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Abstract

Panel data unit root tests which can be applied to data that do not have many time series obser-
vations are based on very restrictive error and deterministic component specification assumptions.
In this paper we develop a new, doubly modified estimator, based on which we propose a panel unit
root test that allows for multiple structural breaks, linear and non-linear trends, heteroscedasticity,
serial correlation and error cross section heterogeneity, when the number of time series observations
is finite. The test has the additional perk that it is invariant to the initial condition.
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1 Introduction

Economic theory frequently predicts the existence of equilibria in which the involved processes converge,

in the long run, to a constant value or maintain a constant growth rate. The existence of these predicted

equilibria, and equivalently whether their originating theories hold, hinges on the presence of unit roots

which can be tested by panel data unit root tests. A review of applications of panel unit root tests can

be found in Choi (2015).

In this paper, we propose a general panel data unit root test for models with both general trend

functions and general error processes, when the number of time series observations (T ) is finite. The new

test allows for the existence of multiple structural breaks, nonlinear trends, unspecified forms of short

term serial correlation, heteroscedasticity and error cross section heterogeneity. We develop a novel,

doubly modified estimator which is consistent under the null hypothesis of nonstationarity and as the

number of cross section units N goes to infinity. Our new estimator is a corrected version of the within

groups (WG) estimator which is known to be inconsistent in a finite T framework, see e.g. Nickel (1981).

We first show that, when the series are nonstationary, the inconsistency of the WG estimator depends

on the error variance-covariance matrix. This inconsistency is estimated by a nonparametric estimator

and this is the first correction. However, the nonparametric estimator is inconsistent in the presence of

complex deterministic components and must be modified as well and hence, the final corrected estimator

used in the test statistic is referred to as the ”doubly modified estimator”, denoted with the acronym

DME. The first correction is similar in spirit to the fully modified least squares estimator of Phillips

and Hansen (1990), for single time series analysis, employed to correct for endogeneity bias and serial

correlation. The second correction, which is that of the nonparametric estimator, is based on the idea of

the variance-covariance matrix estimation method suggested by Abowd and Card (1989) and Arellano

(1990).

The new test has a number of theoretical virtues which result in more robust inference. First, the

problem of modelling the initial conditions, which is crucial when T is small (see e.g. Bun and Sarafidis

(2015)), is avoided because the DME is invariant to the initial conditions. Second, two hypotheses are

considered: a) breaks appear under the null and the alternative, as in Perron (1989) and b) breaks

appear only under the alternative as in Zivot and Andrews (1992). In this latter case, when the dates of

the breaks are unknown, the pdf of the limiting distribution of an infimum-type test statistic is derived

analytically. This is the first paper which provides an analytic pdf of the distribution of an infimum of

statistics, since Davies (1977). Third, by using information from the cross section dimension we avoid

the problem of estimating the long run variance, which is a difficult econometric task even in the panel

data setting (Moon and Perron (2004)).

Most panel unit root tests aim at macroeconomic data (i.e. country level data) where both N

and T are large (see, e.g. Pesaran et al. (2013) and Bai and Carrion-i-Silvestre (2009)). In principle

however, testing whether series are stationary or not is a way to characterize dynamic behaviour and

such behaviour also appears in disaggregated data where there is a large number of units observed

over only a short period of time, i.e. microeconomic panel data. The first panel data unit root test

was applied on disaggregated wage data with a small time dimension (see Breitung and Meyer (1994)).

Other finite T panel unit root tests have been proposed by Harris and Tzavalis (1999), Kruiniger (2008),

De Blander and Dhaene (2012), Han and Phillips (2012), Karavias and Tzavalis (2014a), Choi (2014),

Karavias and Tzavalis (2016) and Robertson et al. (2017) inter alia. Testing the unit root hypothesis in

this type of data has attracted considerable attention, but existing tests rely on restrictive assumptions

on the model specification. This happens because, since T is considered finite, cross section information

must be exploited to bypass time series econometric problems such as nonstationarity, structural change
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and serial correlation in the errors, and it is not always clear how this can be done. Papers in the

literature that consider fixed-T panel unit root testing with structural breaks are those of Hadri et al.

(2012), Karavias and Tzavalis (2014b) and Karavias and Tzavalis (2017). The first two papers allow for

a single structural break in the intercept and the linear trend of the model while Karavias and Tzavalis

(2017) derive the local power functions of tests with one known structural break. In this paper we no

longer specify the form of the trend function, i.e. intercepts and/or trends or what is the number and

date of structural breaks, rather we provide a general theory of testing and sufficient conditions for the

existence of the DME. Monte Carlo simulations demonstrate the excellent finite sample properties of

the new test.

The paper is organized as follows. Section 2 sets up the general model and the hypotheses of

interest. Section 3 introduces the DME and the test statistic. Section 4 discusses the assumptions

used and Section 5 provides the asymptotic theory. Section 7 provides simulation results of Monte

Carlo experiments and Section 8 concludes the paper. The proofs of the theorems are relegated to the

Appendix. Matlab codes that compute the estimator and the test are available on the first author’s web

page.

A few words on notation. The elements of a matrix A are denoted by [A]i,j and [A]j denotes the

j-th column. Define [·]+p : RT×T −→ RT×T to be the family of linear transformations which map the

main, the first p upper and first p lower diagonals of a T × T matrix to themselves while the rest of

the diagonals are set to zero, where p ∈ {0, ..., T − 1}. Additionally, [·]−p : RT×T −→ RT×T sets the

main, the first p upper and first p lower diagonals equal to zero and the rest are set equal to themselves.

Examples of [·]+p and [·]−p can be found in the Appendix. Let vec denote the vectorization operator and

vec−1T,T an inverse vectorization operator such that vec−1T,T (·) : RT
2 −→ RT×T . Let vech denote the half

vectorization operator. We use the Euclidean norm denoted as ‖u‖ =
√
u′u, where u is a column vector.

For square matrices A,B, we write A > B to indicate that A−B is positive definite. For matrices A and

B with the same number of rows, let (A|B) denote the augmented matrix (A and B are horizontally

concatenated). The column space of a matrix A is symbolized as R{A}. The notations p limN and
p−→ denote convergence in probability while

d−→ denotes convergence in distribution. Finally, b·c is the

greatest integer function.
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2 The model

Consider the following model:

yi = X(λ)π
(λ)
i + ζi, for i = 1, ..., N, (1)

ζi = ϕζi,−1 + ui,

where yi = (yi1, ..., yiT )′ is a vector of observations, ui = (ui1, ..., uiT )′, ζi = (ζi1, ..., ζiT )′ and ζi,−1 =

(ζi0, ..., ζiT−1)′ are T × 1 vectors of errors, X(λ) is a T × k matrix of deterministic components and π
(λ)
i

a k × 1 vector of random individual effects. The term X(λ)π
(λ)
i is referred to as the trend function.

The scalar parameter ϕ is the autoregressive coefficient and ϕ ∈ (−1, 1]. If m common breaks occur,

then these breaks define a partition (T1, ..., Tm) denoted by λ, where the Tj , for j ∈ {1, ...,m}, are the

dates of the breaks. We also define T0 = 1 and Tm+1 = T and denote with I the set of all admissible

partitions.

The above specification nests various models which are frequently used, i.e. if there are no structural

breaks X(λ) = e and π
(λ)
i = πi, where e is a T × 1 vector of ones and πi is a scalar individual effect.

Another popular specification is a model with individual intercepts and individual trends in which

X(λ) = [e, τ ] and π
(λ)
i = (π1i, π2i)

′, where τ t = t for t = 1, ..., T and π1i, π2i are scalar individual

effects. In models without breaks the columns of X(λ) will consist of one intercept vector and ρ trend

vectors with 1 + ρ = k, where ρ is the degree of the trend polynomial. If there are m breaks, X(λ) will

contain (m+ 1) intercept vectors and (m+ 1)ρ trend vectors as columns, with (m+ 1) + (m+ 1)ρ = k.

For example, in the model with one structural break in the intercept, ρ = 0 and X(λ) ≡
[
e(1), e(2)

]
,

where e
(1)
T and e

(2)
T are T × 1 vectors whose elements are defined as follows: e

(1)
t = 1 if t ≤ T1 and

0 otherwise, e
(2)
t = 1 if t > T1 and 0 otherwise. Also, π

(λ)
i ≡ (π

(1)
1i , π

(2)
1i )′ where scalar π

(1)
1i is the

individual effect before the break and π
(2)
1i is the individual effect after the break. A single break in a

model with individual linear trends (ρ = 1) can be cast as X(λ) =
[
e(1), e(2), τ (1), τ (2)

]
where τ (1) and

τ (2) are T × 1 vectors: τ
(1)
t = t if t ≤ T1 and 0 otherwise, and τ

(2)
t = t if t > T1 and 0 otherwise. Here

π
(λ)
i ≡ (π

(1)
1i , π

(2)
1i , π

(1)
2i , π

(2)
2i )′ where scalars π

(1)
1i and π

(2)
1i are the individual effects before and after the

break, while π
(1)
2i and π

(2)
2i are the linear trend coefficients before and after the break. Similarly (1) can

nest cases of pure or partial structural change, multiple structural breaks and higher order polynomial

trends. We consider X(λ) known up to the location of the breaks.

The common break assumption across all units of the panel i can be attributed to a monetary regime

shift, which is common across all agents (or firms) in the economy, or to a structural economic shock

which is independent of error terms uit, like a credit crunch or an exchange rate realignment. The

common break may also be seen as the mean of possibly random breaks but we do not consider the

common break date to be random, see e.g. Bai (2010). The magnitude of the break, i.e. π
(2)
1i − π

(1)
1i ,

can be different across units i, thus allowing for each individual unit to respond idiosyncratically to the

effects of a structural break.

We wish to test the null hypothesis that yit is a unit root process against the alternative that it

is (trend) stationary. In the presence of structural change there are two approaches in doing so. The

first is by allowing for structural breaks under both the null hypothesis of unit root and the alternative

of stationarity as in Perron (1989); we shall denote this hypothesis as H1. Second, by testing the null

hypothesis of unit root and no breaks against the alternative of stationarity with breaks, as in Zivot

4



and Andrews (1992); we shall denote this hypothesis as H2. These hypotheses can be written as:

H1,0 : ϕ = 1,

H1,1 : ϕ < 1,

and

H2,0 : ϕ = 1 and π
(1)
ji = π

(2)
ji = ... = π

(m+1)
ji , for all j and i.

