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1 Introduction

Economic theory frequently predicts the existence of equilibria in which the involved processes converge,
in the long run, to a constant value or maintain a constant growth rate. The existence of these predicted
equilibria, and equivalently whether their originating theories hold, hinges on the presence of unit roots
which can be tested by panel data unit root tests. A review of applications of panel unit root tests can
be found in Choi (2015).

In this paper, we propose a general panel data unit root test for models with both general trend
functions and general error processes, when the number of time series observations (T') is finite. The new
test allows for the existence of multiple structural breaks, nonlinear trends, unspecified forms of short
term serial correlation, heteroscedasticity and error cross section heterogeneity. We develop a novel,
doubly modified estimator which is consistent under the null hypothesis of nonstationarity and as the
number of cross section units N goes to infinity. Our new estimator is a corrected version of the within
groups (WG) estimator which is known to be inconsistent in a finite 7" framework, see e.g. Nickel (1981).
We first show that, when the series are nonstationary, the inconsistency of the WG estimator depends
on the error variance-covariance matrix. This inconsistency is estimated by a nonparametric estimator
and this is the first correction. However, the nonparametric estimator is inconsistent in the presence of
complex deterministic components and must be modified as well and hence, the final corrected estimator
used in the test statistic is referred to as the ”doubly modified estimator”, denoted with the acronym
DME. The first correction is similar in spirit to the fully modified least squares estimator of Phillips
and Hansen (1990), for single time series analysis, employed to correct for endogeneity bias and serial
correlation. The second correction, which is that of the nonparametric estimator, is based on the idea of
the variance-covariance matrix estimation method suggested by Abowd and Card (1989) and Arellano
(1990).

The new test has a number of theoretical virtues which result in more robust inference. First, the
problem of modelling the initial conditions, which is crucial when T is small (see e.g. Bun and Sarafidis
(2015)), is avoided because the DME is invariant to the initial conditions. Second, two hypotheses are
considered: a) breaks appear under the null and the alternative, as in Perron (1989) and b) breaks
appear only under the alternative as in Zivot and Andrews (1992). In this latter case, when the dates of
the breaks are unknown, the pdf of the limiting distribution of an infimum-type test statistic is derived
analytically. This is the first paper which provides an analytic pdf of the distribution of an infimum of
statistics, since Davies (1977). Third, by using information from the cross section dimension we avoid
the problem of estimating the long run variance, which is a difficult econometric task even in the panel
data setting (Moon and Perron (2004)).

Most panel unit root tests aim at macroeconomic data (i.e. country level data) where both N
and T are large (see, e.g. Pesaran et al. (2013) and Bai and Carrion-i-Silvestre (2009)). In principle
however, testing whether series are stationary or not is a way to characterize dynamic behaviour and
such behaviour also appears in disaggregated data where there is a large number of units observed
over only a short period of time, i.e. microeconomic panel data. The first panel data unit root test
was applied on disaggregated wage data with a small time dimension (see Breitung and Meyer (1994)).
Other finite T panel unit root tests have been proposed by Harris and Tzavalis (1999), Kruiniger (2008),
De Blander and Dhaene (2012), Han and Phillips (2012), Karavias and Tzavalis (2014a), Choi (2014),
Karavias and Tzavalis (2016) and Robertson et al. (2017) inter alia. Testing the unit root hypothesis in
this type of data has attracted considerable attention, but existing tests rely on restrictive assumptions
on the model specification. This happens because, since T is considered finite, cross section information

must be exploited to bypass time series econometric problems such as nonstationarity, structural change



and serial correlation in the errors, and it is not always clear how this can be done. Papers in the
literature that consider fixed-T' panel unit root testing with structural breaks are those of Hadri et al.
(2012), Karavias and Tzavalis (2014b) and Karavias and Tzavalis (2017). The first two papers allow for
a single structural break in the intercept and the linear trend of the model while Karavias and Tzavalis
(2017) derive the local power functions of tests with one known structural break. In this paper we no
longer specify the form of the trend function, i.e. intercepts and/or trends or what is the number and
date of structural breaks, rather we provide a general theory of testing and sufficient conditions for the
existence of the DME. Monte Carlo simulations demonstrate the excellent finite sample properties of
the new test.

The paper is organized as follows. Section 2 sets up the general model and the hypotheses of
interest. Section 3 introduces the DME and the test statistic. Section 4 discusses the assumptions
used and Section 5 provides the asymptotic theory. Section 7 provides simulation results of Monte
Carlo experiments and Section 8 concludes the paper. The proofs of the theorems are relegated to the
Appendix. Matlab codes that compute the estimator and the test are available on the first author’s web
page.

A few words on notation. The elements of a matrix A are denoted by [A]; ; and [A]; denotes the
j-th column. Define []; : RTXT — RTXT to be the family of linear transformations which map the
main, the first p upper and first p lower diagonals of a T' x T" matrix to themselves while the rest of
the diagonals are set to zero, where p € {0,...,7 — 1}. Additionally, [] : RTXT 5 RTXT gets the
main, the first p upper and first p lower diagonals equal to zero and the rest are set equal to themselves.
Examples of [} and -], can be found in the Appendix. Let vec denote the vectorization operator and
vecy 'y an inverse vectorization operator such that vecy'n(-) : RT* — RT*T_ Let vech denote the half
vectorization operator. We use the Euclidean norm denoted as ||u| = v/u/u, where u is a column vector.
For square matrices A, B, we write A > B to indicate that A — B is positive definite. For matrices A and
B with the same number of rows, let (A|B) denote the augmented matrix (A and B are horizontally
concatenated). The column space of a matrix A is symbolized as R{A}. The notations plimy and
L5 denote convergence in probability while %5 denotes convergence in distribution. Finally, |-] is the

greatest integer function.



2 The model

Consider the following model:

yi = XOaN ¢, fori=1,..,N, (1)
G = ¢C—1+u

where y; = (Yi1, ..., yir)" is a vector of observations, u; = (wi1, ..., uir)", ¢; = ({15 (i) and ¢; _ =
(Cioy -y Ciy) are T x 1 vectors of errors, XM is a T x k matrix of deterministic components and 7'('2(»)\)
a k x 1 vector of random individual effects. The term X (/\)775}‘) is referred to as the trend function.
The scalar parameter ¢ is the autoregressive coefficient and ¢ € (—1,1]. If m common breaks occur,
then these breaks define a partition (71, ...,T,,) denoted by X, where the Tj, for j € {1,...,m}, are the
dates of the breaks. We also define Ty = 1 and T},41 = T and denote with I the set of all admissible
partitions.

The above specification nests various models which are frequently used, i.e. if there are no structural
breaks X = ¢ and wg’\) = m;, where e is a T x 1 vector of ones and 7; is a scalar individual effect.
Another popular specification is a model with individual intercepts and individual trends in which
XN = le, 7] and WEA) = (w14, m9;), where 7y = t for t = 1,...,T and my;, m; are scalar individual
effects. In models without breaks the columns of X*) will consist of one intercept vector and p trend
vectors with 1 4+ p = k, where p is the degree of the trend polynomial. If there are m breaks, X will
contain (m + 1) intercept vectors and (m + 1)p trend vectors as columns, with (m + 1) + (m+ 1)p = k.

For example, in the model with one structural break in the intercept, p = 0 and X = [6(1), 6(2)] ,
(1)

where eg} ) and eg? ) are T x 1 vectors whose elements are defined as follows: e, =1if ¢t <7Tj and
0 otherwise, e§2) = 1if t > Ty and 0 otherwise. Also, 7T§)\) = (WS)JS))’ where scalar 7'('8) is the

individual effect before the break and 7'(‘53) is the individual effect after the break. A single break in a
model with individual linear trends (p = 1) can be cast as XM = [6(1), 6(2),7'(1),7'(2)] where 7(1) and
7@ are T x 1 vectors: 7’151) =t if t <7} and 0 otherwise, and T§2) =t if t > T} and 0 otherwise. Here

M = (7‘1’5?,7‘1’53),71'%),71'2))/ where scalars WS) and ﬂ'g) are the individual effects before and after the

i
break, while W;? and 7753) are the linear trend coefficients before and after the break. Similarly (1) can
nest cases of pure or partial structural change, multiple structural breaks and higher order polynomial
trends. We consider X known up to the location of the breaks.

