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Abstract

The market for distributed Renewable Energy Systems has increased considerably in
recent decades, driven by the necessity for a reduction in global carbon emissions in an

effort to combat climate change.

While the focus on decarbonising the energy sector in Europe has been successful in
recent years, it has disproportionately benefited urban population centres. Those who live
in built-up environments will likely have better access to newer, greener technology, with
islanded communities often relying on a weaker grid with fossil fuel reliant infrastructure.
These communities are therefore at high risk of being left behind in the energy transition

towards net-zero emissions.

This study presents a novel solution to the problem of decarbonising remote, islanded
populations by means of Renewable Energy Communities (RECs). The test location,
Formentera, was chosen due to its unique set of challenges and opportunities regarding
energy security and access to clean energy. A generalised, modular model was developed
in Python, allowing the integration of generation (wind and solar), storage (battery and
hydrogen), and real-world data from the test location. The model simulates the dynamic

dispatch of the system over hourly increments to evaluate the annual performance.

The system is optimised using the Non-dominated Sorting Genetic Algorithm (NSGA-II),
which identified an inherent trade-off relationship between cost reduction and decarbonisation
of the REC. Results show that the deployment in the case study location can deliver
improvements in both cost and emissions relative to a grid-only scenario. A comparison
of storage configurations shows a considerable benefit to co-locating batteries and a
regenerative hydrogen storage system due to the latter’s ability to act as a seasonal storage
buffer. Findings suggest that a 'friendly’ local trading policy outperforms a market-based

regime on cost savings, and ensures better energy equity between members.

The analysis incorporates Monte Carlo simulations of estimated assumption ranges and
a variance-based Sobol sensitivity analysis. These methods reveal the range of variability
in the result arising from uncertainty in the input assumptions, including those which
most impact performance, thus identifying high-risk areas for project monitoring and
intervention. These can not only support the design stage of the REC but also contribute

to risk-aware planning and policy development.

The model’s development in Python allows for a scalable foundation on which future
research can be built, and contribute to the commercialisation of an REC-focused planning
tool. The outcome of this work provides a novel, quantitative guide for energy developers,
government entities, and network operators on REC development. The model framework
can be used to trade-off system cost and emissions reduction, design for and navigate
potential future energy policy, assess energy equity, and ensure a clearer route to realising

the net-zero aspirations of rural, islanded communities.
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Chapter 1

Introduction

1.1 Background

The market for distributed Renewable Energy Systems (RESs) has increased considerably
in recent decades, driven by the need for a reduction in global emissions to combat climate
change. The European Council for Climate Action set out a target of at least 27% share
of renewable energy usage within the EU by the year 2030, and a total of 40% domestic
reduction in greenhouse gas emissions compared to 1990 [1]. These targets were agreed
upon to comply with the objectives of the 2015 Paris Agreement on Climate Change
following the 21st Conference of the Parties to the United Nations Framework Convention
on Climate Change (UNFCCC). The central aim is to prevent global average temperatures
from rising by 1.5°C, with a contingency to keep ’well under’ 2°C compared to pre-industrial
levels [2]. With a 1.5°C increase surpassed for the first time in 2024, and, according to the
International Energy Agency (IEA), a rise of 2.4-3°C is far more likely [3]. The impacts of

such warming would be understandably devastating to the global ecological system.

In 2023, the UNFCCC conducted the first of many global stocktake exercises to
measure decarbonisation performance against individual countries’ Nationally Determined
Contributions (NDC). NDCs are commitments that countries make to reduce their
greenhouse gas emissions as part of the climate change mitigation plan. Conclusions
from the technical report released ahead of the 28th Conference of Parties (COP28)
confirmed that, while many nations have made strides to reduce carbon emissions, an
accelerated effort is needed to keep global temperature rise below 2°C [4]. The UK has
committed to a NDC target of reducing emissions by 65% from 1990 levels, and having met
a 52.7% reduction in 2023, are considered on track to meet its target [5]. Other European
countries, like Poland, for example, have committed to the EU target of 55% reduction
by 2030. However, for Poland, a fossil fuel heavy market with a large, primarily rural
population [6], the country has reduced emissions by just 19% in 2023 compared to 1990
[7].
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A key assumption for many economies is that decarbonisation of the energy system
will be achieved through electrification. In the UK, 104.2Mtonnes of CO2 equivalent
emissions were produced from power generation alone in 2018, accounting for 23.2% of
the total greenhouse gas production, only being surpassed by the transport industry with
27.6% share [8]. Assuming that the emissions share values are similar for other European
countries, there is scope for further reductions in the emissions from power production,
helping to catalyse the transition to a low carbon world. In Europe, renewable energies
increased their share of power generation to 35% as of 2022, equal to over 50% in the

previous 10 years, as seen in Figure 1.1, reducing the requirement for fossil fuel power.

Figure 1.1: Europe power sector generation mix (Eurostat).

While RES are excellent at cutting emissions from power generation, there is still the
challenge of their intermittency during unfavourable weather conditions. Situations of high
energy production will create an energy surplus on the grid, leading to grid congestion
and negative price signals in a free energy market, and damaging the energy economy [9].
Conversely, intermittent or too little RES production will cause grid instabilities and the
potential for black-outs. The increasing uptake of roof-top mounted solar panels and other
consumer-level generation will add further difficulty to the control and management of the
power grid. Figure 1.2 is an illustrative example from the California Independent System
Operator (CISO) of how the increasing penetration of solar power produces a considerable
portion of surplus energy, and therefore a negative market pricing signal between 7:00-15:00.
The ability to temporarily store the excess power generated would go some way to limiting
these negative impacts, though comes with its own set of technical challenges. The
uncertainty of the final cost to the consumer for upgrades required to transition to ’green’

power generation also raises concerns for developing, as well as developed, economies.
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Figure 1.2: Renewable energy community system architecture (Environmental Investigation
Agency 2017).

