial demand shifting alleviates the midday surplus. A similar decline emerges
in the fuel cell’s capacity factor, dropping from almost 10 % under zero flexibility to about 6—

7 percent when the load is partially rescheduled.

Battery throughput exceeds 80 MWh in each MPC scenario, aligning closely with the 85 MWh
reported under the Yearly Horizon method. Meanwhile, the system’s reliance on grid electricity
settles around 9-10 percent, somewhat higher than the 7.21% observed with perfect
foresight, yet consistently below the 14—15 percent typical of load-following. Such results
suggest that a rolling-horizon process, when combined with modest demand flexibility, can
retain many of the advantages of long-term optimisation while offering improved

responsiveness to short-term system variations.
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4.3.2 Energy Flow and Dynamics

Winter Days Analysis:

Figure 4-2 shows operational dynamics for the novel GA-MPC flexible approach. Three winter
days (13—15 January 2022) closely follow the capacity sizing and performance work discussed
in previous section. This section offers substantial perspectives on the performance of
optimally configured GA-MPC approach under wintertime conditions marked by low
photovoltaic (PV) generation. Such a close study proves particularly valuable before turning

to the summer analysis, when PV output is likely to be much higher.
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Figure 4-2: Winter Operational Dynamics for MPC rolling horizon with 0% flexibility (a), 4% flexibility (b), 6% flexibility
(c), and 8% flexibility (d). The positive values for hydrogen represent the fuel cell output in kW, and the negative values
indicate electrolyser consumption. For the battery, positive values indicate discharge, and negative values indicate
charging. Grid interactions show positive values for electricity purchases and negative values for sales.

On 13January (Day1), hourly electricity rates ranged between €0.3535/kWh and
€0.3985/kWh, thereby guiding how the GA—-MPC scenarios (with 0%—8% flexibility) scheduled

load and storage. Between 00:00 and 07:00, with no PV generation available, all scenarios
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drew about 115kWh from the grid, backed by steady fuel cell power of around 30 kWh.
Because the overnight rate was €0.3535/kWh, the day’s lowest, this choice effectively kept
early-morning costs down. Later on (11:00-15:00), PV production varied between 510.12 kWh
in MPC 8% and 527.12kWh in MPC 0%. After satisfying the immediate load (11:00-15:00),
these scenarios used the remaining solar surplus (roughly 289.39-305.34 kWh) to replenish
batteries and drive electrolysers (5—6 kWh). Notably, systems with flexibility (0%—8% flexibility)
shifted two hours of operation (08:00-10:00) for the pump load to night period (16:00-23:00),

thus curtailing reliance on the grid during higher-priced daytime hours.

On 14 January (Day2), similar pricing patterns prompted MPC 4%-MPC 8% to move
significant portions of their pump demand (24—-46.4 kWh) to early morning (00:00-07:00),
when costs remained at €0.3535/kWh. Rolling short-horizon logic indicated times during the
day that solar output would not meet the total load, matching up with pricier daytime tariffs,
which led these flexible scenarios to shift usage earlier. Meanwhile, MPC 0%, lacking flexibility,
imported 139.50 kWh overnight (00:00-07:00) at the same low rate. By midday (11:00-15:00),
each scenario capitalised on about 219.88-224.22 kWh of PV energy to recharge batteries,
holding midday grid imports to a modest 7.39-28.44 kWh. During the evening (16:00-23:00),
approximately 85-90 kWh of stored battery energy was discharged, further cutting down the

system’s dependence on costlier grid electricity.

On 15 January (Day 3), a weekend day with a uniform charge of €0.3535/kWh throughout,
there was no direct price-based incentive for shifting loads. Despite that, the GA-MPC
approach still harnessed midday (11:00-15:00) solar surpluses (as high as 531.30 kWh for
MPC 0%). Extensive battery charging (around 300 kWh) and hydrogen generation (up to
48 kWh in MPC 0%) allowed each scenario to operate independently of the grid from 08:00
onward. MPC 4%, MPC 6%, and MPC 8% likewise rescheduled parts of their pump use into

midday hours, optimising the use of available solar, even without rate fluctuations.

These results taken together demonstrate the nimble approach of the GA-MPC system for
managing variable loads in winter environments, where general solar availability is greatly
reduced. Reacting dynamically to both electricity price structures and renewable availability,
GA-MPC shows more flexibility than previously benchmarked methods (including GA—Yearly
Horizon, GA-Load Following, and HOMER-Load Following, explored in Chapter 3), so

improving operational efficiency in these low-sunlight winter scenarios.
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Summar Days Analysis:

Extending the in-depth winter assessment, it is equally important to investigate how the GA—
MPC method fares in the summer (Figure 4-3), when PV availability is greatly increased. Three
illustrative summer days (18—20 August 2022) are thus reviewed to demonstrate the manner

in which the previously sized hybrid capacities exploit excess solar energy, and how active
load shifting influences operational efficiency.
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Figure 4-3: Summar Operational Dynamics for MPC rolling horizon with 0% flexibility (a), 4% flexibility (b), 6% flexibility (c), and
8% flexibility (d). The positive values for hydrogen represent the fuel cell output in kW, and the negative values indicate

electrolyser consumption. For the battery, positive values indicate discharge, and negative values indicate charging. Grid
interactions show positive values for electricity purchases and negative values for sales.

On 18 August (Day 1), which featured sizeable midday (11:00—15:00) solar yields about 572—
591 kWh, the GA-MPC strategy fully capitalised on abundant renewable supplies. Between
midnight and 07:00, all scenarios (0%—8% flexibility) satisfied load solely from stored battery
power (96.64-136.13 kWh discharge), thus avoiding grid purchases at the €0.3535/kWh
overnight rate. During the morning (08:00-10:00), MPC 4% and MPC 8% opted the same

decisions by shifting these hours to operate at the evening window (16:00-23:00), avoiding
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pricier grid tariffs. While the MPC 6% shifted flattened the flexible load, operating some of it at
early morning hours (00:00-07:00) by 4.35 kWh and during evening hours (16:00-23:00) by
4.35 kWh, closely avoiding peak prices during midday hours. Substantial midday solar (11:00-
15:00) enabled intensive battery charging (190-200 kWh) and exports of 155.9-173.6 kWh,
thereby capitalising on peak PV for both economic and operational gain. In the evening
(16:00-23:00), the battery (87.08—-107.14 kWh discharge) adequately met the community’s
needs, preserving autonomy from the grid and permitting 52.8 — 76.8 kWh of further surplus

exports.

On 19 August (Day 2), the GA-MPC scenarios managed variable tariffs again, €0.3535/kWh
overnight and €0.4782/kWh at peak daytime. From midnight until 07:00, every scenario drew
upon battery reserves (98-101 kWh) alone, eliminating the need for overnight grid imports.
Between 08:00 and 10:00, MPC 0% sustained its non-shiftable 9 kWh load, while flexible
scenarios (MPC 4%—-MPC 8%) intentionally avoided heavy loads at that time, preserving more
PV for export (67—98 kWh) and achieving moderate battery charging (30-32 kWh). By midday
(11:00-15:00), the flexible load in MPC 6% and MPC 8% ramped up to 21.75 and 23.2 kWh,
respectively, aligning with the robust solar output (571-556 kWh). This scheduling facilitated
large-scale battery charging (191-211 kWh) and exports (142—-200 kWh). In the evening
(16:00-23:00), strategic discharges (100-106 kWh) again checked peak-hour imports,
conserving sufficient battery headroom so that 38-52kWh could be exported, thereby

minimising reliance on higher-priced grid energy.

Finally, 20 August (Day 3) had a consistent €0.3535/kWh tariff, showcasing the GA-MPC
framework’s adaptive capabilities in the absence of differential pricing. During morning hours
(08:00-10:00), MPC 6% and MPC 8% purposefully raised their flexible loads to 8.7 and
11.6 kWh, respectively, in tandem with ample PV (213-220 kWh). At midday (11:00-15:00),
MPC8 utilised as much as 29kWh of flex demand, optimising use of peak solar (572—
592 kWh). Consequently, the battery was well charged (202-211 kWh), and surplus exports
(178-200 kWh) were high. By late afternoon and evening (16:00-23:00), battery discharges
of roughly 116—140 kWh ably met demands (164—174 kWh) while still producing 54—-86 kWh

for export, thereby sustaining a high degree of grid independence.
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Diving deeper in the analysis, four days between winter and summer are selected for the
analysis of method MPC-8%. Figure 4-4 illustrates the capability to strategically adjust and
shift the loads in response to electricity prices and the availability of PV generation at each
time step. For instance, on winter days, subplots a) and b), which are inherently limited in PV
generation, the MPC-8% approach schedules most of the flexible load towards early morning
hours. This tactic is clearly evident as the loads are scheduled between midnight and 07:00,
taking advantage of the lower electricity tariffs of approximately €0.3535/kWh. Such
scheduling reduces grid purchases when PV energy is insufficient to meet load demand during
more expensive daytime hours. The MPC-8% approach reduces operating costs related to
energy imports from the grid during low renewable generation by aggressively moving loads

to periods of lower electricity prices.
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Figure 4-4: Hourly load profiles and pricing dynamics for MPC 8% flexible operation across four representative days:
(a) 5% January 2022 and (b) 12" January 2022, representing winter days with low PV availability, whereas (c) 20" July
2022 and (d) 21t July 2022, reflecting summer days with abundant solar energy. Shaded regions indicate load shifts
(green: increase, blue: decrease), highlighting MPC’s adaptive strategy to minimize energy costs by aligning demand
with low-tariff hours and PV generation windows. Dual-axis plots show both power demand (left y-axis) and electricity
prices (right y-axis).
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Contrastingly, on the summer days in subplots c) and d), a different behaviour is demonstrated,
explained by the high PV generation and the availability of excess energy. The MPC-8%
method is more selective and reduces the necessity for extensive use of electricity in the early
morning as observed during the winter days. Instead, it only shifts loads when needed,
specifically during hours between 8:00 and 10:00 in the morning, when demand is high, but
PV generation is still insufficient to meet the load. This avoids peak price windows, thereby
enhancing the utilisation of midday PV generation. Consequently, the summer operational
profiles exhibit minimal reliance on grid imports during high-tariff periods, leveraging the full

potential of abundant solar resources and storage solutions.

Comparative study during these summer and winter weeks highlights GA-MPC's improved
operational responsiveness. Unlike earlier benchmark techniques, GA-Yearly Horizon, GA-
Load Following, HOMER-Load Following, GA-MPC’s short-horizon control realigns battery
usage and flexible loads each hour according to solar output and tariff structures, achieving
better cost savings and heightened renewable integration. Furthermore, the research
underlines GA-MPC 8% as the assessment of selected days in both summer and winter
confirms the effectiveness of the short-horizon MPC approach in dynamically modifying
operational decisions to seasonal changes, so maximising cost efficiency and integration of
renewable energy. This is followed by the next section, which examines how the capacities of
solar, battery, and hydrogen systems relate to inverter sizing ratios, a crucial component in

maximising the overall cost and efficiency of the system.

4.3.3 Economic Analysis

Building on system sizing and operations, exploring in great depth how various load flexibility
scenarios and short scheduling horizons can influence financial results. Using the same
benchmarking approach (GA-Yearly Horizon, GA-Load Following), Figure 4-5 evaluate four
MPC-based solutions, MPC 0% (subplot a), MPC 4% (subplot b), MPC 6% (subplot c), and
MPC 8% (subplot d). Each scenario's cost components, including initial capital expenditure,
operating and maintenance (O&M), replacements, and salvage values, are broken out to

precisely estimate their financial effects.

The economic case for the community system is determined by how energy is traded with the
grid and, more specifically, by the asymmetry between the retail import tariff and the feed-in
price. Table 4-5 presents a Year-1 snapshot of grid-trading cash flows for all controllers
considered in this study, including the baselines defined previously (Grid-Only, GA-Yearly
horizon, GA-Load Following, and HOMER-Load Following) and the MPC cases with 0-8%
flexible load. For each scenario the table separates exported energy and its income from

imported energy and its cost and reports the resulting net grid cash-flow together with the
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avoided import cost relative to Grid-Only. Because these figures are derived directly from
hourly energy flows priced by the time-of-use schedule, with fixed contracted-power charges
and excess-demand penalties applied explicitly, the results are fully auditable and comparable

across controllers.

Table 4-5 Year-1 grid-trading cash-flow by scenario, separating export revenue from import costs and reporting net
grid cash-flow and avoided import cost (Grid-Only — scenario)

Scenario Exported Export rev- Imlf\j)vr;[]ed Irgg;)trt Cg:;%{lo(\j/v Avoided import cost
kWh/year | enue €/year KWhiyear €lyear €lyear vs Grid-Only €/year
Grid-Only - - 211,665 83,198 86,946 ;
(reference)
Gﬁ'Year'y 61,686 3,146 15,266 5,472 4,857 77.726
orizon
GA-Load 30,224 1,541 30,952 11,532 13,787 71,667
Following
HOMER-
Load Follow- | 28,061 1,431 33,104 12,333 14,650 70,866
ing
0,
Mpﬂixo % 58,932 3,006 20,094 7,295 6,285 75,904
0,
Miféf %o 58,098 2,963 20,465 7,407 6,391 75,791
0,
Mﬁgf % 60,243 3,072 19,826 7.160 5,988 76,038
0,
Mpﬂixs % 54,728 2,791 20,459 7,385 6,395 75,814

Taken together, the results show that export revenue is modest under all controllers because
the feed-in price is far lower than the retail import tariff; the optimisation therefore prioritises
self-consumption and temporal shifting over export. The principal source of economic value is
the reduction in imported energy relative to Grid-Only, which appears clearly in the “Import
cost” and “Avoided import cost” columns. Net grid cash-flow falls sharply for every optimised
method, and the MPC cases deliver an additional reduction by shifting the flexible pump load
into hours of higher on-site generation or lower retail price. Including GA-Yearly, GA-Load
Following and HOMER-Load Following alongside MPC demonstrates that this conclusion is
method-agnostic and rooted in the tariff structure rather than in a specific controller. Having
established the composition of grid-trading cash flows in Year-1, the next paragraphs examine
how flexibility reshapes the cost stack—CAPEX, O&M, replacements and salvage—for each

MPC level and how this aligns with the monthly patterns shown in Figure 4-5 and Figure 4-6
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Figure 4-5: Breakdown of Net Present Costs for the total system costs by category for MPC rolling horizon with 0%
flexibility (a), 4% flexibility (b), 6% flexibility (c), and 8% flexibility (d).

With no adjustable load, MPC 0% Scenario (subplot a) calls for the largest capital investments,
€248,000 in PV panels and €83,600 in battery storage. This sizeable initial expense arises
from the need to secure adequate renewable energy to offset higher grid dependence. Still,
operational expenses are somewhat substantial even with these major upfront costs.
Especially, O&M expenses for grid acquisitions alone come to €121,853, by far the biggest
single component in the annualised expenses. Driven by heavy cycling and frequent partial-
state operations, reflecting operational limits without flexible load shifting, battery replacement
also adds major budgetary pressure (€77,958). Minimal salvage recovery (€6,278 from
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batteries and €1,844 from inverters) points to quite high equipment wear brought on by

frequent cycling and increased grid dependency.

Adding small load flexibility to the MPC 4% Scenario (subplot b) changes cost structures. PV
capital investments drop somewhat to €240,000 while battery investment increases somewhat
to €88,000. Most importantly, O&M costs for grid purchases remain high (€122,815), which
reflects still significant dependence on grid energy, somewhat mitigated by better timing of
flexible loads to lower tariff times. Though with less fuel cell replacements (€1,698), thanks to
controlled hydrogen storage cycling, replacement prices for batteries remain similar (€77,742),
emphasising continuous cycle demands. Salvage values also clearly improve (batteries
€10,540, inverters €1,724), implying that more operating flexibility somewhat reduces

equipment stress.

Increasing flexibility even more in the MPC 6% Scenario (subplot c). Although initial capital
costs for PV (€246,191) and batteries (€84,060) remain in line with past scenarios, improved
load scheduling notably reduces grid-related O&M costs to €117,390, so proving the financial
advantage of moving a higher flexible load (4.35 kW) to periods when renewable energy is
abundant, or electricity rates are low. Although replacement costs reflect higher battery
throughput (€79,111), more regulated cycling greatly lowers running grid costs. Modest
increases in inverter and electrolyser replacements (€9,518 and €1,697 respectively) indicate
better total hydrogen cycle, hence optimising the use of renewable resources. Salvage values
remain modest (€5,629 batteries, €1,791 inverters), showing the controlled battery and

inverter use made possible by more operational flexibility.

Finally, the MPC 8% Scenario (subplot d) achieves the most refined balance between
operational flexibility and financial prudence. Here, the capital investments for PV (€243,200)
and battery storage (€81,400) slightly reduce, reflecting optimised capacity sizing from higher
load flexibility. Despite high battery replacement costs (€78,619) due to slightly increased
battery cycling (85,201 kWh annual throughput), strategic load shifting significantly mitigates
operational costs, maintaining grid-related O&M at €123,513. This scenario shows that more
frequent but shallower battery cycles, made feasible by flexibility, have continuous financial
benefits by better controlling asset lifetimes, thereby attaining a considerable reduction in

salvage values (€3,465 batteries, €1,497 inverters).

These MPC-based models clearly show a financial improvement over Chapter 3 benchmarks,
such GA-Load Following, which suffered considerably greater NPC owing to increased annual
grid imports and replacements. For instance, GA-Load Following registered grid purchases
(O&M) of €245,234, more than double even the least flexible MPC scenario here (MPC 0%).
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Similarly, MPC scenarios' carefully scheduled flexibility notably reduces battery replacements

compared to GA-Load Following’s €64,148 cost, despite comparable battery throughputs.

This assessment indicates that even modest enhancements in load flexibility substantially
improve economic performance. Specifically, increasing flexibility from MPC 0% to MPC 4%
and beyond systematically lowers grid-related operational expenditures and enhances
renewable energy utilisation, despite moderately higher replacement costs. Among the
evaluated methods, the MPC 8% scenario shows the highest overall economic performance,
thereby amply illustrating the significant advantages obtained by carefully matching flexible

loads with tariff variations and renewable generation.

Figure 4-6 presents a monthly breakdown of grid charges alongside the revenues gained from
selling surplus energy for four GA-MPC flexibility scenarios: 0%, 4%, 6%, and 8%. This
monthly perspective illustrates how short-term operational strategies shape both the system’s

economic results and its reliance on the grid throughout the calendar year.

In the 0% load flexibility scenario, the absence of shifting capabilities causes hefty grid charges
during the colder months. January’s costs, for instance, reach roughly €3,801, most of which
arises from significant energy imports (€3,584.64) and fixed power fees (€344.55), with export
earnings at a modest €128.18. By contrast, the summer sees robust photovoltaic (PV)
generation and drastically reduced grid use. In June, imports dip to about €44.09 while export
earnings climb to €320.27, leading to an overall monthly expense of just €57.25. Even so, the
unavoidable winter reliance on grid power pushes the annual operational cost up to around

€15,884, highlighting how a lack of flexibility exacerbates seasonal demand swings.
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Figure 4-6: Monthly breakdown of grid escalated charges and revenues for MPC rolling horizon with 0% flexibility (a),
4% flexibility (b), 6% flexibility (c), and 8% flexibility (d).

Introducing 4% load flexibility adds a slight increase in battery expenses but creates new
possibilities for capitalizing on cheaper tariff periods. Although January’s monthly bill inches
up to €3,907, with nighttime tariffs accounting for €3,694.21 of the import costs, the biggest
gains become evident in the shoulder seasons. During April, the flexible 3 kW load is timed to
maximize daytime exports, yielding €325.12 in export revenue and holding monthly grid fees
to around €41.13. A similar improvement appears in May, where significant export revenue
(€415.21) offsets import expenses (€208.13), pulling the overall monthly charge down to
€129.06. As a result, total yearly grid costs land at €16,057, while renewable self-consumption

improves significantly to 44.05%, demonstrating the value of even modest load-shifting.

Expanding the flexible load to 6% (4.35 kW) brings more pronounced financial benefits.
January’s grid costs fall slightly to €3,795 compared to the 4% scenario, thanks to more
targeted scheduling of the 12,702-kWh annual flexible load. Export earnings of €331.91 greatly
exceed the low imports (€23.05), so maintaining the net bill for June to be only €12.28. The
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annual grid cost falls to €15,394 by maximising the usage of midday solar, the lowest amount

among the four scenarios.

With 8% load flexibility, that is, 5.8 kW, or 16,936 kWh annually, the system maximises capacity
to benefit from solar output. In months of plenty of sunlight, the financial effect is especially
obvious. For example, exports in May bring €392.93 while imports come at €203.64, therefore
producing a net charge of -€189.30. Strong export income (€302.91) and well-timed flexible
loads help June follow a similar path whereby the month's grid bill of just €32.89 is maintained.
While annual grid spending for the whole year reaches €15,886, equal to the 0% case, the 8%
flexibility scenario boosts renewable self-consumption to 44.56% and generates considerable

surplus energy exports (54,728 kWh/year), hence enhancing its financial resilience.

These MPC strategies show really good performance when compared with Chapter 3
benchmarks. Reflecting its less efficient alignment of renewable availability and load
scheduling, GA-Load Following, for example, had a yearly grid cost of over €29,525.34, far
higher than any MPC scenario. Although the GA-Yearly Horizon approach uses excellent long-
term horizon, a very broad assumption, it delivers a lower yearly grid cost of €13,123.
Focussing on short-horizon adaptability, the MPC approach provides a more realistic middle
ground allowing variable loads to meet both solar generation and daily tariff adjustments while

allowing sensible forecasting limits.