The common break assumption across all units of the panel ¢ can be attributed to a monetary regime
shift, which is common across all agents (or firms) in the economy, or to a structural economic shock
which is independent of error terms wu;, like a credit crunch or an exchange rate realignment. The
common break may also be seen as the mean of possibly random breaks but we do not consider the
(2) (1)
1

common break date to be random, see e.g. Bai (2010). The magnitude of the break, i.e. my; — my;’,
can be different across units 4, thus allowing for each individual unit to respond idiosyncratically to the
effects of a structural break.

We wish to test the null hypothesis that y;; is a unit root process against the alternative that it
is (trend) stationary. In the presence of structural change there are two approaches in doing so. The
first is by allowing for structural breaks under both the null hypothesis of unit root and the alternative
of stationarity as in Perron (1989); we shall denote this hypothesis as H;. Second, by testing the null

hypothesis of unit root and no breaks against the alternative of stationarity with breaks, as in Zivot



and Andrews (1992); we shall denote this hypothesis as Hs. These hypotheses can be written as:

and

(1) _ 1@ _ )

Hyo : ¢=1landm;’ =m; =T , for all j and 3.

Hy1 @ o<1

s

In applied work both hypotheses are frequently tested for various deterministic specifications. A
popular example is when X()‘)ﬂz(.)‘) = [6(1),6(2),7'(1),7'(2)] (W%),ng),ﬂg),ﬂg))’ for which the null hy-
pothesis H; ¢ postulates that y;+ is a unit root process with drift and a one-time jump in the intercept
at the time of the break while, under H; i, y;: is stationary with a change taking place in both the
intercept and the trend. This is the ”crash and changing growth” model of Perron (1989) and is used
to capture changes in both the levels and the slopes of the series. Under assumption Hj o the null
hypothesis would be that y;; is a random walk process with drift, since ng) = 7Tg) and 71'%) = ng),
while under the alternative Hs 1, it would be stationary with a change in both the level and the slope,
asin Hy ;.

The two hypotheses require different testing procedures when the breaks are at unknown dates. In
H, the breaks appear under both the null and the alternative hypotheses and they can be estimated
in a first step as in Bai (2010), using the first differenced series. This hypothesis is independent of
structural breaks; change occurred and we are only interested whether y;; is nonstationary (acceptance
of Hy ) or not. In Hy the breaks appear only under the alternative. Accepting Hj ¢ means that y;; is
nonstationary and no break occurred. In the event of rejection of Hs g, y;: is stationary and breaks did

happen at the estimated dates.

3 The Doubly Modified Estimator

When ¢ =1, (1) can be written as:

)

Yi = Yi—1+ AX(/\)WZ(- + uy, (2)

where AXW = X)) — X(f‘l), X(j\l) = LX®™ and where L is the lag operator. Given that X©®)
contains (m + 1) intercept vectors and (m + 1)p trend vectors as columns, AX®) contains (m 4 1)
differenced intercept vectors and (m + 1)p differenced trend vectors. If for example m = p = 1,
AXW = [Ae®, Ae® AT ATP)] and there exist (m+1)p = (1+1)1 = 2 differenced trend columns:
[AXO]; = Ar®) and [AXOV], = A7),

Define A a T x T matrix with [A];; = 1 if i < j and zeros elsewhere. Furthermore, let PV =
[vg)‘)7 e vg)‘)] and let viA)7 ..,v$") be the T x 1 vectors which form a base of R{(AXM[AAX M)}, Then

we define the orthogonal projection matrix
QW = Ip — p(A)(p(/\)’p(A))*lp(A)/’

which has the property that QVAXM = QMAAXX) = 0 by construction. We shall further assume
that Q) # 0 and thus the column rank of P) must be less than 7.



The basic estimator that we employ is the WG estimator:

N
@(/\) — 2imi ZU;,—1Q(A)%‘ 3
Zil y;,—lQ(A)yi,—l

This estimator has the property that, when ¢ = 1, it is invariant to the initial conditions of the panel
(

yio and the individual effects 7ri)‘). Thus, assumptions on y;p, like mean and covariance stationarity
made by the generalized method of moments and conditional or unconditional maximum likelihood
estimation procedures (see, e.g., Bond et al. (2005) and Kruiniger (2008)) are no longer required. The
WG estimator ¢ is also attractive for its small sample properties. De Wachter et al. (2007) and Han
and Phillips (2012) have noticed that the performance of the GMM estimator of ¢, compared to ¢,
deteriorates in small samples due to the inaccurate estimation of its weighting matrix. Furthermore,
Han and Phillips (2013) have found pathologies of the first difference maximum likelihood with a high
impact on small sample performance.

The WG estimator is known to be inconsistent in dynamic panel models when the T is finite,
see e.g. Nickel (1981) and Harris and Tzavalis (1999) inter alia. Let I'y = (1/N) Zf\il T'; where
T'; = E(u;u}). It is assumed that the maximum order of serial correlation is pg‘éxH), that is E(ujuis) =0
if |t —s| > p&ﬁ;f). The properties of pfﬁng) are given in Assumption A below. It is shown (Lemma 1)
that plimy_ee (PN — 1 — 5N /dV) = 0,where bV = tr(A’QVTI'y) and dM = tr(A’QMAT ). The
inconsistency is given by the term b /d(N). Ideally we would like to estimate I'y and plug this in 5(**)
and d to bias correct the estimator.

Define I' = (1/N) Zi\; Ay;Ay;, where Ay; = y; —y; —1, to be an estimator for I'y. Furthermore, let
E(WI(A)WEA)/) =1II; and IIy = (1/N) Zf\;l IT;. We would like to use T' as an estimator for I'y but as it
is shown in Theorem 1, plimN_mo(f — Iy — AX(A)HNAX(’\)’) = 0 and thus ' must be bias-corrected

as well. This is the second correction and to do so we need an estimator for IIy. The k& x k matrix Il

1T 11
fy = (Mo e ), @
I, Il

where IIas is a [(m + 1)p] X [(m + 1)p] symmetric submatrix of nuisance parameters which are moments

can be partitioned as

of the coefficients of the differenced trend vectors [AX V] j, for j =m+2, ..., k. As we will explain later,
we will only need to estimate the elements of Tlss.

For each element of Ilso a deterministic 7' x T selection matrix Zi(,;) is needed, and since Il is
symmetric it must be that Z J();) = Zi(:}). The Zi(f]‘») will be used in creating the estimators of the elements
of IIz,. In total we will need [(m + 1)p][(m + 1)p + 1]/2 matrices Zi(’;‘.). For j = m + 2,..., k, define
[AX*(’\)]t’j = [AX(X)]M forall t =1,...,T, except [AX*()‘)]W =0att=T,+1for p=1,...,m. Also,
by defining Z to be a T? x [(m + 1)p][(m + 1)p 4 1]/2 matrix with columns

~ e { [Ax, 0 A ]} i

2] o = -
i L2 #(A #(A #(A *(A I .
; { 200 AL + A AL } i 5,
fori=1,..,(m+1)p and j = 1,...,4, we have that

vech(Ilyy) = (Z'Z) " Z'vec(D), (6)



is an estimator for vech(Ila2). From this expression, we derive the ZZ-(’)]‘-) to be:

A - 5 e —

ZZ.(J) - vecT’lT { [Z(Z/Z) 1} e } . (7)
fori=1,..,(m+1)pand j =1,...,i. The selection matrices Zi(f]‘-) implement the method of covariance
matrix estimation of Abowd and Card (1989) and Arellano (1990).