H2,1 : ϕ < 1.

In applied work both hypotheses are frequently tested for various deterministic specifications. A

popular example is when X(λ)π
(λ)
i =

[
e(1), e(2), τ (1), τ (2)

]
(π

(1)
1i , π

(2)
1i , π

(1)
2i , π

(2)
2i )′ for which the null hy-

pothesis H1,0 postulates that yit is a unit root process with drift and a one-time jump in the intercept

at the time of the break while, under H1,1, yit is stationary with a change taking place in both the

intercept and the trend. This is the ”crash and changing growth” model of Perron (1989) and is used

to capture changes in both the levels and the slopes of the series. Under assumption H2,0 the null

hypothesis would be that yit is a random walk process with drift, since π
(1)
1i = π

(2)
1i and π

(1)
2i = π

(2)
2i ,

while under the alternative H2,1, it would be stationary with a change in both the level and the slope,

as in H1,1.

The two hypotheses require different testing procedures when the breaks are at unknown dates. In

H1 the breaks appear under both the null and the alternative hypotheses and they can be estimated

in a first step as in Bai (2010), using the first differenced series. This hypothesis is independent of

structural breaks; change occurred and we are only interested whether yit is nonstationary (acceptance

of H1,0) or not. In H2 the breaks appear only under the alternative. Accepting H2,0 means that yit is

nonstationary and no break occurred. In the event of rejection of H2,0, yit is stationary and breaks did

happen at the estimated dates.

3 The Doubly Modified Estimator

When ϕ = 1, (1) can be written as:

yi = yi,−1 + ∆X(λ)π
(λ)
i + ui, (2)

where ∆X(λ) = X(λ) − X
(λ)
−1 , X

(λ)
−1 = LX(λ) and where L is the lag operator. Given that X(λ)

contains (m + 1) intercept vectors and (m + 1)ρ trend vectors as columns, ∆X(λ) contains (m + 1)

differenced intercept vectors and (m + 1)ρ differenced trend vectors. If for example m = ρ = 1,

∆X(λ) =
[
∆e(1),∆e(2),∆τ (1),∆τ (2)

]
and there exist (m+1)ρ = (1+1)1 = 2 differenced trend columns:

[∆X(λ)]3 = ∆τ (1) and [∆X(λ)]4 = ∆τ (2).

Define Λ a T × T matrix with [Λ]i,j = 1 if i < j and zeros elsewhere. Furthermore, let P (λ) ≡
[v

(λ)
1 , ..., v

(λ)
s ] and let v

(λ)
1 , ..., v

(λ)
s be the T × 1 vectors which form a base of R{(∆X(λ)|Λ∆X(λ))}. Then

we define the orthogonal projection matrix

Q(λ) = IT − P (λ)(P (λ)′P (λ))−1P (λ)′,

which has the property that Q(λ)∆X(λ) = Q(λ)Λ∆X(λ) = 0 by construction. We shall further assume

that Q(λ) 6= 0 and thus the column rank of P (λ) must be less than T.
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The basic estimator that we employ is the WG estimator:

ϕ̂(λ) =

∑N
i=1 y

′
i,−1Q

(λ)yi∑N
i=1 y

′
i,−1Q

(λ)yi,−1
. (3)

This estimator has the property that, when ϕ = 1, it is invariant to the initial conditions of the panel

yi0 and the individual effects π
(λ)
i . Thus, assumptions on yi0, like mean and covariance stationarity

made by the generalized method of moments and conditional or unconditional maximum likelihood

estimation procedures (see, e.g., Bond et al. (2005) and Kruiniger (2008)) are no longer required. The

WG estimator ϕ̂(λ) is also attractive for its small sample properties. De Wachter et al. (2007) and Han

and Phillips (2012) have noticed that the performance of the GMM estimator of ϕ, compared to ϕ̂(λ),

deteriorates in small samples due to the inaccurate estimation of its weighting matrix. Furthermore,

Han and Phillips (2013) have found pathologies of the first difference maximum likelihood with a high

impact on small sample performance.

The WG estimator is known to be inconsistent in dynamic panel models when the T is finite,

see e.g. Nickel (1981) and Harris and Tzavalis (1999) inter alia. Let ΓN ≡ (1/N)
∑N
i=1 Γi where

Γi = E(uiu
′
i). It is assumed that the maximum order of serial correlation is p

(λ,H)
max , that is E(uituis) = 0

if |t− s| > p
(λ,H)
max . The properties of p

(λ,H)
max are given in Assumption A below. It is shown (Lemma 1)

that p limN→∞
(
ϕ̂(λ) − 1− b(λ)/d(λ)

)
= 0,where b(λ) = tr(Λ′Q(λ)ΓN ) and d(λ) = tr(Λ′Q(λ)ΛΓN ). The

inconsistency is given by the term b(λ)/d(λ). Ideally we would like to estimate ΓN and plug this in b(λ)

and d(λ) to bias correct the estimator.

Define Γ̂ = (1/N)
∑N
i=1 ∆yi∆y

′
i, where ∆yi = yi−yi,−1, to be an estimator for ΓN . Furthermore, let

E(π
(λ)
i π

(λ)′
i ) = Πi and ΠN ≡ (1/N)

∑N
i=1 Πi. We would like to use Γ̂ as an estimator for ΓN but as it

is shown in Theorem 1, p limN→∞(Γ̂− ΓN −∆X(λ)ΠN∆X(λ)′) = 0 and thus Γ̂ must be bias-corrected

as well. This is the second correction and to do so we need an estimator for ΠN . The k × k matrix ΠN

can be partitioned as

ΠN =

(
Π11 Π12

Π′12 Π22

)
, (4)

where Π22 is a [(m+ 1)ρ]× [(m+ 1)ρ] symmetric submatrix of nuisance parameters which are moments

of the coefficients of the differenced trend vectors [∆X(λ)]j , for j = m+ 2, ..., k. As we will explain later,

we will only need to estimate the elements of Π22.

For each element of Π22 a deterministic T × T selection matrix Z
(λ)
i,j is needed, and since Π22 is

symmetric it must be that Z
(λ)
j,i = Z

(λ)
i,j . The Z

(λ)
i,j will be used in creating the estimators of the elements

of Π22. In total we will need [(m + 1)ρ][(m + 1)ρ + 1]/2 matrices Z
(λ)
i,j . For j = m + 2, ..., k, define

[∆X∗(λ)]t,j = [∆X(λ)]t,j for all t = 1, ..., T, except [∆X∗(λ)]t,j = 0 at t = Tµ + 1 for µ = 1, ...,m. Also,

by defining Z̃ to be a T 2 × [(m+ 1)ρ][(m+ 1)ρ+ 1]/2 matrix with columns

[Z̃]
i+

(j−1)j
2

=


vec

{[
∆X

∗(λ)
m+1+i∆X

∗(λ)′
m+1+j

]−
p

}
if i = j,

vec

{[
∆X

∗(λ)
m+1+i∆X

∗(λ)′
m+1+j + ∆X

∗(λ)
m+1+j∆X

∗(λ)′
m+1+i

]−
p

}
if i 6= j,

(5)

for i = 1, ..., (m+ 1)ρ and j = 1, ..., i, we have that

vech(Π̂22) = (Z̃ ′Z̃)−1Z̃ ′vec(Γ̂), (6)
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is an estimator for vech(Π22). From this expression, we derive the Z
(λ)
i,j to be:

Z
(λ)
i,j = vec−1T,T

{[
Z̃(Z̃ ′Z̃)−1

]
i+

(j−1)j
2

}
. (7)

for i = 1, ..., (m+ 1)ρ and j = 1, ..., i. The selection matrices Z
(λ)
i,j implement the method of covariance

matrix estimation of Abowd and Card (1989) and Arellano (1990).

We propose the doubly modified estimator:

ϕ̂
(λ)
DME = ϕ̂(λ) − b̂(λ)

d̂(λ)
, (8)

where d̂(λ) = (1/N)
∑N
i=1 y

′
i,−1Q

(λ)yi,−1 and b̂(λ) = tr(Θ(λ)Γ̂). The numerator bias correction b̂(λ) is

based on Θ(λ), a T × T matrix with

Θ(λ) = Ψ(λ) −
k∑

i=m+2

k∑
j=m+2

[
tr(Ψ(λ)[∆X(λ)]i[∆X

(λ)]′j)Z
(λ)
i,j

]
, (9)

where Ψ(λ) = [Λ′Q(λ)]+
p
(λ,H)
max

.

The T × 1 vectors [∆X(λ)]j for j = m + 2, ..., k are the (m + 1)ρ differenced trend columns of

∆X(λ) and these vectors are used in the estimation of Π22. There is no need to estimate the elements

of ΠN appearing in Π11 and Π12 because these are multiplied by 0 in the definition of Θ(λ), since

tr(Ψ(λ)[∆X(λ)]i[∆X
(λ)]′j) = 0 if i or j are equal to 1, ...,m + 1, (see also Lemma 2). If there are no

trend vectors i.e., X(λ) =
[
e(1), e(2)

]
, then ρ = 0 and we set Θ(λ) = Ψ(λ).

Inference on both H1 and H2 will be based on the t-statistic,

t(λ) =

(
ϕ̂
(λ)
DME − 1

)
√
V̂ (λ)/(Nd̂(λ)2)

, (10)

where V̂ (λ) = F (λ)′Ξ̂F (λ), F (λ) = vec(Q(λ)Λ − Θ(λ)′) and Ξ̂ = (1/N)
∑N
i=1 vec(∆yi∆y

′
i)vec(∆yi∆y

′
i)
′

is an estimator of ΞN ≡ (1/N)
∑N
i=1 V (vec(∆yi∆y

′
i)). The estimator Ξ̂ is a computationally attractive al-

ternative to Ξ̂∗ = (1/N)
∑N
i=1 vec(∆yi∆y

′
i)vec(∆yi∆y

′
i)
′−(1/N2)

∑N
i=1 vec(∆yi∆y

′
i)
∑N
i=1 vec(∆yi∆y

′
i)
′,

which is the standard consistent estimator found in the literature, see e.g. Arellano (2003), equation

5.58. While Ξ̂ is not a consistent estimator of ΞN , both Ξ̂ and Ξ̂∗ lead to consistent estimation of

V (λ) = F (λ)′ΞNF
(λ) as it is shown in Lemma 5, in the Appendix.

