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Abstract 

The transition to high-renewable energy systems at the community level demands 

optimisation frameworks that balance economic efficiency, operational flexibility, and 

sustainability. While many existing studies focus on either static sizing or simplified dispatch 

heuristics, they often fail to co-optimise key system parameters such as inverter capacity, grid 

constraints, and hybrid storage integration under dynamic conditions. This thesis addresses 

that gap by developing a deeply integrated optimisation architecture that unites long-horizon 

sizing with short-horizon control, tailored for islanded and weak-grid energy communities. 

The central objective is to design a techno-economically robust and energy sustainable hybrid 

PV–battery–hydrogen system that minimises lifecycle cost and enhances renewable self-

consumption while accounting for real-world constraints. To this end, a nested optimisation 

approach is proposed, integrating a Genetic Algorithm (GA) for capacity sizing with a Mixed 

Integer Linear Programming (MILP) framework that embeds a Model Predictive Control (MPC) 

dispatch strategy. The GA generates candidate system layouts, each of which is validated via 

the MILP model that co-optimises hourly dispatch under fixed tariff structures and inverter-grid 

limits with AC/DC nodal representation. To capture operational uncertainty and improve 

flexibility, a rolling-horizon MPC layer executes every 12 hours using a 24-hour forecast 

window, incorporating flexible loads up to 8% of daily average demand, a level selected to 

reflect realistic load-shifting potential based on typical non-critical applications such as water 

pumps. 

Results show that the framework achieves Net Present Cost (NPC) and Levelised Cost of 

Energy (LCOE) reductions of 10% and 10.2%, respectively, compared to static or rule-based 

baselines. Grid-related operational charges fall by 46% under MPC with load flexibility, and 

self-consumption rises to 44.56%. A novel, extended Energy Return on Investment (EROI) 

metric is introduced to capture full energy pathways, revealing battery storage as the dominant 

contributor to lifecycle efficiency. To explore trade-offs between system size, energy return, 

and cost, generalisation heatmaps of EROI and NPC are developed around the optimised 

Formentera case study design from Chapter 4, which serves as the baseline (i.e. the 

configuration with the lowest NPC). These heatmaps identify design “sweet spots” around 1.0–

1.1× the baseline capacity, where high EROI (>5.0) and low NPC (≤€610,000) are 

simultaneously achieved. Beyond which oversizing leads to diminishing energy and cost 

returns due to increased curtailment and underutilisation of grid infrastructure. 

The proposed GA–MILP–MPC framework thus provides a replicable, scalable, and practical 

tool for optimising community-scale energy systems. By tightly linking planning, operation, and 

sustainability metrics, it enables planners to make data-driven decisions that are financially 
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sound, operationally feasible, and environmentally justified. As distributed energy 

infrastructures continue to evolve, such integrative methods will be crucial for shaping resilient 

and sustainable energy futures. 
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Nomenclature and Abbreviations  

Acronyms:  

Acronym Definition 

AC Alternating Current 

AEM Anion Exchange Membrane 

BIR Battery-to-Inverter Ratio 

CapEx Capital Expenditure 

DC Direct Current 

DEAP Distributed Evolutionary Algorithms in Python 

EROI Energy Return on Investment 

ESOI Energy Stored on Invested 

ESS Energy Storage System 

GA Genetic Algorithm 

H₂ Hydrogen 

HRES Hybrid Renewable Energy System 

IC Inverter-Capacity Optimisation 

LCOE Levelised Cost of Electricity 

LoH Level of Hydrogen 

MILP Mixed Integer Linear Programming 

MPC Model Predictive Control 

NC Nominal Capacity 

NPC Net Present Cost 

NOCT Nominal Operating Cell Temperature 

O&M Operation and Maintenance 

PEM Proton Exchange Membrane 

PS Peak Shaving 

PV Photovoltaic 

RH Rolling Horizon 

SA Simulated Annealing 

SH Static Hourly Dispatch 
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Acronym Definition 

SOC State of Charge 

SPT Smart Planning Tool 

ToU Time-of-Use 

TPR Tank-to-Inverter Ratio 

VPP Virtual Power Plant 

 

Variables:  

Symbol Description Unit 

𝐶௥ 
Vector of decision variables for system 
component capacities 

- 

𝑃௉௏ Photovoltaic array capacity kW 

𝑁ௐ் Number of wind turbines units 

𝑁௕௧ Number of battery modules (4.8 kWh each) units 

𝑃௜௡௩ Inverter rated capacity kW 

𝑃௚௥ Grid exchange power limit (buy/sell) kW 

𝑃௙௖ Fuel cell electrical output power kW 

𝑃௘௟ Electrolyser electrical input power kW 

𝑃ு் Hydrogen tank capacity kg 

𝐶NPC  Net Present Cost over the system lifetime € 

CapEX  ௞,௧ Capital expenditure for component 𝑘 at time 𝑡 € 

OpEX௧ Operational expenditure at time 𝒕 € 

RepEX௞,௧ 
Replacement expenditure for component 𝑘 at 
time 𝑡 

€ 

RecVal௞,௧ Recovery value of component 𝑘 at time 𝑡 € 

𝐷௧ Discount factor at time 𝑡 - 

𝑖 Real discount rate - or % 

𝑖ᇱ Nominal discount rate - or % 

𝑓 Inflation rate - or % 

CRF Capital Recovery Factor - 

𝑅௩ Recovery value of component at project end € 

𝐶Rep  Replacement cost of a component € 
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𝑇rem  Remaining life of a component at project end years 

𝑇com  Expected lifetime of the component years 

𝐸load  Total energy demand/load served kWh 

𝑃௉௏ି output [𝑡] PV array output power at time 𝑡 kW 

𝑓௉௏ PV derating factor - 

𝐺module [𝑡] Irradiance on tilted PV module at time 𝑡 
kW

mଶ
 

𝐺்,ௌ்஼ Standard test condition irradiance 
kW

mଶ
 

𝐾௣ Temperature coefficient of power % ∘C 

𝑇௖[𝑡] PV cell temperature at time 𝑡  ∘C 

𝑇ௌ Standard cell temperature ( 25∘C )  ∘C 

𝛿 Solar declination angle degrees 

𝑑 Day of the year (1-365) - 

𝑇ambient [𝑡] Ambient temperature at time 𝑡  ∘C 

𝑇௖,ேை஼் Nominal Operating Cell Temperature  ∘C 

𝑇௔,ேை஼் Ambient temp. under NOCT conditions  ∘C 

𝐺୒୓େ୘ Irradiance under NOCT conditions 
kW

mଶ
 

𝜂mp,STC  PV efficiency at standard test conditions - 

𝛼௉ Temperature coefficient of power %

∘

C 

𝜏𝛼 Optical factor (transmissivity × absorptivity) - 

T Set of time steps in the optimisation - 

𝜋buy [𝑡] Grid electricity buying price at time 𝑡 €/kWh 

𝜋sell [𝑡] Grid electricity selling price at time 𝑡 €/kWh 

𝑃grid,buy [𝑡] Power bought from grid at time 𝑡 kWh 

𝑃grid,sell [௧] Power sold to grid at time 𝑡 kWh 

penalty  ummet  Penalty cost per unit unmet energy €/kWh 

penalty  excess  Penalty cost per unit excess energy €/kWh 

𝐸wmmet [𝑡] Unmet energy demand at time 𝑡 kWh 

𝐸excess [𝑡] Excess energy at time 𝑡 kWh 

𝑃battery,charge [𝑡] Battery charging power at time 𝑡 kW 
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𝑃battery , discharge [𝑡] Battery discharging power at time 𝑡 kW 

𝜂௕ି Battery charging efficiency - 

𝜂௕ + Battery discharging efficiency - 

𝐵௠ Battery module capacity kWh 

SoC[𝑡] Battery state of charge at time 𝒕 % 

SoCmin  Minimum state of charge % 

SoCmax  Maximum state of charge % 

LoH[𝑡] Hydrogen level in tank at time 𝑡 % or kg 

LoHmin  Minimum allowed hydrogen tank level % 

LoHmax  Maximum allowed hydrogen tank level % 

𝜂el-  Electrolyser efficiency - or % 

𝜂௙௖ା Fuel cell efficiency - or % 

𝐻LHV  Lower Heating Value of hydrogen kWh/kg 

𝑥grid [𝑡] Binary gid direction (1 = buy, 0 = sell) Binary 

𝑥battery [𝑡] Binary battery direction (0 = charge, 1 = 
discharge) 

Binary 

𝑥hydrogen [𝑡] Binary control for Hଶ system operation Binary 

𝑥ren-gen [𝑡] Binary indicating the remaining DC renewable 
generation 

Binary 

𝑥hydrogen [𝑡] Binary control for Hଶ system operation Binary 

𝑥ren-gen [𝑡] Binary indicating the remaining DC renewable 
generation 

Binary 

M 
Large number used in linearisation (Big-M 
method) 

- 

𝜖 Small positive value used in constraints - 

𝐹஼௉ Fixed contracted power charge € 

𝑅௧,௣ Contracted rate for power at time 𝑡, period 𝑝 €/kW/day 

𝐷month  Number of days in billing month days 

𝐸௖௖ Electricity consumption charge € 

𝐹ா௉ Peak power penalty charge € 

𝑃ௗ
௝ Demand peak in billing interval 𝒋 kW 

𝑆஻஼ 
Selling back charge (revenue from selling 
electricity) 

€ 



10 
 

Penalty  excess  Penalty for total excess energy (if > 100 kWh) € 

Penalty  unmet  Penalty for total unmet energy (if > 100 kWh) € 

𝑃excess  Large penalty value for excess energy € 

𝑃ummet  Large penalty value for unmet energy € 

Fitness Value( 𝑝, 𝑔 
) 

Final fitness function (NPC + penalties) € 

𝑤 Index of the current rolling window - 

ℎ Starting hour of the current window in the global 
8,760-hour timeline 

hours 

T Local hourly set in a window (typically { 
0,1, … ,23} ) 

hours 

𝑃flexible [𝑡] Flexible (shiftable) load power at time 𝑡 kW 

𝑃flexible,rated  Rated power of the flexible load kW 

𝑥flexible,on 
 off 

[𝑡] Binary variable: 1 if flexible load is ON at time 𝑡 Binary (0 or 1) 

𝐻flexible,daily  Required total operation time of flexible load per 
day 

hours/day 

𝑇ௗ Set of global hours that belong to day 𝑑 hours 

𝜙ௗ
(௪ିଵ) Number of flexible-load hours already used for 

day 𝑑 in previous window 
hours 

SoC௕[𝑡] Battery state of charge in MPC formulation at 
time 𝑡 

% 

SoCinit 
(௪) Initial battery SoC passed into window 𝑤 % 

LoH[𝑡] Hydrogen level in tank in MPC formulation at 
time 𝑡 

% or kg 

LoHinit 
(௪) Initial hydrogen level passed into window 𝑤 % or kg 

ESOI௘ Energy Stored on Invested for electricity-only 
storage 

- 
(dimensionless) 

𝐸out , st  Total lifetime energy dispatched from storage MJ 

𝐸emb , st  Embodied energy used in manufacturing the 
storage system 

MJ 

EROIgen  Energy Return on Investment of the generation 
subsystem 

- 

𝐸emb,gen  Embodied energy required for constructing the 
generation subsystem 

MJ 

𝜑pv_load  Fraction of generation directly consumed by the 
local load 

- 
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𝜑bat  Fraction of generation routed through the battery 
system 

- 

𝜑ୌమ
 Fraction of generation routed through the 

hydrogen system 
- 

𝜑pv_grid  Fraction of generation exported to the grid - 

𝜑curt  Fraction of generation curtailed (unused or 
dumped) 

- 

𝐸disp,total  Total energy dispatched to end uses (load + 
grid) accounting for efficiency losses 

MJ 

ESOI௜ ESOI value for storage technology 𝑖 (e.g., 
battery, hydrogen) 

- 

𝜂௜ Round-trip efficiency of storage technology 𝑖 - 

𝐸emb ,௜ Embodied energy associated with storage 
technology 𝑖 

MJ 

𝐸emb,total  Total embodied energy (generation + all 
storages) 

MJ 

EROI  community  Novel extended EROI metric for hybrid energy 
community system 

- 

𝜀gen  Energy intensity of generation (MJ embodied per 
MJ generated), equals 

ଵ

 EROI gen 
 

MJ/MJ 

𝜀st  Energy intensity of storage (MJ embodied per 

MJ delivered), equals 
ଵ

୉ୗ୓୍೐
 

MJ/MJ 

𝜑 Fraction of generation 𝐸gen  routed through the 
storage system 

- 

EROIgrid  Energy Return on Investment of the combined 
generation-plus-storage grid system 

- 

𝐸disp,gen  Dispatched energy directly from generation 
(bypassing storage) 

MJ 

𝐸disp,st  Dispatched energy from storage (after round-trip 
losses) 

MJ 

𝜂st  Round-trip efficiency of the storage system - 
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1 Introduction  

1.1 Motivation  

Global energy demand is projected to rise in the coming years, driven by factors such as 

urbanisation, increased access to electricity, and population growth. The 2023 COP28 summit 

marked a pivotal moment in climate policy, with commitments to triple renewable energy 

capacity by 2030 and accelerate the transition away from fossil fuels.  Although the summit 

marked the "beginning of the end of the fossil fuel era," it also confirmed that the earth is not 

on track to keep global warming to 1.5 ℃ [1]. The IPCC projects two scenarios where 

appropriate climate action will reduce emissions by 2050. Figure 1-1 displays the historical 

carbon dioxide emissions and the projected two scenarios' ranges [2], [3], [4]. Researchers 

quantified energy system changes between the different IPCC scenarios and explored 

different metrics to identify whether global efforts were on track [5]. They concluded that the 

world must likely deepen the decarbonisation of energy systems to limit temperature change 

below 2℃.  

 

Figure 1-1: Most recent carbon emissions world total (2024) with the 2 and 1.5 degrees IPCC scenarios [2], [3], [4] 
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The scientific community has emphasised the urgent need for accelerated mitigation efforts to 

prevent severe climate impacts, driven by rising atmospheric concentrations of key 

greenhouse gases such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), 

which are the principal contributors to global warming. Figure 1-2 presents the past global 

energy consumption by type of fuel in EJ, as well as the carbon dioxide emissions in MTCO2 

[6]. Over the past thirty years, global energy demand has increased by 76%, accompanied by 

a 64% rise in greenhouse gas emissions. In 2020, the COVID-19 pandemic led to a temporary 

decline, with energy consumption falling by 3.5% and emissions decreasing by 5.1%, the most 

significant drop since 1965. However, by 2021 and 2022, emissions had rebounded sharply, 

reaching their highest recorded levels, thereby underscoring the urgency for accelerated 

climate action. 

 

Driven by population increase and economic development, worldwide energy consumption is 

rising; hence, the construction industry ranks as one of the primary causes of greenhouse 

emissions. About 26% of world emissions and 30% of world energy consumption come from 

building sector activities [7].  In the EU, buildings are responsible for approximately 40% of 

energy consumption and 36% of total greenhouse gas emissions, making the sector a key 

focus of the EU’s strategy to achieve carbon neutrality by 2050, as outlined in the European 

Green Deal and the 2024 Energy Performance of Buildings Directive [8], [9].  

The electricity consumption in the EU remains high, notably in the building sector, despite the 

growing commitment to renewable energy. With renewable energy accounting for 38.2% of 

the EU's 2,824 TWh gross electricity generation in 2022, nuclear power and gas-fired plants 

were second followed by [10]. The consumption of this electricity is distributed among 

Figure 1-2: The historical energy consumption by source in EJ and GTCO2 emissions [6]. 
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households, services, and industry, with households alone accounting for approximately 25% 

of the total consumption [11].  In residential buildings, electricity demand is primarily driven by 

lighting and electrical appliances, which account for approximately 15% and 85% of total 

residential electricity use, respectively [12]. However, in colder regions such as the UK, space 

and water heating, often powered by gas or electricity, represent a substantial portion of overall 

residential energy use [13]. This underscores the importance of adopting energy-efficient 

appliances, improved heating systems such as heat pumps, and advanced control 

technologies to manage and optimise residential energy consumption.  

Many EU nations still struggle to reduce their dependency on fossil fuels for power generation, 

despite attempts to decarbonise the energy supply [14]. The high energy consumption 

patterns in the EU building sector highlight the urgent need for the integration of smart energy 

systems into residential and commercial infrastructure. This need becomes even more critical 

in geographically isolated regions, such as island communities, where limited energy 

infrastructure and reliance on imported fossil fuels heighten their energy insecurity and make 

them especially vulnerable to the impacts of global warming [15], [16]. Rising sea levels, 

catastrophic weather events, and increasing energy prices resulting from their isolation make 

islands front lines of climate change [17]. Their particular weaknesses draw attention to the 

need for transformative energy solutions and resilience-building initiatives.  

About 4% of the total EU population resides on these islands, which house nearly 16 million 

people living on almost 2,200 inhabited islands spread over Europe alone [18]. Due in great 

part to the logistical challenges of fuel delivery and maintenance of the energy infrastructure, 

energy production on these islands can be up to ten times pricier than on the mainland [18]. 

This dependence on imported fuels also makes island people more sensitive to price 

fluctuations and supply disruptions [19].  

Seasonal population fluctuations, mostly related to tourism, cause considerable variations in 

energy demand patterns on many islands depending on non-islanders’ consumption practices 

[20]. These variations, especially in cooling, lighting, and other basic services, place additional 

pressure on already fragile infrastructure during high travel seasons. Infrastructure stress on 

islands is driven not only by tourism-related demand surges but also by persistent structural 

challenges, such as the integration of intermittent renewable sources, the maintenance of 

stable grid operations, and the logistical difficulties inherent to remote locations [21], [22]. 

Although islands play a strategic role in the global transition to clean energy, they often receive 

inadequate investment in essential energy infrastructure. Efforts to scale up smart 

technologies and energy storage systems are frequently constrained by outdated grid 

networks, a shortage of technical expertise, and limited access to financial resources [23]. 
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Tackling these challenges requires comprehensive energy planning that integrates advanced 

system management, flexible demand-side responses, and robust storage capacity to ensure 

long-term efficiency, reliability, and sustainability [24]. 

1.2 The Role of Regenerative Hydrogen Storage in Community Energy 

System Decarbonisation 

Hydrogen is a versatile energy carrier that may be converted into electricity, utilised as a 

transportation fuel, heated and cooled, and employed in various other industrial uses. 

Hydrogen is expected to play a key role in the future design of energy systems as part of 

efforts to achieve green energy independence and enhance energy security [25]. Hydrogen 

energy is increasingly being explored as a potential storable fuel and energy carrier, 

particularly for long-duration or seasonal energy storage applications. Batteries offer high 

efficiency and fast response and are well-suited for short-term grid stabilisation. However, 

hydrogen storage may be more viable for extended durations and applications requiring very 

low self-discharge or versatility across sectors [26]. Unlike batteries, which are limited by 

shorter discharge durations, hydrogen can be scaled to meet multi-day energy demands, 

making it especially valuable for deep decarbonisation of power systems with high renewable 

penetration [27]. Hydrogen production is expected to double in the next eight years to fulfil the 

IEA's Net-Zero scenario [28]. Figure 1-3 depicts the predicted global demand for hydrogen by 

production technology between 2020 and 2030. Electrolysis from renewable sources is 

expected to provide the most hydrogen (80 Mt).  
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Figure 1-3: IEA Global hydrogen demand by production technology in the Net Zero Scenario, 2020-2030 [27]. 
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Colours are used to refer to different ways of producing hydrogen to couple the production 

technology with the carbon footprint of hydrogen production [29]. Figure 1-4 depicts hydrogen 

production, use and storage pathways. Black and brown-coloured hydrogen is produced with 

high carbon emissions from coal and lignite through partial oxidation technologies such as 

gasification. Grey and blue-tagged hydrogen are produced through steam methane reforming 

at pressure up to 25 bar and a high temperature ranging from 700-1000 °C [30]. The difference 

between Grey and Blue is that the latest is produced from fossil fuels with less CO2 emission 

using carbon capture utilisation and storage. The carbon emissions of steam-reforming 

methane sourced from natural gas are less than coal and lignite. The least impact hydrogen 

is produced from renewable electricity. Electrolysis uses electricity and water to produce 

hydrogen. It is important to mention that the environmental impact of these hydrogen 

production ways can vary depending on the energy source, country, and type of carbon 

capture technology deployed. The largest consumption segment of hydrogen is expected to 

be mobility, industrial uses for heating and feedstock, accounting for around 90 % of the 

demand by 2050 [31]. Increasing the share of renewable energy generation is expected to 

play a central role in future decarbonisation efforts. However, the intermittent nature of sources 

like solar and wind power necessitates both short- and long-duration energy balancing 

solutions within the system. Hydrogen plays a vital role in decarbonising the electrical demand 

since it can offer long-duration and seasonal storage and peak shaving, which will be essential 

for grid stabilisation.  

Figure 1-4: Hydrogen Production, consumption and transport pathways 
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Energy storage systems can provide different services to local stabilisation and management 

of grid use depending on the application timescale. For instance, frequency and voltage 

control require rapid response within milliseconds and up to seconds. By contrast, applications 

such as peak shaving and seasonal storage operate on much longer timescales, ranging from 

several hours to multiple months [32]. Hydrogen and battery storage systems are particularly 

suited for grid stabilisation and short- to long-term storage applications [33], [34]. It has been 

shown that if combined, they will provide higher reliability and lower cost than both 

technologies standing alone for specific applications [35]. Batteries are preferred for short-

term storage, while hydrogen storage systems are better for seasonal ones, as shown in 

Figure 1-5 [36]. 

Hydrogen as energy carrier in regenerative hydrogen fuel cell systems, can be an answer to 

smart grids' long-term storage dilemma since it can complement batteries. A typical 

regenerative hydrogen integrated for grid support consists of an electrolyser, hydrogen 

storage and a fuel cell. Electrolysis transforms surplus electricity to hydrogen, which is then 

stored and used in fuel cells to produce power, therefore balancing supply and demand and 

helping system stability [37]. Including hydrogen and battery storage into energy systems, 

however, adds considerable complexity, especially in terms of system configuration and 

operational control. Ensuring that these hybrid systems function reliably, efficiently, and cost-

effectively depends on their optimised sizing and operational strategies. A wide range of 

methods, from traditional computational approaches to advanced metaheuristic algorithms, 

have been explored to address these optimisation challenges. Chapter 2 of this thesis reviews 

Figure 1-5: Comparison of ESS in terms of storage capacity, discharge duration, and services provided [34]. 
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these methods in detail, summarises their limitations, and highlights the need for a more 

integrated, hybrid optimisation approach, justifying the novel framework introduced in this 

chapter.  Before advancing to the optimisation methodology, it is important to first delineate 

the target community energy system configuration, the role of aggregators, and the functional 

scope of energy actors involved.  

In this study, a community energy system refers to a decentralised, geographically defined 

energy network where local actors collectively generate, consume, and manage energy, often 

using distributed renewable sources, with shared economic and social benefits [38]. These 

systems may be governed by community members, local authorities, or cooperative entities, 

and are designed to support decarbonisation, enhance local resilience, and advance energy 

justice [39], [40]. The focused area in this research targets a community-sized deployment 

(e.g. a small island or town) comprising distributed PV, hydrogen, and battery storage under 

aggregated energy management, aligning with academic definitions and recent European 

implementations [41]. A virtual trading layer is assumed to allocate shared energy among 

members, prioritising smaller loads, a flexible model adaptable to RED(III) REC policies. While 

this logic is not location-specific, it provides a flexible baseline that can be adapted to different 

REC governance policies [42].  

Establishing these structural and governance parameters is fundamental to ensuring that the 

subsequent modelling and optimisation strategies reflect both operational feasibility and 

policy-aligned implementation. Numerous studies have investigated the optimisation of hybrid 

renewable energy systems that combine hydrogen and battery storage, particularly through 

classical methods such as MILP for component sizing and cost evaluation in off-grid or partially 

connected environments [43], [44]. Metaheuristic and hybrid optimisation approaches, such 

as PSO, GA, and their variants, have also been widely applied to tackle design complexity 

under uncertainty [45], [46], [47]. While these methods represent notable advancements, 

much of the existing research remains grounded in idealised planning scenarios, frequently 

neglecting the practical challenges of system integration and day-to-day operations and 

operational behaviour. This highlights the ongoing need for more unified frameworks, ones 

that can bridge between architecture and operation, especially under the nuanced constraints 

typical of distributed, community-scale energy systems. 

Optimising the design and operation of hybrid energy storage systems that incorporate both 

hydrogen and battery technologies requires innovative optimisation strategies, ones that 

thoughtfully combine the strengths of classical and metaheuristic approaches. Enhancing 

these methods can significantly support the effective integration of hybrid storage into smart 

grids, contributing to improved system reliability, cost-effectiveness, and long-term 
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sustainability. Nevertheless, many existing approaches struggle to reconcile the complexity of 

real-world operations with economic and environmental constraints. With a particular focus on 

energy communities and grid-connected applications, this study introduces a new optimisation 

framework aimed at advancing the integration of PV–battery–hydrogen systems under 

practical, scalable conditions.  

1.3 Research Aim and Objectives. 

Integrating hybrid energy storage systems, such as photovoltaic (PV), battery, and hydrogen 

fuel cell configurations, into grid-connected energy systems is becoming more and more 

important as the global effort for decarbonisation accelerates. Recent developments are 

making these hybrid systems more appealing for energy communities trying to combine 

renewable energy integration with grid stability, even if cost and technical constraints prevent 

their broad deployment now. Optimising their design and operation is crucial to guarantee that 

these systems are both sustainable and reasonably affordable.  

The aim of this research is to develop a novel optimisation approach for energy community to 

find the optimal design parameters for the hybrid PV- regenerative fuel cell-battery storage 

based on grid driven unit commitment energy management. 

Objectives:  

O1. To Develop Novel Energy Optimisation Technique:   

The first objective is to develop a layered optimisation approach combining yearly-horizon 

mixed-integer linear programming (MILP) with genetic algorithms (GA) for capacity sizing. 

Focusing on PV-battery-hydrogen storage, this hybrid system will combine grid-driven unit 

commitment. This method co-optimises inverter rating, contracted grid power and time-of-use 

tariffs while meeting hourly energy balance constraints. Validation versus HOMER Pro 

confirms techno-economic gains. 

O2. To incorporate MPC and Flexible Load Optimisation:  

Building on the first optimisation, the second objective is to introduce novel flexible loads 

capabilities by including a model predictive control (MPC) layer. This layer will employ MILP 

to improve operational optimisation for time-of- usage energy management. By integrating a 

short-horizon MPC layer with flexible load shifting and peak shaving, this objective aims to 

improve short-term reliability and minimise curtailment. 
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O3. Develop a New Environmental Performance Metric 

Building on objective 1 and 2, this objective focuses on developing novel dynamic, 

operationally coupled Energy Return on Investment and Energy Stored on Invested 

(EROI/ESOI) index that evaluates energy pay-back under the GA–MILP–MPC schedule, 

capturing AC/DC losses, curtailment and multi-path storage flows. This novel index will 

combine environmental and financial performance indicators to provide holistic measure for 

evaluating hybrid PV-battery-hydrogen systems. It will provide a balanced view reflecting 

environmental sustainability as well as financial viability as interactive visualisation for energy 

communities. 

1.4 Principal Research Contributions 

1. A GA–MILP sizing framework that jointly optimises PV, battery, electrolyser, fuel-cell 

capacities in conjunction with inverter rating and contracted grid power against realistic 

time-of-use tariffs. 

2. A two-stage unit-commitment and MPC dispatch architecture that incorporates flexible-

load shifting and AC/DC hybrid balancing, delivering peak-demand shaving and 

seasonal-storage synergy. 

3. A dynamic life-cycle energy metric (EROI/ESOI) explicitly linked to the rolling dispatch, 

enabling planners to weigh energy sustainability against cost in community-scale 

hybrid renewable energy systems (HRES). 

4. Demonstration on the Formentera Island energy community, evidencing cost, and 

energy-return improvements relative to conventional rule-based or single-layer 

methods. 

1.5 Thesis Structure 

This thesis is organised into seven main chapters, each building upon the previous to develop 

and evaluate a comprehensive optimisation framework for hybrid PV–battery–hydrogen 

systems in community-based applications. The structure is designed to guide the reader from 

conceptual foundations through methodological development, system implementation, and 

comparative performance analysis as shown in Figure 1-6: 
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Figure 1-6: Flow of information and chapter 
dependencies throughout the thesis 
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 Chapter 1: Introduction outlines the motivation for the research, defines the central 

aim and objectives, and introduces the core contributions of the study within the 

broader context of renewable energy and decarbonisation strategies. 

 Chapter 2: Literature Review critically evaluates existing work across hybrid energy 

systems, optimisation techniques, and life-cycle energy assessment. It identifies 

specific methodological limitations in current approaches, especially those related to 

inverter treatment, hybrid dispatch, and sustainability metrics. 

 Chapter 3: System Sizing with Hourly Dispatch Optimisation presents the initial 

GA–MILP framework used to co-optimise component capacities and dispatch logic 

under grid tariff constraints. Comparative simulations and baseline results are 

discussed. 

 Chapter 4: Improving Accuracy through MPC and Flexible Load Operation 

introduces the rolling-horizon Model Predictive Control (MPC) layer, incorporating 

flexible loads to refine operational realism. The chapter contrasts sizing outcomes and 

dispatch performance with static control methods. 

 Chapter 5: Life-Cycle Energy Cost Analysis develops a novel EROI-based metric 

for hybrid systems, capturing multi-path energy flow and embodied energy 

contributions. The new index is applied to conduct parametric sensitivity and capacity 

scaling analyses, enabling deeper understanding of design and performance trade-

offs. 

 Chapter 6: Integrated Analysis and Literature Comparison synthesises the results 

from Chapters 3–5, analysing how system sizing, control, and energy return interact. 

The proposed method is benchmarked against key peer-reviewed studies and tested 

under scenario uncertainty to assess its robustness and planning relevance. 

 Chapter 7: Conclusion summarises the research findings, highlights the original 

contributions, and outlines limitations and potential directions for future work. 

The thesis is supported by detailed appendices, including implementation notes, algorithm 

descriptions, extended derivations, and additional figures that complement the main 

discussion. 
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2 Literature Review  

2.1 Introduction  

2.1.1 Review Scope and Research Relevance 

The deployment of HRES, typically integrating renewable sources such as PV panels with 

battery and hydrogen-based energy storage system, has been introduced to address the 

challenges faces by climate change and the increased reliance on fossil fuels [48]. The 

hybridisation between two storage technologies is often used to balance between cost and 

environmental burden when compared individually [49]. These systems offer significant 

potential for enhancing grid reliability, reducing intermittent renewable generation, particularly 

for isolated communities and island-based microgrids that face unique operational and 

technical constraints [50], [51]. 

Despite the various advantages of HRES, their effective implementation remains technically 

challenging, particularly in the context of accurately sizing system components and ensuring 

optimal operational management and realistic integration [52]. Conventional sizing 

methodologies often overlook critical infrastructure limitations in accurately modelling the 

contracted grid-power constraints or the power type (AC/DC) interactions and constraints in 

the planning and operational methods [53]. Similarly, attempts at reducing strain on the grid 

by introducing demand side management such as load shifting are not explored enough in a 

planning context since the existing operational control strategies frequently rely on rule-based, 

static dispatching strategies that limit the adoptability of flexible loads, thereby reducing their 

practical relevance [47], [54].  

Parallel to these operational and sizing challenges, the assessment of HRES is often 

conducted using traditional targeted metrics such as life cycle cost, environmental indicators, 

or technical performance measures. Energy life cycle indices are metrics used to evaluate the 

efficiency and sustainability of energy systems. The Energy Return on Investment (EROI) and 

Energy Stored on Invested (ESOI) are established metrics on large grid scale but remain 

limited when applied to HRES with community-based applications that involve multiple 

interacting storage pathways with diverse operational scenarios [55]. They typically do not fully 

capture the complexity and interactive nature between the hybrid storage systems, 

necessitating the development of new methodologies that better evolve with the current hybrid 

storage community-based taxonomy.  

Therefore, the main motivation of this literature review chapter is to critically analyse and study 

the current body of knowledge on the sizing and operational management of HRES, together 
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with evaluation techniques that measure their life-cycle energy performance. Thus, the scope 

of the literature review specifically covers two interconnected areas: the sizing and 

optimisation approaches for HRES with enhanced operational dispatch strategies focused on 

multi-nested methods, and the study of EROI and ESOI derivation and their applications in 

integrated hybrid configurations that combine multiple storage pathways and dispatch 

mechanisms. 

2.1.2 Structure of the Chapter 

The literature review begins with the fundamental concepts of HRES and continues with 

optimisation methods, operational planning, and energy lifecycle cost metrics. Section 2.2 

outlines the major features of hybrid systems, the challenges of including them into the grid, 

and the specific issues experienced by isolated or island communities, including intermittency, 

seasonal variation, and cost concerns. Section 2.3 advances the understanding of the 

optimisation methods by discussing established techniques such as Genetic Algorithms and 

Linear Programming, and more sophisticated nested approaches. Recent developments in 

adaptable load management are also reviewed, underscoring the benefits how flexible 

operations can improve system reliability and reduce cost.  

Section 2.4 focuses on energy life cycle metrics that are used to assess renewable system, 

with closer look at EROI and ESOI and integrated methods. It also considers the limitations of 

these metrics when applied to hybrid, community-based applications, and reviews emerging 

approaches designed to address the complexity of multi-path energy flows. 

Finally, Section 2.5 synthesises key gaps in the literature, specifically in system sizing, 

operational control, and sustainability assessment. This structured review thus provides a 

clear foundation for the technical methodologies developed in chapters 3, 4, and 5. By means 

of this methodical process, the literature review offers a strong basis on which the new 

techniques and studies of this dissertation are constructed. 
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2.2 Hybrid Renewable Energy Storage Systems: Concepts and 

Challenges  

2.2.1 Hybrid Systems and Grid Integration 

HRES are systems that combine various storage technologies, like batteries and hydrogen 

systems, with renewable energy sources, like wind and photovoltaics to reduce the effects of 

intermittency and variability inherent in renewable generation. Various microgrid topologies 

are used to structure hybrid energy systems depending on the number and type of power 

buses involved, as outlined in [56], [57]. Some configurations assign a dedicated AC/DC 

converter to each major component. While this modular approach increases flexibility and 

control granularity, it also adds to system cost and coordination complexity. Figure 2-1 

illustrates three representative architectures: Figure 2-1A shows a DC microgrid, where all 

components, including PV panels, battery storage, fuel cells, and loads, interact via a common 

DC bus with appropriate DC-DC or DC-AC converters. In contrast, Figure 2-1B illustrates an 

AC microgrid, where a single AC bus connects all components, and converters are used to 

manage the interface between DC sources and AC loads. Finally, Figure 2-1C shows a hybrid 

setup that includes both AC and DC buses. This hybrid bus configuration helps reduce 

Figure 2-1: Diagram of a typical HRES adapted from [57].  
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conversion losses and boosts reliability, as emphasised in [58]. While it is suitable for both 

residential and industrial uses, it also demands careful coordination and precise inverter 

control, as discussed in [54]. 

Hydrogen storage can act as a complementary long-duration energy buffer in hybrid 

renewable energy systems, helping to mitigate multi-day to seasonal mismatches between 

renewable generation and demand. In the so-called “power-to-gas-to-power” loop, surplus PV 

or wind electricity is channelled through a DC-coupled electrolyser, producing hydrogen that 

is compressed and stored in tanks for later use [59]. During extended low-irradiance or low-

wind periods, a fuel cell stack reconverts the hydrogen into electricity, injecting it into the AC 

side through the same bidirectional inverter used by the battery bank [60]. Integrating 

hydrogen storage becomes especially effective in systems with high seasonal variability and 

where renewables supply over 80% of total electricity demand, complementing batteries by 

addressing longer-duration storage needs [61]. A study modelled an islanded Canadian 

microgrid combining PV, wind, batteries, and a 700 kg hydrogen storage tank. The hydrogen 

tank maintained levels above 200 kg for over 5,000 hours each year [62]. These results 

suggests that hydrogen can effectively support extended energy storage needs, working well 

alongside traditional batteries, especially in hybrid renewable setups operating in isolated or 

weak-grid environments.  

Reviewing the wider body of research, the main obstacles to deploying HRES include 

intermittency, high capital expenditure, and complex integration [63]. The critical role of 

sophisticated modelling tools and adaptive operational strategies in sustaining energy 

reliability and maintaining grid balance, given the unpredictability of renewable resources, has 

been highlighted in the literature [60]. Reliability remains a major technical issue for HRES, as 

it requires sophisticated forecasting methods, improved storage solutions, and enhanced 

grid-management strategies, as noted in [64], [65]. 

A pivotal aspect in the deployment of hybrid renewable energy systems is the 

techno-economic optimisation of inverter stages. Acting as the interface between the DC 

produced by photovoltaic arrays and battery banks and the AC requirements of utility networks 

and building loads, inverters have a decisive influence on overall efficiency and power-quality 

compliance [66], [67]. For instance, A study of an off-grid PV/Wind/Tidal/Fuel Cell hybrid 

system tailored to the Urmia region found that a 425 kWp PV array paired with a 54.98 kW 

inverter yielded the lowest net present cost under reliability constraints [68]. However, the 

inverter was treated as an independent decision variable, unconstrained by PV size and 

optimised only to meet peak load, resulting in an extreme DC/AC ratio (7.7:1). This raises 

concerns about implicit curtailment, as excess PV beyond the electrolyser’s capacity was not 
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penalised or quantified in the model. Inverter sizing in HRES configurations must be precise. 

Oversizing adds unnecessary capital cost, while under sizing restricts renewable utilisation 

and reduces overall project revenues through clipping and curtailment. Apart from internal 

component sizing, HRES's interaction with the utility grid introduces another important degree 

of complexity.  

Most studies on grid-connected microgrids have treated the power grid as an infinite power 

supply or power sink, guaranteeing the energy balance inside the microgrid when energy 

storage systems are either full or empty.  A grid-linked PV/fuel-cell/hydrogen storage system 

sized using HOMER Pro for a university lab demonstrated that a 54.7 kW PV array, 7 kW fuel 

cell, 3 kW electrolyser, and 8 kg H₂ tank could supply 96.7% of the laboratory’s annual 

electrical demand with renewable energy at a cost of just 0.0418 $/kWh [69]. In the simulation, 

the utility grid was treated as an infinite sink for excess generation and an unlimited import 

source, as the sell-back price was set to zero. However, distribution-network constraints such 

as maximum contracted power or feeder thermal limits frequently prevent that idealised 

flexibility. When renewable output exceeds these limits, utilities may curtail generation or 

impose demand penalties to maintain balance. Hence a realistic techno-economic 

optimisation must include the full tariff structure, particularly the fixed charge for contracted 

power and the variable penalties for demand peak overruns, so that the selected operating 

strategy respects those network constraints throughout the project life cycle [67]. In the 

Spanish industrial sector, even a 10–20% reduction in contracted power can significantly 

increase penalties under coincident tariff systems. In one study [70], reducing the contracted 

capacity from 260 kW to 220 kW in a meat-processing plant led to a €564 increase in annual 

variable charges, from €1,263 to €1,827, due to more frequent peak overruns. This largely 

offset the expected savings and revealed a U-shaped cost relationship between contracted 

power and total demand charges. 

2.2.2 Specific Challenges for Island Energy Communities 

There are approximately 11,000 permanently inhabited islands globally with 730 million people 

across various oceans, lakes and seas as of 2020  [71]. Europe has 2200 inhabited islands 

with a total of approximately 16 million residents, which corresponds to nearly 4% of the total 

EU population [18]. The energy generation on these islands has difficulties and has high costs, 

reaching up to ten times the expenses incurred on the mainland [72]. Furthermore, relying on 

non-renewable energy sources produces enormous greenhouse gas emissions and other 

pollutants, which have a detrimental impact on the ecology and human health.  



39 
 

Island communities have recently demonstrated growing interest in solar and wind energy as 

part of a transition toward more sustainable power sources. However, high-renewable 

penetration systems often experience pronounced seasonal mismatches between energy 

supply and demand, necessitating long-duration energy storage solutions. Hybrid systems 

that combine hydrogen fuel cells with battery storage are especially appealing as they provide 

short term and seasonal storage [73]. The prompt adoption of these renewable solutions 

requires a focus on the optimisation for the community renewable generation and 

management at the planning phase to ensure technical performance, cost-effectiveness, and 

environmental sustainability. 

Many island power systems operate on diesel, which produces very high LCOE by generating 

high share of their power. For example, Galápagos' diesel plants produced 91.5% of its power 

in 2021 at up to 500 $/MWh, about an order of magnitude higher than mainland Ecuador’s 

average wholesale cost. Despite subsidised retail prices, Fernando de Noronha imports more 

than 6.6 million litres of diesel annually, which raises wholesale generation costs to 310 $/MWh 

[74]. Due to severe supply fragility, Príncipe Island experiences scheduled blackouts of up to 

12 hours per day when diesel supplies run low [74]. A 25-year techno-economic assessment 

of a proposed zero-emission community microgrid in Arandun, Nigeria shows how radically 

costs and emissions can fall when diesel is displaced [75]. The renewable configuration 

(photovoltaic, concentrated solar power, micro-hydro and battery energy storage) lowered the 

net present cost from $408 million (diesel) to $55.7 million and cut the LCOE from 1.01 $/kWh 

to 0.26 $/kWh. Importantly, it eliminated all operational CO₂ emissions, replacing an annual 

output of approximately 7.45 kilotons. 

In response to these high costs and reliability challenges, islands have also emerged as 

strategic platforms for testing next-generation hybrid renewable systems. Islands can serve 

as proving grounds for cutting-edge operational models by integrating deep reinforcement 

learning for hybrid hydrogen-battery energy management, thereby validating new control 

methods under real-world microgrid conditions [76]. Furthermore, European projects such as 

REACT1, IANOS2, and LOCALRES3 illustrate the innovative role of islands in piloting 

community-integrated renewables and storage, yet emphasize the continued need for custom-

tailored energy planning that considers local load profiles and tariff structures [23]. While 

academic and policy interest in island energy systems is growing, recent literature reviews 

suggest that only a limited number of island-specific energy models have been developed. 

 
1 https://react2020.eu/  
2 https://ianos.eu/   
3 https://localres.eu/  
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Many existing studies tend to focus on technical aspects and may not fully capture real-world 

challenges such as political instability, constrained financing, and the complexities of pursuing 

energy autonomy [77].These findings highlight islands not only as urgent cases of energy 

transition but also as replicable test beds for the global shift toward decentralised, hybrid 

renewable systems.  

Orkney, a Scottish archipelago with approximately 20,000 residents, exemplifies both the 

promise and complexity of advanced renewable integration in island communities. Since 2013, 

Orkney has consistently met more than 100% of its annual electricity demand through local 

renewable generation [78]. It hosts the highest density of community micro-wind turbines in 

the UK, prompting the launch of Britain’s first distribution-level Active Network Management 

(ANM) system in 2009 [79]. By 2012, the island’s 33 kV distribution feeders were saturated, 

and ANM now curtails nearly 30% of the output from North Isles turbines [79]. To recapture 

lost revenue, Shapinsay’s Development Trust joined the €10.9 million EU-funded BIG-HIT 

project, deploying a 1 MW proton exchange membrane (PEM) electrolyser that converts 

otherwise curtailed wind energy into hydrogen for school heating, local council vehicles, and 

ferry auxiliary loads [80], [81]. However, life cycle costing analyses show that hydrogen 

remains expensive due to high input electricity costs, meaning grid congestion and curtailment 

risks persist even after integrating storage technologies. 

The Isle of Wight, home to around 140,000 people and connected to the UK mainland via 

cable, presents a contrasting case where grid stability constraints still limit renewable 

deployment despite interconnection [82]. Using the REACT-DECARB planning platform, 

researchers assessed two main development scenarios. The first, a fully autonomous design, 

requires 663 MWp of solar PV and 1,731 MWh of batteries, resulting in a LCOE between €0.45 

and €0.58/kWh, roughly ten times current wholesale prices [82]. A more moderate, grid-

connected configuration with 405 MWp of PV, 187 MW of wind, and 400 MWh of battery 

storage offers better economic performance but still struggles to undercut prevailing market 

rates [82]. Nevertheless, multi-criteria decision analysis consistently ranks the autonomy 

pathway highest when metrics such as per-capita energy yield and CO₂ reduction are 

prioritised over cost [83]. This underscores the continuing challenge: storage expansion alone 

cannot make high-renewable systems viable without coordinated demand response and smart 

controls. 

In summary, the development of hybrid renewable storage systems, especially for isolated 

grids, calls for solutions that are efficient, robust, and cost effective. The present study seeks 

to contribute by examining advanced control concepts, refined grid integration methods, and 

financing models tailored to small, resource-constrained communities. Overcoming these 
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hurdles would position hybrid renewables as a cornerstone of sustainable energy supply in 

communities that need it most. Having discussed the foundational components and unique 

challenges of HRES, particularly in island settings, the next section explores the suite of 

optimisation methods used to size and manage these systems effectively. 

2.3 Optimisation Methods for Hybrid System Sizing and Dispatch 

A variety of methods has been advanced for determining the optimal size of HRES, each tuned 

to design goals and levels of model complexity. Table 2-1, compiled from recent surveys, sets 

these approaches side by side [84], [85]. Metaheuristic, especially GA and Particle Swarm 

Optimisation (PSO) are popular for strongly nonlinear problems because their global searches 

are less likely to stall in local optima. Deterministic formulations such as MILP can deliver 

mathematically exact solutions when discrete choices dominate, but they often perform poorly 

in the presence of complex nonlinearities. New hybrid strategies (for instance, GA-PSO 

combinations or mathematical with Metaheuristic) blend the strengths of their originating 

algorithms and often reach high-quality solutions more rapidly, though at the cost of greater 

computational effort. Commercial packages like HOMER Pro remain valuable for early-stage 

feasibility checks, though their built-in solvers allow only limited algorithmic customisation. 

Collectively, these trends point toward the need for integrated optimisation frameworks 

capable of tackling both design-phase sizing and operational management in a unified fashion. 
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Table 2-1: Optimisation Methods for HRES Sizing with Objective Functions adapted from [84], [85]. 

Optimisation 
Method 

Category Use Case Strengths Limitations 

Genetic Algorithm 
(GA) 

Metaheuristic 
Component sizing 
and reliability cost 
trade-offs 

Handles nonlin-
earities, wide 
adoption 

Parameter sensitive, 
may converge prema-
turely 

Particle Swarm 
Optimisation 
(PSO) 

Metaheuristic 
Sizing + dispatch un-
der varying load 

Fast conver-
gence, simple 
coding 

Prone to local optima, 
weak in multi-objective 
scenarios 

Simulated Anneal-
ing (SA) 

Heuristic 
Optimal cost under 
limited design space 

Global search 
potential 

Slower, high tuning effort 

Grey Wolf Opti-
mizer (GWO) 

Metaheuristic 
Cost-efficient storage 
integration 

Balanced 
search-exploit 
trade-off 

Limited experimental 
validation 

Multi-objective 
Evolutionary Algo-
rithms (NSGA-II) 

Multi-objective 
Pareto-front design 
(cost vs. emissions) 

Efficient Pareto 
ranking, elite se-
lection 

Complex implementation 

Mixed Integer Lin-
ear Programming 
(MILP) 

Deterministic/ 
Classical 

Dispatch optimisation, 
inverter sizing 

Accurate, con-
straint-friendly 

Struggles with nonlinear-
ities 

Stochastic Pro-
gramming 

Probabilistic 
Uncertainty in 
load/solar generation 

Real-world mod-
elling 

Requires data, hard to 
solve large instances 

Artificial Intelli-
gence (AI) / Ma-
chine Learning 
(ML) 

Soft Compu-
ting 

Forecasts and deci-
sion-making via 
trained models 

Learns complex 
patterns from 
data 

Data-intensive; prone to 
overfitting 

Hybrid Techniques 
(GA-PSO, PSO-
GWO) 

Combined 
Optimized design with 
better convergence 

Synergistic 
strengths 

High computational cost 

Software Tools 
(HOMER, iHOGA) 

Simulation + 
Optimisation 

Rapid system sizing 
with predefined librar-
ies 

User-friendly, 
scenario analy-
sis 

Limited customization, 
black-box nature 

 

2.3.1 Genetic Algorithms (GA) for System Sizing 

HRES that combine both batteries and hydrogen storage is increasingly dimensioned with 

metaheuristic algorithms, especially when the installation remains grid connected. Algorithms 

such as the GA and PSO are well suited to the non-linear, high-dimensional search space that 

arises when multiple storage facilities share power flows. This review examines recent single-

objective studies, each centred on either cost or performance, to highlight the current state of 

the art and the limitations still present in grid-connected battery-hydrogen configurations as 

summarised in Table 2-2.  
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Table 2-2: Summary of recent studies on grid-connected PV–battery–hydrogen systems, highlighting key components (BT: Battery, HR: Hydrogen, GR: Grid, WT: Wind, PV: 
Photovoltaic, INV: Inverter), methodologies, and limitations. 

Ref. Study Strengths 
System 

Results Limitations 
BT HR GR WT PV INV 

[86] 
Zhang et 
al. (2017) 

Early comparative analysis of hy-
drogen vs. battery in a grid-con-
nected PV system; employs rule-
based operation logic with cost sen-
sitivity 

✓ ✓ ✓ × ✓ × 

Useful baseline for demonstrating 
economic role of hydrogen, but 
outdated methodologically for to-
day’s dynamic load management 
needs 

Uses fixed, rule-based operation; 
lacks stochastic or forecast-driven 
control; simple load profile 

[87] 
Singh et al. 
(2020) 

Applies hybrid ABC–PSO to grid-
connected PV–hydrogen–battery 
system; includes grid exchange lim-
its as decision variables 

✓ ✓ ✓ × ✓ × 

Highlights grid-limit integration in 
hybrid optimisation; demonstrates 
feasibility under static tariff as-
sumptions 

Assumes flat tariff; omits inverter dy-
namics and demand flexibility 

[88] 
Le et al. 
(2023) 

Strong focus on seasonal dynam-
ics, storage degradation, and LCOE 
minimization; multi-year load sce-
narios included 

✓ ✓ ✓ × ✓ × 

Excellent techno-economic frame-
work for long-term planning, but 
lacks algorithmic novelty; could 
benefit from hybrid GA–MILP style 
nesting 

Metaheuristic method not detailed; 
more of a parametric approach than 
algorithmic innovation 

[89] 
Hassanza-
dehFard et 
al. (2021) 

Introduces novel waste-reuse as-
pect in cost modelling; uses im-
proved PSO variant; grid participa-
tion is included 

✓ ✓ ✓ ✓ ✓ × 

Pushes boundaries on cost mod-
elling scope (waste reuse), but still 
omits key operational constraints 
for hybrid hydrogen-battery sys-
tems 

Simplified energy flow and control 
strategy; no consideration of AC/DC 
interactions or inverter constraints 

[90] 
Modu et al. 
(2023) 

Applies Levy Flight Algorithm (LFA) 
in real seasonal RES scenarios; in-
cludes stochastic resource profiles 
and grid logic 

✓ ✓ ✓ × ✓ × 

Rule-based operation is only 
slightly optimized via LFA; lacks 
demand-side flexibility or price-re-
sponsive dispatch 

Most recent work in the set — marks a 
step toward adaptive seasonal strate-
gies, but still falls short of full dispatch 
realism (e.g., MPC integration) 
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A recent study examined a grid-connected PV–hydrogen–battery system for a Gothenburg 

apartment complex, using the NSGA-II algorithm to optimize cost versus self-sufficiency ratio 

across four rule-based dispatch scenarios. In their study energy flows were simulated on an 

hourly basis using linear programming, accounting for a 100 kW PV export limit and Nord Pool 

electricity prices (0.83 SEK/kWh retail). The setup achieved uninterrupted power supply (LPSP 

= 0) and also quantified financial gains from peak shaving at a rate of 1500 SEK/kW-year. 