We propose the doubly modified estimator:

pN)
AN AN b
@DME =@ Ci()‘) 9 (8)

where d = (1/N) N, Yyl _1QWy; _1 and BN = tr(@VT). The numerator bias correction b is
based on O, a T x T matrix with

oW — g — Z Z [ (@ AX VL AX V) 2] (9)
i=m+2 j=m+2

where U = [A/QWM]T, oL

The T x 1 vectors m[KX(A)] for j = m+2,...,k are the (m + 1)p differenced trend columns of
AX® and these vectors are used in the estimation of Ilss. There is no need to estimate the elements
of Iy appearing in II;; and II;5 because these are multiplied by 0 in the definition of @™ since
tr(TW) [AX(A)L;[AX(A)];) = 0if ¢ or j are equal to 1,...,m + 1, (see also Lemma 2). If there are no
trend vectors i.e., X(N) = [e(l), 6(2)] , then p = 0 and we set @) = TW),

Inference on both H; and Hs will be based on the t-statistic,

SO
() — G : (10)
V) /(NdN?2)

where VOV = FOVEFN) | PO = vec(QMWA — V') and 2 = (l/N)Z ¥, vec( Ay Ayl )vee(Ay; Ayl

is an estlmator of Ex = (1/N) 2N, V(vec(AyiAy})). The estimator = is a computationally attractive al-
ternative to =* = (1/N) Zl 1 Vec(AylAyl)vec(Ayszl) —(1/N?) Zl 1 vec(Ay; Ay)) Zl 1 vec(Ay; Ayl
which is the standard consistent estimator found in the literature, see e.g. Arellano (2003), equation
5.58. While = is not a consistent estimator of =n, both = and =* lead to consistent estimation of
V) = FOZFO) as it is shown in Lemma 5, in the Appendix.

4 Assumptions

In this section we present the assumptions that we use. Regarding serial correlation and heteroscedas-
ticity in u;;, we consider the following assumption:

Assumption A

(i) {u;} for i = 1,..., N, is a sequence of independent random vectors, with E(u;) = 0 and E(uu}) =
r;.

(ii) Under H; o, pgﬁ\éxH) =min{T;41—T;—2—p} for j € {1,...,m}, while under Hs g, pg};f) =T—1—p.

(iii) BE(|Jwi||*"°) < M < 400 for i =1,..., N and § > 0.
(iv) plimy 0o 'y > 0.
(

v) plimy 00 En > 0.



Condition (i) of Assumption A allows for heteroscedastic and autocorrelated u;;. The form of het-

eroscedasticity and serial correlation may vary with .
Condition (ii) determines that the maximum order of serial correlation is ot

pl(g‘ng)-dependent u;; are allowed. Although it is assumed that pg}le)

) and therefore only
is common for all 4, each cross-
section unit ¢ can exhibit a different order of serial correlation provided that this does not exceed pfﬁa’be).
The superscript A denotes dependence on the trend function through the location of the structural
breaks and H denotes dependence on the hypothesis being tested (Hy or Hs). If structural breaks do
not occur then pﬁ,i;f) no longer depends on A and H, as in Karavias and Tzavalis (2016). This condition
provides the necessary moments for the estimation of ITy. For the covariance estimation methodology to
work, it must be that for some 4, j, [plimy f]l ;j contain only nuisance parameters of IIy and not of I'y.
The reduction coming from p is a small one; p = 1 for models with linear trends and p = 2 for models

)

with linear and quadratic trends. The value pI(IiZ;XH is the upper bound of serial correlation allowed.

However, in a specific application if there is evidence of weaker or no dependence, it is entirely possible
to select a p < p](q’l\éXH). This will result in a more powerful test because more moments are available for
the estimation of Ilas.

This assumption is general enough to accommodate many applications, see e.g. Schwert (1987).
Furthermore, while heteroscedasticity and autocorrelation consistent estimators (HAC) estimators are
known to be biased and have issues with their performance (see e.g. Kiefer et al. (2000) and the remark
below Theorem 2 in Moon and Perron (2004)), our method results in excellent size control as will be
shown later, because of the way we use the cross section dimension. In the fixed-T literature Karavias
and Tzavalis (2014b) allow for AR(2) errors with a single break. However that method cannot be further
extended to allow for more breaks, trends or heteroscedasticity.

Condition (iii) of Assumption A imposes a uniform bound on the eighth moments of the errors.
Uniformity until the fourth moment fulfils the Lyapunov condition which is a sufficient condition for
the Lindeberg-Feller central limit theorem. Uniformity of the eighth moment is needed for so that
V) — vy 2y If the u; are identically distributed across ¢ then only a uniform bound on the
fourth moments is needed. Conditions (iv) and (v) guarantee that the probability limits of relevant
denominators will not be zero.

Assumption B

(i) {T&',E)\)} for i =1,..., N, is a sequence of independent random vectors which are independent of u;;
for all ¢ and t. s

(ii) E(HWE’\)H ) < +oo fori=1,..,N, and 6 > 0.

Assumption B describes the probabilistic behaviour of the individual effects and is needed so that
V) — v L5 0. Conditions (i)-(ii) are standard in the literature, see e.g. Bai (2013).

Assumption C

(i) If p =0, then min{Tj;, — T;} > 1 for j € {0, ...,m}.

(i) If p> 0 then Ty — Ty > 1+ p and min{T; 11 —T;} > 2+ p for j € {1,...,m}.

The two conditions restrain the number of breaks and their position. Similar assumptions appear
in the time series literature as well, see e.g. Assumption 3 of Bai and Perron (1998). Condition (i)
determines the set I when (1) contains intercepts only. This condition is the weakest because for this
model O = T and no trend nuisance parameters need to be estimated. For a model with two breaks
I=1{(23),(2,4),..,(T —2,T — 1)}. The existence of available moments that allow the estimation of
the trend nuisance parameters is guaranteed by condition (ii). In the presence of linear trends and
two structural breaks, the breaks can take place in the set I = {(2,5),(2,6),...,(T" — 6,7 — 3)}. The



requirement that structural breaks in the trend model must be at least three periods apart is somewhat
stronger than the single time series result by which the breaks must be at least two periods apart, see
Lumsdaine and Papell (1997).

5 Asymptotic results

5.1 Asymptotic bias
The following lemma provides the inconsistency of ¢(*).

Lemma 1 Under the assumptions A and C, the null hypotheses Hyo, f = 1,2 and the dates of the

breaks known, as N — oo,

] L) bM)
p lim (<p _d(’\)_1>207 (11)

N—o0
where b = tr(A'QWT y) and d™ = tr(AQW AT y).

The above expressions show that the WG estimator is inconsistent as N — oco. The bias (inconsis-
tency) of »™) is given by b(’\)/dp‘) and depends on both the deterministic specification of the model,
which is captured by Q) and A, and the assumptions about the error terms u; reflected in I'y.

The main idea of the paper is to propose an estimator for b6 /d) and with that modify the WG
estimator, @81\)/[13 = pW — Z;(A)/dw‘). Note that @) is only adjusted for the bias of its numerator
(Phillips and Hansen (1990) and Kruiniger and Tzavalis (2002)). This method is different from that in
Karavias and Tzavalis (2014b) and is much more flexible.

When estimating b6 = tr(A’QMT y), since the dates of the breaks are known, Q) is known and
so we only need to find an estimator for I'yy such that I —TI'n 0. Applying the I' results in two
problems: first, simply plugging I in tr(A’Q™I'y) is not sufficient because it will result in an identity,

i.e. after simple algebra, it can be shown that:

N
Sh D (WA QWuy — ui N QW ;)
. tr(A'QWMT P
-5 ( L = ¥ =0. (12)
Zyg,qQ(A)yi,q Zy;le()‘)yi’_l
=1

i=1

This happens because we are using the full sample information twice, once to obtain the WG estimator
and once to obtain 6. To bypass this problem, we propose the use of a restricted form of A’QM)
denoted by U™, The restriction is such that tr(¥MTy) = tr(A’QMTy); the matrix TP gives the
non-zero elements of Iy, the same weight that A’Q®™) does. It also gives zero weight to the zero elements
of T and thus TW — A’QM) #£ 0 so that the last equality in (12) is avoided.

The second problem is that, I-TI'y 20 only when Ay; = u;. In this particular case, one can
simply set b = tr(\I/O‘)f‘) and proceed with inference. In general however, this does not hold as it is

shown in the next theorem, and the more complicated ©Y) matrix is needed.