Considering consumer uncertainty is vital when analysing the impact of renewables
on the supply of power, particular those in islanded locations or remote communities.
Rural populations account for 43% of the total global population, that is, citizens who live
outside of larger towns and metropolitan areas. Figure 1.3 shows the percentage of the
rural population, highlighting particular countries such as Ireland and Romania as having
higher numbers of decentralised rural community living.

While those who live in built-up environments will likely have better access to newer,
greener technology, rural communities often rely on a weaker grid with aging, fossil fuel
reliant infrastructure. Local energy prices can vary significantly, based on the availability
of generation and the cost of infrastructure. Because rural and islanded populations often
have limited connection to the grid, this puts them at high risk of grid congestion and
curtailment, pushing up operational costs. For many remote locations, such as Scotland in
the UK and the Nordics, the location emissions are actually lower than populated areas
due to the increased space for renewables. However, rural islands, such as Malta or the
Balearic Islands, have a higher emissions intensity as limited space for renewable power
leads to additional gas and coal power stations to keep up with demand. Rural and remote
populations are also more likely to be impacted by renewable development projects which
will, in many cases, have a physical impact on the local area, resource availability, and
other societal factors many fear would damage the local economy. A number of European
countries, including Poland, France and parts of the UK currently have, or have previously
had, some form of onshore wind generation ban in place. This line of reasoning indicates
that rural communities are therefore at higher risk in energy transition. Firstly, by being
stranded without means to access a clean, secure energy, and secondly, facing possible

disruption to local systems and economies due to the increasing land use for renewable
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development programs. One of the key findings from the first UNFCCC global stocktake
states that ” systems transformations open up many opportunities, but rapid change can be
disruptive. A focus on inclusion and equity can increase ambition in climate action and
support.” [4]. The report calls on action for all parties, including subnational authorities

and local communities to ensure a just transition.

Figure 1.3: The percentage of the European population living in rural and decentralised
communities (source: World Bank database of as 2024).

These considerations in combination with the imposed net-zero energy grid targets

bring up the following objectives that must be addressed:

1. Allow increased RES installation without impacting grid stability.
2. Increase visibility of decentralised renewables as the consumer market grows.
3. Allow for the optimal deployment and usage of Energy Storage Systems (ESS).

4. Minimise the economic and societal impact of the 'green’ power transition on rural

and islanded populations.

5. Assess the optimal system sizing and operation of decentralised renewables for best

economic and environmental performance.

Previous efforts have gone to some length to find individual, feasible solutions to these
problems, but many lack a connection of these somewhat wide-ranging aspects through a
single, technical solution.

A potential answer to the growing problem described is utilising decentralised RES with
ESS capability, that can automate and control the process of energy production, storage,

and distribution within their respective markets while minimising grid distortion. It would
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negate the requirement for support power to be supplied by fossil fuels by producing an

aggregated, controllable power supply, also known a Virtual Power Plant (VPPs).

A VPP essentially combines the power outputs of several heterogeneous energy generating
sources, along with ESS, to function as a single energy source. This is usually described
as consisting of dispatchable and non-dispatchable sources, as shown in Figure 1.4.
Non-dispatchable sources including PV solar and wind turbines form the base power
generation, then hydro power, battery ESS, and other dispatchable sources can be ramped
up and down to balance the supply requirement. Certain VPP topologies are not necessarily
aimed at providing the lowest possible energy price, and may equally prioritise positive
societal impacts, such as displacing fossil fuel emissions, whilst providing local security of
supply benefits. The definition of a VPP covers a number of different decentralised energy

delivery architectures.

In this research, the depth and breath of potential configurations is reviewed in detail,
assessing the obstacles and challenges to implementation. From this process, it was
determined that the direction of this work would primarily focus on the concept of a
Renewable Energy Community (REC); a type of VPP that is instead operated for the
direct benefit of a localised community with shared objectives [10]. The justification for
this narrowing of the research scope is described in detail in Chapter 2. Comprehensive
research and understanding of ESS technologies are central to the functionality of the REC
definition as presented. This thesis reviews the options for decentralised energy storage,
before applying this process to a reduced set of optimal technology; namely electrochemical
batteries and Regenerative Hydrogen Fuel Cells (RHFCs).

Figure 1.4: A simple schematic of a typical Virtual Power Plant configuration.
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Ever increasing computational capability has enabled complex energy systems to be
modelled in high fidelity. This research effort culminates in a comprehensive multi-domain
energy systems model to provide the optimal design and deployment pathway for a
decentralised REC. The model takes into account the local conditions of the deployment
location, constraints on asset sizes, emissions, and the final cost to the community members.
The modelling capability would allow local stakeholders and policymakers to view and
assess the impacts of a proposed REC configuration, and gives the ability to observed the
trade-off in abatement cost of reducing emissions through renewable energy investment.

This work, as part of a wider European effort to accelerate the energy transition, uses
the case of geographical islands to illustrate and validate the solutions proposed. Using
islands as test locations, an in-depth assessment remote island communities’ current state
of renewable energy access was performed, highlighting weaknesses and risks to achieving
effective decarbonisation.

One of the biggest challenges of emissions reduction of European countries is in the
development of renewable energies on geographical islands. Some more remote islands
often rely on low capacity sea cables to receive energy from the mainland or use on site
diesel generators for additional power in remote areas, both of which are unsustainable.
The risk of increased cost and decreased security of supply is therefore very likely for these
communities in the near future, particularly those without the space and resources required
to develop renewable energy sites locally. European island countries such as Malta and
Cyprus already report some of the highest energy and network costs in Europe [11], likely
due to the requirement for mainland energy trade and fuel imports, with fossil fuel levies
and emissions trading schemes exacerbating problems. Geographical islands also often lack
the necessary facilities and expertise to develop potential smart grid concepts to increase
sustainability and reduce reliance on imported energy. Sustained energy independence is

therefore a critical goal for these islands.