Inverter and grid exchange capacities were treated as fixed inputs during capacity planning 

[86]. Expanding the optimisation criteria, A study examined capacity sizing for a campus-scale 

PV–hydrogen–battery microgrid in India using a hybrid Artificial Bee Colony–Particle Swarm 

Optimisation approach.  Their optimal design yielded a levelized cost of electricity of 0.104 

$/kWh. A distinctive aspect of the study is that the upper bounds on grid imports (30 kW) and 

exports (25 kW) were themselves treated as decision variables. Even with an export tariff (0.80 

$/kWh) exceeding the import tariff (0.70 $/kWh), the model still favoured purchasing power 

from the grid (37,660 kWh/year) over selling (12,352 kWh/year), underscoring the influence of 

temporal mismatches between demand and on-site generation. Nonetheless, the reliance on 

a flat tariff and the omission of inverter reduce the direct applicability of the results to 

operational settings, though the methodological contribution remains noteworthy [87]. 

Over a 25-year horizon, a hybrid PV–battery–hydrogen system in tropical Vietnam was 

optimised using a Multi-Objective Modified Firefly Algorithm [88]. The optimal setup included 

a 2360 kWp PV array, a 1890 kWh battery bank, a 362 kW electrolyser, and a 90 kg hydrogen 

tank, achieving a levelised cost of electricity (LCOE) nearly 50% lower than comparable 

systems in the literature, along with a 98.7% self-sufficiency ratio and a net present value 

(NPV) of $0.27 million [88]. In comparison, a battery-only configuration reached 75% self-

sufficiency (NPV $3.00 million), while the hydrogen-only system achieved 95% but resulted in 

a negative NPV, highlighting the hybrid system’s superior balance between energy autonomy 

and economic performance. However, inverter and grid limits are not planning variables; grid 

access is assumed unlimited, and feed-in tariffs are excluded, overlooking export revenue. 

Their rule-based seasonal dispatch limits adaptability, despite realistic ageing and storage 

modelling [88]. 

A grid-connected hybrid microgrid including PV, wind, battery, and hydrogen was optimised 

using PSO over 20 years [89]. The system achieved a 27% fuel saving and 19% cost-of-

energy reduction via municipal waste reuse. However, dispatch logic is schematic and static; 

inverter and grid limits (e.g., max import/export) are imposed as constants but not decision 

variables, limiting operational flexibility. Forecasting, dynamic tariffs, or adaptive scheduling 

are not considered [89]. The Levy Flight Algorithm was applied to size and manage a 

standalone PV–wind–hydrogen–battery microgrid under seasonal scenarios [90]. The 
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annualised system cost reaches $1.86 million, approximately 10% lower than the HOMER 

benchmark, while the LCOE reaches 0.93 $/kWh, undercutting the diesel baseline by 8% and 

HOMER by 13%, all while meeting a 5% loss-of-power-supply threshold. Dispatch is governed 

by static, rule-based logic rather than an optimised, forecast-driven energy management 

system. Inverter rating and grid-connection capacity are treated as fixed inputs rather than 

decision variables, and the model ignores contractual grid interactions and time-varying tariffs, 

which reduces the practical realism of an otherwise season-aware optimisation [90]. 

Despite their strength in global exploration, current metaheuristic-based sizing studies fall 

short in integrating dispatch-aware operational constraints. Grid limits, inverter capacities, and 

tariff dynamics are often predefined rather than co-optimised, while dispatch strategies tend 

to rely on static or rule-based heuristic strategies. As summarised in Table 2-2, even the most 

recent and season-aware studies neglect co-optimisation of grid-integration variables, storage 

flexibility, and contractual constraints. This disconnects between design-phase optimisation 

and operational feasibility restricts the real-world applicability of these methods, particularly in 

community or islanded systems. These observations motivate the transition to more rigorous 

formulations like Mixed-Integer Linear Programming (MILP), which can explicitly model hourly 

dispatch, enforce power balance, and embed infrastructure limits. The following section 

explores MILP’s role in bridging this critical optimisation gap. 

2.3.2 Mixed Integer Linear Programming for Sizing and Hourly Dispatch 

GA techniques coupled with rule-based energy-management heuristics dominated the early 

hybrid-microgrid literature because they explored extensive design spaces with only modest 

mathematical effort [91], [92]. Their primary limitation, however, is that every candidate system 

is judged under a fixed schedule of dispatch rules that cannot adjust to the subtle, hour-by-

hour interplay among batteries, hydrogen loops, and time-varying grid tariffs. MILP has 

become the prevailing analytical framework for sizing and dispatching hybrid renewable-

energy systems: its linear structure accommodates on/off logic, physical constraints, and 

layered cost terms while retaining global optimality [93], [94], [95]. A close reading of the 

literature shows both the trajectory of that transition and the outstanding gaps it leaves behind. 

A detailed comparative summary of these studies, including their energy balance formulations, 

bus structures, decision variables, and key findings, is provided in Table 2-3. 
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Table 2-3: Detailed MILP comparative summary of these studies, including their energy balance formulations, bus structures, decision variables, and key findings (refer to 
appendix 9.1 for energy balance nomenclature)  

No. Reference Horizon Energy Balance 
Energy Balance 

commentary 
Inverter Limits 

Grid Con-
nected 

Bus 
Struc-
ture 

Decision 
Variables 

Key Findings Limitations 

[43] 
Marocco et al. 
(2021) 

Full 8760 
hours (1 
year) 

Pୖ ୉ୗ(t) + P୆୘,ୢୡ(t)

+ P୊େ(t) + P୒ୗ(t)

= P୐ୈ(t) + P୆୘,ୡ୦(t)

+ P୉୐(t) + Pେ୘(t) 

DC-side strict bal-
ance + binary ex-
clusivity 

Implicit through 
inverter effi-
ciency, not de-
tailed limits 

Off-grid DC bus 

PV, bat-
tery, elec-
trolyser, H₂ 
tank, fuel 
cell sizes 

Load flexibility 
(30%) reduces bat-
tery sizing by 35%, 
LCOE by ~12% 

Perfect fore-
sight, no de-
tailed inverter or 
network limits, 
AC/DC not 
clearly sepa-
rated 

[96] Zhang et al. (2020) 

24-hour 
synthetic 
typical 
day 

 
𝑃௉௏(𝑡) + 𝑃ௐ்(𝑡)
+ 𝑃௢,௕௔௧(𝑡) + 𝑃௢,ு(𝑡)

= 𝑃௜,௕௔௧(𝑡) + 𝑃௜,ு(𝑡)

+ 𝑃௜௡௩(𝑡) + 𝐸dis (𝑡) 

Aggregated DC 
side balance with-
out device-specific 
allocation 

Single inverter 
limit modelled, 
but shared 
among all de-
vices 

Off-grid 

DC bus 
with AC 
side load 
matching 

PV, wind, 
battery, hy-
drogen 
system 

Battery cheaper 
now; hydrogen 
only becomes 
competitive with 
53% CAPEX cut 

No device dis-
patch disaggre-
gation, AC/DC 
not clearly sep-
arated 

[97] 
Gabrielli et al. 
(2020) 

Full year 
clustered 
into 24 
"design 
days" 

෍  

௜∈ℳ

൫𝑈௝,௜,௧ + 𝑃௝,௜,௧ − 𝑉௝,௜,௧

− 𝐹௝,௜,௧൯ − 𝐿௝,௧ = 0 
Generalised multi-
energy carrier bal-
ance 

Not detailed for 
individual com-
ponents 

Grid-con-
nected 
neighbour-
hood 

Multi-
carrier 
AC/DC 

PV, bat-
tery, H₂ 
PtG sys-
tems, heat 
pumps 

Hydrogen essential 
for full decarboni-
zation; heat and 
electricity coupling 
save 80% CO₂ 

Clustering intro-
duces small 
(1%) sizing er-
rors, oversimpli-
fied real dynam-
ics (full year 
horizon), AC/DC 
not clearly sep-
arated 

[98] Kassab et al. (2024) 
Full 8760 
hours 

𝑝bus (𝑡௜)
= 𝑝௅

஽(𝑡௜) − 𝛾௉௏
௖௢

⋅ 𝑝௉௏
ெ௉௉்(𝑡௜) +

𝑝௕
௖(𝑡௜)
𝜇௖

𝛾௕
௖௢

+ 𝑝௕
ௗ(𝑡௜) ⋅ 𝛾௕

௖௢ ⋅ 𝜇ௗ

+ 𝑝௚
௦ (𝑡௜) ⋅ 𝛾௚

௖௢ +
𝑝௚

௜௡(𝑡௜)

𝛾௚
௖௢

≤ 0 

Detailed DC-side 
balance 

Explicit inverter 
efficiencies mod-
elled, but fixed 
values 

Both grid-
connected 
and off-grid 
options 
compared 

DC mi-
crogrid 

PV, battery 
size, grid 
contract 
peak (sen-
sitivity) 

Grid connection 
cuts LCOE from 
€0.98/kWh to 
€0.22/kWh 

Perfect full year 
prediction and 
no inverter and 
grid constraint, 
AC/DC not 
clearly sepa-
rated 

[99] 
Giovanniello & Wu 
(2023) 

Full 8760 
hours 
(no clus-
tering) 

max ቌ ෍  

଼଻଺଴

௧ୀଵ

 ෍  

௜

 𝐸௜(𝑡)ቍ , 𝑖

∈ {𝐿𝐼𝐵, 𝐻𝑆} 

LIB and H₂ stor-
age energy bal-
ances inde-
pendently tracked 

Inverter limit ap-
plied but simpli-
fied 

Off-grid 
DC bus, 
fully is-
landed 

Wind tur-
bines, bat-
teries, hy-
drogen 
tanks 

Hybrid storage re-
duces cost by 
~40%, overbuilding 
ratio 2.6x 

Simplified con-
trol without dy-
namic re-
sponse, no grid 
backup, AC/DC 
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not clearly sep-
arated 

[100] Zelaschi et al. (2025) 
10 repre-
sentative 
days 

𝑃ୋ୘(𝑡) + 𝑃୔୚(𝑡)

+ 𝑃஻,ୢ୧ୱ(𝑡)

= 𝑃୪୭ୟୢ(𝑡) + 𝑃஻,ୡ୦(𝑡)

+ 𝑃ୡ୳୰୲(𝑡) 

 

Single AC-bus 
balance couples 
PV, gas turbines, 
battery 
charge/discharge, 
curtailment; re-
serve & start-up 
constraints guar-
antee supply if 
one generator 
fails 

Fixed efficiency 
factor; inverter 
rating not a deci-
sion variable 

Off-grid AC bus 

Sizes of 
gas tur-
bines 
(incl. 
spare), 
PV ca-
pacity, 
battery 
energy 

 

Annual cost mod-
estly (≈ 3–10 %); 
optimal design 
shifts toward larger 
battery and slightly 
smaller PV to meet 
reserve without 
oversizing turbines 

24h window 
misses sea-
sonal effects, 
simplified bat-
tery dynamics, 
AC/DC not 
clearly sepa-
rated 

[101] 
Talent and Du 
(2018) 

Full year 
(17,520 
periods); 
10-yr 
NPV 

𝑦௜𝐴௜GHI௛

= 𝑃௜,௣
௉ீ + 𝑃௜,௣

௉௅ + ෍  

௃

௝ୀଵ

𝑃௜௝,௣
௉஻  

,𝑃௣ = 𝑃௣
ீ௅ +

∑  ூ
௜ୀଵ ℎ୔୚ inv ᇣᇤᇥ

 inverter 
 efficiency 

𝑃௜,௣
௉௅ +

∑  ௃
௝ୀଵ 𝑃௝,௣

஻௅ 

Power flows are 
aggregated; in-
verter efficiency at 
97% applies to 
DC→AC conver-
sion, no disaggre-
gated device-level 
flow 

Fixed efficiency, 
capacity not a 
decision variable 

Yes, both 
TOU and 
demand tar-
iff scenarios 

Single 
AC/DC 
abstrac-
tion (no 
nodal 
model-
ling) 

Binary PV 
& battery 
selection 
from dis-
crete cata-
logues 

Tariff type alters 
dispatch patterns 
but not sizing; 
large PV, minimal 
battery chosen un-
der both tariffs 

No co-optimised 
inverter/grid siz-
ing; no AC/DC 
separation; 
static perfect 
foresight; no 
flexible demand 

[102] Kassab et al. (2023) 
Full 8760 
hours 

𝑝bus (𝑡௜)
= 𝑝௅

஽(𝑡௜) − 𝛾௉௏
௖௢

⋅ 𝑝௉௏
ெ௉௉்(𝑡௜) +

𝑝௕
௖(𝑡௜)
𝜇௖

𝛾௕
௖௢

+ 𝑝௕
ௗ(𝑡௜) ⋅ 𝛾௕

௖௢ ⋅ 𝜇ௗ

+ 𝑝௚
௦ (𝑡௜) ⋅ 𝛾௚

௖௢ +
𝑝௚

௜௡(𝑡௜)

𝛾௚
௖௢

≤ 0 

DC-side balance 

Inverter efficien-
cies considered; 
inverter rated 
capacity re-
spected 

Both is-
landed and 
grid-con-
nected 

DC mi-
crogrid 

PV, battery 
sizing 

Curtailment im-
proves economics, 
grid link reduces 
LCOE by 67% 

Static compo-
nent efficien-
cies, no network 
congestion 
modelled, 
AC/DC not 
clearly sepa-
rated 

[103] 
Marocco et al. 
(2024) 

Full 8760 
hours 

𝑃௉௏(𝑡) + 𝑃஻ௌ,ௗ௖(𝑡) =
𝑃஻ௌ,௖௛(𝑡) + 𝑃௉௏,஻ௌ(𝑡) , 
 
𝑃௉௏,஻ௌ(𝑡) + 𝑃 ோ,௕௨௬(𝑡) =

𝑃ா௅,௜௡(𝑡) + 𝑃 ோ, sell (𝑡), 
 
𝑃ா௅, out (𝑡) + 𝑃ுௌ,ௗ௖(𝑡)

= 𝑃ுௌ, ch (𝑡) + 𝑃௅஽,ுమ
(𝑡) 

 

Separate AC and 
DC balances, 
electrolyser mod-
elled in partial 
load 

Partial load elec-
trolyser effi-
ciency modelled 
in PWA form 

Grid-con-
nected (in-
dustrial H₂ 
production) 

Hybrid 
AC/DC 
coupling 

PV, bat-
tery, elec-
trolyser 
sizing 

PV oversizing be-
comes optimal 
>€120/MWh elec-
tricity price 

Full year perfect 
prediction, dis-
tinguished but 
inverter sizing is 
simplified, 
AC/DC not 
clearly sepa-
rated 
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A comprehensive MILP framework tailored for off-grid PV–battery–hydrogen systems was 

developed to jointly optimise the sizing of photovoltaic arrays, battery banks, electrolysers, 

hydrogen tanks, and fuel cells, while performing a full dispatch over all 8,760 hours of the year 

[43]. A notable strength of this work is the detailed treatment of component performance 

through piecewise-affine (PWA) representations of stack efficiencies and capital costs, 

embedded directly into the MILP. In addition, operating costs are linked to component 

degradation, and a simple demand-response program (DRP) is included to allow 30% of the 

load to shift based on time-of-use electricity rates with the off-grid configuration [43]. The 

system’s energy balance enforces strict supply-demand matching on a singular DC bus 

topology, reflecting limited accounting for power type conversions and providing minimal 

details regarding inverter functionality. In this Mediterranean island case study (Stromboli 

Island, Italy), a LCOE reduction from €0.455/kWh to €0.402/kWh when flexible load shifting is 

enabled, mainly through a 35% downsizing of battery capacity. The results highlight that 

introducing even basic load flexibility at the design stage can substantially improve economic 

outcomes for isolated renewable hydrogen systems. 

Building upon their earlier work, [103] explored the optimal design of PV-based grid-connected 

hydrogen production systems using a detailed MILP framework. This study significantly 

advanced the methodology by shifting from a single DC bus topology to a more nuanced multi-

node approach distinguishing between DC power, AC power, and hydrogen balances [103]. 

The model separately tracks DC-side balances for PV-battery subsystems and AC-side 

balances for grid-electrolyser interactions. Crucially, electrolyser partial-load behaviour is 

modelled using PWA approximations to capture efficiency variations over the operating range. 

Sensitivity analysis across grid electricity prices shows that at prices above €120/MWh, it 

becomes economically optimal to oversize PV arrays and electrolyser capacities to minimise 

grid reliance. The study finds that grid availability substantially reduces the need for large 

hydrogen storage capacities, with hydrogen levelized costs ranging between €3.5 and €7 per 

kilogram depending on market conditions [103].  

Despite these enhancements, the mathematical model presented in [103] still exhibits limited 

detail concerning power conversion components such as inverters, along with relatively 

sparse treatment of grid constraints and inverter operational parameters. This progression 

clearly shows growing recognition of the importance of explicitly distinguishing AC/DC power 

balances in system optimisation models, though future work may benefit from a more thorough 

consideration of inverter operations and grid interaction constraints to further enhance techno-

economic results. 
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Building upon a related framework, the authors in [96] proposed a MILP model that co-

optimises PV, wind, battery and hydrogen storage over a single 24-hour window derived from 

averaged annual weather data. The formulation minimises total annualised cost (capital, 

replacement and O&M) while meeting both electrical and thermal loads. It enforces binary 

exclusivity between battery charging/discharging and electrolyser/fuel cell operation, ensuring 

operational realism. Under current technology costs, the optimiser selects a battery-only 

system at approximately 6,989 $/year, outperforming a hydrogen-only configuration at $7,764 

$/year. However, if hydrogen CAPEX falls to around 47% of present levels, the two 

configurations achieve cost parity [96]. Incorporating fuel-cell cogeneration reduces annual 

costs by a further 3–5% when thermal demand is substantial, highlighting hydrogen’s longer-

term promise. A notable simplification is that the DC-side energy balance aggregates all 

generation and storage outputs into a single inverter stream, which is forced to match total AC 

demand and is capped by the inverter limit. Because this flow is not disaggregated by source, 

the model cannot resolve the hourly contribution of each technology to the AC load, leaving 

the detailed energy mix unidentified [96]. 

Reference [97] extended the multi-carrier optimisation paradigm by formulating a MILP that 

captures the interactions among electricity, heat, gas, and hydrogen flows within a 

neighbourhood-scale system. The energy-balance formulation generalises supply-demand 

matching across all carriers, incorporating imports, on-site generation, feed-in exports, and 

device fuel requirements. To maintain computational tractability over the full 8,760-hour 

horizon, daily profiles are clustered into a limited number of “design days” using k-means 

techniques, preserving critical peak demand values. Coupling rules are introduced to pass 

each storage device’s state from one design day to the next, allowing the optimiser to plan 

multi-day and seasonal charging cycles [97]. In a case study for a Zurich neighbourhood, 

around 24 design days were sufficient to recover storage sizing within 1% accuracy compared 

to a full-year model. Results indicate that CO₂ emissions can be reduced by up to 80% using 

only heat pumps and thermal storage, while deeper decarbonisation requires integrating 

battery and hydrogen-based power-to-gas (PtG) systems. Hydrogen becomes indispensable 

for achieving long-term seasonal shifting and near-zero carbon operations. 

In [100], a reliability-oriented MILP framework is presented to co-optimize the sizing of gas 

turbines, PV arrays, battery storage, and a standby backup unit, while performing hourly 

dispatch. To maintain computational feasibility, the 8,760-hour year is condensed into six 

“typical” days (average conditions) and four “extreme” days (periods of peak demand or very 

low renewable output) using a clustering algorithm. The formulation imposes explicit reserve 

and starts-up constraints so the islanded microgrid can still cover demand if any one major 

generator unexpectedly goes offline. Meeting this explained reliability requirement raises total 
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annual cost by 2.8 % for a remote gas plant and 10.4 % for an isolated airport yet guarantees 

uninterrupted service during such an outage. The optimised design shifts investment toward 

a larger battery and a slightly smaller PV array, allowing the battery to supply spinning reserve 

without oversizing conventional generators. Inverter losses are modelled by a fixed efficiency 

factor, and no contracted-peak charges are included due to the fully off-grid nature of the 

system [100]. 

A notable contribution is presented in  [99], where a single-layer MILP simultaneously 

optimizes the sizing and dispatch for a fully islanded, 100% wind-powered microgrid combining 

lithium-ion batteries and hydrogen storage. The model captures all 8,760 hours without 

clustering, offering a credible representation of both daily and seasonal balancing 

requirements [99]. Hybridising lithium-ion batteries with hydrogen storage reduces the 

annualized system cost from $75 million per year (battery-only) or $59 million (hydrogen-only) 

down to $43 million per year for the combined system, achieving a 40% cost reduction. Under 

projected 2050 technology costs, this drops further to $19 million per year. In the optimised 

hybrid configuration, lithium-ion batteries operate for 90% of the time, while hydrogen systems 

support around 27%, bridging long-duration winter deficits. The results also reveal that 84 MW 

of installed wind capacity supports a peak demand of 33 MW, resulting in a generation-to-

demand overbuild ratio of approximately 2.6 times, essential to maintain supply reliability 

without grid backup The results also reveal that 84 MW of installed wind capacity supports a 

peak demand of 33 MW, resulting in a generation-to-demand overbuild ratio of approximately 

2.6 times, essential to maintain supply reliability without grid backup [99].  

A detailed MILP method is introduced in [101] for planning and scheduling the use of PV–

battery systems under two pricing structures: time-of-use (TOU) and demand-based pricing. 

The model first maximises the net present value (NPV) of capacity selection over a 10-year 

horizon, followed by hourly dispatch to minimise first-year electricity bills using half-hourly load 

data. To maintain tractability across 17,520 time periods per year, PV and battery sizes were 

discretised into a small, actionable decision set [101]. In both residential and commercial 

scenarios, the optimiser favoured the largest PV capacity with minimal or no battery storage, 

highlighting limited value for batteries under current tariff regimes. A fixed inverter efficiency of 

97% is assumed whenever power crosses the DC/AC boundary, but no upper limit or 

associated cost is imposed, allowing the inverter to act as an unrestricted conduit. Grid-

contracted power is also fixed, eliminating clipping risk and enabling oversized PV outputs to 

remain uncurtailed. This helps explain the model’s bias toward large PV and minimal storage. 

Overall, the study provides strong evidence that tariff structure, rather than storage economics, 

plays a dominant role in capacity decisions, an insight with major implications for both policy-

makers and investors [101]. 



51 
 

A MILP-based optimisation framework is developed in [102] for sizing and dispatch strategies 

in a DC microgrid, primarily examining the trade-offs between isolated and grid-connected 

scenarios over a full-year horizon.  The results show that grid support significantly reduces PV 

and battery sizing requirements, yielding a cost of €0.28/kWh compared to €0.85/kWh for the 

isolated case. Sensitivity analysis reveals that lower battery costs favour greater battery 

capacity, whereas higher battery prices incentivise PV oversizing and curtailment to minimise 

storage reliance [102]. Across all scenarios, battery replacement costs, due to their 5-year 

operational life, emerge as the largest contributor to total system expenditure. The study also 

confirms that incorporating PV curtailment into the optimisation process helps avoid 

unnecessary battery oversizing, thereby enhancing the economic feasibility of microgrids 

without compromising reliability [102]. 

Building significantly on [102] initial contribution, [98] further advanced their MILP framework 

by incorporating more realistic grid constraints and market conditions, explicitly introducing 

TOU electricity tariffs, grid subscription charges based on contracted power peaks, and 

detailed modelling of inverter sizing constraints. The model uses single DC bus bar topology 

with inverter/converter ratings as explicit decision variables, limiting instantaneous power 

flows according to rated inverter/converter capacities, though without associating 

inverter/converter sizing with explicit capital or replacement costs [98]. Simulating a PV–

battery microgrid under French electricity market conditions, they find that grid-connected 

designs achieve an LCOE of approximately €0.22/kWh, compared to €0.98/kWh for fully 

isolated systems. Furthermore, tightening contracted peak limits from 36 kVA to 18 kVA (36, 

30, 24 and 18 kVA as sensitivity limits) reduces dependence on grid electricity but increases 

both costs and emissions due to the need for larger local generation and storage [98]. The 

study highlights that carefully choosing the contracted grid subscription level is crucial to 

balancing cost and environmental targets and confirms that inverter sizing constraints and 

TOU tariff structures strongly influence system design.  

Overall, the progression from [102] to [98] reflects a clear transition from simplified economic 

optimisation towards comprehensive techno-economic and environmental modelling, explicitly 

incorporating grid limit constraints, dynamic tariffs, inverter sizing decisions, and 

environmental metrics. Nevertheless, remaining simplifications, such as the assumption of 

perfect foresight and the omission of inverter capital and lifetime costs, highlight important 

methodological gaps, aligning closely with the research advancements proposed in this thesis. 

Across the reviewed literature, a recurring structural limitation emerges co-optimising system 

sizing and hourly dispatch in a single MILP formulation becomes increasingly complex when 
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both long-term coverage and detailed operational modelling are pursued together. To manage 

this, most studies adopt one of two modelling strategies. 

The first strategy retains the full 8,760-hour horizon but simplifies the operational layer. Several 

[43], [98], [99], [102], [103] follow this approach. These models preserve hourly resolution 

across the year but adopt structural simplifications, for instance, by fixing inverter capacity 

outside the model, aggregating all power flows on a DC bus, or avoiding binary 

charge/discharge exclusivity. While most of these studies do not explicitly discuss how 

dimensionality is controlled, their formulations are typically binary light, relying on continuous 

sizing variables and restricting integer variables to a handful of logical switches such as 

PV/load imbalance or electrolyser on/off states. Importantly, this approach also assumes 

perfect foresight of demand, generation, and market conditions across the full year, an 

assumption that may lead to overly optimistic dispatch and sizing decisions compared to what 

could be achieved under limited or real-time information 

The second strategy preserves more operational realism but reduces the temporal scope. 

Some studies [96], [97], [100] compress the year into synthetic or representative days. For 

instance, [96] uses a single 24-hour synthetic day;  [97] clusters the time series into 24 “design 

days” and introduces continuity constraints to maintain storage behaviour; and [100] 

approximates the year with ten representative days—six typical and four extremes—

preserving key peaks while keeping the model compact. These models accommodate features 

such as partial-load efficiency, battery cycling penalties, and inverter performance, but the time 

compression inherently limits their ability to capture long-term storage dynamics and rare high-

demand periods. 

Across both groups, the underlying constraint is structural: maintaining fine operational detail 

over an extended horizon leads to an increase in variables and constraints that most MILP 

frameworks avoid by design. This helps explain why inverter sizing and grid contract 

parameters are frequently treated as exogenous inputs, and why component sizes are often 

selected from continuous ranges or predefined list. 

To address these trade-offs, the next section introduces frameworks that hybridise 

metaheuristic sizing loops with mathematical-programming dispatch submodule. In this 

configuration, outer loop explores capacity configurations, while an inner loop evaluates each 

size proposal using short-horizon dispatch with detailed operational constraints. This 

decoupled structure provides a way to reintroduce operational complexity without significantly 

expanding the overall model scale. The next subsection therefore critically reviews state-of-

the-art nested models, evaluating their claims and highlighting persistent gaps: fixed or 

neglected inverter sizing alongside effectively unlimited contracted grid power; reliance on full-
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year, perfect-foresight horizons; oversimplified tariff structures; and the absence of explicit 

AC/DC nodal representation. 

2.3.3 Nested Optimisation Approaches  

Nested optimisation techniques, which couple long-term sizing heuristics with short-horizon 

dispatch models, have emerged as a powerful strategy for hybrid renewable energy systems 

(HRES) that must navigate complexity across timescales, resource variability, and technical 

constraints. In particular, the integration of GA, Evolutionary Programming, or Grey Wolf 

Optimisation (GWO) at the outer loop with MILP at the inner loop has become a common 

structure in recent studies. These approaches bridge the common disconnect between static 

design-phase models and dynamic operational constraints, especially relevant in systems with 

multi-path energy flows and grid-tied operation. Table 2-4 and discussion critically examine 

recent studies that exemplify this nested framework, highlighting their methodological 

strengths, techno-economic outcomes, and persistent modelling limitations. 

One of the earliest fully implemented examples of a coupled nested framework combines a 

GA-based sizing layer with a 24-hour rolling-horizon MILP-MPC dispatch strategy across an 

off-grid DC-coupled microgrid [104]. Across a simulated full-year horizon (365 × 24 h 

subproblems), the integrated strategy reduced the annualised system cost by 7% (from 

$18,095 to $16,819 per year) and levelized cost of electricity (LCOE) by 8.7% (from $0.599 to 

$0.547/kWh) compared to a rule-based dispatch baseline. Component downsizing followed: 

PV capacity was reduced from 23 to 20 kW, and battery capacity from 80 to 76 kWh [104]. 

Simultaneously, reliability improved, with the loss-of-load probability reduced by 75% (from 

0.0032 to 0.00079). However, the modelling assumes a perfectly ideal DC bus, omitting both 

inverter losses and any explicit AC layer, limiting the applicability of the results in real-world 

systems that require AC supply or bidirectional grid exchange [104]. 
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Table 2-4: Overview of recent nested optimisation studies combining heuristic sizing (e.g., GA, GWO) with short-horizon MILP dispatch for hybrid renewable energy systems 
(HRES). System architectures are denoted using the following component codes: PV – photovoltaic panels, WT – wind turbines, BT – battery storage, FC – fuel cells, EL – 
electrolysers, TK – hydrogen storage tanks, IN – inverters or power electronics, GR – grid interface, OR – other components such as heat pumps or thermal storage. Each 
study is assessed for control structure, optimisation layers, component integration, and major limitations. 

Ref. Study 
Sizing 

Method 

Dispatch 

Method 

Energy 

Manageme

nt Energy 

Balance 

System Structure 
Energy 

Balance 

Commentary 

Inverter 

Limits 

Bus 

Structure 

Grid 

Connected 

Key 

Findings 
Limitations P

V 

W

T 

B

T 

F

C 

E

L 

T

K 

I

N 

G

R 

O

R 

[104

] 

Rullo et al. 

(2019) 

GA 

minimises 

annualised 

system cost 

Rolling-

horizon 

MILP- MPC 

for 24 

horizons 

DC-bus 

energy 

balance 

(PV + WT − 

curtailment 

− served-

load = Batt 

+ 

Electrolyser 

− Fuel-cell) 

✓ ✓ ✓ ✓ ✓ ✓ × × × 

Single DC bus, 

no explicit AC 

bus; renewable 

and storage 

flows balanced 

directly on DC 

side 

No inverter 

limit 

considered 

(implicit 

inverter 

assumed 

ideal) 

Single DC 

bus structure 

No (Off-grid, 

standalone 

microgrid) 

MPC 

dispatch 

saves ~15% 

COE 

compared to 

rule-based; 

predictive 

flexibility 

improves 

component 

sizing 

Single bus with 

aggregated 

DC/and AC 

nodes. Inverter 

and grid limits 

and not 

considered 

[105

] 

Tamashiro et 

al. (2023) 

Multi-

objective 

optimisation 

using e-

constraint 

(min. cost + 

CO₂) 

Model 

Predictive 

Control 

(MPC) with 

rolling 

horizon (3-

day 

prediction, 

1-day 

control) 

Power 

balance: 

Pgrid(t) + 

PBESS(t) + 

ΣPFC(t) = 

Pload(t) – 

PPV(t) 

With 

PBESS = 

Pdis - Pcha, 

Pgrid = 

Ppur - Psell 

✓ ✓ ✓ ✓ × × × ✓ ✓ 

Electrical 

balance 

includes PV, 

BESS, FC, 

load, and grid. 

No explicit 

AC/DC 

conversion. No 

modelling of 

inverters. No 

curtailment or 

flexible loads 

included. 

No inverter 

component 

or limits 

considered 

in 

equations 

or model 

assumption

s. Inverter 

assumed 

ideal. 

Single power 

flow bus 

(implicitly 

DC). No 

separation of 

AC/DC 

mathematicall

y. 

Yes, 

electricity can 

be 

purchased/so

ld from grid. 

Grid 

import/export 

modelled, still 

no limit 

MPC 

dispatch 

(Case C) 

reduces 

costs by 

44.4% and 

CO₂ 

emissions 

by 54.7% 

vs. no DER 

case; shows 

predictive 

scheduling 

significantly 

outperforms 

day-by-day 

planning. 

No inverter 

modelling: grid 

limits modelled 

only as max 

fluctuation, not 

capacity limit. 
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[106

] 

 

Li et al. 

(2017)a 

GA 

minimises 

total system 

cost (capex 

+ opex + 

maintenanc

e) 

MILP-based 

Unit over 

one-week 

average 

input data, 

1-year 

rolling 

horizon 

validation) 

 

𝑃𝑃𝑉(𝑡)
− 𝑃curt (𝑡)

− ൫𝑃load (𝑡)

− 𝑃௅ௌ(𝑡)൯

= 𝑍ele (𝑡)
− 𝑍௙௖(𝑡)

+ 𝑍௖௛(𝑡)
− 𝑍dis (𝑡) 

 

✓ × ✓ ✓ ✓ ✓ × × × 

Multi-vector 

electrical and 

heat balance 

modelled; 

AC/DC 

distinction not 

considered; 

inverters 

assumed ideal. 

No inverter 

component 

or limits 

modelled 

(ideal 

assumed) 

Single energy 

bus, no 

AC/DC 

separation 

modelled 

No 

Degradation

-aware co-

optimisation 

improves 

long-term 

sizing; 

±10% 

forecast 

errors 

increase 

hydrogen 

and thermal 

storage 

significantly. 

Inverter limits 

are not 

modelled; 

sizing 

evaluated over 

one-week 

average input 

data; no wind 

integration; off-

grid only.  

open-loop UC 

(no MPC) 

[107

] 

Li et al. 

(2017)b 

GA 

searches 

over sizing 

set U to 

minimise F 

= Cₐₚₑₓ + 

Cₒₚₑₓ + 

Cₘₐᵢₙ via 

MILP-based 

dispatch. 

12-day 

evaluation 

horizon, 1-

year rolling 

horizon 

validation 

Electrical: 

PV – 

curtailed – 

load + 

shedding = 

FC + battery 

+ 

electrolyser 

+ 

auxiliaries, 

Thermal: 

Solar heater 

– curtailed – 

heating load 

+ shedding 

= FC heat + 

boiler + heat 

storage, 

 

✓ × ✓ ✓ ✓ ✓ × × ✓ 

Four parallel 

buses (Power, 

Heat, Cooling, 

H₂); scheduling 

MILP enforces 

each balance; 

no inverter 

losses or 

ratings are 

modelled. 

No inverter 

constraints 

Single 

electrical 

aggregated 

bus  

No 

Demonstrat

es linearized 

EL/FC 

models, 

simple 

battery 

SOC, and 

bi-level UC-

sizing 

coupling 

achieves 

feasible off-

grid 

operation 

Using just 12 

representative 

days can 

hinder finding 

the global 

optimum, No 

inverter/grid 

limits; no WT, 

no multi-

energy; 

follower only 

UC, no 

receding 

horizon; single 

bus idealization 
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[108

] 

Pu et al. 

(2021) 

Two-level 

RT-GWO & 

MILP: RT-

GWO for 

capacities 

(PV, WT, 

FC, EL, EB, 

CO, Batt, 

HES, H₂ 

seasonal & 

short) 

minimises 

life-cycle 

cost 

MILP 

scheduling 

on clustered 

“typical 

days” 

𝑃୉୆(𝑡)
+ 𝑃େ୓(𝑡)
+ 𝑃୉୐(𝑡)
+ 𝑃୐(𝑡)
= 𝑃୔୚(𝑡)
+ 𝑃୛୘(𝑡)
+ 𝑃୊େ(𝑡)
+ 𝑃୆୅୘(𝑡) 

 

✓ ✓ ✓ ✓ ✓ ✓ × × × 

Power balance 

enforced by 

MILP; accounts 

for PV, load, 

BSS, HSS, 

curtailment, and 

shedding; no 

grid support 

assumed. 

Ideal 

inverters 
Single bus No 

Integrates 

degradation 

(PEMFC, 

EL, Batt), 

seasonal H₂ 

storage; RT-

GWO 

outperforms 

PSO/GWO; 

typical-day 

clustering; 

finds 

seasonal H₂ 

5× battery 

cost-

effective; 

~9.47 M ¥ 

lifecycle 

cost 

No inverter 

sizing/losses; 

no receding 

horizon (UC 

only); 

thermal/hydrog

en network 

idealized; 

single location; 

clustering may 

omit extremes 

[109

] 

Al-Quran & Al-

Mhairat (2024) 

MOGA: 

multi-

objective 

GA 

minimises 

annualized 

cost & 

maximizes 

REF 

EMPC-

MILP, 3 h 

receding 

horizon 

(economic 

MPC) 

𝑃୔୚ + 𝑃୛୘

+ 𝑃୊େ

+ 𝑃bat , dis 

+ 𝑃grid 

= 𝑃load 
+ 𝑃୆୐

+ 𝑃bat , ch 

+ 𝑃loss  

 

✓ ✓ ✓ ✓ ✓ ✓ × ✓ × 

DC-bus: 

PV+WT – Batt 

charge + Batt 

discharge + EZ 

– FC – grid 

import + grid 

export balanced 

hourly; includes 

degradation 

and grid trades 

Constant 

efficiencies, 

no sizing 

limits 

Single DC 

bus + single-

phase 

inverter 

Yes 

Bi-level GA 

+ 3 h EMPC 

co-optimizes 

cost vs. 

REF; EMPC 

delivers true 

MPC; grid 

export/impor

t at $0.135 

/kWh; 

seasonal 

case study 

shows 60% 

REF, net 

export in 

summer 

No 

inverter/inverter 

sizing; only four 

weeks of data; 

no full-year 

stochastic 

analysis 

[110

] 

Eltamaly & 

Almutairi 

(2025) 

Nested LEA 

(Lotus 

Effect 

Optimisatio

n Algorithm) 

Hourly 

inner-loop 

optimisation 

via LEA (or 

ANN 

- ✓ ✓ ✓ ✓ ✓ ✓ × × × 

DC-side energy 

balance, 

including PV, 

WT, battery 

charge/discharg

No power-

rating or 

dynamic 

inverter 

constraints 

Single DC 

bus (no 

separate AC 

bus) 

No 

Nested LEA 

cuts sizing 

convergenc

e by 43%; 

ANN 

Linearized DR 

& storage 

models; no 

inverter/inverter 

sizing; hourly 



57 
 

 

 

with multi-

objective 

weighting of 

LCOE + 

LOLP 

surrogate); 

static 

economic 

dispatch 

(not MPC) 

e, electrolyser & 

fuel-cell flows; 

no AC/DC 

conversion or 

inverter losses 

surrogate 

speeds it to 

1.08% of 

that time; 

DEMAND 

RESPONSE 

cuts cost 

~28%; co-

optimisation 

balances 

cost vs. 

REF 

resolution; 

single-site 

case; no 

stochastic 

uncertainty 

beyond 

stepwise REPF 

[111

] 

Mohseni & Bre

nt (2022) 

Particle 

Swarm 

Optimisatio

n minimises 

LCOE 

72 h 

rolling-horiz

on LP 

dispatch 

 

𝑃௜௠ + 𝑃௣௩

+ 𝑃௪௧

+ 𝑃bat , dis 

= +𝑃load 
= 𝑃௘௫

+ 𝑃௕௔௧,௖௛ 

 

✓ ✓ ✓ × × × × × ✓ 

Aggregated 

DC-coupled 

energy balance 

including PV, 

wind, battery, 

grid 

import/export 

and curtailment; 

no AC/DC split 

modelled. 

Fixed 

converter 

efficiency; 

no explicit 

power-ratin

g or 

clipping 

constraints. 

DC-coupled 

microgrid + 

AC grid via 

multi-mode 

inverter 

Yes 

Embedding 

72 h 

look-ahead 

dispatch in 

PSO sizing 

cuts 

whole-life 

cost by up 

to 8 % and 

boosts 

battery 

arbitrage 

value. 

Assumes 

perfect 

forecasts (no 

uncertainty); 

inverter losses 

modelled via 

fixed η; no 

feeder or 

contracted-pea

k limits; 

deterministic 

LP. 
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Earlier foundational work introduced a bi-level system sizing framework in which a GA acts as 

the upper-level leader, proposing candidate plant configurations [106]. These are 

subsequently evaluated by a lower-level, hourly mixed integer linear programming unit 

commitment (UC-MILP) model with the objective of minimising total annual cost. To reduce 

computational effort, the GA is applied to weekly-averaged profiles of demand and solar 

irradiance. Once an optimal configuration is identified, it is subjected to a more granular 1-

hour rolling-horizon simulation, executed daily over an entire year. If the simulation reveals 

energy shortages, the fuel cell and electrolyser capacities are iteratively adjusted. When a 

10% forecast error is introduced, the robust analysis produces a cost range from €174k (best-

case) to €279k (worst-case), highlighting a 38% range attributable to uncertainty rather than 

to changes in the optimisation strategy [106]. Comparing the MILP dispatcher with classic rule-

based control method nearly triples the battery size, from 189 kWh to 407 kWh, and raises the 

capital cost from €128k to €175k. This result underscores the inefficiency of fixed heuristic 

approaches in hybrid microgrid applications. Although the model accounts for battery ageing 

and enforces strict constraints on state-of-charge (SOC), level-of-hydrogen (LOH), and power 

limits, it assumes ideal, lossless static converters, thereby neglecting AC/DC conversion 

losses and their associated operational impacts [106]. 

The work in [107] builds directly on earlier foundations by extending the same GA + UC-MILP 

co-optimisation approach to a stand-alone multi-vector micro-grid with parallel AC, hydrogen, 

and thermal buses. A GA-driven sizing layer is coupled to an hourly UC-MILP solved on 12 

representative days and validated in a year-long rolling-horizon run. The preferred design 

contains 121 kWp of PV, a 396-kW electrolyser and a 1065 N·m³ hydrogen store, giving 25 

hours of fuel-cell autonomy and keeping capital costs below €0.4 million.  Eliminating the last 

instances of PV curtailment requires scaling the hydrogen tank to approximately  1.4 × 10⁵ 

N·m³, pushing the CAPEX to €2.26 million [107]. However, the simplification of using just 12 

representative days  may hinder global optimality. Additionally, no aggregate limit or dynamics 

are applied to the AC interface. Effectively, the inverter linking devices to the electric bus is 

treated as loss-less and unconstrained, potentially overlooking performance bottlenecks 

present in practical deployments [107]. 

To address the scale and runtime challenges of full-year optimisation, the authors in  [108] 

introduced a two-level hybrid model using Real-Time Grey Wolf Optimisation (RT-GWO) for 

sizing and a clustered MILP schedule based on 30 “typical days,” representing an entire year. 

Applied to an island microgrid with seasonal hydrogen storage, their model revealed that 

substituting the seasonal H₂ tank with batteries would increase the capital investment from 

¥5.6 million to ¥29.7 million, a more than fivefold jump [108]. Inclusion of degradation models 

raised overall lifecycle costs by 13.1%, underscoring the financial implications of ageing. While 
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the model captures thermal, battery, and hydrogen interactions effectively, it simplifies the 

power electronics by assuming ideal inverters. The absence of rolling horizon or demand 

forecasting limits the adaptability of the dispatch algorithm to extreme or atypical days [108]. 

Further enhancing temporal resolution, the authors in [111] propose a recent nested 

framework that couples a PSO outer loop with a linear programming (LP) inner loop executing 

rolling 72-hour dispatch, a departure from the 24-hour look-ahead used in most prior co-

optimisation models. Applied to a grid-tied, DC-coupled community microgrid, the PSO 

determines optimal sizes for PV, wind turbines, and lithium-ion batteries, while the LP 

leverages three-day forecasts to co-optimise arbitrage revenue and battery degradation costs. 

Compared to their own baseline PSO + 24 h model, their 72-hour dispatch strategy reduces 

life-cycle cost by up to 8% and lowers the risk of PV overbuild by preserving battery headroom 

across multi-day price cycles [111]. The model achieves computational efficiency by solving 

72 sub-problems per year, instead of tackling the entire year in a single large-scale 

optimisation, though it retains common simplifications, notably fixed inverter efficiencies and 

the absence of explicit AC-bus constraints. Consequently, phenomena like inverter clipping or 

peak penalties remain outside the optimisation scope.  

Pursuing computational efficiency, the authors in [110] introduced an innovative nested Lotus 

Effect Algorithm (LEA) with Artificial Neural Network (ANN) surrogates, cutting the 

computational runtime from 21.3 hours to just 0.23 hours, about 1.08% of the full loop, while 

maintaining an LCOE near $0.057/kWh. Their system, set within a smart-grid context, uses 

real-time pricing and demand response [110]. The study stands out for balancing 

computational efficiency with techno-economic rigour, showing that integrating ANN models 

can dramatically reduce optimisation time without major loss in fidelity. However, their inverter 

models remain idealised and the ANN lacks interpretability, making sensitivity analysis difficult 

[110]. 

In a similarly performance-conscious approach, the authors in [109] merged a Multi-Objective 

GA (MOGA) with a 3-hour economic MPC (EMPC) layer to model grid-connected residential 

HRES under seasonal variability. In this study, the summer week emerged as the optimal 

configuration, yielding an annualised cost of $99,484 (10% less versus the next-cheapest 

spring week) and the highest renewable energy fraction while maintaining the lowest 

aggregated degradation index of Σ = 50 (a reduction of 72 % versus winter) [109]. Their 

inverter efficiencies were fixed (between 90–95%), and clipping was ignored, an omission that 

may underestimate the true LCOE and misrepresent periods of surplus generation. The model 

horizon spans only four weeks, limiting the ability to extrapolate to long-term operation and 

seasonal variability [109]. 
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Culminating recent advances, the authors in [105] advanced the state-of-the-art by embedding 

a multi-objective e-constraint GA within a rolling-horizon 3-day MPC-MILP scheme tailored for 

grid-connected residential systems. Their setup evaluates 3-day forecasts with daily re-

optimisation, emulating real operational settings under dynamic pricing. The case study 

demonstrated a 44.4% reduction in operating cost and a 54.7% cut in CO₂ emissions 

compared to static dispatch, confirming the potential of predictive control when co-optimised 

with system sizing [105]. Yet, grid interaction is simplified by infinite import/export capacities, 

and inverter dynamics are omitted. The assumption of unconstrained grid exchange 

significantly affects the model’s flexibility, risking unrealistic cost reductions in high-penetration 

scenarios [105]. 

In comparing these nested models, several patterns emerge. First, coupling heuristic sizing 

methods like GA or GWO with short-horizon, constraint-rich dispatch models (MILP, MPC) 

consistently outperforms static or sequential approaches in both cost and reliability. However, 

most models assume infinite size for the inverters, neglect power rating limits, and oversimplify 

AC/DC interactions. This can obscure operational limits such as curtailment due to undersized 

inverters or overloading of DC links. Only a few studies, such as [105], model demand-side 

flexibility forward-looking scheduling mechanisms, and even fewer incorporate contracted grid 

constraints or dynamic tariffs, despite their potential influence on system design and 

investment outcomes. Second, system performance and cost sensitivity are tightly linked to 

the granularity and realism of temporal modelling. Studies relying on representative or typical 

days risk under-capturing rare but critical stress periods, especially in island systems where 

energy autonomy must span full seasonal cycles. While clustering reduces computational 

burden, it must be paired with robust cross-day storage coupling or validation to retain 

credibility. Third, hydrogen storage consistently proves its value for long-duration, low-

frequency balancing, reducing battery size, curtailment, and life-cycle cost, particularly when 

paired with electrochemical storage for short-term flexibility. The results in [108] and [99] 

reinforce this synergy quantitatively. Still, hydrogen systems introduce a second layer of 

conversion losses and require precise inverter planning to ensure peak demands are met. 

Inverter oversizing to accommodate fuel cell peaks can inflate CAPEX unless modelled jointly 

with power-sharing strategies and peak-shaving algorithms. 

Despite the advances in computational strategy, incomplete modelling of inverter and grid 

interfaces remains the most persistent and consequential omission in nested HRES 

optimisation. Even when rolling horizons or stochasticity are present, assuming infinite grid 

exchange or ideal conversion masks significant techno-economic trade-offs. As energy 

systems become increasingly integrated and prosumer-oriented, these assumptions erode the 

external validity of simulation results. 
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In conclusion, while nested optimisation frameworks offer a powerful pathway to co-optimise 

HRES sizing and operation, their full potential is unlocked only when grid constraints, inverter 

dynamics, and demand-side flexibility are explicitly incorporated. This thesis addresses 

several of these gaps by incorporating MILP-based formulations that embed contracted power 

limits, partial-load inverter constraints, flexible load scheduling, and high-fidelity AC/DC hybrid 

modelling into the sizing and dispatch process. Additionally, the approach integrates realistic 

tariff structures to better reflect techno-economic constraints in grid-connected scenarios. 

Moreover, incorporating elements inspired by adaptive control models such as MPC 

framework allows this approach to simulate anticipatory, constraint-aware dispatch strategies 

within the design phase, enhancing the alignment between techno-economic planning and 

operational feasibility.  

The preceding review has surveyed decomposition strategies and practical implementations 

of nested sizing-and-dispatch frameworks in the literature. To make explicit the theoretical 

mechanism that underpins many of those implementations, the next subsection formalises a 

penalty-guided formulation that links hourly dispatch outcomes to long-term design objectives. 

The aim is to show, at a conceptual level, how aggregated reliability indicators produced by 

the dispatch layer can be used to shape the design search in a manner that is both tractable 

and consistent with common practice in the field. 

2.4 Theoretical Background: Penalty-Guided Nested Objective 

In nested metaheuristic–MILP frameworks, the upper-level design problem can be expressed 

as a penalised objective that couples economic cost with annual reliability indicators computed 

by the dispatch layer. This provides a clean theoretical mechanism by which the design search 

(e.g. GA) is guided by the total annual unmet and excess energy arising from hourly operation. 

Let 𝑥 ∈ 𝒳 be the capacity vector and let 𝑦(𝑥) be the optimal hourly dispatch over a 

representative year returned by the MILP. Define the annual indicators from the lower layer 

as:  

𝑈(𝑥) = ෍  

௧∈்

𝑢௧(𝑥)Δ𝑡, 𝐸(𝑥) = ෍  

௧∈்

𝑒௧(𝑥)Δ𝑡 (2-1) 

where 𝑢௧ and 𝑒௧ are, respectively, unmet-load and excess-energy slacks at hour 𝑡. A general 

penalised upper-level problem can then be written as:  

min
௫∈𝒳

 NPC(𝑥; 𝑦(𝑥))ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
economic term 

+ 𝜆௎𝑈෡(𝑥) + 𝜆ா𝐸෠(𝑥)ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
annual penalty guiding the search 

 (2-2) 
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with 𝑈෡, 𝐸෠ taken as either the raw annual totals 𝑈, 𝐸 or normalised versions, for example as 

fractions of annual demand, and with weights 𝜆௎, 𝜆ா ≥ 0 that set the selection pressure. The 

lower-level dispatch is a MILP of the form:  

𝑦(𝑥) ∈ arg min
௬∈𝒴(௫)

 ෍  

௧∈்

  ൫𝑝௧
buy 

𝑔௧
buy 

− 𝑝௧
sell 𝑔௧

sell ൯ + 𝑐௎𝑢௧ + 𝑐ா𝑒௧ 
(2-3) 

where the coefficients 𝑐௎, 𝑐ா enforce operational feasibility for a fixed 𝑥. The upper-level 

weights 𝜆௎, 𝜆ா then steer design choices by penalising the annual totals returned by the 

dispatch solution 𝑦(𝑥). 

This structure guides a GA in a transparent way. If 𝜆௎ is large relative to marginal changes in 

capital and operating costs, any design with non-zero annual unmet 𝑈෡(𝑥) becomes dominated, 

so the population drifts toward capacity mixes that allow the lower layer to meet demand over 

the year. A moderate 𝜆ா discourages chronic curtailment and nudges the search to right-size 

generation, inverter and storage so that production is absorbed efficiently. Because 𝑈෡(𝑥) and 

𝐸෠(𝑥) are annual aggregates rather than hourly quantities, the GA receives a stable fitness 

signal that reflects the whole year rather than hour-to-hour noise. 