Theorem 1 Under Assumptions A and B, the null hypotheses Hy o, f = 1,2 and the dates of the breaks
known, as N — oo,
p lim I —Ty - AXVIIyAXN| = 0. (13)

The adjustment of I' to render it net of the break nuisance parameters is the second modification

which appears in QQ&E. Notice that we are not interested in estimating 'y per se, but in finding a



O™ such that tr(OMT) — tr(A/QMT ) 2 0. This creates a dichotomy in the nuisance parameters of
AXMNIINAXN: a) those parameters related to the ”crash” vectors of AXM and appear in ITj; and
IT;2 and b) those related to the differenced trend vectors of AX ) and appear in Ily5. By ”crash” vectors
we define those vectors that are everywhere equal to zero, except at the points 7 +1, j = 1, ..., m where
they are either equal to 0 or equal to 1. Ifi.e., AXN = [Ae(l), Ae®@ Ar(), AT(Q)] , the Ae™ Ae®@ are
crash vectors. Crash vectors are the outcome of differencing. The following lemma shows that there is no
need to estimate the first type of nuisance parameters and that we only need estimates of the parameters
in IIso. The case of no structural breaks in the intercepts is trivial, since Ae = 0 and therefore there are

no crash vectors.
Lemma 2 Let (9 be any “crash” vector appearing in AXXN) . Then it holds that ¥™e(®) = 0.

Crash vectors appear also when differencing trend vectors; in the previous example A7) = —T7 Ae() +
e® and AT® = T1Ae® 4 e We avoid their interference in the Iy, estimation problem by working
with [AX*()‘)]j in place of the original differenced trend vectors [AX()‘)]j, for j =m+2,...,k.

We employ the covariance matrix estimation method of Abowd and Card (1989) and Arellano (1990),
which is a method of moments that leads to consistent estimation of Ils5. The intuition is that, because
I'n = [[n]f o by Assumption A(ii), inside Iy + AXMIINAX A exist secondary diagonals that

Pmax

contain elements consisting only of IIyo nuisance parameters.
Theorem 2 Under Assumptions A-C, the null hypotheses Hyo, f = 1,2 and the dates of the breaks

known, as N — oo,
p lim |vech(Tlyy) — vech(ITgg)| = 0. (14)
N—oc0

Now we are ready to use [ in order to get b — pN) 2, 0

Theorem 3 Under Assumptions A-C, the null hypotheses Hfo, f = 1,2 and the dates of the breaks
known, as N — oo,
p lim [tr(@(’\)f) —tr(A'QVT )| = 0. (15)

N—o00

5.2 Limiting distribution

The following theorem provides the distribution of the test statistic for when the dates of the breaks

are known

Theorem 4 Under Assumptions A-C, Hyo with f = 1,2, the dates of the breaks known, and as N —

o0 L ( )
~ (A
%) —1
O = ( e . ) 4, N(0,1). (16)
V) /(NdN2)

If the dates of the breaks are unknown, then it becomes important whether the null hypothesis is
Hy g or Hy. In the first case the breaks appear under both H; o and H;; and they can be estimated
in a first step by Bai’s (2010) method, using first differenced data. That estimator has an o,(v/N) rate
of convergence and thus we can assume the break points are known and apply the results of Theorem 2.

If the null hypothesis is Hao : ¢ = 1 and 77;,11‘) = 7r§-’22-) =..= F;-TJFI) for all j, then the structural
break parameters appear only under the alternative. This is not a regular hypothesis testing problem;
see Davies (1977) and Andrews (1993). Following this literature, the selection of the break dates is

10



viewed as the outcome of minimizing t(*) over all possible combinations of break dates. In this way, the
estimated dates are those that give more weight to the alternative. The null hypothesis is rejected when
: ft(/\) inf 17
W 1)

where z!"f denotes the size a left-tail critical value of the limiting distribution of statistic infyer t,

The following theorem provides this distribution.

Theorem 5 Under Assumptions A-C, the null hypotheses Hs o, the dates of the breaks unknown, as
N — o0

inf ¢ 46, (18)
€

where G is distributed as the infimum of a fized number of mean-zero normal variables. These normals

are correlated with asymptotic variance-covariance matrixz 3 given by:

Fu)=pw)
 VEWEFWNFOERW)]

(19)

>0
where p and v denote two different partitions that belong in I.

There are two ways of getting critical values from G. First, we could proceed by numerically integrat-
ing the analytical pdf function which has been derived by Arellano-Valle and Genton (2008). Otherwise

one can proceed by using the bootstrap. The steps are the following:

1. Use the data to compute the test statistic t(*) for each X\ € I. Compute infye; tN) as well.

2. Generate 7 bootstrap samples of size T'x N by sampling with replacement from residuals u] = Ay;
fori = 1,..., N. This resampling scheme is taken across individuals so that the time series properties
of the series are maintained. Notice that u] = Ay, = AX(A)WZ(-)\) + u; contains information on u;

as well as on the trend function and the individual effect parameters.

3. Generate bootstrap samples as

Yi_1 yioe + Auy, (20)
Yy Yi g tug, fori=1,.. N.

4. For each bootstrap sample, calculate the statistic infyc; (t“o‘) — t(A)) where ¢ is the test

statistic coming from the bootstrap sample.

5. Do this r times and compute the empirical distribution of infy¢; (tr’(’\) — t()‘)) . From this distri-
bution, derive the size a left-tail critical value. If infyc; t™) is less than this value, reject the null

hypothesis.

In the above procedure we use i.i.d. resampling exploiting the independence across units. The
bootstrap samples are created under the Hy o as it is advocated for unit root processes by Basawa et
al. (1991). The proof of the consistency of the bootstrap can possibly be constructed along the lines of
Horowitz (2001).

11



6 Simulation Results

In this section the results of a Monte Carlo study investigating the finite sample performance of the pro-
posed test statistics are reported. Sample sizes for N and T are chosen to be N = {25, 50, 100, 500, 1000, 1200}
and T = {10, 15,20,30}. All experiments are conducted based on 2000 iterations. The model that we
use is the ”crash and changing growth” model the previous section, first with one break in the middle
of the sample and then with two breaks at |0.357] and |0.657|. For these two models we consider 5
scenarios:

1) Testing Hy with u; i.i.d. across i and t.

2) Testing Hy with w; = ;644 + 04644—1 where 6; ~ i.i.d. U[0.2,0.4] and oy ~ i.i.d. U[0.5,1.5].

3) Testing Hy with uy = 0,644 + 0446541 where 8; ~i.i.d. U[—0.4,—0.2] and o ~ i.i.d. U[0.5,1.5].

4) Testing Hy with ¢ ~ i.i.d. U[0.7,0.9] under the alternative and errors as in scenario 2.

5) Testing Ho with w; i.4.d. across ¢ and t.

The individual effects are generated as wgi) ~ i.4.d. U[—0.05,0], ng) ~ i.4.d. U[0,0.05], WS) ~ g..d.
U[0.05,0.1], 7 ~ i.i.d. U[0,0.025], 782 ~ i.i.d. U[0.025,0.05], 753 ~ i.i.d. U[0.05,0.75]. The errors 5
are standard normal and so are the u;; in scenarios 1 and 5. Under the alternative ¢ = 0.8. The initial
conditions are set equal to 0 and for scenario 5, the number of bootstrap replications is 199. The values
used for this experiment are similar to those of Pesaran et al. (2013). In scenarios 1-4 we assume that
the break dates are known while in scenario 5 we assume that they are unknown.

Table 1 presents the results for the model with one structural break and Table 2 presents the results
for the case of two structural breaks. We find that the new tests have excellent size properties for all
specifications and for all combinations of N and T considered, with the size always being close to the
nominal. When it comes to the power of the tests, we have found that adding an extra break, having
heterogeneous alternatives, testing Hy when the breaks are unknown and adding heteroscedasticity and
serial correlation reduces the power of the tests. Positive 8’s lead to tests with lower power than negative
0's.

7 Concluding Remarks

In this paper we propose a general methodology for testing for unit roots in panel data with a short time
series dimension. This methodology, based on the novel DME estimator, allows for models with general
trend functions that may contain intercepts, linear and nonlinear trends and multiple structural breaks
at unknown dates. The error process is also general as the errors may have unspecified forms of short
term serial correlation, heteroscedasticity and cross section heterogeneity. To examine the small sample
performance of the tests, the paper conducts a Monte Carlo study. The results of this study demonstrate

that the suggested tests have always size close to their nominal level and satisfactory power.
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8 Appendix A

In this appendix, we provide proofs of the theorems presented in the main text of the paper. First we

start with a simple example regarding the operators [-]} and [-] .