Figure 4-7 shows the cumulative discounted cash flows for the four MPC scenarios (0%, 4%,

6%, and 8%) over the project lifespan (25 years). This cash flow analysis distinctly highlights
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Figure 4-7: Discounted Cashflow for the GA-MPC approach with different flexibility scenarios
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the internal rate of return (IRR) and payback period, providing a comprehensive perspective

on investment viability and economic attractiveness for each flexibility scenario.

Analysing the MPC scenarios individually, MPC 0%, representing no load flexibility, exhibits
the lowest IRR at 17.75% and the longest payback period of approximately 4.92 years,
primarily due to higher initial capital outlays and operational grid costs resulting from inflexible
load scheduling. For example, MPC 4%, allowing some flexibility, improves IRR to 18.15%
and reduces the payback time to about 4.80 years. As already shown by lower monthly grid
rates, this financial advantage results from the deliberate distribution of loads to more

economically beneficial times.

Further allowing MPC 6% (17.98% IRR, 4.86 years repayment) and MPC 8% (18.22% IRR,
4.85 years payback) shows just slight variations as well. While MPC 8% has the greatest IRR
across MPC scenarios at 18.22%, the variations from MPC 4% and MPC 6% are still small,
showing a declining return on financial measures with increasing load flexibility beyond a
certain threshold. However, these incremental improvements become significant when
considering overall system reliability, renewable utilisation efficiency, and operational

management of storage systems (Figure 4-6 and Figure 4-5).

Comparing these MPC scenarios to previously discussed Chapter 3 benchmarks, GA-Yearly
Horizon (IRR: 17.05%, payback: 5.01 years), GA-Load Following (IRR: 19.69%, payback: 4.48
years), and HOMER-Load Following (IRR: 19.74%, payback: 4.54 years), yields insightful
implications. Especially, the MPC approaches strike a good compromise. Although GA-Load
Following and HOMER-Load Following methods show somewhat higher IRRs and shorter
payback periods due to lower upfront investment and higher operational reliance on the grid,
they incur significantly higher NPC values (€665,236 and €661,677, respectively) compared
to MPC scenarios (ranging from approximately €625,776 for MPC 8% up to somewhat higher
levels in lower-flexibility scenarios). The GA-Yearly Horizon approach, with its idealised long-
term forecasting, achieves the lowest annual grid charges (€13,123), yet it still offers a longer

payback period (5.01 years), reflecting higher initial investments.

Despite slightly higher annual grid costs than GA-Yearly Horizon, MPC scenarios strategically
manage loads to reduce storage component stress, thus lowering replacement expenses and
improving salvage values. These operational efficiencies translate into consistently
competitive IRR and attractive payback periods, demonstrating the practical economic value

of MPC-based load flexibility for hybrid renewable energy systems.

This analysis indicates the need to accurately estimate hybrid renewable energy costs. Still,
optimisation parameters considerably impact economic results accuracy and efficiency. To

enhance and testing the robustness of the GA-MPC optimisation approach, the following
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section closely investigates the influence of adjusting solver settings. The section evaluates
Mixed-Integer Linear Programming (MILP) parameters using the Gurobi solver and then
explores crucial Genetic Algorithm (GA) parameter values to ensure a powerful and

computationally effective optimisation method.

4.3.4 GA and MILP Solvers parameter tunning

This section outlines the tuning process for critical solver parameters, with a particular focus
on MIPGap and MIPFocus, to improve the stability and convergence efficiency of the MILP
optimisation. By systematically exploring these settings through targeted grid searches, the
aim was to enhance computational performance and reduce the Total Discounted Cost.
Similarly, key GA parameters, including population size, crossover rate, and mutation
probability, were also calibrated to identify a configuration that consistently delivers high-

quality, near-optimal solutions within acceptable computation times.

4.3.4.1  MILP Parameter tunning

Optimising solver settings is critical to ensure practical computational efficiency in the MILP
framework implemented using Gurobi. The parameters varied in this analysis include
MIPFocus, and MIPGap, each influencing the solver's precision and computational runtime.
To reconcile runtime performance with solution quality, the grid search methodically
investigated a spectrum of parameter values. MIPFocus was specifically examined across
values 0 (default), 1, 2, and 3, thereby reflecting balanced, feasible-solution focus, optimality
emphasis, and bound emphasis, respectively. The optimality tolerance (MIPGap) was
adjusted from a tight 0.0001 up to a more relaxed 0.05, with the default being 0.0001. These
parameter variations allowed systematic assessment of trade-offs between computational

speed and solution accuracy.

Figure 4-8 reveals sensitivity of NPC's and computational length to the MIP Focus value.
Setting the median Net Present Cost (NPC) to 1 (feasible-solution focus) exhibited more
volatility (around €614,000—-€616,000), therefore indicating less consistent solver
performance. Conversely, the default setting (MIPFocus=0) and settings focused on optimality
or bound tightening (MIPFocus=2,3) achieved more consistent results around €613,500—
€614,500. Runtime analysis indicates that focusing on bound tightening (MIPFocus=3)

significantly prolongs computation (~55 seconds median), whereas settings 1 and 2 notably
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reduce computational time (median 35-40 seconds), albeit with marginally higher NPC

variability.
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Figure 4-8: The influence of solver parameter tunning in Gurobi MIPFocus parameter

Analysing MIPGap (Figure 4-9) exposes even more these trade-offs. Although average
computation time (~45 seconds) was raised by an exceptionally tight MIPGap (0.0001), NPC
variability was lowest. On the other hand, at a small trade off in solution accuracy, decreasing
the gap to 0.05 clearly reduced computational time (~30 seconds). Thus, depending on the

value of accuracy over runtime in practical applications, properly balancing MIPFocus and
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Figure 4-9: The Influence of MILPGap on accuracy and convergence speed
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MIPGap parameters offers ideal solver configurations tuned either to speedier solutions or

tighter economic precision.

4.3.4.2 GA Parameter tunning

The convergence behaviour of the genetic algorithm (GA) across several crossover (CP) and
mutation probability (MP) combinations, shown in the convergence plots and parameter
heatmap, offers important new perspectives on the exploration-exploitation trade-off
necessary for efficient parameter tuning in optimisation problems. Figure 4-10 shows the
convergence plots for different mutation and crossover probability. Starting with subplot (b)
from the convergence plot, high crossover probability (CP = 0.7-0.9) combined with low
mutation probabilities (MP = 0.1-0.2) provide quick convergence, usually stabilising within less
than 10 generations. These parameters clearly show convergence into local minima despite
the apparent advantage of fast stabilisation; they prematurely converge at substandard net
present cost (NPC) levels regularly above €625,000. For example, combinations such as CP
= 0.7 with MP = 0.1 and CP = 0.9 with MP = 0.1 both illustrate swift but insufficient exploration,
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Figure 4-10: Convergence plots for different mutation and crossover mutation.
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highlighting a critical limitation when mutation rates are insufficiently high to introduce

necessary genetic diversity.

On the other hand, subplots (a) and (c) from the convergence plot stress, independent of
crossover probability, the advantages of higher mutation probabilities (MP = 0.3-0.5).
Particularly, subplot (c) shows a slower but rather much better convergence trend with lower
crossover probability (CP = 0.4-0.6) associated with higher mutation rates (MP = 0.3-0.5.
Reflecting their ability to maintain population diversity and thorough search space exploration,
these designs get more ideal NPC values of roughly €606,000. Especially, the combination of
CP = 0.4 and MP = 0.4 stands out; it always obtains the lowest NPC values at approximately
€606,566, therefore exhibiting an excellent balance between extensive exploration and
effective exploitation. Although high crossover rates cause somewhat less stability, same
behaviour is also clearly shown in subplot (a), where high crossover rates (CP = 0.7-0.9) first
show fluctuations but subsequently stabilise at favourable solutions between roughly
€606,000—€627,000. Conversely, subplot (d), which shows low crossover and low mutation
(CP = 0.4-0.6, MP = 0.1-0.2, exhibits first quick convergence but finally stagnates
prematurely, obtaining inferior NPC values of approximately €608,000 to €621,000 due

insufficient genetic variation.

The interaction plot in Figure 4-11 provides a detailed visualisation of how final fithess of NPC
varies with crossover probability across different mutation rates (u). This supports the
convergence analysis by clearly illustrating the impact of GA parameter selection. The plot

shows that the lowest NPC values are achieved in regions with moderate crossover
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Figure 4-11: Interaction plot of final fitness versus crossover probability for different mutation rates (u).
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probabilities (CP = 0.4-0.5) combined with higher mutation rates (u = 0.3-0.4), with optimal
solutions consistently falling in the range of €606,000—€607,000. Notably, the combination of
CP = 0.4 and u = 0.4 yields one of the best-performing results, at €606,566.

In contrast, configurations with low mutation rates (u = 0.1-0.2) result in significantly higher
NPC values, exceeding €620,000. This highlights the detrimental effects of limited genetic
diversity, leading to premature convergence to local optima. The poorest-performing
combination occurs at CP = 0.4 and p = 0.1, reaching a high NPC of €641,688.

These findings emphasise the critical role of mutation probability in avoiding early
convergence and enabling a broader search of the solution space. While higher mutation rates
may initially slow convergence, often stabilising only after 20-30 generations, they
consistently yield better outcomes by maintaining genetic diversity. Conversely, faster
convergence under low mutation rates, as seen in previous convergence plots, often leads to
suboptimal solutions due to restricted exploration. Based on these results, the recommended
GA parameter range for achieving minimal NPC includes moderate crossover probabilities
(CP = 0.4-0.5) and relatively high mutation rates (u = 0.3-0.4). This interaction analysis not
only validates the parameter choices used in this study but also provides evidence-based

guidance for future GA-based optimisation of complex energy systems.

4.4 Summary

Adopting a rolling-horizon Genetic Algorithm—Mixed Integer Linear Programming (GA-MILP)
framework with MPC and flexible load functionality significantly improves both the accuracy of
component sizing and the operational flexibility of hybrid renewable systems. Unlike the single-
horizon method from Chapter 3, which rests on a year’s worth of perfect foresight, this updated
strategy splits the year into sequential 24-hour windows, each overlapping by 12 hours, thus

introducing short-term forecasts and fine-grained decision-making.

In addition, incorporating adjustable load demand (0%, 4%, 6%, 8% flexibility) further refines
the balance between PV generation and energy storage, producing clearly improved system-
level results. These flexibility levels correspond to approximately 4%, 6%, and 8% of the
community’s average daily demand (=579.9 kWh/day), with the highest case approaching
10%, which is relatively high compared with typical demand-side management studies where
2-5% is common. Specifically, at 8% flexibility, the approach achieves the lowest NPC of
nearly €599,134, compared to €612,945 under 0% flexibility, and it remains below the perfect-
foresight benchmark of €625,776 in Chapter 3. Changes in PV capacity from 155 kWp at 0%
flexibility to 150 kWp at 8% flexibility highlight the economic advantages of synchronising

demand with peak solar output. Battery storage exhibits a similar adaptive trend: starting at
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74-76 strings at lower flexibility and increasing to 80 strings at higher flexibility, thereby

enabling more effective use of midday solar surpluses.

Detailed operational analyses for both winter and summer corroborate these advantages, with
flexible loads consistently cut or shifted to lower-cost or high-supply hours. Winter daytime
imports, for instance, shrink substantially (generally down to 7.39-28.44 kWh), while summer
scheduling of flexible loads amplifies battery recharging (as much as 211 kWh per day) and
boosts excess energy exports to above 200 kWh daily. This improved alignment lowers total
annual grid charges, for example, from €15,884 at 0% flexibility to roughly €15,394 at 6%
flexibility and raises renewable self-consumption to 44.56% at 8%. Solving solvers with tuned
parameters strengthens the observed improvements: Genetic Algorithm convergence studies
show that moderate crossover probability (0.4-0.5) and greater mutation rates (0.3-0.4)
routinely provide strong solutions around €606,566, so balancing exploration breadth and
solution quality. These results are derived under ideal forecast conditions, where 24-hour
ahead predictions of PV output, load demand, and tariff levels are assumed to be perfectly
accurate. Flexible loads are assumed to shift without any consumer discomfort, rebound
effects, or minimum-up/minimum-down time constraints beyond those explicitly modelled.
Combining demand flexibility with an MPC-based, short-horizon re-optimisation beats both
full-year and totally reactive benchmarks, hence improving the battery and hydrogen storage
systems. Such results confirm the feasibility of MPC frameworks for reasonable energy
community scenarios and highlight the significant practical utility of implementing short-term

forecasts and load scheduling in hybrid PV-storage projects.
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5 Life-Cycle Energy Cost Analysis through a New Index
for Hybrid Renewable-Fuel Cell Battery Storage

Systems in Energy Communities.

5.1 Introduction

In the framework of sustainable energy solutions and decarbonisation, the optimisation of en-
ergy systems during their life cycles has grown ever more important. Knowing the interaction
between environmental and economic performance becomes essential as energy communi-
ties and grid-scale storage options grow. Combining upfront capital costs, operational ex-
penses, and environmental impact measures, life-cycle energy cost analysis (LCECA) offers
a complete framework for assessing energy systems and helps to provide understanding of
long-term viability.

Traditional metrics such as Energy Stored on Invested (ESOI) and Energy Return on Invest-
ment (EROI) have been commonly used as performance measures for evaluating the energy
efficiency of generating and storage technologies. The EROI compares the energy output of
a generating plant to the principal energy needed for construction and operation. Similarly, the
ESOI gauges the efficiency with which the energy spent constructing a storage device is uti-
lised over its lifetime to provide useful energy back into the system. But historically, these
measures have only been used to assess individual technologies; they have not sufficiently
addressed the complexity brought forth by hybrid energy systems, which combine several
generating and storage technologies under one operating platform. Particularly hybrid renew-
able-fuel cell-battery systems provide many energy paths, including direct use, storage, grid
export, and curtailment. For example, Figure 5-1 presents normalised hourly data collected
during the year 2022 from the Formentera Council building, including average solar output,
electricity purchasing and selling prices, and average electricity demand. This statistic vividly
illustrates the dynamic and complicated interactions in a hybrid renewable energy system,
hence highlighting the need of comprehensive, all-encompassing measures to fairly evaluate

and maximise system performance.
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Figure 5-1: Normalised measured hourly data for whole year days and their average values for energy
generation, prices and consumption.

Based on and greatly extending current EROI and ESOI frameworks, this chapter presents a
new performance index especially intended for hybrid renewable energy systems within en-
ergy communities, therefore addressing this gap. Providing a practical, scalable, and more
accurate method for life-cycle energy analysis in real-world energy communities, this new
metric precisely incorporates the complexity and operational variety inherent in hybrid energy
systems.

Devices for storing energy, such batteries or hydrogen systems, call for an initial
manufacturing energy investment. These devices store and return energy several times over
their working lifespan. The Energy Stored on Invested (ESOI) ratio measures the efficiency

with which the energy spent creating the storage device is used to provide the system with
useable energy:

E
ESOI = out,st 5_1)
Eemb st

Where the E, s is the total energy dispatched from storage over its lifetime, measured in
megajoules (MJ). Egmp st IS the embodied energy required for manufacturing the storage
system, also in MJ. The ESOI ratio is dimensionless measured in terms of electrical-equivalent
energy, and a higher ESOIl indicates an energetically beneficial storage system since the

device returns more units of energy over its lifetime for every unit of energy invested in its
construction.
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A well-known energy index, the Energy Return on Investment (EROI) links the total primary
(or embodied) energy needed to build a generation facility to the entire energy production of
that facility throughout its lifetime. For a generation facility (e.g., photovoltaic panels and wind

turbine), if Eye, is the total lifetime energy generated and Egpp gen is the embodied energy of

the generation facility, then:

Egen

EROI =0
gen Eemb,gen 5'2)

Where the Ege,, is the total lifetime generated energy, in MJ. Egnp, gen is the embodied energy
for constructing and operating the generation facility, in MJ. A high EROI means that the
generation technology improves the net energy benefit to the system by being rather effective

in transforming invested energy into supplied energy.

The next parts provide a thorough derivation of the conventional formulations of the current
EROI and ESOI measurements, therefore exploring their theoretical foundations. It then high-
lights the need of customised metrics for hybrid systems and the justification for the suggested
changes. The study ends in a look at how these changes might support major uses such

energy community initiatives and grid-scale storage.

5.2 Novel Index for Energy Systems in Communities

Figure 5-2, subplot (A) illustrates the foundational energy return framework often used for grid-
scale analysis, originally proposed by [113] and extended in similar works by [55]. This
approach assumes a single generation source with a fixed lifetime energy output, from which
a fraction ¢ is either dispatched directly or routed through a storage pathway. Each route
carries distinct energy implications: direct dispatch incurs no losses, while storage paths are
penalised by round-trip efficiency and the embodied energy cost of the storage device itself.
This model enables the computation of an effective system-wide EROI that accounts for these
trade-offs and has become a widely accepted benchmark for comparing the energy
performance of storage technologies at scale. However, it remains limited to systems with a
single storage route and no direct representation of curtailment, multi-path interactions, or
community-based demand structures. The complete derivation of this formulation is provided

in Appendix 9.4 for transparency.

To overcome these limitations and reflect the operational realities of distributed hybrid energy
communities, Figure 5-2, subplot (B) extends this framework to include multiple storage

pathways and energy flow options. The following derivation formalises this expanded
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approach. First, as shown in subplot (B), we redefine the lifetime energy generation presented

Eger in the foundational framework (equation 9-4)) as split into multiple different energy paths:

® oy l0ad : Fraction of generation delivered directly to the load.
e ¢pq : Fraction of generation routed into battery storage.

e ¢y, : Fraction of generation routed into hydrogen storage.

° d)pvgn’ ,- Fraction of generation is being exported to the grid.

o ¢..rt: Fraction of generation is being curtailed.

By definition:

¢pv_load + ¢bat + ¢H2 + ¢pvgrid + (l)curt =1 5'3)

Electrical Grid
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Figure 5-2: Energy flow comparison between (A) a simple grid-connected system with single
storage and (B) a hybrid energy community with multiple storage paths and direct load
consumption, highlighting the need for an extended EROIl metric.

Each storage technology i (where i € {battery, hydrogen}) has its own round-trip efficiency n;,
and [ESOI] ;. The energy does not suffer storage efficiency losses when it is directly consumed

within the community or exported to the grid. Therefore, the total dispatched energy Egjsp total
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is redefined from equation 9-5) over the lifetime consist of contributions from all possible

pathways as follows:

Egisp,total = Egen (¢pv_load + d’pvgn-d + Ppat Mbat + ¢Han2 + ¢curt) 5-4)

Where Egisp total IS in megajoules (MJ). Embodied energy consists of the generation subsystem
plus the embodied energy of each storage subsystem.

Egen

E = — -
emb,gen [EROI]gen 5 5)

For each storage technology i, the total delivered energy from storage is ¢;Eg.,n;. Then the

Eomp,i is given by:

¢iEgenni
E =TIt 5-6
embl [ESOI]; )

Summing over the generation and the two storages (battery and hydrogen):

Egen Pbat NMbat Egen ¢H2 M, Egen

E = ]
emb , total [EROI]gen [ESOI]pat [ESOI], >
Factor out Eg, :
1 Poat Mbat | P, "n
E _ E 2 2 -
emb,total gen <[EROI]gen + [ESOl]pq:  [ESOI]g, 9

The aggregate EROI of the extended system (entire configuration to a community load) is

defined as:

E
[EROI]system = dip tota 5-9)

Eemb,total

Substitute Equations 5-4) and 5-8):

Egen ((f)pv_load + ¢pvgrid + Ppat Mbat + ¢H277H2 + ¢curt)

E ( 1 PoatMoat ¢>H2nH2) 5-10)
gen \[EROT]gen T [ESOI]pat T [ESOIs,

[EROI] community =

Cancelling Egp:
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oy _load T d’pvgn-d + Ppat Mbat + ¢H277H2 + bcurt
[EROI]community = ®
HyH,

[ESOI] 1,

5-11)

1 + Pbat Mbat
[EROI]gen [ESOI]bat

This equation offers a novel and all-around measure specifically for hybrid renewable energy
systems in local surroundings. This index precisely characterises the intricate relationship of
direct usage, storage inefficiencies, and embodied energy requirements and explicitly
analyses numerous simultaneous storage alternatives. By means of such extensive
evaluations, energy planners and system designers can acquire greater understanding of
operational efficiencies, pinpoint appropriate technology configurations, and so increase both
environmental and financial sustainability inside energy communities. To position the
proposed index within the wider body of energy-return metrics, Table 5-1 compares it with the
most frequently cited alternatives in the literature, highlighting differences in system boundary,

information captured and practical usefulness for community-scale hybrids.