4 Assumptions

In this section we present the assumptions that we use. Regarding serial correlation and heteroscedas-

ticity in uit, we consider the following assumption:

Assumption A

(i) {ui} for i = 1, ..., N, is a sequence of independent random vectors, with E(ui) = 0 and E(uiu
′
i) =

Γi.

(ii) UnderH1,0, p
(λ,H)
max = minj{Tj+1−Tj−2−ρ} for j ∈ {1, ...,m}, while underH2,0, p

(λ,H)
max = T−1−ρ.

(iii) E(‖ui‖8+δ) < M < +∞ for i = 1, ..., N and δ > 0.

(iv) p limN→∞ ΓN > 0.

(v) p limN→∞ ΞN > 0.
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Condition (i) of Assumption A allows for heteroscedastic and autocorrelated uit. The form of het-

eroscedasticity and serial correlation may vary with i.

Condition (ii) determines that the maximum order of serial correlation is p
(λ,H)
max and therefore only

p
(λ,H)
max -dependent uit are allowed. Although it is assumed that p

(λ,H)
max is common for all i, each cross-

section unit i can exhibit a different order of serial correlation provided that this does not exceed p
(λ,H)
max .

The superscript λ denotes dependence on the trend function through the location of the structural

breaks and H denotes dependence on the hypothesis being tested (H1 or H2). If structural breaks do

not occur then p
(λ,H)
max no longer depends on λ and H, as in Karavias and Tzavalis (2016). This condition

provides the necessary moments for the estimation of ΠN . For the covariance estimation methodology to

work, it must be that for some i, j, [p limN Γ̂]i,j contain only nuisance parameters of ΠN and not of ΓN .

The reduction coming from ρ is a small one; ρ = 1 for models with linear trends and ρ = 2 for models

with linear and quadratic trends. The value p
(λ,H)
max is the upper bound of serial correlation allowed.

However, in a specific application if there is evidence of weaker or no dependence, it is entirely possible

to select a p ≤ p
(λ,H)
max . This will result in a more powerful test because more moments are available for

the estimation of Π22.

This assumption is general enough to accommodate many applications, see e.g. Schwert (1987).

Furthermore, while heteroscedasticity and autocorrelation consistent estimators (HAC) estimators are

known to be biased and have issues with their performance (see e.g. Kiefer et al. (2000) and the remark

below Theorem 2 in Moon and Perron (2004)), our method results in excellent size control as will be

shown later, because of the way we use the cross section dimension. In the fixed-T literature Karavias

and Tzavalis (2014b) allow for AR(2) errors with a single break. However that method cannot be further

extended to allow for more breaks, trends or heteroscedasticity.

Condition (iii) of Assumption A imposes a uniform bound on the eighth moments of the errors.

Uniformity until the fourth moment fulfils the Lyapunov condition which is a sufficient condition for

the Lindeberg-Feller central limit theorem. Uniformity of the eighth moment is needed for so that

V̂ (λ) − V (λ) p−→ 0. If the ui are identically distributed across i then only a uniform bound on the

fourth moments is needed. Conditions (iv) and (v) guarantee that the probability limits of relevant

denominators will not be zero.

Assumption B

(i) {π(λ)
i } for i = 1, ..., N, is a sequence of independent random vectors which are independent of uit

for all i and t.

(ii) E(
∥∥∥π(λ)

i

∥∥∥4+δ) < +∞ for i = 1, ..., N, and δ > 0.

Assumption B describes the probabilistic behaviour of the individual effects and is needed so that

V̂ (λ) − V (λ) p−→ 0. Conditions (i)-(ii) are standard in the literature, see e.g. Bai (2013).

Assumption C

(i) If ρ = 0, then min{Tj+1 − Tj} ≥ 1 for j ∈ {0, ...,m}.
(ii) If ρ > 0 then T1 − T0 ≥ 1 + ρ and min{Tj+1 − Tj} ≥ 2 + ρ for j ∈ {1, ...,m}.

The two conditions restrain the number of breaks and their position. Similar assumptions appear

in the time series literature as well, see e.g. Assumption 3 of Bai and Perron (1998). Condition (i)

determines the set I when (1) contains intercepts only. This condition is the weakest because for this

model Θ(λ) = Ψ(λ) and no trend nuisance parameters need to be estimated. For a model with two breaks

I = {(2, 3), (2, 4), ..., (T − 2, T − 1)}. The existence of available moments that allow the estimation of

the trend nuisance parameters is guaranteed by condition (ii). In the presence of linear trends and

two structural breaks, the breaks can take place in the set I = {(2, 5), (2, 6), ..., (T − 6, T − 3)}. The
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requirement that structural breaks in the trend model must be at least three periods apart is somewhat

stronger than the single time series result by which the breaks must be at least two periods apart, see

Lumsdaine and Papell (1997).

5 Asymptotic results

5.1 Asymptotic bias

The following lemma provides the inconsistency of ϕ̂(λ).

Lemma 1 Under the assumptions A and C, the null hypotheses Hf,0, f = 1, 2 and the dates of the

breaks known, as N →∞,

p lim
N→∞

(
ϕ̂(λ) − b(λ)

d(λ)
− 1

)
= 0, (11)

where b(λ) = tr(Λ′Q(λ)ΓN ) and d(λ) = tr(Λ′Q(λ)ΛΓN ).

The above expressions show that the WG estimator is inconsistent as N → ∞. The bias (inconsis-

tency) of ϕ̂(λ) is given by b(λ)/d(λ) and depends on both the deterministic specification of the model,

which is captured by Q(λ) and Λ, and the assumptions about the error terms uit reflected in ΓN .

The main idea of the paper is to propose an estimator for b(λ)/d(λ) and with that modify the WG

estimator, ϕ̂
(λ)
DME = ϕ̂(λ) − b̂(λ)/d̂(λ). Note that ϕ̂(λ) is only adjusted for the bias of its numerator

(Phillips and Hansen (1990) and Kruiniger and Tzavalis (2002)). This method is different from that in

Karavias and Tzavalis (2014b) and is much more flexible.

When estimating b(λ) = tr(Λ′Q(λ)ΓN ), since the dates of the breaks are known, Q(λ) is known and

so we only need to find an estimator for ΓN such that Γ̂ − ΓN
p−→ 0. Applying the Γ̂ results in two

problems: first, simply plugging Γ̂ in tr(Λ′Q(λ)ΓN ) is not sufficient because it will result in an identity,

i.e. after simple algebra, it can be shown that:

ϕ̂(λ) − tr(Λ′Q(λ)Γ̂)
N∑
i=1

y′i,−1Q
(λ)yi,−1

=

N∑
i=1

(
u′iΛ

′Q(λ)ui − u′iΛ′Q(λ)ui
)

N∑
i=1

y′i,−1Q
(λ)yi,−1

= 0. (12)

This happens because we are using the full sample information twice, once to obtain the WG estimator

and once to obtain b̂(λ). To bypass this problem, we propose the use of a restricted form of Λ′Q(λ)

denoted by Ψ(λ). The restriction is such that tr(Ψ(λ)ΓN ) = tr(Λ′Q(λ)ΓN ); the matrix Ψ(λ) gives the

non-zero elements of ΓN , the same weight that Λ′Q(λ) does. It also gives zero weight to the zero elements

of Γ and thus Ψ(λ) − Λ′Q(λ) 6= 0 so that the last equality in (12) is avoided.

The second problem is that, Γ̂ − ΓN
p−→ 0 only when ∆yi = ui. In this particular case, one can

simply set b̂(λ) = tr(Ψ(λ)Γ̂) and proceed with inference. In general however, this does not hold as it is

shown in the next theorem, and the more complicated Θ(λ) matrix is needed.

Theorem 1 Under Assumptions A and B, the null hypotheses Hf,0, f = 1, 2 and the dates of the breaks

known, as N →∞,
p lim
N→∞

[
Γ̂− ΓN −∆X(λ)ΠN∆X(λ)′

]
= 0. (13)

The adjustment of Γ̂ to render it net of the break nuisance parameters is the second modification

which appears in ϕ̂
(λ)
DME. Notice that we are not interested in estimating ΓN per se, but in finding a

9



Θ(λ) such that tr(Θ(λ)Γ̂)− tr(Λ′Q(λ)ΓN )
p−→ 0. This creates a dichotomy in the nuisance parameters of

∆X(λ)ΠN∆X(λ)′: a) those parameters related to the ”crash” vectors of ∆X(λ) and appear in Π11 and

Π12 and b) those related to the differenced trend vectors of ∆X(λ) and appear in Π22. By ”crash” vectors

we define those vectors that are everywhere equal to zero, except at the points Tj +1, j = 1, ...,m where

they are either equal to 0 or equal to 1. If i.e., ∆X(λ) =
[
∆e(1),∆e(2),∆τ (1),∆τ (2)

]
, the ∆e(1),∆e(2) are

crash vectors. Crash vectors are the outcome of differencing. The following lemma shows that there is no

need to estimate the first type of nuisance parameters and that we only need estimates of the parameters

in Π22. The case of no structural breaks in the intercepts is trivial, since ∆e = 0 and therefore there are

no crash vectors.

Lemma 2 Let e(c) be any ”crash” vector appearing in ∆X(λ). Then it holds that Ψ(λ)e(c) = 0.

Crash vectors appear also when differencing trend vectors; in the previous example ∆τ (1) = −T1∆e(1)+

e(1), and ∆τ (2) = T1∆e(2) + e(2). We avoid their interference in the Π22 estimation problem by working

with [∆X∗(λ)]j in place of the original differenced trend vectors [∆X(λ)]j , for j = m+ 2, ..., k.

We employ the covariance matrix estimation method of Abowd and Card (1989) and Arellano (1990),

which is a method of moments that leads to consistent estimation of Π22. The intuition is that, because

ΓN = [ΓN ]+
p
(λ,H)
max

by Assumption A(ii), inside ΓN + ∆X(λ)ΠN∆X(λ)′ exist secondary diagonals that

contain elements consisting only of Π22 nuisance parameters.