Example: Let A € R**4, such that

ail a2 aiz aig
a21 A22 G23 (24
a3z1 asz Ga33 a34

a41 A42 A43 A44

Then
aii 0 0 0 ai1  Qai12 0 0
0 0 0 : 0
=] oo and [A]F = | 2
0 a3 O 0 a3z aszz as
0 0 au 0 0 a4z au
Also,
0 a2 a3 aus 0 0 a3 aus
_ 0 _ 0 0 0
Al — a1 a23 Q24 and [A]T = a94
azg1 azz 0  asy as1 0 0 0
ag1 age agz 0 as1 as2 O 0

Proof of Lemma 1. Under any Hy, from (2) and backward substitution we have
i1 = yioe + AAXN7rN 4 Ay, (21)
for i = 1,..., N. If we pre-multiply the above by Q™) (Q™) # 0 by Assumption C) we get
Q(/\)yi,—l = Q(/\)Aui» (22)

as QMVAAXWN = QWAXM) = 0. This happens because the matrix P®) is made up by column vectors
which form a base of the column space of (AXM|AAXM). Since AX®) and AAX™) belong to the
column space spanned by POV it holds that

PN (PR pON=IpAA XA = AXN

and that
p(>\)(P(A)’p(k))*lp(A)'AAx(A) = AAXW),
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and thus QMVAAXM = QWAXM = 0. When XM contains intercepts, Qe = 0 and (22) makes

@™ invariant to the initial conditions.

Then,
o wQWry) o YLiwoa QW e(QWIy)
tr(A/QMAT ) sz\; v _1QWy, tr(NQMVAT )
_ 21111 yg,ﬂQ()‘) (Yi,—1 + AX(’\)WE’\) + u;) tr(A’Q(’\)FN)
B Y v QW tr(A/QWAT y)

Ziv:1 y;,—lQ()\)ui B tr(A’Q(A)FN)
Zﬁvzl yg)le(A)yi,_l tr(A’QWAT )
YL, up A QW tr(AQWMT'y)

_ _ 23
SN N QM Au;  tr(AMQWAT ) 23)

= 1+

where the last equality comes from (22). Notice that E(u,A’QMu;) = tr[A’QM E(uul)] = tr(A'QWNTY).
Thus

N N N
1 1 1
~ ; w A QM — v ; tr(A'QVI;) = ~ ; WA QWM u; — tr(A'QMTy),
and under Assumption A, from Markov’s Law of Large Numbers:
N
el Z WA QMu; — tr(A'QVTy) 250 (24)
N i 7 N 3
i=1

(see e.g. White (1984), p. 33). Similarly, F(u,A’Q™ Au;) = tr[AQWAE (uju})] = tr(A'QWMNAT;) and
N
1 D uiN QW Au; — tr(A'QWT ) 5 0 (25)
N 2t i N '
i=1

Because we are interested in convergence in probability, the following holds by combining (24), (25) and
a form of Slutsky’s Theorem (see e.g. Hogg, McKean and Craig (2013), p. 297)

Zf\;l“;A/Q()‘)Ui B tr(AQMTI'y) 250.
SN UNQW Ay, tr(MQWAT )

K2

Note that the denominator plimy tr(A’QW AT y) is different than zero by Assumption A(iv) which
states that plimy 'y is positive definite. First, notice that A’Q™ A is positive semidefinite as for any
vector € RT, 2/ QW Az = (Az)'Q™ (Az) > 0, because QW) is positive semidefinite as a projection
matrix. Second, plimy 'y is positive definite and can be decomposed as L.L, where L, is a lower
triangular matrix, by the Cholesky decomposition. Thus tr(A’/QM Aplimy T'y) = tr(AQWMWAL,L.) =
tr(L.A'QWAL,). Notice that A’Q™) # 0 as QM) # 0. The only other possible case for A’Q*) = 0 would
be if Q) had non-zero elements in its first row and zero everywhere - but this is not possible as Q)
would no longer be symmetric. Furthermore, AL, has the same non-zero elements with A. Similarly,
(A’Q™) is not a matrix which is everywhere zero but for its first column and thus (A’Q™) A # 0.
Therefore LLA'QWMWAL, # 0. By the same argument as before, L.A’QM AL, is positive semidefinite
and its eigenvalues are greater or equal than zero. Thus, tr(L;A’QO‘)AL*) > 0 because the trace is

equal to the sum of the eigenvalues.
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Proof of Theorem 1. Rewriting (2) we have that Ay; = AX(A)WZ(A) +u; and thus,
E(AyiAy;) = AXVILAXW + T,

for i =1, ..., N. The last expression holds because Assumption B requires that the individual effects and

the error terms are independent. Then

N N N
1 1 1
N 22 Ay = 5 D AXVILAXY 1) = &3 AgiAy) - AXVTIVAX O Ty,
=1

i=1 i=1

Markov’s Law of Large Numbers applies elementwise under Assumptions A and B and thus,

N

1

v > AyiAy; - AXVIyAXY — Ty 25 0.
=1

Proof of Lemma 2. As mentioned above, a ”crash” vector is everywhere equal to zero except at
the points T; + 1, ¢ = 1,...,m where it is either equal to 0 or equal to 1, but is never equal to zero
everywhere. We prove the statement for m = 1 but the same arguments can be applied to the case of
m > 1. Without loss of generality, assume that e(¢) is a crash vector that is everywhere equal to zero
and it is equal to 1 at Ty + 1.

By definition, ¥ = [A'QW]F and QW = Iy — PX(PXN PXN)=1 P Because P is made
by a basis of R{(AXM|AAXM)} PA) contains in one of its columns a multiple of () because the
latter appears in AX® . Without loss of generality, assume that P = [e(c), B] where B is a matrix
containing the rest of the columns of PX).

Define P(el®)) = el (el e()el©) and M(e®) = Ip — P(e(?)). Then, by the blockwise projection

matrix formula it holds that
—1
PO (PA Y=L pO = p(e(©)) 1 M (B [B’M(e(c))M(e(C))B} B'M (Y. (26)

Notice that P(e(®) = e(©) (e(©)e())e(¢) is a matrix that is everywhere zero except at [P(e(c))] T T4l =
1. Thus M (e) is equal to a matrix with its main diagonal elements equal to 1, except at [M(e(c))] Tl T4l =
0. The matrix M(e)B is equal to B everywhere except at [M(e®)B]r,4+1,; = 0, for all j. This is a row
full of zeroes and the ensuing algebra is about the impact of this row. For any matrix A, the matrix
[M(e®)B]A[M (e®)B] will have its T + 1 row and its 7} + 1 column full of zeroes.

The above arguments imply in successive order:

(M(e9)B [BME)ME)B] BME) g = o,
[p(A)(p(k)/p(A))—lp(A)/]Tﬁl = ),

@Mz = 0,

ANQWM] 1 = 0,

WV)p e = 0,

TN —

where 0 is the T-dimensional zero vector. The first equality comes from [M(e¢)B]A[M (e°)B|r+1 =
0, where A = [B’M(e(c))M(e(c))B]_l. The second equality is derived from (26) where we plug in
the result of the first equality and by P(el®)) = el (el e(9)e() being a matrix that is everywhere
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zero except at [P(e(C))]T1+1,T1+1 = 1. The third equality follows from the definition of Q) = I —
PO (PO PANY=1 PN and the fourth equality from the fact that when multiplying the rows of a matrix
(A’ in this case) with a zero column in another matrix ([Q™)]z, 41 = 0), then the outcome is a zero
column ([A’Q™)]z, 41 = 0). Finally, since ™ is a restriction of [A’Q™]r, 41, [EM] 7,11 = 0. The last
equality holds because the non-zero elements of the rows of M) multiply the zero elements of e(®) and

the non-zero element of e(®) is multiplied by the elements in [TM]p, 11 = 0.

Proof of Theorem 2. This proof is divided in two steps. In the first step we prove the existence of
ZZ-(;\-) in a model with no structural breaks. In the second step we show how the previous results extend
to the case of m breaks.

Step 1: Consider a model in which X(*) contains an intercept in the first column and p trend vectors
in the rest of the columns so that 1 + p = k. We emphasize this difference between the intercept and
trend vectors because the nuisance parameters to be estimated arise from the existence of the trends
and they are estimated using trend vector information. These parameters appear in Ilss.