Table 5-1: Comparison of life-cycle energy-return metrics and their suitability for community hybrid systems

System scope & flows Suitability for
Metric y P Key strengths Main limitations | community
captured
HRES
Ignores stor-
Classic EROI | Generation asset only Simple; widely used age, curtail- Low
ment, demand
diversity
L Lo . Detached from
ESOI Individual storage Highlights embodied en- generation and Partial
technology ergy of storage load
EROI + ESOI Assumes single
inequality PV/Wind plus one stor- | Energetic viability thresh- storage path;
Moderate
(Barnhart age route old no demand
2013) structure
. Still single stor-
EROI_grid Grid over-generation Includes round-trip losses | age; no spatial
(Pellow ith h | & curtail t d d het Moderate
2015) with one storage loop curtailmen emand hetero-
geneity
Multi-vector hybrid Integrates simultaneous
(PV-battery-H,-grid) 9 8
Proposed . storage paths; directly .
with hourly demand, : Higher data re- .
EROI_com- . uses MILP hourly dis- ; High
: curtailment & export, C . quirement
munity . : patch; mirrors community
embodied energies for ;
import/export rules
all assets

The comparison confirms that existing metrics either treat generation and storage in isolation
or assume a single-path storage loop. In contrast, [EROI]community Captures multiple storage
pathways, curtailment, direct load supply and grid exchanges within a single life-cycle
boundary, leveraging the hourly dispatch outputs already generated in Chapters 3 and 4. This
integrated perspective is essential for energy-community planners who must balance
investment in batteries, hydrogen, grid contracts and renewable capacity simultaneously. The
remainder of this section therefore reports and interprets [EROI]community Values for the

Formentera case study, alongside the financial results presented earlier.
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5.3 Applying the EROI Community Metric: Sensitivity and
Scaling Analysis

Following the derivation of our new index in Section 5.2, designed specifically to capture the
energy life-cycle performance of hybrid renewable—hydrogen—battery systems in community
settings, a hierarchical methodological approach is adopted. Figure 5-3 presents a structured
flow chart illustrating the two-stage methodological framework employed in this study to
evaluate the life-cycle energy performance of a hybrid renewable—battery—hydrogen system
using the derived EROI-based metric. The process is divided into Step 1: Parametric
Sensitivity Analysis with Fixed Capacities, and Step 2: Capacity Scaling and Mapping

Analysis.

In Step 1, a set of pre-optimised system capacities, obtained from the GA-MILP sizing
framework introduced in Chapter 4, is held constant while key technical parameters are
independently varied. These include component round-trip efficiencies, operational lifespans
(durability), and embodied energy intensities. For each parameter variation, the MILP-based
operational dispatch is executed to derive annual energy flows and component usage, from
which operational pathway fractions and total operating hours are calculated. These outputs
are then used to compute the proposed life-cycle energy return metric. This procedure is
iteratively repeated until all scenarios are exhausted, with results used to generate sensitivity

plots that highlight the impact of each parameter on overall energy performance.

In Step 2, the analysis shifts from technical parameter variation to capacity scaling. Here,
uniform scaling factors are applied to the base component capacities (e.g., PV, battery,
electrolyser, fuel cell, and hydrogen tank), ranging from 0.1x to 2.0x of their original sizes.
Technical parameters remain fixed at their nominal values, and the MILP dispatch model is
rerun for each scaled configuration. The resulting energy flows and system usage are used to
compute the same set of performance metrics (EROI, NPC, unmet and excess energy). These
results are then used to train surrogate models via third-degree polynomial regression,
enabling the interpolation and smoothing of performance across the design space. Results
are visualised through heatmaps, facilitating exploration of trade-offs across multiple
performance dimensions. This two-part framework provides both a parameter-level
understanding of energy-system behaviour and a design-space mapping to support planning
decisions, particularly relevant for energy communities deploying hybrid storage

configurations.
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Figure 5-3: Two-stage methodological framework for applying the derived EROI-community metric. Step A (left)
conducts parametric sensitivity analysis using fixed, optimised system capacities while varying key technical
parameters, efficiency, durability, and embodied energy. Step B (right) applies uniform scaling to system capacities to
assess the impact of system size on performance. Both steps use rolling-horizon MILP dispatch to extract operational
metrics, which are then used to compute and analyse the life cycle EROl and associated sustainability indicators.

To implement Step 1 of the methodology, three main classes of technical parameters were
independently varied while holding the system capacity fixed. These represent commonly cited

sources of uncertainty and improvement in hybrid system deployment:

e Round-trip efficiency: The efficiency of the battery subsystem (charging—discharg-

ing) and the hydrogen subsystem (electrolyser—fuel cell) are adjusted.

o Durability: The lifespans of the battery, electrolyser, and fuel cell are shifted, thereby

altering replacement schedules.
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e Embodied energy intensity: The megajoule-per-unit-of-capacity values for each
technology are modified, reflecting possible improvements or variations in manufactur-

ing processes.

Table 5-2 summarises the nominal values used as baselines, together with illustrative lower
and upper bounds. These moderate parameter variations allow direct comparison of how, for
example, battery round-trip efficiency influences the final life-cycle metric, while holding

capacity fixed.

Table 5-2: Sample Parameter Ranges for Efficiency, Durability, and Embodied Energy Sensitivity Studies

Parameter [ref] Units Nominal Lower Upper Resolution
Value Bound Bound

Battery Efficiency (n,+ and n;,_) % 82.5 0.7 0.95 10
Electrolyser Efficiency (1.;_) % 55 40 70 10
Fuel Cell Efficiency (nfc+) % 45 30 60 10
Battery Durability (t34;) kWh 14,400 7,200 21,600 16
Electrolyser Durability (,;) hours 46,250 17,500 75,000 16
Fuel Cell Durability (zs.) hours 9,500 4,000 15,000 16
Embodied Energy — PV (g,,) [156] MJ/kWp 12000 10000 14000 5
Embodied Energy — Battery (g,4;) [157] MJ/kWh 1000 800 1,200 5
Embodied Energy — Fuel Cell (g.) [55] MJ/kW 1,150 1000 1,300 5
Embodied Energy — Electrolyser (g,;) [55] MJ/kW 1,150 1000 1,300 5
Embodied Energy — Tank (&) [55] MJ/Kg 1,000 800 1,200 5

By running this sequence of simulations, a clear sense is obtained of how the system’s life-
cycle performance responds to distinct engineering improvements or manufacturing
optimisations (life cycle stages). This study highlights which parameter modifications provide

the most meaningful gain for energy communities in both cost and environmental terms.

Consequently, as discussed in step 2 of this methodology, whereby uniform scaling factors
are applied to the capacities of major components, PV, battery, electrolyser, fuel cell, and
hydrogen tank, as shown in Table 5-3. Each scaled configuration is subjected to the same
rolling-horizon dispatch and life-cycle index calculation, but without any additional global

capacity optimisation.

152



Table 5-3: lllustrative Capacity Variations Relative to the MPC-4% Baseline

Baseline (GA- | Lower Bound Upper Bound
Parameter Units

MILP-MPC) (x0.1) (x 2)

PV Array Rating kW 152 15.2 304
Battery Strings Strings 76 7.6 152
Electrolyser Rating kw 5 0.5 10
Fuel Cell Rating kW 5 0.5 10
Hydrogen Tank Capacity kg 7 0.7 14

Exploring these alternative capacities provides a broader perspective on how baseline
technology parameters perform when the system is scaled up or down from the MPC-4%
design point. Unlike the first set of runs, where efficiency, durability, and embodied energy
were individually varied, second stage keeps those parameters fixed at their nominal values,
modifying only the component capacities through uniform scaling between 0.1 and 2.0. These
optimisation data sweeps are collected with all results metrics (EROI, NPC, Unmet and

Excess) and used to train and fit regression models.

Surrogate models are commonly used in renewable energy optimisation to predict either
component sizes or performance metrics (e.g., cost or sustainability) for given configurations.
Authors [158] built second-order polynomial regression models showing how climatic and
geographic factors, such as temperature and irradiance, influence the PV system size and
visualised these relationships using contour and surface plots. Other authors [159], [160],
[161], [162] have demonstrated that polynomial regression models can match the predictive
power of advanced machine learning models while requiring less data and being faster to
train. These studies typically present their findings through heatmap-style visualisations (2D

or 3D), which improve interpretability and allow for more thorough performance exploration.

In this work, a third-degree polynomial surrogate model was constructed for each performance
metric using the five scaling factors-PV, battery, tank, fuel cell, and electrolyser scales -as
input variables. Let X € RY*> be the matrix containing design configurations, where each row
represents a candidate solution, and each column corresponds to one of the scaling factors.
The surrogate models approximate a target metric of NPC, EROI, unmet load, or excess

energy as a polynomial function, expressed as:

f(X)=,30+zs: ﬁalxa1+i i ﬁalazxalxaﬁi i i BasazasXa,Xa; Xas 5-12)
a;=1

a;=1 a=a, a;=1 a=a; az=a,
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To ensure that the surrogate model generalizes well and is not overfitting the training data, we
employ 10-fold cross-validation-a widely used best practice for model evaluation [163], [164].
In 10-fold cross-validation, the dataset is partitioned into 10 equally sized folds. For each fold,
the model is trained on the remaining 9 folds ( 90% of the data) and then evaluated on the
held-out fold (10% of the data). This process yields 10 independent estimates of the model's

performance.

The following metrics are computed for each fold, starting with the coefficient of determination

(R*):

N ) _ 5>
anvl (y y_ ) 5_13)
n=1 (y(n) - y)z
Which indicates the fraction of variance explained by the model, later the Mean Absolute Error

R?=1-

(MAE) is calculated using this equation:

N
1
MAE = Nz ly® — 5| 5-14)

n=1

This analyses the average absolute error between predictions and observed data. Finally, the

Mean Squared Error (MSE) is calculated using:

N
1 2
- _ E ) _ 5-15
MSE m 1 (y y ) )
n=

These metrics are then averaged over 10 folds to give a robust estimate of the surrogate
model's predictive accuracy. High average R? values (close to 1) alongside low MAE and MSE

indicate that the model effectively interpolates between the simulation data points.

Once validated, the four surrogate models (targeted outputs: EROI, NPC, Unmet and Excess)
are retrained on the entire dataset. A grid of input values is generated (e.g., 100 points linearly
spaced between 0.1 and 2.0 for each dimension) to evaluate the surrogate model over
continuous ranges of two selected variables, while holding the others constant. The
predictions are then used to produce smooth contour plots (heatmaps) of the performance
metrics. These smoothed heatmaps enable a clear visual representation of trends and trade-
offs, such as between NPC and EROI, that might be obscured in the raw, scattered simulation

data.

In the results that follow, the effect of each parameter change on novel energy life-cycle metric
under fixed capacities is first presented. Subsequently, an analysis is presented on how
scaling the system size, with parameters held at their baseline values, influences overall

performance. This two-pronged approach clarifies whether the improvements identified in the
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first step remain beneficial under specific capacity settings, and it also assists energy
communities in balancing technological upgrades and system sizing in planning. Throughout
this methodological framework, the economic dimension, represented by Net Present Cost
(NPC) is maintained to complement the novel technical sustainability indicator (EROI system),
in addition to unmet and excess energy figures (in MWh/year). This combined approach
ensures balanced decision-support metrics that clearly reflect the economic and energetic

trade-offs.

5.4 Results

To introduce the results, this subsection begins by illustrating the annual energy allocation in
the MPC-4% scenario (base line), which provides a visual baseline for all subsequent
analyses. The community load uses roughly 44.2% of the PV power directly; about 30.9%
goes into the battery. At less than 0.03%, curtailment contributes very little to the remaining

power, which is divided between hydrogen generation (2.6%) and grid export (19.6%).

This division reveals that over three-quarters of the energy is stored or serves the local need
right now. The significant share of direct load consumption is a result of efficient generation
and demand matching, which is the result of the MPC-based scheduling. The battery's notable
30.9% slice highlights its application in diurnal smoothing and short-term energy arbitrage; the
smaller hydrogen branch (2.6%) implies this circuit largely controls longer-duration or overflow
conditions. The 19.6% sent to the grid shows timeframes when neither local use nor storage
offered a more affordable option. Finally, the near-zero curtailment underscores that the

dispatch strategy rarely discards available renewable energy.

In subsequent sections, the resilience of this flow distribution to variations in efficiency,
durability, and embodied energy parameters will be examined. The study is advanced to how
these flows are affected if overall capacities are scaled. This annual energy fraction overview
offers a first starting point for grasping the operational balance of the system under the MPC-
4% setup. Managing the renewable generation across daily and seasonal cycles is done via
direct consumption, battery storage, hydrogen use, and grid exports, each of which plays
unique role and causes little curtailment. Once this baseline is set, the following section looks
at how important performance criteria, efficiency, durability, and embodied energy, may

change these distributions and affect the life-cycle measurements of the system.

5.4.1 Parametric Sensitivity Analysis with Fixed Capacities

5.4.1.1 Impact of Round-Trip Efficiency in Battery and Hydrogen Systems
Expanding on the baseline of energy flow allocations set earlier, Figure 5-4 investigates in

detail how variations in round-trip efficiencies for battery and hydrogen storage individually
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affect the system's energy performance and the corresponding net present cost (NPC). The
four subplots analyse the relationships between the round-trip efficiencies of battery and
hydrogen subsystems against both system-level Energy Return on Investment (EROI) and
storage-specific Energy Stored on Investment (ESOI), with each data point coloured according

to the resulting NPC value.

EROI vs n_bat (n_h2 = 0.42) EROI vs n_h2 (n_bat = 0.95)
(a) 4 (b)
4.9 7 4.89
P
%
ot 604000
.
48 - 610000 ® o .
e 488 - P 606000
. s ® [ P
> ° ® ¢ -t 608000
e + 620000 £ ° Lad o~
§ a7 o’ S 000 ¢ 8-%
4 g 2 L] o __gb 610000
& e @ e o O o
5 : 630000 g +87 il R ]
S s g goe .9/‘» ¢ 612000
§ 46 > i o ¢
L o T%e0@®5 ° 614000
S 640000 of P -
g 4861 ~-@ o Oe : 616000
45 a ° .. o0 ® 0
- °
50000
/0’ 6 o O o 618000
,/’ L]
444 ¢ R® = 0.99 485 ® R =0.33
0.70 0.75 0.80 0.85 0.90 0.95 015 0.20 0.25 0.30 035 0.40
Battery Round Trip Efficiency (eta_bat) Hydrogen Round Trip Efficiency (eta_h2)
ESOI_bat vs n_bat (n_h2 = 0.42) ESOI_H2 vs n_h2 (n_bat = 0.95)
(c) A (d) -
.
1.0 ot 14 1"
/’ P
e B g 604000
i 610000 13 sl
10.5 Tt ® o 8 606000
‘/ ® f”
/ 12 s @& £ ©
2 s 620000 £  ¥E% " 608000
g 100 4 3 o 8 )dn®
£ 7 £n a (b; oe’s o 610000
«© ’ s
s 630000 T 20 ®
3 95 /‘ 5 o0 Q,“‘. 612000
u P £ 10 ° %%
» b ad 614000
L 640000 9500
9.0 e /"{. 616000
) 9 -
P -
s 650000 . 618000
8.5 L 8 o®
¢ R® = 1.00 ° R*=0.85
0.70 0.75 0.80 0.85 0.90 0.95 0.15 0.20 0.25 0.30 035 0.40
Battery Round Trip Efficiency (eta_bat) Hydrogen Round Trip Efficiency (eta_h2)

Figure 5-4: Sensitivity of system EROI and storage ESOI to variations in round-trip efficiency. The four subplots show
that battery efficiency (R’ = 0.99 for EROIl and 1.00 for ESOI) has a stronger impact than hydrogen efficiency (R*= 0.33
for EROI and 0.85 for ESOI), with each point coloured by NPC.

In subplot (a), a strong linear correlation (R? = 0.99) is observed between battery round-trip
efficiency and system-level EROI, with EROI increasing from approximately 4.4 at 70 %
efficiency to nearly 4.9 at 95 % efficiency. This pronounced sensitivity results from the
substantial fraction (around 30.9%) of total generated energy routed through the battery.
Consequently, improvements in battery efficiency significantly enhance overall system EROI
and reduce NPC, with NPC values decreasing from approximately €650,000 at lower

efficiency to around €610,000 at higher efficiency (as depicted by the colour gradient).

Similarly, subplot(c) reveals an essentially perfect linear relationship (R? = 1.00) between
battery efficiency and battery-specific ESOI, rising notably from approximately 8.5 to 11.0
across the same efficiency range. These ESOI changes directly relate to a noticeable drop in
NPC given the battery's significant share in energy storage, hence stressing the economic

advantage of improved battery performance.
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On the other hand, subplot (b) shows a quite low connection (R? = 0.33) between system-level
EROI and hydrogen round-trip efficiency, with little EROI increases (from around 4.85 to 4.89)
despite hydrogen efficiency gains from about 15% to 40%. This limited sensitivity is directly
explained by the small fraction (~2.6%) of total energy passing through hydrogen storage.
Correspondingly, NPC values show only modest reductions, from around €618,000 at lower
hydrogen efficiencies to about €604,000 at higher efficiencies, indicating a secondary
economic influence. Subplot (d) exhibits a more evident relationship between hydrogen
efficiency and hydrogen-specific ESOI (R? = 0.85), increasing from about 8.0 to nearly 14.0.
However, because the hydrogen fraction of total PV generation is minimal (2.6%),
improvements in hydrogen ESOI have only marginal impacts on overall system economics

and performance, confirming its secondary role compared to battery storage.

These findings closely correspond to Equation (5-11), which indicates that storage-specific
ESOI values are weighted by their corresponding energy flow fractions within the general
system EROI computation. Improvements in battery efficiency and ESOI have far more impact
than hydrogen efficiency changes as the battery channel controls the storage route (about
30.9% of PV generation). With the role of efficiency variations clarified, the next part applies
this parametric sensitivity study to component durability, hence assessing how the energy and

economic criteria of the system are affected by battery and hydrogen storage lifespan.

5.4.1.2 Influence of Component Durability (Battery, Fuel Cell, Electrolyser)

In continuation of the parametric sensitivity analysis for in-depth understanding, Figure 5-5
examines how altering the operational lifetimes (durabilities) of key storage components
influences the overall system EROI and component-specific ESOI. This durability analysis
provides deeper insights by directly linking component longevity and replacement frequency
to economic and energetic outcomes, indicated by the net present cost (NPC) shown by the

colour gradient in each subplot.

Battery durability (subplots a and b), varied between approximately 7,200 and 21,600 hours,
demonstrates a clear and robust influence on both system-level EROI and battery-specific
ESOI. The overall system EROI significantly rises from about 4.3 to nearly 5.0 (R*=0.94),
whereas the battery ESOI exhibits an even stronger linear response, increasing from roughly
6 to 15 (R*=1.00). These pronounced improvements stem from the battery’s substantial
contribution (approximately 30.9 % of PV generation) as extended battery lifetimes reduce
replacement cycles, thus decreasing both embodied energy requirements and economic
costs. Correspondingly, NPC values decrease substantially from around €660,000 at shorter

battery lifetimes to approximately €610,000 at extended durability.
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On the system-level EROI, however, the effect of fuel cell lifetime (subplots ¢ and d, ranging
between around 4,000 and 15,000 hours) is somewhat low; it only rises from around 4.86 to
4.88 (R? = 0.88). The hydrogen-specific ESOI, on the other hand, is significantly influenced by
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Figure 5-5: Sensitivity of system-level EROI and component-specific ESOI to variations in component durability
(battery, fuel cell, electrolyser). Data points are coloured according to net present cost (NPC), illustrating economic
impacts associated with differing durability levels.

fuel cell durability; from roughly 5.5 to 10.0 (R?=0.97), it shows a clear linear improvement.
This contrast highlights the limited fraction (~2.6 %) of PV energy passing through the
hydrogen pathway. Although the direct impact on the overall EROI is minor, extending fuel cell
lifetimes meaningfully enhances hydrogen subsystem viability, with noticeable yet moderate
NPC reductions (from approximately €615,000 to €605,000).

Subplots e and f show electrolyser durability’s influence (varied between about 17,500 and
75,000 hours). While a noticeable yet moderate improvement in system EROI from about
4.865 to 4.880 (R2=0.85) is evident, the hydrogen-specific ESOI clearly benefits, increasing
from roughly 6.5 to nearly 11 (R*>=0.95). However, the NPC colour gradient remains notably

consistent across durability levels, suggesting that electrolyser lifetime alone has a limited
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effect on reducing overall costs. Nonetheless, because the electrolyser and fuel cell function
jointly within the hydrogen cycle, simultaneous improvements in durability across both
hydrogen components can collectively generate more substantial reductions in NPC and
embodied energy impacts, even though each individually appears to offer modest

improvements.

Taken together, these durability sensitivities highlight that extending battery lifetimes
significantly enhances both economic viability and life-cycle energy performance due to the
battery's large share of energy throughput. Unlike efficiency variations, durability changes do
not substantially alter the operational energy fractions; hence, the numerator in Equation 5-11)
remains nearly constant. Instead, durability directly impacts component replacements and
thus the denominator of the equation (through the ESOI terms). Shorter component lifetimes
necessitate more frequent replacements, increasing embodied energy demands and
consequently inflating the ESOI denominator, which negatively affects the overall system
EROI and raises the NPC. Contrarily, improvements in fuel cell and electrolyser durability,
although individually modest in their system-level impact, collectively enhance the viability and
cost-effectiveness of the hydrogen storage pathway. These observations emphasise that
component-level ESOI improvements influence system-level EROI proportionally to each
component's fraction of energy throughput. Having addressed both efficiency and durability
impacts, the subsequent subsection 5.4.1.3 explores the sensitivity related to embodied
energy intensity, evaluating how changes in manufacturing energy inputs for each component

affect the overall life-cycle performance and economics of the system.