Theorem 2 Under Assumptions A-C, the null hypotheses Hf,0, f = 1, 2 and the dates of the breaks

known, as N →∞,
p lim
N→∞

[
vech(Π̂22)− vech(Π22)

]
= 0. (14)

Now we are ready to use Γ̂ in order to get b̂(λ) − b(λ) p−→ 0:

Theorem 3 Under Assumptions A-C, the null hypotheses Hf,0, f = 1, 2 and the dates of the breaks

known, as N →∞,
p lim
N→∞

[
tr(Θ(λ)Γ̂)− tr(Λ′Q(λ)ΓN )

]
= 0. (15)

5.2 Limiting distribution

The following theorem provides the distribution of the test statistic for when the dates of the breaks

are known

Theorem 4 Under Assumptions A-C, Hf,0 with f = 1, 2, the dates of the breaks known, and as N →
∞ :

t(λ) =

(
ϕ̂
(λ)
DME − 1

)
√
V̂ (λ)/(Nd̂(λ)2)

d−→ N (0, 1) . (16)

If the dates of the breaks are unknown, then it becomes important whether the null hypothesis is

H1,0 or H2,0. In the first case the breaks appear under both H1,0 and H1,1 and they can be estimated

in a first step by Bai’s (2010) method, using first differenced data. That estimator has an op(
√
N) rate

of convergence and thus we can assume the break points are known and apply the results of Theorem 2.

If the null hypothesis is H2,0 : ϕ = 1 and π
(1)
j,i = π

(2)
j,i = ... = π

(m+1)
j,i for all j, then the structural

break parameters appear only under the alternative. This is not a regular hypothesis testing problem;

see Davies (1977) and Andrews (1993). Following this literature, the selection of the break dates is

10



viewed as the outcome of minimizing t(λ) over all possible combinations of break dates. In this way, the

estimated dates are those that give more weight to the alternative. The null hypothesis is rejected when

inf
λ∈I

t(λ) < zinfa , (17)

where zinfa denotes the size a left-tail critical value of the limiting distribution of statistic infλ∈I t
(λ).

The following theorem provides this distribution.

Theorem 5 Under Assumptions A-C, the null hypotheses H2,0, the dates of the breaks unknown, as

N →∞
inf
λ∈I

t(λ)
d−→ G, (18)

where G is distributed as the infimum of a fixed number of mean-zero normal variables. These normals

are correlated with asymptotic variance-covariance matrix Σ given by:

[Σ]µ,ν =
F (µ)′ΞF (ν)

√
F (µ)′ΞF (µ)

√
F (ν)′ΞF (ν)

, (19)

where µ and ν denote two different partitions that belong in I.

There are two ways of getting critical values from G. First, we could proceed by numerically integrat-

ing the analytical pdf function which has been derived by Arellano-Valle and Genton (2008). Otherwise

one can proceed by using the bootstrap. The steps are the following:

1. Use the data to compute the test statistic t(λ) for each λ ∈ I. Compute infλ∈I t
(λ) as well.

2. Generate r bootstrap samples of size T×N by sampling with replacement from residuals uri = ∆yi

for i = 1, ..., N. This resampling scheme is taken across individuals so that the time series properties

of the series are maintained. Notice that uri = ∆yi = ∆X(λ)π
(λ)
i + ui contains information on ui

as well as on the trend function and the individual effect parameters.

3. Generate bootstrap samples as

yri,−1 = yi0e+ Λuri , (20)

yri = yri,−1 + uri , for i = 1, ..., N.

4. For each bootstrap sample, calculate the statistic infλ∈I
(
tr,(λ) − t(λ)

)
where tr,(λ) is the test

statistic coming from the bootstrap sample.

5. Do this r times and compute the empirical distribution of infλ∈I
(
tr,(λ) − t(λ)

)
. From this distri-

bution, derive the size a left-tail critical value. If infλ∈I t
(λ) is less than this value, reject the null

hypothesis.

In the above procedure we use i.i.d. resampling exploiting the independence across units. The

bootstrap samples are created under the H2,0 as it is advocated for unit root processes by Basawa et

al. (1991). The proof of the consistency of the bootstrap can possibly be constructed along the lines of

Horowitz (2001).

11



6 Simulation Results

In this section the results of a Monte Carlo study investigating the finite sample performance of the pro-

posed test statistics are reported. Sample sizes forN and T are chosen to beN = {25, 50, 100, 500, 1000, 1200}
and T = {10, 15, 20, 30}. All experiments are conducted based on 2000 iterations. The model that we

use is the ”crash and changing growth” model the previous section, first with one break in the middle

of the sample and then with two breaks at b0.35T c and b0.65T c . For these two models we consider 5

scenarios:

1) Testing H1 with uit i.i.d. across i and t.

2) Testing H1 with uit = θiεit + σitεit−1 where θi ∼ i.i.d. U [0.2, 0.4] and σit ∼ i.i.d. U [0.5, 1.5].

3) Testing H1 with uit = θiεit + σitεit−1 where θi ∼ i.i.d. U [−0.4,−0.2] and σit ∼ i.i.d. U [0.5, 1.5].

4) Testing H1 with ϕ ∼ i.i.d. U [0.7, 0.9] under the alternative and errors as in scenario 2.

5) Testing H2 with uit i.i.d. across i and t.

The individual effects are generated as π
(1)
1i ∼ i.i.d. U [−0.05, 0], π

(2)
1i ∼ i.i.d. U [0, 0.05], π

(3)
1i ∼ i.i.d.

U [0.05, 0.1], π
(1)
2i ∼ i.i.d. U [0, 0.025], π

(2)
2i ∼ i.i.d. U [0.025, 0.05], π

(3)
2i ∼ i.i.d. U [0.05, 0.75]. The errors εit

are standard normal and so are the uit in scenarios 1 and 5. Under the alternative ϕ = 0.8. The initial

conditions are set equal to 0 and for scenario 5, the number of bootstrap replications is 199. The values

used for this experiment are similar to those of Pesaran et al. (2013). In scenarios 1-4 we assume that

the break dates are known while in scenario 5 we assume that they are unknown.

Table 1 presents the results for the model with one structural break and Table 2 presents the results

for the case of two structural breaks. We find that the new tests have excellent size properties for all

specifications and for all combinations of N and T considered, with the size always being close to the

nominal. When it comes to the power of the tests, we have found that adding an extra break, having

heterogeneous alternatives, testing H2 when the breaks are unknown and adding heteroscedasticity and

serial correlation reduces the power of the tests. Positive θ′s lead to tests with lower power than negative

θ′s.

7 Concluding Remarks

In this paper we propose a general methodology for testing for unit roots in panel data with a short time

series dimension. This methodology, based on the novel DME estimator, allows for models with general

trend functions that may contain intercepts, linear and nonlinear trends and multiple structural breaks

at unknown dates. The error process is also general as the errors may have unspecified forms of short

term serial correlation, heteroscedasticity and cross section heterogeneity. To examine the small sample

performance of the tests, the paper conducts a Monte Carlo study. The results of this study demonstrate

that the suggested tests have always size close to their nominal level and satisfactory power.
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8 Appendix A

In this appendix, we provide proofs of the theorems presented in the main text of the paper. First we

start with a simple example regarding the operators [·]+p and [·]−p .

Example: Let A ∈ R4×4, such that
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 .

Then

[A]
+
0 =


a11 0 0 0

0 a22 0 0

0 0 a33 0

0 0 0 a44

 and [A]
+
1 =


a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a34

0 0 a43 a44

 .

Also,

[A]
−
0 =


0 a12 a13 a14

a21 0 a23 a24

a31 a32 0 a34

a41 a42 a43 0

 and [A]
−
1 =


0 0 a13 a14

0 0 0 a24

a31 0 0 0

a41 a42 0 0

 .

Proof of Lemma 1. Under any Hf,0, from (2) and backward substitution we have

yi,−1 = yi,0e+ Λ∆X(λ)π
(λ)
i + Λui, (21)

for i = 1, ..., N. If we pre-multiply the above by Q(λ) (Q(λ) 6= 0 by Assumption C) we get

Q(λ)yi,−1 = Q(λ)Λui, (22)

as Q(λ)Λ∆X(λ) = Q(λ)∆X(λ) = 0. This happens because the matrix P (λ) is made up by column vectors

which form a base of the column space of (∆X(λ)|Λ∆X(λ)). Since ∆X(λ) and Λ∆X(λ) belong to the

column space spanned by P (λ), it holds that

P (λ)(P (λ)′P (λ))−1P (λ)′∆X(λ) = ∆X(λ),

and that

P (λ)(P (λ)′P (λ))−1P (λ)′Λ∆X(λ) = Λ∆X(λ),
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and thus Q(λ)Λ∆X(λ) = Q(λ)∆X(λ) = 0. When X(λ) contains intercepts, Q(λ)e = 0 and (22) makes

ϕ̂(λ) invariant to the initial conditions.

Then,

ϕ̂(λ) − tr(Λ′Q(λ)ΓN )

tr(Λ′Q(λ)ΛΓN )
− 1 =

∑N
i=1 y

′
i,−1Q

(λ)yi∑N
i=1 y

′
i,−1Q

(λ)yi,−1
− tr(Λ′Q(λ)ΓN )

tr(Λ′Q(λ)ΛΓN )
− 1

=

∑N
i=1 y

′
i,−1Q

(λ)(yi,−1 + ∆X(λ)π
(λ)
i + ui)∑N

i=1 y
′
i,−1Q

(λ)yi,−1
− tr(Λ′Q(λ)ΓN )

tr(Λ′Q(λ)ΛΓN )
− 1

= 1 +

∑N
i=1 y

′
i,−1Q

(λ)ui∑N
i=1 y

′
i,−1Q

(λ)yi,−1
− tr(Λ′Q(λ)ΓN )

tr(Λ′Q(λ)ΛΓN )
− 1

=

∑N
i=1 u

′
iΛ
′Q(λ)ui∑N

i=1 u
′
iΛ
′Q(λ)Λui

− tr(Λ′Q(λ)ΓN )

tr(Λ′Q(λ)ΛΓN )
, (23)

where the last equality comes from (22). Notice that E(u′iΛ
′Q(λ)ui) = tr[Λ′Q(λ)E(uiu

′
i)] = tr(Λ′Q(λ)Γi).