There are equivalent theoretical variants of the same idea. An 𝜀-constraint form minimises 

 NPC(𝑥; 𝑦(𝑥)) subject to 𝑈෡(𝑥) ≤ 𝜀௎, 𝐸෠(𝑥) ≤ 𝜀ா. A guard-rail or hinge-penalty form replaces hard 

penalties by [⋅]ା = max(⋅ ,0), for example NPC + 𝜆௎ൣ𝑈෡(𝑥) − 𝜀௎൧
ା

+ 𝜆ாൣ𝐸෠(𝑥) − 𝜀ா൧
ା

, which is 

often numerically gentler than very large fixed penalties. A multi-objective view treats (NPC, 

𝑈෡, 𝐸෠ ) directly and then uses a scalarisation such as a weighted sum or an 𝜀-constraint to 

obtain a single fitness value. The penalised form in (equations 2-2 and 2-3) is precisely such 

a scalarisation. 

Weight selection should be unit consistent, and theory aligned. Normalising first, for example 

𝑈෡ = 𝑈/𝐷 and 𝐸෠ = 𝐸/𝐷 with 𝐷 the annual demand, yields dimensionless percentages and 

makes 𝜆௎ and 𝜆ா comparable across different cases. An ordering with 𝜆௎ ≫ 𝜆ா encodes the 

fact that unmet demand is more critical than curtailment. If raw kWh units are kept, the weights 

can be set in Euros/kWh as present-value costs, with 𝜆௎ approximating a value of lost load 

and 𝜆ா approximating the opportunity cost of curtailed energy. Robustness should be 

confirmed by simple sensitivity checks, for example scaling  𝜆 by factors of 1/10 , 1  and 10; 

designs that remain stable across this range indicate adequate selection pressure rather than 

artefacts of arbitrary scaling. 

It is helpful to be clear about the role split between layers. The lower layer uses 𝑐௎, 𝑐ா to resolve 

operational feasibility for a given 𝑥 and if feasibility exists the MILP will typically drive 𝑢௧ to 

zero at most hours. The upper layer then uses 𝜆௎, 𝜆ா on the annual aggregates to steer the 
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design toward regions where the dispatch can keep those slacks acceptably small throughout 

the year. Writing the upper-level objective as: 

min
௫∈𝒳

 NPC(𝑥; 𝑦(𝑥)) + 𝜆௎𝑈෡(𝑥) + 𝜆ா𝐸෠(𝑥) (2-4) 

The formulation above therefore provides a compact, literature-grounded mechanism by 

which annual aggregates of unmet and excess energy influence design search through 

penalty-weighted objectives, while preserving a clear separation between high-fidelity 

operational evaluation and global design exploration.  

While penalty-guided objectives reconcile operational fidelity with tractable design search, 

economic metrics alone do not capture the full sustainability implications of competing storage 

strategies.  This observation underscores the need to move beyond purely financial indicators 

like LCOE or net present cost. Metrics such as Energy Return on Investment (EROI) and 

Energy Stored on Invested (ESOI) provide a complementary and essential dimension to 

performance evaluation, shifting focus from “cost-effectiveness” to “energy effectiveness.” 

These life-cycle metrics quantify how much usable energy a system returns relative to what it 

consumes or embodies across its entire lifespan, including manufacturing, maintenance, and 

eventual decommissioning. In doing so, they introduce a distinct ‘energy life cycle’ perspective 

that is particularly well suited to multi-vector systems with layered energy storage and 

seasonal variability. 

For community energy planners, especially in remote or island settings, EROI and ESOI are 

not just abstract metrics, they are practical tools for identifying design pathways that maximise 

energy autonomy, system resilience, and environmental return. They help quantify how wisely 

energy is invested across competing storage strategies (batteries vs. hydrogen), and how 

operational patterns like curtailment or inverter clipping affect not just cost, but overall system 

sustainability. Moreover, they provide a language to anticipate performance bottlenecks, test 

design robustness, and guide transition strategies under real-world constraints. 

Building on the operational and optimisation models explored in this section, the next section 

introduces these energy-centric metrics, reviews their application in the HRES context, and 

evaluates their role in supporting long-term sustainability, especially for decentralised and 

community-based systems. 
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2.5 Life-Cycle Energy Assessment in Hybrid Renewable Systems  

A growing body of literature has applied life-cycle energy metrics, particularly Energy Return 

on Investment (EROI) and Energy Stored on Energy Invested (ESOI), to evaluate the long-

term sustainability of renewable generation and storage technologies. These indicators 

quantify the net energy performance of a system over its lifetime by relating usable energy 

output to the energy required for its manufacturing and deployment. However, in most 

applications, these metrics are computed under simplified conditions that overlook the 

dynamic interactions present in hybrid energy systems, especially at the community scale, 

where generation, demand, curtailment, and storage operate under fluctuating, sub-hourly 

profiles. This section reviews a broad body of contributions spanning various system scales 

and modelling approaches, with the aim of identifying common assumptions, methodological 

gaps, and their implications for community-scale hybrid energy systems. The studies reviewed 

are summarised in Table 2-5. 

The Energy Stored on Investment (ESOI) metric was first introduced at the device level in 

[112], which benchmarked seven storage technologies, including pumped hydro storage 

(PHS) and lithium-ion batteries, by comparing cycle life, efficiency, and depth of discharge. 

The methodology translated lifecycle energy data into clear ESOI ratios. For instance, the 

results showed that compressed air energy storage (CAES) and PHS had ESOI values of 

approximately 240 and 210, respectively, far exceeding battery-based technologies. However, 

the analysis was static, excluding balance-of-system elements and operational constraints 

pertinent to case study- or community-scale implementations [112]. 

While the ESOI was originally established as a device-level benchmark in [112], a subsequent 

study in [107] analytically coupled ESOI with generation-side Energy Returned on Investment 

(EROI), shifting the focus toward system-level energy logic [113]. This study developed a 

mathematical framework for integrating EROI and ESOI to identify conditions under which 

energy storage is preferable to curtailment. Based on literature averages, the authors derived 

an inequality that predicts whether storage increases or reduces net energy return. In a 

representative case, photovoltaic (PV) systems with an EROI of 8 could benefit from battery 

storage, while wind systems with an EROI of 86 would require storage technologies with an 

ESOI exceeding 700, effectively restricting viable options to pumped hydro [113]. While this 

formulation provides a theoretical boundary for storage viability, it omits practical 

considerations such as inverter efficiency, grid constraints, and real-world load dynamics, 

limiting its relevance for community-scale microgrids. 
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Table 2-5: Summary of key studies assessing life-cycle energy performance in hybrid renewable systems, highlighting EROI, ESOI, and curtailment-related outcomes across 
scales. Abbreviations: Li-ion = Lithium-ion Battery, PHS = Pumped Hydro Storage, CAES = Compressed Air Energy Storage, RHFC = Regenerative Hydrogen Fuel Cell, PtG = 
Power-to-Gas, EROI = Energy Return on Investment, ESOI = Energy Stored on Energy Invested, VRE = Variable Renewable Energy. 

Ref Study Storage Type Application Scale 
Metric 

Evaluated 
Base EROI EROI with Storage ESOI Mentioned 

Curtailment 
Scenario 

Considered 
Key Takeaways 

[114] 

Davidsson 
Kurland & 
Benson 
(2019) 

Lithium-ion Battery Residential EROI 
14–27 (PV-

only) 
Decreased by >20% 

Implicit (Battery 
Production Energy) 

Yes 

Storage increases self-con-
sumption but reduces overall 

EROI; in curtailment scenarios, 
EROI can fall as low as 7 

[113] 
Barnhart et al. 

(2013) 

Batteries (Li-ion, PbA, 
NaS), Pumped Hydro 
(PHS), Compressed 

Air (CAES) 

Grid-scale EROI + ESOI 
PV: ~8; Wind: 

~86 

PV improves; Wind 
decreases unless using 

high-ESOI storage like PHS 

Yes – detailed for 
each technology (Li-

ion: 32, NaS: 20, 
PHS/CAES: ~700–

800) 

Yes 

Developed inequality showing 
when storage is preferable; PV 
supports even low-ESOI stor-
age, wind requires high-ESOI 

like PHS 

[55] 
Pellow et al. 

(2015) 

Regenerative 
Hydrogen Fuel Cell 

(RHFC) 

Grid-scale 
(Wind/PV 

overgeneration 
mitigation) 

ESOI, Round-
trip Efficiency, 

EROI_grid 

PV: 8, Wind: 
~86 

PV: maintained/improved, 
Wind: reduced unless high 

ESOIₑ storage used 

RHFC: 59, Li-ion: 35, 
PHS: 830, CAES: 

1100 

Yes, directly 
compared us-
ing derived in-

equality 

RHFCs outperform batteries in 
ESOIₑ but lag in round-trip effi-
ciency; suitable for PV curtail-

ment recovery, less so for wind. 

[115] 
Ghiassi-

Farrokhfal et 
al. (2014) 

Li-ion, PbA, CAES 
Grid-scale (RE 

farms) 
EROI PV: 9, Wind: 18 

Varies by tech: PbA < 
baseline, Li-ion/CAES > 

baseline 

Implicit via storage 
parameters 

Yes (access 
line capacity 
constraint) 

PbA often lowers EROI; Li-ion 
and CAES improve it; solar re-

quires more grid capacity to stay 
above the net-energy cliff 

[116] 
Limpens & 
Jeanmart 

(2018) 
Battery, PHES, PtG 

National grid 
(Belgium) 

Gross and Net 
EROI 

~11 (wind), ~7 
(PV) 

Down to 5.37 
22–36 (batt), ~700 

(PHES) 
Yes, opti-

mized ~3.5% 

Storage-heavy 100% RE drops 
EROI; PtG needed beyond 40% 

RE 

[117] 
Palmer 
(2017) 

Li-ion, PHS 
Grid-scale 
(ERCOT) 

EROI ~20–30 
Li-ion: 0.8 at 60% VRE; 
PHS: ~7.2 at 60% VRE 

Implicit via embodied 
energy 

Yes (captured 
via storage, 

VRE surplus) 

PHS is energetically viable at 
high VRE levels; Li-ion loses via-

bility quickly as VRE share 
grows. 

[118] 
Dumas et al. 

(2022) 

Multiple (battery, 
power-to-gas, etc., 
implicitly via system 

modelling) 

National (Belgium, 
2035 energy 

system) 
EROI 8.9 

3.9 (when GHG targets are 
most stringent) 

No 

Yes (curtail-
ment affects 
storage and 
import deci-

sions) 

Demonstrates how deep decar-
bonization reduces system-wide 
EROI; imported renewable gas 
significantly affects EROI varia-
bility; highlights trade-offs in net 

energy vs. emissions goals. 

[119] 
Kittner et al. 

(2016) 

Mini hydro and PV 
hybrid systems in 

Thailand 

Community-scale 
mini-grid (village-

level) 
EROI 

Hydro: 41–78 
(up to 145–284 
with extended 
life), PV: 6–30 

Hybrid mini-grid: 21–62 No 
Indirectly, via 
integration of 
PV with hydro 

Demonstrates that hybrid mini-
grids can rival or exceed fossil 

grid EROI; rich in empirical data 
but limited treatment of load vari-

ability and network dynamics. 

[112] 
Barnhart & 

Benson 
(2013) 

Li-ion, NaS, PbA, 
CAES, PHS 

Grid-scale ESOI 
Not used 
directly 

N/A Yes (2–100+) 
No load 

model; yes 
curtailment 

ESOI highlights energy-intensity 
gaps between battery and geo-
logical storage; long cycle life 

critical for viability 

[120] 
Clerjon & 

Perdu (2018) 
Li-ion, PHS, CAES, 

P2P 
National (France) 

grid 
ESOI by time 

scale 
Not single-

valued 
Time-scale dependent Yes (per device) 

Indirect via re-
sidual de-

mand smooth-
ing 

ESOI > 1 for Li-ion (hours–
days), PHS (days–weeks), P2P 
(seasonal) if H₂ storage is free 
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To address temporal variability and storage applications across different timescales, a step 

forward was taken in [120], where a frequency-domain decomposition of residual demand was 

introduced.  The authors applied Haar wavelet decomposition to four years of residual demand 

data (load minus variable renewables), breaking it into seven-time bands ranging from 45 

minutes to one year. For each band, they extract three sizing metrics, peak power, energy 

capacity and cycle count, and use these to size storage options and compute ESOI ratio. Their 

dynamic ESOI profiles show that lithium-ion batteries peak at sub-daily scales (up to ESOI 8.0 

in the hybrid mix), pumped hydro excels at weekly scales (up to ESOI 7.2 in the wind mix), 

and power-to-gas-to-power becomes competitive at multi-day to seasonal scales (up to ESOI 

4.5 in the hybrid mix). Despite these valuable insights across hourly to seasonal scales, their 

analysis does not include detailed dispatch modelling or local network constraints, both of 

which are critical for community-scale applications. 

While wavelet analysis mapped storage technologies to temporal bands, more granular 

operational realism was introduced in [115], where physical constraints such as power limits, 

degradation, and export caps were embedded into ESOI-aware dispatch modelling. The 

authors evaluated the impact of energy storage on the life-cycle energy return of a 3 MW wind–

solar farm by imposing a fixed export limit on the feeder; any generation above this cap was 

diverted into storage [115]. Using a recursive state-of-charge model that captures 

charge/discharge power limits, round-trip efficiency, self-discharge losses, and 

depth-of-discharge constraints, they calculate system EROI as the long-term ratio of total 

delivered energy (direct generation to be exported plus discharged from the battery) to the 

embodied energy invested in both the PV farm and storage [115]. For a 10 MWh storage 

system, they demonstrate that lithium-ion batteries elevate the farm’s EROI above the critical 

threshold of 8 when the export limit is approximately 0.5 MW for wind and 0.9 MW for solar; 

compressed-air storage yields comparable gains, whereas lead-acid batteries never exceed 

an EROI of 8 under realistic export constraints. Although this work accurately captures storage 

physics (power limits, efficiencies, and cycle life) and applies export-or-curtailment logic at the 

grid scale, it does not model how stored energy could be dispatched into community loads 

[115]. 

Yet, the framework in [115] abstracted away from long-duration storage. In contrast, [55] 

shifted focus to seasonal balancing, comparing hydrogen, batteries, and pumped hydro across 

daily and multi-month surpluses. A net-energy framework was adopted to evaluate 

regenerative hydrogen fuel cell (RHFC) systems against lithium-ion batteries and pumped 

hydro storage for both daily and seasonal applications. In a reference case with a wind farm 

generating 5 MW of surplus power for eight hours per day, the authors sized an RHFC system 

comprising a 5 MW electrolyser, a 2.6 MW fuel cell, and 84 MWh of hydrogen storage, yielding 
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an ESOI of 59, compared to 35 for lithium-ion batteries and approximately 830 for pumped 

hydro storage. When scaled to handle four months of surplus electricity, the RHFC’s ESOI 

dropped into single digits with steel tanks, though improved to about 78 when using 

underground salt caverns [55]. These results effectively capture the energy trade-offs and 

round-trip efficiency penalties of hydrogen-based seasonal storage. However, the model in 

[55]  assumes a constant daily overgeneration profile and idealised storage durations, omitting 

real-world load variability, dispatch constraints, and temporal resolution, thus offering useful 

conceptual insight but lacking the operational depth required for practical community-scale 

hybrid energy systems. 

Building on these system-scale insights, a study re-centred the analysis on household-scale 

PV–battery systems, highlighting how storage oversizing erodes EROI even under modest 

self-consumption improvements [114]. They evaluate the energy impact of integrating a 12-

kWh lithium-ion battery with a 6 kWp residential PV system using hourly SAM simulations 

across five U.S. climates. In a “grid-available” case all excess PV is exported to an assumed 

infinite sink, whereas in a “curtailment” case surplus must charge the battery or be lost. In their 

work, system EROI is defined as the lifetime ratio of delivered electricity (direct 

load/export + battery-discharged) to embodied energy inputs for PV and battery components 

[114]. Results highlight that adding the 12 kWh battery boosts self-consumption from 40–66% 

to 72–93% but lowers EROI by 21% (27 to 21 in Arizona) and by 50% (14 to 7 in Alaska) under 

curtailment; doubling to 24 kWh further cuts EROI by 34% due to poor utilisation of oversized 

storage. While the study offers valuable insights into the autonomy–EROI trade-off across 

climates, its simplified demand representation and absence of grid-export constraints limit its 

applicability to more complex, community-scale systems [114]. 

Moving beyond residential systems, [119] evaluated real-world micro-hydro and PV projects 

in Thailand, comparing empirical life cycle EROI values and showing how hybridisation affects 

overall system energetics . They apply a comprehensive life cycle EROI framework to five run-

of-river mini hydro plants (1.15–5.1 MW each) in northern Thailand and to a 3 MWp grid-

connected solar PV system modelled in PVSYST, compiling embodied energy inputs for 

manufacturing, operation, and other phases over each technology’s lifespan [119]. They 

calculate EROI as the ratio of total lifetime electricity output to the sum of all energy 

investments, finding that mini hydro plants deliver EROI values between 41 and 78 under base 

assumptions, rising to 145–284 if plant life is extended to 100 years and transport energy 

halved, while PV systems range from 6–12 for crystalline modules to 11–30 for amorphous 

silicon [119]. When these resources are combined in hybrid mini-grid scenarios with PV 

contributing 20–50% of annual generation, the overall mini-grid EROI falls into the 21–62 

range, rivalling or exceeding that of conventional coal-based grids (EROI ≈ 46). While the 
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study offers detailed life cycle accounting at the village scale, its treatment of local demand 

and network dynamics is simplified, limiting its ability to fully capture operational realities in 

community-based systems. 

While authors in [119] used real-world infrastructure data, [117] returned to a modelled 

approach, introducing a reliability-constrained system EROI framework that captures 

diminishing returns from increased storage capacity. They build a system level framework 

tying net energy accounting to reliability by defining inclusive EROI as gross lifetime energy 

from renewables plus storage divided by their embodied energy, aligned with a loss of load 

expectation (LOLE) of 0.1 days per decade [117]. Using three years of hourly loads (2010–

2012) and wind/solar profiles, they runs a capacity expansion and dispatch model that 

minimises using linear programming embodied energy under hourly balance, state of charge 

dynamics and reliability constraints, drawing inputs from assumed EROI ratios (30 wind, 25 

PV) and energy intensities (400 MJ/kWh PHS, 960 MJ/kWh Li ion) [117]. The EROI curves 

show steeply diminishing returns: early storage yields high marginal gains but beyond modest 

renewable shares storage’s embodied energy drags system EROI below practical thresholds, 

for instance 7.2 with PHS and 0.8 with Li ion over fifty years. Despite its rigor, the model 

abstracts from local grid dynamics and assumes uniform reliability constraints, making it less 

suited for capturing the operational diversity and control needs typical of community-scale 

systems. 

However, the model in [117] was still limited in spatial detail. Researchers in [116] introduced 

a geographically resolved, hourly-optimised national model, illustrating how high renewable 

shares drive down net EROI without diverse storage. They build an hourly-resolution, 

cell-based linear optimisation model of the Belgian electricity system, split into mainland and 

offshore cells, to size and dispatch a mix of PV, wind, batteries, PHS and power-to-gas (PtG) 

to maximise net EROI [116]. The model’s decision variables include hourly power flows 

(generation, storage charge/discharge, imports/exports) and installed capacities (PV, wind, 

batteries, PHS, PtG), while constraints enforce hourly energy balance, transmission and 

pipeline capacities, storage state-of-charge dynamics (round-trip efficiency, power limits, 

depth-of-discharge, self-discharge, cycle life), minimum PtG capacity factor, and periodicity of 

storage (start-end SoC match) [116]. They distinguish gross EROI, total renewable generation 

including curtailed energy over embodied energy of renewables, from net EROI, which 

subtracts the energy costs and losses of storage and curtailment and cast EROI maximization 

as a linear program. Applied across scenarios from 10 % to 100 % renewable share (with 

imports fixed at 10 %), the optimised net EROI falls by up to 50 % as storage and curtailment 

grow, batteries driving the steepest decline, while a diverse storage portfolio becomes 

indispensable beyond = 40 % renewables [116]. While this top-down approach offers valuable 
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insights into system-level energy return dynamics, its spatial and operational abstractions limit 

its resolution for analysing the finer-grained, context-specific behaviours of community-scale 

hybrid systems. Notably, as in [111], [116] evaluate storage options in isolation, examining 

batteries, PHS and PtG individually, rather than exploring potential synergies from their 

simultaneous deployment. 

Finally, the work in [118] built upon this with a full-sectoral model that directly embeds EROI 

into a national-scale optimisation, marking the methodological frontier, though at the cost of 

sub-hourly resolution and community-level relevance[118]. Their study represents a 

comprehensive endpoint in this review. They embed EROI directly into a comprehensive, 

multi-sector, hourly-resolved optimisation of Belgium’s entire energy system, thereby 

combining the temporal granularity seen in earlier power farm and microgrid studies with 

national-scale scope. By framing their model as a linear program that maximises final-stage 

EROI under real-world constraints, hourly balances, storage dynamics, emissions caps, and 

technology limits, they show how deep decarbonisation decisions (e.g. importing renewable 

gas) can halve system EROI even while satisfying service demands [118]. A global sensitivity 

analysis reveals that imported renewable gas accounts for over two-thirds of the uncertainty 

in system EROI, and that cutting emissions by 80% reduces it from 8.9 to 3.9, suggesting 

potential socio-economic implications of deep decarbonisation. However, like other top-down 

models, it abstracts away sub-hourly operational dynamics and local grid constraints that are 

vital for distributed energy systems [118]. As such, it illustrates the potential of integrating net 

energy metrics into whole-system planning, while also indicating the relevance of 

complementary bottom-up models to resolve the local dynamics essential for community-scale 

systems. 

The reviewed studies collectively trace the methodological evolution of life-cycle energy 

metrics from static, device-level ratios to increasingly integrated, system-wide evaluations. 

Early work introduced ESOI as a benchmark for comparing storage technologies [112], while 

subsequent research extended this concept by linking it analytically to generator EROI [113]. 

However, both relied on static assumptions and excluded dynamic operational features such 

as curtailment, inverter losses, or dispatch flexibility. 

The field advanced by decomposing residual demand into temporal bands, aligning ESOI to 

the time scales best served by specific storage types [120]. Further developments 

incorporated sub-hourly dispatch constraints, and round-trip efficiency, illustrating how export-

limited systems dynamically alter EROI [115]. Seasonal hydrogen-based storage was 

introduced, showing that ESOI collapses under long-duration assumptions unless supported 

by low-energy-intensity storage such as hydrogen underground salt cavern [55].  Then authors 
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in [114] demonstrated how oversizing storage in residential PV-battery systems reduces EROI, 

especially under curtailment. Further scaling the scope,  [119] calculated empirical life cycle 

EROIs for real-world hybrid mini-grids in Thailand, while [111] introduced system-level EROI 

linked to reliability constraints, revealing diminishing returns as storage capacity expands. 

[116] embedded net EROI into a national linear optimisation model, and [118] extended this 

by integrating final-stage EROI into a multi-sector MILP for Belgium under emissions 

constraints. 

Collectively, the reviewed studies demonstrate a gradual shift in the application of life-cycle 

energy metrics, from static, technology-specific indicators to more integrated, system-level 

evaluations. Nonetheless, most applications treat EROI and ESOI as static outcome metrics, 

typically calculated after fixed system designs are established, rather than as tools for 

exploring trade-offs or informing iterative design adjustments within broader techno-economic 

planning frameworks. Operational factors such as inverter sizing, contracted grid exchange 

limits, and temporal resolution are often treated simplistically or omitted entirely. Moreover, 

existing work tends to examine storage technologies independently, evaluating batteries or 

hydrogen systems separately, rather than analysing their combined use within hybrid 

configurations. Few studies assess how different energy storage pathways interact with 

curtailment, grid exports, or demand patterns to shape overall energy life cycle costing 

performance. The next section discusses the knowledge gaps that must be addressed to fully 

align energy metrics with the operational and planning needs of community-scale hybrid 

renewable systems. 

2.6 Literature Gap 

The literature on HRES, particularly those integrating battery and hydrogen storage, has 

advanced significantly in terms of optimisation algorithms, operational strategies, and energy 

sustainability metrics. However, several methodological limitations persist and continue to 

affect the practical relevance and applicability of most frameworks, especially in community-

based and islanded contexts with complex operational constraints. 

A notable shortcoming is the static treatment of inverter sizing and contracted grid power. In 

several studies, including [86], [87], [88], inverter capacities are fixed during design-phase 

optimisation, without being dynamically linked to system costs or grid interaction dynamics. 

Even in detailed MILP-based models such as those in [43] and [98], inverter constraints are 

simplified to infinite throughput or constant efficiency penalties without accounting for clipping 

losses or cost-driven trade-offs. Contracted grid power is similarly simplified; for instance, [69] 

assumes an unconstrained grid exchange, neglecting real-world cost penalties and capacity 

limits. Even when grid contracts are considered, such as in[70], they are only evaluated after 
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the optimisation, rather than being embedded within the optimisation framework. This 

disconnection can lead to PV oversizing or underestimation of curtailment, reducing the 

practical value of the derived system configurations. 

Operational dispatch modelling also remains predominantly static. Several studies, including 

[90], [89], and [88], apply heuristic dispatch logic, which cannot adapt to load variability and 

renewable generation availability. Although more advanced control strategies are evident in 

the works of [104] and [105], these remain uncommon. Even when predictive frameworks like 

MPC are employed in system sizing, integration with load shifting or demand response 

remains limited, as demonstrated by [43], where it was applied only in an off-grid system. 

Consequently, most models limit the ability to capture the potential of flexible loads to reduce 

peak demand or storage requirements, especially under tariff-driven operating constraints. 

Hybrid storage dynamics are often oversimplified. While many studies simulate battery-

hydrogen combinations, their interactions are usually modelled on a common DC bus or 

through idealised converters. The works by [99] and [86] use simplified energy balances where 

AC and DC flows are aggregated, omit AC/DC prioritisation and dynamic switching, or inverter 

constraints. Even in multi-bus frameworks like those of [103], nodal interactions are treated 

abstractly, and inverter capacities are not co-optimised across storage pathways. This 

abstraction may reduce the fidelity of dispatch simulations, particularly for systems that rely 

on dynamic switching between battery and hydrogen storage to cover short- and long-duration 

deficits. 

Further, life-cycle energy performance metrics such as EROI and ESOI are typically derived 

from fixed system designs, with minimal operational coupling. Similar studies like [55], [112], 

[117] present valuable methodologies but apply them under idealised load and generation 

profiles. Researchers in [115] made important progress by incorporating grid export 

constraints and battery degradation, but even this work isolates storage dynamic dispatch 

decisions.  Similarly, while [114] demonstrate how storage oversizing can reduce EROI, but 

do not link these outcomes to dispatch or grid constraints. As a result, energy return metrics 

are often used as post-optimisation diagnostics rather than being integrated into design 

decisions, limiting their utility for real-world HRES planning. 

Across these themes, there is a clear convergence of gaps: inverter sizing is often omitted or 

simplified; grid contracts are rarely embedded within the optimisation loop; operational control 

remains predominantly heuristic; and energy performance metrics are decoupled from system 

dynamics with hybrid storage streams. These limitations are particularly consequential for 

small-scale, islanded, or tariff-sensitive communities, where marginal changes in design or 

dispatch can yield outsized impacts on reliability and cost. This thesis addresses these 
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limitations by proposing a unified optimisation framework that embeds inverter sizing, grid 

constraints, and adaptive dispatch into both techno-economic and energy return evaluations, 

tailored specifically to the operational and planning realities of community-scale hybrid 

renewable systems. 

In summary, the key knowledge gaps identified in the literature include: 

 The absence of explicit inverter sizing co-optimisation within integrated sizing 

and dispatch frameworks. 

 Inadequate integration of contracted grid exchange constraints and dynamic 

tariff structures into optimisation routines. 

 The limited integration of rolling-horizon dispatch strategies, including flexible 

load management within system sizing frameworks. 

 Insufficient modelling of AC/DC nodal behaviour and hybrid battery–hydrogen 

storage interactions at operational time scales. 

 The use of static EROI and ESOI metrics that are not dynamically integrated into 

energy dispatch and planning models with hybrid storage streams. 

These gaps collectively underscore the necessity for a comprehensive, integrated 

methodological framework. The subsequent chapters in this thesis propose and validate novel 

strategies explicitly designed to simultaneously resolve these gaps, enabling the practical 

deployment of effective, sustainable, and economically viable hybrid renewable energy 

solutions in island-based communities. 
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3 System Sizing of Renewable Fuel Cell Battery 
Storage Systems with Hourly Dispatch Optimisation 

3.1 Introduction 

This chapter presents a novel approach for sizing and operating renewable-based hybrid 

energy systems, using a nested Genetic Algorithm (GA)–Mixed Integer Linear Programming 

(MILP) framework. Building on the foundations of optimisation techniques introduced in 

Chapter 2, here the GA conducts a global search over potential capacities, photovoltaic (PV), 

battery banks, and fuel cells, while the MILP subproblem enforces realistic hour-by-hour 

dispatch constraints across a full year. Combining a high-level search with thorough 

operational cycles helps the layered approach to find reasonably priced system designs that 

is applied on real-world case study of resource and load patterns. 

The chapter compares this annual GA-MILP approach versus two often used, shorter-horizon 

approaches. First is a straightforward rule-based load-following scheme, which makes 

reactive decisions using local hourly steps only. Second is the well-known HOMER Pro tool, 

widely used in microgrid planning. These comparisons offer perspective on how long-horizon 

foresight compares to simpler, hour-to-hour logic. Recognising that an annual, single-horizon 

view can be optimistic in practical terms, because real systems often operate with rolling 

forecasts or limited foresight, this framework is further improved in Chapter 4.  
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3.2 System Description and Governance 

3.2.1 Physical Configuration of the REC 

The integrated energy system presented in Figure 3-1 is designed to combine renewable 

energy production assets focused on PV, and hybrid energy storage units at the community 

level with a connection to the grid at a nodal or transformer level. Three main power flow types 

of DC power, AC power, and Hydrogen Energy flows are distinguished through different 

colours in the figure. On the DC side, the PV system, battery, and PEM fuel cell are connected 

to a common DC bus whose power is balanced on the DC bus at each time step with the 

ability to invert from DC to AC when required (one direction). On the AC side, the grid interacts 

bidirectionally with the AC bus, enabling energy exchange based on the load demand, 

generation, and storage conditions, while also responding to a typical six-period tariff structure. 

Different physical constraints, such as maximum contracted power and the three phases being 

equally balanced since power levels are high, are represented in this study as aggregated 

power. On the hydrogen side, the electrolysers are powered with AC electricity converting 

power to hydrogen to store in a hydrogen tank that has a regenerative hydrogen design, 

feeding this stored hydrogen to the fuel cell when needed.  The complex energy system 

requires accurate modelling of the physical system behaviour, constraints, and technical and 

economic performance of an optimisation problem, to ensure precise planning for energy 

communities and accurately gauge investment scales.  

Figure 3-1: Energy flow for the integrated hybrid energy system and its energy vector. 
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3.2.2 Governance, Contracted-Power Limits, and Tariff Context 

All distributed energy resources (DER), building-mounted PV arrays, the communal lithium-

ion battery, electrolyser, and fuel-cell are dispatched by a single centralised community-level 

Energy Management System (EMS). The EMS executes the MILP schedules generated by 

the optimisation engine, refreshes forecast each hour, and issues set points to inverter and 

BESS controllers.  In regulatory terms, the EMS functions as the aggregator under Spain’s 

Royal Decree 244/2019 (Art. 11), which enables collective self-consumption and surplus 

compensation for organized communities [121], [122], [123]. Physically, the Renewable 

Energy Community (REC) is grid-connected at a single point-of-common-coupling (PCC) on 

the low-voltage side of transformer. All community participant buildings share this PCC, which 

is constrained by a contracted power limit 𝑃௚௥
୫ୟ୶ ∈ [50,100] kW that the MILP selects to 

minimise the overall NPC, subject to the step-wise access-charge schedule in 3.3.2.2.  

Because the optimiser restricts 𝑃௚௥
୫ୟ୶ to values below 100 kW, the REC remains in the 

simplified collective self-consumption export bracket [121]. Any surplus is credited by the 

supplier/retailer at the applicable price (0.051 €/kWh reference value here), capped each 

billing period (monthly) by the energy imported in that same period. There is no carry-over of 

credits between periods. The DSO provides metering and allocation to participants; settlement 

is performed by the supplier, as shown in Table 3-1. The MILP enforces that cap for both 

import and export and prices energy using the six-period 3.0 TD tariff that is explained in 

section 3.4.2. Although the present study is a planning and sizing exercise, it incorporates 

detailed operational constraints to ensure that the chosen capacities are technically feasible 

under real dispatch conditions. Internal trading layer is treated as a virtual ledger applied as 

described in the energy community definition in section 1.2; because it does not influence 

technical dispatch and sizing at community scale, it is kept outside the MILP to avoid 

combinatorial growth, a structure consistent with Spanish LEC pilot projects [124], [125], [126]. 

With the physical architecture and regulatory boundaries established, the next section 

compares alternative sizing-and-dispatch strategies that operate within these constraints. 

Table 3-1: Key Operational Assumptions and Regulatory References for REC Model 

Element Specification in Model Purpose / relevance Regulatory [Ref] 

Controller type Centralised community EMS  Single decision-maker — 

Aggregator role 
EMS as REC representative; supplier settles 

compensation, DSO handles metering/allocation 

Manages grid contracts and 

surplus credits 
RD 244/2019 Art. 11 [121] 

Grid interface One PCC, bidirectional smart meter on LV side 
Defines where imports/exports are 

constrained 

UNE EN 50549 1 / general PCC 

definition [127] 

Contracted limit Optimised variable, range 50–100 kW 
Keeps REC ≤ 100 kW for simplified 

compensation 
RD 244/2019 Art. 4 [121] 

Tariff class Six-period 3.0 TD tariff for imports Mandatory threshold > 15 kW CNMC Circular 3/2020 [128] 

Surplus 

remuneration 

Simplified compensation at 0.051 €/ kWh (2022 

average), capped at annual imports 
Provides realistic export pricing RD 244/2019 Art. 7 [121] 
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3.3 Comparative Methods for Dispatch and Sizing 

3.3.1 Overview of Comparative Framework 

In this section, a detailed structure of the energy system including PV systems, batteries, and 

fuel cells is presented. These components are modelled to facilitate realistic, grid-connected 

operational strategies for commercial microgrids. Figure 3-2 shows the optimisation approach 

where the global search for the minimum Net Present Cost (NPC) interacts with the local loop 

by passing different component sizes 𝐶௥ to find the minimum grid operation 𝑂𝑝𝐸𝑋.  

For a thorough evaluation in this section, two different energy management (local loop) 

methods are compared: 

1. GA-Yearly Horizon: Single-year, hourly energy management unit commitment.   

2. GA-Load Following (Rule-based): Utilises GA with traditional load-following, rule-

based energy management validated with HOMER Pro.  

The Load Following method adopts a rule-based, heuristic approach to energy management. 

It relies on predefined operational logic to make decisions based on the current state of 

generation, demand, and storage at each time step. The method prioritises local energy 

consumption, followed by battery usage, hydrogen conversion, and grid exchange, depending 

on resource availability. In contrast to the GA-Yearly Horizon method, this approach does not 

incorporate long-term optimisation but operates reactively in hourly increments. While it offers 

a simpler and more intuitive control structure, it may not capture potential cost-efficiency 

improvements that could arise from long-horizon coordination. To facilitate validation and 

benchmarking, this method is implemented in Python and cross-compared using HOMER Pro, 

a widely recognised microgrid simulation tool. 

Figure 3-2: Nested optimisation approach with progressive parameter adjustment 
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3.3.2 GA-Yearly Horizon Method 

A layered bi-layer optimisation strategy was developed, combining a GA with MILP to optimise 

an energy system over a single year. Figure 3-3 illustrates the flowchart of the proposed 

layered optimisation framework. In the global loop, the GA generates a population of candidate 

solutions at each generation, where each individual encodes capacity values for system 

components, solar PV, battery storage, contracted power, and inverter systems, treated as 

decision variables. These capacity sets are passed to the MILP-based local loop, which 

performs hourly dispatch optimisation over a single representative year.  The MILP determines 

optimal hourly scheduling decisions by minimising operating costs while satisfying system 

constraints under a six-period time-of-use tariff. It models energy flows among generation 

sources, storage units, and grid interaction to meet the hourly electrical demand. The MILP 

returns performance indicators, including energy shortages and curtailment, which are used 

to assess the feasibility and efficiency of each GA-generated configuration. Following MILP 

convergence, the GA evaluates each individual’s fitness based on a full 25-year discounted 

cash flow analysis. Although the MILP simulates only a single representative year, its outputs, 

hourly energy balances, grid usage, and storage behaviour, are extrapolated over the project 

horizon. This allows the GA to estimate Net Present Cost (NPC) and Levelized Cost of 

Electricity (LCOE) while iteratively refining system capacities to converge toward a technically 

robust and economically optimal configuration. Although the MILP evaluates system 

performance over a single representative year, this annual operation is assumed to repeat 

consistently over the full 25-year project horizon. This assumes load and generation patterns 

are statistically representative and remain stable over time a simplification that balances 

fidelity and computational demands. This approach effectively decouples long-term 

investment planning from short-term operational optimisation, enabling a practical trade-off 

between dispatch resolution and computational tractability. In this study a population-based 

Genetic Algorithm is used as the global optimiser for capacity sizing. Population search 

samples multiple attraction basins in parallel, while selection, crossover and mutation 

progressively assemble high-performing gene combinations. Classical schema results explain 

why short, fit building blocks tend to proliferate under moderate variation, and evolutionary 

algorithms converge in probability to globally optimal solutions under mild conditions when 

computational effort is unbounded. In practice, near-optimality is achieved by maintaining 

diversity, preserving elites, and coupling the GA to a deterministic MILP evaluator that 

provides stable, near-optimal dispatch costs within a solver tolerance. This coupling reduces 

fitness noise and improves selection decisions, so the outer search intensifies around 

genuinely good designs rather than artefacts of noisy evaluation. The following section 
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presents the implementation details of the GA global loop, including its objective function, 

decision variables, and the financial modelling structure. 

Figure 3-3: Proposed Benchmarking GA-Yealy Horizon Methodological for two layers Grid Time of Use 
driven Optimisation approach. The detailed algorithm implementation is provided in Appendix 9.2. 
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3.3.2.1 Genetic Algorithm (GA): Upper Loop for Capacity Sizing 

This study employs a comprehensive 25-year cash flow model that accounts for capital 

investment, grid operating expenses, maintenance, component replacement, and salvage 

value for the hybrid energy system. Grid prices are escalated annually over the 25-year 

planning horizon to reflect realistic operational cost trends. To evaluate the present value of 

future cash flows, all costs and revenues are discounted using a real discount rate derived 

from the nominal interest rate and expected inflation. The optimisation process uses NPC as 

the primary objective function, guiding the search for the most cost-effective system 

configuration. Following optimisation, the LCOE is calculated as a secondary financial metric 

to assess the economic performance of the resulting design. Together, this cash flow analysis 

provides a comprehensive basis for financial evaluation in community-scale energy systems. 

Metaheuristic methods such as Particle Swarm Optimisation (PSO) and GAs are often used 

because their resilience in generating global solutions for complicated, nonlinear problems, 

such as those found in to the system modelling and cashflow analysis generated [129], [130]. 

In this study, a single-objective GA is implemented to minimise the NPC of the energy system. 

The algorithm is developed using DEAP (Distributed Evolutionary Algorithms in Python), an 

open-source Python framework for evolutionary computation. DEAP has been widely applied 

in energy system optimisation, including in [131], [132], [133]. The GA performs a global 

search across capacity sizing variables and evaluates each candidate’s NPC to identify the 

most cost-effective configuration. Guided by principles of natural selection, the GA operates 

as the upper-level loop in the optimisation framework. Equation (3-1) defines the GA decision 

variables as follows: 

𝐶௥ = ൣ𝑃௉௏ , 𝑁௕௧ , 𝑃௜௡௩ , 𝑃௚௥, 𝑃௙௖ , 𝑃௘௟ , 𝑃ு்൧ (3-1) 

Where 𝑃௉௏ is the photovoltaic capacity in (kW), 𝑁௕௧  is the number of battery modules, each 

with a commercially available capacity of 4.8 kWh, 𝑃௜௡௩  is the inverter capacity in kW, 𝑃௚௥ is the 

maximum power that can be bought or sold to the grid in kW, 𝑃௙௖ is the fuel cell electrical power 

output in kW, 𝑃௘௟ is the electrolyser electrical power input in kW, and finally 𝑃ு் is hydrogen 

tank capacity in kg. The GA fitness function minimises the net present cost of the system 

during the project’s lifecycle and its calculated using the equation (3-2):  

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝐶ே௉஼ = ෍ ෍ ൫𝐶𝑎𝑝𝐸𝑋௞,௧ + 𝑂𝑝𝐸𝑋௧ + 𝑅𝑒𝑝𝐸𝑋௞,௧ − 𝑅𝑒𝑐𝑉𝑎𝑙௞,௧൯ ∙

ோ೛ೝ೚ೕ

௧ୀ଴௞ ∈ ஼௥

𝐷௧ (3-2) 

Where 𝐶ே௉஼  is the total net present cost of the system, expressed in euros (€), accumulated 

over the entire project duration defined by 𝑅௣௥௢௝ years, 𝐶𝑎𝑝𝐸𝑋௞,௧ represents the capital 
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expenditure for component at time 𝑡, 𝑂𝑝𝐸𝑋௧ is the operational expenditure at time 𝑡, including 

maintenance, 𝑅𝑒𝑝𝐸𝑋௞,௧ is the replacement expenditure; and 𝑅𝑒𝑐𝑉𝑎𝑙௞,௧ denotes the recovery 

(salvage) value of component 𝑘 near the end of the project. 𝐷௧ is the discounted factor at time 

𝑡. The cash flow analysis is computed for each component 𝑘 over each year 𝑡 of the project. 

The discount factor 𝐷௧ is calculated using the following equation:  

𝐷௧ =  
1

(1 + 𝑖)௧
 (3-3) 

Where the discounted factor at time 𝑡 is calculated for each year, 𝑖 is the real discount rate 

considering inflation rate. The real discounted rate 𝑖 is calculated using the following equation:  

𝑖 =
𝑖ᇱ − 𝑓

1 + 𝑓
 (3-4) 

Where 𝑖ᇱ is the nominal discounted rate and 𝑓 is the expected inflation rate.  The capital 

recovery factor 𝐶𝑅𝐹 is calculated using the following equation:  

𝐶𝑅𝐹 =  
𝑖 ∙ (1 + 𝑖)ோ೛ೝ೚ೕ

(1 + 𝑖)ோ೛ೝ೚ೕ − 1
 (3-5) 

Where the 𝐶𝑅𝐹 is used to convert NPC to annualised payments. Near the end of the lifetime 

of the project, the recovery value of an equipment, 𝑅௩ is considered and the following equation 

is used to calculate it:  

𝑅௩ = 𝐶ோ௘௣

𝑇௥௘௠

𝑇com 
 (3-6) 

Where 𝐶ோ௘௣ is the replacement cost of an equipment, 𝑇௥௘௠ is the component remaining life at 

the end of the lifecycle of the project, and 𝑇com is the expected lifetime of the component.  The 

levelized cost of electricity is calculated using the following equation:  

𝐿𝐶𝑂𝐸 =
𝐶ே௉஼ ∙  𝐶𝑅𝐹

E௟௢௔ௗ
 (3-7) 

To enhance the financial analysis, two financial metrics are computed: Discounted Payback 

Period (DPP) and Internal Rate or Return (IRR). The DPP indicates the number of years 

required for the cumulative discounted cash flow difference between the base case and the 

optimised system to become positive. The IRR represents the discount rate at which the Net 

Present Value (NPV) equals zero, thereby reflecting the effective return on investment. A 

higher IRR suggests a more profitable project and serves as a key indicator of financial 

viability, particularly useful when comparing alternative investment options.  The PV model is 

integrated into the GA upper loop and implemented in detail, with hourly solar generation 
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simulated for each candidate capacity configuration. This generation profile is passed to the 

MILP as available energy to be balanced against the load and storage components. In 

contrast, the operational behaviour of the electrolyser, fuel cell, battery, and hydrogen tank are 

modelled in the MILP operation layer using fixed component efficiencies. Each of these 

technologies is represented with a constant conversion efficiency (e.g., electrolyser, fuel cell, 

battery), where energy losses are applied deterministically at each hour based on defined 

rates. A full description of MILP operations and component modelling is provided in section 

3.3.2.2.  

The PV array output every time step t is calculated using Duffie–Beckman model with 

temperature correction as follows [134]: 

𝑃௉௏ି output  [t] = 𝑃௉௏  𝑓௉௏ ቆ
𝐺௠௢ௗ௨௟௘ [𝑡]

𝐺்,ௌ்஼
ቇ ∙ [1 + 𝛼௉(𝑇௖[t] − 𝑇ௌ)] (3-8) 

In this equation, 𝑃୔୚-output [𝑡] represents the actual electrical power output of the PV system at 

time step 𝑡. The term 𝑃௉௏ denotes the rated power output of the PV module under standard 

test conditions (STC), while 𝑓௉௏ is a system-wide derating factor accounting for losses such 

as soiling, shading, wiring resistance, and inverter inefficiencies. The variable 𝐺module [𝑡] is the 

effective solar irradiance incident on the tilted module surface, and 𝐺STC  is the standard 

irradiance under test conditions. The final bracketed term corrects for the impact of 

temperature on power output, where 𝛼௉ is the temperature coefficient of power, 𝑇௖[𝑡] is the 

cell temperature at time 𝑡, and 𝑇ௌ is the reference cell temperature under STC. The model 

captures both irradiance-dependent scaling and temperature-induced deviations in panel 

efficiency. To determine 𝐺module [𝑡], which reflects the irradiance on the tilted plane of the PV 

module, the following transformation is applied to the global horizontal irradiance [134]: 

𝐺module [𝑡] = 𝐺்[𝑡] ⋅
sin(𝛼 + 𝛽)

sin(𝛼)
 (3-9) 

Where 𝐺்  [𝑡] is the global horizontal irradiance measured in kW/m2 at time step 𝑡, 𝛼 is the 

solar altitude angle and 𝛽 is the tilt angle of the single PV module. The solar altitude angle 𝛼 

is itself computed based on the geographic location and time of year using the expression 

[134]:  

𝛼 = 90∘ −  ∅ − 𝛿 (3-10) 

Where ∅ is the site’s geographic latitude, and 𝛿 is the solar declination angle, which depends 

on the day of the year, and it’s calculated as following:  
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𝛿 = 23.45 ⋅ sin ቆ
360

365
⋅ (284 +  d )ቇ (3-11) 

Where d is the number of the day of the full year, ranging from 1 to 365 days. The PV cell 

temperature 𝑇௖[t] at each time step is estimated using the following semi-empirical formulation 

[134]:   

𝑇௖[𝑡] =

𝑇ambient [𝑡] + ൫𝑇௖,ேை஼் − 𝑇௔,ேை஼்൯ ൬
𝐺module [𝑡]

𝐺ேை஼்
൰ ቈ1 −

𝜂௠௣,ௌ்஼൫1 − 𝛼௉𝑇௖,ௌ்஼൯
𝜏𝛼

቉

1 + ൫𝑇௖, NOCT − 𝑇௔, NOCT ൯ ൬
𝐺module [𝑡]

𝐺NOCT 
൰ ቂ

𝛼௉𝜂௠௣,ௌ்஼

𝜏𝛼 ቃ
 

(3-12) 

Where 𝑇ambient [𝑡] In this expression, 𝑇ambient [𝑡] is the ambient air temperature at time 𝑡. The 

terms 𝑇௖,୒୓େ୘ and 𝑇௔,୒୓େ୘ represent the nominal operating cell temperature and corresponding 

ambient temperature under NOCT (Nominal Operating Cell Temperature) conditions, 

respectively. 𝐺NOCT  is the reference irradiance used in NOCT testing procedures. The quantity 

𝜂௠௣,ୗ୘େ indicates the module's peak power efficiency under standard conditions, and 𝛼௉ is the 

temperature coefficient of power, reflecting the sensitivity of power output to temperature 

deviations. 𝑇௖,ୗ୘େ is the reference cell temperature at STC, and 𝜏𝛼 encapsulates the combined 

effect of the module's optical properties, specifically transmittance and absorptance. This 

thermal model accounts for the non-linear dependency of module temperature on irradiance 

and provides a realistic estimation of cell temperature, which significantly impacts power 

generation accuracy.  

Table 3-2 summarises the PV model parameter assumptions used in this work. Selection 

rationale varies by parameter type: industry-standard assumptions are used where high 

consensus exists (e.g., optical loss factor, derating factor); empirical approximations are used 

where grounded in prior system deployments (e.g., tilt angle = latitude); and manufacturer 

datasheets inform performance-related parameters (e.g., module efficiency, temperature 

coefficient). This mixed-source approach ensures realistic modelling while maintaining model 

transparency and traceability. 

Table 3-2:  Key design and standard parameters employed in the PV output and cell temperature modelling. 

Sym-
bol 

Parameter Unit Value Source Source Type 

𝑓௉௏ Derating factor - 0.8 [135] Industry default assumption 

𝛽 Panel tilt angle Degrees 38.7 [136] Empirical value 

𝜂௠௣,ௌ்஼ Module efficiency at STC % 20 [137] Manufacturer datasheet median. 

𝜏𝛼 Optical loss factor - 0.9 [42] Industry default assumption 

𝛼௉ Temperature coefficient 
of power 

%/°C -0.45 [138] 
Industry default assumption 
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3.3.2.2 MILP for Hourly Dispatch Optimisation 

The unit commitment problem is formulated as a MILP model to minimise operational costs at 

the lower optimisation layer of the GA–Yearly Horizon framework. The MILP model operates 

on a fixed hourly time step (Δt = 1 h), meaning all energy flow quantities are expressed in 

kilowatt-hours (kWh). For consistency with the MILP literature, power-based symbols are 

retained under the assumption of consistent units across all hourly intervals. The model is 

executed over an annual time horizon 𝑡 ∈ 𝒯, encompassing hourly time steps denoted by: 

𝒯 = {0,1, 2,…,8759} 3-13) 

The objective of the MILP is to determine optimal dispatch decisions that minimise total grid-

related expenditures over the year. This includes electricity purchases from the grid, revenue 

from energy exports, and penalties associated with unmet demand or curtailed excess energy. 

The objective function is presented in equation (3-14) as follows:  

 min
all variables 

෍  

௧∈𝒯

൫𝜋buy  [𝑡] ⋅ 𝑃grid, buy [𝑡] − 𝜋sell [𝑡] ⋅ 𝑃grid, sell[𝑡] +  penalty unmet 

⋅ 𝐸unmet [𝑡] +  penalty excess ⋅ 𝐸excess [𝑡]൯ 
(3-14) 

Where 𝜋buy  [t] and 𝜋sell [t] represent the electricity buying and selling prices in €/kWh, and  

𝑃grid, buy [t] and  𝑃grid, sell[t] represent the respective power exchanges in kWh. The terms 

𝐸unmet [t] and 𝐸excess [t] denote unmet load and surplus generation, which are penalised to 

discourage infeasible dispatch.  