1.2 Aims and Research Questions

Based on the problem set out, the overall aim is to design and assess routes to commercial
deployment of REC systems on geographical islands, taking into account the impacts on
policy and regulation, technological requirements, as well as the social and environmental

impacts. The formulated research questions to answer are therefore as follows:

1. How can the deployment of VPP-based RECs be most effective in serving the energy

transition needs of rural and islanded locations?

2. How can an energy system model be used to design and simulate the dynamics of a

REC, considering the specific needs and demands of an islanded community?
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3. What is the system design benefit of integrating a multi-objective optimisation

methodology considering specific cost and decarbonisation targets?

4. What are the potential benefits of co-locating battery and hydrogen storage systems

on the performance and resilience of the REC?

5. How can sensitivity and uncertainty analysis be implemented in the modelling
approach, be used to guide risk-related REC design, and inform potential policy

frameworks?

1.3 Project Approach

The approach of this project is as follows. In the first phase, a literature review of
community-based Virtual Power Plant systems was conducted to provide the framework
for the research methodology and gaps in the state-of-the-art. This is accompanied by
an obstacles to innovation review, where the critical opportunities and challenges to the
technical deployment and commercialisation of such a system is explored in detail. The
decision to analyse a hybrid battery and regenerative hydrogen fuel cell storage system
are also presented. The modelling methodologies for decentralised power generation and
storage assets is also consolidated within the literature review, as well as design, control and
optimisation techniques used to solve the prominent challenges facing Energy Communities.

What follows is the approach and research methods used to answer the overall research

questions of this work.

1.4 Research Methods

The methods used to answer the research questions laid out can be broadly categorised

into the following pillars:

1. Define the operational, geographic and socioeconomic landscape in which the REC
case study sits, ensuring that the system design is anchored in a real world scenario

and accompanying data.

2. Create an energy system and multi-objective optimisation model to simulate and
optimise the design of the proposed REC configuration, with a focus on the trade-off

between economic and decarbonisation performance.

3. Use known uncertainty and sensitivity analysis methods to assess the robustness of
the model results, understanding the range of performance under variability, and

identify critical input parameters.
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Contextual analysis and REC case study: The island of Formentera, Spain, is used
as a representative case of a rural, isolated energy community candidate. A quantitative
analysis is conducted on the input data, including hourly electric load profiles of the
included buildings, hourly meteorological data (wind speed, temperature), and the local
grid emissions intensity, all of which are used in the parameterisation of the system model.
A qualitative assessment of land availability, suitability of renewable deployment, and
regional planning restrictions in the context of renewable energy communities is also
conducted. The outcome of these methods is a robust, real-world data-driven foundation
for the REC case study on which to base the design and simulation model, and fulfills the

objectives of research question one.

REC system modelling and multi-objective optimisation: A model is then
developed, including all REC buildings and multiple renewable generation and storage
assets, and is built on the strong data foundation provided by the previous pillar. In
particular, the wind and solar modelled performance is directly related to the local
weather conditions of the site. The Non-dominating Sorting Genetic Algorithm (NSGA-II)
multi-objective optimisation method is then used to explore the trade-off arrangement
between cost and decarbonisation of the system, and the benefit to the local community.
The system is also tested under a number of scenarios, the first of which is a comparison
between co-located battery and hydrogen storage compared to standalone, and the second
is a comparison of friendly and competitive energy trading policies. The key outcome
of this is a comprehensive understanding of the system dynamics, and under different

operational designs and constraints.

Uncertainty and sensitivity analysis: Once the system modelling methodology
is complete and analysis of cost and emissions performance has been conducted, an
uncertainty and sensitivity analysis of the model then follows. First is a Monte Carlo
assessment, in which different input parameters including technology costs and efficiencies
are varied across realistic ranges from literature. The resulting simulation data provides an
understanding of the range of possible performance outcomes. Secondly, the variance-based
Sobol sensitivity analysis was chosen to attribute variance in model performance to specific
input parameters. This methodology aided in the understanding of which inputs are most
uncertainty, therefore needing close monitoring and potential policy control to reduce
project risk. The aim of the methods described is an insight into the overall stability of the
recommended REC design under uncertainty, including assets risk hold high investment

risk, potentially providing the basis for future policy support frameworks.

Figure 1.5 contains the content of each chapter to guide the reader through this work.
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2. Literature Review —> 4. Results
Overview and Structure Overview
VPP Definition Energy Asset Modgls Performance
Validation
VPPs and Microgrids Multi-Objective Optimisation
Renewable Energy Communities Sensitivity Scenarios
Energy Asset Mgdglhgg, Control, and Uncertainty Results
Optimisation
3. Case Study & Model Methods — 5. Discussion
Overview Key Performance Outcomes
Field Test Location System Performance and Asset Sizing
Energy Community Asset Models Uncertainty Analysis
REC System Control Logic & Trading Synthesis and Broader Implications
Design Optimisation & Performance .
Analysis Solution Deployment and Test
Model Assumptions l
Technical Structure & Execution 6. Conclusions

Figure 1.5: A flow diagram illustrating the content of this thesis.

The review of the existing literature reaffirms the novelty of this work, in that it is

addressing a number of gaps in existing research:

e The focus of this work is on bespoke design and modelling of RECs for islanded
and rural communities, who have specific challenges regarding energy security, high
energy costs, and asset stranding in the future. This relates to the themes of an

inclusive energy transition, energy equity, and local community support.

e Multi-objective optimisation via the NSGA-II algorithm, whilst explored among
energy system models, has a particular degree of novelty when applied specifically
to energy community-based VPPs,; and more specifically balancing the design of a

system that is both as economically effective and environmentally sustainable as
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possible.

e The novel comparison of battery and a combined hybrid battery and hydrogen storage
system applied to decentralised locations to evaluate the performance benefits of

hydrogen in both the cost and the decarbonisation dimensions.
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Literature Review

2.1 Overview and Structure

Before defining the system concept for this study, it is important to first evaluate the
history of Virtual Power Plants (VPPs) in detail, understanding the balance of strengths
and weaknesses, and how the performance can be maximised. Since the technology is
still in its early adoption stage, most examples within the literature point to technical
showcases that have been tested on a small scale in partnership with Transmission System
Operators (T'SOs) and Distribution System Operators (DSOs) of the host countries. The
concepts often require fundamental modifications to the method in which energy generation
is handled and value is redistributed among aggregators and participants.