Thus

1

N

N∑
i=1

u′iΛ
′Q(λ)ui −

1

N

N∑
i=1

tr(Λ′Q(λ)Γi) =
1

N

N∑
i=1

u′iΛ
′Q(λ)ui − tr(Λ′Q(λ)ΓN ),

and under Assumption A, from Markov’s Law of Large Numbers:

1

N

N∑
i=1

u′iΛ
′Q(λ)ui − tr(Λ′Q(λ)ΓN )

p−→ 0, (24)

(see e.g. White (1984), p. 33). Similarly, E(u′iΛ
′Q(λ)Λui) = tr[Λ′Q(λ)ΛE(uiu

′
i)] = tr(Λ′Q(λ)ΛΓi) and

1

N

N∑
i=1

u′iΛ
′Q(λ)Λui − tr(Λ′Q(λ)ΓN )

p−→ 0. (25)

Because we are interested in convergence in probability, the following holds by combining (24), (25) and

a form of Slutsky’s Theorem (see e.g. Hogg, McKean and Craig (2013), p. 297)∑N
i=1 u

′
iΛ
′Q(λ)ui∑N

i=1 u
′
iΛ
′Q(λ)Λui

− tr(Λ′Q(λ)ΓN )

tr(Λ′Q(λ)ΛΓN )

p−→ 0.

Note that the denominator p limN tr(Λ′Q(λ)ΛΓN ) is different than zero by Assumption A(iv) which

states that p limN ΓN is positive definite. First, notice that Λ′Q(λ)Λ is positive semidefinite as for any

vector x ∈ RT , x′Λ′Q(λ)Λx = (Λx)′Q(λ) (Λx) ≥ 0, because Q(λ) is positive semidefinite as a projection

matrix. Second, p limN ΓN is positive definite and can be decomposed as L∗L
′
∗ where L∗ is a lower

triangular matrix, by the Cholesky decomposition. Thus tr(Λ′Q(λ)Λp limN ΓN ) = tr(Λ′Q(λ)ΛL∗L
′
∗) =

tr(L′∗Λ
′Q(λ)ΛL∗). Notice that Λ′Q(λ) 6= 0 as Q(λ) 6= 0. The only other possible case for Λ′Q(λ) = 0 would

be if Q(λ) had non-zero elements in its first row and zero everywhere - but this is not possible as Q(λ)

would no longer be symmetric. Furthermore, ΛL∗ has the same non-zero elements with Λ. Similarly,

(Λ′Q(λ)) is not a matrix which is everywhere zero but for its first column and thus
(
Λ′Q(λ)

)
Λ 6= 0.

Therefore L′∗Λ
′Q(λ)ΛL∗ 6= 0. By the same argument as before, L′∗Λ

′Q(λ)ΛL∗ is positive semidefinite

and its eigenvalues are greater or equal than zero. Thus, tr(L′∗Λ
′Q(λ)ΛL∗) > 0 because the trace is

equal to the sum of the eigenvalues.
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Proof of Theorem 1. Rewriting (2) we have that ∆yi = ∆X(λ)π
(λ)
i + ui and thus,

E(∆yi∆y
′
i) = ∆X(λ)Πi∆X

(λ)′ + Γi,

for i = 1, ..., N. The last expression holds because Assumption B requires that the individual effects and

the error terms are independent. Then

1

N

N∑
i=1

∆yi∆y
′
i −

1

N

N∑
i=1

(∆X(λ)Πi∆X
(λ)′ + Γi) =

1

N

N∑
i=1

∆yi∆y
′
i −∆X(λ)ΠN∆X(λ)′ − ΓN .

Markov’s Law of Large Numbers applies elementwise under Assumptions A and B and thus,

1

N

N∑
i=1

∆yi∆y
′
i −∆X(λ)ΠN∆X(λ)′ − ΓN

p−→ 0.

Proof of Lemma 2. As mentioned above, a ”crash” vector is everywhere equal to zero except at

the points Tj + 1, i = 1, ...,m where it is either equal to 0 or equal to 1, but is never equal to zero

everywhere. We prove the statement for m = 1 but the same arguments can be applied to the case of

m > 1. Without loss of generality, assume that e(c) is a crash vector that is everywhere equal to zero

and it is equal to 1 at T1 + 1.

By definition, Ψ(λ) = [Λ′Q(λ)]+p and Q(λ) = IT − P (λ)(P (λ)′P (λ))−1P (λ)′. Because P (λ) is made

by a basis of R{(∆X(λ)|Λ∆X(λ))}, P (λ) contains in one of its columns a multiple of e(c) because the

latter appears in ∆X(λ). Without loss of generality, assume that P (λ) = [e(c), B] where B is a matrix

containing the rest of the columns of P (λ).

Define P (e(c)) = e(c)(e(c)′e(c))e(c)′ and M(ec) = IT − P (e(c)). Then, by the blockwise projection

matrix formula it holds that

P (λ)(P (λ)′P (λ))−1P (λ)′ = P (e(c)) +M(e(c))B
[
B′M(e(c))M(e(c))B

]−1
B′M(e(c))′. (26)

Notice that P (e(c)) = e(c)(e(c)′e(c))e(c)′ is a matrix that is everywhere zero except at
[
P (e(c))

]
T1+1,T1+1

=

1. ThusM(ec) is equal to a matrix with its main diagonal elements equal to 1, except at
[
M(e(c))

]
T1+1,T1+1

=

0. The matrix M(ec)B is equal to B everywhere except at [M(ec)B]T1+1,j = 0, for all j. This is a row

full of zeroes and the ensuing algebra is about the impact of this row. For any matrix A, the matrix

[M(ec)B]A[M(ec)B] will have its T1 + 1 row and its T1 + 1 column full of zeroes.

The above arguments imply in successive order:

[M(e(c))B
[
B′M(e(c))M(e(c))B

]−1
B′M(e(c))′]T1+1 = 0,

[P (λ)(P (λ)′P (λ))−1P (λ)′]T1+1 = e(c),

[Q(λ)]T1+1 = 0,

[Λ′Q(λ)]T1+1 = 0,

[Ψ(λ)]T1+1 = 0,

Ψ(λ)e(c) = 0,

where 0 is the T -dimensional zero vector. The first equality comes from [M(ec)B]A[M(ec)B]T+1 =

0, where A =
[
B′M(e(c))M(e(c))B

]−1
. The second equality is derived from (26) where we plug in

the result of the first equality and by P (e(c)) = e(c)(e(c)′e(c))e(c)′ being a matrix that is everywhere
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zero except at
[
P (e(c))

]
T1+1,T1+1

= 1. The third equality follows from the definition of Q(λ) = IT −
P (λ)(P (λ)′P (λ))−1P (λ)′ and the fourth equality from the fact that when multiplying the rows of a matrix

(Λ′ in this case) with a zero column in another matrix ([Q(λ)]T1+1 = 0), then the outcome is a zero

column ([Λ′Q(λ)]T1+1 = 0). Finally, since Ψ(λ) is a restriction of [Λ′Q(λ)]T1+1, [Ψ(λ)]T1+1 = 0. The last

equality holds because the non-zero elements of the rows of Ψ(λ) multiply the zero elements of e(c) and

the non-zero element of e(c) is multiplied by the elements in [Ψ(λ)]T1+1 = 0.

Proof of Theorem 2. This proof is divided in two steps. In the first step we prove the existence of

Z
(λ)
i,j in a model with no structural breaks. In the second step we show how the previous results extend

to the case of m breaks.

Step 1: Consider a model in which X(λ) contains an intercept in the first column and ρ trend vectors

in the rest of the columns so that 1 + ρ = k. We emphasize this difference between the intercept and

trend vectors because the nuisance parameters to be estimated arise from the existence of the trends

and they are estimated using trend vector information. These parameters appear in Π22.

The matrix ∆X(λ) has rank(∆X(λ)) = ρ and consists of a vector of zeroes in its first column and

ρ differenced trend vectors in the rest of the columns. Since [∆X(λ)]1 = 0, ∆X(λ)ΠN∆X(λ)′ can be

written as a linear combination of matrices resulting from the outer product of the differenced trend

vectors, multiplied by the elements of Π22,

∆X(λ)ΠN∆X(λ)′ =

k∑
i=2

k∑
j=2

[ΠN ]i,j [∆X
(λ)]i[∆X

(λ)]′j , (27)

where [∆X(λ)]i denotes the i-th column of ∆X(λ). In the simple example mentioned in Section 2,

where X(λ) = [e, τ ] and π
(λ)
i = (π1i, π2i)

′, we have that ρ = 1, k = 2 and ∆X(λ) = [0, e]. Thus

∆X(λ)ΠN∆X(λ)′ = 0Π110′+ 0Π12e
′+ eΠ210′+ eΠ22e

′. So the parameters which appear in Π11 and Π12

are always multiplied by 0.

The total number of unique [ΠN ]i,j elements in the above expression is ρ(ρ + 1)/2, because ΠN is

symmetric as a variance-covariance matrix. Therefore, we need to find ρ(ρ + 1)/2 matrices Z
(λ)
i,j that

allow the estimation of these ρ(ρ+ 1)/2 nuisance parameters.

The maximum order of serial correlation is p
(λ,H)
max and therefore, ΓN has (T − p(λ,H)

max − 1) secondary

upper diagonals which contain only 0-elements (it also has the same number of secondary lower di-

agonals but we will not consider them by symmetry), i.e. ΓN = [ΓN ]+
p
(λ,H)
max

. These upper secondary

diagonals contain in total (T − p
(λ,H)
max − 1)(T − p

(λ,H)
max )/2 zero elements. Consequently, the matrix

ΓN + ∆X(λ)ΠN∆X(λ)′ contains (T − p(λ,H)
max − 1)(T − p(λ,H)

max )/2 elements that are linear combinations

only of the ρ(ρ+ 1)/2 nuisance parameters of ΠN ; these elements do not contain serial correlation pa-

rameters. In other words, at these locations [ΓN + ∆X(λ)ΠN∆X(λ)′]i,j = [∆X(λ)ΠN∆X(λ)′]i,j where

i = 1, ..., T − p(λ,H)
max − 1 and j = i+ p

(λ,H)
max + 1, ..., T.

By Assumption A(ii) and under H1,0 (a similar argument applies for H2,0), p
(λ,H)
max = T − 2− ρ and

therefore, we have (1 + ρ)(2 + ρ)/2 elements of ΓN + ∆X(λ)ΠN∆X(λ)′ that contain ρ(ρ+ 1)/2 nuisance

parameters coming from ΠN .