Slack penalties are applied in the objective to guarantee feasibility while strongly discouraging 

unmet demand and excessive curtailment. A penalty of 1000 €/kWh is applied to unmet energy 

( penalty unmet ), and 100 €/kWh to excess generation 𝐸excess [𝑡]. These magnitudes were 

selected through a grid-sweep sensitivity analysis over both penalty types, tested on 21 

deliberately stressed “edge-case” system designs. Edge cases push the MILP to invoke unmet 

or excess slack variables by constraining capacities to extreme but feasible levels (e.g., very 

low battery, undersized inverter, large PV with small hydrogen storage), thus revealing the 

minimum penalty values that still eliminate unnecessary slack use. Results Table 3-3 show 

that guaranteeing the minimum attainable unmet energy across all edge cases requires 1000 

€/kWh, while only 10 €/kWh is needed to achieve minimum excess. a ratio of 10:1 is retained 

between unmet and excess penalties, consistent with common MILP practice in energy and 

industrial optimisation [139], [140], by setting excess to 100 €/kWh. 
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Table 3-3: Sensitivity sweep for penalty selection across 21 edge-case designs 

Penalty 
type 

Tested penalty 
range (€/kWh) 

Edge 
cases (n) 

Minimum penalty 
meeting all 

cases (€/kWh) 

Cases meet-
ing target at 

≤ 1 
≤ 10 ≤ 100 

Selected 
value 

(€/kWh) 
Unmet 
energy 

{0, 0.1, 1, 10, 
100, 1000} 

21 1000 3 3 5 1000 

Excess 
energy 

{0, 0.1, 1, 10, 
100, 1000} 

21 10 21 21 21 100 

 

These penalty parameters steer the GA-MILP framework toward feasible and balanced 

system configurations by penalising excessive unmet demand or curtailment. After solving the 

annual dispatch problem, the MILP provides the GA with operational outcomes, specifically 

the total unmet and excess energy associated with a given capacity design. These outcomes 

reflect how well a candidate system can meet demand and utilise generation under real-world 

constraints. The GA then uses this feedback to evaluate fitness and iteratively refine its 

capacity choices, avoiding over- or under-sized systems. The specific thresholds and penalty 

values used to guide this process are detailed in the subsequent section 3.3.2.3 on penalty 

functions. 

The energy balance constraint is formulated to ensure that at each time step 𝑡, the total energy 

generated through renewable systems such as PV and exchanged within the system equals 

to the energy consumed responding to the load, accounting for any unmet and excess energy. 

It meant to distinguish between AC and DC components connected through an inverter, 

ensuring accurate tracking of energy flows. The energy balance equation is formulated and 

designed to distinguish between AC and DC components connected through the decision 

variable of the inverter capacity as follows in equation (3-15) and (3-16):  

𝑃௥௘௡, DC inverted [𝑡] + 𝑃௥௘௡, DC remaining [𝑡] +  𝑃battery, discharge [𝑡] +  𝑃fuel-cell[𝑡]

− 𝑃battery, charge [𝑡] − 𝑃inverter [𝑡] ⋅  ( 1 + 1 − 𝜂DC/AC inverter )

− 𝐸excess [𝑡] = 0 , ∀𝑡 ∈ 𝒯 

(3-15) 

𝑃inverter [𝑡] + 𝑃grid_buy [𝑡] − 𝑃grid_sell [𝑡] − 𝑃load [𝑡] − 𝑃electrolyser [𝑡] + 𝐸unmet [𝑡] = 0,

∀𝑡 ∈ 𝒯 

(3-16) 

Where the 𝑃ren, DC inverted [𝑡] is PV renewable generation that is consumed by AC load, or used 

to start the electrolyser, or sold to the grid, giving priority to responding community electricity 

demand first. Any remaining renewable generation at the same time step is represented as  

𝑃ren, DC remaining [t] which is available at the DC bus side that can be used either to charge the 

battery or recorded as excess. 𝑃grid, buy [𝑡] and  𝑃grid, sell[𝑡] capture the system interaction from 

external grid.  
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The objective function and the energy balance constraint overlaps with the grid interaction 

variables, and unmet and excess energy are recorded each time steps. Every time step t 

decision is driven by the objective and in compliance with this energy balance constraint. 

Similarly, 𝑃battery, discharge [t] and 𝑃battery, charge [t] represent the energy discharged and charged 

to the storage battery in kWh at time t.  𝑃fuel-cell[t] and 𝑃electrolyser [𝑡] manages the 

electrochemical conversion of energy between electrical and chemical form of hydrogen in 

kWh at time t.The total electrical load represented by  𝑃load [𝑡] must be satisfied at each time 

step. 𝜂DC/AC inverter  is the inverter efficiency, set to 95 %. 

Any excess that can’t be utilised locally or be sent back to the grid is recorded as 𝐸excess [𝑡], 

while any shortfall in meeting this load is represented by 𝐸unmet[𝑡]. These penalty terms, 

embedded in the MILP formulation, reinforce the objective function by discouraging 

configurations with frequent curtailment or unmet demand. This supports more balanced 

dispatch outcomes and enhances self-consumption and cost-effective grid interaction. In order 

for this energy balance constraints provide mutually exclusive interaction that replicates the 

physical behaviour, the grid interaction is constrained, limiting direction and maximum values 

in equations (3-17) and (3-18):  

𝑃grid, buy [𝑡] ≤ 𝑃௚௥
୫ୟ୶  ∙ 𝑥grid  [𝑡], ∀𝑡 ∈ 𝒯   (3-17) 

𝑃grid, sell ≤ 𝑃௚௥
୫ୟ୶   ∙ ൫1 − 𝑥grid [𝑡]൯, ∀𝑡 ∈ 𝒯   (3-18) 

The energy system at a given time step t either can buy or sell, but not both, and is limited to 

the max contracted power 𝑃௚௥
୫ୟ୶ . The binary decision  𝑥grid  [t]  governs the grid interaction in 

the power system acting like a switch helping in deciding the direction of the power flow 

between the grid and energy system. Similarly, the battery interaction constraints can either 

charge or discharge, but not both, and are limited to the allowable battery power as shown in 

equation (3-19) and (3-20):  

𝑃௕௔௧௧௘௥௬,௖௛௔௥௚௘ [𝑡] ≤ 𝑃௕
ି୫ୟ୶  ∙ ൫1 − 𝑥battery [𝑡]൯, ∀𝑡 ∈ 𝒯   (3-19) 

𝑃௕௔௧௧௘௥௬,ௗ௜௦௖௛௔௥௚௘ [𝑡] ≤ 𝑃௕
ା୫ୟ୶  ∙ 𝑥battery  [𝑡], ∀𝑡 ∈ 𝒯   (3-20) 

Where 𝑃௕௔௧௧௘௥௬,௠௔௫ and 𝑃௕௔௧௧௘௥௬,௠௜௡ are the allowed power for charging and discharging in kW 

at time 𝑡. The charging and discharging state of charge SoC [t] are limited to the allowed state 

of charge limits as following in equation (3-21):  

 𝑆𝑜𝐶min ≤  𝑆𝑜𝐶 [𝑡] ≤  𝑆𝑜𝐶max , ∀𝑡 ∈ 𝒯  (3-21) 



86 
 

Where 𝑆𝑜𝐶min is the lowest state of charge that the battery is bounded to 5%, and 𝑆𝑜𝐶max is 

the highest state of charge of 100%. Each time step, the battery State of Charge 𝑆𝑜𝐶[𝑡] is 

calculated using this equation (3-22):  

𝑆𝑜𝐶[𝑡] = 𝑆𝑜𝐶[𝑡 − 1] + ቆ
𝑃௕௔௧௧௘௥௬,௖௛௔௥௚௘ [𝑡] × 𝜂௕ି × 100

𝑁௕௧  × 𝐵௠
ቇ

− ቆ
𝑃௕௔௧௧௘௥௬,ௗ௜௦௖௛௔௥௚௘ [𝑡] × 100

𝜂௕ା ×  𝑁௕௧  × 𝐵௠
ቇ , ∀𝑡 ∈ 𝒯 

(3-22) 

Where  𝑆𝑜𝐶[𝑡 − 1] is the state of charge for the previous time step,  𝜂௕ି and 𝜂௕ା are the 

charging and discharging efficiencies, 𝑁௕௧ is number of batteries, and 𝐵௠ is the single battery 

energy capacity in kWh. Since the battery operation is mutually exclusive, at time step t, the 

battery state of charge can only increase its charge due to charging or decrease due discharge 

activity. Similarly, the level of hydrogen 𝐿𝑜𝐻[𝑡] in the tank is tracked through this energy 

balance constraint as following in equation (3-23): 

LoH[t] = LoH[𝑡 − 1] + ቆ
𝑃electrolyser   [𝑡] × 𝜂௘௟ି × 100

𝑃ு் ×  𝐻௅ு௏
ቇ − ቆ

𝑃fuel-cell [𝑡] × 100

𝜂௙௖ା × 𝑃ு் ×  𝐻௅ு௏
ቇ (3-23) 

Where LoH[𝑡 − 1] is the level of hydrogen at the previous time step, 𝑃electrolyser   [𝑡] and 

𝑃fuel-cell [𝑡] are electrical input power for electrolyser and electrical output of the fuel cell at time 

𝑡, 𝜂௘௟ି  and 𝜂௙௖  are the efficiency of the electrolyser and fuel cell,  𝑃ு் is the hydrogen tank 

capacity in kg, and 𝐻௅ு௏ is the Lower Heating Value of hydrogen in kWh/kg. The operation of 

the fuel cell and electrolyser is mutually exclusive, in a similar manner to the battery and grid 

bounded by the binary decision binary 𝑥hydrogen[𝑡] and by the rated power of the fuel cell 𝑃௘௟ 

and the electrolyser 𝑃௙௖ as following in equations (3-24) and (3-25):  

𝑃electrolyser   [𝑡] ≤ 𝑃௘௟  ∙ ൫1 − 𝑥hydrogen[𝑡]൯, ∀𝑡 ∈ 𝒯   (3-24) 

𝑃fuel-cell [𝑡] ≤ 𝑃௙௖  ∙ 𝑥hydrogen[𝑡], ∀𝑡 ∈ 𝒯   (3-25) 

𝐿𝑜𝐻[𝑡] in the tank is bounded by the tank lowest level of hydrogen 𝐿𝑜𝐻 min of 5% and the 

highest possible 𝐿𝑜𝐻 max is 100%, as showing in equation (3-26):  

𝐿𝑜𝐻 min ≤ 𝐿𝑜𝐻[𝑡] ≤  𝐿𝑜𝐻 max , ∀𝑡 ∈ 𝒯 (3-26) 

The sum of the possible DC power of the battery discharging 𝑃battery, discharge [𝑡], fuel cell 

𝑃fuel-cell [𝑡] and the portion of the renewable generation at the AC side 𝑃௥௘௡, DC inverted[t] at time 

step 𝑡 can be less or equal to the inverter power limit 𝑃inv  as following in equation (3-27): 

𝑃௜௡௩௘௥௧௘௥[𝑡] ≤ 𝑃୧୬୴
୫ୟ୶ , ∀𝑡 ∈ 𝒯 (3-27) 
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After bounding AC and DC side to the inverter limit 𝑃inv , it is important to establish that the 

total renewable generation 𝑃௥௘௡ି output  [𝑡] is fully accounted for in the model. This is achieved 

by ensuring that it equals the sum of the portion consumed on the AC bus 𝑃ren, AC [𝑡] and the 

remaining portion available on the DC bus 𝑃௥௘௡, DC remaining [𝑡], as shown in equation:  

𝑃௥௘௡, DC inverted [𝑡] + 𝑃௥௘௡, DC remaining [𝑡] =  𝑃௥௘௡ି output  [𝑡], ∀𝑡 ∈ 𝒯 (3-28) 

After establishing this constraint, the remaining renewable generation at the DC side 

𝑃ren, DC [𝑡] is either encouraged to be charged to the battery, if available, or recorded at this 

time step as excess 𝐸excess [𝑡], accomplishing correct energy balance as following in equation 

(3-29): 

𝑃௥௘௡, DC remaining[𝑡] =  𝑃battery, charge [𝑡] + 𝐸excess [𝑡], ∀𝑡 ∈ 𝒯 (3-29) 

The battery is prevented from discharging when there is still remaining power at the DC bus 

which is limited by the inverter capacity conversion, prioritising charging and achieved by 

linearised big M-method for conditional situations as following in the equations (3-30), (3-31), 

and (3-32):  

𝑃௥௘௡, DC remaining [𝑡] ≤ ൫𝑀 ∙  𝑥௥௘௡ି௚௘௡ [𝑡]൯ + 𝜖, ∀𝑡 ∈ 𝒯 (3-30) 

𝑃௥௘௡, DC remaining [𝑡] ≥ 𝜖 ∙  𝑥௥௘௡ି௚௘௡ [𝑡], ∀𝑡 ∈ 𝒯 (3-31) 

𝑃battery, discharge [𝑡] ≤ ൫1 −  𝑥௥௘௡ି௚௘௡ [𝑡]൯ ∙ 𝑃௕
ା୫ୟ୶, ∀𝑡 ∈ 𝒯 (3-32) 

Where M and ϵ are large and small numbers, 𝑋௥௘௡ି௚  [𝑡] is a binary variable to capture the 

remaining renewable power at the DC side 𝑃௥௘௡, DC remaining [𝑡].  

3.3.2.3 Penalty Function 
Penalties are very important in the GA-MILP hybrid optimisation process in steering the 

algorithm toward practical and optimum answers. These penalties apply when system 

configurations violate important operational limits, including unmet energy demand or too high 

energy generation. These are meant to deter system designs that either fail to satisfy demand 

or produce too much unneeded energy, therefore guiding the optimisation toward dependable 

and reasonably priced solutions. 

When the total excess energy accumulated over the year exceeds a predefined threshold, a 

penalty is imposed to discourage system configurations that lead to substantial energy 

curtailment. The penalty for excess energy is determined based on the total excess energy 

calculated as follows:  
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𝐸෠ = ෍  

்

௧ୀଵ

𝐸excess (𝑡) 
(3-33) 

Where 𝑇 is the total number of time steps in the optimisation (8760 hours for a yearly horizon) 

and 𝐸excess (𝑡) is the excess energy at time 𝑡. If the total excess energy exceeds a predefined 

design criteria 100 kWh, a penalty is added to the fitness function before passing this to value 

to GA evaluate function as following:  

 Penalty excess = ൜
𝑃excess , if the 𝐸෠ > 100𝑘𝑊ℎ
0,  otherwise 

 (3-34) 

Where 𝑃excess  is a large constant penalty, typically set to discourage and guide the GA away 

any significant violation (e.g., € 10,000,000). When the system fails to provide the needed load 

at any one moment, an unmet energy demand results. Similar to the penalty for excess 

energy, the penalty for unmet energy is determined based on the total unmet energy calculated 

as: 

𝑈෡ = ෍  

்

௧ୀଵ

𝐸unmet (𝑡) 
(3-35) 

𝐸unmet (𝑡) is the unmet energy at time 𝑡. and similar to the excess of energy, the  Penalty unmet  

is calculated at the end of each iteration as follows:  

 Penalty unmet = ൜
𝑃unmet ,  if 𝑈෡ > 100𝑘𝑊ℎ
0,  otherwise 

 (3-36) 

𝑃unmet  is another significant constant penalty number (e.g., €10,000,000) which guarantees the 

system avoids under-sizing system capacities. Then after that both penalties for excess 

 Penalty excess  and unmet  Penalty unmet   are added as following to the final a fitness function:  

Fitness Value (p,g) =  NPC +   Penalty excess +  Penalty unmet  
(3-37) 

NPC represents the Net Present Cost of individual p at generation 𝑔. Ultimately, the hybrid 

GA-MILP (GA-Yearly horizon) optimisation framework integrates the strengths of Mixed-

Integer Linear Programming for detailed operational dispatch and Genetic Algorithms for 

global capacity sizing. This combination enables both long-term financial assessment and 

enforcement of operational constraints in hybrid energy systems. By incorporating penalties 

for unmet demand and excess generation, the framework encourages designs that are both 

feasible and reliable. The resulting approach offers a structured and adaptable method to 

address the complexities of hybrid energy system optimisation.  
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Equation (3-37) defines a scalar fitness equal to NPC plus hard annual penalties that activate 

when total unmet or excess energy exceed design thresholds. Because NPC is in euros and 

the triggers are expressed in €/kWh, the scaling is unit-consistent; the chosen magnitudes 

make any violating design strictly dominated by feasible alternatives. In parallel, the MILP 

layer applies large per-hour slack costs (1000 €/kWh for unmet, 100 €/kWh for excess), so for 

a fixed chromosome the dispatch solution already drives slacks toward zero whenever 

feasible. Together, these mechanisms yield strong selection pressure: tournament selection 

prefers individuals with (Ū, Ê) → 0, and only then discriminates on NPC within the feasible set. 

This is exactly the pattern observed in the convergence/interaction plots, where parameter 

settings that sustain diversity also achieve lower NPC after 20–30 generations 

3.3.3 GA-Based Load Following and HOMER Pro Comparison 

3.3.3.1 GA-Rule-Based Load Following Method 

The rule-based energy management has been used extensively in literature for energy 

planning and optimisation of energy systems. The technique allocates energy according to 

predefined rules, prioritising certain means to match or follow the energy production to the 

fluctuations in the load throughout the day. Rule-based load-following is a widely adopted 

control strategy in hybrid energy system planning and simulation. It operates through a 

predefined hierarchy of dispatch decisions to balance renewable energy production with 

hourly electrical demand. The logic prioritises local energy utilisation by sequentially 

dispatching available resources in the following order: (1) direct PV-to-load supply, (2) battery 

storage, (3) hydrogen production or consumption, and (4) grid interaction. 
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 Figure 3-4: Flow Diagram for Load-Following Energy Management Strategy.  
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Figure 3-4 illustrates the flowchart of the implemented load-following control logic used in this 

study. At each time step, the algorithm calculates the net power (NP), defined as the difference 

between renewable generation (REN) and load demand. Depending on whether the system 

experiences surplus or shortage, the flow branches into two primary paths. If NP > 0, the 

system attempts to store or convert the excess energy, beginning with battery charging, 

followed by hydrogen generation through the electrolyser, and finally grid export. If NP < 0, the 

model sequentially discharges the battery, operates the fuel cell, and finally imports from the 

grid, if necessary. Any remaining mismatch is recorded as unmet or excess energy. This logic 

is deterministic and rule-based, making it computationally efficient and transparent, though 

limited in its ability to anticipate future states or perform multi-period optimisation. Importantly, 

this rule-based dispatch scheme is embedded within the same upper-layer GA framework 

described in Section 3.3.2. The GA conducts global capacity sizing by searching across PV, 

battery, fuel cell, electrolyser, hydrogen tank, and grid contract values. Its objective remains 

the minimisation of NPC over a 25-year horizon. However, instead of using MILP to simulate 

hourly dispatch, this configuration evaluates each candidate using the rule-based load-

following strategy. Operational results such as unmet and excess energy are computed for 

each annual simulation and passed to the GA for fitness evaluation. This substitution allows a 

direct comparison between MILP-based and heuristic dispatch strategies, while maintaining a 

consistent outer-loop optimisation structure. For full implementation details of this flowchart, 

including component prioritisation, SOC updates, and conditional constraints, refer to 

Appendix 9.3, which provides an expanded step-by-step description. 

3.3.3.2 Validation Using HOMER Pro 
To assess the implementation of the rule-based load-following control logic used in this study, 

a comparative exercise was carried out using HOMER Pro, a widely used microgrid simulation 

platform known for its capability to model hybrid energy systems. The primary objective was 

to benchmark the Python-based GA-Load Following model against an established tool, 

examining the consistency of technical and economic outcomes across both modelling 

environments. The validation began by configuring HOMER Pro to approximate the same 

system specifications, operational constraints, and economic parameters as the Python 

model. Key components, including PV arrays, battery systems, fuel cells, electrolysers, and 

grid interaction terms, were aligned as closely as possible between both platforms to establish 

a comparable reference. 

HOMER Pro was then used to simulate dispatch behaviour under its internal load-following 

logic, which prioritises renewable utilisation, storage management, and grid exchange. This 

served as a reference baseline for evaluating the Python model’s output under similar rule-

based conditions. Performance indicators such as NPC, unmet demand, excess energy, 
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battery SOC, and LoH were compared. Particular attention was given to assessing whether 

the Python implementation reproduced key aspects of HOMER Pro’s operational logic, 

especially in the handling of storage and hydrogen subsystems. 

In addition, GA-optimised capacity configurations generated in the Python model, including 

PV sizing, battery count, fuel cell and electrolyser ratings, and contracted grid limits, were 

manually replicated in HOMER Pro. Although HOMER Pro does not include evolutionary 

optimisation, this approach enabled a consistent evaluation of those configurations under the 

same dispatch logic for comparative analysis. Overall, the results revealed close agreement 

in key dynamic trends such as battery charging behaviour, PV energy use, and hydrogen LoH 

evolution. Some differences in indicators like unmet load or cycling frequency were 

investigated further as potential effects of variation in constraint modelling or degradation 

assumptions. These comparative outcomes support the applicability of the GA-Load Following 

model under the assumed conditions, offering a reference point for the broader optimisation 

results presented in the next chapter. Comparative performance results for the GA-Load 

Following, GA-Yearly Horizon, and HOMER Pro implementations are provided in Chapter 3 of 

the result section 3.5, where each method is evaluated across technical, economic, and 

operational metrics. Having benchmarked the alternative control schemes, the discussion now 

turns to the site-specific inputs and economic parameters that underpin the subsequent 

optimisation runs. 

3.4 Model Inputs and System Parameters 

In accordance with the European Directive on Renewable Energy, Sustainable Development 

Goal (SDG) 7: Affordable and Clean Energy, energy communities are encouraged to be 

renewable self-sufficient by generating, consuming, storing or selling electricity through 

community installation [141], [142]. The Balearic Island of Formentera, home to approximately 

12,000 residents is part of this initiative under the VPP4islands project, employing innovative 

development of smart energy communities [143]. The following sections provide details of the 

case study, and the key information used, starting with the location and description of the 

energy community, grid tariff structure, and followed by the economical and performance 

model inputs.  

3.4.1 Geographical Location and Targeted Island  

Formentera (shown in Figure 3-5), the smallest of the Balearic Islands, is located in the 

Mediterranean Sea, just south of Ibiza. Two underwater cables from Ibiza to Mallorca connect 

it: a more robust 132 kV double circuit cable to handle rising power demand and a 30 kV HVAC 

line. Although the island has a 2 MW solar capacity, seasonal demand sees variations from 7 
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MW in winter to 18 MW in summer, which are usually met by these island links with 

considerable non-renewable energy capacity. 

The selected case study is located west of Sant Francesc Xavier Village on the island. Figure 

3-6 shows two different sites A and B that are approximately 600 meters away from each other.  

The community buildings are the council building of Formentera, two schools, a youth centre, 

a vehicle inspection station, a fire station and a slaughterhouse. The community buildings 

A 

B 

Figure 3-5: Geographical Context of Formentera Island location 

Figure 3-6: The geographical location of energy community buildings west of Sant 
Francesc Xavier capital of Formentera Island. Building 1: Culture Building electrical 
demand 44,995 kWh/year. Building 2: primary school with electrical demand 47,189 
kWh/year. Building 3: Radio and Youth Centre with electrical demand 19,616 
kWh/year.  Building 4: Preschool with electrical demand 26,596 kWh/year. Building 5: 
Vehicle inspection station with electrical demand 11,486 kWh/year. Building 6: Fire 
station with electrical demand 23,584 kWh. Building 7: 29,437 kWh/year 
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exhibit different usages that would reflect a variety in the electrical demand during the day, at 

night and even during the weekends. 

Figure 3-7 provides a visual summary of key input data used in this study. Subfigure 3-7a 

presents the historical hourly electricity consumption profile of the Formentera energy 

community in 2022. These real-world demand values were collected through the 

VPP4Islands4 project and reflect aggregated load behaviour across public and residential 

buildings. The data was essential for initiating system planning and simulation under the 

VPP4Islands project. It was collected through collaborative efforts with the local DSO and 

project partners, using system-level measurements and non-invasive monitoring with clamp-

type current transformers (CTs). The Formentera Council’s Engineering Department cleaned 

and validated the dataset before distributing it to partners for modelling and use case 

development. The data capture clear seasonal variation, with elevated demand during the 

summer period, primarily due to increased cooling needs. The total annual demand amounts 

to 202,905 kWh, with a daily average of approximately 555.90 kWh and a peak demand of 

67.91 kW. 

 
4 https://vpp4islands.eu/  

Figure 3-7: Data Input for Formentera case study 
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Subfigure 3.7b illustrates the electricity pricing structure applied in the model. ToU tariff was 

derived from local partner inputs within the VPP4Islands project and reflects the six-period 

pricing scheme currently implemented on Formentera. The tariff data were used to model 

operational costs and guide energy dispatch optimisation, with further details on the tariff 

configuration provided in Section 3.3.3. For solar generation modelling, Subfigures 3.7c and 

3.7d show the corresponding solar irradiance and ambient temperature profiles. These 

meteorological data were obtained from NASA’s POWER database for the geographic 

coordinates of Formentera and cover the full year of 2022 [144]. The irradiance dataset was 

used to simulate PV energy yield, while temperature data informed thermal performance 

adjustments in the PV model. 

3.4.2 Grid Tariff Structure 

The grid tariff model used in this study is based on Endesa’s business tariff structure, which is 

currently applied to public buildings on the island of Formentera as shown in Figure 3-8 [145]. 

This structure was provided through local collaboration under the VPP4Islands project, where 

Formentera serves as a demonstration site. The tariff data were sourced from municipal 

infrastructure—specifically the Formentera Council buildings, and cross-validated with the 

applicable taxes, including the general electricity tax (5.11%) and value-added tax (VAT) at 

21%. The feed-in (selling) price for exported electricity was set at 0.051 €/kWh, while the 

average grid purchase price was 0.382 €/kWh, ranging from a minimum of 0.353 €/kWh to a 

maximum of 0.478 €/kWh. Electricity costs were observed to peak during the summer months 

(June to September), particularly across two high-demand time blocks: 10:00–14:00 and 

Figure 3-8: Endesa Grid Tariff structure adopted from [120] 
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18:00–21:00. Weekends and public holidays follow a reduced off-peak pricing schedule. The 

tariff model incorporates four distinct monthly charges to reflect commercial consumption 

patterns: the fixed contracted power charge 𝐹஼௉, the electricity consumption charge 𝐸௖௖, the 

peak power penalty charge 𝐹ா௉ and the selling back charge 𝑆஻஼ . These cost components are 

integrated into the financial model using the following formulations  [128]:  

𝐹஼௉ = ෍  

௉ୀ௜

௣ୀଵ

𝑃𝑐௉ ∙  𝑅௧,௣ ∙ 𝐷௠௢௡௧௛ (3-38) 

𝐸௖௖ = ෍  

்

௧ୀଵ

൫𝑃grid, buy [𝑡] ∙ 𝜋buy  [𝑡]൯  (3-39) 

𝐹ா௉ = ෍  

௉ୀ௜

௣ୀଵ

𝑡௣ × 2 × ൫𝑃𝑑௝ − 1.05 ×  𝑃𝑐௉൯ (3-40) 

𝑆஻஼ = ෍  

்

௧ୀଵ

൫𝑃grid, sell [𝑡] ∙ 𝜋sell  [𝑡]൯ (3-41) 

The energy system’s main breaker was configured to allow grid import and export flows up to 

40% above the contracted power limit. However, penalty charges are applied whenever the 

instantaneous demand exceeds this contractual threshold, in accordance with the utility’s 

pricing scheme. To account for long-term cost evolution, an annual electricity price escalation 

rate of 3% was applied over the 25-year project horizon, consistent with observed historical 

trends since 2007 [146].  

3.4.3 Cost Assumptions and Sensitivity Analysis for Economic Inputs 
The economic and performance inputs form a critical part of the optimisation model, 

influencing both system design and operational decision-making. These parameters directly 

affect the objective function of the MILP layer and the fitness evaluation in the GA loop, 

primarily through the calculation of NPC. The data presented in this section reflects a 

combination of sources, including manufacturer specifications, academic literature, and 

insights from the VPP4Islands demonstration activities in Formentera. The data used in this 

study were sourced from a combination of literature, direct communication with manufacturing 

companies, and project-specific insights from the VPP4Islands pilot activities in Formentera. 

The assumptions reflect current market trends and component availability relevant to island 

energy systems.  

Table 3-4 summarises the key technical and economic input parameters for the main energy 

system components. All capital costs were directly obtained through the VPP4Islands project 
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for the Formentera Island case study and reflect supplier quotations or actual pilot project 

estimates. For example, the PV and battery costs were taken from site-specific procurement 

figures that incorporate not only equipment prices but also local installation, manpower, and 

system integration costs. Although the PV CAPEX (1,600 €/kW) is higher than typical values 

reported in literature, it was retained as it best represents the realistic deployment context of 

the case study. Battery cost (230 €/kWh) similarly reflects fully installed costs in the 

VPP4Islands5 pilot. Inverter prices were also based on average supplier quotations relevant 

to the project. For hydrogen-related components, fuel cell, electrolyser, and H₂ tank, the cost 

inputs were likewise based on supplier quotations and design estimates used during the 

project’s technical planning phase. This project-driven sourcing strategy ensures that the 

economic model remains rooted in real-world deployment conditions rather than theoretical 

assumptions that drive lifecycle cost evaluations over the 25-year planning horizon. 

Table 3-4: Technical and Economic Data Inputs for the Modelling 

Com-
ponent 

Cost 
(unit) 

O&M 
(unit·yr⁻¹) 

Effi-
ciency 

Lifetime 
Ref / source 

type 
±Δ 

NPC 
±Δ 

LCOE 
PV 

panel 
1,600 
€/kW 

10 €/kW 20% 25 yr 
[147] Local pro-

ject cost 
4.00% 4.00% 

Battery 
230 

€/kWh 
10 €/kWh 95% 

8,000 cy-
cles 

[148] Manufac-
turer datasheet 

3.00% 3.00% 

Inverter 
300 

€/kW 
10 €/kW 95% 20 yr [147] Datasheet 0.49% 0.49% 

Fuel 
cell 

1,200 
€/kW 

0.02 
€/kW·h 

43% 15,000 h 
[149], [150] 
Datasheet / 

study 
0.14% 0.14% 

Elec-
trolyser 

1,200 
€/kW 

0.05 
€/kW·h 

63% 35,000h [151] Datasheet 0.13% 0.13% 

H₂ tank 
500 

€/kg H₂ 
10 €/kg — 15 yr [152] Datasheet 0.06% 0.06% 

 

To validate the robustness of these selections, a ±10% sensitivity sweep was applied to each 

component’s CAPEX while keeping all other parameters fixed. The resulting variations in Net 

Present Cost (NPC) and Levelised Cost of Energy (LCOE) are presented in the final two 

columns of Table 3-4. Results show that PV and battery CAPEX have the most significant 

influence on economic outcomes, causing changes of ±4.00% and ±3.00% in NPC and LCOE 

respectively. These technologies dominate the investment profile and are frequently 

dispatched in the optimised system. In contrast, hydrogen-related components exhibit 

marginal influence, typically below ±0.2%, reflecting their limited capacity sizing and lower 

utilisation under the model’s cost-optimised regime. 

 
5 https://vpp4islands.eu/  
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The component cost assumptions are based on real quotations and pilot study data from the 

Formentera case, ensuring alignment with site-specific conditions. Sensitivity analysis using 

±10% CAPEX variation shows that resulting changes in NPC and LCOE remain below 5%, 

supporting the robustness of the economic model and highlighting the greater financial 

influence of PV and battery costs compared to other components. 

In addition to technical inputs, financial modelling assumptions are summarised in Table 3-5.  

The nominal discount rate, varied between 6–10%, was the most influential parameter, 

causing changes of up to ±10% in both metrics. Inflation and electricity price escalation, varied 

±1% from baseline, produced smaller effects in the range of ±4–6%. In contrast, statutory 

values such as Spain’s general electricity tax (5.11%) and VAT (21%) were held fixed, as they 

are non-recoverable and set by regulation. These results confirm that the selected 

assumptions are reasonable and that model outcomes remain robust under expected financial 

variability in the 2025 Spanish context. 

Table 3-5:  Financial Parameters Used in Economic Assessment 

Parameter Value Ref ∆𝑁𝑃𝐶 ∆𝐿𝐶𝑂𝐸 Note 

Nominal discount 
rate 

8  [152] +9.61% −7.21% −10.05% +10.87% 
Low=6%, 

High=10% 

Inflation rate 2  [153] −4.10% +4.68% +5.72% −5.38% 
Low=1%, 
High=3% 

Escalation rate 3 [146] −3.98% +5.27% −3.98% +5.27% 
Low=1%, 
High=5% 

General electricity 
tax rate 

5.11 Statutory; non-recoverable; not swept 

VAT rate 21 Statutory; non-recoverable; not swept 

These input parameters collectively support a consistent and realistic techno-economic 

evaluation of hybrid energy system configurations. The following sections present results 

based on the application of these inputs within the GA-MILP framework. 

3.5 Results 

This section presents the comparative results of the proposed GA-MILP optimisation 

framework under two different energy management strategies, GA-Yearly Horizon and GA-

Load Following, and benchmarks them against the established HOMER Pro software using 

its standard load-following approach. The optimisation problem was implemented using the 

PuLP library in Python to ensure consistency in solver syntax [154]. Gurobi 11.1.1 employed 

to solve the MILP-based lower operational layer for the GA-Yearly Horizon strategy [155]. 

Simulations were executed on a desktop computer equipped with an Intel(R) Core (TM) i7-

11700 processor running at 2.50 GHz and 16 GB of RAM.  

The results are structured into four main parts. Section 3.4.1 outlines the system sizing 

outcomes for each method, highlighting differences in component capacities, NPC, and LCOE. 
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Section 3.4.2 delves into the operational behaviour and energy flow dynamics, using 

representative winter and summer periods to analyse how each method allocates renewable 

generation, storage, and grid interaction. Section 3.4.3 shifts to a financial perspective, 

comparing capital, operational, and grid-related costs over the full project lifecycle, along with 

key financial metrics such as Internal Rate of Return (IRR) and payback period. Finally, 

Section 3.5 concludes with a summary of key insights. 

3.5.1 System Sizing  

The GA-Load Following and GA-Yearly Horizon approaches are benchmarked to highlight the 

differences in decision-making paradigms and their impact on system sizing and performance. 

The GA-Yearly Horizon method bases its decisions on knowledge of the entire year’s horizon, 

optimizing capacities with a long-term view. On the other hand, the GA-Load Following method 

is more passive since it bases decisions on the available power at the present hour without 

considering future situations. Furthermore, HOMER is utilised as a validation tool to evaluate 

the dependability of the optimisation outputs and outcomes for identical input conditions.  

Table 3-6 displays the size results for every method of energy allocation. By use of an 8-

kilogram hydrogen tank, the GA-Yearly Horizon method balances intermittent renewable 

energy with storage, therefore optimizing 86 battery strings with a PV capacity of 156 kWp. 

Conversely, the GA-Load Following approach chooses reduced capacities of 124 kWp for PV 

and 58 battery strings, reflecting the trade-offs resulting from the lack of foresight in energy 

consumption. HOMER-based validation shows similar tendencies for system size, thus 

supporting these conclusions further. 

Table 3-6: Comparison of the sizing outcomes for the three Benchmarking methods 

Likewise, the differences in system sizing are reflected in the Levelized Cost of Energy (LCOE) 

and Net Present Cost (NPC). Compared to the GA-Load Following technique’s NPC of 

Component Units GA- Yearly Horizon  GA- Load Following  
HOMER- 

Load Following  

Solar PV [kWp] 156 124 123 

Battery [Strings] 86 58 58 

Inverter [kW] 75 120 121 

Contracted Power [kW] 52 78 77 

Fuel cell [kW] 5 5 5 

Electrolyser [kW] 6 5 5 

Tank [Kg] 8 5 5 

NPC                        [€] 625,776 665,236 661,677 

LCOE                   [€/kWh] 0.228 0.243 0.241 

Component Units GA- Yearly Horizon  GA- Load Following  
HOMER- 

Load Following  

Solar PV [kWp] 156 124 123 

Battery [Strings] 86 58 58 

Inverter [kW] 75 120 121 

Contracted Power [kW] 52 78 77 

Fuel cell [kW] 5 5 5 

Electrolyser [kW] 6 5 5 

Tank [Kg] 8 5 5 

NPC                        [€] 625,776 665,236 661,677 

LCOE                   [€/kWh] 0.228 0.243 0.241 
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€665,236 and LCOE of €0.243/kWh, the GA-Yearly Horizon method achieves a lower NPC of 

€625,776 and LCOE of €0.228/kWh. Moreover, HOMER’s validation yields NPC and LCOE 

values (approximately €661,677 and €0.241/kWh, respectively) that closely align with GA-

Load Following, reinforcing the dependability of the proposed framework and increasing 

confidence in these results. 

Table 3-7 summarises the main performance indicators for GA-Yearly Horizon, GA-Load 

Following, and HOMER-Load Following. With its larger 156 kWp PV system, GA-Yearly 

Horizon generates the highest solar energy of 285,499.66 kWh compared to 226,935.63 kWh 

in GA-Load Following and 227,138.72 kWh in HOMER-Load Following. Although GA-Yearly 

Horizon achieves the highest absolute PV consumption by the load (123,924.70 kWh), 

covering 61.07% of the total load, its Renewable Self Consumption Rate of 43.40% is lower 

than the 52.45% in GA-Load Following and 51.65% in HOMER, illustrating how a larger 

system can boost total generation but yield a smaller on-site usage fraction. 

Table 3-7: Performance metrics for benchmarking methods. 

Likewise, GA-Yearly Horizon records 169,088.38 kWh of PV excess, substantially above the 

107,891.57 kWh in GA-Load Following and 109,806.31 kWh in HOMER, highlighting the trade-

off between maximising renewable production and managing higher surplus. Although none 

of the methods wastes renewable energy outright, GA-Yearly Horizon’s long-term optimisation 

approach enables greater overall production and potentially more profitable export 

opportunities. 

Metrics Units 
GA- Yearly 

Horizon 

GA- Load 

Following 

HOMER- 

Load Following 

PV Generated kWh 285,499.66 226,935.63 227,138.72 

PV Directly Consumed  kWh 123,924.70 119,044.06 117,332.41 

PV Contribution to Load % 61.07 56.24 57.82 

Renewable Self Consumption  % 43.40 52.45 51.65 

Battery Throughput kWh 85,062.90 67,868.35 67,425.86 

Electrolyser Capacity Factor % 15.61 9.63 10.94 

Fuel Cell Capacity Factor % 5.17 2.25 2.54 

PV Excess Energy kWh 169,088.38 107,891.57 109,806.31 

Electrolyser Usage kWh 8,205.53 4,216.72 4,791.18 

Fuel Cell Usage kWh 2,263.01 985.95 1,110.99 

Grid Dependence % 7.21 14.62 15.63 

Grid Import kWh 15,265.58 30,952.49 33,103.77 

Grid Export kWh 61,686.44 30,224.30 28,060.84 
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According to Table 3-7, GA-Yearly Horizon also experiences a higher battery throughput of 

85,062.90 kWh, in contrast to 67,868.35 kWh in GA-Load Following and 67,425.86 kWh in 

HOMER. Assuming each battery string provides 14,400 kWh of total lifetime throughput, GA-

Yearly Horizon (86 strings) offers a combined capacity of 1,238,400 kWh. At the current usage 

rate, this suggests a battery lifetime of about 15 years before replacement, leading to about 

one or two replacements over a 25-year span. Meanwhile, Load Following’s 58 strings 

(835,200 kWh total capacity) and annual throughput of 67,868.35 kWh imply a shorter lifetime 

of approximately 12 years, increasing replacement frequency. These findings underscore the 

trade-offs: while Load Following reduces up-front battery costs, GA-Yearly Horizon’s larger 

battery bank requires fewer replacements over the long run. 

The Electrolyser and Fuel Cell Capacity Factors demonstrate GA-Yearly Horizon’s further 

advantages. GA-Yearly Horizon attains a 15.61% electrolyser capacity factor (8,205.53 

kWh/year) and a 5.17% fuel cell capacity factor (2,263.01 kWh/year), compared to 9.62% 

(4,216.72 kWh/year) and 2.38% (985.94 kWh/year) in Load Following. HOMER closely aligns 

with these, yielding capacity factors of 10.94% for the electrolyser (4,791.18 kWh/year) and 

2.54% for the fuel cell (1,110.99 kWh/year). By strategically allocating surplus renewable 

power to hydrogen production and usage, GA-Yearly Horizon leverages foresight to enhance 

hydrogen storage integration, whereas Load Following’s short-horizon approach limits 

component utilisation. 

Despite the relatively small selected capacities for the electrolyser, fuel cell, and hydrogen 

tank, the GA-MILP optimiser made this choice based on a clear economic trade-off. The 

levelised cost of storage (LCOS) for the battery system was calculated at approximately 0.18 

€/kWh, while the hydrogen system, based on the combined usage of the electrolyser and fuel 

cell, yielded an LCOS of over 0.80 €/kWh. This cost discrepancy stems not only from higher 

capital and replacement costs but also from significantly lower energy conversion efficiency. 

The battery system operated at an estimated round-trip efficiency of 95%, whereas the 

hydrogen subsystem, accounting for both the electrolyser (63%) and fuel cell (43%) 

efficiencies, achieved a combined round-trip efficiency of only 27%. 

This stark performance gap, both in cost and energy efficiency, made it economically 

unfavourable to increase the hydrogen system's capacity. This explains why the GA-MILP 

optimiser selected a small hydrogen subsystem that it was economically suboptimal to expand 

it further. Nonetheless, hydrogen still contributed meaningfully to the overall system by 

absorbing excess PV generation during peak midday hours (approximately 8,205 kWh 

annually) and supporting grid independence during selected winter periods, as shown in the 

operational plots in Section 3.4.2. Its inclusion also aligns with the VPP4Islands project 
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requirement for hybrid battery regenerative hydrogen integration and supports seasonal 

storage, as discussed in Section 6.3. Furthermore, it contributes to broader sustainability goals 

related to EROI, which are further analysed in Chapter 5, Section 5.4.2. Therefore, even in 

modest quantities, hydrogen adds system-level value that extends beyond cost minimisation 

alone. 

GA-Yearly Horizon method's grid dependence is 7.21%, well below Load Following's 14.62% 

and HOMER's 15.63%. Annually, GA-Yearly Horizon imports mainly 15,265.58 kWh from the 

grid, well below 30,952.48 kWh for Load Following and 33,103.77 kWh for HOMER. 

Meanwhile, GA-Yearly Horizon exports 61,686.44 kWh of surplus energy, more than the 

30,224.30 kWh in Load Following or the 28,060.84 kWh in HOMER, thus generating additional 

revenue. If GA-Yearly Horizon’s higher capacities were operated under Load Following rules, 

curtailment would rise markedly to 31,164.13 kWh, illustrating the drawbacks of short-horizon 

decision-making for large-scale renewable penetration.  

This comparison highlights the trade-offs inherent in the three optimisation strategies. The GA-

Yearly Horizon method is best interpreted as an optimistic benchmark, representing idealised 

energy allocation based on perfect foresight across the full year. In contrast, the GA-Load 

Following strategy serves as a conservative reference, constrained by real-time decision-

making without anticipation of future states. HOMER further validates this short-horizon 

behaviour. To build on these insights, the next section investigates the energy dynamics 

across representative seasonal periods. This analysis focuses on the hourly operational 

decisions and their implications for system behaviour, resource utilisation, and overall 

performance under varying temporal and environmental conditions. 
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3.5.2 Energy Flow and Dynamics 

Winter Days Analysis: 

Figure 3-9 shows the hourly operational decisions for GA-Yearly Horizon, GA-Load Following, 

and HOMER-Load Following during three typical winter days starting on the 13th day of the 

year. All techniques depend on grid imports in early morning hours (00:00–07:00) when PV 

generation is absent. Unlike the reactive decisions of HOMER and Load Following, Yearly 

Horizon regularly maintains a higher battery SOC%, indicating its foresight-driven approach. 

From 08:00 to 10:00 Yearly Horizon minimises grid imports by efficiently using increased PV 

generating (124.14 kWh on Day 1, 77.99 kWh on Day 2, and 216.06 kWh on Day 3). 

Particularly on Day 2, where it imported 102.15 kWh against Yearly Horizon's 40.81 kWh, 

HOMER's dependence on synthetic solar data resulted in lower PV generation and higher 

imports. 

Emphasising Yearly Horizon's cost-sensitive energy distribution, midday hours (11:00–15:00) 

charge batteries strategically to reduce grid reliance. For example, on Day 3 it produced 

534.73 kWh and charged 343.37 kWh into its battery, surpassing HOMER and Load Following 

in both generation and storage measures. 

Often lowering grid reliance (8.65 kWh on Day 2), Yearly Horizon shows in the evening (16:00–

23:00) its strategic balancing of grid imports and battery discharges, so exporting surplus 

energy during low-tariff times. By comparison, Load Following shows strong reliance on grid 

imports (140.76 kWh on Day 2), and HOMER discharges notable battery energy (121.55 kWh 

on Day 3). 

By using foresight to reduce grid reliance and operational expenses, GA-Yearly Horizon shows 

overall cost optimisation, improved PV use, and smart energy allocation. These approaches, 

however, are benchmarked as models of optimistic (Yearly Horizon) and pessimistic (Load 

Following and HOMER) scenarios of energy planning, therefore providing important new 

perspectives on the possibilities and constraints of hybrid energy systems under many 

paradigms of decision-making. 
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Figure 3-9: Winter Operational Dynamics for Load Following (a), HOMER - Load Following (b), and GA-Yealy Horizon 
(c). The positive values for hydrogen represent the fuel cell output in kW, and the negative values indicate electrolyser 
consumption. For the battery, positive values indicate discharge, and negative values indicate charging. Grid 
interactions show positive values for electricity purchases and negative values for sales. 
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Summer Days Analysis:  

Figure 3-10 presents the energy dynamics of GA-Yearly Horizon, GA-Load Following, and 

HOMER-Load Following during three typical summer days. While the winter analysis 

highlighted energy allocation strategies under minimal PV generation, the summer analysis 

looks at how these approaches handle periods of significant PV excess, with a focus on 

optimizing energy storage, grid exports, and demand satisfaction. 

Figure 3-10: Summer Operational Dynamics for Load Following (a), HOMER - Load Following (b), and GA-Yealy 
Horizon (c). The positive values for hydrogen represent the fuel cell output in kW, and the negative values indicate 
electrolyser consumption. For the battery, positive values indicate discharge, and negative values indicate charging. 
Grid interactions show positive values for electricity purchases and negative values for sales. 
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All methods on the first summer day (Day 1) depend on grid imports in early hours (00:00–

07:00) to satisfy a requirement of 110.77 kWh. While Yearly Horizon maintains its battery 

SOC% at 30.22%, giving future cost minimization top priority, HOMER and Load Following 

substantially discharge batteries with 101.54 kWh and 100.87 kWh respectively. Yearly 

Horizon uses the highest PV generating (248.23 kWh) between 08:00 and 10:00 to charge 

34.98 kWh into its battery and export 73.02 kWh. Load Following charges 57.69 kWh from its 

PV production of 197.31 kWh while HOMER generates 159.96 kWh charging 28.22 kWh. 

Midday (11:00–15:00) shows the most significant PV output; Yearly Horizon generates 595.82 

kWh and exports 156.99 kWh. HOMER generates 454.05 kWh, charges 173.71 kWh and 

exporting 50.31 kWh. From its 473.60 kWh generation, Load Following charges 136.87 kWh 

and exports 98.18 kWh. With just 6 kWh imported and 62.57 kWh exported vs HOMER's grid 

import of 22.70 kWh and Load Following's 30.98 kWh, evening hours (16:00–23:00) 

demonstrate Yearly Horizon's superior grid reliance minimizing. 

The second and third days highlight Yearly Horizon's strategic energy consumption, always 

maximizing battery storage and grid exports. Day 3, Yearly Horizon exported 208.17 kWh 

noon, for example, compared to HOMER's 222.62 kWh, therefore demonstrating its cost-

conscious focus. These results show that the foresight-driven technique of Yearly Horizon 

greatly improves operational efficiency and PV use over the reactive methods of Load 

Following and HOMER. 

3.5.3 Economic Analysis 

A thorough financial assessment of hybrid energy systems is essential for understanding their 

long-term viability, particularly when evaluating different strategies for energy allocation and 

storage. In this section, three methods, GA-Yearly Horizon, GA-Load Following, and HOMER-

Load Following, are compared as benchmarks to show how varying planning horizons and 

decision-making paradigms affect Net Present Cost, Levelized Cost of Energy, Internal Rate 

of Return, and Payback Period. Beyond these high-level indicators, a closer look at the 

detailed cost structure reveals how each approach balances capital investments, operational 

expenditures, and grid purchases over the system’s lifetime. Figure 3-11 provides four 

perspectives on these costs: subplot (a) separates total expenditures into capital investments, 

O&M expenses, replacements, and salvage values; subplots (b) and (c) explore GA-Load 

Following and HOMER-Load Following in greater detail; and subplot (d) compares annualized 

costs across all three strategies. 

From subplot (a), the most substantial capital spending occurs in PV panels (€249,600) and 

battery storage (€94,600). Although these outlays are considerable, they help reduce the 

system’s reliance on the grid and can lower ongoing operational expenses. Even so, grid-
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related O&M costs rise to €97,756, close to the battery replacement cost of €118,400, and 

notably higher than the annualized grid expense of €7,561 in GA-Yearly Horizon (subplot d). 

This highlights the delicate balance in storage utilization: excessive cycling drives up battery 

wear, but excessive dependence on the grid inflates day-to-day expenses. 

Turning to GA-Load Following in subplot (b), the capital investments for PV and batteries drop 

to €198,400 and €63,800, respectively, easing the immediate financial burden. However, the 

trade-off is higher O&M expenditures (€245,234) due to greater reliance on purchased 

electricity. This is reflected in GA-Load Following’s grid import figure of 30,952.49 kWh, double 

the 15,265.58-kWh imported under GA-Yearly Horizon. Although GA-Load Following incurs a 

lower battery replacement cost (€64,148), this mainly stems from less battery usage rather 

Figure 3-11: Breakdown of Net Present Costs and Annualized Expenditures. a) Total system costs by category, (b) GA-
Load Following cost distribution, (c) HOMER-Load Following cost distribution, (d) Annualized costs by component 
across all strategies. 
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than more efficient dispatch. In fact, GA-Yearly Horizon’s higher battery throughput (85,062.90 

kWh compared to 67,868.35 kWh) illustrates how strategic cycling can yield fewer 

replacements over the full lifespan. 

A similar pattern emerges in HOMER-Load Following (subplot c), where capital costs resemble 

GA-Load Following, yet O&M expenses reach €260,524. This increase likely arises from 

conservative scheduling based on synthetic solar data, evidenced by a 33,103.77-kWh grid 

import, again more than double that of GA-Yearly Horizon. While HOMER achieves the lowest 

battery replacement cost (€56,363), this advantage is cancelled out by the higher reliance on 

the grid. 

Subplot (d) underscores GA-Yearly Horizon’s advantage through its substantially lower 

annualized grid cost of €7,561, relative to GA-Load Following (€18,969) and HOMER-Load 

Following (€20,152). By operating with a broader planning horizon, GA-Yearly Horizon 

coordinates solar generation with battery dispatch more effectively, reducing day-to-day 

expenses and extending battery life. It’s lower Net Present Cost (€625,776) offsets the initial 

delay even if it has a somewhat longer payback period (5.00 years instead of 4.48 for GA-

Load Following). GA-Yearly Horizon also exports more surplus energy (61,686.44 kWh, 

compared to 30,224.30 kWh in GA-Load Following and 28,060.84 kWh in HOMER), hence 

highlighting its more efficient utilization of renewable output. 

These results show the more fundamental difference between foresight-driven and near-term 

approaches. Although short-horizon approaches like GA-Load Following and HOMER call for 

lesser upfront budgets, they rely more on the grid and over time generate more running costs. 

By contrast, GA-Yearly Horizon's proactive method reduces total dependency on outside 

power by means of more consistent, long-term savings even when it raises initial expenditure. 

Although it represents a best-case benchmark assuming accurate forecasts and optimal 

dispatch, GA-Yearly Horizon’s results highlight how strategic planning and efficient resource 

allocation can yield a more financially resilient system. By mapping out the strengths and 

limitations of each approach, this analysis lays the groundwork for introducing novel 

optimisation strategies, where these benchmarks will provide a valuable point of reference for 

enhanced system design. 