The key VPP characteristic were categorised into the three main sections:

e Policy and regulatory landscape
e Technology and service enablers

e Societal value and climate impact

As with all new technologies or services, there are a range of market and regulatory
challenges that may impact the VPP’s ability to provide the maximum benefit to a
localised community. The review considers the possibility of providing different services to
a local population through, primarily, reduced dependence on the national-level grid. The
environmental impacts and barriers to REC based VPP deployment were also reviewed,
including the impact of energy generation activities, and relevant policy restrictions. The
challenges and opportunities assessed have been based on a number of resources, covering
published research, international directives, environmental reports, and local news articles.

The second part of the chapter links the challenges and opportunities to existing VPPs,
microgrids and Renewable Energy Community (REC) systems. A critical analysis follows,

assessing how these concepts have used the opportunities available to their advantage, and
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where they may have fallen foul of the challenges facing these nascent but growing services.
The motivation for why an REC based system may be more achievable than a traditional
VPP is presented.

The final sub-section brings together the analysis of community-based VPPs, and
presents the notion that with comprehensive energy system modelling and design optimisation,
positive project outcomes can be maximised, whilst minimising, or at least provide an
understanding of, downside risk for a rural, islanded population. This would be achieved
through comprehensive energy system modelling and design optimisation to intelligently
plan the REC system for a given local environment, climate, and policy landscape. A review
of related energy system modelling approaches is presented, navigating through technology
asset models, control systems logic, and design optimisation. The chosen methodology of
this work is outlined, highlighting the successes and challenges of similar works within the
literature.

With a high-level of modelled understanding if its operation, a VPP-based renewable
energy community can not only reduce cost, but also eliminate a large amount of embedded
carbon emissions from the system, aligning islanded, rural communities with the climate

action objectives at a national and global level.
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2.2 Virtual Power Plant Definition

2.2.1 VPP Policy and Regulation

It is important to outline what is meant by Virtual Power Plant before continuing to
identify the key barriers and obstacles related to deployment. A VPP is a relatively new
concept, being the object of study for the past 15 to 20 years. Over time, different sources
have expanded upon its potential uses within the energy grid, and documented the many
benefits. The definitions of a VPP therefore vary widely across the literary landscape,
depending on the objectives of the system and the available resources. A generally accepted
definition of the VPP is:

“A flexible representation of a portfolio of Distributed Energy Resources (DERs), not
only aggregating the capacity of many diverse resources, but also creating a single operating
profile from a composite of the parameters characterizing each DER and incorporating
spatial constraints.” [12]

This definition, while including the fundamental structure of the VPP, does not consider
the additional information that defines the other complex operational aspects. The definition
also needs to place importance on these virtual connections and control to ensure the
successful interoperation between multiple distributed assets.

The VPP structure is often confused with the microgrid concept as both integrate
a number of distributed generators. A microgrid, however, describes a physical system
of connected generators such as Photovoltaic (PV) solar, wind, and battery storage that
can act as an islanded system to service a very localised area. A VPP, however, is much
more reliant on a network of data connections and smart metering equipment to control
the remote generators as a single entity, and to export this energy to the grid to serve a
larger area than a traditional microgrid. Artificial Intelligence algorithms such as Artificial
Neural Networks (ANN) and Neural Fuzzy (NF) are becoming crucial to the performance
of VPP concepts [13], so should also be incorporated into the VPP definition.

VPPs in the power market

A key barrier identified within the literature which hampers the successful implementation
of the VPP is the position of the system within the structure of the energy market. The
VPP needs to not only improve efficiency and the reliability of the system at a local level,
but also be visible to the TSO/DSO such that can to participate in the energy market on
a distribution or national level.

The price-based mechanisms that allow for profitability of distributed Renewable Energy
Systems (RES) vary between technology and location. Many European countries have
adopted Feed-In Tariffs (FITs) or Contracts for Difference (CFDs) set by government
regulators to receive remuneration for the energy generated by RES. The tariffs are often

fixed or floor values, or are set as a percentage premium combined with the market value
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[14]. Another option to unlocking value in renewable energies is via Power Purchasing
Agreements (PPAs). A PPA is a long-term contract that a power generator has with a
supplier or direct consumer to pay a certain fixed amount for that energy over the given
period. PPAs are a good method of ensuring financial security for both, the supplier
and consumer, as parties trade a fixed value for the energy. This means that market
participation is not required, negating the associated financial risk [15]. Both, FITs and
PPAs could work well as a preliminary mechanism, with the potential downside of applying

a pre-agreed pricing structure.

Figure 2.1: A simplified view of the traditional energy market structure.

Another other option for power generation companies is to participate in the wholesale
spot market. In most European markets, players can opt to take part in the day ahead,
intra-day, and continuous/capacity market auctions. The day-ahead market consists of
energy generators and suppliers bidding for energy values hourly for the next day, after
which the market operator calculates the power price through the clearing process. The
intraday bidding occurs in often hourly or quarter-day intervals, with reserve markets
responding to offers from minute responses to up to one hour in order to keep the system
balanced [1].

Analysis conducted in the EU project ‘MASSIG’ suggested that DER suitability for
participation within the spot market relies heavily on whether they qualify for both, the
day ahead and reserve markets, and if the generation forecasting is accurate [16]. The
traditional market also does not provide mechanisms that value the potential merits of a
flexible VPP system at a local level, and any changes to the market would be a challenge
due to regulatory barriers to be discussed.