5.4.1.3 Effects of Embodied Energy Intensity on Life-Cycle Metrics
At this subsection, following the evaluation of efficiency and durability with the baseline
optimised capacities, this analysis addresses the sensitivity of the system-level EROI and

storage-specific ESOIl to variations in embodied energy intensities of major system
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Figure 5-6: Sensitivity of system-level EROI and storage-specific ESOI to variations in embodied energy intensity for

PV, battery, and hydrogen storage components. Points are coloured by the corresponding system-level EROI,

illustrating how manufacturing energy inputs influence overall energy life-cycle metrics.
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components. Figure 5-6 explores how modifications in the embodied energy intensity,
representing variations in manufacturing energy inputs per unit capacity, affect the system's
life-cycle metrics. Each subplot provides quantitative evidence of the direct correlation
between embodied energy intensity and corresponding performance indicators, further
complemented by the EROI colour scale, thus giving a nuanced perspective of system energy

performance shifts.

In subplot (a), photovoltaic (PV) embodied energy intensity is varied between approximately
10,000 and 14,000 MJ/kWp. A highly linear and inverse relationship with the system-level
EROI emerges (R? = 0.99), clearly indicating the considerable sensitivity of EROI to the PV's
manufacturing energy footprint. Specifically, as PV embodied energy intensity increases from
10,000 MJ/kWp to 14,000 MJ/kWp, system-level EROI sharply decreases from about 5.6
down to nearly 4.2. This substantial drop emphasizes the pivotal role that PV manufacturing
efficiency plays, given the PV's central role in overall system energy throughput and its

proportionally high influence on the denominator of Equation 5-11).

Subplot (b) similarly illustrates the impact of battery embodied energy intensity, ranging from
approximately 800 to 1,200 MJ/kWh. The battery-specific ESOI displays a robust inverse
linear correlation (R? = 0.99), declining from about 12 to 8. This tendency underscores the
strong dependency of battery ESOI on manufacturing energy demands, which in turn
significantly impacts the overall system EROI due to the battery's sizeable contribution to the
storage energy fraction. Increased battery embodied energy directly increases the ESOI
denominator, thus negatively influencing the overall system performance and intensifying

economic costs over the project's lifetime.

Subplot (c) addresses the embodied energy sensitivity for the hydrogen storage pathway
(combined fuel cell and electrolyser), varied broadly between approximately 2,800 and 3,800
MJ per unit. The observed relationship between hydrogen subsystem embodied energy and
hydrogen ESOI (R? = 0.72) reveals moderate linearity, yet with notable scatter. ESOI
decreases from roughly 11.5 to about 8.5 over the examined range, reflecting a more variable
but clear downward trend as embodied energy increases. Despite this variability, the influence
on overall system-level EROI is limited, ranging from approximately 4.79 to 4.791. This
constrained impact aligns with the relatively small fraction of total energy PV generation
managed by the hydrogen storage subsystem. Thus, although increased hydrogen subsystem
embodied energy negatively impacts hydrogen ESOI, its broader impact on the overall

system's energy performance is modest.

Collectively, these findings underscore the crucial influence of embodied energy intensities on

system life-cycle energy index. PV and battery manufacturing energies exert substantial
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impacts, both economically and energetically, due to their central roles in total energy
throughput. On the other hand, the hydrogen subsystem, while revealing obvious sensitivity
at the subsystem storage level, barely slightly affects the general system EROI as it manages
smaller portion of energy. These studies support the idea that significant increases in general
life-cycle performance requires giving PV and battery embodied energy intensities top priority.
With these insights clearly established, the subsequent analysis moves beyond fixed
capacities and examines how systematic scaling of the optimised MPC capacities impacts the

established relationships.

5.4.2 Capacity Scaling and Generalisation Framework

The previous subsections provided an isolated parametric sensitivity analysis, examining the
effect of altering key system parameters, efficiency, durability, and embodied energy intensity,
under fixed, optimised system capacities. However, real-world energy community planners
frequently face scenarios that necessitate adjusting the scale of system components from
initial optimised recommendations. Consequently, a generalisation framework introduced in
this subsection provides critical insights into how variations in component capacities influence
system sustainability and economics. By applying uniform scaling to the baseline capacities
established in the MPC-4% scenario, the resulting heatmaps with EROI contours
superimposed over NPC gradients offer a visual analytical tool that captures both economic
performance and energy sustainability. This method helps energy communities plan choices,

so allowing them to properly balance their sustainability enhancements and investment.

Figure 5-7 shows the 10-fold cross-validation approach which has thoroughly evaluated the
accuracy of the generated surrogate models, predicting the energy system performance
metrics, NPC, EROI, unmet load, and extra energy. With a Mean Absolute Error (MAE) of
€6,715.55, a Mean Squared Error (MSE) of €124,329,111, and an average coefficient of
determination (R?) of 0.9957, the NPC surrogate shows exceptionally remarkable accuracy.
The EROI model reveals analogous remarkable predictive potential by showing its
dependability for accurately capturing the energy efficiency dynamics of the system with a R?
of 0.9879, a very low MAE of 0.0791, and an MSE of 0.0193.

The excess energy surrogate model also presents excellent predictive performance, with an
R? value of 0.9784, MAE of 98.20 MWh/year, and MSE of 18,183.16 MWh?/year?, signifying
accurate forecasting of excess generation. The unmet load model, while demonstrating a
comparatively lower R? of 0.8448, still provides acceptable accuracy with an MAE of 0.2814
MWh/year and an MSE of 0.2708 MWh?/year?, reflecting the inherent difficulty in precisely

modelling unmet demand due to its higher variability.
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These validation results indicate that the polynomial surrogate models regularly interpolate
the performance of energy systems inside the examined design space. Thus, by generating
comprehensive heatmaps, these models offer a solid foundation that obviously shows the

slight trade-offs between economic and energetic performance criteria.
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Figure 5-7: Surrogate model accuracy shown via predicted vs. actual plots for NPC, EROI, Unmet, and Excess energy
(10-fold cross-validation)

5.4.2.1 PV Sizing Relative to Storage Configuration

Presenting the heatmap for PV and battery capacity scales, Figure 5-8 shows how system
EROI and the NPC interactively react to changes in capacity. At lower PV capacities (around
0.25 to 0.5 scale factor) coupled with small to moderate battery scales (0.5 to 1.0), the system
attains high EROI system values between approximately 7.23 — 8.71, signifying strong energy
performance. However, these configurations entail prohibitively high NPC values, typically
ranging from about € 847,603 — €1,199,751, with minimal unmet load (1-4 MWh/year) and
almost no excess energy. Conversely, configurations with substantially larger PV capacities
(scale factor around 1.5 to 1.7) and moderate battery sizing (around 0.8—1.0) slightly increases

NPC, typically reaching values close to or marginally between € 631,554 — €675,363, yet at
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the expense of lower EROI system outcomes, falling to approximately 3.18 — 3.52. Although
these configurations reduce unmet demand to near-zero, they cause a large increase in
excess energy generation, reaching up to 2,429 MWh/year, indicating underutilised PV

resources. This substantial numerical trade-off underscores the inherent tension between
economic affordability and energy sustainability.
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Figure 5-8: System EROI and NPC across PV and battery scales, overlaid with unmet and excess energy contours
(MWh/year), highlighting trade-offs between cost, sustainability, and energy utilisation.

From a deeper analysis, an optimal performance region clearly emerges, forming a circular
heat light colouring around the baseline scenario (PV ~1.0, Battery ~1.0). Interestingly, this
optimal region subtly shifts towards slightly larger PV and smaller battery scales
(approximately PV ~1.1 and Battery ~0.8), corresponding to an NPC of around €586,437 —
€586,766 and an EROI system of about 4.53 — 4.60. Reaching 0% unmet demand indicates
this area's efficient balance between cost and sustainability under moderate excess
generation (323-375 MWh/year). These results highlight how relaxing surplus energy
constraints would allow better trade-offs and how they might be a useful road map for adding
hydrogen storage or other flexible options to the system.

163



Figure 5-9 heatmap shows PV and hydrogen tank scales, revealing a markedly different
sensitivity pattern compared to the battery storage system. At hydrogen tank capacities (0.2—
1.6 scale), increasing PV capacity (1.1-1.3 scale) substantially increases the NPC to
approximately €590,018 — €607,552, while the system EROI correspondingly decreases to
values between 3.97 — 4.60. This suggests a little trade-off, somewhat greater system costs
accompany modest gains in sustainability (EROI). The increase in EROI is therefore
somewhat small, implying that its economic effect decreases with more PV growth in this
region. Conversely, lowering PV capacities below the baseline scenario (around 0.4-0.6
scale), even at relatively large hydrogen tank scales (1.3-1.6), significantly raises NPC,
approaching €792,241 — €991,294, while providing only marginal improvements in EROI
(around 6.65 — 7.69). The trade-off between NPC and EROI in the hydrogen tank scenario is
therefore less pronounced than with battery storage, indicating lower sensitivity of hydrogen
storage sizing to both economic and energy-life cycle metrics. Rather than forming a sharp

optimal pocket, a broader, more diffuse optimal band appears around PV scales of 1.0-1.1

NPC & EROI (PV vs Tank)

2.0 T le6 1.52
194 !
1818 3 L 1.40
1.7 4/ 3
1.6 S . |
) O
1.5 N s e b9
144 :
g H
13 1| 1 1.16
@124 | ‘:
§ 117 'l’- 1.04 =
' : 04 O
X~ 1.0 1 : a
g : 2
2 0.9 A :
0.8 0.92
0.7 - :
0.6 0.80
0.5 - ‘
0.4 f
v : ; 0.68
0.3 ‘?‘ | ‘ !
0.2 128
0.1 + : 0.56
R R P R XA AR DN PN

PV Scale

Figure 5-9: System EROI and NPC across PV and hydrogen tank capacity scales, overlaid with unmet and excess
energy contours (MWh/year), illustrating the diffuse trade-offs between cost, sustainability, and renewable energy
utilisation in hydrogen-based storage configurations.
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and tank scales of 0.8-1.0. Within this region, the system achieves moderate EROI values
between 4.56 and 4.90, and NPC values ranging from €593,006 to €604,513, with no unmet
load and only moderate excess generation (64—182 MWh/year). This flexibility makes the
hydrogen storage scenario appealing for energy communities seeking a balance between

investment efficiency and energy resilience.

Figure 5-10 expands the capacity-scaling investigation presented earlier, showing how varying
PV and fuel cell capacities influence both economic costs and energy sustainability. The
contour map shows three principal performance zones based on system-level EROI and NPC.
The high EROI-high NPC region (PV scales roughly 0.10-0.35 and fuel cell scales 0.10-2.00)
yields EROI values of 8.00-9.61 at a considerable economic burden, with NPC up to
€1.50 million and an unmet load range of 1.44—8.95 MWh/year. Conversely, the low EROI-low
NPC region (PV scales approximately 1.29-1.92 and fuel cell scales 0.10-2.00) reduces NPC
to about €598,388—€699,981 but lowers EROI to 3.01-3.99, accompanied by sizable excess
energy (546-3,630 MWh/year). Between these extremes lies a moderate trade-off region (PV
scales around 0.85-1.12 and fuel cell scales 0.10-0.20), where EROI holds at 4.50-5.50 and
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Figure 5-10: Capacity scaling analysis of PV and fuel cell systems showing trade-offs between system EROIl and NPC.
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NPC stands near €600,019-€649,974, while surplus energy lies in the 0-270 MWh/year range
and unmet demand remains minimal. Though NPC increases to around €619,201—€649,974
as EROI moves higher (5.18-5.50), a narrower sub-region further tightens PV (0.85-0.93) and
raises fuel cell capacity (0.41-1.92) to eliminate both unmet load and curtailment. Oversizing
the fuel cell beyond 1.5 rarely boosts EROI but raises cost; minor PV trim reduction eliminates
wasted generation without significantly affecting general system viability. These results show
once again that EROI-based sustainability and cost efficiency seldom coincide precisely,
hence stressing the need of careful capacity tuning depending on local energy needs and

financial objectives.

Figure 5-11 broadens the capacity-scaling investigation by focusing on how varying PV and
electrolyser dimensions can shift both NPC and EROI. The resulting contour map separates
into three main performance zones, revealing how system designs can pivot between cost
and sustainability goals. In the high EROI-high NPC region (PV scale 0.10-0.37, electrolyser
scale 0.10-2.00), EROI reaches up to 9.64, but NPC can exceed €1 million, with unmet loads
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Figure 5-11: Capacity scaling analysis of PV-electrolyser systems, illustrating trade-offs between economic cost and
energy sustainability.
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of 0.92-8.74 MWhl/year, indicating strong sustainability with a considerable financial burden
and operational risks from undersized PV. Conversely, the low EROI-low NPC area (PV scale
1.27-1.96, electrolyser scale 0.10-2.00) pushes costs down toward €600 k yet drops EROI to
3.01-4.00, accompanied by substantial curtailment (520-4,019 MWh/year). While cheaper in
absolute terms, these configurations compromise long-term energy efficiency by oversizing
PV relative to the electrolyser capacity. A moderate trade-off area (PV scale 0.85-1.10,
electrolyser scale 0.10-2.00) finds a more harmonic equilibrium with EROI values spanning
from 4.53 to 5.50 and NPC clustering around €600k—€650k. Minimal excess and unmet
demand in this range improve dependability as well as price stability. Within that moderate
zone, a narrower subset (PV 0.85-0.93, electrolyser 0.41-2.00) achieves zero unmet and zero
excess, at slightly higher costs but with EROI rising to 5.17-5.50. These nuanced capacity-
scaling outcomes underscore the need to harmonise local load, financial constraints, and

desired sustainability targets when deciding on optimal PV-electrolyser configurations.

5.4.2.2 Scaling Battery, Fuel Cell, Electrolyser, and Hydrogen Tank Capacities

Emphasizing four separate areas that underline the natural trade-offs in hybrid energy system
design, Figure 5-12 offers a complex mapping of the interaction between battery and hydrogen
tank capacity and their combined influence on system-level performance. The system reaches
EROI levels between 8.00 and 9.61 in the High EROI-High NPC area, where battery scales
vary from 0.10 to 0.25 and tank scales from 0.10 to 0.60. Reducing embodied energy suggests
that reducing component sizes might greatly improve energy efficiency; nonetheless, the
related net current costs surpass €1 million, which emphasizes the great financial load of such
drastic downsizing. The Moderate Trade-off area offers a balanced outcome with intermediate
scales (battery and tank both around 0.85-1.15), where EROI ranges from 4.53 to 5.50 and
NPC stabilizes between €600,000 and €650,000 while sustaining low unmet demand and
moderate excess energy. Especially interesting is a very appealing cluster with battery scales
of 0.75-0.80 and tank scales of 0.40-0.70 that produces the lowest NPC (around €591,600)
and a fair EROI just around 5. These results offer important direction for maximizing

component size to balance financial limits with sustainable energy performance.
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Figure 5-12: Battery and hydrogen tank capacity scaling analysis showing four performance regions that capture the
trade-offs between system-level EROl and NPC.

Figure 5-13 illustrates the intricate trade-offs encountered in hybrid energy system design by
jointly varying battery and fuel cell capacities and examining their impact on system-level EROI
and NPC. In our analysis, the data reveal that a central configuration, where battery and fuel
cell scales fall between 0.81-1.10 and 0.81-1.29 respectively, consistently delivers the lowest
NPC (approximately €593,061—€617,948) while achieving zero unmet demand and only
modest excess energy (around 16.5-178.2 MWh/year). Though modest, its sustainability
performance (EROI = 4.89—4.95) is fair, hence this "sweet spot" is a cost-optimal choice. By
contrast, a nearby region with somewhat higher EROI (up to 5.27) and even lower NPC values
(down to €594,593) is countered by notable excess generation (up to 614.4 MWh/year),
suggesting possible inefficiencies from under sizing. In the upper-right sector, where battery
capacity is minimised (0.10-0.29) and fuel cell capacity is considerably over scaled (1.71—
2.00), the system achieves peak EROI values (5.30-5.56) but at the expense of markedly
higher NPC (exceeding €670,000) and excessive energy wastage (over 1,000 MWh/year).
Notably, further increasing both battery and fuel cell capacities beyond 1.4 eliminates all unmet
and excess energy, confirming technical robustness; however, this comes at a cost, with EROI
falling to 4.88—4.93 and NPC rising to approximately €732,620. These results underscore my
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contention that, while storage scaling can refine system performance, the overall EROI is far
more sensitive to PV sizing, highlighting the need for a judicious balance between economic

and energy sustainability in practical hybrid system design.
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Figure 5-13: Battery—Fuel Cell capacity scaling delineates four distinct regions of trade-off between lifecycle energy
efficiency (EROI) and economic cost (NPC), underscoring the importance of balanced storage sizing for sustainable
hybrid systems.

Figure 5-14 presents a comprehensive analysis of the trade-offs inherent in storage sizing
considering how battery and electrolyser capacity scaling affects energy sustainability as well
as economic cost. The figure shows six distinguished regions. Though with modest excess
energy (about 145-246 MWh/year), the system in Region A achieves the lowest NPC (about
€591,868—€594,739) with a reasonable EROI close to 5.0, where battery scales range from
around 0.75 to 0.89 and electrolyser scales from 0.50 to 0.60. In contrast, Region B,
characterized by very low battery (0.10-0.29) and electrolyser (0.10-0.20) scales, attains
higher EROI values (up to 5.78) but incurs significantly higher NPC (up to €744,223) and
substantial excess generation (approximately 787-1117 MWh/year), highlighting the pitfalls of
under sizing. Defined by large components (battery and electrolyser scales over 1.62), Region
C presents poorer sustainability (EROI about 4.86—4.89) despite no surplus; NPC climbs to
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between €697,038 and €734,261. Operating with no unmet and excess energy but at
approximately greater cost, Region D features moderate battery scaling (1.31-2.00) and a
wide electrolyser range. While Region F, the balanced trade-off (battery scale ~1.00-1.10 and
electrolyser scale ~0.71-0.98), finds an optimal convergence with NPC between €603,221
and €615,086 and EROI around 4.89-4.93 with minimal excess, Region E provides
configurations with large excess yet low NPC and high EROI. These results taken together
highlight that a moderate, balanced strategy offers the greatest compromise between cost and
energy efficiency while both forceful downsizing and oversizing can negatively affect system

performance.
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Figure 5-14: Battery-Electrolyser capacity scaling analysis showing how moderate storage configurations yield
optimal trade-offs between system-level EROl and NPC.

Figure 5-15 illustrates the impact of hydrogen tank and fuel cell capacity scaling on system-
level economic and sustainability metrics. It is observed that when tank scales are maintained
between approximately 0.2 and 0.8 and fuel cell scales vary from about 0.15 to 0.9, the system
achieves the most cost-effective performance, with NPC values ranging from roughly
€600,311 to €602,511 and an EROI between 4.91 and 5.06. In this region, unmet demand is
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consistently zero, while excess energy remains moderate, between 63.1 and 138.0 MWh/year,
indicating an efficient balance between investment and renewable utilisation. In contrast,
configurations cantered around tank and fuel cell scales near unity, approximately 0.96 to 1.04,
exhibit similarly balanced performance, with NPC values between €604,390 and €605,728
and a nearly constant EROI of 4.90; notably, excess energy in these scenarios is further
reduced to a narrow range of 62.0 to 63.0 MWh/year, signifying a finely tuned operational
equilibrium. But when both tank and fuel cell capacities are raised to a scale of 1.4,
performance clearly deteriorates: NPC rises to between €712,000 and €736,000 and EROI
falls somewhat to about 4.88—4.93. These results highlight that while both under sizing and

oversizing of hydrogen components create inefficiencies that degrade general system
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Figure 5-15: Tank and fuel cell scaling reveals optimal cost-sustainability trade-offs near baseline configurations, with
under sizing or oversizing degrading performance.

performance, moderate, near-baseline scaling produces the strongest trade-off between cost,

sustainability, and operational reliability.
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Figure 5-16 illustrates how varying hydrogen tank and electrolyser capacities affects overall
system performance, revealing a complex interplay between cost and energy return.
Configurations with moderate tank and electrolyser scales, roughly in the 0.7-1.1 range,
consistently yield some of the lowest NPC values, around €600,000—€607,000, while
maintaining a balanced EROI of approximately 4.89—4.94 with minimal excess energy (near
61-74 MWh/year) and zero unmet demand. By contrast, setups with very small tank sizes
(roughly 0.1-0.3) combined with bigger electrolyser scales (about 1.5-2.0) tend to produce
somewhat higher EROI values (about 4.99-5.08) but at the cost of higher NPC (approximately
€608,000—€618,000) and moderate excess levels (roughly 94-144 MWh/year). A particularly
notable configuration emerges in the central region (tank scale 0.42-0.60 and electrolyser
scale 0.35-0.55), where NPC drops to as low as €599,875 with EROI values narrowly
distributed between 4.97 and 5.02. These solutions maintain unmet load at zero and excess
energy below 116 MWh/year, reinforcing this as the most cost-optimal and technically reliable

area in the design space. Exhibiting a strong trade-off with NPC values between €602,700

NPC & EROI (Tank vs Electrolyser)
! :

\
\
\

18 630000
625500

621000

616500

Electrolyser Scale
5
NPC (€)

612000

607500

—

0.3 ‘ ‘ 50/.
% 1

603000

~ A =
- ‘/5/5/5 g 1
S ¥ 3”22 0 ' ¥ A AP A AV AP Y A2 AN PP
Tank Scale

598500

Figure 5-16: System EROI and NPC response to hydrogen tank and electrolyser capacity scaling, highlighting cost-
optimal and energy-efficient regions.
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and €612,800 and closely regulated excess energy (about 61-79 MWh/year), a unique cluster
showing low excess, where tank scales range from around 0.91 to 1.39 and electrolyser scales
from 0.81 to 1.29. Extreme oversizing, with both tank and electrolyser scales above roughly
1.62, leads to higher NPC values (around €620,700—€632,600) and somewhat lower EROI
(4.91-4.97) together with substantial excess (94—140 MWh/year). These results show, then,
that while variations toward under sizing or oversizing create operational inefficiencies,
moderate, near-baseline settings offer the greatest balanced economic and energy

performance.