Grid-related operating expenses and their monthly breakdown reveal clear differences among 

the GA-Yearly Horizon, HOMER, and GA-Load Following strategies as shown in Figure 3-12 

(a) and (b). In January, GA-Yearly Horizon records a total monthly charge of €3,494.59 with 

4,306 kWh purchased and 1,887 kWh sold, translating into a net import of 2,419 kWh. 
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Although the bought volume is relatively high, sales revenue mitigates much of the burden. 

HOMER, by contrast, posts a higher charge of €5,057.52 based on 5,914 kWh imported and 

only 446 kWh exported, while GA-Load Following peaks at €5,540.50, reflecting 6,587 kWh 

bought against 1,582 kWh sold. These stark discrepancies reflect the influence of planning 

horizons and the degree of coordination between storage dispatch and grid interactions. 

February offers a further illustration of how closely matched import and export figures can 

lower costs. GA-Yearly Horizon’s monthly total of €1,855.98 stems from 2,110 kWh purchased 

and 2,141 kWh sold, producing a slightly negative net purchase of –31 kWh. HOMER’s 

charges reach €3,828.73, with 4,397 kWh imported and 1,392 kWh sold, whereas GA-Load 

Following records a similar total of €3,822.75, importing 4,379 kWh and exporting 1,523 kWh. 

March continues to highlight GA-Yearly Horizon’s ability to run at an energy surplus. It holds 

monthly charges to €1,104.43 by buying just 1,214 kWh and exporting 4,030 kWh, achieving 

Figure 3-12: Benchmarking Methods Monthly Escalated Grid-Related Financial Performance. a) Monthly energy 
revenue from grid sales, (b) Monthly grid-related costs, including power purchases and fixed charges across GA-
Yearly Horizon, GA-Load Following, and HOMER-Load Following.  
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a net negative purchase of –2,815 kWh. In comparison, HOMER sees €3,504.32 for the same 

period, after importing 4,090 kWh and selling 2,981 kWh, while GA-Load Following settles at 

€2,975.74 with 3,338 kWh in purchases and 2,237 kWh in exports. This pattern persists 

through the spring and summer months, where GA-Yearly Horizon’s costs frequently drop well 

below €200 per month thanks to significant net negative purchases (–7,909 kWh in April, –

9,129 kWh in May, and comparable figures in June through September) that are otherwise not 

replicated by HOMER or GA-Load Following. 

April shows the importance of robust surplus production: GA-Yearly Horizon spends only 

€36.90 for buying 26 kWh and selling 7,935 kWh, highlighting how perfectly timed battery 

discharges and export decisions may drastically cut costs. Conversely, depending on at least 

several hundred thousand kilowatt-hours of monthly imports and less strong export 

management, HOMER and GA-Load each incur expenditures exceeding €1,000. May remains 

similarly revealing, with GA-Yearly Horizon’s net negative purchase of –9,129 kWh dropping 

its total charge to about €47.91, while HOMER still spends €879.96 and GA-Load Following 

€795.56. Over the middle months of the year, GA-Yearly Horizon nearly always holds monthly 

costs between roughly €70 and €330 by strategically drawing from or sending energy to the 

grid at optimal times. HOMER and GA-Load Following rarely match this performance, and 

even in periods where they do export a respectable amount of solar energy, they still carry 

more substantial grid purchases. 

Shifting toward autumn, an example emerges in October, when GA-Yearly Horizon’s monthly 

charge grows to €311.34 due to a more modest net export of –3,889 kWh. Yet HOMER and 

GA-Load Following both surpass €1,600 that month, indicating how an increase in import 

requirements quickly drives up monthly bills. Similar outcomes appear in November and 

December as solar availability wanes, with GA-Yearly Horizon’s costs climbing to €2,775.23 

in November and €2,705.43 in December. HOMER, however, rises beyond €4,000 in both 

months, and GA-Load Following consistently hovers around that same level. Even in these 

higher-load conditions, the broad scheduling horizon of GA-Yearly Horizon still yields lower 

costs thanks to a more nuanced use of stored energy. In total, the GA-Load Following strategy 

accrues approximately €29,625 in annual grid-related charges, underscoring how limited 

foresight and passive dispatch compound costs over time, particularly in months of low solar 

availability and reduced export potential 

From the monthly data, it is clear that the GA-Yearly Horizon approach systematically reduces 

grid reliance, captures higher revenues from surplus exports, and avoids steep peak-demand 

penalties through proactive scheduling. In contrast, HOMER and GA-Load Following, which 

operate with shorter planning windows, show significantly higher import volumes and less 
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precisely timed exports, causing their monthly costs to sometimes exceed €5,000. Over the 

course of a year, such differences accumulate into notably higher total charges for the short-

horizon benchmarks, confirming that long-horizon optimisation can yield sustained financial 

benefits despite added complexity. These findings provide a valuable reference future practical 

novel methods, which aims to combine the strengths of extended foresight with the practical 

flexibility of load-following schemes. 

Figure 3-13 depicts year-by-year evolution of cumulative present costs highlights how initial 

investments in PV and storage can ultimately yield substantial long-term savings when 

compared to a Grid-Only scenario. At the outset, GA-Yearly Horizon invests €384,200, while 

both HOMER and GA-Load Following spend about €313,000. Grid-Only’s nominal entry cost 

of €2,500 looks appealing initially but escalates rapidly over time, culminating in a final net 

present cost of about €1,608,050 by Year 25. In contrast, GA-Yearly Horizon finishes with the 

lowest net present cost of €625,776, followed by HOMER at €661,677 and GA-Load Following 

at €665,236 as shown in Table 3-8. 

 

 

 

Figure 3-13: Cumulative Discounted Cash Flow Over a 25-Year Horizon for Different Energy Management 
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Table 3-8: Key Financial Metrics of Benchmarking Approaches 

Financial 

Metric 
Units 

GA- Yearly 

Horizon 

GA- Load 

Following 

HOMER- 

Load 

Following 

NPC [€] 625,776 665,236 661,677 

LCOE [€/kWh] 0.228 0.243 0.241 

IRR [%] 17.05 19.68 19.74 

Payback 

Period 
[Years] 5.00 4.48 4.54 

 

These end values reflect the compounding effect of operational savings, especially from 

reduced grid purchases and optimised surplus energy sales, which offset GA-Yearly Horizon’s 

higher upfront outlay. The corresponding financial metrics reinforce the trade-offs in each 

approach. GA-Yearly Horizon achieves the lowest LCOE of €0.228/kWh yet has a moderately 

lower IRR of 17.05% and a slightly longer payback period of five years. Both HOMER and GA-

Load Following realise higher IRRs of about 19.7% and slightly faster payback times around 

4.5 years, but their LCOEs remain above €0.24/kWh, and their final net present costs exceed 

GA-Yearly Horizon’s by roughly €35,000 to €40,000. These patterns confirm that longer-

horizon planning can secure deeper lifetime cost reductions, albeit with more substantial 

upfront spending. Considering previous findings, which showed that GA-Yearly Horizon 

minimises month-to-month grid expenditures, the overall financial picture now confirms that 

strategic coordination of energy resources ultimately translates into lower lifetime expenses, 

even if the initial investment is higher and the return takes a little longer to materialise. 

3.6  Summary 

This chapter presented a comprehensive framework that brings together Genetic Algorithms 

(GA) and Mixed Integer Linear Programming (MILP) for both long-term planning and hourly 

dispatch of hybrid renewable energy systems. The GA scans a wide range of possible layouts, 

varying in photovoltaic, battery, and hydrogen capacities, seeking to minimise total project 

costs. Each candidate layout then goes through a MILP-based check to verify it can meet the 

full set of hourly demands across a calendar year. By packaging capacity decisions and 

operational constraints into a single, year-long optimisation, the proposed approach can 

uncover configurations that use resources more efficiently than simpler, short-horizon 

methods. 
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Nevertheless, this full-year optimisation operates under the assumption of perfect foresight. 

That assumption often improves the outcomes on paper but does not always mirror real-world 

conditions, where demand forecasts and renewable outputs evolve in shorter cycles. For that 

reason, the chapter concludes by comparing the GA–MILP approach with two alternatives that 

focus on more immediate decision-making: a rule-based load-following method and the 

HOMER Pro software. These analogies underline useful benefits and constraints of several 

temporal periods in system operation. The techno-economic results in this chapter are based 

on perfect foresight of hourly solar irradiance, load demand, and static time-of-use tariffs 

across a full deterministic year. Component efficiencies and financial inputs are treated as 

fixed, with no degradation modelling or multi-year uncertainty included in the optimisation. 

Through an analysis of these opposing paradigms, the chapter clarifies how long-horizon 

optimisation might provide significant financial benefits yet depends on assumptions that might 

not always apply in operational settings. This investigation naturally emphasises the 

requirement of implementing realistic operational layer concepts such as rolling-horizon or 

Model Predictive Control (MPC) techniques with flexible load approaches, which more 

dynamically change schedules. Leveraging these ideas, the next chapter introduces MPC and 

flexible load-shifting strategies more realistically reflecting the daily reality of balancing 

renewable energy, storage, and end-user expectations. 
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4 Improving Renewable System Sizing Accuracy 

through Model Predictive Control Concept and 

Flexible Load Operation.  

4.1 Introduction 

In Chapter 3, a nested GA–MILP approach was proposed and validated to determine optimal 

component sizes and an annual dispatch for a hybrid energy system, making use of a single, 

large-scale optimisation that assumed year-round knowledge of resources and loads. While 

that one-shot approach demonstrates how a system could theoretically minimise costs given 

perfect foresight, day-to-day operations in practice rarely enjoy such complete information. 

This chapter introduces an improved methodology intended to capture more realistic decision-

making by dividing the year into smaller intervals and re-optimising repeatedly with partial 

forecasts. In addition, part of the electrical load is allowed to shift within each day described 

as flexible load in the coming sections, further enhancing operational efficiency. For the ease 

of modelling and to align with the real load from the Formentera case study, a selected water 

pump is modelled as flexible load.  

4.2 Methodology 

The novel framework keeps the familiar two-layer structure. The GA still handles long-term 

capacity choices, such as how large the battery bank or electrolyser should be, while the MILP 

determines an hourly dispatch. What changes is that the MILP is no longer solved over 8,760 

consecutive hours at once; instead, it works in rolling windows of 24 hours. Only a subset of 

each solution (e.g., the first 12 hours of each 24-hour window) is “committed” to the final 

schedule, and then the process advances by half a day. By doing so, this approach more 

closely resembles a Model Predictive Control (MPC) scheme, where the horizon is gradually 

shifted as time progresses. The following sections detail the mathematical equations that are 

added or revised relative to Chapter 3’s single-horizon MILP. 

Figure 4-1 offers a schematic view of how the upper loop (GA) and local loop (rolling-horizon 

MILP) operate in unison. In each generation of the GA, an individual (i.e., a candidate set of 

capacities) is tested by running the MILP in sequential daily windows, each covering 24 hours. 

The MILP’s solution for each window, complete with hour-by-hour decisions, yields an 

operating cost for that segment. These costs are aggregated across the full year, producing 

an annual operating profile that is then combined with capital costs, replacement schedules, 

and salvage values to compute the system’s NPC. The GA’s evolutionary operators, selection, 



115 
 

crossover, and mutation, rely on this NPC value to guide the search toward more cost-effective 

designs.   

Figure 4-1: Proposed Novel GA-MILP-MPC Flexible Load Methodological for two layers Grid Time of 
Use driven Optimisation approach 
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The MILP solved in each 24-hour window is identical to the yearly MILP of Chapter 3: the 

same unmet- and excess-energy slack variables and the same per-kWh penalties (1 000 

€/kWh unmet, 100 €/kWh excess) ensure that every window is feasible. The rolling horizon 

therefore produces 730 feasible sub-schedules, but after stitching the first 12 h of each window 

the GA receives one complete 8 760-hour schedule, exactly as in the GA-Yearly Horizon 

method. Solution quality is evaluated with the same annual indicators described in section 

3.3.2.3 and the same fitness function (NPC plus the annual slack penalties) described in 

Section 3.3.2.2. No additional repair or replacement is required: if the stitched year still 

contains slack, the penalty already inflates NPC and the GA naturally pushes the population 

toward designs whose daily windows—and therefore the stitched year—drive both slacks to 

zero. In this way the rolling-horizon local loop inherits the feasibility guarantee and the 

evolutionary pressure of the Chapter 3 formulation while allowing limited-look-ahead 

operation. The next section, the detailed modelling is explained with focus on the rolling 

horizon with flexible load implementation. 

4.2.1 MPC-Flexible Load Formulation 

Instead of solving for the entire year at once, the timeline is split into overlapping windows. 

Each window is set to 24 hours in length, though only the initial 12 hours of each solution are 

locked in before shifting to the next window. If a given window is indexed by 𝑤, its local hourly 

set is denoted by: 

𝒯 ∈ {0,1, … ,23}. 4-1) 

In the global timeline of 8,760 hours, the starting hour of window 𝑤 might be labeled ℎ. Once 

the MILP determines a dispatch for hours ℎ through ℎ + 23, only the results for hours ℎ to ℎ +

11 become final, and the model moves on to the next window starting at ℎ + 12. Within each 

24-hour slice, the immediate goal is to minimise the operating cost: 

min
all variables 

  ෍  

௧∈ 𝒯

ቂ𝜋buy [𝑡] ⋅ 𝑃grid,buy [𝑡] − 𝜋sell [𝑡] ⋅ 𝑃grid,sell [𝑡] +  penalty unmet ⋅ 𝐸unmet [𝑡]

+  penalty excess 𝐸excess [𝑡]ቃ 

(4-2) 

where 𝜋buy [𝑡] and 𝜋sell [𝑡] are the time-varying grid prices for purchasing and selling electricity, 

and 𝐸unmet [𝑡], 𝐸excess [𝑡] capture any shortfall or surplus energy at hour 𝑡. Since the 

overarching objective is to minimise total costs for the entire year, these 24 -hour solutions are 

ultimately pieced together, and their aggregated operational cost is added to the investment 

and maintenance costs in the GA's global net present cost (NPC) calculation. 
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Much like the formulation in Chapter 3, power flows on the DC side (where the battery and 

fuel cell reside) and the AC side (where the main load and grid connection are located) must 

balance each hour. If  𝑃௥௘௡, DC remaining [𝑡] is the portion of renewable power left on the DC bus 

after any direct usage represented by 𝑃௥௘௡, DC inverted [𝑡], the DC node balance is: 

𝑃௥௘௡, DC inverted [𝑡] + 𝑃௥௘௡, DC remaining [𝑡] +  𝑃battery, discharge [𝑡] +  𝑃fuel-cell[𝑡]

−  𝑃battery, charge [𝑡] −  𝑃inverter [𝑡] ⋅  ( 1 + 1 − 𝜂DC/AC inverter )

−  𝐸excess [𝑡] = 0, ∀𝑡 ∈ 𝒯 

(4-3) 

On the AC node, the inverter's output ( 𝑃inverter [𝑡]), any electricity bought from the grid ( 

𝑃grid_buy [𝑡]൯, and unmet load (𝐸unmet [𝑡]) are balanced with the main load, flexible load, any 

electrolyser usage, and any selling back to the grid 𝑃grid_sell [𝑡]: 

𝑃inverter [𝑡] + 𝑃grid_buy [𝑡] − 𝑃grid_sell [𝑡] − (𝑃load [𝑡] + 𝑃flexible [𝑡]) − 𝑃electrolyser [𝑡]

+ 𝐸unmet [𝑡] = 0, ∀𝑡 ∈ 𝒯 

(4-4) 

Here, 𝑃flexible [𝑡] is a new term introduced in this chapter, reflecting that part of the load can be 

scheduled flexibly. A crucial difference from Chapter 3's single-shot solution is that each 24-

hour window receives initial states for the battery and hydrogen tank from the final partial 

commitment of the previous window. The battery state of charge is redefined as following:  

SoC௕[𝑡] = ൞

SoC init 
(௪)

, 𝑡 = 0

SoC[𝑡 − 1] +
𝜂ୠ −

𝑁௕௧ ∙ 𝐵௠
𝑃battery , charge [𝑡] −

𝑃battery,discharge [𝑡]

𝜂ୠା  ∙ 𝑁௕௧  ∙ 𝐵௠
, 𝑡 > 0

 (4-5) 

The term SoC init 
(௪)  indicates that if window 𝑤 begins at global hour ℎ, its initial SoC for the battery 

equals the final SoC from the midpoint shift (ℎ − 12) of the previous window. The hydrogen 

tank Level of Hydrogen is redefined as following:  

𝐿𝑜𝐻[𝑡] = ൞

LoH init 
(௪)

, 𝑡 = 0

𝐿𝑜𝐻[𝑡 − 1] +
𝜂ୣ୪

𝑃ு் ×  𝐻௅ு௏

𝑃electrolyser [𝑡] −
𝑃fuel ିୡୣ [𝑡]

𝜂௙௖ ା × 𝑃ு் × 𝐻௅ு௏

, 𝑡 > 0
 (4-6) 

Here, 𝐿𝑜𝐻init 
(௪) is likewise set to the hydrogen tank level from the previously committed hours. 

At the end of each 24 -hour window's MILP, only the first 12 hours are appended to the final 

schedule, and the LoH values at hour 𝑡 = 12 become the initial states for the next window. To 

allow part of the load to be shifted for cost advantage, the model introduces a binary variable 

𝑥flexible, on/off [𝑡] and an associated power: 

𝑃flexible [𝑡] = 𝑃flexible,rated ⋅ 𝑥flexible,on/off [𝑡], ∀𝑡 ∈ 𝒯 (4-7) 
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If 𝑃flexible, rated  is the rated power in kW and 𝑥flexible, on 
 off 

[𝑡] = 1 makes the load draw this power 

(kW) in hour 𝑡. The daily run-time requirement 𝐻flexible, daily  is enforced by summing the "on" 

hours across each calendar day: 

෍  

୩∈୘ౚ

xflexible,on/off [k] = Hflexible,daily , ∀𝑑 (4-8) 

where 𝑇ௗ is the set of global hours belonging to day 𝑑. A complication arises because each 

rolling window might intersect multiple days. The code handles this by tracking how many 

flexible-load hours for each day were already used in a previous window. Let 𝜙ௗ
(௪ିଵ) be the 

flexible-load hours assigned to day 𝑑 before window 𝑤. Then, if a window covers hours from 

day 𝑑, the MILP imposes: 

෍  

௞∈ ೏்
(ೢ)

𝑥flexible,on/off [𝑘] + 𝜙ௗ
(௪ିଵ)

= 𝐻flexible,daily, ∀𝑑 (4-9) 

Thus, ensuring day  𝑑 meets exactly the daily requirement by the time it finishes. The mutually 

exclusive constraints are applicable for this method for each window 𝑤 , and it is given as 

following for the grid buy/sell exclusivity:  

𝑃grid , buy (𝑡) ≤ 𝑃௚௥
୫ୟ୶ ∙  𝑥grid (𝑡), 

 𝑃grid,sell (𝑡) ≤ 𝑃௚௥
୫ୟ୶ ∙ ቀ1 − 𝑥grid (𝑡)ቁ , ∀𝑡 ∈ 𝒯 

4-10) 

Battery Charge/Discharge exclusivity: 

𝑃battery,charge (𝑡) ≤ 𝑃௕
ି୫ୟ୶ ቀ1 − 𝑥battery (𝑡)ቁ,  

𝑃battery, discharge (𝑡) ≤ 𝑃௕
ା୫ୟ୶𝑥battery (𝑡), ∀𝑡 ∈ 𝒯 

4-11) 

Electrolyser and Fuel Cell exclusivity:  

𝑃electrolyser (𝑡) ≤ 𝑃௘௟
୫ୟ୶ ቀ1 − 𝑥hydrogen (𝑡)ቁ, 

 𝑃fuel-cell (𝑡) ≤ 𝑃௙௖
୫ୟ୶𝑥hydrogen (𝑡), ∀𝑡 ∈ 𝒯 

4-12) 

DC to AC limit and DC side constraints:  

𝑃inverter (𝑡) ≤ 𝑃୧୬୴
୫ୟ୶,  

𝑃ren ,ୈେ-inverted (𝑡) + 𝑃ren,DC-remaining (𝑡) = 𝑃ren-output (𝑡), 

𝑃ren, ୈେି remaining (𝑡) = 𝑃battery,charge (𝑡) + 𝐸exceess (𝑡), ∀𝑡 ∈ 𝒯 

4-13) 

Renewable availability to charge battery:  
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𝑃௥௘௡, DC remaining [𝑡] ≤ ൫𝑀 ∙  𝑥௥௘௡ି௚௘௡ [𝑡]൯ + 𝜖, ∀𝑡 ∈ 𝒯 

𝑃ren,DC-remaining (𝑡) ≥ 𝜖𝑥ren-gen (𝑡), ∀𝑡 ∈ 𝒯 

𝑃battery,discharge (𝑡) ≤ ቀ1 − 𝑥ren-gen (𝑡)ቁ ∙ 𝑃௕ା,௠௔௫, ∀𝑡 ∈ 𝒯 

4-14) 

All the mutual exclusivity constraints from Chapter 3, such as preventing simultaneous battery 

charging and discharging or blocking simultaneous buying and selling on the grid, and 

hydrogen remain valid in this rolling-horizon model. These physical and operational restrictions 

govern each 24-hour window 𝑤  in the MPC-based framework. In other words, the method 

preserves all the prior constraints that define feasible operation at each hour, simply 

partitioning the year’s timeline into segments and shifting states forward after every 12 hours 

of committed dispatch. 

4.2.2 Water Pump as a Flexible Load 

In this work, we model the flexible load of a swimming pool water pump from the Formentera 

energy community. Essential for maintaining appropriate water circulation and filtration, the 

pump must run eight hours a day altogether. As long as the 8-hour daily run is attained, the 

exact timing of its operation is not constant and flexible; so, the model lets the start and stop 

times of the pump to be changed depending on renewable availability and grid prices signals. 

The active status of the pump is indicated by a binary decision variable, which guarantees 

that, on, it draws power at its rated value (3 kW). Table 4-1 offers a summary of the primary 

pump-related specs and input values. 

Table 4-1:Flexible Load: Water Pump Specifications for the Formentera Energy Community 

Parameter Value Units Description 

Rated Power 

𝑃flexible,rated  
3 kW 

Power draw when the pump is 

active. 

Daily Operating 

Requirement 

𝐻flexible,daily 

8 hours 
Minimum number of operating 

hours per day. 

Pump Type Swimming Pool – 
Non-critical load with flexible 

scheduling. 

Operational Flexi-

bility 
Fully shiftable – 

Can be scheduled at any time, 

provided the 8-hour require-

ment is met. 
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The MPC framework incorporates this flexible scheduling, which lets the optimisation move 

the operation of the pump to times of more or less renewable availability or reduced grid 

charges. Such dynamic scheduling improves general system efficiency without endangering 

water quality criteria. Moreover, for better understanding, two scenarios of increased rated 

power of 4.35 and 5.8 kW were introduced to study the impact of an increased rated power of 

the flexible load. 

While the community originally relies on a fixed 3 kW water pump, the present investigation 

assumes future expansions of similar load-sensitive equipment (for instance, additional 

pumps) to create larger flexible loads: 4.35 kW for MPC 6% and 5.8 kW for MPC 8%. These 

higher loads allow an expanded study into how adding flexibility influences both operating 

efficiency and overall economic returns. The scenarios are defined in Table 4-2.  

Although the rated power of the current pump is modest (3 kW), the higher-rated scenarios 

(4.35 kW and 5.8 kW) allow the model to explore a meaningful flexible share of total daily 

energy use. In fact, in the MPC 6% and 8% scenarios, the flexible energy accounts for up to 

6–8% of the community’s average daily energy demand, which is significant from a system 

perspective. This supports a more robust evaluation of how load shifting affects capacity 

sizing, hydrogen utilisation, and economic outcomes. 

Table 4-2 : Scenarios defined for the flexibility investigation  

Flexible load 

scenarios 
Flexible load 

Power (kW) 

Total non-

flexible load 

(kWh) 

Total Flexible 

energy (kWh)  

Hours 

of the 

day  

Compared 

to Fixed 

start (am) 

GA- MILP -

MPC 0% 
0.00 211,665.3 0 0 

08:00 

GA- MILP -

MPC 4% 
3.00 202,905.3 8760 8 

08:00 

GA- MILP -

MPC 6% 
4.35 198,963.3 12,702 8 

08:00 

GA- MILP -

MPC 8% 
5.80 194,729.3 16,936 8 

08:00 

 

These higher loads allow an expanded study into how adding flexibility influences both 

operating efficiency and overall economic returns. The scenarios are defined in Table 4 2. 

These flexibility levels correspond to approximately 4%, 6%, and 8% of the community’s 

average daily demand (≈579.9 kWh/day), with the highest case approaching 10%, a relatively 

high value compared with typical demand-side management studies. 
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4.2.3 Summary 

This rolling-horizon framework adds a realistic layer of adaptive control to the original GA–

MILP model. By scheduling a flexible load within daily windows, the system can mitigate both 

unmet energy and renewable curtailment more effectively, taking advantage of near-term 

conditions rather than relying on year-long certainty. The next section will present numerical 

results comparing this rolling-horizon, flexible-load method to both the single-horizon solution 

from Chapter 3 and simpler rule-based dispatch algorithms. Through these comparisons, one 

can observe the distinct advantages when the model is made more dynamic. 

4.3 Results 

This section presents the outcomes of the enhanced rolling-horizon MPC approach with 

flexible load integration, building on the methodology and findings of Chapter 3. Chapter 3 

illustrated a full-year GA–MILP optimisation whereas the new method re-optimises in daily 

periods and allows dynamic load shifting. The results are arranged below: Section 4.3.1 

describes system sizing and technical performance improvements; Section 4.3.2 investigates 

energy flows and dynamic behaviour; Section 4.3.3 addresses economic performance 

metrics; and Section 4.3.4 evaluates the effects of tuning both GA and MILP solver 

parameters. These results, put together, illustrate how a more realistic and adaptive 

optimisation framework benefits over the two benchmarking methods: the single-horizon 

technique and the short-horizon rule-based load-following approach. 

4.3.1 System Sizing  

The results in Table 4-3 show how the newly deployed GA–MPC rolling-horizon method 

determines component capacities for flexibility levels of 0%, 4%, 6%, and 8%, in contrast to 

the single-horizon GA–MILP approach from Chapter 3 (Table 3-6). Previously, a year-long 

global optimisation with perfect foresight often led to higher photovoltaic (PV) capacity 

(156 kWp) and a large battery bank (86 strings), while simpler load-following strategies 

undersized both PV and batteries, boosting dependence on the grid. The rolling-horizon 

scheme, which re-optimises daily and, in some cases, allows part of the load to be 

rescheduled, avoids some of the oversizing observed with perfect foresight but still lowers grid 

imports more than do short-horizon heuristics. 
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Table 4-3: GA-MPC novel approach capacity sizing results. 

Component Units 
GA-MILP -

MPC 0% 

GA-MILP -

MPC 4% 

GA-MILP -

MPC 6%  

GA-MILP -MPC 

8% 

Solar PV [kWp] 155 152 154 150 

Battery [Strings] 76 74 76 80 

Inverter [kW] 77 75 75 72 

Contracted 

Power 
[kW] 41 40 39 37 

Fuel cell [kW] 5 5 5 5 

Electrolyser [kW] 6 5 5 5 

Tank [Kg] 7 7 8 9 

NPC                        [€] 612,945 606,879 604,305 599,134 

LCOE                  [€/kWh] 0.224 0.221 0.221 0.218 

 

At 0% flexibility, the GA–MPC solution selects a 155 kWp PV array, close to the 156 kWp from 

the annual optimisation but still far larger than the 124 kWp load-following benchmark. Even 

without load shifting, daily re-optimisation preserves most of the benefits of a year-long view. 

As flexibility rises from 0% to 8%, the PV rating declines slightly, reaching 150 kWp once a 

fraction of demand shifts to match solar production. Although the difference is only about 

5 kWp, this shift highlights a design principle: nudging loads into midday hours eases pressure 

for extremely large PV arrays. 

Battery sizing follows a subtler trend. The GA Yearly-horizon run selected 86 strings from 

Chapter 3, whereas rule-based load following chose around 58. Under GA–MPC, the system 

first adopts 76 strings at 0% flexibility, stays around 74–76 strings through 4%–6% flexibility, 

then jumps to 80 strings at 8%. Rolling-horizon scheduling plus limited load shifting avoids 

over-investment in battery storage at lower flexibility levels yet ultimately deploys a slightly 

bigger bank at 8%. Shifting demand toward daylight hours can diminish the need for excessive 

evening storage unless flexibility grows enough to justify adding more capacity to capture 

surplus solar power. Moving from 76 to 80 strings at the highest flexibility indicates that once 

shifting surpasses a threshold, a larger battery is advantageous for further minimising grid 

exchanges. 

The contracted grid power and hydrogen elements show comparable patterns. While the 

single-horizon solution assigned up to 52 kW of contracted power, the new approach scales it 

back to 41 kW (0% flexibility), then to 37 kW (8%). Rolling-horizon control plus partial load 

shifting lowers grid peaks below either perfect foresight or purely reactive methods. 
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Meanwhile, the electrolyser rating moves from 6 kW to 5 kW as soon as any flexibility is 

introduced, reflecting reduced need to capture every midday surplus. The hydrogen tank, 

however, expands from 7 kg to 9 kg by 8% flexibility, signifying that fewer kilowatts of 

electrolyser capacity can be balanced by a slightly larger tank, which stores hydrogen for later 

use. 

These capacity decisions translate directly into NPC differences. In Chapter 3, perfect 

foresight produced around €625,776 in NPC, while load-following solutions ranged from about 

€661,000 to €665,000. Under the rolling-horizon GA–MPC, even at 0% flexibility, the NPC 

drops below €613,000, reflecting that daily re-optimisation alone remedies certain 

inefficiencies of annual sizing. Moving to 8% flexibility brings the NPC down to €599,134, well 

below the Chapter 3 benchmarks, and reduces the Levelised Cost of Electricity to about 

€0.218/kWh. Breaking the year into 24-hour MPC windows and permitting modest flexible 

demand thus curbs oversizing, leverages local solar effectively, and delivers lower total project 

costs than either full-year or passive short-horizon methods. Table 4-4 compiles the principal 

performance indicators for the MPC-based method under four different levels of flexibility, 

providing a direct parallel to Table 3-7 in Chapter 3. In that earlier chapter, the GA–Yearly 

Horizon scheme yielded roughly 285 MWh of annual PV generation, covering approximately 

61 percent of the electricity demand, while simpler load-following algorithms produced closer 

to 227 MWh but attained higher self-consumption percentages by virtue of smaller arrays. 

Under the present rolling-horizon technique, total PV output hovers at 280 MWh across all 

flexibility scenarios, and the share of load met directly by solar averages over 58%, marginally 

below the 61% recorded for the single-horizon approach. This little variation implies that MPC-

based scheduling still efficiently uses solar resources even if it divides the year into daily 

windows. 
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Table 4-4 Performance metrics comparison for MPC approach with different flexibility %. 

Beyond the overall PV production, the most pronounced distinctions arise in the operational 

patterns of the electrolyser and fuel cell. In Chapter 3, the single-horizon optimisation often 

kept these hydrogen components running at modest capacity factors (around 15 % for the 

electrolyser and 5 % for the fuel cell). Now, as Table 4-3 reveals, the electrolyser capacity 

factor reaches approximately 30 percent even with no load flexibility, then falls to the mid-

twenties once partial demand shifting alleviates the midday surplus. A similar decline emerges 

in the fuel cell’s capacity factor, dropping from almost 10 % under zero flexibility to about 6–

7 percent when the load is partially rescheduled. 

Battery throughput exceeds 80 MWh in each MPC scenario, aligning closely with the 85 MWh 

reported under the Yearly Horizon method. Meanwhile, the system’s reliance on grid electricity 

settles around 9–10 percent, somewhat higher than the 7.21 % observed with perfect 

foresight, yet consistently below the 14–15 percent typical of load-following. Such results 

suggest that a rolling-horizon process, when combined with modest demand flexibility, can 

retain many of the advantages of long-term optimisation while offering improved 

responsiveness to short-term system variations. 

 

Metrics Units 
GA-MILP -

MPC 0% 

GA-MILP -

MPC 4% 

GA-MILP -

MPC 6%  

GA-MILP -

MPC 8% 

PV Generated kWh 283,669.53 278179.15 281600.73 274518.90 

PV Directly Consumed 

by load 
kWh 123802.20 122563.30 122914.93 122328.25 

PV Contribution to Load % 58.48 57.90 58.07 57.79 

Renewable Self 

Consumption 
% 43.64 44.05 43.64 44.56 

Battery Throughput kWh 83,739 84,303 84,840.85 85,201 

Electrolyser Capacity 

Factor 
% 30.45 23.99 25.54 23.46 

Fuel Cell Capacity Factor % 9.97 6.55 7.01 6.57 

PV Excess Energy kWh 159,867.33 155615.9 158,686 152,190 

Electrolyser Usage kWh 16,008.27 10,508.42 11,188.64 10,464.32 

Fuel Cell Usage kWh 4,369.67 2,871.04 3,073.36 2,879.93 

Grid Dependence % 9.47 10.14 9.96 10.5 

Grid Import kWh 20,061.72 20,576.70 19825.76 20,459.23 

Grid Export kWh 59,002.69 58,281.19 60,243.08 54,728.35 
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4.3.2 Energy Flow and Dynamics 

Winter Days Analysis: 

Figure 4-2 shows operational dynamics for the novel GA-MPC flexible approach.  Three winter 

days (13–15 January 2022) closely follow the capacity sizing and performance work discussed 

in previous section. This section offers substantial perspectives on the performance of 

optimally configured GA–MPC approach under wintertime conditions marked by low 

photovoltaic (PV) generation. Such a close study proves particularly valuable before turning 

to the summer analysis, when PV output is likely to be much higher. 

On 13 January (Day 1), hourly electricity rates ranged between €0.3535/kWh and 

€0.3985/kWh, thereby guiding how the GA–MPC scenarios (with 0%–8% flexibility) scheduled 

load and storage. Between 00:00 and 07:00, with no PV generation available, all scenarios 

Figure 4-2: Winter Operational Dynamics for MPC rolling horizon with 0% flexibility (a), 4% flexibility (b), 6% flexibility 
(c), and 8% flexibility (d).  The positive values for hydrogen represent the fuel cell output in kW, and the negative values 
indicate electrolyser consumption. For the battery, positive values indicate discharge, and negative values indicate 
charging. Grid interactions show positive values for electricity purchases and negative values for sales. 
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drew about 115 kWh from the grid, backed by steady fuel cell power of around 30 kWh. 

Because the overnight rate was €0.3535/kWh, the day’s lowest, this choice effectively kept 

early-morning costs down. Later on (11:00–15:00), PV production varied between 510.12 kWh 

in MPC 8% and 527.12 kWh in MPC 0%. After satisfying the immediate load (11:00–15:00), 

these scenarios used the remaining solar surplus (roughly 289.39–305.34 kWh) to replenish 

batteries and drive electrolysers (5–6 kWh). Notably, systems with flexibility (0%–8% flexibility) 

shifted two hours of operation (08:00–10:00) for the pump load to night period (16:00–23:00), 

thus curtailing reliance on the grid during higher-priced daytime hours. 

On 14 January (Day 2), similar pricing patterns prompted MPC 4%–MPC 8% to move 

significant portions of their pump demand (24–46.4 kWh) to early morning (00:00–07:00), 

when costs remained at €0.3535/kWh. Rolling short-horizon logic indicated times during the 

day that solar output would not meet the total load, matching up with pricier daytime tariffs, 

which led these flexible scenarios to shift usage earlier. Meanwhile, MPC 0%, lacking flexibility, 

imported 139.50 kWh overnight (00:00–07:00) at the same low rate. By midday (11:00–15:00), 

each scenario capitalised on about 219.88–224.22 kWh of PV energy to recharge batteries, 

holding midday grid imports to a modest 7.39–28.44 kWh. During the evening (16:00–23:00), 

approximately 85–90 kWh of stored battery energy was discharged, further cutting down the 

system’s dependence on costlier grid electricity. 

On 15 January (Day 3), a weekend day with a uniform charge of €0.3535/kWh throughout, 

there was no direct price-based incentive for shifting loads. Despite that, the GA–MPC 

approach still harnessed midday (11:00–15:00) solar surpluses (as high as 531.30 kWh for 

MPC 0%). Extensive battery charging (around 300 kWh) and hydrogen generation (up to 

48 kWh in MPC 0%) allowed each scenario to operate independently of the grid from 08:00 

onward. MPC 4%, MPC 6%, and MPC 8% likewise rescheduled parts of their pump use into 

midday hours, optimising the use of available solar, even without rate fluctuations. 

These results taken together demonstrate the nimble approach of the GA–MPC system for 

managing variable loads in winter environments, where general solar availability is greatly 

reduced. Reacting dynamically to both electricity price structures and renewable availability, 

GA–MPC shows more flexibility than previously benchmarked methods (including GA–Yearly 

Horizon, GA–Load Following, and HOMER–Load Following, explored in Chapter 3), so 

improving operational efficiency in these low-sunlight winter scenarios. 
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Summar Days Analysis:  

Extending the in-depth winter assessment, it is equally important to investigate how the GA–

MPC method fares in the summer (Figure 4-3), when PV availability is greatly increased. Three 

illustrative summer days (18–20 August 2022) are thus reviewed to demonstrate the manner 

in which the previously sized hybrid capacities exploit excess solar energy, and how active 

load shifting influences operational efficiency. 

On 18 August (Day 1), which featured sizeable midday (11:00–15:00) solar yields about 572–

591 kWh, the GA–MPC strategy fully capitalised on abundant renewable supplies. Between 

midnight and 07:00, all scenarios (0%–8% flexibility) satisfied load solely from stored battery 

power (96.64–136.13 kWh discharge), thus avoiding grid purchases at the €0.3535/kWh 

overnight rate. During the morning (08:00–10:00), MPC 4% and MPC 8% opted the same 

decisions by shifting these hours to operate at the evening window (16:00–23:00), avoiding 

Figure 4-3: Summar Operational Dynamics for MPC rolling horizon with 0% flexibility (a), 4% flexibility (b), 6% flexibility (c), and 
8% flexibility (d).  The positive values for hydrogen represent the fuel cell output in kW, and the negative values indicate 
electrolyser consumption. For the battery, positive values indicate discharge, and negative values indicate charging. Grid 
interactions show positive values for electricity purchases and negative values for sales. 
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pricier grid tariffs. While the MPC 6% shifted flattened the flexible load, operating some of it at 

early morning hours (00:00–07:00) by 4.35 kWh and during evening hours (16:00–23:00) by 

4.35 kWh, closely avoiding peak prices during midday hours. Substantial midday solar (11:00–

15:00) enabled intensive battery charging (190–200 kWh) and exports of 155.9–173.6 kWh, 

thereby capitalising on peak PV for both economic and operational gain. In the evening 

(16:00–23:00), the battery (87.08–107.14 kWh discharge) adequately met the community’s 

needs, preserving autonomy from the grid and permitting 52.8 – 76.8 kWh of further surplus 

exports. 

On 19 August (Day 2), the GA–MPC scenarios managed variable tariffs again, €0.3535/kWh 

overnight and €0.4782/kWh at peak daytime. From midnight until 07:00, every scenario drew 

upon battery reserves (98–101 kWh) alone, eliminating the need for overnight grid imports. 

Between 08:00 and 10:00, MPC 0% sustained its non-shiftable 9 kWh load, while flexible 

scenarios (MPC 4%–MPC 8%) intentionally avoided heavy loads at that time, preserving more 

PV for export (67–98 kWh) and achieving moderate battery charging (30–32 kWh). By midday 

(11:00–15:00), the flexible load in MPC 6% and MPC 8% ramped up to 21.75 and 23.2 kWh, 

respectively, aligning with the robust solar output (571–556 kWh). This scheduling facilitated 

large-scale battery charging (191–211 kWh) and exports (142–200 kWh). In the evening 

(16:00–23:00), strategic discharges (100–106 kWh) again checked peak-hour imports, 

conserving sufficient battery headroom so that 38–52 kWh could be exported, thereby 

minimising reliance on higher-priced grid energy. 

Finally, 20 August (Day 3) had a consistent €0.3535/kWh tariff, showcasing the GA–MPC 

framework’s adaptive capabilities in the absence of differential pricing. During morning hours 

(08:00–10:00), MPC 6% and MPC 8% purposefully raised their flexible loads to 8.7 and 

11.6 kWh, respectively, in tandem with ample PV (213–220 kWh). At midday (11:00–15:00), 

MPC8 utilised as much as 29 kWh of flex demand, optimising use of peak solar (572–

592 kWh). Consequently, the battery was well charged (202–211 kWh), and surplus exports 

(178–200 kWh) were high. By late afternoon and evening (16:00–23:00), battery discharges 

of roughly 116–140 kWh ably met demands (164–174 kWh) while still producing 54–86 kWh 

for export, thereby sustaining a high degree of grid independence. 
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Diving deeper in the analysis, four days between winter and summer are selected for the 

analysis of method MPC-8%. Figure 4-4 illustrates the capability to strategically adjust and 

shift the loads in response to electricity prices and the availability of PV generation at each 

time step. For instance, on winter days, subplots a) and b), which are inherently limited in PV 

generation, the MPC-8% approach schedules most of the flexible load towards early morning 

hours. This tactic is clearly evident as the loads are scheduled between midnight and 07:00, 

taking advantage of the lower electricity tariffs of approximately €0.3535/kWh. Such 

scheduling reduces grid purchases when PV energy is insufficient to meet load demand during 

more expensive daytime hours. The MPC-8% approach reduces operating costs related to 

energy imports from the grid during low renewable generation by aggressively moving loads 

to periods of lower electricity prices. 

Figure 4-4: Hourly load profiles and pricing dynamics for MPC 8% flexible operation across four representative days: 
(a) 5th  January 2022 and (b) 12th  January 2022,  representing winter days with low PV availability, whereas (c) 20th  July 
2022 and (d) 21st  July 2022, reflecting summer days with abundant solar energy. Shaded regions indicate load shifts 
(green: increase, blue: decrease), highlighting MPC’s adaptive strategy to minimize energy costs by aligning demand 
with low-tariff hours and PV generation windows. Dual-axis plots show both power demand (left y-axis) and electricity 
prices (right y-axis). 



130 
 

Contrastingly, on the summer days in subplots c) and d), a different behaviour is demonstrated, 

explained by the high PV generation and the availability of excess energy. The MPC-8% 

method is more selective and reduces the necessity for extensive use of electricity in the early 

morning as observed during the winter days. Instead, it only shifts loads when needed, 

specifically during hours between 8:00 and 10:00 in the morning, when demand is high, but 

PV generation is still insufficient to meet the load. This avoids peak price windows, thereby 

enhancing the utilisation of midday PV generation. Consequently, the summer operational 

profiles exhibit minimal reliance on grid imports during high-tariff periods, leveraging the full 

potential of abundant solar resources and storage solutions. 

Comparative study during these summer and winter weeks highlights GA–MPC's improved 

operational responsiveness. Unlike earlier benchmark techniques, GA-Yearly Horizon, GA-

Load Following, HOMER-Load Following, GA–MPC’s short-horizon control realigns battery 

usage and flexible loads each hour according to solar output and tariff structures, achieving 

better cost savings and heightened renewable integration. Furthermore, the research 

underlines GA-MPC 8% as the assessment of selected days in both summer and winter 

confirms the effectiveness of the short-horizon MPC approach in dynamically modifying 

operational decisions to seasonal changes, so maximising cost efficiency and integration of 

renewable energy. This is followed by the next section, which examines how the capacities of 

solar, battery, and hydrogen systems relate to inverter sizing ratios, a crucial component in 

maximising the overall cost and efficiency of the system. 

4.3.3 Economic Analysis  

Building on system sizing and operations, exploring in great depth how various load flexibility 

scenarios and short scheduling horizons can influence financial results. Using the same 

benchmarking approach (GA-Yearly Horizon, GA-Load Following), Figure 4-5 evaluate four 

MPC-based solutions, MPC 0% (subplot a), MPC 4% (subplot b), MPC 6% (subplot c), and 

MPC 8% (subplot d). Each scenario's cost components, including initial capital expenditure, 

operating and maintenance (O&M), replacements, and salvage values, are broken out to 

precisely estimate their financial effects. 

The economic case for the community system is determined by how energy is traded with the 

grid and, more specifically, by the asymmetry between the retail import tariff and the feed-in 

price. Table 4-5 presents a Year-1 snapshot of grid-trading cash flows for all controllers 

considered in this study, including the baselines defined previously (Grid-Only, GA-Yearly 

horizon, GA-Load Following, and HOMER-Load Following) and the MPC cases with 0–8% 

flexible load. For each scenario the table separates exported energy and its income from 

imported energy and its cost and reports the resulting net grid cash-flow together with the 
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avoided import cost relative to Grid-Only. Because these figures are derived directly from 

hourly energy flows priced by the time-of-use schedule, with fixed contracted-power charges 

and excess-demand penalties applied explicitly, the results are fully auditable and comparable 

across controllers. 

Table 4-5 Year-1 grid-trading cash-flow by scenario, separating export revenue from import costs and reporting net 
grid cash-flow and avoided import cost (Grid-Only − scenario) 

Scenario 
Exported 
kWh/year 

Export rev-
enue €/year 

Imported 
kWh 

kWh/year 

Import 
cost 

€/year 

Net grid 
cash-flow 

€/year 

Avoided import cost 
vs Grid-Only €/year 

Grid-Only 
(reference) 

- - 211,665 83,198 86,946 - 

GA-Yearly 
horizon 

61,686 3,146 15,266 5,472 4,857 77,726 

GA-Load 
Following 

30,224 1,541 30,952 11,532 13,787 71,667 

HOMER-
Load Follow-

ing 
28,061 1,431 33,104 12,333 14,650 70,866 

MPC 0 % 
flex. 

58,932 3,006 20,094 7,295 6,285 75,904 

MPC 4 % 
flex. 

58,098 2,963 20,465 7,407 6,391 75,791 

MPC 6 % 
flex. 

60,243 3,072 19,826 7,160 5,988 76,038 

MPC 8 % 
flex. 

54,728 2,791 20,459 7,385 6,395 75,814 

 

Taken together, the results show that export revenue is modest under all controllers because 

the feed-in price is far lower than the retail import tariff; the optimisation therefore prioritises 

self-consumption and temporal shifting over export. The principal source of economic value is 

the reduction in imported energy relative to Grid-Only, which appears clearly in the “Import 

cost” and “Avoided import cost” columns. Net grid cash-flow falls sharply for every optimised 

method, and the MPC cases deliver an additional reduction by shifting the flexible pump load 

into hours of higher on-site generation or lower retail price. Including GA-Yearly, GA-Load 

Following and HOMER-Load Following alongside MPC demonstrates that this conclusion is 

method-agnostic and rooted in the tariff structure rather than in a specific controller. Having 

established the composition of grid-trading cash flows in Year-1, the next paragraphs examine 

how flexibility reshapes the cost stack—CAPEX, O&M, replacements and salvage—for each 

MPC level and how this aligns with the monthly patterns shown in Figure 4-5 and Figure 4-6  
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With no adjustable load, MPC 0% Scenario (subplot a) calls for the largest capital investments, 

€248,000 in PV panels and €83,600 in battery storage. This sizeable initial expense arises 

from the need to secure adequate renewable energy to offset higher grid dependence. Still, 

operational expenses are somewhat substantial even with these major upfront costs. 

Especially, O&M expenses for grid acquisitions alone come to €121,853, by far the biggest 

single component in the annualised expenses. Driven by heavy cycling and frequent partial-

state operations, reflecting operational limits without flexible load shifting, battery replacement 

also adds major budgetary pressure (€77,958). Minimal salvage recovery (€6,278 from 

Figure 4-5: Breakdown of Net Present Costs for the total system costs by category for MPC rolling horizon with 0% 
flexibility (a), 4% flexibility (b), 6% flexibility (c), and 8% flexibility (d). 
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batteries and €1,844 from inverters) points to quite high equipment wear brought on by 

frequent cycling and increased grid dependency. 

Adding small load flexibility to the MPC 4% Scenario (subplot b) changes cost structures. PV 

capital investments drop somewhat to €240,000 while battery investment increases somewhat 

to €88,000. Most importantly, O&M costs for grid purchases remain high (€122,815), which 

reflects still significant dependence on grid energy, somewhat mitigated by better timing of 

flexible loads to lower tariff times. Though with less fuel cell replacements (€1,698), thanks to 

controlled hydrogen storage cycling, replacement prices for batteries remain similar (€77,742), 

emphasising continuous cycle demands. Salvage values also clearly improve (batteries 

€10,540, inverters €1,724), implying that more operating flexibility somewhat reduces 

equipment stress. 

Increasing flexibility even more in the MPC 6% Scenario (subplot c). Although initial capital 

costs for PV (€246,191) and batteries (€84,060) remain in line with past scenarios, improved 

load scheduling notably reduces grid-related O&M costs to €117,390, so proving the financial 

advantage of moving a higher flexible load (4.35 kW) to periods when renewable energy is 

abundant, or electricity rates are low. Although replacement costs reflect higher battery 

throughput (€79,111), more regulated cycling greatly lowers running grid costs. Modest 

increases in inverter and electrolyser replacements (€9,518 and €1,697 respectively) indicate 

better total hydrogen cycle, hence optimising the use of renewable resources. Salvage values 

remain modest (€5,629 batteries, €1,791 inverters), showing the controlled battery and 

inverter use made possible by more operational flexibility. 

Finally, the MPC 8% Scenario (subplot d) achieves the most refined balance between 

operational flexibility and financial prudence. Here, the capital investments for PV (€243,200) 

and battery storage (€81,400) slightly reduce, reflecting optimised capacity sizing from higher 

load flexibility. Despite high battery replacement costs (€78,619) due to slightly increased 

battery cycling (85,201 kWh annual throughput), strategic load shifting significantly mitigates 

operational costs, maintaining grid-related O&M at €123,513. This scenario shows that more 

frequent but shallower battery cycles, made feasible by flexibility, have continuous financial 

benefits by better controlling asset lifetimes, thereby attaining a considerable reduction in 

salvage values (€3,465 batteries, €1,497 inverters). 

These MPC-based models clearly show a financial improvement over Chapter 3 benchmarks, 

such GA-Load Following, which suffered considerably greater NPC owing to increased annual 

grid imports and replacements. For instance, GA-Load Following registered grid purchases 

(O&M) of €245,234, more than double even the least flexible MPC scenario here (MPC 0%). 
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Similarly, MPC scenarios' carefully scheduled flexibility notably reduces battery replacements 

compared to GA-Load Following’s €64,148 cost, despite comparable battery throughputs. 

This assessment indicates that even modest enhancements in load flexibility substantially 

improve economic performance. Specifically, increasing flexibility from MPC 0% to MPC 4% 

and beyond systematically lowers grid-related operational expenditures and enhances 

renewable energy utilisation, despite moderately higher replacement costs. Among the 

evaluated methods, the MPC 8% scenario shows the highest overall economic performance, 

thereby amply illustrating the significant advantages obtained by carefully matching flexible 

loads with tariff variations and renewable generation.  

Figure 4-6 presents a monthly breakdown of grid charges alongside the revenues gained from 

selling surplus energy for four GA-MPC flexibility scenarios: 0%, 4%, 6%, and 8%. This 

monthly perspective illustrates how short-term operational strategies shape both the system’s 

economic results and its reliance on the grid throughout the calendar year. 