A number of studies have been conducted into the potential value to be gained by
VPPs by participating in wholesale trade despite the current regulatory hurdles. The paper
by [17] addresses an optimal bidding strategy for what is known as a Commercial Virtual
Power Plant (CVPP), which is considered as a separate entity to the actual aggregated
VPP. The model also assumed all DERs, when combined in the VPP, are able to participate
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openly in all markets and that there are no minimum energy bid limitations, which as
discussed in [18, 19], are not strictly true for all European markets.

Over many decades, additional layers of regulation and complexity have produced a
market that is largely unsuited for new renewable technologies and services to participate.
As an example of this problem, it has been a challenge to implement a system of demand
response capability — one of the key services offered by the VPP concept. The 2016 EU
demand response policy report revealed that “many national regulators see the process of
opening markets to demand response as complex and confusing” [20].

A method needs to be devised for the regulatory bodies to recognise the additional
value that the VPP can create within the energy system, without making a large quantity

of reforms to the current national and international markets [21].

Local markets and Energy Communities

A possible mitigation strategy for the market barriers is to operate a small-scale ‘deregulated’
market in parallel to the existing spot market and PPAs. The Flexible Congestion House
(FLECH) originally suggested by [22] stipulates a local energy market within the DSO
level that specialises in the unique services offered by the VPP, including responding to
demand changes, storing excess RES, and supporting critical loads during interruptions.
The parallel local market theory lends itself well to the applications on islands, as are
usually connected through a single sea cable interconnector to the mainland, so any activity
within the island can be monitored and controlled.

Local ancillary services markets have been explored with the use of Peer-to-Peer (P2P)
trading as presented in [23]. The research implements a novel bidding and optimisation
strategy for a selection of 20 consumers and prosumers with varying PV installation and
Electric Vehicle (EV) charging facility, assumed to be equipped with smart metering. The
results show that the creation of a local energy market where customers can participate
in community energy balancing and ancillary services can increase the individual profits
considerably, as well as the social welfare of the customers.

The concept of so-called Clean Energy Communities (CECs), definitionally similar to
RECs, is a continuation on the development of local market theory. An exploration into
the structure and challenges of CECs conducted by [24] states that a CEC differs from
a system of local RES in that it details the specific relationship between the end users
and their energy management. In this way, all end users are considered key stakeholders
in the development and management of the CEC to continuously promote and improve
their sustainable energy usage. Parallel local markets therefore play a key role in shaping
the economic feasibility of island-based RECs, as the revenue generated by the energy
community activities such as providing ancillary services to the DSO and peer-to-peer
trading is then fed back into the portfolio of community investments.

The requirement for changes in the traditional energy market structure is being
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Figure 2.2: Proposed local micro-market concept and services provision.

recognised by the EU, who recently released regulation (EU) 2019/943 ‘on the internal
market of electricity’ [25]. This report highlights the state of the current energy market
and how it is not suited to the fast-transforming nature of modern energy generation
via prosumer participation. Emphasis is placed on new technologies and services such
as distributed generation, flexible generation, demand response, and energy storage, as
well as how these should be incentivised further. Like the local parallel market theory,
Article 24 of the document suggests the use of short-term markets to improve liquidity by
allowing more participants within the market, which may reduce the entry requirements
for small generators. The related directive (EU) 2019/944 also recognises the reforms that
are required to move towards a decarbonised energy grid, and that the renewable energy
targets would be most effectively met through the creation of “a market framework that
rewards flexibility and innovation” [26]. The directive also defined new industry terms

such as ‘active customer’, ‘citizen energy community’, ‘aggregation’, and ‘interoperability’.

Modelling energy policy mechanisms

It is clear that one of the key challenges blocking Energy Commmunity-based VPPs is
in the uncertainty related to local policy design in particular countries, as it can pose a
threat to the economic and societal success of the project. Because of this uncertainty, the
ability to design and model a system before investing real capital would be an enormous
benefit. Research conducted in [27] presents a multi-period investment and system planning
model to minimise project risk through changing regulation of deploying a PV solar and
battery system. The results showed that the optimal temporal build of RES can reduce
the investment risk and ensure maximum impact. Results from [28] consider the regulatory
uncertainty in energy grid planning for Australia, and highlight that uncertainty in

investment outcomes tends towards flexible assets, such as battery storage in the long term.
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These are both critical findings that will need to be considered when exploring the optimal
design of a VPP system. This investigation will also fill a potentially valuable knowledge
gap in the planning and regulatory structures as distributed RES become increasingly

prominent.
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2.2.2 Technology, Reliability and Services

The increase in small-scale distributed generation has had a dramatic effect on the energy
landscape and has produced a potential market for equally local ancillary services and
renewable energy grid support. The regulatory barriers discussed in section 2.2.1 have a
considerable effect on the variety of services that can be implemented, and their value
added to the VPP concept. Table 2.3 summarises the identified services that could be
provided, ranging from instantaneous response to grid fluctuations, down to long-term,
seasonal grid storage to balance renewable generation. This is followed by a detailed
discussion of commonly researched and implemented services in Europe and the USA. A
review of Energy Storage Systems (ESS) service barriers presented in [29] provides an

excellent foundation, from which an extension into VPP services provision is discussed.