Figure 5-17 explores how system performance changes with fuel cell and electrolyser capacity
scaling, revealing nuanced trade-offs between economic cost and energy efficiency. Analysis
shows that although maintaining zero unmet load and moderate excess energy, configurations
with fuel cell scales of about 0.27-0.77 and electrolyser scales of 0.23-0.71, representing the
most cost-effective zone, produce NPC values closely grouped around €600,776-€602,010
and an EROI ranging from about 4.93 to 5.06. In contrast, designs featuring very small fuel
cell and electrolyser capacities (scales roughly 0.10-0.29) exhibit marginally higher EROI (up
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Figure 5-17: Balanced fuel cell and electrolyser scaling yields optimal cost—efficiency trade-offs; extreme sizing
degrades performance.
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to 5.11) but are burdened by increased excess energy, sometimes approaching
174 MWhlyear, even though their NPC remains similar. When one component is significantly
oversized relative to the other, a pronounced mismatch emerges, with NPC values rising to
between €607,116 and €617,225 and excess energy increasing up to 191 MWh/year,
highlighting the adverse effects of imbalance. A finely balanced system, where both fuel cell
and electrolyser scales are around unity (approximately 0.91-1.10), shows a practically
invariant EROI around 4.90 and NPC values in the narrow region of €603,590—€606,756 with
little excess. Oversizing both components beyond 1.5 eventually results in far greater costs
(NPC up to €633,668) with little additional EROI benefit. These findings show that whereas
extreme under sizing or oversizing exacerbates operational inefficiencies, sensible, well-
balanced scaling of fuel cell and electrolyser capacities generates the best strong

performance.

5.5 Summary

This study introduces a new life-cycle energy index that holistically incorporates multiple
energy flows, including direct consumption, storage via battery and hydrogen, and grid export,
while accounting for the embodied energy of each subsystem. A detailed parametric analysis
demonstrates that battery storage dominates system-wide effects, as it often channels over
30 % of total PV generation. For instance, improving battery round-trip efficiency from 70 % to
95 % raises the extended EROI from around 4.4 to nearly 4.9, while also lowering the NPC by
over 6 %. In contrast, hydrogen storage typically handles only about 2.6 % of PV output, so
even raising electrolyser—fuel cell efficiency from 15 % to 40 % yields a relatively modest EROI
increment, underscoring the secondary role of hydrogen unless it is significantly upsized. The
chapter further shows that PV manufacturing energy intensity exerts a substantial influence
on overall results: increasing the embodied energy from 10,000 MJ/kWp to 14,000 MJ/kWp

cuts system EROI by nearly a quarter, from approximately 5.6 down to 4.2.

In addition, capacity-scaling studies reveal that both under sizing and oversizing can
undermine cost-effectiveness or lifecycle efficiency. Systematically investigating hundreds of
scaled configurations shows a surrogate model trained using polynomial regression and
validated by 10-fold cross-validation with coefficients of determination (R?) over 0.98. By
creating heatmaps of EROI, NPC, unmet load, and curtailment, the model pinpoints “sweet-
spot” capacity ranges, often around a 1.0—1.1 scale of the baseline design, that achieve EROI
near 5.0 while holding NPC below €610,000 and curtailment under 200 MWh/year.

Examining scaling decisions more closely, the study finds that PV capacity creates the most
design potential by far by imposing the most cost and environmental load. Though a little rise

above scale = 1 results shows only small trade-offs, then bigger expansions, especially
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beyond 1.8 or 2.0, often result in oversizing, when both the EROI and NPC suffer and aligns.
Conversely, scaling down tends to raise EROI but also escalates specific costs, indicating a
clear tension at smaller sizes. These observations are explained by constrained fixed inverter
and grid-contract limits, which throttle surplus generation for oversized systems and thus align
economic and energy performance trends in higher PV capacities. These findings rest on a
set of simplifying assumptions. The extended EROI and ESOI calculations treat system
operation as steady state (The annual dispatch pattern is assumed to repeat identically every
year), using a single representative year without accounting for degradation (linear
degradation assumed), and recycling benefits. Component round-trip efficiencies and
embodied energy intensities are held constant, while dynamic environmental impacts such as
extreme weather, multi-year wear are excluded from the lifecycle boundary. As whole, these
heatmaps become a vital decision-support tool for energy communities trying to strike
environmental performance with techno-economic limits, thereby directing planners toward

strong, data-driven design decisions that maximize energy returns as well as cost.
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6 Integrated Analysis of Sizing, Operation, and Life-

Cycle Performance

Chapter 6 brings the thesis full circle by weaving together the discrete, yet complementary
insights derived in Chapters 3, 4 and 5 into a single narrative. It integrates techno-economic
sizing, operational control, and life-cycle sustainability into a unified performance analysis of
the hybrid PV-battery—hydrogen system. Chapter 3 established the techno-economic
“blueprint”, using a GA-MILP framework to co-optimise long-term sizing and hourly dispatch
under realistic grid-tariff constraints. Chapter 4 then demonstrated how rolling-horizon MPC,
augmented by a modest approach of flexible load setting, can translate that blueprint into day-
to-day operation while shaving peaks, curtailment and costs. Chapter 5 introduced a the life-
cycle lens through an extended EROI/ESOI index that quantifies how each storage path, direct
PV, short-duration battery, long-duration hydrogen, contributes to both economic return and

net-energy pay-back.

The purpose of this chapter is therefore threefold: first, to demonstrate how the sizing ratios
shaped by GA-MILP are reshaped, though not undone, by MPC and flexible demand
strategies; second, to interpret the integrated techno-economic and environmental
performance of the system under various scenarios; and third, to position these findings in the
context of real-world planning constraints such as contracted-power limits and control logic.
Importantly, this chapter focuses entirely on presenting the original contributions and results
of this thesis. Comparative benchmarking with existing literature is deliberately deferred to
Section 6.6, allowing the novel framework’s internal performance to be presented without

interruption or external influence.

6.1 Main Findings from Integrated System Design

The effect of integrated MPC design on component sizing is captured in Figure 6.1, which
contrasts the Load-Following baseline with four MPC strategies enabling 0% to 8% load
flexibility. The baseline maintains a conservative solar-to-inverter ratio (SIR) of 1.03, closely
aligned with traditional 1:1 DC/AC matching. This conventional approach, while simple,

restricts inverter utilisation and offers limited flexibility in managing surplus PV generation.
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Figure 6-1: Comparison of solar-to-inverter (SIR), battery-to-inverter (BIR), and tank-to-inverter (TIR) sizing ratios for
the Load-Following baseline and MPC strategies with 0 %, 4 %, 6 %, and 8 % load-shifting.

Figure 6-1 summarises the evolution of key sizing ratios across the Load-Following baseline
and four MPC-based operational strategies with varying degrees of load flexibility. Three
metrics are examined: the solar-to-inverter ratio (SIR), battery-to-inverter ratio (BIR), and tank-
to-inverter ratio (TIR). The baseline system maintains conservative sizing across all metrics,
particularly with an SIR of 1.03 and BIR of 2.32, reflecting a traditional DC/AC matching and
limited storage duration. However, the MPC-based designs adopt a markedly different
architecture. As load flexibility increases from 0% to 8%, the system progressively shifts
towards higher inverter utilisation and longer storage durations. SIR stabilises around 2.0,
indicating deliberate PV oversizing across all MPC variants. Meanwhile, BIR rises steadily
from 4.74 to 5.33, enabling the battery to provide extended discharge coverage, particularly
in response to diurnal demand shifts. Notably, TIR also escalates, from 3.03 to 4.17,
demonstrating that hydrogen storage is increasingly employed for long-duration energy
balancing. These results confirm that the joint optimisation of sizing and flexible control not
only reduces curtailment and inverter idling but also rebalances storage responsibilities across
short and long timescales.
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The impact of these revised sizing ratios is best understood by examining the system’s hourly
operational dynamics. Figure 6-2 offers a year-round view of how each scenario converts solar
generation into usable output while managing storage state-of-charge. The figure illustrates
the annual power and storage dynamics under three supervisory strategies: Load-Following,
MPC 0%, and MPC 8%. In the Load-Following case, the 120-kW inverter is frequently
saturated during peak PV periods, resulting in noticeable clipping losses, while the battery
operates around mid-capacity (46.4%) and hydrogen storage remains underutilised at 23.0%
average SoC. By contrast, the MPC 0% scenario reduces inverter size to 77 kW yet achieves
comparable AC output by deliberately overbuilding the PV array and maintaining the battery
near 33.3% SoC. This mid-empty strategy enables the battery to absorb midday surpluses
more effectively, shifting energy to evening loads. Hydrogen storage in this case steps up
significantly, with its average SoC rising to 55.2%, suggesting a clear seasonal balancing role.
The MPC 8% scenario further reinforces this trend: inverter size drops to 72 kW while storage
states remain well-managed, with average battery and hydrogen SoC at 33.5% and 51.1%,
respectively. The added flexibility allows modest load shifting to improve PV utilisation, smooth
out inverter excursions, and defer seasonal energy through the hydrogen subsystem.
Together, these patterns confirm that integrated control and flexible demand enable
substantial inverter downsizing without compromising system output, while actively

partitioning storage roles across daily and seasonal cycles.
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Figure 6-2: Annual hourly PV generation (yellow), theoretical AC (blue), and actual AC (red) outputs, together
with average battery (dashed blue) and hydrogen tank (dashed green) SoC, for (a) Load-Following with a

120 kW inverter (Battery = 46 %, H, % 23 %), (b) MPC 0 % with a 77 kW inverter (Battery = 33 %, H, ~ 55 %), and
(c) MPC 8 % with a 72 kW inverter and 8 % load shifting (Battery %34 %, H, =51 %).
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This enhanced operational coordination also translates into improved utilisation of contracted
grid capacity, as shown in Figure 6-3. The figure presents the evolution of contracted-power-
normalised ratios for solar (SPR), battery (BPR), and hydrogen tank (TPR) components. The
Load-Following strategy remains modest across all three metrics, with limited storage capacity
relative to grid import/export constraints. However, once MPC control is introduced, even with
zero load flexibility, both BPR and TPR sharply increase, reflecting a deliberate shift towards
storage-dominant infrastructure. As the flexibility rises to 8%, BPR and TPR reach 10.38 and
8.11 respectively, illustrating a system increasingly oriented around autonomous operation and
seasonal energy balancing. The gradual rise in SPR, from 1.59 to 4.05, demonstrates that
solar oversizing also scales in parallel with storage capacity, reinforcing the system’s ability to
meet demand internally. Collectively, these trends underscore the central thesis contribution:
MPC-based hybrid systems can maximise renewable utilisation and minimise grid
dependency not only through control logic but also through co-optimised sizing decisions

anchored to contracted power availability.

SPR EEN BPR EEN TPR

12

Ratio

Load Following 0% 4% 6% 8%
Scenario

Figure 6-3: Contracted-power ratios (SPR, BPR, TPR) for Load-Following vs. MPC (0-8 %); MPC greatly boosts storage
versus grid capacity, enabling higher PV capture and seasonal balancing.

This strategic shift towards storage-dominated infrastructure has a direct impact on the nature
and frequency of grid interactions. Figure 6-4 illustrates how grid imports and exports are
shaped under Load-Following and MPC 8% scenarios, plotted against instantaneous PV
generation. In the Load-Following configuration, the system relies on a £78 kW contracted grid
envelope. Despite high PV availability, there are significant occurrences of both import and
export events, with grid interactions constrained more by inverter size than by energy
availability. Notably, the system avoids grid imports 77% of the time, but only manages

complete independence—i.e., zero grid exchange, for 66% of hours annually. This indicates
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suboptimal internal balancing, with surplus energy frequently exported and occasional reliance
on the grid to meet evening or cloudy-day loads.

Grid Buy Grid Sell === +Limit === —Limit

Load Following

78 kW
D e e R e R
% Hours No Buy: 77.05%

_ 50 - e % Hours No Exchange: 66.47%

— K
2% "

Q.
S
2.
55
ca
s E
=
5 —

75 1
% Hours No Buy: 86.03%
50 - % Hours No Exchange: 58.78%
I 1. X N s e e
Q.
$%
8
55
ca
(=
s E
‘c +
5=

—-75 -

T T T T

0 25 50 75 100 125 150
PV Generation DC (kw)

Figure 6-4: PV vs. grid import/export for Load-Following (78 kW) and MPC 8 % (+37 kW): MPC achieves import-free
operation 86 % of hours and uses storage discharge at zero PV, flattening grid exchanges.

In contrast, the MPC 8% design operates within a much narrower +37 kW contracted power
range yet demonstrates superior autonomy. Grid imports are avoided during 86% of the year,
and complete self-sufficiency (no exchange) is achieved in nearly 59% of hours. This
performance is achieved not by simply increasing system size, but through the coordinated
discharge of storage assets during low-PV periods and intelligent load shifting during high-PV
availability. The figure also reveals a flattening of the import/export envelope, reflecting
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smoother and more controlled grid interactions. This outcome highlights the value of coupling
flexible control with precise sizing: the system effectively decouples from the grid by using
energy where and when it is most valuable, without exceeding contracted limits or over relying
on the external network.
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Figure 6-5: Annual dynamics of Battery SoC and Hydrogen LoH for (a) Load Following and (b) MPC 8%. Each subplot
shows hourly values (faded), daily means, and 30-day rolling averages. MPC 8% maintains the battery at a lower SoC
set point with reduced daily fluctuation while using hydrogen for long-term seasonal storage, in contrast to Load
Following which underutilises hydrogen and experiences frequent battery saturation.

The internal balancing mechanisms enabling such controlled grid interaction are best
illustrated through the seasonal storage dynamics in Figure 6-5. This final figure compares the
hourly, daily, and monthly behaviour of battery SoC and LoH under Load-Following and MPC
8% configurations. In the Load-Following scenario, the battery hovers near mid-capacity with
an annual mean SoC of 46.4%, exhibiting strong daily fluctuations and frequent saturation.
The hydrogen system, by contrast, remains largely underutilised with an annual average LoH

of only 23.0%, and no clear seasonal pattern. This operational profile indicates poor long-term
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storage integration: the battery is routinely tasked with covering both diurnal and seasonal

mismatches, which exceeds its optimal duty cycle and leads to curtailed surplus energy.

Under MPC 8%, however, the control strategy explicitly separates the roles of short- and long-
duration storage. The battery is maintained at a consistently lower set point, averaging 33.5%
SoC, with noticeably reduced daily cycling range. This creates headroom for absorbing midday
surpluses and enables higher flexibility for short-term balancing. More importantly, hydrogen
storage becomes the principal vector for inter-seasonal energy shifting. Its average LoH rises
sharply to 51.1%, and its dynamics reveal a distinct charging trend during summer and
discharging in winter. The smoother and broader seasonal LoH profile confirms that hydrogen
is not just an auxiliary buffer but a fully integrated component of the energy management
strategy. This functional separation enhances the lifecycle performance of both storage

technologies and is a hallmark of an optimally coordinated hybrid system.

6.2 Robustness Under Economic and Environmental Variability

While favourable results under nominal conditions are promising, they do not alone ensure
broader applicability under variable real-world contexts. To explore the robustness of the
proposed framework, a sensitivity analysis is conducted, drawing on the structure outlined by
[165]. This coming analysis systematically investigates how variations of +10% in equipment
prices, grid capacity, and solar irradiance affect the proposed nested GA-MILP-MPC
framework’s techno-economic outcome in terms of NPC and LCOE. Table 6-1 encapsulates
the system’s re-optimised capacities and resultant techno-economic indices across six
scenarios. In every case, the model maintained annual unmet and excess energy below
100 kWh, reflecting the dispatch strategy’s robustness in aligning production and demand
without compromising economic viability.

Under escalated equipment prices, the NPC rose to €643,297 with a corresponding LCOE of
€0.235/kWh, accompanied by mostly modest capacity adjustments. On the other hand, when
component costs dropped, the system found it advantageous to enlarge the PV array to
167 kW and bolster battery storage, driving the NPC down to €574,537 and the LCOE to
€0.210/kWh. This contrast suggests that more affordable hardware encourages heavier
reliance on self-generated power and stored energy, thereby reducing dependence on the grid

over the system’s lifetime.
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Table 6-1: Sensitivity Analysis of System Components under External Variations (MPC-4% selected)

Fuel
PV Battery Inverter Grid Electrolyser Tank LCOE
Description . Cell NPC (€)
(kW) | (strings) (kW) (kW) (kW) (kW) (kg) (€//kWh)
Base Scenario 152 74 75 40 5 5 7 606,879 0.221
Scenario 1:
+10% Equipment 152 75 75 41 5 5 7 643,297 0.235
Price
Scenario 2: -10%
. . 167 79 87 52 5 5 8 574,537 0.21
Equipment Price
Scenario 3:
161 74 89 46 5 5 8 612,298 0.224
+10% Grid Price
Scenario 4: -10%
163 79 84 50 5 5 9 612,133 0.224
Grid Price
Scenario 5:
+10% Solar 137 78 106 36 5 5 6 592,206 0.216
Irradiance
Scenario 6: -10%
. 177 77 86 48 5 5 7 642,447 0.235
Solar Irradiance

Moderate changes in grid tariffs similarly triggered recalibrations in plant sizing. A 10% tariff
uptick led to additional PV (161 kW) and inverter capacity (89 kW), raising the NPC to
€612,298 and the LCOE to €0.224/kWh; when grid electricity was cheaper, the model still
opted for a moderate PV and storage increase, settling at an NPC of €612,133 with an LCOE
of €0.224/kWh. These findings imply that high tariffs incentivize an expanded local generation
portfolio, whereas low tariffs, although less punitive, do not necessarily diminish the value of
storage, particularly over a 25-year project planning where operational savings can offset
capital outlays.

In scenarios of elevated solar irradiance (+10%), the model could curtail PV capacity to
137 kW while assigning a larger inverter (106 kW) to handle higher midday outputs, reducing
the NPC to €592,206 and the LCOE to €0.216/kWh. Conversely, less irradiance drove the
system to boost PV capacity up to 177 kW, with the NPC climbing to €642,447 and the LCOE
to €0.235/kWh. Despite such divergent solar resource profiles, the optimisation reliably
preserved sufficient battery and hydrogen storage to supply the load without resorting to
excessive grid imports.

Collectively, these outcomes underscore that the nested MPC-Flexible Load approach retains
both cost-effectiveness and operational reliability across a variety of environmental and
financial inputs, consistently capping any unmet or dumped energy at fewer than 100 kWh per
annum. By dynamically reallocating PV, battery, and hydrogen capacities in response to

fluctuating costs and irradiance, the system achieves stable NPC within +6% figures and
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consistently low LCOE fluctuations limited to +6.3%. Such resilience affirms the suitability of
this framework for island microgrids and remote communities, where both economic

conditions and solar resources can experience wide swings over the project’s lifespan.

6.3 Design Decision Support Using EROI-NPC Trade-offs

As discussed in the preceding comparison section, the GA-MILP-MPC layout shows
favourable performance relative to the recent peer-reviewed studies in terms of both NPC and
LCOE. The £10% sensitivity sweep (Table 6-2) demonstrated that these savings hold up even
when there are reasonable changes in equipment cost, tariffs, and solar yield. The last step is
to determine whether the design also overcomes a lifecycle-energy hurdle that is significant
to planners who must justify projects on grounds other than cost alone, after economic

superiority and parameter robustness have been established.

Figure 6-6 presents the new interactive NPC-vs-EROI dashboard at the calibrated optimum.
Colour shades Net-Present-Cost, white contours trace EROI community, and dashed lines
show unmet and excess energy. One glance tells decision-makers that the reference mix (PV
= 152 kW, battery = 365 kWh, tank = 7 kg) sits inside the darkest-purple cost basin (~€0.60
M), straddles the EROI = 4.8 iso-line, and keeps unmet load below the policy ceiling (< 0.1
MWh yr~"). Because the basin is broad and the EROI ridge is flat nearby, engineers can
reassure councils that modest procurement slippage will not jeopardise either affordability or
sustainability, an insight that static tables struggle to convey.
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Figure 6-6: Interactive Cost-EROI dashboard. Baseline optimal mix with ability to compare different equipment sizes
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Figure 6-7 illustrates how the same tool guides negotiations. Sliding the PV scale to 1.44 x
(while leaving storage untouched) moves the magenta star onto a higher-PV/lower-battery
lobe: NPC rises to ~€0.66 M and the EROI contour falls to 3.8. Unmet energy stays within

2
i y [ EROI Unmet Excess Current Point
X Axis [ ® NPC (©)

w

Pv Scale
Y Axis 1:6M

Battery Scale v

B 1.5M

Pv Scale

0.1 1 @
Battery Scale

0.1
Tank Scale

0.1

Battery Scale

Fucleell Scale

Electrolyser Scale

0.1

Pv: 218.9 kW
Battery: 262.7 kWh
Electrolyser: 8.0 kW
Fuel Cell: 4.5 kW
Tank: 8.9 kg
NPC €634870 | EROI 3.83 | Unmet 0.00 MWh/yr | Excess 1687.19 0.5 1 1.5 2
MWhiyr
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Figure 6-7: Interactive Cost-EROIl dashboard, PV-heavy what-if scenario

limits, so the plant is still technically feasible, yet the EROI drop below the 4.0, threshold warns
stakeholders that the extra PV has become energetically counter-productive. No fresh
optimisation run is required; the dashboard translates the complex GA-MILP—MPC surrogate
into an immediate visual trade-off. Planners can therefore explore budget caps, sustainability
mandates or export-limit rules in real time, turning the holistic community EROI metric into a

practical steering wheel rather than a static footnote.