In the 0% load flexibility scenario, the absence of shifting capabilities causes hefty grid charges 

during the colder months. January’s costs, for instance, reach roughly €3,801, most of which 

arises from significant energy imports (€3,584.64) and fixed power fees (€344.55), with export 

earnings at a modest €128.18. By contrast, the summer sees robust photovoltaic (PV) 

generation and drastically reduced grid use. In June, imports dip to about €44.09 while export 

earnings climb to €320.27, leading to an overall monthly expense of just €57.25. Even so, the 

unavoidable winter reliance on grid power pushes the annual operational cost up to around 

€15,884, highlighting how a lack of flexibility exacerbates seasonal demand swings. 
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Introducing 4% load flexibility adds a slight increase in battery expenses but creates new 

possibilities for capitalizing on cheaper tariff periods. Although January’s monthly bill inches 

up to €3,907, with nighttime tariffs accounting for €3,694.21 of the import costs, the biggest 

gains become evident in the shoulder seasons. During April, the flexible 3 kW load is timed to 

maximize daytime exports, yielding €325.12 in export revenue and holding monthly grid fees 

to around €41.13. A similar improvement appears in May, where significant export revenue 

(€415.21) offsets import expenses (€208.13), pulling the overall monthly charge down to 

€129.06. As a result, total yearly grid costs land at €16,057, while renewable self-consumption 

improves significantly to 44.05%, demonstrating the value of even modest load-shifting. 

Expanding the flexible load to 6% (4.35 kW) brings more pronounced financial benefits. 

January’s grid costs fall slightly to €3,795 compared to the 4% scenario, thanks to more 

targeted scheduling of the 12,702-kWh annual flexible load. Export earnings of €331.91 greatly 

exceed the low imports (€23.05), so maintaining the net bill for June to be only €12.28. The 

Figure 4-6: Monthly breakdown of grid escalated charges and revenues for MPC rolling horizon with 0% flexibility (a), 
4% flexibility (b), 6% flexibility (c), and 8% flexibility (d). 
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annual grid cost falls to €15,394 by maximising the usage of midday solar, the lowest amount 

among the four scenarios. 

With 8% load flexibility, that is, 5.8 kW, or 16,936 kWh annually, the system maximises capacity 

to benefit from solar output. In months of plenty of sunlight, the financial effect is especially 

obvious. For example, exports in May bring €392.93 while imports come at €203.64, therefore 

producing a net charge of -€189.30. Strong export income (€302.91) and well-timed flexible 

loads help June follow a similar path whereby the month's grid bill of just €32.89 is maintained. 

While annual grid spending for the whole year reaches €15,886, equal to the 0% case, the 8% 

flexibility scenario boosts renewable self-consumption to 44.56% and generates considerable 

surplus energy exports (54,728 kWh/year), hence enhancing its financial resilience. 

These MPC strategies show really good performance when compared with Chapter 3 

benchmarks. Reflecting its less efficient alignment of renewable availability and load 

scheduling, GA-Load Following, for example, had a yearly grid cost of over €29,525.34, far 

higher than any MPC scenario. Although the GA-Yearly Horizon approach uses excellent long-

term horizon, a very broad assumption, it delivers a lower yearly grid cost of €13,123. 

Focussing on short-horizon adaptability, the MPC approach provides a more realistic middle 

ground allowing variable loads to meet both solar generation and daily tariff adjustments while 

allowing sensible forecasting limits. 

Figure 4-7 shows the cumulative discounted cash flows for the four MPC scenarios (0%, 4%, 

6%, and 8%) over the project lifespan (25 years). This cash flow analysis distinctly highlights 

Figure 4-7: Discounted Cashflow for the GA-MPC approach with different flexibility scenarios 
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the internal rate of return (IRR) and payback period, providing a comprehensive perspective 

on investment viability and economic attractiveness for each flexibility scenario. 

Analysing the MPC scenarios individually, MPC 0%, representing no load flexibility, exhibits 

the lowest IRR at 17.75% and the longest payback period of approximately 4.92 years, 

primarily due to higher initial capital outlays and operational grid costs resulting from inflexible 

load scheduling. For example, MPC 4%, allowing some flexibility, improves IRR to 18.15% 

and reduces the payback time to about 4.80 years. As already shown by lower monthly grid 

rates, this financial advantage results from the deliberate distribution of loads to more 

economically beneficial times. 

Further allowing MPC 6% (17.98% IRR, 4.86 years repayment) and MPC 8% (18.22% IRR, 

4.85 years payback) shows just slight variations as well. While MPC 8% has the greatest IRR 

across MPC scenarios at 18.22%, the variations from MPC 4% and MPC 6% are still small, 

showing a declining return on financial measures with increasing load flexibility beyond a 

certain threshold. However, these incremental improvements become significant when 

considering overall system reliability, renewable utilisation efficiency, and operational 

management of storage systems (Figure 4-6 and Figure 4-5). 

Comparing these MPC scenarios to previously discussed Chapter 3 benchmarks, GA-Yearly 

Horizon (IRR: 17.05%, payback: 5.01 years), GA-Load Following (IRR: 19.69%, payback: 4.48 

years), and HOMER-Load Following (IRR: 19.74%, payback: 4.54 years), yields insightful 

implications. Especially, the MPC approaches strike a good compromise. Although GA-Load 

Following and HOMER-Load Following methods show somewhat higher IRRs and shorter 

payback periods due to lower upfront investment and higher operational reliance on the grid, 

they incur significantly higher NPC values (€665,236 and €661,677, respectively) compared 

to MPC scenarios (ranging from approximately €625,776 for MPC 8% up to somewhat higher 

levels in lower-flexibility scenarios). The GA-Yearly Horizon approach, with its idealised long-

term forecasting, achieves the lowest annual grid charges (€13,123), yet it still offers a longer 

payback period (5.01 years), reflecting higher initial investments. 

Despite slightly higher annual grid costs than GA-Yearly Horizon, MPC scenarios strategically 

manage loads to reduce storage component stress, thus lowering replacement expenses and 

improving salvage values. These operational efficiencies translate into consistently 

competitive IRR and attractive payback periods, demonstrating the practical economic value 

of MPC-based load flexibility for hybrid renewable energy systems. 

This analysis indicates the need to accurately estimate hybrid renewable energy costs. Still, 

optimisation parameters considerably impact economic results accuracy and efficiency. To 

enhance and testing the robustness of the GA-MPC optimisation approach, the following 
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section closely investigates the influence of adjusting solver settings. The section evaluates 

Mixed-Integer Linear Programming (MILP) parameters using the Gurobi solver and then 

explores crucial Genetic Algorithm (GA) parameter values to ensure a powerful and 

computationally effective optimisation method. 

4.3.4 GA and MILP Solvers parameter tunning  

This section outlines the tuning process for critical solver parameters, with a particular focus 

on MIPGap and MIPFocus, to improve the stability and convergence efficiency of the MILP 

optimisation. By systematically exploring these settings through targeted grid searches, the 

aim was to enhance computational performance and reduce the Total Discounted Cost. 

Similarly, key GA parameters, including population size, crossover rate, and mutation 

probability, were also calibrated to identify a configuration that consistently delivers high-

quality, near-optimal solutions within acceptable computation times. 

4.3.4.1 MILP Parameter tunning  

Optimising solver settings is critical to ensure practical computational efficiency in the MILP 

framework implemented using Gurobi. The parameters varied in this analysis include 

MIPFocus, and MIPGap, each influencing the solver's precision and computational runtime. 

To reconcile runtime performance with solution quality, the grid search methodically 

investigated a spectrum of parameter values. MIPFocus was specifically examined across 

values 0 (default), 1, 2, and 3, thereby reflecting balanced, feasible-solution focus, optimality 

emphasis, and bound emphasis, respectively. The optimality tolerance (MIPGap) was 

adjusted from a tight 0.0001 up to a more relaxed 0.05, with the default being 0.0001. These 

parameter variations allowed systematic assessment of trade-offs between computational 

speed and solution accuracy. 

Figure 4-8 reveals sensitivity of NPC's and computational length to the MIP Focus value. 

Setting the median Net Present Cost (NPC) to 1 (feasible-solution focus) exhibited more 

volatility (around €614,000–€616,000), therefore indicating less consistent solver 

performance. Conversely, the default setting (MIPFocus=0) and settings focused on optimality 

or bound tightening (MIPFocus=2,3) achieved more consistent results around €613,500–

€614,500. Runtime analysis indicates that focusing on bound tightening (MIPFocus=3) 

significantly prolongs computation (~55 seconds median), whereas settings 1 and 2 notably 
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reduce computational time (median 35–40 seconds), albeit with marginally higher NPC 

variability.  

Analysing MIPGap (Figure 4-9) exposes even more these trade-offs. Although average 

computation time (~45 seconds) was raised by an exceptionally tight MIPGap (0.0001), NPC 

variability was lowest. On the other hand, at a small trade off in solution accuracy, decreasing 

the gap to 0.05 clearly reduced computational time (~30 seconds). Thus, depending on the 

value of accuracy over runtime in practical applications, properly balancing MIPFocus and 

Figure 4-8: The influence of solver parameter tunning in Gurobi MIPFocus parameter  

Figure 4-9: The Influence of MILPGap on accuracy and convergence speed 
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MIPGap parameters offers ideal solver configurations tuned either to speedier solutions or 

tighter economic precision. 

4.3.4.2 GA Parameter tunning  

The convergence behaviour of the genetic algorithm (GA) across several crossover (CP) and 

mutation probability (MP) combinations, shown in the convergence plots and parameter 

heatmap, offers important new perspectives on the exploration-exploitation trade-off 

necessary for efficient parameter tuning in optimisation problems. Figure 4-10 shows the 

convergence plots for different mutation and crossover probability. Starting with subplot (b) 

from the convergence plot, high crossover probability (CP = 0.7–0.9) combined with low 

mutation probabilities (MP = 0.1–0.2) provide quick convergence, usually stabilising within less 

than 10 generations. These parameters clearly show convergence into local minima despite 

the apparent advantage of fast stabilisation; they prematurely converge at substandard net 

present cost (NPC) levels regularly above €625,000. For example, combinations such as CP 

= 0.7 with MP = 0.1 and CP = 0.9 with MP = 0.1 both illustrate swift but insufficient exploration, 

Figure 4-10: Convergence plots for different mutation and crossover mutation. 
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highlighting a critical limitation when mutation rates are insufficiently high to introduce 

necessary genetic diversity. 

On the other hand, subplots (a) and (c) from the convergence plot stress, independent of 

crossover probability, the advantages of higher mutation probabilities (MP = 0.3–0.5). 

Particularly, subplot (c) shows a slower but rather much better convergence trend with lower 

crossover probability (CP = 0.4–0.6) associated with higher mutation rates (MP = 0.3–0.5. 

Reflecting their ability to maintain population diversity and thorough search space exploration, 

these designs get more ideal NPC values of roughly €606,000. Especially, the combination of 

CP = 0.4 and MP = 0.4 stands out; it always obtains the lowest NPC values at approximately 

€606,566, therefore exhibiting an excellent balance between extensive exploration and 

effective exploitation. Although high crossover rates cause somewhat less stability, same 

behaviour is also clearly shown in subplot (a), where high crossover rates (CP = 0.7–0.9) first 

show fluctuations but subsequently stabilise at favourable solutions between roughly 

€606,000–€627,000. Conversely, subplot (d), which shows low crossover and low mutation 

(CP = 0.4–0.6, MP = 0.1–0.2, exhibits first quick convergence but finally stagnates 

prematurely, obtaining inferior NPC values of approximately €608,000 to €621,000 due 

insufficient genetic variation. 

The interaction plot in Figure 4-11 provides a detailed visualisation of how final fitness of NPC 

varies with crossover probability across different mutation rates (μ). This supports the 

convergence analysis by clearly illustrating the impact of GA parameter selection. The plot 

shows that the lowest NPC values are achieved in regions with moderate crossover 

Figure 4-11: Interaction plot of final fitness versus crossover probability for different mutation rates (μ). 
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probabilities (CP = 0.4–0.5) combined with higher mutation rates (μ = 0.3–0.4), with optimal 

solutions consistently falling in the range of €606,000–€607,000. Notably, the combination of 

CP = 0.4 and μ = 0.4 yields one of the best-performing results, at €606,566. 

In contrast, configurations with low mutation rates (μ = 0.1–0.2) result in significantly higher 

NPC values, exceeding €620,000. This highlights the detrimental effects of limited genetic 

diversity, leading to premature convergence to local optima. The poorest-performing 

combination occurs at CP = 0.4 and μ = 0.1, reaching a high NPC of €641,688. 

These findings emphasise the critical role of mutation probability in avoiding early 

convergence and enabling a broader search of the solution space. While higher mutation rates 

may initially slow convergence, often stabilising only after 20–30 generations, they 

consistently yield better outcomes by maintaining genetic diversity. Conversely, faster 

convergence under low mutation rates, as seen in previous convergence plots, often leads to 

suboptimal solutions due to restricted exploration. Based on these results, the recommended 

GA parameter range for achieving minimal NPC includes moderate crossover probabilities 

(CP = 0.4–0.5) and relatively high mutation rates (μ = 0.3–0.4). This interaction analysis not 

only validates the parameter choices used in this study but also provides evidence-based 

guidance for future GA-based optimisation of complex energy systems. 

4.4 Summary  

Adopting a rolling-horizon Genetic Algorithm–Mixed Integer Linear Programming (GA–MILP) 

framework with MPC and flexible load functionality significantly improves both the accuracy of 

component sizing and the operational flexibility of hybrid renewable systems. Unlike the single-

horizon method from Chapter 3, which rests on a year’s worth of perfect foresight, this updated 

strategy splits the year into sequential 24-hour windows, each overlapping by 12 hours, thus 

introducing short-term forecasts and fine-grained decision-making.  

In addition, incorporating adjustable load demand (0%, 4%, 6%, 8% flexibility) further refines 

the balance between PV generation and energy storage, producing clearly improved system-

level results. These flexibility levels correspond to approximately 4%, 6%, and 8% of the 

community’s average daily demand (≈579.9 kWh/day), with the highest case approaching 

10%, which is relatively high compared with typical demand-side management studies where 

2–5% is common. Specifically, at 8% flexibility, the approach achieves the lowest NPC of 

nearly €599,134, compared to €612,945 under 0% flexibility, and it remains below the perfect-

foresight benchmark of €625,776 in Chapter 3. Changes in PV capacity from 155 kWp at 0% 

flexibility to 150 kWp at 8% flexibility highlight the economic advantages of synchronising 

demand with peak solar output. Battery storage exhibits a similar adaptive trend: starting at 
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74–76 strings at lower flexibility and increasing to 80 strings at higher flexibility, thereby 

enabling more effective use of midday solar surpluses. 

Detailed operational analyses for both winter and summer corroborate these advantages, with 

flexible loads consistently cut or shifted to lower-cost or high-supply hours. Winter daytime 

imports, for instance, shrink substantially (generally down to 7.39–28.44 kWh), while summer 

scheduling of flexible loads amplifies battery recharging (as much as 211 kWh per day) and 

boosts excess energy exports to above 200 kWh daily. This improved alignment lowers total 

annual grid charges, for example, from €15,884 at 0% flexibility to roughly €15,394 at 6% 

flexibility and raises renewable self-consumption to 44.56% at 8%. Solving solvers with tuned 

parameters strengthens the observed improvements: Genetic Algorithm convergence studies 

show that moderate crossover probability (0.4–0.5) and greater mutation rates (0.3–0.4) 

routinely provide strong solutions around €606,566, so balancing exploration breadth and 

solution quality. These results are derived under ideal forecast conditions, where 24-hour 

ahead predictions of PV output, load demand, and tariff levels are assumed to be perfectly 

accurate. Flexible loads are assumed to shift without any consumer discomfort, rebound 

effects, or minimum-up/minimum-down time constraints beyond those explicitly modelled. 

Combining demand flexibility with an MPC-based, short-horizon re-optimisation beats both 

full-year and totally reactive benchmarks, hence improving the battery and hydrogen storage 

systems. Such results confirm the feasibility of MPC frameworks for reasonable energy 

community scenarios and highlight the significant practical utility of implementing short-term 

forecasts and load scheduling in hybrid PV-storage projects.   
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5 Life-Cycle Energy Cost Analysis through a New Index 

for Hybrid Renewable-Fuel Cell Battery Storage 

Systems in Energy Communities.  

5.1 Introduction 

In the framework of sustainable energy solutions and decarbonisation, the optimisation of en-

ergy systems during their life cycles has grown ever more important. Knowing the interaction 

between environmental and economic performance becomes essential as energy communi-

ties and grid-scale storage options grow. Combining upfront capital costs, operational ex-

penses, and environmental impact measures, life-cycle energy cost analysis (LCECA) offers 

a complete framework for assessing energy systems and helps to provide understanding of 

long-term viability. 

Traditional metrics such as Energy Stored on Invested (ESOI) and Energy Return on Invest-

ment (EROI) have been commonly used as performance measures for evaluating the energy 

efficiency of generating and storage technologies. The EROI compares the energy output of 

a generating plant to the principal energy needed for construction and operation. Similarly, the 

ESOI gauges the efficiency with which the energy spent constructing a storage device is uti-

lised over its lifetime to provide useful energy back into the system. But historically, these 

measures have only been used to assess individual technologies; they have not sufficiently 

addressed the complexity brought forth by hybrid energy systems, which combine several 

generating and storage technologies under one operating platform. Particularly hybrid renew-

able-fuel cell-battery systems provide many energy paths, including direct use, storage, grid 

export, and curtailment. For example, Figure 5-1 presents normalised hourly data collected 

during the year 2022 from the Formentera Council building, including average solar output, 

electricity purchasing and selling prices, and average electricity demand. This statistic vividly 

illustrates the dynamic and complicated interactions in a hybrid renewable energy system, 

hence highlighting the need of comprehensive, all-encompassing measures to fairly evaluate 

and maximise system performance. 
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Based on and greatly extending current EROI and ESOI frameworks, this chapter presents a 

new performance index especially intended for hybrid renewable energy systems within en-

ergy communities, therefore addressing this gap. Providing a practical, scalable, and more 

accurate method for life-cycle energy analysis in real-world energy communities, this new 

metric precisely incorporates the complexity and operational variety inherent in hybrid energy 

systems. 

Devices for storing energy, such batteries or hydrogen systems, call for an initial 

manufacturing energy investment. These devices store and return energy several times over 

their working lifespan. The Energy Stored on Invested (ESOI) ratio measures the efficiency 

with which the energy spent creating the storage device is used to provide the system with 

useable energy: 

ESOI =
Eout,ୱ୲

Eemb ,ୱ୲
 5-1) 

Where the 𝐸out,ୱ୲ is the total energy dispatched from storage over its lifetime, measured in 

megajoules (MJ). 𝐸emb ,ୱ୲ is the embodied energy required for manufacturing the storage 

system, also in MJ. The ESOI  ratio is dimensionless measured in terms of electrical-equivalent 

energy, and a higher ESOI indicates an energetically beneficial storage system since the 

device returns more units of energy over its lifetime for every unit of energy invested in its 

construction.  

Figure 5-1: Normalised measured hourly data for whole year days and their average values for energy 
generation, prices and consumption. 
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A well-known energy index, the Energy Return on Investment (EROI) links the total primary 

(or embodied) energy needed to build a generation facility to the entire energy production of 

that facility throughout its lifetime.  For a generation facility (e.g., photovoltaic panels and wind 

turbine), if 𝐸gen is the total lifetime energy generated and 𝐸emb,gen  is the embodied energy of 

the generation facility, then:  

𝐸𝑅𝑂𝐼௚௘௡  =
𝐸gen 

𝐸emb,gen 
 

5-2) 

Where the 𝐸gen  is the total lifetime generated energy, in MJ.  𝐸emb,gen is the embodied energy 

for constructing and operating the generation facility, in MJ.  A high EROI means that the 

generation technology improves the net energy benefit to the system by being rather effective 

in transforming invested energy into supplied energy.  

The next parts provide a thorough derivation of the conventional formulations of the current 

EROI and ESOI measurements, therefore exploring their theoretical foundations. It then high-

lights the need of customised metrics for hybrid systems and the justification for the suggested 

changes. The study ends in a look at how these changes might support major uses such 

energy community initiatives and grid-scale storage. 

5.2 Novel Index for Energy Systems in Communities 

Figure 5-2, subplot (A) illustrates the foundational energy return framework often used for grid-

scale analysis, originally proposed by [113] and extended in similar works by [55]. This 

approach assumes a single generation source with a fixed lifetime energy output, from which 

a fraction 𝜙 is either dispatched directly or routed through a storage pathway. Each route 

carries distinct energy implications: direct dispatch incurs no losses, while storage paths are 

penalised by round-trip efficiency and the embodied energy cost of the storage device itself. 

This model enables the computation of an effective system-wide EROI that accounts for these 

trade-offs and has become a widely accepted benchmark for comparing the energy 

performance of storage technologies at scale. However, it remains limited to systems with a 

single storage route and no direct representation of curtailment, multi-path interactions, or 

community-based demand structures. The complete derivation of this formulation is provided 

in Appendix 9.4 for transparency. 

To overcome these limitations and reflect the operational realities of distributed hybrid energy 

communities, Figure 5-2, subplot (B) extends this framework to include multiple storage 

pathways and energy flow options. The following derivation formalises this expanded 
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approach. First, as shown in subplot (B), we redefine the lifetime energy generation presented 

𝐸௚௘௡ in the foundational framework (equation 9-4)) as split into multiple different energy paths: 

 𝜙pv_load  : Fraction of generation delivered directly to the load. 

 𝜙௕௔௧ : Fraction of generation routed into battery storage. 

 𝜙ுమ
 : Fraction of generation routed into hydrogen storage. 

 𝜙௣௩೒ೝ೔೏
: Fraction of generation is being exported to the grid. 

 𝜙௖௨௥௧: Fraction of generation is being curtailed.  

By definition: 

𝜙pv_load + 𝜙bat + 𝜙ுమ
+ 𝜙௣௩೒ೝ೔೏

+ 𝜙௖௨௥௧ = 1 
5-3) 

Each storage technology 𝑖 (where 𝑖 ∈ {battery, hydrogen}) has its own round-trip efficiency 𝜂௜, 

and [𝐸𝑆𝑂𝐼] ௜. The energy does not suffer storage efficiency losses when it is directly consumed 

within the community or exported to the grid. Therefore, the total dispatched energy 𝐸disp,total  

Figure 5-2: Energy flow comparison between (A) a simple grid-connected system with single 
storage and (B) a hybrid energy community with multiple storage paths and direct load 
consumption, highlighting the need for an extended EROI metric. 
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is redefined from equation 9-5) over the lifetime consist of contributions from all possible 

pathways as follows:  

𝐸disp,total = 𝐸gen ቀ𝜙pv_load + 𝜙௣௩೒ೝ೔೏
+ 𝜙bat 𝜂bat + 𝜙ୌమ

𝜂ுమ
+ 𝜙௖௨௥௧ቁ 5-4) 

 

Where 𝐸disp,total is in megajoules (MJ). Embodied energy consists of the generation subsystem 

plus the embodied energy of each storage subsystem.  

𝐸௘௠௕,௚௘௡ =
𝐸௚௘௡

[𝐸𝑅𝑂𝐼]௚௘௡
 5-5) 

 

For each storage technology 𝑖, the total delivered energy from storage is 𝜙௜𝐸௚௘௡𝜂௜. Then the 

𝐸௘௠௕,௜ is given by:  

𝐸௘௠௕,௜ =
𝜙௜𝐸௚௘௡𝜂௜

[ESOI]௜
 5-6) 

Summing over the generation and the two storages (battery and hydrogen): 

𝐸emb , total =
𝐸gen 

[EROI]gen 
+

𝜙bat 𝜂bat 𝐸gen 

[ESOI]bat 
+

𝜙ୌమ
𝜂ୌమ

𝐸gen 

[ESOI]ுమ

 5-7) 

 

Factor out 𝐸௚௘௡ : 

𝐸emb,total = 𝐸gen ቆ
1

[EROI]௚௘௡
+

𝜙bat 𝜂bat 

[ESOI]௕௔௧
+

𝜙ுమ
𝜂ுమ

[ESOI]ுమ

ቇ 5-8) 

 

The aggregate EROI of the extended system (entire configuration to a community load) is 

defined as: 

[EROI]௦௬௦௧௘௠ =
𝐸disp,total 

𝐸௘௠௕,௧௢௧௔௟
 5-9) 

Substitute Equations 5-4) and 5-8): 

[EROI]community =
𝐸gen ቀ𝜙pv_load + 𝜙௣௩೒ೝ೔೏

+ 𝜙bat 𝜂bat + 𝜙ୌమ
𝜂ுమ

+ 𝜙௖௨௥௧ቁ

𝐸gen ൬
1

[EROI]gen 
+

𝜙bat 𝜂bat 
[ESOI]bat 

+
𝜙ுమ

𝜂ுమ

[ESOI]ுమ

൰

 5-10) 

Cancelling 𝐸௚௘௡: 
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[EROI]community  =
𝜙pv_load + 𝜙௣௩೒ೝ೔೏

+ 𝜙bat 𝜂bat + 𝜙ுమ
𝜂ுమ

+ 𝜙௖௨௥௧

1
[EROI]௚௘௡

+
𝜙bat 𝜂bat 
[ESOI]௕௔௧

+
𝜙ுమ

𝜂ுమ

[ESOI]ுమ

 
5-11) 

This equation offers a novel and all-around measure specifically for hybrid renewable energy 

systems in local surroundings.  This index precisely characterises the intricate relationship of 

direct usage, storage inefficiencies, and embodied energy requirements and explicitly 

analyses numerous simultaneous storage alternatives.  By means of such extensive 

evaluations, energy planners and system designers can acquire greater understanding of 

operational efficiencies, pinpoint appropriate technology configurations, and so increase both 

environmental and financial sustainability inside energy communities. To position the 

proposed index within the wider body of energy-return metrics, Table 5-1 compares it with the 

most frequently cited alternatives in the literature, highlighting differences in system boundary, 

information captured and practical usefulness for community-scale hybrids. 

Table 5-1: Comparison of life-cycle energy-return metrics and their suitability for community hybrid systems 

Metric 
System scope & flows 

captured 
Key strengths Main limitations 

Suitability for 
community 

HRES 

Classic EROI Generation asset only Simple; widely used 

Ignores stor-
age, curtail-

ment, demand 
diversity 

Low 

ESOI 
Individual storage 

technology 
Highlights embodied en-

ergy of storage 

Detached from 
generation and 

load 
Partial 

EROI ± ESOI 
inequality 
(Barnhart 

2013) 

PV/Wind plus one stor-
age route 

Energetic viability thresh-
old 

Assumes single 
storage path; 
no demand 

structure 

Moderate 

EROI_grid 
(Pellow 
2015) 

Grid over-generation 
with one storage loop 

Includes round-trip losses 
& curtailment 

Still single stor-
age; no spatial 

demand hetero-
geneity 

Moderate 

Proposed 
EROI_com-

munity 

Multi-vector hybrid 
(PV-battery-H₂-grid) 
with hourly demand, 
curtailment & export, 

embodied energies for 
all assets 

Integrates simultaneous 
storage paths; directly 
uses MILP hourly dis-

patch; mirrors community 
import/export rules 

Higher data re-
quirement 

High 

The comparison confirms that existing metrics either treat generation and storage in isolation 

or assume a single-path storage loop. In contrast, [EROI]community   captures multiple storage 

pathways, curtailment, direct load supply and grid exchanges within a single life-cycle 

boundary, leveraging the hourly dispatch outputs already generated in Chapters 3 and 4. This 

integrated perspective is essential for energy-community planners who must balance 

investment in batteries, hydrogen, grid contracts and renewable capacity simultaneously. The 

remainder of this section therefore reports and interprets [EROI]community   values for the 

Formentera case study, alongside the financial results presented earlier. 
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5.3 Applying the EROI Community Metric: Sensitivity and 
Scaling Analysis 

Following the derivation of our new index in Section 5.2, designed specifically to capture the 

energy life-cycle performance of hybrid renewable–hydrogen–battery systems in community 

settings, a hierarchical methodological approach is adopted.  Figure 5-3 presents a structured 

flow chart illustrating the two-stage methodological framework employed in this study to 

evaluate the life-cycle energy performance of a hybrid renewable–battery–hydrogen system 

using the derived EROI-based metric. The process is divided into Step 1: Parametric 

Sensitivity Analysis with Fixed Capacities, and Step 2: Capacity Scaling and Mapping 

Analysis. 

In Step 1, a set of pre-optimised system capacities, obtained from the GA-MILP sizing 

framework introduced in Chapter 4, is held constant while key technical parameters are 

independently varied. These include component round-trip efficiencies, operational lifespans 

(durability), and embodied energy intensities. For each parameter variation, the MILP-based 

operational dispatch is executed to derive annual energy flows and component usage, from 

which operational pathway fractions and total operating hours are calculated. These outputs 

are then used to compute the proposed life-cycle energy return metric. This procedure is 

iteratively repeated until all scenarios are exhausted, with results used to generate sensitivity 

plots that highlight the impact of each parameter on overall energy performance. 

In Step 2, the analysis shifts from technical parameter variation to capacity scaling. Here, 

uniform scaling factors are applied to the base component capacities (e.g., PV, battery, 

electrolyser, fuel cell, and hydrogen tank), ranging from 0.1× to 2.0× of their original sizes. 

Technical parameters remain fixed at their nominal values, and the MILP dispatch model is 

rerun for each scaled configuration. The resulting energy flows and system usage are used to 

compute the same set of performance metrics (EROI, NPC, unmet and excess energy). These 

results are then used to train surrogate models via third-degree polynomial regression, 

enabling the interpolation and smoothing of performance across the design space. Results 

are visualised through heatmaps, facilitating exploration of trade-offs across multiple 

performance dimensions. This two-part framework provides both a parameter-level 

understanding of energy-system behaviour and a design-space mapping to support planning 

decisions, particularly relevant for energy communities deploying hybrid storage 

configurations. 



151 
 

To implement Step 1 of the methodology, three main classes of technical parameters were 

independently varied while holding the system capacity fixed. These represent commonly cited 

sources of uncertainty and improvement in hybrid system deployment: 

 Round-trip efficiency: The efficiency of the battery subsystem (charging–discharg-

ing) and the hydrogen subsystem (electrolyser–fuel cell) are adjusted. 

 Durability: The lifespans of the battery, electrolyser, and fuel cell are shifted, thereby 

altering replacement schedules. 

Figure 5-3: Two-stage methodological framework for applying the derived EROI-community metric. Step A (left) 
conducts parametric sensitivity analysis using fixed, optimised system capacities while varying key technical 
parameters, efficiency, durability, and embodied energy. Step B (right) applies uniform scaling to system capacities to 
assess the impact of system size on performance. Both steps use rolling-horizon MILP dispatch to extract operational 
metrics, which are then used to compute and analyse the life cycle EROI and associated sustainability indicators. 
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 Embodied energy intensity: The megajoule-per-unit-of-capacity values for each 

technology are modified, reflecting possible improvements or variations in manufactur-

ing processes. 

Table 5-2 summarises the nominal values used as baselines, together with illustrative lower 

and upper bounds. These moderate parameter variations allow direct comparison of how, for 

example, battery round-trip efficiency influences the final life-cycle metric, while holding 

capacity fixed. 

Table 5-2: Sample Parameter Ranges for Efficiency, Durability, and Embodied Energy Sensitivity Studies 

Parameter [ref] Units 
Nominal 

Value 

Lower 

Bound 

Upper 

Bound 
Resolution 

Battery Efficiency (𝜂௕ା and 𝜂௕ି) % 82.5 0.7 0.95 10 

Electrolyser Efficiency (𝜂௘௟ି) % 55 40 70 10 

Fuel Cell Efficiency (𝜂௙௖ା) % 45 30 60 10 

Battery Durability (𝜏௕௔௧) kWh 14,400 7,200 21,600 16 

Electrolyser Durability (𝜏௘௟) hours 46,250 17,500 75,000 16 

Fuel Cell Durability (𝜏௙௖) hours 9,500 4,000 15,000 16 

Embodied Energy – PV (𝜀௣௩) [156] MJ/kWp 12000 10000 14000 5 

Embodied Energy – Battery (𝜀௕௔௧) [157] MJ/kWh 1000 800 1,200 5 

Embodied Energy – Fuel Cell (𝜀௙௖) [55] MJ/kW 1,150 1000 1,300 5 

Embodied Energy – Electrolyser (𝜀௘௟) [55] MJ/kW 1,150 1000 1,300 5 

Embodied Energy – Tank (𝜀௦௧) [55] MJ/Kg 1,000 800 1,200 5 

 

By running this sequence of simulations, a clear sense is obtained of how the system’s life-

cycle performance responds to distinct engineering improvements or manufacturing 

optimisations (life cycle stages). This study highlights which parameter modifications provide 

the most meaningful gain for energy communities in both cost and environmental terms. 

Consequently, as discussed in step 2 of this methodology, whereby uniform scaling factors 

are applied to the capacities of major components, PV, battery, electrolyser, fuel cell, and 

hydrogen tank, as shown in Table 5-3. Each scaled configuration is subjected to the same 

rolling-horizon dispatch and life-cycle index calculation, but without any additional global 

capacity optimisation. 
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Table 5-3: Illustrative Capacity Variations Relative to the MPC-4% Baseline 

Parameter Units 
Baseline (GA-

MILP-MPC) 

Lower Bound 

(x 0.1) 

Upper Bound 

(x 2) 

PV Array Rating kW 152 15.2 304 

Battery Strings Strings 76 7.6 152 

Electrolyser Rating kW 5 0.5 10 

Fuel Cell Rating kW 5 0.5 10 

Hydrogen Tank Capacity kg 7 0.7 14 

  

Exploring these alternative capacities provides a broader perspective on how baseline 

technology parameters perform when the system is scaled up or down from the MPC-4% 

design point. Unlike the first set of runs, where efficiency, durability, and embodied energy 

were individually varied, second stage keeps those parameters fixed at their nominal values, 

modifying only the component capacities through uniform scaling between 0.1 and 2.0. These 

optimisation data sweeps are collected with all results metrics (EROI, NPC, Unmet and 

Excess) and used to train and fit regression models.  

Surrogate models are commonly used in renewable energy optimisation to predict either 

component sizes or performance metrics (e.g., cost or sustainability) for given configurations. 

Authors [158] built second-order polynomial regression models showing how climatic and 

geographic factors, such as temperature and irradiance, influence the PV system size and 

visualised these relationships using contour and surface plots. Other authors [159], [160], 

[161], [162] have demonstrated that polynomial regression models can match the predictive 

power of advanced machine learning models while requiring less data and being faster to 

train. These studies typically present their findings through heatmap-style visualisations (2D 

or 3D), which improve interpretability and allow for more thorough performance exploration. 

In this work, a third-degree polynomial surrogate model was constructed for each performance 

metric using the five scaling factors-PV, battery, tank, fuel cell, and electrolyser scales -as 

input variables. Let 𝐗 ∈ ℝே×ହ be the matrix containing design configurations, where each row 

represents a candidate solution, and each column corresponds to one of the scaling factors. 

The surrogate models approximate a target metric of NPC, EROI, unmet load, or excess 

energy as a polynomial function, expressed as:  

𝑓(𝐱) = 𝛽଴ + ෍  

ହ

௔భୀଵ

𝛽௔భ
𝑥௔భ

+ ෍  

ହ

௔భୀଵ

෍  

ହ

௔మୀ௔భ

𝛽௔భ௔మ
𝑥௔భ

𝑥௔మ
+ ෍  

ହ

௔భୀଵ

෍  

ହ

௔మୀ௔భ

෍  

ହ

௔యୀ௔మ

𝛽௔భ௔మ௔య
𝑥௔భ

𝑥௔మ
𝑥௔య

 5-12) 
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To ensure that the surrogate model generalizes well and is not overfitting the training data, we 

employ 10-fold cross-validation-a widely used best practice for model evaluation [163], [164]. 

In 10-fold cross-validation, the dataset is partitioned into 10 equally sized folds. For each fold, 

the model is trained on the remaining 9 folds ( 90% of the data) and then evaluated on the 

held-out fold (10% of the data). This process yields 10 independent estimates of the model's 

performance. 

The following metrics are computed for each fold, starting with the coefficient of determination 

(𝑅ଶ) : 

𝑅ଶ = 1 −
∑  ே

௡ୀଵ   ൫𝑦(௡) − 𝑦̂(௡)൯
ଶ

∑  ே
௡ୀଵ   (𝑦(௡) − 𝑦‾)ଶ

 5-13) 

Which indicates the fraction of variance explained by the model, later the Mean Absolute Error 

(MAE) is calculated using this equation:  

MAE =
1

𝑁
෍  

ே

௡ୀଵ

ห𝑦(௡) − 𝑦̂(௡)ห 5-14) 

This analyses the average absolute error between predictions and observed data. Finally, the 

Mean Squared Error (MSE) is calculated using: 

MSE =
1

𝑁
෍  

ே

௡ୀଵ

൫𝑦(௡) − 𝑦̂(௡)൯
ଶ
 5-15) 

These metrics are then averaged over 10 folds to give a robust estimate of the surrogate 

model's predictive accuracy. High average 𝑅ଶ values (close to 1) alongside low MAE and MSE 

indicate that the model effectively interpolates between the simulation data points. 

Once validated, the four surrogate models (targeted outputs: EROI, NPC, Unmet and Excess) 

are retrained on the entire dataset. A grid of input values is generated (e.g., 100 points linearly 

spaced between 0.1 and 2.0 for each dimension) to evaluate the surrogate model over 

continuous ranges of two selected variables, while holding the others constant. The 

predictions are then used to produce smooth contour plots (heatmaps) of the performance 

metrics. These smoothed heatmaps enable a clear visual representation of trends and trade-

offs, such as between NPC and EROI, that might be obscured in the raw, scattered simulation 

data.  

In the results that follow, the effect of each parameter change on novel energy life-cycle metric 

under fixed capacities is first presented. Subsequently, an analysis is presented on how 

scaling the system size, with parameters held at their baseline values, influences overall 

performance. This two-pronged approach clarifies whether the improvements identified in the 
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first step remain beneficial under specific capacity settings, and it also assists energy 

communities in balancing technological upgrades and system sizing in planning. Throughout 

this methodological framework, the economic dimension, represented by Net Present Cost 

(NPC) is maintained to complement the novel technical sustainability indicator (EROI system), 

in addition to unmet and excess energy figures (in MWh/year). This combined approach 

ensures balanced decision-support metrics that clearly reflect the economic and energetic 

trade-offs. 

5.4 Results 

To introduce the results, this subsection begins by illustrating the annual energy allocation in 

the MPC-4% scenario (base line), which provides a visual baseline for all subsequent 

analyses. The community load uses roughly 44.2% of the PV power directly; about 30.9% 

goes into the battery. At less than 0.03%, curtailment contributes very little to the remaining 

power, which is divided between hydrogen generation (2.6%) and grid export (19.6%). 

This division reveals that over three-quarters of the energy is stored or serves the local need 

right now. The significant share of direct load consumption is a result of efficient generation 

and demand matching, which is the result of the MPC-based scheduling. The battery's notable 

30.9% slice highlights its application in diurnal smoothing and short-term energy arbitrage; the 

smaller hydrogen branch (2.6%) implies this circuit largely controls longer-duration or overflow 

conditions. The 19.6% sent to the grid shows timeframes when neither local use nor storage 

offered a more affordable option. Finally, the near-zero curtailment underscores that the 

dispatch strategy rarely discards available renewable energy. 

In subsequent sections, the resilience of this flow distribution to variations in efficiency, 

durability, and embodied energy parameters will be examined. The study is advanced to how 

these flows are affected if overall capacities are scaled. This annual energy fraction overview 

offers a first starting point for grasping the operational balance of the system under the MPC-

4% setup. Managing the renewable generation across daily and seasonal cycles is done via 

direct consumption, battery storage, hydrogen use, and grid exports, each of which plays 

unique role and causes little curtailment. Once this baseline is set, the following section looks 

at how important performance criteria, efficiency, durability, and embodied energy, may 

change these distributions and affect the life-cycle measurements of the system. 

5.4.1 Parametric Sensitivity Analysis with Fixed Capacities 

5.4.1.1 Impact of Round-Trip Efficiency in Battery and Hydrogen Systems 

Expanding on the baseline of energy flow allocations set earlier, Figure 5-4 investigates in 

detail how variations in round-trip efficiencies for battery and hydrogen storage individually 
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affect the system's energy performance and the corresponding net present cost (NPC). The 

four subplots analyse the relationships between the round-trip efficiencies of battery and 

hydrogen subsystems against both system-level Energy Return on Investment (EROI) and 

storage-specific Energy Stored on Investment (ESOI), with each data point coloured according 

to the resulting NPC value. 

In subplot (a), a strong linear correlation (R² = 0.99) is observed between battery round-trip 

efficiency and system-level EROI, with EROI increasing from approximately 4.4 at 70 % 

efficiency to nearly 4.9 at 95 % efficiency. This pronounced sensitivity results from the 

substantial fraction (around 30.9%) of total generated energy routed through the battery. 

Consequently, improvements in battery efficiency significantly enhance overall system EROI 

and reduce NPC, with NPC values decreasing from approximately €650,000 at lower 

efficiency to around €610,000 at higher efficiency (as depicted by the colour gradient). 

Similarly, subplot (c) reveals an essentially perfect linear relationship (R² = 1.00) between 

battery efficiency and battery-specific ESOI, rising notably from approximately 8.5 to 11.0 

across the same efficiency range. These ESOI changes directly relate to a noticeable drop in 

NPC given the battery's significant share in energy storage, hence stressing the economic 

advantage of improved battery performance.  

Figure 5-4: Sensitivity of system EROI and storage ESOI to variations in round-trip efficiency. The four subplots show 
that battery efficiency (R² = 0.99 for EROI and 1.00 for ESOI) has a stronger impact than hydrogen efficiency (R² = 0.33 
for EROI and 0.85 for ESOI), with each point coloured by NPC. 
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On the other hand, subplot (b) shows a quite low connection (R² = 0.33) between system-level 

EROI and hydrogen round-trip efficiency, with little EROI increases (from around 4.85 to 4.89) 

despite hydrogen efficiency gains from about 15% to 40%. This limited sensitivity is directly 

explained by the small fraction (~2.6%) of total energy passing through hydrogen storage. 

Correspondingly, NPC values show only modest reductions, from around €618,000 at lower 

hydrogen efficiencies to about €604,000 at higher efficiencies, indicating a secondary 

economic influence. Subplot (d) exhibits a more evident relationship between hydrogen 

efficiency and hydrogen-specific ESOI (R² = 0.85), increasing from about 8.0 to nearly 14.0. 

However, because the hydrogen fraction of total PV generation is minimal (2.6%), 

improvements in hydrogen ESOI have only marginal impacts on overall system economics 

and performance, confirming its secondary role compared to battery storage. 

These findings closely correspond to Equation (5-11), which indicates that storage-specific 

ESOI values are weighted by their corresponding energy flow fractions within the general 

system EROI computation. Improvements in battery efficiency and ESOI have far more impact 

than hydrogen efficiency changes as the battery channel controls the storage route (about 

30.9% of PV generation). With the role of efficiency variations clarified, the next part applies 

this parametric sensitivity study to component durability, hence assessing how the energy and 

economic criteria of the system are affected by battery and hydrogen storage lifespan. 

5.4.1.2 Influence of Component Durability (Battery, Fuel Cell, Electrolyser) 

In continuation of the parametric sensitivity analysis for in-depth understanding, Figure 5-5 

examines how altering the operational lifetimes (durabilities) of key storage components 

influences the overall system EROI and component-specific ESOI. This durability analysis 

provides deeper insights by directly linking component longevity and replacement frequency 

to economic and energetic outcomes, indicated by the net present cost (NPC) shown by the 

colour gradient in each subplot. 

Battery durability (subplots a and b), varied between approximately 7,200 and 21,600 hours, 

demonstrates a clear and robust influence on both system-level EROI and battery-specific 

ESOI. The overall system EROI significantly rises from about 4.3 to nearly 5.0 (R² = 0.94), 

whereas the battery ESOI exhibits an even stronger linear response, increasing from roughly 

6 to 15 (R² = 1.00). These pronounced improvements stem from the battery’s substantial 

contribution (approximately 30.9 % of PV generation) as extended battery lifetimes reduce 

replacement cycles, thus decreasing both embodied energy requirements and economic 

costs. Correspondingly, NPC values decrease substantially from around €660,000 at shorter 

battery lifetimes to approximately €610,000 at extended durability. 
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On the system-level EROI, however, the effect of fuel cell lifetime (subplots c and d, ranging 

between around 4,000 and 15,000 hours) is somewhat low; it only rises from around 4.86 to 

4.88 (R² = 0.88). The hydrogen-specific ESOI, on the other hand, is significantly influenced by 

fuel cell durability; from roughly 5.5 to 10.0 (R²=0.97), it shows a clear linear improvement. 

This contrast highlights the limited fraction (~2.6 %) of PV energy passing through the 

hydrogen pathway. Although the direct impact on the overall EROI is minor, extending fuel cell 

lifetimes meaningfully enhances hydrogen subsystem viability, with noticeable yet moderate 

NPC reductions (from approximately €615,000 to €605,000). 

Subplots e and f show electrolyser durability’s influence (varied between about 17,500 and 

75,000 hours). While a noticeable yet moderate improvement in system EROI from about 

4.865 to 4.880 (R² = 0.85) is evident, the hydrogen-specific ESOI clearly benefits, increasing 

from roughly 6.5 to nearly 11 (R² = 0.95). However, the NPC colour gradient remains notably 

consistent across durability levels, suggesting that electrolyser lifetime alone has a limited 

Figure 5-5: Sensitivity of system-level EROI and component-specific ESOI to variations in component durability 
(battery, fuel cell, electrolyser). Data points are coloured according to net present cost (NPC), illustrating economic 
impacts associated with differing durability levels. 
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effect on reducing overall costs. Nonetheless, because the electrolyser and fuel cell function 

jointly within the hydrogen cycle, simultaneous improvements in durability across both 

hydrogen components can collectively generate more substantial reductions in NPC and 

embodied energy impacts, even though each individually appears to offer modest 

improvements. 

Taken together, these durability sensitivities highlight that extending battery lifetimes 

significantly enhances both economic viability and life-cycle energy performance due to the 

battery's large share of energy throughput. Unlike efficiency variations, durability changes do 

not substantially alter the operational energy fractions; hence, the numerator in Equation 5-11) 

remains nearly constant. Instead, durability directly impacts component replacements and 

thus the denominator of the equation (through the ESOI terms). Shorter component lifetimes 

necessitate more frequent replacements, increasing embodied energy demands and 

consequently inflating the ESOI denominator, which negatively affects the overall system 

EROI and raises the NPC. Contrarily, improvements in fuel cell and electrolyser durability, 

although individually modest in their system-level impact, collectively enhance the viability and 

cost-effectiveness of the hydrogen storage pathway. These observations emphasise that 

component-level ESOI improvements influence system-level EROI proportionally to each 

component's fraction of energy throughput. Having addressed both efficiency and durability 

impacts, the subsequent subsection 5.4.1.3 explores the sensitivity related to embodied 

energy intensity, evaluating how changes in manufacturing energy inputs for each component 

affect the overall life-cycle performance and economics of the system. 

5.4.1.3 Effects of Embodied Energy Intensity on Life-Cycle Metrics 

At this subsection, following the evaluation of efficiency and durability with the baseline 

optimised capacities, this analysis addresses the sensitivity of the system-level EROI and 

storage-specific ESOI to variations in embodied energy intensities of major system 

Figure 5-6: Sensitivity of system-level EROI and storage-specific ESOI to variations in embodied energy intensity for 
PV, battery, and hydrogen storage components. Points are coloured by the corresponding system-level EROI, 
illustrating how manufacturing energy inputs influence overall energy life-cycle metrics. 
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components. Figure 5-6 explores how modifications in the embodied energy intensity, 

representing variations in manufacturing energy inputs per unit capacity, affect the system's 

life-cycle metrics. Each subplot provides quantitative evidence of the direct correlation 

between embodied energy intensity and corresponding performance indicators, further 

complemented by the EROI colour scale, thus giving a nuanced perspective of system energy 

performance shifts. 

In subplot (a), photovoltaic (PV) embodied energy intensity is varied between approximately 

10,000 and 14,000 MJ/kWp. A highly linear and inverse relationship with the system-level 

EROI emerges (R² = 0.99), clearly indicating the considerable sensitivity of EROI to the PV's 

manufacturing energy footprint. Specifically, as PV embodied energy intensity increases from 

10,000 MJ/kWp to 14,000 MJ/kWp, system-level EROI sharply decreases from about 5.6 

down to nearly 4.2. This substantial drop emphasizes the pivotal role that PV manufacturing 

efficiency plays, given the PV's central role in overall system energy throughput and its 

proportionally high influence on the denominator of Equation 5-11). 

Subplot (b) similarly illustrates the impact of battery embodied energy intensity, ranging from 

approximately 800 to 1,200 MJ/kWh. The battery-specific ESOI displays a robust inverse 

linear correlation (R² = 0.99), declining from about 12 to 8. This tendency underscores the 

strong dependency of battery ESOI on manufacturing energy demands, which in turn 

significantly impacts the overall system EROI due to the battery's sizeable contribution to the 

storage energy fraction. Increased battery embodied energy directly increases the ESOI 

denominator, thus negatively influencing the overall system performance and intensifying 

economic costs over the project's lifetime. 

Subplot (c) addresses the embodied energy sensitivity for the hydrogen storage pathway 

(combined fuel cell and electrolyser), varied broadly between approximately 2,800 and 3,800 

MJ per unit. The observed relationship between hydrogen subsystem embodied energy and 

hydrogen ESOI (R² = 0.72) reveals moderate linearity, yet with notable scatter. ESOI 

decreases from roughly 11.5 to about 8.5 over the examined range, reflecting a more variable 

but clear downward trend as embodied energy increases. Despite this variability, the influence 

on overall system-level EROI is limited, ranging from approximately 4.79 to 4.791. This 

constrained impact aligns with the relatively small fraction of total energy PV generation 

managed by the hydrogen storage subsystem. Thus, although increased hydrogen subsystem 

embodied energy negatively impacts hydrogen ESOI, its broader impact on the overall 

system's energy performance is modest. 

Collectively, these findings underscore the crucial influence of embodied energy intensities on 

system life-cycle energy index. PV and battery manufacturing energies exert substantial 
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impacts, both economically and energetically, due to their central roles in total energy 

throughput. On the other hand, the hydrogen subsystem, while revealing obvious sensitivity 

at the subsystem storage level, barely slightly affects the general system EROI as it manages 

smaller portion of energy.  These studies support the idea that significant increases in general 

life-cycle performance requires giving PV and battery embodied energy intensities top priority. 

With these insights clearly established, the subsequent analysis moves beyond fixed 

capacities and examines how systematic scaling of the optimised MPC capacities impacts the 

established relationships. 

5.4.2 Capacity Scaling and Generalisation Framework 

The previous subsections provided an isolated parametric sensitivity analysis, examining the 

effect of altering key system parameters, efficiency, durability, and embodied energy intensity, 

under fixed, optimised system capacities. However, real-world energy community planners 

frequently face scenarios that necessitate adjusting the scale of system components from 

initial optimised recommendations. Consequently, a generalisation framework introduced in 

this subsection provides critical insights into how variations in component capacities influence 

system sustainability and economics. By applying uniform scaling to the baseline capacities 

established in the MPC-4% scenario, the resulting heatmaps with EROI contours 

superimposed over NPC gradients offer a visual analytical tool that captures both economic 

performance and energy sustainability. This method helps energy communities plan choices, 

so allowing them to properly balance their sustainability enhancements and investment.  

Figure 5-7 shows the 10-fold cross-validation approach which has thoroughly evaluated the 

accuracy of the generated surrogate models, predicting the energy system performance 

metrics, NPC, EROI, unmet load, and extra energy. With a Mean Absolute Error (MAE) of 

€6,715.55, a Mean Squared Error (MSE) of €124,329,111, and an average coefficient of 

determination (R²) of 0.9957, the NPC surrogate shows exceptionally remarkable accuracy. 

The EROI model reveals analogous remarkable predictive potential by showing its 

dependability for accurately capturing the energy efficiency dynamics of the system with a R² 

of 0.9879, a very low MAE of 0.0791, and an MSE of 0.0193. 