Application Time Services for Flexible VPP Dispatch
Frame
0-30 Seconds Voltage and Voltage/VAR support Power quality
frequency control
3 Minutes Spinning reserve RES generation smoothing
Voltage sag
Rapid demand support
Real-time energy balancing
20 Minutes RES ramp and voltage support
Back-up power Blackout support
2 Hours Peak load shaving | Consumer incentives Energy cost
for quick load management
reduction
Congestion relief RES energy store during interruption
8 Hours Time-shifting Price arbitrage Consumer time-of-
use incentives
Days Weekday-weekend load smoothing and carry over
S ing weather and environmental conditions

Other Energy Smart EV-charging | CHP district heating and industrial processes
Services
Data mining and Shared energy data | Transparency with 3% Shared with

sharing could be used for grid | parties to increase communities to
petformance project visibility and | create additional cost
improvements investment saving measures and

carbon emissions
reductions

Figure 2.3: Potential services that can be implemented through VPPs [29]

Demand Response

Demand Response (DR) has been noted as one of the key services to be provided by
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VPPs. DR can be seen as a competitor to the traditional reserve markets, except that it
can be effective at a community level. Due to the increase in distributed generation, it
is becoming increasingly important to respond to sudden supply changes and consumer
demand. For example, shaving the peak solar generation from rooftop solar generations
would be of enormous benefit to grid stability, providing cost reductions to the consumer as
this energy can then be used at another time of day. DR concepts, like those presented in
[30] and [31], consist of an aggregated grouping of small renewable generators, a consumer
fixed load, consumer variable load, and an ESS. These models consider the optimal approach
to controlling the VPP energy community to meet the DR objectives in the most robust

and cost-efficient manner.

A potential technical barrier with the DR method is in understanding the range of
operating conditions and connection requirements of the distributed resources, and how
to coordinate the appropriate response to the grid. This barrier can be grouped under
the larger IT considerations to be applied to the VPP such as sensing, computing, and
communication of the DR assets [32]. Unfortunately, the route to inclusion of DR within
the European energy market is currently mixed, as noted in the regulatory landscape

analysis of the previous section.

The review of services provision from VPPs is vital in shaping the modelling approach of
this thesis, including which are most practical and valuable from a community perspective,
such as peak load shifting and demand balancing. Additionally, the current policy support
outlined in the Renewable Energy Directive (RED-II) framework also narrowed the scope
of the service provision, since VPPs and RECs generally cannot yet participate in power
markets and provide ancillary services. Finally, the potential for future policy exploration,
such as self-consumption incentives and community energy trading have also been considered

based on this review.
Price Arbitrage
The potential flexibility of the VPP concept combined with an appropriate ESS could

take advantage of price variations on the energy spot market, known as price arbitrage.
Price arbitrage is the practice of buying energy from the grid while the price and demand
are low, such as at night or early afternoon, and selling it when the price and demand
are high. This process also complements DR as the use of arbitrage can produce excess
stored energy that can be made available for other services. As mentioned in the previous
section, the practicality of price arbitrage would depend on whether small-scale, aggregated
generators qualify for participation in power spot markets, which is known to vary between
EU countries. While providing potential profits through promoting renewable energies,
price arbitrage could increase overall carbon emissions in the system due to efficiency losses
in operating an ESS. Research presented in [33] analyses the prospect of market price
arbitrage participation for individual prosumers with small Battery Energy Storage Systems

(BESS). A forecasting sensitivity analysis and its effects on the scheduling performance is
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also modelled in detail, and outcomes show that the profits using this method rely heavily
on the quality and accuracy of the forecasting technique. Most notably, arbitrage can have
a negative effect on both, the price and environmental sustainability of the stored energy if
forecasting is proven to be inaccurate. As a mitigation strategy, analysis of the capital and
maintenance of the ESS should be considered when calculating market arbitrage viability,

as well as the risks associated with generation forecasting.

System Performance Targets

The system performance targets for the VPP will provide crucial objectives and constraints
for the conceptual design and specification. As mentioned in the previous section, the
performance objectives will vary depending on the objectives of the ‘fostering entity’ - the
stakeholder who is responsible for the practical investment and integration of the VPP
systems into the community grid.

For each case the objectives and constraints will be different, as well as the costs
and benefits of the VPP. It should also be noted that the objectives defined may conflict
with each other, so must be considered as a multi-objective optimisation problem. The
performance objectives can be approximately grouped into three categories.

Carbon emissions reduction

Given the current climate situation, and stress placed on national energy bodies to
reduce the climate impact of the distribution grid, this will be one of the key performance
objectives for most fostering entities. Considering the local governing body, they may
have incentives placed on them by national government to provide evidence of emissions
reduction with the community, as well as penalisation to those who do not participate.
The same carbon levies may not apply to local DSOs, who also may not have as much
of an interest in carbon emissions reduction over other prioritised objectives. The VPP
concept presents a method of curbing carbon emissions from energy production in a local
area with a large amount of RES generation capacity. RES that must be curtailed due
to over-production or sudden generations peaks would be ideal to exploit in this scenario,
either through export to the grid, local energy trading, or ancillary services supply.

Energy cost reduction

The reduction of electricity cost for the participants with the VPP is one of the key
motivators with research. A number of methods have been presented [19, 23, 34, 35]
that consider the economic impacts and potential benefits of the aggregation of DERs
into a VPP-style system. Cost reduction is seen as a major future driving force to the
implementation of such futuristic and disruptive technologies, even more so than the other
objectives discussed. Cost reduction also applies to the widest audience of potential fostering
entities, as all will look to reduce the operational cost and even produce a profit from the
implementation of a VPP. It can be noted, however, that increasing cost effectiveness may

conflict with the objective of carbon reduction, as it may be most beneficial economically
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to operate a system that produces increased emissions. When the previously discussed
example service of price arbitrage is considered, it has been shown to increase profits for an
installed ESS, but the disadvantage is that efficiency losses which will inevitably increase
the carbon impact, even before the manufacture and lifespan of the ESS is considered.

Reliability improvements

The reliability of the local energy system is closely linked to the ultimate cost of
operation and frequency of maintenance, as the TSO and DSO are rewarded and penalised
based on the reliability performance within which they operate. Reliability can also consider
the quality and comfort of the energy consumers, which can be approximated with the
reliability indexes System Average Interruption Duration Index (SAIDI) and the System
Average Interruption Frequency Index (SAIFI). Loss of Load Probability (LLP) is also
used to define the fraction of time which loss of load may be expected to occur during a
period in the future [36], usually expressed as hours or days of the year or a percentage.
The probability density function is determined based on data from previous plant outages,
which can then be used to estimate when a power station may experience an outage and
how much capacity is lost.