The matrix AX™ has rank(AX™M) = p and consists of a vector of zeroes in its first column and
p differenced trend vectors in the rest of the columns. Since [AXM]; = 0, AXVINyAXP) can be
written as a linear combination of matrices resulting from the outer product of the differenced trend

vectors, multiplied by the elements of 159,

k k
AXOIIYAXO =57 S [My];  JAXVLAX O, (27)

1=2 j=2

where [AX™V)]; denotes the i-th column of AX™. In the simple example mentioned in Section 2,
where X = [e, 7] and 7r( ) = (714, 72:), we have that p = 1, k = 2 and AXN = [0,¢]. Thus
AXMINAXA = 0I1110" 4 0I119€’ + ello; 0/ + ellyoe’. So the parameters which appear in II;; and II;,
are always multiplied by 0

The total number of unique [IIx]; ; elements in the above expression is p(p + 1)/2, because Il is
symmetric as a variance-covariance matrix. Therefore, we need to find p(p + 1)/2 matrices Zi(;) that
allow the estimation of these p(p + 1)/2 nuisance parameters.

The maximum order of serial correlation is pfnax ) and therefore, I'y has (T" — pg‘g’f) — 1) secondary
upper diagonals which contain only 0-elements (it also has the same number of secondary lower di-

agonals but we will not consider them by symmetry), i.e. Ty = [['n]%, 4. These upper secondary

diagonals contain in total (T — piwt) — T — Pt )/2 zero elements. Consequently, the matrix
Iy + AXMIONAX AN contains (T — ot T — Pt )/2 elements that are linear combinations
only of the p(p + 1)/2 nuisance parameters of IIy; these elements do not contain serial correlation pa-
rameters. In other words, at these locations [['y + AXMIINAXN; o = [AXVIINAX A, & where
i=1,.,T—pi) —1andj=i+p2 +1,..,T.

By Assumption A(ii) and under H; ¢ (a similar argument applies for Hs ), p@aXH) =T —-2—pand
therefore, we have (1 + p)(2+ p)/2 elements of I'y + AXMINyAX A that contain p(p+ 1)/2 nuisance
parameters coming from Ily.

We proceed to estimate these nuisance parameters by the method of moments. By setting

N
1
[N Y Ayl =[x+ AXVIyAXV; ;= [AXVIyAXV, (28)

i=1

%

fori =1,..T — p](fr){éx) —land j =1 —|—pfndx) +1,...,T, we get a total of (1 + p)(2 + p)/2 moments
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to estimate p(p + 1)/2 nuisance parameters. Because (14 p)(2 + p)/2 > p(p + 1)/2 for every p, we
have always more moments than nuisance parameters. Furthermore, these moments are not linearly
dependent because they are based on time series information from different periods. Therefore, we can
estimate the p(p + 1)/2 parameters by the method of moments, under Assumption A(ii).

The moments in (28) can be written in matrix form as,

. vec [[AX(/\ Jo[AX >\)] } o, , vec [[AXO‘)}‘ [AX(/\)]/ [AX(A)}Z[AX(/\)] } PO
vec ([F] (A,H)) = [ o vec HAX(/\)] [AXN), ] ) vech(Ilzz),

max
Pmax

vec (m—(m) = Zvech(Ilas). (29)

The unknown parameters appear in vech(Il52). This is an overdetermined system and has an approximate
solution given by ordinary least squares:

vech(Ilyy) = (Z2'Z) ™ Z'vec ([f‘]f(AH)) : (30)
This solution is approximate with respect to the number of moments (1 + p)(2 4 p)/2 available so we

cannot talk about consistency as ”p goes to infinity”. By Theorem 1 (using Assumptions A and B) and
the Continuous Mapping Theorem:

- - ™ oV _
p Jim [Vec Oﬂpﬁnﬁzf’) ([AX HyaXx Lgﬂg@)] =0 (31)
and
p Jim {(Z’Z)_lZ’Vec ([F};&){,J —(2'Z)"" Z'vec (AXWHNAXW)} =0. (32)

therefore, asymptotically for N, (29) is no longer overdetermined and the least squares solution in (30)
is the exact solution. This happens because many sample moments [ Z Ayszl} converge to the

same limit and asymptotically they become linearly dependent moments. In other Words the rank of the

augmented matrix (Z [vec ([F] o H))) drops and becomes equal to the number of nuisance parameters.
Planx

n (31), vec ([f‘]_(“,)) converges to:

max

k k
w(eman]) - (S s o
max =2 j=
= ZVGCh(HQQ).

Thus, by (32) and (33):

leim |:V€Ch(ﬁ22) — (Z’Z)_lzlvec (AX()‘)HNAX(A)/H = leim [VeCh(ﬁgg) — VeCh(H22>:|
— 00 — 00
= 0.

Step 2: Suppose that there are m structural breaks. Then X has m + 1 intercept columns and
(m 4+ 1)p trend columns with k = (m + 1) + (m + 1)p. First differencing the intercept columns creates
"crash” vectors. These vectors are everywhere equal to zero except at the points T + 1, j = 1,...,m
where they are either equal to either 0 or 1. In total AX™ contains m + 1 crash vector columns and
(m + 1)p differenced trends columns. This makes AX My AX (M)’ have a specific structure:
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T +1 To4+1 - T,+1
RT1 XTl CT1><1 R}lx(TQ*Tlfl)
ClXTl Cl)(l s ' .. oo T1+1

Riry—1 —1)x(1y—-11—1)

Th+1

T, +1

Rir_1,, —1)x(T=Tpn—1)

There are three types of elements here, R and R* matrices and C vectors. The R-type and R*

matrices contain the [(m + 1)p][(m + 1)p + 1]/2 Tag-nuisance parameters which will be estimated

as in Step 1. To see this for an R-type matrix, consider the submatrix [FN](TJ—T,-,l—l)x(T,-—Tj,l—l) +
Rz, -1y 1)x (1,1, 1 1) for j = 2,...,m. In this matrix there are (Tj — Tj_1 — paar’ — 2)(Tj — Tj—1 —

pg‘é;f) —1)/2 elements that are linear combinations of the p(p+ 1)/2 nuisance parameters of Ils3 which

are relevant to the 7 — T;_; period. Without loss of generality assume that T; — 7 is the shortest
within break time period, which by Assumption C(ii) is greater or equal to 2+ p and thus, by Assumption
A(ii), ot = T; — Tj—1 — 2 — p. Therefore, we have a total of p(1 + p)/2 available elements. Because
p(1+p)/2 = p(1 + p)/2 for every p, we have the necessary moments. Similar arguments hold for R*
matrices. There is no need to estimate the elements appearing in the C'—vectors because by Lemma 2,
these estimates will be multiplied by zero in the ©») matrix. The elements of II;; and II;5 appear in
the C'—vectors.

The above arguments can be used for other forms of the trend function. Consider the model in which
the breaks happen only in the trends; XM has an intercept, (m+1)p trend columns and k = 14 (m+1)p.
This scenario is simpler than the one above as now there are no ”crash” vectors but [AXM]; = 0. The
effect of [AX™M)]; appears only in the C—vectors which are multiplied by zero in the ©) matrix.
Another case is when the m breaks appear in the intercept and not in the trend. In this case X has
m + 1 intercept columns and p trend columns. AX MIIyAX P will have the C'—vectors as displayed
above but the R and R* matrices will contain p(p + 1)/2 Ilsp-nuisance parameters which are less than
[(m + 1D)p][(m + 1)p + 1]/2 and therefore can be estimated by the available moments.

For the proof of Theorem 3 we need the following two lemmas:

Lemma 3: Let A be any v x v real matrix and B a T? x v matrix such that [B]; = vec([Ji], ),

where J; for i = 1,...,v are real T' x T matrices. Then

VecilT([BA]i) = [VQC;}T([BA]'L‘)}

p

Proof of Lemma 3: The [J;], for i = 1,...,v matrices by definition have their main, the first p

upper and first p lower diagonals equal to zero. Thus [B]; = vec([Ji], ) is a T? x 1 vector that has zeroes

20



in the following in the following elements:

11 4p, (34)
k—1D)T+x—p(k—1)T+x—p+1,., (k=T +K+Dp,

w-—1)T+4v—p,..,(v —1)T+v,

where k = 2,...,v — 1. Since this applies for every column [B];, these rows of B are equal to zero, i.e.
[Bli,; = 0 when i takes one of the values in (34) and for every j =1,...,v
The matrix BA then has zero elements at the places where one of the zero-rows of B multiplies the

columns of A. Because a zero-row of B multiplies every column of A, the outcome is a zero-row in BA :
[BA]; ; = 0 for every j, if i takes one of the values in (34).