6.4 Comparative Benchmarking with Literature

The following benchmark analysis compares the proposed GA-MILP-MPC optimisation
framework against relevant peer-reviewed studies as summarised in Table 6-2. The
comparative analysis explicitly addresses each method's key features, highlighting concrete
numerical outcomes and methodological reasons behind their results, and systematically
contrasts them against the specific findings of the novel proposed approach.

The discussion opens with [166], who couples a particle-swarm sizer to a 72-h rolling
dispatcher that honours electrolyser and fuel-cell transients. Relative to HOMER’s cycle-
charging baseline, LCOE falls from 0.3976 to 0.3695 £/kWh (-7.1 %). Because inverter rating,

maximum contracted power and load-shifting remain fixed inputs, the economic upside stops
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at transient optimisation. By contrast, the GA-MILP—-MPC platform co-optimises those three
additional levers and achieves a 9 % NPC saving; about two percentage points come from
right-sizing the inverter and cutting the contracted power limit, dimensions untouched in the
researcher’s formulation [166].

Moving from hydrogen-centric design to isolated rural microgrids, [167] applied PSO with ¢-
constraints in an islanded PV-diesel-battery hybrid system, delivering 0.37 $/kWh versus
HOMER'’s 0.40 $/kWh (-7.5 % LCOE). Dispatch is a single deterministic year with static diesel
price (0.26 $/L) and no forecast layer, so diesel start—stop penalties or weather uncertainty
are not explored. Although the study is off-grid, it highlights the value of capacity-mix
optimisation; our GA-MILP-MPC addresses the complementary operational dimension in a
grid-connected scenario, cutting annual grid charges 46 % (€29 625 to €15 886) against a
load-following benchmark by anticipating low-tariff hours also reduction in LCOE of 10%. The
results show that static sizing and static dispatch each leave sizeable savings untapped.
Study from [105] bring the conversation closer to this thesis novel framework by integrating
GA-based battery sizing with an MPC dispatcher that runs once per day using a 72-h
prediction window. Annualised NPC drops 19 % (1.08 to 0.87 M JPY) and operating cost alone
plunges 44.4 % versus a day-ahead rule, principally by clipping evening peaks. Because the
controller re-optimises only daily, it still cannot track intra-day tariff swings in real time. This
thesis novel approach GA-MILP-MPC uses a 24-hour prediction horizon (shorter horizon
assumption of 24h/12h) but executes only the first 12 hours of that plan before shifting the
window forward by 12 hours and re-optimising. This twice-daily receding-horizon cycle,
combined with a second storage vector (hydrogen), delivers a 46 % reduction in grid charges
on the same load profile, slightly higher than the 44.4 % achieved by Tamashiro’s once-daily
(72 h/24 h) MPC [105].

From urban flexibility, we pivot to utility-scale design. The study from [98] introduced realistic
grid tariffs and applied sensitivity in lowering the contracted power from 30, 24, and 18KW all
by using deterministic MILP, resulting in an 18% NPC and 12% LCOE reduction. Despite these
impressive results, their static approach lacked adaptability of the AC/DC conversion
breakdown and omitted free optimisation of grids limits, and optimised the operation decision
on the knowledge of 8760 full year data, over estimating the results [98]. This thesis nested
optimisation approach explicitly uses a balanced realistic day ahead with intraday decision
making (12h/24), dynamically balancing between battery and hydrogen storage systems
without over inflating results. This method demonstrated substantial cost reductions (around
10% NPC) by optimally utilising hourly decisions, achieving peak shaving demand with inverter
and contracted power optimised limits.

The study [43] also utilise MILP, but in a hybrid PV-battery—H, islanded microgrid. They apply

a single-layer MILP with an internal TOU-based demand-response scheme to an off-grid PV-
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battery-H, micro-grid, cutting LCOE 11 % relative to a GA + rule-based baseline; however, the
optimisation still relies on a deterministic year-long horizon with perfect foresight, no rolling re-
optimisation or multi-year uncertainty, so the resulting dispatch strategy may overestimate
real-world savings [43]. This thesis GA-MILP-MPC approach explicitly considers detailed
TOU tariff structures and predictive load management, dynamically adjusting operational
strategies in response to daily and seasonal variations. This strategy directly reduces
operational LCOE by approximately 10.3% compared to static dispatch methods, clearly
improving overall economic outcomes and system reliability.

Expanding the source mix, this study in [168] implemented PSO optimisation in a complex PV-
wind-biomass system, achieving substantial (24%) LCOE reductions compared to traditional
rule-based methods. However, their method operated within HOMER’s limited dispatch
framework, neglecting inverter clipping, and grid-contracted power optimisation [168]. In
contrast, our method explicitly integrates inverter clipping management, alongside dynamically
optimised grid power constraints. This comprehensive optimisation significantly enhances
economic performance, particularly through reduced storage replacement costs and optimal
inverter sizing, achieving consistent and verifiable cost reductions of about 9-10% compared
to HOMER-based approaches.

Researchers in [169] used NSGA-II for tariff-aware PV-BES sizing, realising a 12% annualised
cost improvement. Nevertheless, their static dispatch methodology lacked dynamic
optimisation and omitted hydrogen storage, thus restricting their achievable operational
savings [169]. Our nested framework strategically incorporates hydrogen storage and
predictive dispatch, significantly reducing grid dependency and achieving NPC of
approximately 10%. This method explicitly optimises inverter sizing and grid interactions,
consistently outperforming static dispatch approaches and enhancing overall system

efficiency.
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Table 6-2: Comparison of optimisation studies, showing grid/island context, cost reductions (A NPC, A LCOE) against each paper’s benchmark, and which advanced features
are implemented; shortcuts: GS = meta-heuristic sizing, DO = Dispatch Optimisation, RH = rolling-horizon/MPC, SH = static-hourly assumption, LS = load-shifting, CG =

contracted-grid optimisation, IC = inverter-capacity optimisation, AD = detailed AC/DC buses, TO = time-of-use tariffs, PS = peak-shaving.

Grid / Bench- G/ D|IR|S CiI|A|T
Ref Study Island Method mark A NPC A LCOE slolH|H clclplo
Atteva & Al Dynamic-component PSO sizes PV-
[166] 2023’/ Grid H,; 72 h rolling dispatch tracks FC/EL | HOMER | — -7 % VIiX|IVI|X X X| X |V
transients
Fodhil et al PSO sizes PV-Diesel-Battery under -
[167] 2019 " | Island | constraints; HOMER hourly simula- | HOMER | — -8 % VIXI XV X| X| X1| X
tion
[105] Tamashiro et Grid GA sizing + 24 MPC dispatch for gﬁg;d _19 9 . Jlvlvlx x| x| x| x
al. 2023 smart apartments over 72 horizons rule °
Agha Kassab MILP co-optimises PV-BES & con- Flat-rate
[98] etgal 2024 Grid tracted power with peak-shave pen- tariff -18 % -12 % XV | X|V VIXI XV
) alty
Marocco et MILP vs GA for PV-Battery-H, cam- | GA o
1431 | 41 2021 Island pus; flexible-load model baseline | —11% XV XY XV XX
Firdouse & PSO vs GA for islanded PV-Wind-Bi- | HOMER o
[168] | Reddy 2023 | 189 | smass-BES JGA | —24% VXXV XX XXX
Niveditha & : — .
. , NSGA-Il adds tariff-aware objective to | 2-objec- | -12 %
[169] g(l)nzgzaravel Grid PV-BES sizing tive GA | (ACS) — VIX|X|V X | X| X |V
Hossain et al. . PSO retrofit PV-BES; cuts TOU bill & | Grid-
[170] | 5023 Grid | 4emand charge only bill | _ VXXV XX XY
Kaewnukul- . . )
[M71] |torn et al.|Grd | MI-P sizes PV-BES &tiltunder TOU: | ¢\ e | — x|\v | x|v|ivix|x|x|v
2024 US residence
GA with day-ahead MILP and 12
. o i .
This wc;rhkif(gkload Grid hours decision MPC; full AC/DC, -I:(c);I\AER ~10 % 103% |vlvlivlvy Jvlivly

TOU & peak-shave and load shift-
ing
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Expanding on the previous study, [170] optimised a campus-scale PV-BES retrofit using
heuristic PSO dispatch, achieving notable electricity bill reductions. However, their heuristic
dispatch lacked formal optimisation, predictive capabilities, and inverter tuning, severely
limiting potential saving opportunities. This thesis method of rolling MPC dispatch explicitly
times renewable utilisation, manages storage strategically, and optimises inverter capacity
dynamically, clearly reducing contracted grid demand and maximising renewable energy
capture. This strategy directly reduces operational grid charges by approximately half (44.6%)
annually compared to heuristic dispatch, providing demonstrable financial advantages.
Finally, [171] optimised residential-scale PV-BES systems under US TOU tariffs using MILP,
effectively modelling inverter clipping and battery replacement. Their absence of dynamic
dispatch strategies and hydrogen storage limited their operational flexibility and seasonal
adaptability. In contrast, our GA-MILP-MPC framework explicitly integrates hydrogen storage
and predictive dispatch, strategically balancing between short-term battery storage and long-
term hydrogen buffering. This approach significantly improves economic and operational
performance, reducing operational grid charges consistently by around 44.6%, particularly
through better inverter sizing and seasonal hydrogen storage utilisation [171].

In summary, each of the reviewed studies either operated with static full-year horizons or
limited predictive dispatch capabilities, implicitly assuming perfect foresight or simple heuristic
logic. Our GA-MILP-MPC framework explicitly avoids these limitations by employing a rolling
24-hour horizon with a practical 12-hour execution window. This approach balances predictive
accuracy with operational flexibility, achieving robust, verifiable NPC and LCOE reductions
around 10%, explicitly through optimised inverter sizing, contracted power management,
predictive load scheduling, and effective battery-hydrogen storage utilisation. This detailed
analysis distinctly illustrates why this methodology consistently outperforms the reviewed
optimisation strategies, presenting a replicable and economically robust pathway for hybrid
renewable energy system design. To reinforce the comparative benchmarking in Section 6.4,
the following three subsections (6.4.1 to 6.4.3) examine system sizing, operational dynamics,
and storage integration in detail, positioning the proposed approach relative to established

strategies in the literature

6.4.1 Sizing Ratios and Operational Load Matching

The four MPC designs that gradually shift 0% to 8% of the demand are contrasted with the
benchmark Load-Following controller's sizing ratios in Figure 6-1. The figure captures on how
far the MPC approach, can stretch an inverter’s usefulness. The benchmark Load-Following
design embraces a SIR of 1.03, a near-textbook 1:1 DC/AC match. While that seems prudent,
it contradicts almost two decades of field evidence that high-insolation sites can safely push

the ratio well above unity without damaging energy vyield. A study quantified this ceiling in a
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100 MW-AC Texas plant, showing that a DC/AC of approximately 2.0 maximised exported
energy once a DC-side battery soaked up clipping losses [172]. Even more recent studies
confirmed with a 5-kW bifacial test bed that bifacial PV coupled to lithium-ion storage moves
the “sweet spot” from 1.2 (PV-only) to 1.4-1.6 under Arizona sunshine [171]. Large-sample
monitoring of 93 U.S. residential arrays echoes that conclusion, annual yield gains flatten
beyond ILR about 1.25, yet no performance penalty appears until around 1.4 [173]. Taken
together, these studies bracket 1.6—-2.0 as a realistic upper bound for stand-alone PV plants
in bright climates. It is therefore encouraging that every MPC instance gravitates towards SIR
approximately 2.0, filling the gap between conservative practice (1.0) and empirically proven
limits (2.0).

The economic motive for that shift is equally strong. Researchers found that, under Ontario’s
three-tier TOU tariff, profit, not LCOE, peaks at an array-to-inverter ratio of 2.0 and remains
flat out to about 2.4, after which clipping losses dominate [174]. Parallel modelling for the
Iberian market shows that every 20 % fall in Li-ion capex or 5 % rise in round-trip efficiency
roughly doubles arbitrage NPV, further nudging investors toward high DC/AC ratios [175]. By
choosing SIR about 2 our MPC designs effectively tap the lowest-cost segment of the profit

curve while keeping within the physical ceiling.

That same logic extends to storage. Authors define BIR as the ratio of battery power capacity
to inverter capacity and then fix the battery’s duration at 4 h, so a BIR of 1.0 corresponds to 4
h of discharge at full inverter power [176]. Researchers show that at this BIR = 1.0 level (i.e.
4 h), coupled PV and battery systems hit the breakeven point where both energy- and
capacity-value benefits justify higher PV oversizing [176]. Yet, grid planners start to treat a
hybrid plant as a reliable peak-shaving resource only once its storage can sustain
approximately 3.3 hours at full power [177]. The Load-Following design, limited to 2.32 h, just
clears the arbitrage threshold but falls short of the grid-service mark. In contrast, every MPC
layout lifts BIR above 4.7 h, bridging that policy gap and aligning the system with the

“moderate-duration” class now favoured in capacity-market qualification rules.

Work in [178] use rain-flow analysis to show that once a PV plant's DC/AC ratio exceeds
around 1.4, the minimum battery capacity needed to guarantee a 10-year life rises super-
linearly driven by the volume of clipped energy. In their 1 MW-AC case study the required
BESS steps from a few-hundred kWh at DC/AC = 1.4 to over 500 kWh at DC/AC = 2.0,
highlighting how aggressive PV oversizing rapidly balloons storage needs. Hydrogen shows
a similar, but longer-tail, pattern. Increasing the TIR from 1.39 h in the baseline to 4.17 h in
the MPC-8 % case may appear extravagant at first glance, yet without it the battery would be

forced to time-shift seasonal surpluses, a task to which high-cycle lithium-ion packs are poorly
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suited both energetically and economically which will be demonstrated later in this discussion.
Notably, while there’s a growing literature on optimal BIR for PV hybrids (e.g. [178], [176]),
very few studies to date have simultaneously examined the analogous TIR for power-to-gas
or hydrogen-augmented systems. Before we turn to our analysis of hydrogen storage sizing,
it's worth highlighting this lack of dual-storage guidance in the published work. The progressive
rise in both BIR and TIR from the 0% to the 8% scenario reflects the need for more overnight
storage capacity to absorb shifted load and shave daytime peaks. Accordingly, the optimiser

relies on a mix of short and long-duration assets to meet that load-shifting requirement.

The effect of inverter ratios is noticed in the overall yearly data simulated. Figure 6-2 provides
more insight into the operational effects of the sizing ratios discussed earlier by displaying
annual hourly PV generation next to the theoretical and actual outputs of the inverter under
several energy management strategies for the three methods of Load Following, MPC
0%, and MPC 8%. The figure summarises hour-by-hour how each supervisory strategy
converts raw PV production (yellow) into usable AC power (red), while concurrently managing
the average State-of-Charge (SoC) of both battery (blue dashed bar) and hydrogen storage

(green dashed bar).

In the Load-Following scenario the 120-kW inverter is oversized relative to the seasonal low
in PV output; during winter mornings the plant idles near 20 % capacity, yet at noon in May
and June the PV array repeatedly slams the inverter limit, hence the tell-tale horizontal
plateaus in the red AC-output trace. In comparison to literature, researchers in [66] with2.5
kW inverter 0.74 kWp site, observe essentially zero clipping at SIR = 1.0, but already by SIR
= 1.2 the AC output flattens at mid-day, and clipping grows further at SIR = 1.3, underscoring
how even modest PV oversizing rapidly induces energy losses without storage . Also, [179]
site-specific study find clipped hours under 2 % at SIR = 1.4, rising more rapidly at higher SIR,
suggesting that beyond SIR = 1.6 the risk of significant clipping grows in many locations [179].
Load following, since the battery’s state of charge averages 46.4 %, neither full nor empty,
there is little headroom to absorb those noon spikes, but still with less renewable penetration
to avoid clipping. The first MPC variant (0 % load flexibility) downsizes the inverter to 77 kW
but deliberately oversized both PV and battery. Two moves make this viable. First, the
controller holds the battery mid-empty, around 33 % SoC, creating a 35 kWh “spare tank” that
automatically catches mid-day clipping. Second, it allows PV to overbuild to drive SIR to 2.0:
the array hits the 77 kW AC ceiling far more often, but now the excess is stored rather than
curtailed. The net effect is identical annual AC yield with a 36 % smaller inverter. For rooftop
projects without storage, a calibrated Malaysian study finds the LCOE minimum at SIR around
1.19, underscoring that modest inverter under sizing pays even before batteries enter the

picture [66].
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Adding 8 % load flexibility compounds that advantage. Because pool pumps, or similar non-
essential demand can be shifted up to four hours without compromise, the MPC pushes 8 %
of consumption towards daylight when available. PV utilisation rises, PV-to-battery charge
rates smooth out, and inverter excursions become even flatter. Despite a further reduction in
name-plate power to 72 kW, the system now records fewer clipped hours than the 120-kW
baseline and boosts self-sufficiency from 71 % to 84 %. Hydrogen’s role emerges in the
background. In both MPC runs its average SoC doubles (around 50 %) relative to 23 % in
Load-Following, a clear sign that surplus summer energy is being captured for winter release.
By outsourcing seasonal balancing to H,, the battery stays in its low-cycle, high-efficiency
comfort zone, and the inverter is spared the need to honour simultaneous high-power charge

and discharge requests.

6.4.2 Grid Dependency and Storage Utilisation Trends

Figure 6-3 highlights significant differences between the Load Following controller and the
MPC strategies (0% to 8% scenarios) regarding the Contracted Power Ratios for solar (SPR),
battery (BPR), and hydrogen tank (TPR). In the Load-Following case, SPR is modest (1.59),
closely aligning the PV size with the contracted grid power, which indicates minimal reliance
on grid flexibility or storage-driven arbitrage. In all MPC scenarios, this ratio consistently climbs
above 3.7, suggesting a sizing for higher renewable penetration and major storage
dependence to balance and smooth solar variability and lower grid interaction. This trend is
reinforced by empirical evidence from [180], whose grid-connected HRES case study
illustrates the implications of fixed contracted power limits. Their system, sized with a 26 kW
PV array and 100 kW wind capacity against a 110-kW grid cap, achieves a renewable-to-
contracted power ratio of only around1.15. Despite the installed capacity, roughly 90% of the
system’s total energy demand is still met by grid imports, and storage utilisation remains low.
Critically, the grid cap in the studied EMS formulation is static, highlighting how pre-set grid
constraints, if not dynamically optimised, can limit the effective use of renewables and storage.
This underscores the importance of letting the optimisation framework treat contracted power
as a tuneable parameter, responsive to techno-economic trade-offs rather than rigid planning

assumptions [180].

The pattern continues with storage. There is also a more obvious increase in the Battery-to-
Contracted Power Ratio (BPR), which climbs from 3.57 in the Load-Following scenario to as
high as 10.38 in the MPC 8% scenario. This substantial rise underscores MPC's shift towards
longer-duration storage and greater storage-driven grid services, enabling substantial peak
shaving and significant grid power curtailment. Researchers in [181] support this interpretation
in a Malaysian context, demonstrating how short term load control with BESS reduced peak

demand charges by 8.4% daily, emphasizing the economic and operational benefits of
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storage-enabled flexibility during high-demand periods. Furthermore, the Hydrogen Tank-to-
Contracted Power Ratio (TPR), which rises from 2.14 to over 8.0 across the MPC scenarios,
also implies a greater focus on seasonal energy shifting. The increase of self-consumption
and aiding long-term grid balancing depend on hydrogen storage. Without much depending
on grid exchanges, this high TPR lets MPC systems absorb excess solar energy during long
periods of high solar irradiance and redistribute it during energy-deficit times. This aligns with
[182], where static export constraints, such as capping grid export from PV output to 67% (or
as low as 35% when paired with storage), can significantly enhance hosting capacity and
promote decentralized energy balancing through self-consumption and local storage [182].
The work demonstrates that even within constrained export frameworks, storage-centric

designs can support deeper renewable integration and operational resilience.

The structural shift is easiest to visualise in Figure 6-4, to analyse the grid dependency and
contracted power optimal sizing, grid interaction for Load following and GA-MPC 8% is
compared. The figure illustrates the detailed grid interaction profiles of the Load-Following
and MPC 8% strategies as scattered plot. Load-Following maintains higher grid interaction
limits (78 kW), resulting in frequent, substantial energy exchanges, indicative of relatively
limited reliance on internal storage capabilities. The percentage of hours without grid
purchases (77.05%) is moderately high, however, the hours without any grid exchange
(66.47%) remain lower, reflecting constant reliance on grid resources to manage the system's
surplus and deficit conditions and this well observed in analysed metrics tables in Table 3-7
and Table 4-4.