As discussed previously, geographical islands are generally connected to the mainland
or another island through a single medium voltage sea cable and may not have additional
ancillary services on the island to respond to demand variation. The introduction of
ancillary balancing services through the VPP may have the ability to considerably increase

the robustness of the system.
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2.2.3 Environmental Considerations and Societal Value

It is well understood that a key objective of a community-based VPP system is to provide
tangible societal and environmental value for the local participants. The general concept,
as suggested by comprehensive review of Energy Community business models in [37], is
to provide these benefits in addition to the clear economic reasoning, which would be a
requirement for the uptake of community-based VPPs in the long-term. Although public
opinion on new RES technology is generally positive, there may also be both, public and
regulatory concern over the implementation of a VPP. The local acceptance within the
community, in addition to adoption of the new technology and additional RESs will be
key to its success. How these factors impact the current view of VPPs is presented below,
highlighting some of the methods that could be implemented to maximise societal value

proposition for islanded and rural populations.

Resource Limits and Protected Areas

Within this analysis, it is important to consider limitations of the physical implementation
of VPP components including future potential energy generation, particularly when a key
objective of most VPP systems is to maximise renewable energy penetration.

Rural locations, particularly those on geographical islands, may have space and resource
limitations that could stifle future growth of certain RESs. Unpredictable weather conditions
for PV and wind turbines, as well as limited freshwater supply for hydro power to be
feasible are examples of these limitations. Different resource availabilities of the different
islands will change the nature of the RESs generation mix, and therefore flexibility of
services offered through the community-based VPP.

Nature reserves and parks have similar laws prohibiting RES development. This barrier
is another important consideration for the REC, as it will again limit the amount of RESs
that are permitted. Hydro power and the requirement for building dams and reservoirs
can also pose a significant threat to freshwater species such as fish and waterfowl [38]. The
dammed rivers can also limit communities’ access to fresh water further downstream. Other
location-based restrictions could include built up urban centres, airports, and military

bases.

Local acceptance of the new RES and VPP systems

While there is little specific analysis of public sentiment towards VPP systems due to the
novelty of the technology, the impact that RES technologies have on the local environment
has been researched at length. Since a key objective of any VPP is to facilitate the increase
in distributed RESs, any related barriers need to be considered. The continuation of
generalised public antipathy as documented in [39] has become less of a concern than

it was a decade prior, but still affects the installation of RESs in certain locations. For

37



Chapter 2

geographical islands with strong community values towards the aesthetics of their local area,
there may be a degree of public opposition to the implementation of new RES technologies.

Excellent research presented in [40] provides an assessment of the lessons learned from
engaging local, small-island communities in the discussion over renewable energy projects,
including those projects that could also support VPPs. The article concludes that island
communities are concerned with ensuring any engagement in developing such a project
should give active priority to securing the localised benefits, and provide credible policy
mechanisms for providing intra-community conflict resolution. This article also suggests
that island locations are also excellent test locations for new renewable technologies and
systems, so must be engaged with effectively. The sentiment aligns well with the objectives
of this thesis, in that providing local, islanded communities with clear, measurable benefits
will not only improve the energy supply conditions for the citizens, but also provide

continued opportunity and support for more development of future renewable power.
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2.3 Virtual Power Plant and Microgrid Case Studies

This review of VPPs and Microgrids was conducted to identify the technical, regulatory,
and social design features relevant to rural and islanded contexts. A structured selection
of case studies and peer-reviewed research was used to explore recurring challenges and
successful strategies in existing projects. The review considered small- to medium-scale
implementations across Europe and internationally, with a particular focus on studies that
reported on real-world deployment and operational performance. Sources were identified
using Scopus, as well as policy reports, EU project summaries, and technical documentation
from VPP pilot programmes. Key selection criteria included contextual similarity to the
target system (e.g. European location, decentralised generation, citizen participation),
availability of system performance or economic data, and relevance to the integration model
proposed in this thesis. Lessons learned from these cases informed the design decisions and
assumptions of this work, with particular attention paid to the scale, storage integration
and trading arrangements. Table 2.1 details the key aspects of the VPPs in the literature,
including a summary, provided services, and stakeholder involvement. The list also includes
examples of P2P trading based microgrids, which by definition are subtly different to
VPPs.

Table 2.1: Table of reviewed VPP and microgrid projects in Europe and globally.

Name Type Location Summary Services

Fenix VPP UK & | One of the first | -DERs can  be
(2005-2008) Spain VPPs  to  address | made visible to
[41] increasing visibility by | network  operators

aggregating DER and | -Contribution of
pass information to | DERs to grid
the TSO to assist in | management

planning infrastructure | activities -Optimal
upgrades, transmissions | use of DER in

and assessing congestion | ancillary services

problems
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TWENTIES | VPP Europe ‘Power Hub’ proposed | -Ancillary services
(2010-2013) various as part of the project | (voltage and
[42] to provide VPP style | frequency  control)
flexibility services from | -Optimise outputs
large scale offshore wind | from available
farms and other DERs. | resources -Provide
cost reductions
through increased
energy security
Con Edison | VPP New York, | Aggregation of 1.8 MW | -Network resiliency
(2016-2017) US capacity DERs with | (outage support)
[43] energy output of 4 |-Power delivery
MWh. smoothing -Load
shedding and shifting
AGL VPP | VPP South The creation of 5 MW | -Voltage control
(2018-present) Australia | generation from  a |-Frequency balancing
[44] combination of 1000 |-DER visibility
prosumer residents (PV
solar and batteries,
during trail period)
Piclo VPP UK Online energy trading | -Demand side
(2018-present) platform for flexible | response  -System
[45] capacity auctions | regulation -Energy
for independent | marketplace
DER  generators to | (primary, secondary
participate,  allowing | response) -DER
small players to | visibility
participate  in  the
energy marketplace.
Brooklyn Microgrid| Brooklyn, | A P2P platform for | -P2P energy trades
Microgrid New York, | a local energy market | -Grid support
(2016-present) UsS to support weak energy
[46] grid and produce value
from DER.