The excess energy surrogate model also presents excellent predictive performance, with an 

R² value of 0.9784, MAE of 98.20 MWh/year, and MSE of 18,183.16 MWh²/year², signifying 

accurate forecasting of excess generation. The unmet load model, while demonstrating a 

comparatively lower R² of 0.8448, still provides acceptable accuracy with an MAE of 0.2814 

MWh/year and an MSE of 0.2708 MWh²/year², reflecting the inherent difficulty in precisely 

modelling unmet demand due to its higher variability. 
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These validation results indicate that the polynomial surrogate models regularly interpolate 

the performance of energy systems inside the examined design space. Thus, by generating 

comprehensive heatmaps, these models offer a solid foundation that obviously shows the 

slight trade-offs between economic and energetic performance criteria. 

5.4.2.1 PV Sizing Relative to Storage Configuration 

Presenting the heatmap for PV and battery capacity scales, Figure 5-8 shows how system 

EROI and the NPC interactively react to changes in capacity. At lower PV capacities (around 

0.25 to 0.5 scale factor) coupled with small to moderate battery scales (0.5 to 1.0), the system 

attains high EROI system values between approximately 7.23 – 8.71, signifying strong energy 

performance. However, these configurations entail prohibitively high NPC values, typically 

ranging from about € 847,603 – €1,199,751, with minimal unmet load (1–4 MWh/year) and 

almost no excess energy. Conversely, configurations with substantially larger PV capacities 

(scale factor around 1.5 to 1.7) and moderate battery sizing (around 0.8–1.0) slightly increases 

NPC, typically reaching values close to or marginally between € 631,554 – €675,363, yet at 

Figure 5-7: Surrogate model accuracy shown via predicted vs. actual plots for NPC, EROI, Unmet, and Excess energy 
(10-fold cross-validation) 
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the expense of lower EROI system outcomes, falling to approximately 3.18 – 3.52. Although 

these configurations reduce unmet demand to near-zero, they cause a large increase in 

excess energy generation, reaching up to 2,429 MWh/year, indicating underutilised PV 

resources. This substantial numerical trade-off underscores the inherent tension between 

economic affordability and energy sustainability. 

From a deeper analysis, an optimal performance region clearly emerges, forming a circular 

heat light colouring around the baseline scenario (PV ~1.0, Battery ~1.0). Interestingly, this 

optimal region subtly shifts towards slightly larger PV and smaller battery scales 

(approximately PV ~1.1 and Battery ~0.8), corresponding to an NPC of around €586,437 – 

€586,766 and an EROI system of about 4.53 – 4.60. Reaching 0% unmet demand indicates 

this area's efficient balance between cost and sustainability under moderate excess 

generation (323–375 MWh/year). These results highlight how relaxing surplus energy 

constraints would allow better trade-offs and how they might be a useful road map for adding 

hydrogen storage or other flexible options to the system. 

Figure 5-8: System EROI and NPC across PV and battery scales, overlaid with unmet and excess energy contours 
(MWh/year), highlighting trade-offs between cost, sustainability, and energy utilisation. 
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Figure 5-9 heatmap shows PV and hydrogen tank scales, revealing a markedly different 

sensitivity pattern compared to the battery storage system. At hydrogen tank capacities (0.2–

1.6 scale), increasing PV capacity (1.1–1.3 scale) substantially increases the NPC to 

approximately €590,018 – €607,552, while the system EROI correspondingly decreases to 

values between 3.97 – 4.60. This suggests a little trade-off, somewhat greater system costs 

accompany modest gains in sustainability (EROI). The increase in EROI is therefore 

somewhat small, implying that its economic effect decreases with more PV growth in this 

region. Conversely, lowering PV capacities below the baseline scenario (around 0.4–0.6 

scale), even at relatively large hydrogen tank scales (1.3–1.6), significantly raises NPC, 

approaching €792,241 – €991,294, while providing only marginal improvements in EROI 

(around 6.65 – 7.69). The trade-off between NPC and EROI in the hydrogen tank scenario is 

therefore less pronounced than with battery storage, indicating lower sensitivity of hydrogen 

storage sizing to both economic and energy-life cycle metrics. Rather than forming a sharp 

optimal pocket, a broader, more diffuse optimal band appears around PV scales of 1.0–1.1 

Figure 5-9: System EROI and NPC across PV and hydrogen tank capacity scales, overlaid with unmet and excess 
energy contours (MWh/year), illustrating the diffuse trade-offs between cost, sustainability, and renewable energy 
utilisation in hydrogen-based storage configurations. 
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and tank scales of 0.8–1.0. Within this region, the system achieves moderate EROI values 

between 4.56 and 4.90, and NPC values ranging from €593,006 to €604,513, with no unmet 

load and only moderate excess generation (64–182 MWh/year). This flexibility makes the 

hydrogen storage scenario appealing for energy communities seeking a balance between 

investment efficiency and energy resilience. 

Figure 5-10 expands the capacity-scaling investigation presented earlier, showing how varying 

PV and fuel cell capacities influence both economic costs and energy sustainability. The 

contour map shows three principal performance zones based on system-level EROI and NPC. 

The high EROI–high NPC region (PV scales roughly 0.10–0.35 and fuel cell scales 0.10–2.00) 

yields EROI values of 8.00–9.61 at a considerable economic burden, with NPC up to 

€1.50 million and an unmet load range of 1.44–8.95 MWh/year. Conversely, the low EROI–low 

NPC region (PV scales approximately 1.29–1.92 and fuel cell scales 0.10–2.00) reduces NPC 

to about €598,388–€699,981 but lowers EROI to 3.01–3.99, accompanied by sizable excess 

energy (546–3,630 MWh/year). Between these extremes lies a moderate trade-off region (PV 

scales around 0.85–1.12 and fuel cell scales 0.10–0.20), where EROI holds at 4.50–5.50 and 

Figure 5-10: Capacity scaling analysis of PV and fuel cell systems showing trade-offs between system EROI and NPC. 
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NPC stands near €600,019–€649,974, while surplus energy lies in the 0–270 MWh/year range 

and unmet demand remains minimal. Though NPC increases to around €619,201–€649,974 

as EROI moves higher (5.18–5.50), a narrower sub-region further tightens PV (0.85–0.93) and 

raises fuel cell capacity (0.41–1.92) to eliminate both unmet load and curtailment. Oversizing 

the fuel cell beyond 1.5 rarely boosts EROI but raises cost; minor PV trim reduction eliminates 

wasted generation without significantly affecting general system viability. These results show 

once again that EROI-based sustainability and cost efficiency seldom coincide precisely, 

hence stressing the need of careful capacity tuning depending on local energy needs and 

financial objectives. 

Figure 5-11 broadens the capacity-scaling investigation by focusing on how varying PV and 

electrolyser dimensions can shift both NPC and EROI. The resulting contour map separates 

into three main performance zones, revealing how system designs can pivot between cost 

and sustainability goals. In the high EROI–high NPC region (PV scale 0.10–0.37, electrolyser 

scale 0.10–2.00), EROI reaches up to 9.64, but NPC can exceed €1 million, with unmet loads 

Figure 5-11: Capacity scaling analysis of PV–electrolyser systems, illustrating trade-offs between economic cost and 
energy sustainability. 
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of 0.92–8.74 MWh/year, indicating strong sustainability with a considerable financial burden 

and operational risks from undersized PV. Conversely, the low EROI–low NPC area (PV scale 

1.27–1.96, electrolyser scale 0.10–2.00) pushes costs down toward €600 k yet drops EROI to 

3.01–4.00, accompanied by substantial curtailment (520–4,019 MWh/year). While cheaper in 

absolute terms, these configurations compromise long-term energy efficiency by oversizing 

PV relative to the electrolyser capacity. A moderate trade-off area (PV scale 0.85–1.10, 

electrolyser scale 0.10–2.00) finds a more harmonic equilibrium with EROI values spanning 

from 4.53 to 5.50 and NPC clustering around €600k–€650k. Minimal excess and unmet 

demand in this range improve dependability as well as price stability. Within that moderate 

zone, a narrower subset (PV 0.85–0.93, electrolyser 0.41–2.00) achieves zero unmet and zero 

excess, at slightly higher costs but with EROI rising to 5.17–5.50. These nuanced capacity-

scaling outcomes underscore the need to harmonise local load, financial constraints, and 

desired sustainability targets when deciding on optimal PV–electrolyser configurations. 

5.4.2.2 Scaling Battery, Fuel Cell, Electrolyser, and Hydrogen Tank Capacities 

Emphasizing four separate areas that underline the natural trade-offs in hybrid energy system 

design, Figure 5-12 offers a complex mapping of the interaction between battery and hydrogen 

tank capacity and their combined influence on system-level performance. The system reaches 

EROI levels between 8.00 and 9.61 in the High EROI–High NPC area, where battery scales 

vary from 0.10 to 0.25 and tank scales from 0.10 to 0.60. Reducing embodied energy suggests 

that reducing component sizes might greatly improve energy efficiency; nonetheless, the 

related net current costs surpass €1 million, which emphasizes the great financial load of such 

drastic downsizing. The Moderate Trade-off area offers a balanced outcome with intermediate 

scales (battery and tank both around 0.85–1.15), where EROI ranges from 4.53 to 5.50 and 

NPC stabilizes between €600,000 and €650,000 while sustaining low unmet demand and 

moderate excess energy. Especially interesting is a very appealing cluster with battery scales 

of 0.75–0.80 and tank scales of 0.40–0.70 that produces the lowest NPC (around €591,600) 

and a fair EROI just around 5. These results offer important direction for maximizing 

component size to balance financial limits with sustainable energy performance. 
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Figure 5-13 illustrates the intricate trade-offs encountered in hybrid energy system design by 

jointly varying battery and fuel cell capacities and examining their impact on system-level EROI 

and NPC. In our analysis, the data reveal that a central configuration, where battery and fuel 

cell scales fall between 0.81–1.10 and 0.81–1.29 respectively, consistently delivers the lowest 

NPC (approximately €593,061–€617,948) while achieving zero unmet demand and only 

modest excess energy (around 16.5–178.2 MWh/year). Though modest, its sustainability 

performance (EROI = 4.89–4.95) is fair, hence this "sweet spot" is a cost-optimal choice. By 

contrast, a nearby region with somewhat higher EROI (up to 5.27) and even lower NPC values 

(down to €594,593) is countered by notable excess generation (up to 614.4 MWh/year), 

suggesting possible inefficiencies from under sizing. In the upper-right sector, where battery 

capacity is minimised (0.10–0.29) and fuel cell capacity is considerably over scaled (1.71–

2.00), the system achieves peak EROI values (5.30–5.56) but at the expense of markedly 

higher NPC (exceeding €670,000) and excessive energy wastage (over 1,000 MWh/year). 

Notably, further increasing both battery and fuel cell capacities beyond 1.4 eliminates all unmet 

and excess energy, confirming technical robustness; however, this comes at a cost, with EROI 

falling to 4.88–4.93 and NPC rising to approximately €732,620. These results underscore my 

Figure 5-12: Battery and hydrogen tank capacity scaling analysis showing four performance regions that capture the 
trade-offs between system-level EROI and NPC. 
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contention that, while storage scaling can refine system performance, the overall EROI is far 

more sensitive to PV sizing, highlighting the need for a judicious balance between economic 

and energy sustainability in practical hybrid system design. 

Figure 5-14 presents a comprehensive analysis of the trade-offs inherent in storage sizing 

considering how battery and electrolyser capacity scaling affects energy sustainability as well 

as economic cost. The figure shows six distinguished regions. Though with modest excess 

energy (about 145–246 MWh/year), the system in Region A achieves the lowest NPC (about 

€591,868–€594,739) with a reasonable EROI close to 5.0, where battery scales range from 

around 0.75 to 0.89 and electrolyser scales from 0.50 to 0.60. In contrast, Region B, 

characterized by very low battery (0.10–0.29) and electrolyser (0.10–0.20) scales, attains 

higher EROI values (up to 5.78) but incurs significantly higher NPC (up to €744,223) and 

substantial excess generation (approximately 787–1117 MWh/year), highlighting the pitfalls of 

under sizing. Defined by large components (battery and electrolyser scales over 1.62), Region 

C presents poorer sustainability (EROI about 4.86–4.89) despite no surplus; NPC climbs to 

Figure 5-13: Battery–Fuel Cell capacity scaling delineates four distinct regions of trade-off between lifecycle energy 
efficiency (EROI) and economic cost (NPC), underscoring the importance of balanced storage sizing for sustainable 
hybrid systems. 
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between €697,038 and €734,261. Operating with no unmet and excess energy but at 

approximately greater cost, Region D features moderate battery scaling (1.31–2.00) and a 

wide electrolyser range. While Region F, the balanced trade-off (battery scale ~1.00–1.10 and 

electrolyser scale ~0.71–0.98), finds an optimal convergence with NPC between €603,221 

and €615,086 and EROI around 4.89–4.93 with minimal excess, Region E provides 

configurations with large excess yet low NPC and high EROI. These results taken together 

highlight that a moderate, balanced strategy offers the greatest compromise between cost and 

energy efficiency while both forceful downsizing and oversizing can negatively affect system 

performance. 

Figure 5-15 illustrates the impact of hydrogen tank and fuel cell capacity scaling on system-

level economic and sustainability metrics. It is observed that when tank scales are maintained 

between approximately 0.2 and 0.8 and fuel cell scales vary from about 0.15 to 0.9, the system 

achieves the most cost-effective performance, with NPC values ranging from roughly 

€600,311 to €602,511 and an EROI between 4.91 and 5.06. In this region, unmet demand is 

Figure 5-14: Battery–Electrolyser capacity scaling analysis showing how moderate storage configurations yield 
optimal trade-offs between system-level EROI and NPC. 
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consistently zero, while excess energy remains moderate, between 63.1 and 138.0 MWh/year, 

indicating an efficient balance between investment and renewable utilisation. In contrast, 

configurations cantered around tank and fuel cell scales near unity, approximately 0.96 to 1.04, 

exhibit similarly balanced performance, with NPC values between €604,390 and €605,728 

and a nearly constant EROI of 4.90; notably, excess energy in these scenarios is further 

reduced to a narrow range of 62.0 to 63.0 MWh/year, signifying a finely tuned operational 

equilibrium. But when both tank and fuel cell capacities are raised to a scale of 1.4, 

performance clearly deteriorates: NPC rises to between €712,000 and €736,000 and EROI 

falls somewhat to about 4.88–4.93. These results highlight that while both under sizing and 

oversizing of hydrogen components create inefficiencies that degrade general system 

performance, moderate, near-baseline scaling produces the strongest trade-off between cost, 

sustainability, and operational reliability. 

 

Figure 5-15: Tank and fuel cell scaling reveals optimal cost–sustainability trade-offs near baseline configurations, with 
under sizing or oversizing degrading performance. 
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Figure 5-16 illustrates how varying hydrogen tank and electrolyser capacities affects overall 

system performance, revealing a complex interplay between cost and energy return. 

Configurations with moderate tank and electrolyser scales, roughly in the 0.7–1.1 range, 

consistently yield some of the lowest NPC values, around €600,000–€607,000, while 

maintaining a balanced EROI of approximately 4.89–4.94 with minimal excess energy (near 

61–74 MWh/year) and zero unmet demand. By contrast, setups with very small tank sizes 

(roughly 0.1–0.3) combined with bigger electrolyser scales (about 1.5–2.0) tend to produce 

somewhat higher EROI values (about 4.99–5.08) but at the cost of higher NPC (approximately 

€608,000–€618,000) and moderate excess levels (roughly 94–144 MWh/year). A particularly 

notable configuration emerges in the central region (tank scale 0.42–0.60 and electrolyser 

scale 0.35–0.55), where NPC drops to as low as €599,875 with EROI values narrowly 

distributed between 4.97 and 5.02. These solutions maintain unmet load at zero and excess 

energy below 116 MWh/year, reinforcing this as the most cost-optimal and technically reliable 

area in the design space. Exhibiting a strong trade-off with NPC values between €602,700 

Figure 5-16: System EROI and NPC response to hydrogen tank and electrolyser capacity scaling, highlighting cost-
optimal and energy-efficient regions. 
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and €612,800 and closely regulated excess energy (about 61–79 MWh/year), a unique cluster 

showing low excess, where tank scales range from around 0.91 to 1.39 and electrolyser scales 

from 0.81 to 1.29. Extreme oversizing, with both tank and electrolyser scales above roughly 

1.62, leads to higher NPC values (around €620,700–€632,600) and somewhat lower EROI 

(4.91–4.97) together with substantial excess (94–140 MWh/year). These results show, then, 

that while variations toward under sizing or oversizing create operational inefficiencies, 

moderate, near-baseline settings offer the greatest balanced economic and energy 

performance. 

Figure 5-17 explores how system performance changes with fuel cell and electrolyser capacity 

scaling, revealing nuanced trade-offs between economic cost and energy efficiency. Analysis 

shows that although maintaining zero unmet load and moderate excess energy, configurations 

with fuel cell scales of about 0.27–0.77 and electrolyser scales of 0.23–0.71, representing the 

most cost-effective zone, produce NPC values closely grouped around €600,776–€602,010 

and an EROI ranging from about 4.93 to 5.06. In contrast, designs featuring very small fuel 

cell and electrolyser capacities (scales roughly 0.10–0.29) exhibit marginally higher EROI (up 

Figure 5-17: Balanced fuel cell and electrolyser scaling yields optimal cost–efficiency trade-offs; extreme sizing 
degrades performance. 
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to 5.11) but are burdened by increased excess energy, sometimes approaching 

174 MWh/year, even though their NPC remains similar. When one component is significantly 

oversized relative to the other, a pronounced mismatch emerges, with NPC values rising to 

between €607,116 and €617,225 and excess energy increasing up to 191 MWh/year, 

highlighting the adverse effects of imbalance. A finely balanced system, where both fuel cell 

and electrolyser scales are around unity (approximately 0.91–1.10), shows a practically 

invariant EROI around 4.90 and NPC values in the narrow region of €603,590–€606,756 with 

little excess. Oversizing both components beyond 1.5 eventually results in far greater costs 

(NPC up to €633,668) with little additional EROI benefit. These findings show that whereas 

extreme under sizing or oversizing exacerbates operational inefficiencies, sensible, well-

balanced scaling of fuel cell and electrolyser capacities generates the best strong 

performance. 

5.5 Summary  

This study introduces a new life-cycle energy index that holistically incorporates multiple 

energy flows, including direct consumption, storage via battery and hydrogen, and grid export, 

while accounting for the embodied energy of each subsystem. A detailed parametric analysis 

demonstrates that battery storage dominates system-wide effects, as it often channels over 

30 % of total PV generation. For instance, improving battery round-trip efficiency from 70 % to 

95 % raises the extended EROI from around 4.4 to nearly 4.9, while also lowering the NPC by 

over 6 %. In contrast, hydrogen storage typically handles only about 2.6 % of PV output, so 

even raising electrolyser–fuel cell efficiency from 15 % to 40 % yields a relatively modest EROI 

increment, underscoring the secondary role of hydrogen unless it is significantly upsized. The 

chapter further shows that PV manufacturing energy intensity exerts a substantial influence 

on overall results: increasing the embodied energy from 10,000 MJ/kWp to 14,000 MJ/kWp 

cuts system EROI by nearly a quarter, from approximately 5.6 down to 4.2.  

In addition, capacity-scaling studies reveal that both under sizing and oversizing can 

undermine cost-effectiveness or lifecycle efficiency. Systematically investigating hundreds of 

scaled configurations shows a surrogate model trained using polynomial regression and 

validated by 10-fold cross-validation with coefficients of determination (R²) over 0.98. By 

creating heatmaps of EROI, NPC, unmet load, and curtailment, the model pinpoints “sweet-

spot” capacity ranges, often around a 1.0–1.1 scale of the baseline design, that achieve EROI 

near 5.0 while holding NPC below €610,000 and curtailment under 200 MWh/year.  

Examining scaling decisions more closely, the study finds that PV capacity creates the most 

design potential by far by imposing the most cost and environmental load. Though a little rise 

above scale = 1 results shows only small trade-offs, then bigger expansions, especially 
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beyond 1.8 or 2.0, often result in oversizing, when both the EROI and NPC suffer and aligns. 

Conversely, scaling down tends to raise EROI but also escalates specific costs, indicating a 

clear tension at smaller sizes. These observations are explained by constrained fixed inverter 

and grid-contract limits, which throttle surplus generation for oversized systems and thus align 

economic and energy performance trends in higher PV capacities. These findings rest on a 

set of simplifying assumptions. The extended EROI and ESOI calculations treat system 

operation as steady state (The annual dispatch pattern is assumed to repeat identically every 

year), using a single representative year without accounting for degradation (linear 

degradation assumed), and recycling benefits. Component round-trip efficiencies and 

embodied energy intensities are held constant, while dynamic environmental impacts such as 

extreme weather, multi-year wear are excluded from the lifecycle boundary. As whole, these 

heatmaps become a vital decision-support tool for energy communities trying to strike 

environmental performance with techno-economic limits, thereby directing planners toward 

strong, data-driven design decisions that maximize energy returns as well as cost. 
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6 Integrated Analysis of Sizing, Operation, and Life-

Cycle Performance 

Chapter 6 brings the thesis full circle by weaving together the discrete, yet complementary 

insights derived in Chapters 3, 4 and 5 into a single narrative. It integrates techno-economic 

sizing, operational control, and life-cycle sustainability into a unified performance analysis of 

the hybrid PV–battery–hydrogen system. Chapter 3 established the techno-economic 

“blueprint”, using a GA–MILP framework to co-optimise long-term sizing and hourly dispatch 

under realistic grid-tariff constraints. Chapter 4 then demonstrated how rolling-horizon MPC, 

augmented by a modest approach of flexible load setting, can translate that blueprint into day-

to-day operation while shaving peaks, curtailment and costs. Chapter 5 introduced a the life-

cycle lens through an extended EROI/ESOI index that quantifies how each storage path, direct 

PV, short-duration battery, long-duration hydrogen, contributes to both economic return and 

net-energy pay-back. 

The purpose of this chapter is therefore threefold: first, to demonstrate how the sizing ratios 

shaped by GA–MILP are reshaped, though not undone, by MPC and flexible demand 

strategies; second, to interpret the integrated techno-economic and environmental 

performance of the system under various scenarios; and third, to position these findings in the 

context of real-world planning constraints such as contracted-power limits and control logic. 

Importantly, this chapter focuses entirely on presenting the original contributions and results 

of this thesis. Comparative benchmarking with existing literature is deliberately deferred to 

Section 6.6, allowing the novel framework’s internal performance to be presented without 

interruption or external influence. 

6.1 Main Findings from Integrated System Design 

The effect of integrated MPC design on component sizing is captured in Figure 6.1, which 

contrasts the Load-Following baseline with four MPC strategies enabling 0% to 8% load 

flexibility. The baseline maintains a conservative solar-to-inverter ratio (SIR) of 1.03, closely 

aligned with traditional 1:1 DC/AC matching. This conventional approach, while simple, 

restricts inverter utilisation and offers limited flexibility in managing surplus PV generation. 
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Figure 6-1 summarises the evolution of key sizing ratios across the Load-Following baseline 

and four MPC-based operational strategies with varying degrees of load flexibility. Three 

metrics are examined: the solar-to-inverter ratio (SIR), battery-to-inverter ratio (BIR), and tank-

to-inverter ratio (TIR). The baseline system maintains conservative sizing across all metrics, 

particularly with an SIR of 1.03 and BIR of 2.32, reflecting a traditional DC/AC matching and 

limited storage duration. However, the MPC-based designs adopt a markedly different 

architecture. As load flexibility increases from 0% to 8%, the system progressively shifts 

towards higher inverter utilisation and longer storage durations. SIR stabilises around 2.0, 

indicating deliberate PV oversizing across all MPC variants. Meanwhile, BIR rises steadily 

from 4.74 to 5.33, enabling the battery to provide extended discharge coverage, particularly 

in response to diurnal demand shifts. Notably, TIR also escalates, from 3.03 to 4.17, 

demonstrating that hydrogen storage is increasingly employed for long-duration energy 

balancing. These results confirm that the joint optimisation of sizing and flexible control not 

only reduces curtailment and inverter idling but also rebalances storage responsibilities across 

short and long timescales.  

 

 

 

 

 

 

Figure 6-1: Comparison of solar-to-inverter (SIR), battery-to-inverter (BIR), and tank-to-inverter (TIR) sizing ratios for 
the Load-Following baseline and MPC strategies with 0 %, 4 %, 6 %, and 8 % load-shifting. 
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The impact of these revised sizing ratios is best understood by examining the system’s hourly 

operational dynamics. Figure 6-2 offers a year-round view of how each scenario converts solar 

generation into usable output while managing storage state-of-charge. The figure illustrates 

the annual power and storage dynamics under three supervisory strategies: Load-Following, 

MPC 0%, and MPC 8%. In the Load-Following case, the 120-kW inverter is frequently 

saturated during peak PV periods, resulting in noticeable clipping losses, while the battery 

operates around mid-capacity (46.4%) and hydrogen storage remains underutilised at 23.0% 

average SoC. By contrast, the MPC 0% scenario reduces inverter size to 77 kW yet achieves 

comparable AC output by deliberately overbuilding the PV array and maintaining the battery 

near 33.3% SoC. This mid-empty strategy enables the battery to absorb midday surpluses 

more effectively, shifting energy to evening loads. Hydrogen storage in this case steps up 

significantly, with its average SoC rising to 55.2%, suggesting a clear seasonal balancing role. 

The MPC 8% scenario further reinforces this trend: inverter size drops to 72 kW while storage 

states remain well-managed, with average battery and hydrogen SoC at 33.5% and 51.1%, 

respectively. The added flexibility allows modest load shifting to improve PV utilisation, smooth 

out inverter excursions, and defer seasonal energy through the hydrogen subsystem. 

Together, these patterns confirm that integrated control and flexible demand enable 

substantial inverter downsizing without compromising system output, while actively 

partitioning storage roles across daily and seasonal cycles. 
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Figure 6-2: Annual hourly PV generation (yellow), theoretical AC (blue), and actual AC (red) outputs, together 
with average battery (dashed blue) and hydrogen tank (dashed green) SoC, for (a) Load-Following with a 
120 kW inverter (Battery ≈ 46 %, H₂ ≈ 23 %), (b) MPC 0 % with a 77 kW inverter (Battery ≈ 33 %, H₂ ≈ 55 %), and 
(c) MPC 8 % with a 72 kW inverter and 8 % load shifting (Battery ≈ 34 %, H₂ ≈ 51 %). 
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This enhanced operational coordination also translates into improved utilisation of contracted 

grid capacity, as shown in Figure 6-3. The figure presents the evolution of contracted-power-

normalised ratios for solar (SPR), battery (BPR), and hydrogen tank (TPR) components. The 

Load-Following strategy remains modest across all three metrics, with limited storage capacity 

relative to grid import/export constraints. However, once MPC control is introduced, even with 

zero load flexibility, both BPR and TPR sharply increase, reflecting a deliberate shift towards 

storage-dominant infrastructure. As the flexibility rises to 8%, BPR and TPR reach 10.38 and 

8.11 respectively, illustrating a system increasingly oriented around autonomous operation and 

seasonal energy balancing. The gradual rise in SPR, from 1.59 to 4.05, demonstrates that 

solar oversizing also scales in parallel with storage capacity, reinforcing the system’s ability to 

meet demand internally. Collectively, these trends underscore the central thesis contribution: 

MPC-based hybrid systems can maximise renewable utilisation and minimise grid 

dependency not only through control logic but also through co-optimised sizing decisions 

anchored to contracted power availability. 

 

This strategic shift towards storage-dominated infrastructure has a direct impact on the nature 

and frequency of grid interactions. Figure 6-4 illustrates how grid imports and exports are 

shaped under Load-Following and MPC 8% scenarios, plotted against instantaneous PV 

generation. In the Load-Following configuration, the system relies on a ±78 kW contracted grid 

envelope. Despite high PV availability, there are significant occurrences of both import and 

export events, with grid interactions constrained more by inverter size than by energy 

availability. Notably, the system avoids grid imports 77% of the time, but only manages 

complete independence—i.e., zero grid exchange, for 66% of hours annually. This indicates 

Figure 6-3: Contracted-power ratios (SPR, BPR, TPR) for Load-Following vs. MPC (0–8 %); MPC greatly boosts storage 
versus grid capacity, enabling higher PV capture and seasonal balancing. 
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suboptimal internal balancing, with surplus energy frequently exported and occasional reliance 

on the grid to meet evening or cloudy-day loads. 

In contrast, the MPC 8% design operates within a much narrower ±37 kW contracted power 

range yet demonstrates superior autonomy. Grid imports are avoided during 86% of the year, 

and complete self-sufficiency (no exchange) is achieved in nearly 59% of hours. This 

performance is achieved not by simply increasing system size, but through the coordinated 

discharge of storage assets during low-PV periods and intelligent load shifting during high-PV 

availability. The figure also reveals a flattening of the import/export envelope, reflecting 

Figure 6-4: PV vs. grid import/export for Load-Following (±78 kW) and MPC 8 % (±37 kW): MPC achieves import-free 
operation 86 % of hours and uses storage discharge at zero PV, flattening grid exchanges. 
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smoother and more controlled grid interactions. This outcome highlights the value of coupling 

flexible control with precise sizing: the system effectively decouples from the grid by using 

energy where and when it is most valuable, without exceeding contracted limits or over relying 

on the external network. 

The internal balancing mechanisms enabling such controlled grid interaction are best 

illustrated through the seasonal storage dynamics in Figure 6-5. This final figure compares the 

hourly, daily, and monthly behaviour of battery SoC and LoH under Load-Following and MPC 

8% configurations. In the Load-Following scenario, the battery hovers near mid-capacity with 

an annual mean SoC of 46.4%, exhibiting strong daily fluctuations and frequent saturation. 

The hydrogen system, by contrast, remains largely underutilised with an annual average LoH 

of only 23.0%, and no clear seasonal pattern. This operational profile indicates poor long-term 

Figure 6-5: Annual dynamics of Battery SoC and Hydrogen LoH for (a) Load Following and (b) MPC 8%. Each subplot 
shows hourly values (faded), daily means, and 30-day rolling averages. MPC 8% maintains the battery at a lower SoC 
set point with reduced daily fluctuation while using hydrogen for long-term seasonal storage, in contrast to Load 
Following which underutilises hydrogen and experiences frequent battery saturation. 
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storage integration: the battery is routinely tasked with covering both diurnal and seasonal 

mismatches, which exceeds its optimal duty cycle and leads to curtailed surplus energy. 

Under MPC 8%, however, the control strategy explicitly separates the roles of short- and long-

duration storage. The battery is maintained at a consistently lower set point, averaging 33.5% 

SoC, with noticeably reduced daily cycling range. This creates headroom for absorbing midday 

surpluses and enables higher flexibility for short-term balancing. More importantly, hydrogen 

storage becomes the principal vector for inter-seasonal energy shifting. Its average LoH rises 

sharply to 51.1%, and its dynamics reveal a distinct charging trend during summer and 

discharging in winter. The smoother and broader seasonal LoH profile confirms that hydrogen 

is not just an auxiliary buffer but a fully integrated component of the energy management 

strategy. This functional separation enhances the lifecycle performance of both storage 

technologies and is a hallmark of an optimally coordinated hybrid system. 

6.2 Robustness Under Economic and Environmental Variability 

While favourable results under nominal conditions are promising, they do not alone ensure 

broader applicability under variable real-world contexts. To explore the robustness of the 

proposed framework, a sensitivity analysis is conducted, drawing on the structure outlined by 

[165]. This coming analysis systematically investigates how variations of ±10% in equipment 

prices, grid capacity, and solar irradiance affect the proposed nested GA-MILP–MPC 

framework’s techno-economic outcome in terms of NPC and LCOE. Table 6-1 encapsulates 

the system’s re-optimised capacities and resultant techno-economic indices across six 

scenarios. In every case, the model maintained annual unmet and excess energy below 

100 kWh, reflecting the dispatch strategy’s robustness in aligning production and demand 

without compromising economic viability.  

Under escalated equipment prices, the NPC rose to €643,297 with a corresponding LCOE of 

€0.235/kWh, accompanied by mostly modest capacity adjustments. On the other hand, when 

component costs dropped, the system found it advantageous to enlarge the PV array to 

167 kW and bolster battery storage, driving the NPC down to €574,537 and the LCOE to 

€0.210/kWh. This contrast suggests that more affordable hardware encourages heavier 

reliance on self-generated power and stored energy, thereby reducing dependence on the grid 

over the system’s lifetime. 
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Table 6-1: Sensitivity Analysis of System Components under External Variations (MPC-4% selected) 

Description 
PV 

(kW) 

Battery 

(strings) 

Inverter 

(kW) 

Grid 

(kW) 

Fuel 

Cell 

(kW) 

Electrolyser 

(kW) 

Tank 

(kg) 
NPC (€) 

LCOE 

(€//kWh) 

Base Scenario 152 74 75 40 5 5 7 606,879 0.221 

Scenario 1: 

+10% Equipment 

Price 

152 75 75 41 5 5 7 643,297 0.235 

Scenario 2: -10% 

Equipment Price 
167 79 87 52 5 5 8 574,537 0.21 

Scenario 3: 

+10% Grid Price 
161 74 89 46 5 5 8 612,298 0.224 

Scenario 4: -10% 

Grid Price 
163 79 84 50 5 5 9 612,133 0.224 

Scenario 5: 

+10% Solar 

Irradiance 

137 78 106 36 5 5 6 592,206 0.216 

Scenario 6: -10% 

Solar Irradiance 
177 77 86 48 5 5 7 642,447 0.235 

 

Moderate changes in grid tariffs similarly triggered recalibrations in plant sizing. A 10% tariff 

uptick led to additional PV (161 kW) and inverter capacity (89 kW), raising the NPC to 

€612,298 and the LCOE to €0.224/kWh; when grid electricity was cheaper, the model still 

opted for a moderate PV and storage increase, settling at an NPC of €612,133 with an LCOE 

of €0.224/kWh. These findings imply that high tariffs incentivize an expanded local generation 

portfolio, whereas low tariffs, although less punitive, do not necessarily diminish the value of 

storage, particularly over a 25-year project planning where operational savings can offset 

capital outlays. 

In scenarios of elevated solar irradiance (+10%), the model could curtail PV capacity to 

137 kW while assigning a larger inverter (106 kW) to handle higher midday outputs, reducing 

the NPC to €592,206 and the LCOE to €0.216/kWh. Conversely, less irradiance drove the 

system to boost PV capacity up to 177 kW, with the NPC climbing to €642,447 and the LCOE 

to €0.235/kWh. Despite such divergent solar resource profiles, the optimisation reliably 

preserved sufficient battery and hydrogen storage to supply the load without resorting to 

excessive grid imports. 

Collectively, these outcomes underscore that the nested MPC-Flexible Load approach retains 

both cost-effectiveness and operational reliability across a variety of environmental and 

financial inputs, consistently capping any unmet or dumped energy at fewer than 100 kWh per 

annum. By dynamically reallocating PV, battery, and hydrogen capacities in response to 

fluctuating costs and irradiance, the system achieves stable NPC within ±6% figures and 
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consistently low LCOE fluctuations limited to ±6.3%. Such resilience affirms the suitability of 

this framework for island microgrids and remote communities, where both economic 

conditions and solar resources can experience wide swings over the project’s lifespan. 

6.3 Design Decision Support Using EROI–NPC Trade-offs 

 As discussed in the preceding comparison section, the GA–MILP–MPC layout shows 

favourable performance relative to the recent peer-reviewed studies in terms of both NPC and 

LCOE. The ±10% sensitivity sweep (Table 6-2) demonstrated that these savings hold up even 

when there are reasonable changes in equipment cost, tariffs, and solar yield. The last step is 

to determine whether the design also overcomes a lifecycle-energy hurdle that is significant 

to planners who must justify projects on grounds other than cost alone, after economic 

superiority and parameter robustness have been established. 

Figure 6-6 presents the new interactive NPC-vs-EROI dashboard at the calibrated optimum. 

Colour shades Net-Present-Cost, white contours trace 𝐸𝑅𝑂𝐼 community, and dashed lines 

show unmet and excess energy. One glance tells decision-makers that the reference mix (PV 

= 152 kW, battery ≈ 365 kWh, tank = 7 kg) sits inside the darkest-purple cost basin (~€0.60 

M), straddles the EROI = 4.8 iso-line, and keeps unmet load below the policy ceiling (< 0.1 

MWh yr⁻¹). Because the basin is broad and the EROI ridge is flat nearby, engineers can 

reassure councils that modest procurement slippage will not jeopardise either affordability or 

sustainability, an insight that static tables struggle to convey. 

Figure 6-6: Interactive Cost–EROI dashboard. Baseline optimal mix with ability to compare different equipment sizes 
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Figure 6-7 illustrates how the same tool guides negotiations. Sliding the PV scale to 1.44 × 

(while leaving storage untouched) moves the magenta star onto a higher-PV/lower-battery 

lobe: NPC rises to ~€0.66 M and the EROI contour falls to 3.8. Unmet energy stays within 

limits, so the plant is still technically feasible, yet the EROI drop below the 4.0, threshold warns 

stakeholders that the extra PV has become energetically counter-productive. No fresh 

optimisation run is required; the dashboard translates the complex GA–MILP–MPC surrogate 

into an immediate visual trade-off. Planners can therefore explore budget caps, sustainability 

mandates or export-limit rules in real time, turning the holistic community EROI metric into a 

practical steering wheel rather than a static footnote. 

6.4 Comparative Benchmarking with Literature 

The following benchmark analysis compares the proposed GA–MILP–MPC optimisation 

framework against relevant peer-reviewed studies as summarised in Table 6-2. The 

comparative analysis explicitly addresses each method's key features, highlighting concrete 

numerical outcomes and methodological reasons behind their results, and systematically 

contrasts them against the specific findings of the novel proposed approach. 

The discussion opens with [166], who couples a particle-swarm sizer to a 72-h rolling 

dispatcher that honours electrolyser and fuel-cell transients. Relative to HOMER’s cycle-

charging baseline, LCOE falls from 0.3976 to 0.3695 £/kWh (-7.1 %). Because inverter rating, 

maximum contracted power and load-shifting remain fixed inputs, the economic upside stops 

Figure 6-7: Interactive Cost–EROI dashboard, PV-heavy what-if scenario 
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at transient optimisation. By contrast, the GA–MILP–MPC platform co-optimises those three 

additional levers and achieves a 9 % NPC saving; about two percentage points come from 

right-sizing the inverter and cutting the contracted power limit, dimensions untouched in the 

researcher’s formulation [166]. 

Moving from hydrogen-centric design to isolated rural microgrids, [167] applied PSO with ε-

constraints in an islanded PV-diesel-battery hybrid system, delivering 0.37 $/kWh versus 

HOMER’s 0.40 $/kWh (-7.5 % LCOE). Dispatch is a single deterministic year with static diesel 

price (0.26 $/L) and no forecast layer, so diesel start–stop penalties or weather uncertainty 

are not explored. Although the study is off-grid, it highlights the value of capacity-mix 

optimisation; our GA–MILP–MPC addresses the complementary operational dimension in a 

grid-connected scenario, cutting annual grid charges 46 % (€29 625 to €15 886) against a 

load-following benchmark by anticipating low-tariff hours also reduction in LCOE of 10%. The 

results show that static sizing and static dispatch each leave sizeable savings untapped.  

Study from [105] bring the conversation closer to this thesis novel framework by integrating 

GA-based battery sizing with an MPC dispatcher that runs once per day using a 72-h 

prediction window. Annualised NPC drops 19 % (1.08 to 0.87 M JPY) and operating cost alone 

plunges 44.4 % versus a day-ahead rule, principally by clipping evening peaks. Because the 

controller re-optimises only daily, it still cannot track intra-day tariff swings in real time. This 

thesis novel approach GA–MILP–MPC uses a 24-hour prediction horizon (shorter horizon 

assumption of 24h/12h) but executes only the first 12 hours of that plan before shifting the 

window forward by 12 hours and re-optimising. This twice-daily receding-horizon cycle, 

combined with a second storage vector (hydrogen), delivers a 46 % reduction in grid charges 

on the same load profile, slightly higher than the 44.4 % achieved by Tamashiro’s once-daily 

(72 h/24 h) MPC [105].  

From urban flexibility, we pivot to utility-scale design. The study from [98] introduced realistic 

grid tariffs and applied sensitivity in lowering the contracted power from 30, 24, and 18KW all 

by using deterministic MILP, resulting in an 18% NPC and 12% LCOE reduction. Despite these 

impressive results, their static approach lacked adaptability of the AC/DC conversion 

breakdown and omitted free optimisation of grids limits, and optimised the operation decision 

on the knowledge of 8760 full year data, over estimating the results [98]. This thesis nested 

optimisation approach explicitly uses a balanced realistic day ahead with intraday decision 

making (12h/24), dynamically balancing between battery and hydrogen storage systems 

without over inflating results. This method demonstrated substantial cost reductions (around 

10% NPC) by optimally utilising hourly decisions, achieving peak shaving demand with inverter 

and contracted power optimised limits.  

The study [43] also utilise MILP, but in a hybrid PV–battery–H₂ islanded microgrid. They apply 

a single-layer MILP with an internal TOU-based demand-response scheme to an off-grid PV-
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battery-H₂ micro-grid, cutting LCOE 11 % relative to a GA + rule-based baseline; however, the 

optimisation still relies on a deterministic year-long horizon with perfect foresight, no rolling re-

optimisation or multi-year uncertainty, so the resulting dispatch strategy may overestimate 

real-world savings [43]. This thesis GA–MILP–MPC approach explicitly considers detailed 

TOU tariff structures and predictive load management, dynamically adjusting operational 

strategies in response to daily and seasonal variations. This strategy directly reduces 

operational LCOE by approximately 10.3% compared to static dispatch methods, clearly 

improving overall economic outcomes and system reliability. 

Expanding the source mix, this study in [168] implemented PSO optimisation in a complex PV-

wind-biomass system, achieving substantial (24%) LCOE reductions compared to traditional 

rule-based methods. However, their method operated within HOMER’s limited dispatch 

framework, neglecting inverter clipping, and grid-contracted power optimisation [168]. In 

contrast, our method explicitly integrates inverter clipping management, alongside dynamically 

optimised grid power constraints. This comprehensive optimisation significantly enhances 

economic performance, particularly through reduced storage replacement costs and optimal 

inverter sizing, achieving consistent and verifiable cost reductions of about 9–10% compared 

to HOMER-based approaches. 

Researchers in [169] used NSGA-II for tariff-aware PV-BES sizing, realising a 12% annualised 

cost improvement. Nevertheless, their static dispatch methodology lacked dynamic 

optimisation and omitted hydrogen storage, thus restricting their achievable operational 

savings [169]. Our nested framework strategically incorporates hydrogen storage and 

predictive dispatch, significantly reducing grid dependency and achieving NPC of 

approximately 10%. This method explicitly optimises inverter sizing and grid interactions, 

consistently outperforming static dispatch approaches and enhancing overall system 

efficiency. 
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Table 6-2: Comparison of optimisation studies, showing grid/island context, cost reductions (Δ NPC, Δ LCOE) against each paper’s benchmark, and which advanced features 
are implemented; shortcuts: GS = meta-heuristic sizing, DO = Dispatch Optimisation, RH = rolling-horizon/MPC, SH = static-hourly assumption, LS = load-shifting, CG = 
contracted-grid optimisation, IC = inverter-capacity optimisation, AD = detailed AC/DC buses, TO = time-of-use tariffs, PS = peak-shaving. 

Ref Study 
Grid / 
Island 

Method 
Bench-
mark 

Δ NPC Δ LCOE 
G
S 

D
O 

R
H 

S
H 

L
S 

C
G 

I
C 

A
D 

T
O 

P
S 

[166] 
Atteya & Ali 
2024 

Grid 
Dynamic-component PSO sizes PV-
H₂; 72 h rolling dispatch tracks FC/EL 
transients 

HOMER — –7 % ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ 

[167] 
Fodhil et al. 
2019 

Island 
PSO sizes PV-Diesel-Battery under ε-
constraints; HOMER hourly simula-
tion 

HOMER — –8 % ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 

[105] 
Tamashiro et 
al. 2023 

Grid 
GA sizing + 24 MPC dispatch for 
smart apartments over 72 horizons 

Day-
ahead 
rule 

–19 % — ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ 

[98] 
Agha Kassab 
et al. 2024 

Grid 
MILP co-optimises PV-BES & con-
tracted power with peak-shave pen-
alty 

Flat-rate 
tariff 

–18 % –12 % ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ 

[43] 
Marocco et 
al. 2021 

Island 
MILP vs GA for PV-Battery-H₂ cam-
pus; flexible-load model 

GA 
baseline 

— –11 % ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ 

[168] 
Firdouse & 
Reddy 2023 

Island 
PSO vs GA for islanded PV-Wind-Bi-
omass-BES 

HOMER 
/ GA 

— –24 % ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 

[169] 
Niveditha & 
Singaravel 
2022 

Grid 
NSGA-II adds tariff-aware objective to 
PV-BES sizing 

2-objec-
tive GA 

–12 % 
(ACS) 

— ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ 

[170] 
Hossain et al. 
2023 

Grid 
PSO retrofit PV-BES; cuts TOU bill & 
demand charge 

Grid-
only bill 

— — ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ 

[171] 
Kaewnukul-
torn et al. 
2024 

Grid 
MILP sizes PV-BES & tilt under TOU; 
US residence 

Flat tariff — — ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ 

This work (8% load 
shift) 

Grid 

GA with day-ahead MILP and 12 
hours decision MPC; full AC/DC, 
TOU & peak-shave and load shift-
ing 

HOMER 
+ GA 

–10 % –10.3 % ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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Expanding on the previous study, [170] optimised a campus-scale PV-BES retrofit using 

heuristic PSO dispatch, achieving notable electricity bill reductions. However, their heuristic 

dispatch lacked formal optimisation, predictive capabilities, and inverter tuning, severely 

limiting potential saving opportunities. This thesis method of rolling MPC dispatch explicitly 

times renewable utilisation, manages storage strategically, and optimises inverter capacity 

dynamically, clearly reducing contracted grid demand and maximising renewable energy 

capture. This strategy directly reduces operational grid charges by approximately half (44.6%) 

annually compared to heuristic dispatch, providing demonstrable financial advantages. 

Finally, [171] optimised residential-scale PV-BES systems under US TOU tariffs using MILP, 

effectively modelling inverter clipping and battery replacement. Their absence of dynamic 

dispatch strategies and hydrogen storage limited their operational flexibility and seasonal 

adaptability. In contrast, our GA–MILP–MPC framework explicitly integrates hydrogen storage 

and predictive dispatch, strategically balancing between short-term battery storage and long-

term hydrogen buffering. This approach significantly improves economic and operational 

performance, reducing operational grid charges consistently by around 44.6%, particularly 

through better inverter sizing and seasonal hydrogen storage utilisation [171]. 

In summary, each of the reviewed studies either operated with static full-year horizons or 

limited predictive dispatch capabilities, implicitly assuming perfect foresight or simple heuristic 

logic. Our GA–MILP–MPC framework explicitly avoids these limitations by employing a rolling 

24-hour horizon with a practical 12-hour execution window. This approach balances predictive 

accuracy with operational flexibility, achieving robust, verifiable NPC and LCOE reductions 

around 10%, explicitly through optimised inverter sizing, contracted power management, 

predictive load scheduling, and effective battery-hydrogen storage utilisation. This detailed 

analysis distinctly illustrates why this methodology consistently outperforms the reviewed 

optimisation strategies, presenting a replicable and economically robust pathway for hybrid 

renewable energy system design. To reinforce the comparative benchmarking in Section 6.4, 

the following three subsections (6.4.1 to 6.4.3) examine system sizing, operational dynamics, 

and storage integration in detail, positioning the proposed approach relative to established 

strategies in the literature 

6.4.1 Sizing Ratios and Operational Load Matching  

The four MPC designs that gradually shift 0% to 8% of the demand are contrasted with the 

benchmark Load-Following controller's sizing ratios in Figure 6-1. The figure captures on how 

far the MPC approach, can stretch an inverter’s usefulness. The benchmark Load-Following 

design embraces a SIR of 1.03, a near-textbook 1:1 DC/AC match. While that seems prudent, 

it contradicts almost two decades of field evidence that high-insolation sites can safely push 

the ratio well above unity without damaging energy yield. A study quantified this ceiling in a 
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100 MW-AC Texas plant, showing that a DC/AC of approximately 2.0 maximised exported 

energy once a DC-side battery soaked up clipping losses [172]. Even more recent studies 

confirmed with a 5-kW bifacial test bed that bifacial PV coupled to lithium-ion storage moves 

the “sweet spot” from 1.2 (PV-only) to 1.4–1.6 under Arizona sunshine [171]. Large-sample 

monitoring of 93 U.S. residential arrays echoes that conclusion, annual yield gains flatten 

beyond ILR about 1.25, yet no performance penalty appears until around 1.4 [173]. Taken 

together, these studies bracket 1.6–2.0 as a realistic upper bound for stand-alone PV plants 

in bright climates. It is therefore encouraging that every MPC instance gravitates towards SIR 

approximately 2.0, filling the gap between conservative practice (1.0) and empirically proven 

limits (2.0). 

The economic motive for that shift is equally strong. Researchers found that, under Ontario’s 

three-tier TOU tariff, profit, not LCOE, peaks at an array-to-inverter ratio of 2.0 and remains 

flat out to about 2.4, after which clipping losses dominate [174]. Parallel modelling for the 

Iberian market shows that every 20 % fall in Li-ion capex or 5 % rise in round-trip efficiency 

roughly doubles arbitrage NPV, further nudging investors toward high DC/AC ratios [175]. By 

choosing SIR about 2 our MPC designs effectively tap the lowest-cost segment of the profit 

curve while keeping within the physical ceiling. 

That same logic extends to storage. Authors define BIR as the ratio of battery power capacity 

to inverter capacity and then fix the battery’s duration at 4 h, so a BIR of 1.0 corresponds to 4 

h of discharge at full inverter power [176]. Researchers show that at this BIR = 1.0 level (i.e. 

4 h), coupled PV and battery systems hit the breakeven point where both energy- and 

capacity-value benefits justify higher PV oversizing [176]. Yet, grid planners start to treat a 

hybrid plant as a reliable peak-shaving resource only once its storage can sustain 

approximately 3.3 hours at full power [177]. The Load-Following design, limited to 2.32 h, just 

clears the arbitrage threshold but falls short of the grid-service mark. In contrast, every MPC 

layout lifts BIR above 4.7 h, bridging that policy gap and aligning the system with the 

“moderate-duration” class now favoured in capacity-market qualification rules. 

Work in [178] use rain-flow analysis to show that once a PV plant’s DC/AC ratio exceeds 

around 1.4, the minimum battery capacity needed to guarantee a 10-year life rises super-

linearly driven by the volume of clipped energy. In their 1 MW-AC case study the required 

BESS steps from a few-hundred kWh at DC/AC = 1.4 to over 500 kWh at DC/AC = 2.0, 

highlighting how aggressive PV oversizing rapidly balloons storage needs. Hydrogen shows 

a similar, but longer-tail, pattern. Increasing the TIR from 1.39 h in the baseline to 4.17 h in 

the MPC-8 % case may appear extravagant at first glance, yet without it the battery would be 

forced to time-shift seasonal surpluses, a task to which high-cycle lithium-ion packs are poorly 
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suited both energetically and economically which will be demonstrated later in this discussion. 

Notably, while there’s a growing literature on optimal BIR for PV hybrids (e.g. [178], [176]), 

very few studies to date have simultaneously examined the analogous TIR for power-to-gas 

or hydrogen-augmented systems. Before we turn to our analysis of hydrogen storage sizing, 

it’s worth highlighting this lack of dual-storage guidance in the published work. The progressive 

rise in both BIR and TIR from the 0% to the 8% scenario reflects the need for more overnight 

storage capacity to absorb shifted load and shave daytime peaks. Accordingly, the optimiser 

relies on a mix of short and long-duration assets to meet that load-shifting requirement.  