Contrastingly, MPC 8% demonstrates a markedly improved operational profile despite its
reduced contracted grid capacity (£37 kW). This scenario achieves superior self-sufficiency,
with a remarkable 86.03% of hours free from grid imports, despite the lower grid limit. Although
overall hours without grid exchange (58.78%) slightly decrease due to tighter constraints on
export and import capacity, the scatter clearly shows strategic battery utilisation: when PV
generation is low or zero, energy stored in batteries and hydrogen is actively dispatched back
to the grid, creating a distinctive "negative" power pattern, meaning the storage systems
actively support grid stability during demand peaks. This strategic dispatch of stored energy
to the grid is notably absent in Load Following. Thus, MPC clearly achieves demand-peak
shaving by strategically deploying storage assets, especially during periods of zero PV
production, demonstrating advanced operational flexibility compared to the traditional Load

Following approach.
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6.4.3 Seasonal Energy Balancing and Storage Role Separation

Figure 6-5 translates the sizing logic into storage behaviour over an entire year. Under
Load Following (subplot (a)) the battery acts as the primary buffer: its daily mean SoC tracks
the solar cycle, climbing above 55 % in midsummer and falling below 35 % in winter, with a
standard deviation of roughly 15 %. Over sixty summer days the battery exceeds 80 % SoC,
crowding out additional PV harvest and explaining the inverter clipping seen earlier. Hydrogen
remains largely dormant, its daily mean hovers around 23 %, hardly surpassing 40 %, so the
system lacks any genuine seasonal reservoir. High-frequency cycling is therefore

concentrated in the battery, limiting renewable utilisation.

This storage hierarchy is fundamentally restructured under the MPC 8% scenario. The
controller pins the battery near one-third full throughout the year, cutting its daily variability to
9 % and eliminating episodes above 80 % SoC. Surplus spring and summer energy is
channelled into hydrogen: the LoH monthly average rises steeply to 80-100 % between June
and August, then is drawn down to support winter loads. Hydrogen’s standard deviation a
factor of four relative to the baseline, confirming its new role as the long-duration store, while
the battery is relegated to short-term balancing. This division of labour maximises PV capture

and allows the inverter to be downsized without loss of service.

These results echo and are reinforced by recent studies. Researchers in [183] demonstrate
that in PV—battery—hydrogen hybrids, effective SoC management requires batteries to operate
around mid-range levels to handle daily variability, while a minimum hydrogen reserve is
necessary for seasonal smoothing. Failure to coordinate these roles leads to excessive battery
cycling and curtailed energy. Further studies such as [184] shows that when optimally
dispatched, batteries and hydrogen in hybrid systems self-organize into distinct timescale
functions, batteries absorb intra-day volatility while hydrogen buffers seasonal mismatches,
precisely the operational stratification observed under MPC-8%. The study from [185] confirm
this behaviour quantitatively, finding that hybrid storage architectures outperform battery-only
or hydrogen-only systems across both temperate and tropical climates. The separation of
short- and long-duration functions not only boosts efficiency but also extends component

lifespan and enhances renewable integration.

Having established the internal operational benefits of our MPC-enhanced strategy, including
its ability to reshape inverter loading, smooth state-of-charge dynamics, and balance seasonal
energy using dual-storage architecture, the discussion is being broadened to position these
findings within the wider optimisation literature. The following comparative benchmark
examines recent studies to assess how their methods and assumptions stack up against our

framework, particularly in terms of realism, cost-effectiveness, and replicability.
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6.5 Summary

The discussion now concludes by connecting deeper insights from the main optimisation
chapters (3 and 4) into a coherent Better—Robust—Sustainable arc. Firstly, Chapter 6 validated
that the GA-MILP-MPC hybrid design achieves superior performance, surpassing
benchmarked state-of-the-art studies on both NPC and LCOE. Secondly, a +10% parameter
sensitivity analysis confirmed these economic advantages hold firm under realistic market and
climate variability, reinforcing the robustness of the framework. Lastly, by integrating Net-
Present-Cost, unmet-energy constraints, and the novel community EROI sustainability metric
into a dynamic, slider-driven dashboard, the thesis introduced a holistic decision-making tool.
Planners can immediately visualise the impact of capacity adjustments, observing how shifts
affect both cost and lifecycle energy payback, and swiftly verifying if designs surpass the
crucial two-year net-energy threshold (EROI = 4). The calibrated baseline system comfortably
resides within the optimal €0.60 M cost and EROI 4.8 zone, whereas increasing PV sizing by
1.44x noticeably elevates costs and reduces EROI, offering a visual caution against
imbalanced sizing. Consequently, this thesis not only delivers a superior and resilient
optimisation strategy but also provides a practical, transparent, and intuitive interface,
empowering energy communities to confidently transform complex technical analyses into

clear investment decisions.

7 Conclusion

This thesis improves the capacity planning of hybrid renewable energy systems by means of
a proposed and profoundly integrated optimisation framework combining long-term planning
with short-term operational realism. The framework tackles three general objectives by means
of a combination of Genetic Algorithms (GA), Mixed Integer Linear Programming (MILP), and
Model Predictive Control (MPC): minimising lifecycle cost, enhancing renewable energy
autonomy still linked to the grid in community configuration, and improving energy return
efficiency through improved performance indices. The first major contribution is the
development of a nested GA—MILP model for the year-long sizing and dispatch of PV-battery—
hydrogen microgrids. This deterministic approach co-optimises component capacities and
hourly dispatch strategies using a full-year dataset of load, irradiance, and tariff signals. It
outperforms established methods such as HOMER Pro and reactive rule-based systems,
achieving verifiable reductions in Net Present Cost (NPC) of 5.9% and Levelised Cost of
Energy (LCOE) of approximately 6.2%. These improvements result not only from better sizing
of PV and storage, but also from the novel AC/DC nodal representation, co-optimisation of

inverter limits and contracted grid capacity, dimensions often overlooked in prior studies.
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However, this full-year optimisation assumes perfect foresight and fixed performance metrics,
which can result in overly optimistic cost predictions and underrepresentation of operational
flexibility. To bridge this gap, Chapter 4 introduces a rolling-horizon MPC module that executes
every 12 hours using a 24-hour forecast. By embedding this MPC engine within the larger
GA-MILP structure, the system gains predictive adaptability to dynamic conditions.
Additionally, the inclusion of flexible load scheduling, ranging from 0% to 8%, enables fine-
tuned demand shaping in response to variable solar supply and tariff cycles. This more
granular control results in significant operational advantages: total annual grid charges decline
from €29,625 under load-following operation to just €15,886 at 8% flexibility (reduction of
46%), while self-consumption increases to 44.56%. Moreover, the MPC 8 % scenario delivers
approximately a 10 % reduction in NPC and a 10.3 % reduction in LCOE compared to the
load-following benchmark. These gains demonstrate the economic and technical value of

embedding short-term foresight and demand flexibility into hybrid energy systems.

The third key innovation lies in the introduction of an extended Energy Return on Investment
(EROI) and Energy Stored on Invested (ESOI) metric suite, designed specifically for
community-scale hybrid systems. Unlike traditional EROI calculations, which typically only
account for primary energy generation and a single storage loop, this extended framework
captures all major energy pathways, including curtailment losses, battery and hydrogen flows,
and grid exports, and compares them against embodied energy in PV modules, batteries, fuel
cells, and hydrogen tanks. Through detailed parametric analysis, the results reveal that battery
efficiency improvements have the most significant impact on system-wide energy returns.
Raising battery round-trip efficiency from 70% to 95% increases extended EROI from 4.4 to
4.9, while improving electrolyser—fuel cell efficiency from 15% to 40% yields only marginal
gains due to hydrogen’s relatively small energy throughput. These findings underscore the
necessity of prioritising battery performance and sizing in systems where daily balancing

dominates over seasonal shifting.

In addition to parametric evaluations of the novel EROI community, the thesis introduces a
generalised framework for exploring how system performance evolves under capacity
variation, using polynomial-regression-based surrogate models to generate smooth heatmaps
across scaled configurations. These heatmaps, constructed for Net Present Cost (NPC),
EROI, unmet load, and excess energy, offer community planners an intuitive, visually rich
decision-support tool. The analysis identifies clear "sweet spot" ranges—typically at 1.0-1.1
times the baseline capacities—where both cost and lifecycle energy efficiency are jointly
optimised. Specifically, these zones yield EROI values near 5.0 while holding NPC below
€610,000 and excess generation under control. More extreme scaling, particularly oversizing

PV beyond 1.8x%, increases curtailment and reduces EROI despite marginal cost gains, while
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downsizing elevates energy return but at the cost of affordability and unmet demand. This
dual-parameter sensitivity, visually conveyed via NPC-EROI contour plots, provides a
practical, evidence-driven pathway for right-sizing infrastructure, and highlights the intricate

trade-offs between economic feasibility and environmental sustainability.

Across these dimensions, long-horizon planning, short-horizon re-optimisation, and life-cycle
sustainability, the thesis proposes a new design logic for hybrid energy systems. It shows that
performance should not be judged purely on static costs or capacity metrics, but on dynamic
control responsiveness and presented later with energy circularity edge. This is made possible
by the modular nesting of GA for layout optimisation, MILP for high-resolution dispatch
feasibility, and MPC responsiveness approach. Each layer feeds into the next, forming a
continuous feedback loop that mirrors how real systems must operate: planning ahead,
reacting quickly, and balancing costs with resilience. The short-horizon MPC particularly
addresses a central challenge in real-world deployments, how to handle weather variability,
shifting demand, and changing market tariffs without incurring excess cost or grid dependency.
The flexibility offered by even modest demand shifting (e.g., 8%) yields material financial
benefits, with annual grid-related charges significantly reduced compared to load-following
baselines. This responsiveness, embedded in the MPC logic, bridges the planning-execution

gap and enables systems that are economically efficient and operationally viable.

In addition to economic metrics, the extended EROI and ESOI indices offer meaningful energy
benchmarks for sustainable system design. Unlike pure cost metrics, these indicators reflect
embedded environmental impact of system components. The life-cycle analysis reveals clear
patterns: hydrogen remains a niche but necessary long-duration storage option, with limited
EROI impact unless its share of energy throughput is significantly increased. Batteries, in
contrast, serve as the dominant modulator of energy returns, and their embodied energy and
efficiency should be carefully managed to maintain overall system sustainability. These
insights help shift the conversation from purely financial design toward multi-dimensional
optimisation, where economic, operational, and environmental performance are considered in

the planning.

From a practical standpoint, the thesis delivers clear implications for community energy
planners, especially in islanded or weak-grid settings. The MPC-based framework offers a
model that can be adapted to simulate real community conditions, including time-varying
loads, tariff structures, and weather patterns. The optimisation of contracted grid power,
typically a static assumption in most studies, is shown to be a powerful lever for cost savings.
By tuning the contracted limit in tandem with inverter and storage sizes, the framework avoids

over-design while still ensuring adequate supply security and peak demand management. This
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dimension of the optimisation aligns with regulatory trends in many regions where demand
charges or power-based tariffs are becoming more prevalent. The insights gained from this
thesis can directly inform tariff policy, incentive design, and capacity market participation

strategies for distributed energy providers.

Despite the comprehensive design proposed in the work, several limitations are
acknowledged. The assumption of perfect short-horizon forecasts in the MPC layer does not
reflect the stochastic nature of real-time solar and load data. Future iterations should
incorporate probabilistic forecasts or robust optimisation techniques to quantify and mitigate
uncertainty. Equipment replacements are considered depending on hourly operational limits,
but degradation and system failure modes are also not modelled; incorporating battery ageing,
and inverter reliability would provide a fuller picture of lifecycle performance. Additionally,
thermal energy demand and sector coupling are not represented in this study, which limits its
immediate application to systems with significant heating or cooling loads. Integrating co-
generation, heat pumps, or demand-side thermal storage could broaden the model’s scope.
Social and behavioural factors are also outside the current modelling framework. Future work
could include surveys or behavioural models to better understand user responses to flexible
load incentives or energy storage deployment. While the model outputs optimised schedules,
it remains silent on whether households or facility operators would accept such schedules in
practice, especially if they affect comfort, convenience, or economic risk. Addressing this

would add important realism to the model’s predictions.

8 Future Work and Research Directions Work

The methodological and modelling novelty presented in this thesis offer a strong foundation
for future research and application. Several extensions are envisioned to enhance the
technical robustness, real-world applicability, and policy relevance of the proposed GA-MILP-
MPC framework.

Technical and Control Enhancements

e Forecasting and Uncertainty Integration: Incorporating demand and generation
forecasting models that explicitly simulate forecast error, particularly as a function of
horizon length, can strengthen the robustness of the dispatch strategy into sizing and

planning context.

e Linearised Degradation Models: Current models assume fixed component lifespans.
Including degradation-dependent performance loss (e.g., battery fade, fuel cell
efficiency drops) would improve sizing realism and replacement strategies with

balance inclusion into the objective function.
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Environmental and Policy Coupling

e Translating EROI to Environmental Indicators: Mapping embodied energy (from the
EROI formulation) into CO,-equivalent emissions enables dual evaluation of energy

efficiency and carbon mitigation.
Generalisation and Real-World Validation

e Multi-Year, Multi-Region Simulation: Extending the analysis across multiple years and

climatic zones would increase model generalisability and policy relevance.
Community-Level Modelling and Sectoral Integration

e Stakeholder Granularity and Revenue Modelling: Introducing individual agents
(households, SMEs) with varied loads, ownership, and investment logic enables

modelling of energy sharing, peer trading, and new revenue streams.

e Hybrid Configuration and Sector Coupling: Expanding to wind, EVs, heating/cooling,
or water sectors supports cross-sector planning and decarbonisation in rural or

isolated communities.

9 Appendices

9.1 Literature Table Nomenclature
Pres(t) : Renewable generation (e.g., PV, wind) at time t
Pyt qc(t) : Battery discharge to DC bus at time t
Prc(t) : Fuel cell electrical output at time t

Pys(t) : Net supply to system at time t

P p(t) : Load demand at time t

Pgrcn(t) : Battery charging power at time t

Pg1.(t) : Electrolyser electrical consumption at time ¢
Pcr(t) : Curtailment losses at time t

Ppy (t): PV array electrical production at time t
Pyr(t) : Wind turbine electrical production at time ¢t
P, bat (t), P pat (t) : Battery output/input power

P, y(t), P; y(t) : Hydrogen system output/input power
Piny (t) : Inverter output power at time t

Eg4is (t) : Dispatchable energy losses at time ¢

Uj i+ - Grid imports for energy carrier j by device i at time t
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P;;+ - On-site generation or storage discharge for carrier;j
Vj,it - Grid exports for energy carrier j

Fj ;¢ - Fuel input to device i for carrier j

L;. : Demand for energy carrier j at time t

y; : Binary: 1 if PV option i is selected, 0 otherwise

A;: Area of PV option i

GHI,,: Global horizontal irradiance in year h

P/ : Power from PV i to Grid (DC before inversion)

P/%: Power from PV i to Load (DC before inversion)

P/, Power from PV i to Battery j (DC)
P, Total load demand at time p (AC )

P§- : Power from Grid to Load at p (AC)

hpy inv : Inverter efficiency (PV/DC — AC)

PP): Power from Battery j to Load at p (AC)

P;t : Total power from dispatchable gas turbines (including the spare)
Ppy : photovoltaic generation

Pg gis,Pp cn : battery discharge and charge

P, : curtailed renewable energy

Pioaq : €lectrical demand

I: Number of PV sizing options

J : Number of battery sizing options

Pous (t;) : Net DC bus balance at time step t;

pp.(t;) : Load demand at time step t;

YeopPvs Yeo D, Yeog - Inverter efficiencies (PV, battery, grid)

Ue Ug - Battery charge/discharge efficiencies

pen(ti), pap(t;) : Battery charging/discharging power at t
Dgs(ti), Pgin(t;) : Grid export/import power"

E;(t) : Stored energy in storage unit i (LiB or H, tank) at t
Pgq (t), Pyq, exp (t) : Grid import/export power

Py (£), Pyt (t): PV and wind generation in Diabate et al.

pehar (), pdiseh (t) : Battery charge/discharge powers

P (t) : Electrolyser power consumption

P¢.(t) : Fuel cell power generation

Pgs,ac(t), Pgs,cn (t) : Battery discharge/charge to/from DC bus
Ppy gs(t): PV export to battery subsystem
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PgRrbuy (), Pgr, seil () : Grid buy/sell powers (AC side)
PeLin (), PeL  out (t) : Electrolyser input/output powers
Pys dac(t), Pus,ch (t): Hy storage discharge/charge power

P p (t) : Hydrogen load demand
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9.2 Algorithmic Setup and Implementation (Python)

9.2.1 Genetic Algorithm (GA) Implementation (DEAP)

A Genetic Algorithm (GA) is a metaheuristic search algorithm that mimics the process of
natural selection, a fundamental concept of biological evolution. Genetic Algorithm, which are
part of the Evolutionary Algorithms (EA), are population-based solution that evolve through
generation toward an optimal global solution avoiding local minima. They are often favoured
above single-based solution metaheuristic algorithms, such as simulated Annealing (SA).
Population based-solution metaheuristics are used widely to solve real-life sophisticated

problems from fields such as engineering and energy system optimisation [186].

When the optimisation problem comprises many variables with complicated
interdependencies, which makes conventional techniques like gradient-based approaches
less effective, GA is particularly useful. In this work, distributed evolutionary algorithm in
Python DEAP module is deployed to build the GA for hybrid energy system optimisation [187].
DEAP is an open-source, adaptable framework that helps to create evolutionary algorithms
and lets us modify the GA implementation to fit the needs of the nested layered optimisation
method. While the modular architecture of the library provides the flexibility needed for
developing hybrid energy systems, DEAP helps effective management of large search areas

and decision factors related with system size.

The upcoming sections cover the theoretical part of GA and bridge the use of the DEAP library
in formulating the GA components, including chromosome representation, fitness function,
selection criteria, crossover, and mutation probabilities. These sections are designed to fit
these parameters within the broader context of the nested optimisation framework proposed
in this chapter, where the GA performs the global optimisation search for system capacity
sizing, and MILP handles the local operation dispatch optimisation. Each fundamental feature
of GA as used in this work will be discussed in the following subsections, showing how the

DEAP library was used to provide a customised optimising environment.
1- Chromosome Representation

In GA, Potential solutions are expressed as chromosomes, basically vectors encoding choice
variables. Every gene found in a chromosome function as a decision variable influencing the
general performance of the system. In the framework of energy system optimisation, for
instance, the chromosome encodes factors including the rated power of renewable energy

components of hybrid systems as was formulated before:

e Photovoltaic (PV) capacity (kW)
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e Battery storage size (number of battery modules)
e Inverter capacity (kW)

e Grid-contracted power (kW)

o Fuel cell size (kW)

o Electrolyser size (kW)

e Hydrogen tank size (kg)

Candidate information is stored explicily as a 7-gene real-valued vector C, =
[PPV, Ny, Pinv, Pyr» Pre) Pel,PHT] with admissible bounds. Tournament selection (k = 3) copies
short, well-performing "building blocks" into the next generation; blend crossover preserves
parental mid-points while exploring a +50% envelope around them, which is well-suited to
continuous capacities; Gaussian mutation ( u=0,0 =1, indpb =0.2) injects small,
independent perturbations to prevent premature convergence. In combination, these
operators retain useful substructures (e.g., PV-inverter-grid ratios that the MILP evaluates
favorably) and diffuse them across the population, so dispatch-feasible, low-NPC patterns

become more frequent generation by generation.

Ppy Npt Piny Pgr Prc Pe Pyt
[kw] [#] [kw] [kw] [kw] [kw] [kg]
Bounds: [1, 300] Bounds: [1, 300] Bounds: [1, 300] Bounds: [50, 100] Bounds: [1, 300] Bounds: [1, 300] Bounds: [1, 300]

Figure 9-1: Chromosome layout for capacity sizing showing the decision variables: PV capacity, number of battery
units, inverter rating, contracted grid limit, fuel cell power, electrolyser power, and hydrogen tank capacity. The
bounds of each variable are indicated below the corresponding gene.

In the DEAP framework, these decision variables are expressed as toolbox attributes

registered in the toolkit. Figure 9-2 shows the code snippet used in DEAP syntax illustrating

initialisation of these variables:

# Decision Variables Registering
toolbox = base.Toolbox()
toolbox.register("attr_pv", random.uniform, PV_MIN, PV_MAX)

toolbox.register("individual"”, tools.initCycle, creator.Individual,
(toolbox.attr_pv), n=1)

Figure 9-2: DEAP initialisation of decision variables
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2- Population Size

A GA begins with an initial population of randomly produced chromosomes, each is a possible
solution. The size of this population may affect the search space exploration; a larger
population result in a more varied collection of starting solutions. The population changes over
many generations while the method aims to improve the fitness of the solutions. Practically,
the initial population's decision variables are produced within established upper and lower
boundaries, thereby guaranteeing that all solutions are physically practical in the framework
of system restrictions, such as the maximum allowed PV capacity or storage sizes. In this

study, the population size is set in DEAP as follows in Figure 9-3.