We proceed to estimate these nuisance parameters by the method of moments. By setting[
1

N

N∑
i=1

∆yi∆y
′
i

]
i,j

= [ΓN + ∆X(λ)ΠN∆X(λ)′]i,j = [∆X(λ)ΠN∆X(λ)′]i,j (28)

for i = 1, ...T − p(λ,H)
max − 1 and j = i + p

(λ,H)
max + 1, ..., T, we get a total of (1 + ρ)(2 + ρ)/2 moments
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to estimate ρ(ρ + 1)/2 nuisance parameters. Because (1 + ρ)(2 + ρ)/2 > ρ(ρ + 1)/2 for every ρ, we

have always more moments than nuisance parameters. Furthermore, these moments are not linearly

dependent because they are based on time series information from different periods. Therefore, we can

estimate the ρ(ρ+ 1)/2 parameters by the method of moments, under Assumption A(ii).

The moments in (28) can be written in matrix form as,

vec
(

[Γ̂]−
p
(λ,H)
max

)
=

[
vec
[
[∆X(λ)]2[∆X(λ)]′2

]−
p
(λ,H)
max

, vec
[
[∆X(λ)]3[∆X(λ)]′2 + [∆X(λ)]2[∆X(λ)]′3

]−
p
(λ,H)
max

,

, ..., vec
[
[∆X(λ)]k[∆X(λ)]′k

]−
p
(λ,H)
max

]
vech(Π22),

or

vec
(

[Γ̂]−
p
(λ,H)
max

)
= Z̃vech(Π22). (29)

The unknown parameters appear in vech(Π22). This is an overdetermined system and has an approximate

solution given by ordinary least squares:

vech(Π̂22) = (Z̃ ′Z̃)−1Z̃ ′vec
(

[Γ̂]−
p
(λ,H)
max

)
. (30)

This solution is approximate with respect to the number of moments (1 + ρ)(2 + ρ)/2 available so we

cannot talk about consistency as ”ρ goes to infinity”. By Theorem 1 (using Assumptions A and B) and

the Continuous Mapping Theorem:

p lim
N→∞

[
vec
(

[Γ̂]−
p
(λ,H)
max

)
− vec

([
∆X(λ)ΠN∆X(λ)′

]−
p
(λ,H)
max

)]
= 0. (31)

and

p lim
N→∞

[
(Z̃ ′Z̃)−1Z̃ ′vec

(
[Γ̂]−

p
(λ,H)
max

)
− (Z̃ ′Z̃)−1Z̃ ′vec

(
∆X(λ)ΠN∆X(λ)′

)]
= 0. (32)

therefore, asymptotically for N , (29) is no longer overdetermined and the least squares solution in (30)

is the exact solution. This happens because many sample moments

[
1
N

N∑
i=1

∆yi∆y
′
i

]
i,j

converge to the

same limit and asymptotically they become linearly dependent moments. In other words, the rank of the

augmented matrix (Z̃|vec
(

[Γ̂]−
p
(λ,H)
max

)
) drops and becomes equal to the number of nuisance parameters.

In (31), vec
(

[Γ̂]−
p
(λ,H)
max

)
converges to:

vec

([
∆X(λ)ΠN∆X(λ)′

]−
p
(λ,H)
max

)
= vec

 k∑
i=2

k∑
j=2

[ΠN ]i,j

[
[∆X(λ)]i[∆X

(λ)]′j

]−
p
(λ,H)
max

 (33)

= Z̃vech(Π22).

Thus, by (32) and (33):

p lim
N→∞

[
vech(Π̂22)− (Z̃ ′Z̃)−1Z̃ ′vec

(
∆X(λ)ΠN∆X(λ)′

)]
= p lim

N→∞

[
vech(Π̂22)− vech(Π22)

]
= 0.

Step 2: Suppose that there are m structural breaks. Then X(λ) has m + 1 intercept columns and

(m+ 1)ρ trend columns with k = (m+ 1) + (m+ 1)ρ. First differencing the intercept columns creates

”crash” vectors. These vectors are everywhere equal to zero except at the points Tj + 1, j = 1, ...,m

where they are either equal to either 0 or 1. In total ∆X(λ) contains m + 1 crash vector columns and

(m+ 1)ρ differenced trends columns. This makes ∆X(λ)ΠN∆X(λ)′ have a specific structure:
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T1 + 1 T2 + 1 · · · Tm + 1



RT1×T1 CT1×1 R∗T1×(T2−T1−1)
...

C1×T1
C1×1 · · ·

... · · · · · · · · · T1 + 1
... R(T2−T1−1)×(T2−T1−1)

...

· · ·
... · · ·

... · · · · · · · · · T2 + 1
...

...
. . .

· · ·
... · · ·

... · · · · · · · · · Tm + 1
...

... R(T−Tm−1)×(T−Tm−1)

There are three types of elements here, R and R∗ matrices and C vectors. The R-type and R∗

matrices contain the [(m + 1)ρ][(m + 1)ρ + 1]/2 Π22-nuisance parameters which will be estimated

as in Step 1. To see this for an R-type matrix, consider the submatrix [ΓN ]
(Tj−Tj−1−1)×(Tj−Tj−1−1)

+

R(Tj−Tj−1−1)×(Tj−Tj−1−1) for j = 2, ...,m. In this matrix there are (Tj − Tj−1 − p(λ,H)
max − 2)(Tj − Tj−1 −

p
(λ,H)
max − 1)/2 elements that are linear combinations of the ρ(ρ+ 1)/2 nuisance parameters of Π22 which

are relevant to the Tj − Tj−1 period. Without loss of generality assume that Tj − Tj−1 is the shortest

within break time period, which by Assumption C(ii) is greater or equal to 2+ρ and thus, by Assumption

A(ii), p
(λ,H)
max = Tj − Tj−1 − 2− ρ. Therefore, we have a total of ρ(1 + ρ)/2 available elements. Because

ρ(1 + ρ)/2 = ρ(1 + ρ)/2 for every ρ, we have the necessary moments. Similar arguments hold for R∗

matrices. There is no need to estimate the elements appearing in the C−vectors because by Lemma 2,

these estimates will be multiplied by zero in the Θ(λ) matrix. The elements of Π11 and Π12 appear in

the C−vectors.

The above arguments can be used for other forms of the trend function. Consider the model in which

the breaks happen only in the trends; X(λ) has an intercept, (m+1)ρ trend columns and k = 1+(m+1)ρ.

This scenario is simpler than the one above as now there are no ”crash” vectors but [∆X(λ)]1 = 0. The

effect of [∆X(λ)]1 appears only in the C−vectors which are multiplied by zero in the Θ(λ) matrix.

Another case is when the m breaks appear in the intercept and not in the trend. In this case X(λ) has

m+ 1 intercept columns and ρ trend columns. ∆X(λ)ΠN∆X(λ)′ will have the C−vectors as displayed

above but the R and R∗ matrices will contain ρ(ρ+ 1)/2 Π22-nuisance parameters which are less than

[(m+ 1)ρ][(m+ 1)ρ+ 1]/2 and therefore can be estimated by the available moments.

For the proof of Theorem 3 we need the following two lemmas:

Lemma 3: Let A be any ν × ν real matrix and B a T 2 × ν matrix such that [B]i = vec([Ji]
−
p ),

where Ji for i = 1, ..., ν are real T × T matrices. Then

vec−1T,T ([BA]i) =
[
vec−1T,T ([BA]i)

]−
p
.

Proof of Lemma 3: The [Ji]
−
p for i = 1, ..., ν matrices by definition have their main, the first p

upper and first p lower diagonals equal to zero. Thus [B]i = vec([Ji]
−
p ) is a T 2×1 vector that has zeroes
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in the following in the following elements:

1, ..., 1 + p, (34)

...

(κ− 1)T + κ− p, (κ− 1)T + κ− p+ 1, ..., (κ− 1)T + κ+ p,

...

(ν − 1)T + ν − p, ..., (ν − 1)T + ν,

where κ = 2, ..., ν − 1. Since this applies for every column [B]i, these rows of B are equal to zero, i.e.

[B]i,j = 0 when i takes one of the values in (34) and for every j = 1, ..., ν.

The matrix BA then has zero elements at the places where one of the zero-rows of B multiplies the

columns of A. Because a zero-row of B multiplies every column of A, the outcome is a zero-row in BA :

[BA]i,j = 0 for every j, if i takes one of the values in (34).

Therefore BA and B have the same zero-rows and the vectors [B]i and [BA]i have zeroes at the same

elements. Thus vec−1T,T ([BA]i) has zero elements in its main, first p upper and first p lower diagonals

and thus

vec−1T,T ([BA]i) =
[
vec−1T,T ([BA]i)

]−
p
.

Lemma 4: Let A and B be any T × T matrices. Then it holds that tr([A]+p [B]−p ) = 0.

Proof of Lemma 4: We will calculate the main diagonal elements of [A]+p [B]−p . By definition[
[A]+p

]
1,j

= 0 if j > p+ 1 and
[
[B]−p

]
i,1

= 0 if i < p+ 1. Thus multiplying the first row of [A]+p with the

first column of [B]−p the result is 0, thus
[
[A]+p [B]−p

]
1,1

= 0. Applying the same argument for the rest of

the rows and columns leads to
[
[A]+p [B]−p

]
j,j

= 0 for j = 2, ..., T. Because the [A]+p [B]−p is a matrix with

a main diagonal made of zeroes, then tr([A]+p [B]−p ) = 0.

Proof of Theorem 3. We first proceed to show that

tr(Θ(λ)∆X(λ)ΠN∆X(λ)′) = 0 and (35)

tr(Θ(λ)ΓN ) = tr(Λ′Q(λ)ΓN ). (36)

Assumption C(iii) states that Q(λ) 6= 0 and thus the proof of (35) is not trivial. The expression (27) for

the case of m breaks becomes:

∆X(λ)ΠN∆X(λ)′ =

k∑
i=1

k∑
j=1

[ΠN ]i,j [∆X
(λ)]i[∆X

(λ)]′j , (37)
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For (35), substituting Θ(λ) :

tr(Θ(λ)∆X(λ)ΠN∆X(λ)′) = tr


Ψ(λ)∆X(λ)ΠN∆X(λ)′−

−
k∑

i=m+2

k∑
j=m+2

[
tr(Ψ(λ)[∆X(λ)]i[∆X

(λ)]′j)Z
(λ)
i,j ∆X(λ)ΠN∆X(λ)′

]


= tr
[
Ψ(λ)∆X(λ)ΠN∆X(λ)′

]
−

−
k∑

i=m+2

k∑
j=m+2

tr(Ψ(λ)[∆X(λ)]i[∆X
(λ)]′j)tr

(
Z

(λ)
i,j ∆X(λ)ΠN∆X(λ)′

)
= Ī − II.