Therefore BA and B have the same zero-rows and the vectors [B]; and [BA]; have zeroes at the same
elements. Thus vecilT([BA]i) has zero elements in its main, first p upper and first p lower diagonals

and thus B
veer n((BAL) = [veerp(1BAJ)|

Lemma 4: Let A and B be any T x T matrices. Then it holds that tr([A][B],) = 0.

Proof of Lemma 4: We will calculate the main diagonal elements of [A]“‘[B]_ By definition

[[Al}] ;=0 if j > p+1and [[B], ] = 0if i < p+ 1. Thus multiplying the first row of [A]} with the

first column of [B] the result is 0, thus [[AL}[B], ] = 0. Applying the same argument for the rest of
the rows and columns leads to [[A]}[B]; ] ;. =0for j =2,...,T. Because the [A]l[B], is a matrix with
a main diagonal made of zeroes, then tr([A]l[B];) =
Proof of Theorem 3. We first proceed to show that
tr(O@MAXMNIHyAXN) = 0and (35)
tr(O@MNTy) = tr(A'QWTIy). (36)

Assumption C(iii) states that Q) # 0 and thus the proof of (35) is not trivial. The expression (27) for

the case of m breaks becomes:

k k
AXITINAXY =33 [Ty [AX V] [AX V], (37)

=1 j=1
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For (35), substituting @ :

TOAXNITyAX O —

Z Z { (TN [AXNV], [AX(M];)ZZ_(’)J\_)AX(A)HNAX()\)/}

i=m—+2 j=m+2

= tr [\IJWAX(*)HNAXW} .

tr(O@NAXMIIyAXV) = tr

k

3 a(EVAXVLAXV) (Z(’\)AX(A) NAXW)
i=m+2 j=m+2

= J-1TI.

Mk

By substituting (37), I becomes

I = tr [\I/(A)AX(’\)HNAX(A)’]

k k
ZZ (\DW[AXW]Z-[AXW];)

3 =1

i=1
k k

= 3 Y Mt (TVAXVAXO) (38)

1=m+2 j=m-+2

The last equality holds by Lemma 2 because U*) removes the ”crash” vectors and therefore we are only
left with the differenced trend vectors of AX ™).

k
DS
i=m

i
k

A
(PO AXVLAX V] tr (ZZ.(J)AX(A)HNAX(’\)’)
2

+

27

M), tr (TN [AX D] [AXN])). (39)

Il Il
(- 20

=m

+

27

The last equality follows because

tr (Z0)AXVTINAXY) = vee(Z0))) vee(AX VLY AX )

= VEC(Zi(;) ) Zvech(Ilag)

, VGC(Zi(;))/ is the i 4+ (j — 1)j/2-th row of Z(Z'Z)~!

by (33). Since vec(Z1)) = [2(2/2)71}

SCEY,
Then, given that (Z’Z)_lz’z = Ir, it holds that VeC(ZZ-(;\-))/[Z].J'_(j—l)j =1 and Vec(Zi(;‘-))’[Z]V = 0 for
) K3 s .
v#i4 (j—1)j/2. The proof of (35) comes by subtracting (39) from (38).
For (36),

tr(OWry) = tr [Ty — Z Z [ TV AXN]AXV), )ZO‘)FN}
i=m+2 j=m+2

k k
= tr (\I/(A)I‘N) — Z Z tr(\Il(’\)[AX()‘)]i[AX()‘)};)tr (Zi(,)g\')FN)

i=m+2 j=m-+2
- tr (\IJWPN)

= tr(A'QWIy).
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because tr (ZZ(?)FN> = 0. To see this, by definition ZZ.(;‘.) = vecy { {Z(Z’Z)_l} = } Also by
3 . ) i+ J J

definition, Z has columns of the form vec ([]7@ H)) Therefore, by Lemma 3, Zz-(f‘) [Z(A)] o Then

since, I'y = [['n]™, o) by Lemma 4 tr(Z(’\)I‘N) = tr(I‘NZ(’\)) =tr([C'n]™ e H>[Z(A)]_(A H)) 0.
Overall, from Theorem 1 (using Assumptions A and B) and the Contlnuous Mappmg Theorem,

tr(OMT) — tr(@MN(AX My AXN +Ty)) 25 0.

Proof of Theorem 4. Start with
. . H)
d(’\)( &) 1) — AN [ 2 1

N 15N (N g NT

1 i—1 Y 1@y tr(@WT

N § y§,1Q(’\)yi,1> < 1N Lzt it 5 il ) — 1)
i=1

N N
N D1 ya_lQ(A)yi’,l % dic1 yz{,—lQ()\)yi,*l

N 1 N rar(A AT
1 LS U N QW — tr(O@WVTY)
= (NZ?JQJQ(A)%J) (N : 1 b
i=1
1

~ Ei:l yi,—lQ(A)yi,*l

N
= Zu;A'Q()‘)ui — tr(OWI)

=1

=|

-
Il

AyiA'Q()‘)Ayi — tr(@()‘)f)

I
2| =
-

«
Il
—

Ayi (A QW —eW)Ay,. (40)

I
2| =
-

s
Il
—

where u;A'QMu; = Ay!N QM Ay; because QMVAXA) =0 and AXM'A’QM) = 0 because of the way
QW is constructed. Then, since E(W(A)Ui) = 0, by Assumption B(i),

?

E[ay(vQ™ —eM)ay| = E[u(d'Q® - 0y + 7V AXN(NQR — 6)axNrV]

tr {(A/Q(A) - @(A))rz} +tr {(A/Q(A) _ @(A))AX(A)HNAX(A)/] .

But
tr [(A/Q(A) — @(A))ri] =tr { [A’Q(A —eW ] o D e H>} 0, (41)

O F Praax

by Lemma 4. Notice that (A’'Q™ — W) = [A/QY) — oW } () 88,

Pmax

ANQW —eM = AQW — g Z Z [ TOAX V] [AXVY, )Z“)} (42)

i=m—+2 j=m+2

NQW - [a'Q A>] o+ Z Z (@O AX O [AX V) 28]

Pmax i=m+2 j=m-+2

k k
= Q] ] XN e IAXOAX )2

Prmax i=m+2 j=m+2 (N H)
Prmax

— [A/Qm @m} s

'max
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because the Zl-(,)‘) [Z (A)} by Lemma 3. Furthermore,

(% H)

tr {(A’Q(’\)f@(’\))AX(A)HNAX(’\)’} = [A’Q(A)AX(’\)HNAX(’\)’]ftr [G(A)AX(’\)HNAX(A)’}

by the construction of Q) and by (35). Therefore,
B [Ayi(3QY — 6M)ay| =0
Its variance is given by,

V]AGw QW —eMay] = v {u QM - eM)ayay]}
=V {VGC(Q(A)A - @(’\)/)'Vec(AyiAyg)]
= VeC(Q(A)A _ @(A)/)/V [Vec(Aysz;)] VeC(Q()\)A _ @(A)/)

Denote VZ-()‘) = vec(QMA — OV [vec(Ay; Ay))] vec(QMA — ©N). Then by the Lindeberg-Feller
CLT (see e.g. Feller (1968), p.254), under Assumptions A and B,

SN LAY QY — M)Ay,

By similar arguments it is straightforward to see that V) — (1/N) Zfil VZ-(A) 2 0. This is an estimator

—45 N(0,1). (43)

of fourth moments of the w; and requires a uniform bound on the 8th moments. Note that the fourth
order individual effects are removed by the vec(QMA — ©)’s and thus there is no need to make 8th

order moment assumptions on them. To see this, in

N
~ 1
VA = N Zvec(Qo‘)A — O [vee(Ay; Ayl vee( Ay Ayh) ] vee(QMA — @),

i=1

the vectorization in the middle is equal to
vee(Ay; Ay]) = vec(us,) + vee(u;m N AX VY + vec(AX M rMul) + vee(AX N a M 7 A x 7y

Thus vec(Ay; Ay} )vec(Ay;Ay.) is a function of (to save space the transposed matrices are omitted):