The effect of inverter ratios is noticed in the overall yearly data simulated. Figure 6-2 provides 

more insight into the operational effects of the sizing ratios discussed earlier by displaying 

annual hourly PV generation next to the theoretical and actual outputs of the inverter under 

several energy management strategies for the three methods of Load Following, MPC 

0%, and MPC 8%. The figure summarises hour-by-hour how each supervisory strategy 

converts raw PV production (yellow) into usable AC power (red), while concurrently managing 

the average State-of-Charge (SoC) of both battery (blue dashed bar) and hydrogen storage 

(green dashed bar). 

In the Load-Following scenario the 120-kW inverter is oversized relative to the seasonal low 

in PV output; during winter mornings the plant idles near 20 % capacity, yet at noon in May 

and June the PV array repeatedly slams the inverter limit, hence the tell-tale horizontal 

plateaus in the red AC-output trace. In comparison to literature, researchers in [66]  with2.5 

kW inverter 0.74 kWp site, observe essentially zero clipping at SIR = 1.0, but already by SIR 

= 1.2 the AC output flattens at mid-day, and clipping grows further at SIR = 1.3, underscoring 

how even modest PV oversizing rapidly induces energy losses without storage . Also, [179] 

site-specific study find clipped hours under 2 % at SIR ≃ 1.4, rising more rapidly at higher SIR, 

suggesting that beyond SIR ≃ 1.6 the risk of significant clipping grows in many locations [179]. 

Load following, since the battery’s state of charge averages 46.4 %, neither full nor empty, 

there is little headroom to absorb those noon spikes, but still with less renewable penetration 

to avoid clipping. The first MPC variant (0 % load flexibility) downsizes the inverter to 77 kW 

but deliberately oversized both PV and battery. Two moves make this viable. First, the 

controller holds the battery mid-empty, around 33 % SoC, creating a 35 kWh “spare tank” that 

automatically catches mid-day clipping. Second, it allows PV to overbuild to drive SIR to 2.0: 

the array hits the 77 kW AC ceiling far more often, but now the excess is stored rather than 

curtailed. The net effect is identical annual AC yield with a 36 % smaller inverter. For rooftop 

projects without storage, a calibrated Malaysian study finds the LCOE minimum at SIR around 

1.19, underscoring that modest inverter under sizing pays even before batteries enter the 

picture [66]. 
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Adding 8 % load flexibility compounds that advantage. Because pool pumps, or similar non-

essential demand can be shifted up to four hours without compromise, the MPC pushes 8 % 

of consumption towards daylight when available. PV utilisation rises, PV-to-battery charge 

rates smooth out, and inverter excursions become even flatter. Despite a further reduction in 

name-plate power to 72 kW, the system now records fewer clipped hours than the 120-kW 

baseline and boosts self-sufficiency from 71 % to 84 %. Hydrogen’s role emerges in the 

background. In both MPC runs its average SoC doubles (around 50 %) relative to 23 % in 

Load-Following, a clear sign that surplus summer energy is being captured for winter release. 

By outsourcing seasonal balancing to H₂, the battery stays in its low-cycle, high-efficiency 

comfort zone, and the inverter is spared the need to honour simultaneous high-power charge 

and discharge requests.  

6.4.2 Grid Dependency and Storage Utilisation Trends 
Figure 6-3 highlights significant differences between the Load Following controller and the 

MPC strategies (0% to 8% scenarios) regarding the Contracted Power Ratios for solar (SPR), 

battery (BPR), and hydrogen tank (TPR). In the Load-Following case, SPR is modest (1.59), 

closely aligning the PV size with the contracted grid power, which indicates minimal reliance 

on grid flexibility or storage-driven arbitrage. In all MPC scenarios, this ratio consistently climbs 

above 3.7, suggesting a sizing for higher renewable penetration and major storage 

dependence to balance and smooth solar variability and lower grid interaction. This trend is 

reinforced by empirical evidence from [180], whose grid-connected HRES case study 

illustrates the implications of fixed contracted power limits. Their system, sized with a 26 kW 

PV array and 100 kW wind capacity against a 110-kW grid cap, achieves a renewable-to-

contracted power ratio of only around1.15. Despite the installed capacity, roughly 90% of the 

system’s total energy demand is still met by grid imports, and storage utilisation remains low. 

Critically, the grid cap in the studied EMS formulation is static, highlighting how pre-set grid 

constraints, if not dynamically optimised, can limit the effective use of renewables and storage. 

This underscores the importance of letting the optimisation framework treat contracted power 

as a tuneable parameter, responsive to techno-economic trade-offs rather than rigid planning 

assumptions [180]. 

The pattern continues with storage. There is also a more obvious increase in the Battery-to-

Contracted Power Ratio (BPR), which climbs from 3.57 in the Load-Following scenario to as 

high as 10.38 in the MPC 8% scenario. This substantial rise underscores MPC's shift towards 

longer-duration storage and greater storage-driven grid services, enabling substantial peak 

shaving and significant grid power curtailment. Researchers in [181] support this interpretation 

in a Malaysian context, demonstrating how short term load control with BESS reduced peak 

demand charges by 8.4% daily, emphasizing the economic and operational benefits of 
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storage-enabled flexibility during high-demand periods. Furthermore, the Hydrogen Tank-to-

Contracted Power Ratio (TPR), which rises from 2.14 to over 8.0 across the MPC scenarios, 

also implies a greater focus on seasonal energy shifting. The increase of self-consumption 

and aiding long-term grid balancing depend on hydrogen storage. Without much depending 

on grid exchanges, this high TPR lets MPC systems absorb excess solar energy during long 

periods of high solar irradiance and redistribute it during energy-deficit times. This aligns with 

[182], where static export constraints, such as capping grid export from PV output to 67% (or 

as low as 35% when paired with storage), can significantly enhance hosting capacity and 

promote decentralized energy balancing through self-consumption and local storage [182]. 

The work demonstrates that even within constrained export frameworks, storage-centric 

designs can support deeper renewable integration and operational resilience. 

The structural shift is easiest to visualise in Figure 6-4, to analyse the grid dependency and 

contracted power optimal sizing, grid interaction for Load following and GA-MPC 8% is 

compared.  The figure illustrates the detailed grid interaction profiles of the Load-Following 

and MPC 8% strategies as scattered plot. Load-Following maintains higher grid interaction 

limits (±78 kW), resulting in frequent, substantial energy exchanges, indicative of relatively 

limited reliance on internal storage capabilities. The percentage of hours without grid 

purchases (77.05%) is moderately high, however, the hours without any grid exchange 

(66.47%) remain lower, reflecting constant reliance on grid resources to manage the system's 

surplus and deficit conditions and this well observed in analysed metrics tables in Table 3-7 

and Table 4-4. 

Contrastingly, MPC 8% demonstrates a markedly improved operational profile despite its 

reduced contracted grid capacity (±37 kW). This scenario achieves superior self-sufficiency, 

with a remarkable 86.03% of hours free from grid imports, despite the lower grid limit. Although 

overall hours without grid exchange (58.78%) slightly decrease due to tighter constraints on 

export and import capacity, the scatter clearly shows strategic battery utilisation: when PV 

generation is low or zero, energy stored in batteries and hydrogen is actively dispatched back 

to the grid, creating a distinctive "negative" power pattern, meaning the storage systems 

actively support grid stability during demand peaks. This strategic dispatch of stored energy 

to the grid is notably absent in Load Following. Thus, MPC clearly achieves demand-peak 

shaving by strategically deploying storage assets, especially during periods of zero PV 

production, demonstrating advanced operational flexibility compared to the traditional Load 

Following approach. 
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6.4.3 Seasonal Energy Balancing and Storage Role Separation 

Figure 6-5 translates the sizing logic into storage behaviour over an entire year. Under 

Load Following (subplot (a)) the battery acts as the primary buffer: its daily mean SoC tracks 

the solar cycle, climbing above 55 % in midsummer and falling below 35 % in winter, with a 

standard deviation of roughly 15 %. Over sixty summer days the battery exceeds 80 % SoC, 

crowding out additional PV harvest and explaining the inverter clipping seen earlier. Hydrogen 

remains largely dormant, its daily mean hovers around 23 %, hardly surpassing 40 %, so the 

system lacks any genuine seasonal reservoir. High-frequency cycling is therefore 

concentrated in the battery, limiting renewable utilisation. 

This storage hierarchy is fundamentally restructured under the MPC 8% scenario. The 

controller pins the battery near one-third full throughout the year, cutting its daily variability to 

9 % and eliminating episodes above 80 % SoC. Surplus spring and summer energy is 

channelled into hydrogen: the LoH monthly average rises steeply to 80–100 % between June 

and August, then is drawn down to support winter loads. Hydrogen’s standard deviation a 

factor of four relative to the baseline, confirming its new role as the long-duration store, while 

the battery is relegated to short-term balancing. This division of labour maximises PV capture 

and allows the inverter to be downsized without loss of service. 

These results echo and are reinforced by recent studies. Researchers in [183] demonstrate 

that in PV–battery–hydrogen hybrids, effective SoC management requires batteries to operate 

around mid-range levels to handle daily variability, while a minimum hydrogen reserve is 

necessary for seasonal smoothing. Failure to coordinate these roles leads to excessive battery 

cycling and curtailed energy. Further studies such as [184] shows that when optimally 

dispatched, batteries and hydrogen in hybrid systems self-organize into distinct timescale 

functions, batteries absorb intra-day volatility while hydrogen buffers seasonal mismatches, 

precisely the operational stratification observed under MPC-8%. The study from [185] confirm 

this behaviour quantitatively, finding that hybrid storage architectures outperform battery-only 

or hydrogen-only systems across both temperate and tropical climates. The separation of 

short- and long-duration functions not only boosts efficiency but also extends component 

lifespan and enhances renewable integration. 

Having established the internal operational benefits of our MPC-enhanced strategy, including 

its ability to reshape inverter loading, smooth state-of-charge dynamics, and balance seasonal 

energy using dual-storage architecture, the discussion is being broadened to position these 

findings within the wider optimisation literature. The following comparative benchmark 

examines recent studies to assess how their methods and assumptions stack up against our 

framework, particularly in terms of realism, cost-effectiveness, and replicability. 
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6.5 Summary 

The discussion now concludes by connecting deeper insights from the main optimisation 

chapters (3 and 4) into a coherent Better–Robust–Sustainable arc. Firstly, Chapter 6 validated 

that the GA–MILP–MPC hybrid design achieves superior performance, surpassing 

benchmarked state-of-the-art studies on both NPC and LCOE. Secondly, a ±10% parameter 

sensitivity analysis confirmed these economic advantages hold firm under realistic market and 

climate variability, reinforcing the robustness of the framework. Lastly, by integrating Net-

Present-Cost, unmet-energy constraints, and the novel community 𝐸𝑅𝑂𝐼 sustainability metric 

into a dynamic, slider-driven dashboard, the thesis introduced a holistic decision-making tool. 

Planners can immediately visualise the impact of capacity adjustments, observing how shifts 

affect both cost and lifecycle energy payback, and swiftly verifying if designs surpass the 

crucial two-year net-energy threshold (EROI ≥ 4). The calibrated baseline system comfortably 

resides within the optimal €0.60 M cost and EROI 4.8 zone, whereas increasing PV sizing by 

1.44× noticeably elevates costs and reduces EROI, offering a visual caution against 

imbalanced sizing. Consequently, this thesis not only delivers a superior and resilient 

optimisation strategy but also provides a practical, transparent, and intuitive interface, 

empowering energy communities to confidently transform complex technical analyses into 

clear investment decisions. 

7 Conclusion 

This thesis improves the capacity planning of hybrid renewable energy systems by means of 

a proposed and profoundly integrated optimisation framework combining long-term planning 

with short-term operational realism. The framework tackles three general objectives by means 

of a combination of Genetic Algorithms (GA), Mixed Integer Linear Programming (MILP), and 

Model Predictive Control (MPC): minimising lifecycle cost, enhancing renewable energy 

autonomy still linked to the grid in community configuration, and improving energy return 

efficiency through improved performance indices. The first major contribution is the 

development of a nested GA–MILP model for the year-long sizing and dispatch of PV–battery–

hydrogen microgrids. This deterministic approach co-optimises component capacities and 

hourly dispatch strategies using a full-year dataset of load, irradiance, and tariff signals. It 

outperforms established methods such as HOMER Pro and reactive rule-based systems, 

achieving verifiable reductions in Net Present Cost (NPC) of 5.9% and Levelised Cost of 

Energy (LCOE) of approximately 6.2%. These improvements result not only from better sizing 

of PV and storage, but also from the novel AC/DC nodal representation, co-optimisation of 

inverter limits and contracted grid capacity, dimensions often overlooked in prior studies. 
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However, this full-year optimisation assumes perfect foresight and fixed performance metrics, 

which can result in overly optimistic cost predictions and underrepresentation of operational 

flexibility. To bridge this gap, Chapter 4 introduces a rolling-horizon MPC module that executes 

every 12 hours using a 24-hour forecast. By embedding this MPC engine within the larger 

GA–MILP structure, the system gains predictive adaptability to dynamic conditions. 

Additionally, the inclusion of flexible load scheduling, ranging from 0% to 8%, enables fine-

tuned demand shaping in response to variable solar supply and tariff cycles. This more 

granular control results in significant operational advantages: total annual grid charges decline 

from €29,625 under load-following operation to just €15,886 at 8% flexibility (reduction of 

46%), while self-consumption increases to 44.56%. Moreover, the MPC 8 % scenario delivers 

approximately a 10 % reduction in NPC and a 10.3 % reduction in LCOE compared to the 

load-following benchmark. These gains demonstrate the economic and technical value of 

embedding short-term foresight and demand flexibility into hybrid energy systems. 

The third key innovation lies in the introduction of an extended Energy Return on Investment 

(EROI) and Energy Stored on Invested (ESOI) metric suite, designed specifically for 

community-scale hybrid systems. Unlike traditional EROI calculations, which typically only 

account for primary energy generation and a single storage loop, this extended framework 

captures all major energy pathways, including curtailment losses, battery and hydrogen flows, 

and grid exports, and compares them against embodied energy in PV modules, batteries, fuel 

cells, and hydrogen tanks. Through detailed parametric analysis, the results reveal that battery 

efficiency improvements have the most significant impact on system-wide energy returns. 

Raising battery round-trip efficiency from 70% to 95% increases extended EROI from 4.4 to 

4.9, while improving electrolyser–fuel cell efficiency from 15% to 40% yields only marginal 

gains due to hydrogen’s relatively small energy throughput. These findings underscore the 

necessity of prioritising battery performance and sizing in systems where daily balancing 

dominates over seasonal shifting. 

In addition to parametric evaluations of the novel EROI community, the thesis introduces a 

generalised framework for exploring how system performance evolves under capacity 

variation, using polynomial-regression-based surrogate models to generate smooth heatmaps 

across scaled configurations. These heatmaps, constructed for Net Present Cost (NPC), 

EROI, unmet load, and excess energy, offer community planners an intuitive, visually rich 

decision-support tool. The analysis identifies clear "sweet spot" ranges—typically at 1.0–1.1 

times the baseline capacities—where both cost and lifecycle energy efficiency are jointly 

optimised. Specifically, these zones yield EROI values near 5.0 while holding NPC below 

€610,000 and excess generation under control. More extreme scaling, particularly oversizing 

PV beyond 1.8×, increases curtailment and reduces EROI despite marginal cost gains, while 
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downsizing elevates energy return but at the cost of affordability and unmet demand. This 

dual-parameter sensitivity, visually conveyed via NPC–EROI contour plots, provides a 

practical, evidence-driven pathway for right-sizing infrastructure, and highlights the intricate 

trade-offs between economic feasibility and environmental sustainability. 

Across these dimensions, long-horizon planning, short-horizon re-optimisation, and life-cycle 

sustainability, the thesis proposes a new design logic for hybrid energy systems. It shows that 

performance should not be judged purely on static costs or capacity metrics, but on dynamic 

control responsiveness and presented later with energy circularity edge. This is made possible 

by the modular nesting of GA for layout optimisation, MILP for high-resolution dispatch 

feasibility, and MPC responsiveness approach. Each layer feeds into the next, forming a 

continuous feedback loop that mirrors how real systems must operate: planning ahead, 

reacting quickly, and balancing costs with resilience. The short-horizon MPC particularly 

addresses a central challenge in real-world deployments, how to handle weather variability, 

shifting demand, and changing market tariffs without incurring excess cost or grid dependency. 

The flexibility offered by even modest demand shifting (e.g., 8%) yields material financial 

benefits, with annual grid-related charges significantly reduced compared to load-following 

baselines. This responsiveness, embedded in the MPC logic, bridges the planning-execution 

gap and enables systems that are economically efficient and operationally viable. 

In addition to economic metrics, the extended EROI and ESOI indices offer meaningful energy 

benchmarks for sustainable system design. Unlike pure cost metrics, these indicators reflect 

embedded environmental impact of system components. The life-cycle analysis reveals clear 

patterns: hydrogen remains a niche but necessary long-duration storage option, with limited 

EROI impact unless its share of energy throughput is significantly increased. Batteries, in 

contrast, serve as the dominant modulator of energy returns, and their embodied energy and 

efficiency should be carefully managed to maintain overall system sustainability. These 

insights help shift the conversation from purely financial design toward multi-dimensional 

optimisation, where economic, operational, and environmental performance are considered in 

the planning. 

From a practical standpoint, the thesis delivers clear implications for community energy 

planners, especially in islanded or weak-grid settings. The MPC-based framework offers a 

model that can be adapted to simulate real community conditions, including time-varying 

loads, tariff structures, and weather patterns. The optimisation of contracted grid power, 

typically a static assumption in most studies, is shown to be a powerful lever for cost savings. 

By tuning the contracted limit in tandem with inverter and storage sizes, the framework avoids 

over-design while still ensuring adequate supply security and peak demand management. This 
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dimension of the optimisation aligns with regulatory trends in many regions where demand 

charges or power-based tariffs are becoming more prevalent. The insights gained from this 

thesis can directly inform tariff policy, incentive design, and capacity market participation 

strategies for distributed energy providers. 

Despite the comprehensive design proposed in the work, several limitations are 

acknowledged. The assumption of perfect short-horizon forecasts in the MPC layer does not 

reflect the stochastic nature of real-time solar and load data. Future iterations should 

incorporate probabilistic forecasts or robust optimisation techniques to quantify and mitigate 

uncertainty. Equipment replacements are considered depending on hourly operational limits, 

but degradation and system failure modes are also not modelled; incorporating battery ageing, 

and inverter reliability would provide a fuller picture of lifecycle performance. Additionally, 

thermal energy demand and sector coupling are not represented in this study, which limits its 

immediate application to systems with significant heating or cooling loads. Integrating co-

generation, heat pumps, or demand-side thermal storage could broaden the model’s scope. 

Social and behavioural factors are also outside the current modelling framework. Future work 

could include surveys or behavioural models to better understand user responses to flexible 

load incentives or energy storage deployment. While the model outputs optimised schedules, 

it remains silent on whether households or facility operators would accept such schedules in 

practice, especially if they affect comfort, convenience, or economic risk. Addressing this 

would add important realism to the model’s predictions. 

8 Future Work and Research Directions Work 
The methodological and modelling novelty presented in this thesis offer a strong foundation 

for future research and application. Several extensions are envisioned to enhance the 

technical robustness, real-world applicability, and policy relevance of the proposed GA–MILP–

MPC framework. 

Technical and Control Enhancements 

 Forecasting and Uncertainty Integration: Incorporating demand and generation 

forecasting models that explicitly simulate forecast error, particularly as a function of 

horizon length, can strengthen the robustness of the dispatch strategy into sizing and 

planning context.  

 Linearised Degradation Models: Current models assume fixed component lifespans. 

Including degradation-dependent performance loss (e.g., battery fade, fuel cell 

efficiency drops) would improve sizing realism and replacement strategies with 

balance inclusion into the objective function. 
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Environmental and Policy Coupling 

 Translating EROI to Environmental Indicators: Mapping embodied energy (from the 

EROI formulation) into CO₂-equivalent emissions enables dual evaluation of energy 

efficiency and carbon mitigation. 

Generalisation and Real-World Validation 

 Multi-Year, Multi-Region Simulation: Extending the analysis across multiple years and 

climatic zones would increase model generalisability and policy relevance. 

Community-Level Modelling and Sectoral Integration 

 Stakeholder Granularity and Revenue Modelling: Introducing individual agents 

(households, SMEs) with varied loads, ownership, and investment logic enables 

modelling of energy sharing, peer trading, and new revenue streams. 

 Hybrid Configuration and Sector Coupling: Expanding to wind, EVs, heating/cooling, 

or water sectors supports cross-sector planning and decarbonisation in rural or 

isolated communities. 

9  Appendices  

9.1  Literature Table Nomenclature   
𝑃 ୉ୗ(𝑡) : Renewable generation (e.g., PV, wind) at time 𝑡 

𝑃୆୘,ୢୡ(𝑡) : Battery discharge to DC bus at time 𝑡  

 𝑃୊େ(𝑡) : Fuel cell electrical output at time 𝑡  

 𝑃୒ୗ(𝑡) : Net supply to system at time 𝑡  

 𝑃୐ୈ(𝑡) : Load demand at time 𝑡  

 𝑃୆୘,ୡ୦(𝑡) : Battery charging power at time 𝑡  

 𝑃୆୐(𝑡) : Electrolyser electrical consumption at time 𝑡  

 𝑃େ୘(𝑡) : Curtailment losses at time 𝑡  

 𝑃୔୚(𝑡): PV array electrical production at time 𝑡  

 𝑃୛୘(𝑡) : Wind turbine electrical production at time 𝑡  

 𝑃௢, bat (𝑡), 𝑃௜, bat (𝑡) : Battery output/input power 

 𝑃௢,ு(𝑡), 𝑃௜,ு(𝑡) : Hydrogen system output/input power 

 𝑃inv (𝑡) : Inverter output power at time 𝑡  

 𝐸dis (𝑡) : Dispatchable energy losses at time 𝑡  

 𝑈௝,௜,௧ : Grid imports for energy carrier 𝑗 by device 𝑖 at time 𝑡  
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 𝑃௝,௜,௧ : On-site generation or storage discharge for carrier𝑗  

 𝑉௝,௜,௧ : Grid exports for energy carrier 𝑗  

 𝐹௝,௜,௧ : Fuel input to device 𝑖 for carrier 𝑗  

 𝐿௝,௧ : Demand for energy carrier 𝑗 at time 𝑡 

𝑦௜ : Binary: 1 if PV option 𝒊 is selected, 0 otherwise 

𝐴௜: Area of PV option 𝑖 

GHI௛: Global horizontal irradiance in year ℎ 

𝑃௜,௣
ிீ: Power from PV 𝑖 to Grid (DC before inversion) 

𝑃௜,௣
௉௅: Power from PV 𝑖 to Load (DC before inversion) 

𝑃௜௝,௣
௉஻ : Power from PV 𝒊 to Battery 𝒋 (DC) 

𝑃௣: Total load demand at time 𝒑 ( AC ) 

𝑃௣
ீ௅ : Power from Grid to Load at p (AC) 

ℎPV inv : Inverter efficiency (PV/DC → AC) 

𝑃௝,௣
஻௅: Power from Battery 𝑗 to Load at 𝑝 (AC) 

𝑃ୋ୘ : Total power from dispatchable gas turbines (including the spare) 

𝑃୔୚ : photovoltaic generation 

𝑃஻, dis , 𝑃஻, ch  : battery discharge and charge 

𝑃curt  : curtailed renewable energy 

𝑃load  : electrical demand 

𝐼: Number of PV sizing options 

𝐽 : Number of battery sizing options 

 𝑝bus (𝑡௜) : Net DC bus balance at time step 𝑡௜  

 𝑝஽௅(𝑡௜) : Load demand at time step 𝑡௜  

 𝛾ୡ୭௉୔୚, 𝛾ୡ୭ b, 𝛾ୡ୭୥ : Inverter efficiencies (PV, battery, grid) 

 𝜇௖ , 𝜇ௗ : Battery charge/discharge efficiencies 

 𝑝௖௕(𝑡௜), 𝑝ௗ௕(𝑡௜) : Battery charging/discharging power at t 

 𝑝௚௦(𝑡௜), 𝑝௚௜௡(𝑡௜) : Grid export/import power" 

 𝐸௜(𝑡) : Stored energy in storage unit 𝑖 (LiB or Hଶ tank) at t 

 𝑃gd (𝑡), 𝑃gd, exp (𝑡) : Grid import/export power  

 𝑃୮୴(𝑡), 𝑃୵୲(𝑡): PV and wind generation in Diabate et al. 

 𝑃bat 
char (𝑡), 𝑃bat 

disch (𝑡) : Battery charge/discharge powers 

 𝑃ୣ୪(𝑡) : Electrolyser power consumption 

 𝑃୤ୡ(𝑡) : Fuel cell power generation 

 𝑃୆ୗ,ୢୡ(𝑡), 𝑃୆ୗ,ୡ୦(𝑡) : Battery discharge/charge to/from DC bus  

 𝑃୔୚,୆ୗ(𝑡): PV export to battery subsystem 
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 𝑃ୋୖ,ୠ୳୷(𝑡), 𝑃ୋୖ, sell (𝑡) : Grid buy/sell powers (AC side) 

 𝑃EL,in (𝑡), 𝑃EL , out (𝑡) : Electrolyser input/output powers 

 𝑃ୌୗ,ୢୡ(𝑡), 𝑃ୌୗ,ୡ୦(𝑡): Hଶ storage discharge/charge power 

 𝑃LD,H (𝑡) : Hydrogen load demand 
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9.2 Algorithmic Setup and Implementation (Python)  

9.2.1 Genetic Algorithm (GA) Implementation (DEAP) 

A Genetic Algorithm (GA) is a metaheuristic search algorithm that mimics the process of 

natural selection, a fundamental concept of biological evolution. Genetic Algorithm, which are 

part of the Evolutionary Algorithms (EA), are population-based solution that evolve through 

generation toward an optimal global solution avoiding local minima. They are often favoured 

above single-based solution metaheuristic algorithms, such as simulated Annealing (SA). 

Population based-solution metaheuristics are used widely to solve real-life sophisticated 

problems from fields such as engineering and energy system optimisation [186].  

When the optimisation problem comprises many variables with complicated 

interdependencies, which makes conventional techniques like gradient-based approaches 

less effective, GA is particularly useful. In this work, distributed evolutionary algorithm in 

Python DEAP module is deployed to build the GA for hybrid energy system optimisation [187]. 

DEAP is an open-source, adaptable framework that helps to create evolutionary algorithms 

and lets us modify the GA implementation to fit the needs of the nested layered optimisation 

method. While the modular architecture of the library provides the flexibility needed for 

developing hybrid energy systems, DEAP helps effective management of large search areas 

and decision factors related with system size. 

The upcoming sections cover the theoretical part of GA and bridge the use of the DEAP library 

in formulating the GA components, including chromosome representation, fitness function, 

selection criteria, crossover, and mutation probabilities. These sections are designed to fit 

these parameters within the broader context of the nested optimisation framework proposed 

in this chapter, where the GA performs the global optimisation search for system capacity 

sizing, and MILP handles the local operation dispatch optimisation. Each fundamental feature 

of GA as used in this work will be discussed in the following subsections, showing how the 

DEAP library was used to provide a customised optimising environment. 

1- Chromosome Representation 

In GA, Potential solutions are expressed as chromosomes, basically vectors encoding choice 

variables. Every gene found in a chromosome function as a decision variable influencing the 

general performance of the system. In the framework of energy system optimisation, for 

instance, the chromosome encodes factors including the rated power of renewable energy 

components of hybrid systems as was formulated before:  

 Photovoltaic (PV) capacity (kW) 
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 Battery storage size (number of battery modules) 

 Inverter capacity (kW) 

 Grid-contracted power (kW) 

 Fuel cell size (kW) 

 Electrolyser size (kW) 

 Hydrogen tank size (kg) 

Candidate information is stored explicitly as a 7-gene real-valued vector 𝐶௥ =

ൣ𝑃௉௏ , 𝑁௕௧ , 𝑃௜௡௩, 𝑃௚௥ , 𝑃௙௖ , 𝑃௘௟ , 𝑃ு்൧ with admissible bounds. Tournament selection (𝑘 = 3) copies 

short, well-performing "building blocks" into the next generation; blend crossover preserves 

parental mid-points while exploring a ±50% envelope around them, which is well-suited to 

continuous capacities; Gaussian mutation ( 𝜇 = 0, 𝜎 = 1, indpb = 0.2) injects small, 

independent perturbations to prevent premature convergence. In combination, these 

operators retain useful substructures (e.g., PV-inverter-grid ratios that the MILP evaluates 

favorably) and diffuse them across the population, so dispatch-feasible, low-NPC patterns 

become more frequent generation by generation. 

In the DEAP framework, these decision variables are expressed as toolbox attributes 

registered in the toolkit. Figure 9-2 shows the code snippet used in DEAP syntax illustrating 

initialisation of these variables: 

# Decision Variables Registering 
toolbox = base.Toolbox() 
toolbox.register("attr_pv", random.uniform, PV_MIN, PV_MAX) 
. 
. 
. 
toolbox.register("individual", tools.initCycle, creator.Individual, 
                 (toolbox.attr_pv), n=1) 
 
  

Figure 9-2: DEAP initialisation of decision variables 

Figure 9-1: Chromosome layout for capacity sizing showing the decision variables: PV capacity, number of battery 
units, inverter rating, contracted grid limit, fuel cell power, electrolyser power, and hydrogen tank capacity. The 
bounds of each variable are indicated below the corresponding gene. 
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2- Population Size 

A GA begins with an initial population of randomly produced chromosomes, each is a possible 

solution. The size of this population may affect the search space exploration; a larger 

population result in a more varied collection of starting solutions. The population changes over 

many generations while the method aims to improve the fitness of the solutions. Practically, 

the initial population's decision variables are produced within established upper and lower 

boundaries, thereby guaranteeing that all solutions are physically practical in the framework 

of system restrictions, such as the maximum allowed PV capacity or storage sizes. In this 

study, the population size is set in DEAP as follows in Figure 9-3. 

# Create the initial population 
population = toolbox.population(n=POPULATION_SIZE) 
  

Figure 9-3: Population size setup in DEAP framework 

3- Fitness Function 

In a GA, the fitness function is essential as it assesses every chromosome and decides the 

optimum or "fit" nature of a solution. For energy system as it was reviewed in previous chapters 

before, there are different fitness functions that are indeed attracted the researcher community 

as well the industry. The main indices can be economical, environmental, reliability and social.  

This work aims to minimise the Net Present Cost (NPC) of the hybrid energy system by means 

of fitness function. This feature guarantees that, in spite of all technological restrictions, the 

optimisation process favours configurations that reduce total lifetime costs. In DEAP, this is 

implemented as follows in Figure 9-4. 

def evaluate(individual): 
    PV_size, Battery_size, Inverter_capacity, Grid_power, Fuel_cell, 
Electrolyser, Tank_size = individual 

. 

. 
    # Calculate NPC based on full fitness function 
 . 
 . 
    return (NPC,) 
 
  

Figure 9-4: DEAP setup for the NPC fitness function 
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4- Selection 

GAs run by choosing the best chromosomes for reproduction in next generations. Higher-

fitness solutions are ranked using selection techniques such as tournament selection, 

therefore preserving variation. This technique allows well-performing solutions to contribute 

more genetic material to the next generation, essentially simulating survival of the fittest. For 

the DEAP setup, the tournament method was implemented and the selected numbers of 

individuals are 3 as balanced choice as described by [188]. The code snippet in Figure 9-5 

shows the tournament method selected for DEAP configuration.  

# Select method and tournament size 
toolbox.register("select", tools.selTournament, tournsize=3) 
 
  

Figure 9-5: Tournament setup for the DEAP library 

5- Crossover 

The process by which two parent chromosomes are mixed to generate offspring is known as 

recombination or crossover. Through mixing traits from both parents, this process brings fresh 

solutions into the population. Blend crossover lets parents smoothly exchange genetic 

material, therefore enabling the GA to investigate other areas of the solution space. Blend 

Crossover (cxBlend) is well suitable in continuous-variable situations like the one in your 

optimisation framework, in which the decision variables such as PV size, inverter capacity are 

continuous rather than discrete. The final optimisation results are then rounded up to the 

nearest real-life capacity for realistic impact, allowing the algorithm to sieve smoothly the 

search space. The range that the offspring are from the parents are within 50%, this is 

achieved by setting up alpha to 0.5, defining how far the offspring can differ from the parents. 

This lets the algorithm to explore the search space in balance. 

Furthermore, guiding the frequency of crossover in the algorithm is crossover probability 

(CXPB). For example, if a balanced value of CXPB=0.6, 60% of the time two parents from the 

population would crossover to generate offspring; 40% of the time the offspring will be mere 

copies of the parents. This preserves diversity in the population and yet lets new solutions 

emerge, as shown in Figure 9-6.  
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# Crossover method: Blend crossover for continuous variables 
toolbox.register("mate", tools.cxBlend, alpha=0.5) 
 
# Crossover Probability: 60% chance that crossover is applied to parents 
CXPB = 0.6 
  

Figure 9-6: Crossover method selection and setup range of offsprings 

6- Mutation 

Mutation guarantees genetic variation by introducing random changes to just a small portion 

of an individual's genes, therefore preventing the algorithm from settling too rapidly on a 

suboptimal answer. The mutation in DEAP is carried out utilising the Gaussian distribution 

depicted in Figure 9-7.  

# Mutation method: Gaussian mutation for continuous variables 
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2) 
 
# Mutation Probability: 10% chance that mutation is applied 
MUTPB = 0.1 
 
  

Figure 9-7: Mutation method selection and setup on DEAP 

mu=0 in the figure guarantees the mutation generates only minor changes by cantering the 

mutation around the present gene value. Using sigma=1 preserves variability by controlling 

the distribution of these changes. Indpb=0.2 guarantees that, in every person, 20% of the 

genes are modified, thereby balancing exploration of the search space without excess 

randomisation. This configuration promotes a broad search, therefore preventing early 

convergence and preserving significant exploration. 

Furthermore, regulating the possibility that every individual will undergo mutation after 

crossover is mutation probability (MUTPB). Ten percent of the population are exposed to 

mutation with MUTPB=0.1, enabling fresh variants to arise in the population and hence 

avoiding the algorithm from being caught in local optima. 

In the next, section, the MILP implementation using pulp python library and the final integration 

between the two algorithms will be discussed and the operational reliability indicators that are 

passed from the Unit commitment are utilised by the GA penalty function to guide the 

optimiser.  
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9.2.2 MILP Implementation (PULP) 

In this section, PuLP library and the Gurobi solver implementation in python environment is 

explained. This arrangement aims to minimise grid operating expenses over an annual 

horizon of 8760 hours by effectively solving the unit commitment problem. Key libraries listed 

below help to build up the Python environment: 

 PULP: Designed for both mixed-integer linear programming (MILP) and linear 

programming (LP) 

 Gurobi: Designed to tackle the formulated MILP problem, gurobi is a high-performance 

solver that is used for both, industrial and academic works.  

The execution and implementation consist of the following key steps:  

1. Model Definition: Pulp's LpProblem class is used to construct the MILP problem, with 

a minimisation aim described here. Minimising the overall operating cost, which 

includes grid energy buying expenses, income from grid sales, and penalties that 

range for both unmet and surplus energy, is the target function as shown in Figure 9-8.  

# Initialise the optimisation problem 
prob = LpProblem("Minimise_Operating_Costs", LpMinimize) 
     
 

 

Figure 9-8: Pulp initialisation of the problem 

2. Decision Variables: The MILP formulated problem consist of two distinguished 

decision variables of continuous and binary variables. Where the binary decision 

variables act as a switch which as if real life energy management system to decide 

which asset to respond to the load or which asset sells/charge for this problem the core 

is whether its grid, battery storage or hydrogen storage. On the other hand, the 

continuous variables are deemed to decide how much of energy should be exchanged 

at each time step. Table 9-1 shows the type of decision variables formulated and the 

way it was implemented in python environment using PULP library syntax.  
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Table 9-1: Type of variables and with pulp syntax example 

Variable Type Variable Name PuLP Syntax Example 
Binary Variables battery_decision(t) battery_decision = {t: 

LpVariable(f"battery_decision_{t}", 
cat='Binary') for t in T}  

grid_interaction(t) 

Hydrogen_decision(t) 

Continuous 
Variables 

battery_charge_power(t) 

battery_charge_power = {t: 
LpVariable(f"battery_charge_power_{t}", 
0, P_b_minus_max) for t in T}  

battery_discharge_power(t) 

SoC(t) 

grid_buy(t) 

grid_sell(t) 

unmet_energy(t) 

excess_energy(t) 

PV_self_consumed(t) 

PV_power_remain(t) 

Electrolyser_power(t) 

Fuelcell_power(t) 

SoC_H(t) 

 
 

3. Objective function: The objective function minimises the operational grid costs over 

the entire year horizon by summing up the hourly purchasing from grid and subtracting 

the hourly revenues from energy exports. To encourage the system to decrease 

wastage and excess for optimal operational decisions, penalties are applied. Figure 

below shows the way how the objective function was initialised in PULP syntax in 

python environment as shown in Figure 9-9.  

# Initialise the problem objective 
prob += lpSum([(grid_buy[t] * pi_grid_minus[t] - grid_sell[t] * 
pi_grid_plus[t] + unmet_energy[t] * penalty_unmet + excess_energy[t] * 
penalty_excess) for t in T])  
 
 

 

Figure 9-9: Objective problem method of implementation 

 

4. Constraints: A set of constraints guarantees that the system meets energy demand 

at every time step and runs within its physical limitations. The PULP library in the 

Python environment implements these constraints by appending "+=" to the problem 

formulation. The full constraints list was discussed before, but here in Figure 9-10 is 

the implementation example of how this was passed through Python environment as 

a method.  
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# grid constraint example:  
prob += grid_buy[t] <= P_grid_max * grid_interaction[t]   
prob += grid_sell[t] <= P_grid_max * (1 - grid_interaction[t])  
 

 

Figure 9-10: Grid Constraint method of application 

5. Solver Configuration: One of the reasons why PULP was selected in this study, 

because of its adaptability in solving mixed-integer linear programming (MILP) and 

linear programming (LP). PuLP's main benefit is that it provides an interface for a great 

range of solvers such commercial (Gurobi and CPLEX) and open source (CBC default 

for PULP) alike. This lets academics move between many solvers without changing 

the underlying optimisation approach. In the nested optimisation approach, this 

adaptability is very essential as it allows the comparison of many solver performance 

criteria (e.g., speed, optimality gap, and feasibility) without vendor lock-in. 

9.2.3 MILP Decision Variables   

Variable 

Type 

Variable Name Description PuLP Syntax 

Binary 

Variables 

      

 
battery_decision(t) Controls whether the battery is charging 

(0) or discharging (1) at time ttt. 

battery_decision = {t: LpVariable(f"battery_deci-

sion_{t}", cat='Binary') for t in T} 
 

grid_interaction(t) Controls whether energy is being bought 

(1) or sold (0) from the grid at time ttt. 

grid_interaction = {t: LpVariable(f"grid_interaction_{t}", 

cat='Binary') for t in T} 
 

Hydrogen_decision(t) Controls whether the electrolyzer is 

charging hydrogen (0) or the fuel cell is 

discharging hydrogen (1). 

Hydrogen_decision = {t: LpVariable(f"Hydrogen_deci-

sion_{t}", cat='Binary') for t in T} 

Continu-

ous Varia-

bles 

      

 
bat-

tery_charge_power(t) 

Power charged into the battery at time ttt 

(in kW). 

battery_charge_power = {t: LpVariable(f"bat-

tery_charge_power_{t}", 0, P_b_minus_max) for t in 

T} 
 

battery_dis-

charge_power(t) 

Power discharged from the battery at time 

ttt (in kW). 

battery_discharge_power = {t: LpVariable(f"bat-

tery_discharge_power_{t}", 0, P_b_plus_max) for t in 

T} 
 

SoC(t) State of charge of the battery at time ttt 

(as a percentage). 

SoC = {t: LpVariable(f"SoC_{t}", SoC_min, SoC_max) 

for t in T} 
 

grid_buy(t) Power bought from the grid at time ttt (in 

kW). 

grid_buy = {t: LpVariable(f"grid_buy_{t}", 0, 

P_grid_max) for t in T} 
 

grid_sell(t) Power sold to the grid at time ttt (in kW). grid_sell = {t: LpVariable(f"grid_sell_{t}", 0, 

P_grid_max) for t in T} 
 

unmet_energy(t) Unmet energy demand at time ttt (in kW). unmet_energy = {t: LpVariable(f"unmet_energy_{t}", 

0, None) for t in T} 
 

excess_energy(t) Excess energy at time ttt (in kW). excess_energy = {t: LpVariable(f"excess_energy_{t}", 

0, None) for t in T} 
 

PV_self_consumed(t) PV power self-consumed at time ttt (in 

kW). 

PV_self_consumed = {t: LpVariable(f"PV_self_con-

sumed_{t}", 0, PV_power[t], cat='Continuous') for t in 

T} 
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PV_power_remain(t) Remaining PV power after self-consump-

tion at time ttt (in kW). 

PV_power_remain = {t: LpVariable(f"PV_power_re-

main_{t}", 0, None, cat='Continuous') for t in T} 
 

Electrolyser_power(t) Power consumed by the electrolyzer at 

time ttt (in kW). 

Electrolyser_power = {t: LpVariable(f"Electro-

lyser_power_{t}", 0, P_el_minus_max) for t in T} 
 

Fuelcell_power(t) Power produced by the fuel cell at time ttt 

(in kW). 

Fuelcell_power = {t: LpVariable(f"Fuelcell_power_{t}", 

0, P_fc_plus_max) for t in T} 
 

SoC_H(t) State of charge of the hydrogen tank at 

time ttt (as a percentage). 

SoC_H = {t: LpVariable(f"SoC_H_{t}", 

SoC_hydorgen_min, SoC_hydorgen_max) for t in T} 

 

9.3 Rule-Based Load Following  

The load-following energy management technique processes from 1 to 3 shown in Figure 9-11, 

starts with initialising necessary system inputs that provide the basis for further computations. 

These inputs include hourly electricity demand, accessible renewable resources, and 

thorough technical and financial specifications for every system component. This starting 

point, which corresponds to Process 1, helps the model to dynamically react to changes in 

supply and demand, therefore guaranteeing a balanced approach to energy allocation that 

reduces grid reliance and manages renewable energy surpluses and shortages properly.  

In Process 2, the model compiles three key datasets: technical and financial data for every 

system component, geographic data influencing the availability of renewable resources, and 

hourly electricity consumption. The hourly demand data shows the community's energy needs 

hourly throughout the year, therefore guiding the baseline for energy balancing at every time 

interval. Geographical data including sun irradiation and ambient temperature guides the 

generating potential for renewable energy, therefore enabling the model to modify its energy 

distribution depending on historic resource availability. Technical and financial criteria for parts 

including photovoltaic panels, wind turbines, batteries, fuel cells, electrolysers, and grid tariffs 

give the model necessary performance, capacity, and cost constraints, so guiding wise use of 

the resources at hand. 

Figure 9-11: Focused snippet Between Process 1-3 



212 
 

The model computes the net power (NP) at every time step by deducting the electrical load 

from the renewable energy production (NP = REN - Load), as Process 3 explains. This net 

power computation is crucial as it guides the next actions of the model: either allocating energy 

to storage, transforming it to hydrogen, or depending on grid imports to satisfy the demand. A 

positive NP denotes surplus renewable energy; a negative NP indicates a power scarcity. 

Therefore, the sign of NP defines the direction the model uses for energy allocation. 

Process 4's decision point is when the model assesses the sign of NP to ascertain the suitable 

allocation route as shown in Figure 9-12 . The model follows the route described in Process 

4.1 when NP is positive, meaning an excess of renewable energy. Examining the battery's 

state of charge (SOC) comes first along this road (Process 4.1.1). Should the battery be not 

completely charged (SOC < 100%), the model uses the surplus energy to charge the battery 

(as described in Process 4.1.2), therefore conserving the excess renewable energy for usage 

when demand could surpass generation. Following every charging cycle, the model updates 

Figure 9-12: Focused snippet Process 4 and its two main decisions 4.1 and 4.2 

Figure 9-13: Focused on Decision 
Branches from 4.1 to 4.1.4 
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the battery SOC (Process 4.1.3), therefore preserving a precise record of accessible storage 

capacity as shown in Figure 9-13. 

The model computes the extra energy after battery charging (Process 4.1.4) should the battery 

reach its maximum SOC and still have surplus energy. Should more renewable energy still be 

available, the system assesses conditions for running the electrolyser, per Process 4.1.5 and 

4.1.6. The model specifically confirms that the operating limitations of the inverter are not 

exceeded and examines the SOC of the hydrogen tank to guarantee enough storage capacity. 

Should these requirements be satisfied, the model turns on the electrolyser (Process 4.1.7), 

transforming the residual surplus energy into hydrogen, which finds residence in the hydrogen 

tank. Level of hydrogen (LoH) of the hydrogen tank is changed to correspond with the new 

hydrogen storage (Process 4.1.8) as shown in Figure 9-15. 
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Should extra energy remain after electrolyser operation, the model investigates as 

demonstrated in Figure 9-14, in Process 4.1.9 and 4.1.10, the viability of exporting energy to 

the grid. Examining if the grid connection and inverter stay within stipulated restrictions comes 

in this phase. Should grid export be possible, the model saves this surplus for further study 

(Process 4.1.12) and exports the extra energy within these constraints (Process 4.1.11). The 

information on surplus energy sent to the grid shows the capacity of the system to optimise 

the usage of renewable energy as well as hints on possible income from energy sales. 

Figure 9-15: Focused on Decision Branch es from 4.1.4 to 4.1.8 

Figure 9-14: Focused on Decision Branch es from 4.1.8 to 4.1.12 
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Should NP be negative, indicating a power shortfall, the model uses the alternate route 

described in Process 4.2. Examining the battery SOC first on this road (Process 4.2.1) will 

help one to determine if sufficient stored energy exists to meet the demand. Should the SOC 

above the minimum five percent barrier, the battery releases energy to balance the shortfall 

(Process 4.2.2). Careful regulation of this discharge process helps to prevent draining the 

battery below the minimal SOC, therefore extending the lifetime of the battery and 

guaranteeing a reserve of energy for future shortages. Following each discharge cycle 

(Process 4.2.3), the model changes the battery SOC while accurately documenting the 

accessible stored energy. 

As described in Process 4.2.5 as shown in Figure 9-17, the model evaluates the likelihood of 

employing the fuel cell to provide extra power should a power shortfall persist beyond battery 

exhaustion. As Process 4.2.6 explains, the fuel cell activation depends on the operating 

limitations of the inverter and the SOC of the hydrogen tank. While the hydrogen tank's LoH 

is updated to reflect the lowered hydrogen storage, the fuel cell uses stored hydrogen back 

into electricity to fulfil the residual demand when both requirements are met (Process 4.2.7). 

This conversion technique maximizes hydrogen use while honouring the capacity limitations 

of the fuel cell. 

 

 

Figure 9-16: Focused on Decision Branches from 4.2 to 4.2.4 
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Should a power shortfall still exist after battery and fuel cell use, the model takes grid 

importation into account, as Process 4.2.9 and 4.2.10 indicate. The contracted grid capacity 

restricts grid imports so that they guarantee system compliance with allowed import limitations. 

Should grid energy be within these limitations, the model imports the energy to meet the unmet 

demand (Process 4.2.11) and notes this residual shortfall for further examination. Examining 

the system's dependency on grid power during shortages relies on this unmet demand data, 

which also highlights areas where increased renewable or storage capacity may reduce this 

need. 

Figure 9-17: Focused on Decision Branches from 4.2.4 to 4.2.8 

Figure 9-18: Focused on Decision Branch es from 4.2.8 to 4.2.12 
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Figure 9-19 shows the final process check (Process 5.).  After every hourly time step, the 

model advances to the next hour (procedure 5.1), hence repeating the energy distribution 

process across the complete simulation length. Over every hour of the year, the model 

compiles data on grid interactions, battery and hydrogen SOC changes, and excess and 

unmet energy iteratively. Process 5.2 helps the model to gather the entire unmet and excess 

energy at the end of the simulation, therefore providing a complete picture of the performance 

and efficiency of the system all year long. This overview covers significant numbers like the 

Net Present Cost (NPC), general unmet demand, and energy delivered to the grid. These 

calculations provide perceptive insight on the balance between demand and renewable 

generation of load-following energy management system. 

. 

9.4 The Foundational Theoretical Framework 

In the simplest scenario described by [55], [113], the derived [𝐸𝑆𝑂𝐼]௚௥௜ௗ targets energy 

generation and storage system comparison at grid scale. It assumes a single generation 

source with lifetime generation 𝐸௚௘௡ and a fraction 𝜑 of that generation either curtailed or 

routed through storage. The embodied energy of the generation facility is: 

𝐸௘௠௕,௚௘௡ = 𝐸௚௘௡ ⋅ 𝜀௚௘௡ 
9-1) 

where 𝜀௚௘௡ = 1/𝐸𝑅𝑂𝐼௚௘௡ is the energy intensity of generation (MJ of manufacturing per MJ 

generated). If a fraction 𝜑 of 𝐸௚௘௡ is diverted into storage, the embodied energy of the storage 

system is related to the storage ESOI௘ by: 

𝐸௘௠௕,௦௧ = 𝐸௚௘௡ ⋅ 𝜑 ⋅ 𝜀௦௧ 9-2) 

Figure 9-19: Focused on Decision Branch es from 5. to 5.2.1 and 5. To 5.1. 
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where 𝜀௦௧ = 1/ESOI௘ is the energy intensity of the storage (MJ of manufacturing per MJ 

delivered from storage). The total embodied energy of the generation-plus-storage 

configuration is given as follows:   

𝐸௘௠௕,௧௢௧௔௟ = 𝐸௘௠௕,௚௘௡ + 𝐸௘௠௕,௦௧ = 𝐸௚௘௡൫𝜀௚௘௡ + 𝜑𝜀௦௧൯ 
9-3) 

The total dispatched energy from the system 𝐸௘௠௕,௧௢௧௔௟ consists of energy directly delivered 

from generation 𝐸ௗ௜௦௣,௚௘௡ and energy delivered from storage 𝐸ௗ௜௦௣,௦௧, and the 𝜂௦௧ as the 

round-trip efficiency of the storage system. 

𝐸ௗ௜௦௣,௚௘௡ = (1 − 𝜑)𝐸௚௘௡ 

𝐸ௗ௜௦௣,௦௧ = 𝜂௦௧  𝜑 𝐸௚௘௡ 
9-4) 

Thus: 

𝐸disp,total = 𝐸௚௘௡[(1 − 𝜑) + 𝜂௦௧𝜑] 
9-5) 

Now, applying the definition of EROI to the combined system (grid scale): 

[EROI]grid =
𝐸disp,total 

𝐸emb,total 
 

9-6) 

From equations 9-3) and 9-5),  [EROI]௚௥௜ௗ :  

[EROI]௚௥௜ௗ =
𝐸௚௘௡[(1 − 𝜑) + 𝜂௦௧𝜑]

𝐸௚௘௡൫𝜀௚௘௡ + 𝜑𝜀௦௧൯
 

9-7) 

Cancelling 𝐸gen  : 

[EROI]௚௥௜ௗ =
(1 − 𝜑) + 𝜑𝜂௦௧

𝜀௚௘௡ + 𝜑𝜀௦௧
 

9-8) 

Since 𝜀௚௘௡ = 1/𝐸𝑅𝑂𝐼௚௘௡ and 𝜀௦௧ = 1/ESOI௘, we rewrite: 

[𝐸𝑅𝑂𝐼]grid =
(1 − 𝜑) + 𝜑𝜂௦௧

1
𝐸𝑅𝑂𝐼௚௘௡ 

+
𝜑

𝐸𝑆𝑂𝐼௘

 
9-9) 

This final equation shows how the overall EROI of the grid system changes when a fraction 𝜑 

of the generation is routed through a storage device characterised by a certain ESOI and 

efficiency. 
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