By substituting (37), Ī becomes

Ī = tr
[
Ψ(λ)∆X(λ)ΠN∆X(λ)′

]
=

k∑
i=1

k∑
j=1

[ΠN ]i,jtr
(

Ψ(λ)[∆X(λ)]i[∆X
(λ)]′j

)

=

k∑
i=m+2

k∑
j=m+2

[ΠN ]i,jtr
(

Ψ(λ)[∆X(λ)]i[∆X
(λ)]′j

)
. (38)

The last equality holds by Lemma 2 because Ψ(λ) removes the ”crash” vectors and therefore we are only

left with the differenced trend vectors of ∆X(λ).

II =

k∑
i=m+2

k∑
j=m+2

tr(Ψ(λ)[∆X(λ)]i[∆X
(λ)]′j)tr

(
Z

(λ)
i,j ∆X(λ)ΠN∆X(λ)′

)

=

k∑
i=m+2

k∑
j=m+2

[ΠN ]i,jtr(Ψ
(λ)[∆X(λ)]i[∆X

(λ)]′j). (39)

The last equality follows because

tr
(
Z

(λ)
i,j ∆X(λ)ΠN∆X(λ)′

)
= vec(Z

(λ)
i,j )′vec(∆X(λ)ΠN∆X(λ)′)

= vec(Z
(λ)
i,j )′Z̃vech(Π22)

by (33). Since vec(Z
(λ)
i,j ) =

[
Z̃(Z̃ ′Z̃)−1

]
i+

(j−1)j
2

, vec(Z
(λ)
i,j )′ is the i + (j − 1)j/2-th row of Z̃(Z̃ ′Z̃)−1.

Then, given that (Z̃ ′Z̃)−1Z̃ ′Z̃ = IT , it holds that vec(Z
(λ)
i,j )′[Z̃]

i+
(j−1)j

2
= 1 and vec(Z

(λ)
i,j )′[Z̃]ν = 0 for

ν 6= i+ (j − 1)j/2. The proof of (35) comes by subtracting (39) from (38).

For (36),

tr(Θ(λ)ΓN ) = tr

Ψ(λ)ΓN −
k∑

i=m+2

k∑
j=m+2

[
tr(Ψ(λ)[∆X(λ)]i[∆X

(λ)]′j)Z
(λ)
i,j ΓN

]
= tr

(
Ψ(λ)ΓN

)
−

k∑
i=m+2

k∑
j=m+2

tr(Ψ(λ)[∆X(λ)]i[∆X
(λ)]′j)tr

(
Z

(λ)
i,j ΓN

)
= tr

(
Ψ(λ)ΓN

)
= tr(Λ′Q(λ)ΓN ).
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because tr
(
Z

(λ)
i,j ΓN

)
= 0. To see this, by definition Z

(λ)
i,j = vec−1T,T

{[
Z̃(Z̃ ′Z̃)−1

]
i+

(j−1)j
2

}
. Also by

definition, Z̃ has columns of the form vec
(

[·]−
p
(λ,H)
max

)
. Therefore, by Lemma 3, Z

(λ)
i,j = [Z

(λ)
i,j ]−

p
(λ,H)
max

. Then

since, ΓN = [ΓN ]+
p
(λ,H)
max

by Lemma 4 tr(Z
(λ)
i,j ΓN ) = tr(ΓNZ

(λ)
i,j ) = tr([ΓN ]+

p
(λ,H)
max

[Z
(λ)
i,j ]−

p
(λ,H)
max

) = 0.

Overall, from Theorem 1 (using Assumptions A and B) and the Continuous Mapping Theorem,

tr(Θ(λ)Γ̂)− tr(Θ(λ)(∆X(λ)ΠN∆X(λ)′ + ΓN ))
p−→ 0.

Proof of Theorem 4. Start with

d̂(λ)
(
ϕ̂
(λ)
DME − 1

)
= d̂(λ)

(
ϕ̂(λ) − b̂(λ)

d̂(λ)
− 1

)

=

(
1

N

N∑
i=1

y′i,−1Q
(λ)yi,−1

)(
1
N

∑N
i=1 y

′
i,−1Q

(λ)yi
1
N

∑N
i=1 y

′
i,−1Q

(λ)yi,−1
− tr(Θ(λ)Γ̂)

1
N

∑N
i=1 y

′
i,−1Q

(λ)yi,−1
− 1

)

=

(
1

N

N∑
i=1

y′i,−1Q
(λ)yi,−1

)(
1
N

∑N
i=1 u

′
iΛ
′Q(λ)ui − tr(Θ(λ)Γ̂)

1
N

∑N
i=1 y

′
i,−1Q

(λ)yi,−1

)

=
1

N

N∑
i=1

u′iΛ
′Q(λ)ui − tr(Θ(λ)Γ̂)

=
1

N

N∑
i=1

∆y′iΛ
′Q(λ)∆yi − tr(Θ(λ)Γ̂)

=
1

N

N∑
i=1

∆y′i(Λ
′Q(λ) −Θ(λ))∆yi. (40)

where u′iΛ
′Q(λ)ui = ∆y′iΛ

′Q(λ)∆yi because Q(λ)∆X(λ) = 0 and ∆X(λ)′Λ′Q(λ) = 0 because of the way

Q(λ) is constructed. Then, since E(π
(λ)
i ui) = 0, by Assumption B(i),

E
[
∆y′i(Λ

′Q(λ) −Θ(λ))∆yi

]
= E

[
u′i(Λ

′Q(λ) −Θ(λ))ui + π
(λ)′
i ∆X(λ)′(Λ′Q(λ) −Θ(λ))∆X(λ)π

(λ)
i

]
= tr

[
(Λ′Q(λ) −Θ(λ))Γi

]
+ tr

[
(Λ′Q(λ) −Θ(λ))∆X(λ)ΠN∆X(λ)′

]
.

But

tr
[
(Λ′Q(λ) −Θ(λ))Γi

]
= tr

{[
Λ′Q(λ) −Θ(λ)

]−
p
(λ,H)
max

[Γi]
+

p
(λ,H)
max

}
= 0, (41)

by Lemma 4. Notice that
(
Λ′Q(λ) −Θ(λ)

)
=
[
Λ′Q(λ) −Θ(λ)

]−
p
(λ,H)
max

as,

Λ′Q(λ) −Θ(λ) = Λ′Q(λ) −Ψ(λ) +

k∑
i=m+2

k∑
j=m+2

[
tr(Ψ(λ)[∆X(λ)]i[∆X

(λ)]′j)Z
(λ)
i,j

]
(42)

= Λ′Q(λ) −
[
Λ′Q(λ)

]+
p
(λ,H)
max

+

k∑
i=m+2

k∑
j=m+2

[
tr(Ψ(λ)[∆X(λ)]i[∆X

(λ)]′j)Z
(λ)
i,j

]

=
[
Λ′Q(λ)

]−
p
(λ,H)
max

+

 k∑
i=m+2

k∑
j=m+2

tr(Ψ(λ)[∆X(λ)]i[∆X
(λ)]′j)Z

(λ)
i,j

−
p
(λ,H)
max

=
[
Λ′Q(λ) −Θ(λ)

]−
p
(λ,H)
max

,
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because the Z
(λ)
i,j =

[
Z

(λ)
i,j

]−
p
(λ,H)
max

by Lemma 3. Furthermore,

tr
[
(Λ′Q(λ) −Θ(λ))∆X(λ)ΠN∆X(λ)′

]
= tr

[
Λ′Q(λ)∆X(λ)ΠN∆X(λ)′

]
− tr

[
Θ(λ)∆X(λ)ΠN∆X(λ)′

]
= 0,

by the construction of Q(λ) and by (35). Therefore,

E
[
∆y′i(Λ

′Q(λ) −Θ(λ))∆yi

]
= 0.

Its variance is given by,

V
[
∆y′i(Λ

′Q(λ) −Θ(λ))∆yi

]
= V

{
tr
[
(Λ′Q(λ) −Θ(λ))∆yi∆y

′
i

]}
= V

[
vec(Q(λ)Λ−Θ(λ)′)′vec(∆yi∆y

′
i)
]

= vec(Q(λ)Λ−Θ(λ)′)′V [vec(∆yi∆y
′
i)] vec(Q(λ)Λ−Θ(λ)′).

Denote V
(λ)
i = vec(Q(λ)Λ − Θ(λ)′)′V [vec(∆yi∆y

′
i)] vec(Q(λ)Λ − Θ(λ)′). Then by the Lindeberg-Feller

CLT (see e.g. Feller (1968), p.254), under Assumptions A and B,∑N
i=1 ∆y′i(Λ

′Q(λ) −Θ(λ))∆yi√∑N
i=1 V

(λ)
i

d−→ N(0, 1). (43)

By similar arguments it is straightforward to see that V̂ (λ)−(1/N)
∑N
i=1 V

(λ)
i

p−→ 0. This is an estimator

of fourth moments of the ui and requires a uniform bound on the 8th moments. Note that the fourth

order individual effects are removed by the vec(Q(λ)Λ−Θ(λ)′)′s and thus there is no need to make 8th

order moment assumptions on them. To see this, in

V̂ (λ) =
1

N

N∑
i=1

vec(Q(λ)Λ−Θ(λ)′)′ [vec(∆yi∆y
′
i)vec(∆yi∆y

′
i)
′] vec(Q(λ)Λ−Θ(λ)′),

the vectorization in the middle is equal to

vec(∆yi∆y
′
i) = vec(uiu

′
i) + vec(uiπ

(λ)′
i ∆X(λ)′) + vec(∆X(λ)π

(λ)
i u′i) + vec(∆X(λ)π

(λ)
i π

(λ)′
i ∆X(λ)′).

Thus vec(∆yi∆y
′
i)vec(∆yi∆y

′
i)
′ is a function of (to save space the transposed matrices are omitted):

(i) : vec(uiu
′
i)vec(uiu

′
i)
′

(ii) : vec(∆X(λ)π
(λ)
i π

(λ)′
i ∆X(λ)′)vec(∆X(λ)π

(λ)
i π

(λ)′
i ∆X(λ)′)′

(iii) : vec(∆X(λ)π
(λ)
i u′i)vec(∆X(λ)π

(λ)
i u′i)

′

(iv) : vec(∆X(λ)π
(λ)
i u′i)vec(∆X(λ)π

(λ)
i π

(λ)′
i ∆X(λ)′)′

(v) : vec(uiu
′
i)vec(uiπ

(λ)′
i ∆X(λ)′)′.