<)
>
e
>
3
>
3
z
>
e
>
>3
@
¢}
=}
>
=1
2:
E
9
>
e
>
\-:

) (
) ( s
(#i1) - Vec(AX(A)wEA)u;)V (AX(A) eV ul)’
) ( E e
) (

(v

The matrix (7) : vec(u;u})vec(u;u;) contains as elements cross products of the errors of fourth order,
and the squared moments of these elements are bounded by Assumption A(iii) (this can be seen by
applying the Cauchy-Schwarz inequality). The matrices (ii¢) and (iv) contain cross products in which

)

the elements of m;”’ appear at most in the power of two and therefore their squared moments are
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bounded by Assumption B(ii). The matrices (i7) and (iv) contain elements of WEA) in higher powers but
are equal to zero when multiplied by Vec(QO‘)A —eW )’ and thus there is no need to make higher order
assumptions on the moments of 7r(/\) :

vec(QWA — 6(’\)’)’vec(AX()‘)ﬁg’\)ﬁg’\)/AX(’\)’) = tr {(A’Q()‘) - @(’\)) (AX(/\)WZ(‘/\)”E/\)/AX(/\)IH
-0

by (35). Notice that (35) applies for any matrix IIy as we have not made any assumptions regarding
its structure, and thus for 71'( )770‘)/

Proof of Theorem 5. The distribution G is derived by combining the result of Theorem 4 and
the Continuous Mapping Theorem. We now proceed to derive the formula for . First, notice that
under Hop : ¢ = 1 and 7r(1) = w§2i) = .. W§T+1) for all j. Therefore, there are no structural
breaks and thus AXM = AX and QWAX = QWAAX = 0 for every partition . This holds because
the column space of R{(AX|AAX)} is a subset of the column space of R{(AXMN|AAXP)} ie., if
AXP) = [A6(1)7Ae(z),AT(l),AT@)]7 AX = [Ae(l) + Ae@ A —|—AT(2] Then, using the same

algebra as in the previous theorem

o () ()

VU /(Ndw2) [T ) (vde?)

1 A N
%\/mm ( DME ) ( YDME — )
N
1 1
= Ayl (N QW — o)Ay ) < Ayl (N QW) — @(V))A%)
%\/V(ﬂ VIV ®) ( Z N;
& (2, AU - @<ﬂ>>Ayz-) (L) A(AQw — 6W)ay,)
VV AV )
& S S An(AQW) — 6)) Ay Ay; (A'QY) — 6) Ay,
VA V@)

By Assumption A(i), (41), (42) and Lemma A.1. in Kelejian and Prucha (2010),

E[Ay;(A’QW — 0 Ay Ay (A'QY) —@<”>)ij] = FWzF® ifj = j,

E [Ayi(A'QW) — 000) Ay Ay, (N'QY — 0 ) Ay;| = 0if i # .

Therefore,

N—o0

N N
1 v v L) = v
p lim v ZZAyg(A/Q(M) _ G)(“))AyiAy;(A’Q( ) — of ))ij —_ W= | — .
i=1j=1

and by Slutcky’s Theorem:

p lim i ZL Z;\Izl Ayi(A'QUW — ®<“))AyiAy§(A’Q<”) — 0W) Ay, B FWEp®)
N—oo NAdDRVAEO) VFEFWEFW/FOWEF®)

Lemma 5: plimy o [FOVEFO) — FOVE FO] 0.
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Table 1: Crash and Changing Growth Model with one break

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
T N Hyoyw H, Hyoy H,1 Hypy H, Hyp H,; Hygy H
10 25 0.053 0.109 0.052 0.068 0.057 0.078 0.050 0.060 0.044 0.087
50 0.053 0.144 0.047 0.075 0.055 0.084 0.053 0.095 0.048 0.092
100  0.060 0.185 0.051 0.093 0.048 0.107 0.058 0.115 0.057 0.146
500 0.044 0.466 0.050 0.167 0.058 0.222 0.049 0.276 0.051 0.387
1000 0.059 0.702 0.045 0.226 0.051 0.360 0.051 0.376 0.057 0.608
1200 0.054 0.777 0.046 0.276 0.042 0.396 0.058 0.442 0.052 0.651
20 25 0.067 0.207 0.055 0.134 0.069 0.194 0.062 0.203 0.047 0.171
50 0.063 0.275 0.054 0.159 0.065 0.269 0.060 0.285 0.044 0.243
100 0.061 0.392 0.059 0.241 0.060 0.410 0.053 0.417 0.046 0.429
500 0.053 0.927 0.052 0.642 0.059 0.927 0.060 0.819 0.061 0.927
1000 0.051 0.997 0.051 0.884 0.048 0.997 0.059 0.912 0.058 0.997
1200 0.052 0.999 0.049 0.935 0.053 0.999 0.059 0.936 0.056 0.999
30 25 0.064 0.218 0.064 0.132 0.060 0.238 0.061 0.234 0.054 0.173
50 0.072 0.304 0.041 0.169 0.056 0.355 0.0569 0.374 0.047 0.270
100 0.061 0.468 0.057 0.258 0.051 0.558 0.060 0.528 0.049 0.495
500 0.064 0.961 0.041 0.697 0.048 0.990 0.055 0.910 0.058 0.881
1000 0.061 0.999 0.047 0.929 0.062 1.000 0.056 0.979 0.063 0.956
1200 0.057 1.000 0.047 0.961 0.057 1.000 0.047 0.989 0.057 1.000

Proof of Lemma 5: Substituting

FOVERpQ) _ pNrax p(d) —

Now, consider

N
1
F(A)/N > vee(Ay;Ay;)

From Theorem 1:

and thus

by QMVAXM) =0, (35) and (36).

i=1

N

1

v Z Ay Ay, — AXMNIINAXY Ty 25 0.
=1

lim tr
p N—oco

= and =*:

N
1
F('\)/N > vee(AyiAy;)

i=1

N
1
N > vec(Ay;Ay;) FY

i=1

N
% D vec(@MVA — 0V ) vec(Ay; Ay))

i=1

1 N
=S [(QW - eM)ayAy,
LS| |

tr
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N
1
(A/Q(/\) - @(/\))N § AyiAyg
i=1

=0

N
1
(NQW — @(A))N > AyiAygl :
i=1




Table 2: Crash and Changing Growth Model with two breaks

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
T N Hyo Hiyn Hipg Hiyn Hip Hip Hiyo Hip Hepg Hop
10 25 0.067 0.110 0.040 0.062 0.050 0.082 0.061 0.075 0.065 0.088
50 0.052 0.143 0.058 0.078 0.071 0.100 0.051 0.098 0.052 0.116
100  0.062 0.175 0.044 0.080 0.064 0.123 0.058 0.124 0.051 0.143
500  0.052 0.465 0.057 0.176 0.058 0.238 0.050 0.286 0.055 0.355
1000 0.049 0.758 0.059 0.236 0.058 0.404 0.050 0.412 0.062 0.572
1200 0.057 0.812 0.058 0.291 0.051 0.483 0.052 0.426 0.049 0.671
20 25 0.058 0.173 0.048 0.085 0.061 0.117 0.060 0.117 0.053 0.153
50 0.063 0.200 0.050 0.111 0.056 0.164 0.049 0.173 0.048 0.199
100  0.060 0.298 0.046 0.132 0.050 0.214 0.049 0.242 0.052 0.337
500 0.049 0.792 0.052 0.344 0.058 0.616 0.063 0.597 0.062 0.775
1000 0.056 0.961 0.045 0.497 0.052 0.868 0.050 0.722 0.063 0.944
1200 0.061 0.983 0.046 0.590 0.052 0.906 0.052 0.770 0.051 0.962
30 25 0.058 0.212 0.054 0.126 0.056 0.202 0.0564 0.231 0.055 0.179
50 0.054 0.316 0.056 0.153 0.048 0.310 0.056 0.294 0.052 0.280
100 0.052 0.477 0.046 0.229 0.051 0.443 0.055 0.462 0.059 0.478
500  0.051 0.965 0.049 0.642 0.061 0.955 0.048 0.819 0.050 0.861
1000 0.060 0.999 0.055 0.900 0.059 0.999 0.051 0.920 0.059 0.969
1200 0.052 1.000 0.052 0.931 0.048 1.000 0.054 0.949 0.063 0.987
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