H Create the initial population
population = toolbox.population(n=POPULATION SIZE)

Figure 9-3: Population size setup in DEAP framework
3- Fitness Function

In a GA, the fitness function is essential as it assesses every chromosome and decides the
optimum or "fit" nature of a solution. For energy system as it was reviewed in previous chapters
before, there are different fitness functions that are indeed attracted the researcher community
as well the industry. The main indices can be economical, environmental, reliability and social.
This work aims to minimise the Net Present Cost (NPC) of the hybrid energy system by means
of fitness function. This feature guarantees that, in spite of all technological restrictions, the
optimisation process favours configurations that reduce total lifetime costs. In DEAP, this is

implemented as follows in Figure 9-4.

def evaluate(individual):
PV_size, Battery_size, Inverter_capacity, Grid_power, Fuel cell,
Electrolyser, Tank_size = individual

# Calculate NPC based on full fitness function

return (NPC,)

Figure 9-4: DEAP setup for the NPC fitness function
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4- Selection

GAs run by choosing the best chromosomes for reproduction in next generations. Higher-
fitness solutions are ranked using selection techniques such as tournament selection,
therefore preserving variation. This technique allows well-performing solutions to contribute
more genetic material to the next generation, essentially simulating survival of the fittest. For
the DEAP setup, the tournament method was implemented and the selected numbers of
individuals are 3 as balanced choice as described by [188]. The code snippet in Figure 9-5

shows the tournament method selected for DEAP configuration.

# Select method and tournament size
toolbox.register("select", tools.selTournament, tournsize=3)

Figure 9-5: Tournament setup for the DEAP library
5- Crossover

The process by which two parent chromosomes are mixed to generate offspring is known as
recombination or crossover. Through mixing traits from both parents, this process brings fresh
solutions into the population. Blend crossover lets parents smoothly exchange genetic
material, therefore enabling the GA to investigate other areas of the solution space. Blend
Crossover (cxBlend) is well suitable in continuous-variable situations like the one in your
optimisation framework, in which the decision variables such as PV size, inverter capacity are
continuous rather than discrete. The final optimisation results are then rounded up to the
nearest real-life capacity for realistic impact, allowing the algorithm to sieve smoothly the
search space. The range that the offspring are from the parents are within 50%, this is
achieved by setting up alpha to 0.5, defining how far the offspring can differ from the parents.

This lets the algorithm to explore the search space in balance.

Furthermore, guiding the frequency of crossover in the algorithm is crossover probability
(CXPB). For example, if a balanced value of CXPB=0.6, 60% of the time two parents from the
population would crossover to generate offspring; 40% of the time the offspring will be mere
copies of the parents. This preserves diversity in the population and yet lets new solutions

emerge, as shown in Figure 9-6.
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it Crossover method: Blend crossover for continuous variables
toolbox.register("mate", tools.cxBlend, alpha=0.5)

H Crossover Probability: 60% chance that crossover is applied to parents
CXPB = 0.6

Figure 9-6: Crossover method selection and setup range of offsprings
6- Mutation

Mutation guarantees genetic variation by introducing random changes to just a small portion
of an individual's genes, therefore preventing the algorithm from settling too rapidly on a
suboptimal answer. The mutation in DEAP is carried out utilising the Gaussian distribution

depicted in Figure 9-7.

it Mutation method: Gaussian mutation for continuous variables
toolbox.register("mutate”, tools.mutGaussian, mu=0, sigma=1, indpb=9.2)

H Mutation Probability: 10% chance that mutation is applied
MUTPB = 0.1

Figure 9-7: Mutation method selection and setup on DEAP

mu=0 in the figure guarantees the mutation generates only minor changes by cantering the
mutation around the present gene value. Using sigma=1 preserves variability by controlling
the distribution of these changes. Indpb=0.2 guarantees that, in every person, 20% of the
genes are modified, thereby balancing exploration of the search space without excess
randomisation. This configuration promotes a broad search, therefore preventing early

convergence and preserving significant exploration.

Furthermore, regulating the possibility that every individual will undergo mutation after
crossover is mutation probability (MUTPB). Ten percent of the population are exposed to
mutation with MUTPB=0.1, enabling fresh variants to arise in the population and hence

avoiding the algorithm from being caught in local optima.

In the next, section, the MILP implementation using pulp python library and the final integration
between the two algorithms will be discussed and the operational reliability indicators that are
passed from the Unit commitment are utilised by the GA penalty function to guide the

optimiser.
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9.2.2 MILP Implementation (PULP)

In this section, PuLP library and the Gurobi solver implementation in python environment is

explained. This arrangement aims to minimise grid operating expenses over an annual

horizon of 8760 hours by effectively solving the unit commitment problem. Key libraries listed

below help to build up the Python environment:

PULP: Designed for both mixed-integer linear programming (MILP) and linear
programming (LP)
Gurobi: Designed to tackle the formulated MILP problem, gurobi is a high-performance

solver that is used for both, industrial and academic works.

The execution and implementation consist of the following key steps:

1.

Model Definition: Pulp's LpProblem class is used to construct the MILP problem, with
a minimisation aim described here. Minimising the overall operating cost, which
includes grid energy buying expenses, income from grid sales, and penalties that

range for both unmet and surplus energy, is the target function as shown in Figure 9-8.

prob

H Initialise the optimisation problem
= LpProblem("Minimise_Operating_Costs", LpMinimize)

Figure 9-8: Pulp initialisation of the problem

2.

Decision Variables: The MILP formulated problem consist of two distinguished
decision variables of continuous and binary variables. Where the binary decision
variables act as a switch which as if real life energy management system to decide
which asset to respond to the load or which asset sells/charge for this problem the core
is whether its grid, battery storage or hydrogen storage. On the other hand, the
continuous variables are deemed to decide how much of energy should be exchanged
at each time step. Table 9-1 shows the type of decision variables formulated and the

way it was implemented in python environment using PULP library syntax.
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Table 9-1: Type of variables and with pulp syntax example

Binary Variables | battery_decision(t) battery decision = {t:
grid_interaction(t) LpVariable(f"battery decision {t}",
Hydrogen_decision(t) cat='Binary') for t in T}
Continuous battery_charge_power(t)
Variables battery discharge power(t)
SoC(t)

grid_buy(t)

grid_sell(t)
unmet_energy(t) battery_charge power = {t:
LpVariable(f"battery_charge_power_ {t}",

0, P_b_minus_max) for t in T}

excess_energy(t)
PV_self_consumed(t)

PV_power_remain(t)

Electrolyser_power(t)

Fuelcell_power(t)
SoC_H(t)

3. Objective function: The objective function minimises the operational grid costs over
the entire year horizon by summing up the hourly purchasing from grid and subtracting
the hourly revenues from energy exports. To encourage the system to decrease
wastage and excess for optimal operational decisions, penalties are applied. Figure
below shows the way how the objective function was initialised in PULP syntax in

python environment as shown in Figure 9-9.

H Initialise the problem objective

prob += 1pSum([(grid_buy[t] * pi_grid minus[t] - grid_sell[t] *

pi _grid_plus[t] + unmet_energy[t] * penalty_unmet + excess_energy[t] *
penalty excess) for t in T])

Figure 9-9: Objective problem method of implementation

4. Constraints: A set of constraints guarantees that the system meets energy demand
at every time step and runs within its physical limitations. The PULP library in the
Python environment implements these constraints by appending "+=" to the problem
formulation. The full constraints list was discussed before, but here in Figure 9-10 is
the implementation example of how this was passed through Python environment as

a method.
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H grid constraint example:
prob += grid_buy[t] <= P_grid_max * grid_interaction[t]
prob += grid_sell[t] <= P_grid_max * (1 - grid_interaction[t])

Figure 9-10: Grid Constraint method of application

5. Solver Configuration: One of the reasons why PULP was selected in this study,
because of its adaptability in solving mixed-integer linear programming (MILP) and
linear programming (LP). PuLP's main benefit is that it provides an interface for a great
range of solvers such commercial (Gurobi and CPLEX) and open source (CBC default
for PULP) alike. This lets academics move between many solvers without changing
the underlying optimisation approach. In the nested optimisation approach, this

adaptability is very essential as it allows the comparison of many solver performance

criteria (e.g., speed, optimality gap, and feasibility) without vendor lock-in.

9.2.3 MILP Decision Variables

Binary
Variables
battery_decision(t) Controls whether the battery is charging battery_decision = {t: LpVariable(f"battery_deci-
(0) or discharging (1) at time fttt. sion_{t}", cat='Binary') for t in T}
grid_interaction(t) Controls whether energy is being bought grid_interaction = {t: LpVariable(f"grid_interaction_{t}",
(1) or sold (0) from the grid at time ttt. cat="Binary') for tin T}
Hydrogen_decision(t) Controls whether the electrolyzer is Hydrogen_decision = {t: LpVariable(f"Hydrogen_deci-
charging hydrogen (0) or the fuel cell is sion_{t}", cat="Binary') for t in T}
discharging hydrogen (1).
Continu-
ous Varia-
bles

bat-
tery_charge_power(t)

Power charged into the battery at time ttt
(in kW).

battery_charge_power = {t: LpVariable(f"bat-
tery_charge_power_{t}", 0, P_b_minus_max) for t in
T

battery_dis-
charge_power(t)

Power discharged from the battery at time
ttt (in kW).

battery_discharge_power = {t: LpVariable(f"bat-
tery_discharge_power_{t}", 0, P_b_plus_max) for tin
T

SoC(t) State of charge of the battery at time ttt SoC = {t: LpVariable(f"SoC_{t}", SoC_min, SoC_max)
(as a percentage). fortin T}

grid_buy(t) Power bought from the grid at time ttt (in grid_buy = {t: LpVariable(f"grid_buy_{t}", O,
kW). P_grid_max) for t in T}

grid_sell(t) Power sold to the grid at time ttt (in kW). grid_sell = {t: LpVariable(f"grid_sell_{t}", O,

P_grid_max) for t in T}

unmet_energy(t)

Unmet energy demand at time ttt (in kW).

unmet_energy = {t: LpVariable(f"unmet_energy_{t}",
0, None) for tin T}

excess_energy(t)

Excess energy at time ttt (in kW).

excess_energy = {t: LpVariable(f"excess_energy_{t}",
0, None) for t in T}

PV_self_consumed(t)

PV power self-consumed at time ttt (in
kW).

PV_self_consumed = {t: LpVariable(f"PV_self_con-
sumed_{t}", 0, PV_powerft], cat="Continuous') for t in
T}
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PV_power_remain(t) Remaining PV power after self-consump- PV_power_remain = {t: LpVariable(f"PV_power_re-

tion at time ttt (in kW). main_{t}", 0, None, cat="Continuous') for t in T}
Electrolyser_power(t) Power consumed by the electrolyzer at Electrolyser_power = {t: LpVariable(f"Electro-

time ttt (in kW). lyser_power_{t}", 0, P_el_minus_max) for tin T}
Fuelcell_power(t) Power produced by the fuel cell at time ttt Fuelcell_power = {t: LpVariable(f"Fuelcell_power_{t}",

(in KW). 0, P_fc_plus_max) for tin T}
SoC_H(t) State of charge of the hydrogen tank at SoC_H = {t: LpVariable(f"SoC_H_{t}",

time ttt (as a percentage). SoC_hydorgen_min, SoC_hydorgen_max) for tin T}

9.3 Rule-Based Load Following

The load-following energy management technique processes from 1 to 3 shown in Figure 9-11,
starts with initialising necessary system inputs that provide the basis for further computations.
These inputs include hourly electricity demand, accessible renewable resources, and
thorough technical and financial specifications for every system component. This starting
point, which corresponds to Process 1, helps the model to dynamically react to changes in
supply and demand, therefore guaranteeing a balanced approach to energy allocation that

reduces grid reliance and manages renewable energy surpluses and shortages properly.

In Process 2, the model compiles three key datasets: technical and financial data for every

1l
( Star )
2 v
/ Py - / /Geographical location and / /Technicalandeconomical /
/A & available resources  / / data /
T | |
3. \ 4

Calculate Net Power (NP) = REN - Load <

'

Figure 9-11: Focused snippet Between Process 1-3

system component, geographic data influencing the availability of renewable resources, and
hourly electricity consumption. The hourly demand data shows the community's energy needs
hourly throughout the year, therefore guiding the baseline for energy balancing at every time
interval. Geographical data including sun irradiation and ambient temperature guides the
generating potential for renewable energy, therefore enabling the model to modify its energy
distribution depending on historic resource availability. Technical and financial criteria for parts
including photovoltaic panels, wind turbines, batteries, fuel cells, electrolysers, and grid tariffs
give the model necessary performance, capacity, and cost constraints, so guiding wise use of

the resources at hand.
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The model computes the net power (NP) at every time step by deducting the electrical load
from the renewable energy production (NP = REN - Load), as Process 3 explains. This net
power computation is crucial as it guides the next actions of the model: either allocating energy
to storage, transforming it to hydrogen, or depending on grid imports to satisfy the demand. A
positive NP denotes surplus renewable energy; a negative NP indicates a power scarcity.

Therefore, the sign of NP defines the direction the model uses for energy allocation.

3. h 4
Calculate Net Power (NP) = REN - Load ¢

No

Yes
41 [

Icul X R r serving th
Calculate excess IOE:, ater serving the Equal Calculate Power shortage

v v

Figure 9-12: Focused snippet Process 4 and its two main decisions 4.1 and 4.2

y

Process 4's decision point is when the model assesses the sign of NP to ascertain the suitable
allocation route as shown in Figure 9-12 . The model follows the route described in Process
4.1 when NP is positive, meaning an excess of renewable energy. Examining the battery's
state of charge (SOC) comes first along this road (Process 4.1.1). Should the battery be not
completely charged (SOC < 100%), the model uses the surplus energy to charge the battery

4.1. l N
Calculate excess REN after serving the
load E¢

4.1.2. +
Charge Battery until

full 100%
4.1.3. ‘

Update SOC
4.14. v

Calculate Excess REN After Battery b
Charging

Figure 9-13: Focused on Decision
Branches from4.1to4.1.4

(as described in Process 4.1.2), therefore conserving the excess renewable energy for usage

when demand could surpass generation. Following every charging cycle, the model updates
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the battery SOC (Process 4.1.3), therefore preserving a precise record of accessible storage

capacity as shown in Figure 9-13.

The model computes the extra energy after battery charging (Process 4.1.4) should the battery
reach its maximum SOC and still have surplus energy. Should more renewable energy still be
available, the system assesses conditions for running the electrolyser, per Process 4.1.5 and
4.1.6. The model specifically confirms that the operating limitations of the inverter are not
exceeded and examines the SOC of the hydrogen tank to guarantee enough storage capacity.
Should these requirements be satisfied, the model turns on the electrolyser (Process 4.1.7),
transforming the residual surplus energy into hydrogen, which finds residence in the hydrogen
tank. Level of hydrogen (LoH) of the hydrogen tank is changed to correspond with the new

hydrogen storage (Process 4.1.8) as shown in Figure 9-15.
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Y Sy

No
4.1.7.
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4.1.38. ;
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Figure 9-15: Focused on Decision Branch es from 4.1.4to04.1.8

Should extra energy remain after electrolyser operation, the model investigates as
demonstrated in Figure 9-14, in Process 4.1.9 and 4.1.10, the viability of exporting energy to
the grid. Examining if the grid connection and inverter stay within stipulated restrictions comes
in this phase. Should grid export be possible, the model saves this surplus for further study
(Process 4.1.12) and exports the extra energy within these constraints (Process 4.1.11). The
information on surplus energy sent to the grid shows the capacity of the system to optimise

the usage of renewable energy as well as hints on possible income from energy sales.

4.1.8.
Excess
No

energy

Remaining
INV & Grid
Contracted

4111, Yes
Y
Export Excess within
limit
4112.
o | Record Excess and
Unmet Energy

Figure 9-14: Focused on Decision Branch es from 4.1.8to 4.1.12
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Should NP be negative, indicating a power shortfall, the model uses the alternate route
described in Process 4.2. Examining the battery SOC first on this road (Process 4.2.1) will
help one to determine if sufficient stored energy exists to meet the demand. Should the SOC
above the minimum five percent barrier, the battery releases energy to balance the shortfall
(Process 4.2.2). Careful regulation of this discharge process helps to prevent draining the
battery below the minimal SOC, therefore extending the lifetime of the battery and
guaranteeing a reserve of energy for future shortages. Following each discharge cycle
(Process 4.2.3), the model changes the battery SOC while accurately documenting the

accessible stored energy.

7 o |

1al Calculate Power shortage

Yes

Discharge Battery
until 5%

4.2.3. ‘

Update SOC

424, ‘

Calculate load shortage after battery
discharging

v

Figure 9-16: Focused on Decision Branches from 4.2 to 4.2.4

>

As described in Process 4.2.5 as shown in Figure 9-17, the model evaluates the likelihood of
employing the fuel cell to provide extra power should a power shortfall persist beyond battery
exhaustion. As Process 4.2.6 explains, the fuel cell activation depends on the operating
limitations of the inverter and the SOC of the hydrogen tank. While the hydrogen tank's LoH
is updated to reflect the lowered hydrogen storage, the fuel cell uses stored hydrogen back
into electricity to fulfil the residual demand when both requirements are met (Process 4.2.7).
This conversion technique maximizes hydrogen use while honouring the capacity limitations

of the fuel cell.

215



424, ‘
Calculate load shortage after battery

discharging

Energy
Shortage
(Ps)>0

Yes

4.2.6.

HT SOC=
5% & FCor
INV limits
reached

No
4.2.7.
A 4

Operate Fuel cell
within limits

4.2.8. ;

Update HT LoH

v

Figure 9-17: Focused on Decision Branches from 4.2.4to0 4.2.8

Should a power shortfall still exist after battery and fuel cell use, the model takes grid
importation into account, as Process 4.2.9 and 4.2.10 indicate. The contracted grid capacity
restricts grid imports so that they guarantee system compliance with allowed import limitations.
Should grid energy be within these limitations, the model imports the energy to meet the unmet
demand (Process 4.2.11) and notes this residual shortfall for further examination. Examining
the system's dependency on grid power during shortages relies on this unmet demand data,
which also highlights areas where increased renewable or storage capacity may reduce this

need.

Energy
Shortage

4.2.10.

Remaining
INV & Grid
Contracted

4.2.11. Yes
Y
Import grid within
limit
4212.
Record Unmet
Energy

Figure 9-18: Focused on Decision Branch es from 4.2.8t0 4.2.12
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Figure 9-19 shows the final process check (Process 5.). After every hourly time step, the
model advances to the next hour (procedure 5.1), hence repeating the energy distribution
process across the complete simulation length. Over every hour of the year, the model
compiles data on grid interactions, battery and hydrogen SOC changes, and excess and
unmet energy iteratively. Process 5.2 helps the model to gather the entire unmet and excess
energy at the end of the simulation, therefore providing a complete picture of the performance
and efficiency of the system all year long. This overview covers significant numbers like the
Net Present Cost (NPC), general unmet demand, and energy delivered to the grid. These
calculations provide perceptive insight on the balance between demand and renewable

generation of load-following energy management system.

Sl \
Yes——  Next step = t+1

Time Step (t)
<Total steps

No

S22 +

Summrise the total
unmet and excess

520

(v )

Figure 9-19: Focused on Decision Branch es from 5. to 5.2.1 and 5. To 5.1.

9.4 The Foundational Theoretical Framework

In the simplest scenario described by [55], [113], the derived [ESOI],q targets energy
generation and storage system comparison at grid scale. It assumes a single generation
source with lifetime generation E,.,, and a fraction ¢ of that generation either curtailed or

routed through storage. The embodied energy of the generation facility is:

Eemb,gen = Lgen " €gen 9-1)

where g4, = 1/EROIy,, is the energy intensity of generation (MJ of manufacturing per MJ
generated). If a fraction ¢ of Eg., is diverted into storage, the embodied energy of the storage

system is related to the storage ESOI, by:

Eemb,st = Egen CP - Egt 9_2)

217



where &,; = 1/ESOI, is the energy intensity of the storage (MJ of manufacturing per MJ
delivered from storage). The total embodied energy of the generation-plus-storage

configuration is given as follows:

Eemb,total = Eemb,gen + Eemb,st = Egen (Egen + (pgst) 9_3)

The total dispatched energy from the system E,;;, 1ocq; CONSists of energy directly delivered
from generation E;qp, 40 @and energy delivered from storage Eg;, 5, and the 7y, as the

round-trip efficiency of the storage system.

Edisp,gen =(1- (p)Egen

9-4)
Edisp,st =MNst @ Egen
Thus:
Egisp total = Egen[(l — @) + N5 9] 9-5)
Now, applying the definition of EROI to the combined system (grid scale):
Edisp total
[EROl] iy = ——r
grid Eemb,total 9'6)
From equations 9-3) and 9-5), [EROI]g;4 :
Egen[(1 = ¢) + n5¢ ]
[EROI] jig = —2 s 9-7)
Egen(sgen + (Psst)
Cancelling Egep,
(1—¢) + onse
EROI] pjg = —————
[ ]ngd Egen + VEg 9'8)
Since 4., = 1/EROl g, and &5, = 1/ESOI,, we rewrite:
(1-9¢)+on
[EROIgrig =——7 3
+ 9-9)
EROI,,, " ESOI,

This final equation shows how the overall EROI of the grid system changes when a fraction ¢
of the generation is routed through a storage device characterised by a certain ESOI and

efficiency.
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