The matrix (i) : vec(uiu
′
i)vec(uiu

′
i)
′ contains as elements cross products of the errors of fourth order,

and the squared moments of these elements are bounded by Assumption A(iii) (this can be seen by

applying the Cauchy-Schwarz inequality). The matrices (iii) and (iv) contain cross products in which

the elements of π
(λ)
i appear at most in the power of two and therefore their squared moments are
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bounded by Assumption B(ii). The matrices (ii) and (iv) contain elements of π
(λ)
i in higher powers but

are equal to zero when multiplied by vec(Q(λ)Λ−Θ(λ)′)′ and thus there is no need to make higher order

assumptions on the moments of π
(λ)
i :

vec(Q(λ)Λ−Θ(λ)′)′vec(∆X(λ)π
(λ)
i π

(λ)′
i ∆X(λ)′) = tr

[(
Λ′Q(λ) −Θ(λ)

)(
∆X(λ)π

(λ)
i π

(λ)′
i ∆X(λ)′

)]
= 0

by (35). Notice that (35) applies for any matrix ΠN as we have not made any assumptions regarding

its structure, and thus for π
(λ)
i π

(λ)′
i .

Proof of Theorem 5. The distribution G is derived by combining the result of Theorem 4 and

the Continuous Mapping Theorem. We now proceed to derive the formula for Σ. First, notice that

under H2,0 : ϕ = 1 and π
(1)
j,i = π

(2)
j,i = ... = π

(m+1)
j,i , for all j. Therefore, there are no structural

breaks and thus ∆X(λ) ≡ ∆X and Q(µ)∆X = Q(µ)Λ∆X = 0 for every partition µ. This holds because

the column space of R{(∆X|Λ∆X)} is a subset of the column space of R{(∆X(λ)|Λ∆X(λ))}, i.e., if

∆X(λ) =
[
∆e(1),∆e(2),∆τ (1),∆τ (2)

]
, ∆X =

[
∆e(1) + ∆e(2),∆τ (1) + ∆τ (2)

]
. Then, using the same

algebra as in the previous theorem

t(µ)t(ν) =

(
ϕ̂
(µ)
DME − 1

)
√
V̂ (µ)/(Nd̂(µ)2)

(
ϕ̂
(ν)
DME − 1

)
√
V̂ (ν)/(Nd̂(ν)2)

=
1

1
N

√
V̂ (µ)

√
V̂ (ν)

d̂(µ)
(
ϕ̂
(µ)
DME − 1

)
d̂(ν)

(
ϕ̂
(ν)
DME − 1

)

=
1

1
N

√
V̂ (µ)

√
V̂ (ν)

(
1

N

N∑
i=1

∆y′i(Λ
′Q(µ) −Θ(µ))∆yi

)(
1

N

N∑
i=1

∆y′i(Λ
′Q(ν) −Θ(ν))∆yi

)

=

1
N

(∑N
i=1 ∆y′i(Λ

′Q(µ) −Θ(µ))∆yi

)(∑N
i=1 ∆y′i(Λ

′Q(ν) −Θ(ν))∆yi

)
√
V̂ (µ)

√
V̂ (ν)

=
1
N

∑N
i=1

∑N
j=1 ∆y′i(Λ

′Q(µ) −Θ(µ))∆yi∆y
′
j(Λ
′Q(ν) −Θ(ν))∆yj√

V̂ (µ)
√
V̂ (ν)

.

By Assumption A(i), (41), (42) and Lemma A.1. in Kelejian and Prucha (2010),

E
[
∆y′i(Λ

′Q(µ) −Θ(µ))∆yi∆y
′
j(Λ
′Q(ν) −Θ(ν))∆yj

]
= F (µ)ΞF (ν) if i = j,

E
[
∆y′i(Λ

′Q(µ) −Θ(µ))∆yi∆y
′
j(Λ
′Q(ν) −Θ(ν))∆yj

]
= 0 if i 6= j.

Therefore,

p lim
N→∞

 1

N

N∑
i=1

N∑
j=1

∆y′i(Λ
′Q(µ) −Θ(µ))∆yi∆y

′
j(Λ
′Q(ν) −Θ(ν))∆yj − F (µ)ΞF (ν)

 = 0.

and by Slutcky’s Theorem:

p lim
N→∞

[
1
N

∑N
i=1

∑N
j=1 ∆y′i(Λ

′Q(µ) −Θ(µ))∆yi∆y
′
j(Λ
′Q(ν) −Θ(ν))∆yj√

V̂ (µ)
√
V̂ (ν)

− F (µ)ΞF (ν)

√
F (µ)ΞF (µ)

√
F (ν)ΞF (ν)

]
= 0.

Lemma 5: p limN→∞

[
F (λ)′Ξ̂F (λ) − F (λ)′Ξ̂∗F (λ)

]
= 0.
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Table 1: Crash and Changing Growth Model with one break
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

T N H1,0 H1,1 H1,0 H1,1 H1,0 H1,1 H1,0 H1,1 H2,0 H2,1

10 25 0.053 0.109 0.052 0.068 0.057 0.078 0.050 0.060 0.044 0.087
50 0.053 0.144 0.047 0.075 0.055 0.084 0.053 0.095 0.048 0.092
100 0.060 0.185 0.051 0.093 0.048 0.107 0.058 0.115 0.057 0.146
500 0.044 0.466 0.050 0.167 0.058 0.222 0.049 0.276 0.051 0.387
1000 0.059 0.702 0.045 0.226 0.051 0.360 0.051 0.376 0.057 0.608
1200 0.054 0.777 0.046 0.276 0.042 0.396 0.058 0.442 0.052 0.651

20 25 0.067 0.207 0.055 0.134 0.069 0.194 0.062 0.203 0.047 0.171
50 0.063 0.275 0.054 0.159 0.065 0.269 0.060 0.285 0.044 0.243
100 0.061 0.392 0.059 0.241 0.060 0.410 0.053 0.417 0.046 0.429
500 0.053 0.927 0.052 0.642 0.059 0.927 0.060 0.819 0.061 0.927
1000 0.051 0.997 0.051 0.884 0.048 0.997 0.059 0.912 0.058 0.997
1200 0.052 0.999 0.049 0.935 0.053 0.999 0.059 0.936 0.056 0.999

30 25 0.064 0.218 0.064 0.132 0.060 0.238 0.061 0.234 0.054 0.173
50 0.072 0.304 0.041 0.169 0.056 0.355 0.059 0.374 0.047 0.270
100 0.061 0.468 0.057 0.258 0.051 0.558 0.060 0.528 0.049 0.495
500 0.064 0.961 0.041 0.697 0.048 0.990 0.055 0.910 0.058 0.881
1000 0.061 0.999 0.047 0.929 0.062 1.000 0.056 0.979 0.063 0.956
1200 0.057 1.000 0.047 0.961 0.057 1.000 0.047 0.989 0.057 1.000

Proof of Lemma 5: Substituting Ξ̂ and Ξ̂∗:

F (λ)′Ξ̂F (λ) − F (λ)′Ξ̂∗F (λ) =

[
F (λ)′ 1

N

N∑
i=1

vec(∆yi∆y
′
i)

][
1

N

N∑
i=1

vec(∆yi∆y
′
i)
′F (λ)

]
.

Now, consider [
F (λ)′ 1

N

N∑
i=1

vec(∆yi∆y
′
i)

]
=

1

N

N∑
i=1

vec(Q(λ)Λ−Θ(λ)′)′vec(∆yi∆y
′
i)

=
1

N

N∑
i=1

tr
[
(Λ′Q(λ) −Θ(λ))∆yi∆y

′
i

]
= tr

[
(Λ′Q(λ) −Θ(λ))

1

N

N∑
i=1

∆yi∆y
′
i

]
.

From Theorem 1:

1

N

N∑
i=1

∆yi∆y
′
i −∆X(λ)ΠN∆X(λ)′ − ΓN

p−→ 0.

and thus

p lim
N→∞

tr

[
(Λ′Q(λ) −Θ(λ))

1

N

N∑
i=1

∆yi∆y
′
i

]
= 0

by Q(λ)∆X(λ) = 0, (35) and (36).
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Table 2: Crash and Changing Growth Model with two breaks
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

T N H1,0 H1,1 H1,0 H1,1 H1,0 H1,1 H1,0 H1,1 H2,0 H2,1

10 25 0.067 0.110 0.040 0.062 0.050 0.082 0.061 0.075 0.065 0.088
50 0.052 0.143 0.058 0.078 0.071 0.100 0.051 0.098 0.052 0.116
100 0.062 0.175 0.044 0.080 0.064 0.123 0.058 0.124 0.051 0.143
500 0.052 0.465 0.057 0.176 0.058 0.238 0.050 0.286 0.055 0.355
1000 0.049 0.758 0.059 0.236 0.058 0.404 0.050 0.412 0.062 0.572
1200 0.057 0.812 0.058 0.291 0.051 0.488 0.052 0.426 0.049 0.671

20 25 0.058 0.173 0.048 0.085 0.061 0.117 0.060 0.117 0.053 0.153
50 0.063 0.200 0.050 0.111 0.056 0.164 0.049 0.173 0.048 0.199
100 0.060 0.298 0.046 0.132 0.050 0.214 0.049 0.242 0.052 0.337
500 0.049 0.792 0.052 0.344 0.058 0.616 0.063 0.597 0.062 0.775
1000 0.056 0.961 0.045 0.497 0.052 0.868 0.050 0.722 0.063 0.944
1200 0.061 0.983 0.046 0.590 0.052 0.906 0.052 0.770 0.051 0.962

30 25 0.058 0.212 0.054 0.126 0.056 0.202 0.054 0.231 0.055 0.179
50 0.054 0.316 0.056 0.153 0.048 0.310 0.056 0.294 0.052 0.280
100 0.052 0.477 0.046 0.229 0.051 0.443 0.055 0.462 0.059 0.478
500 0.051 0.965 0.049 0.642 0.061 0.955 0.048 0.819 0.050 0.861
1000 0.060 0.999 0.055 0.900 0.059 0.999 0.051 0.920 0.059 0.969
1200 0.052 1.000 0.052 0.931 0.048 1.000 0.054 0.949 0.063 0.987
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