Fenix VPP

It is well understood that the increase in penetration of DER into the traditional energy

grid reduces the amount of visibility and therefore ability of network operators to be able
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to plan supply and demand balancing effectively. As one of the first ever VPP concepts to
present pilot demonstrations, the ‘FENIX Future’ aimed to represent the increased system
capabilities on DER whilst removing barriers and negative impacts. The project began in
2005 and consisted of 20 partners from research and industrial EU partners, largely from
the UK and Spain, to meet the challenge of future DER integration.

As noted in [41], the objective of FENIX was to design and demonstrate technical and
commercial architectures that would increase the viability of increased DER in Europe
as a solution for the approaching green energy future. The key aim, in alignment with
the simple definition of a VPP to represent DER as a single system which generators and
consumes energy, as shown in Figure 2.4. The concept is categorised into a Technical
Virtual Power Plant (TVPP) and a CVPP.

L : load i -
G : generator iy
No visibility of DER -m DER represented by VPP

Figure 2.4: The FENIX VPP concept [41]

TVPP: represents the physical DER as installed in the geographical location, including
records of the real time influence of the aggregated system, as well as cost and operational
characteristics. The main purpose is to allow for DER visibility, from which other functions
include local grid system management and informed decision making for system balancing.
In addition, the aggregation of many DER reduces the risk of unavailability from any one
unit within the system, and therefore can smooth the output of the VPP. The operator
could be the DSO but may face regulatory challenges as particularly in the UK, the DSO

is not able to operate generation units [47].

CVPP: represents the higher-level commercial services and function of the VPP
portfolio, such as wholesale market participation and balancing services provision, and
maximising the DER participation. It is known that these services face more stringent
regulatory challenges due to the structure of the traditional energy market. The CVPP

performs only commercial services and does not consider technical aspects.
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Given that FENIX was one of the first VPP projects to present a pilot study, many
of the technical requirements and enablers were first outlined within this project which
could be built upon by others. It can be seen that the main architectural property was
in separating the physical components such as generators, consumers, and storage from
the virtual and commercial aspects of services support, data management and market
participation with the TVPP and the CVPP. This is an important process in that it clearly
highlights the challenge of combining these two domains using the VPP and can be more
easily understood and engaged with. Critically, the Fenix VPP was one of the first to
highlight the difficulties, at least in Europe, of entering a series of virtually connected
generators in to the traditional electricity market structure, as outlined in the previous
section. Overall, the FENIX VPP is relatively simple in design, likely due to the regulatory
constraints of the time, so was not able to fully realise the potential of a virtually connected
system. Now, with the new RED III policy definitions for VPPs and RECs, it is more
likely that the Fenix VPP would have been more successful in achieving the objectives of

the project.

Edison VPP

The Edison project was launched as part of the smart energy system drive on the island of
Bornholm, Denmark. The project investigated how a large number of Electric Vehicles
(EVs) could be integrated such that grid support can be offered for the mutual benefits
of the EV owners and grid operators. The motivation for the project was that with the
projected rise in EVs in Europe will increase the demand on the grid during certain times
of the day, which could have an adverse effect on the reliability of the system when heavily
loaded. Like the following WEB2ENERGY VPP, the Edison project builds upon the
recommended set of IEC 61850 communication protocols and security measures.

The EVs connected within the Edison EVPP can be considered as a large power
consumer which are also able to provide balancing at peak demand. This operates by
modulating the rate of charge entering the EV such that the grid demand can be shifted
to reduce stress. Like other projects, Edison uses a two-level environmental approach, with
the ‘electrical layer’ consisting of physical components (EVs, DSO metering, generation)
which can be represented with physical laws and constraints, and the ‘electricity market’
layer consisting of the commodity trading systems and various stakeholders involved in the
clearing and billing processes.

The concept defined allows for two defined architectures to be presented. An integrated
architecture approach requires an existing Balancing Responsible Party (BRP) such as
power-generation or utility company to perform the interactions with the TSO and sport
market on behalf of the EVPP, as shown in Figure 2.5. The BRP can use all the collected

data from the systems metering and EV charging locations such as demand, generation,
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state-of-charge, and available flexibility to make decisions about when to perform the
market interactions. By contrast, a standalone architecture absorbs the role of the BRP
into the function of the EVPP such that it can interact with the market as an individual

player.

Figure 2.5: The Edison VPP concept [48]

There are advantages and disadvantages to both methods presented, however, it would
be more sustainable long term for the VPP to be able to act as a standalone entity for
the purposes of cost saving and reducing the required stakeholder interaction. In terms of
previously observed VPP characteristics, it is clear that this project aligned closely with
the concept of maximising flexible services provision, such as demand response, which has
previously been identified as one of the key value drivers of VPPs. In addition, the use of
EVs as a flexible load and storage fleet is also commonly viewed as integral to the future
operational of such a system.

The project was in many ways ahead of its time, chiefly in that it anticipated the
increase in EV usage before true widespread adoption. It is not known if the Edison VPP
concept was successfully tested in the field, likely due to lack of requirement at the time of
research, and other regulatory challenges. Continued research into an EV based fleet VPP
system was still ongoing in Denmark as of 2018 [48]. The VPP design also lends itself
much more towards the community-based design, due to the involvement of citizen actors
through EV flexibility. Allowing the system participants to actively benefit from the VPP
through additional storage and rooftop solar, then allowing renumeration for these actions

could have increased effectiveness of the system.

WEB2ENERGY

Web2Energy is a European project started in 2008 with the objective of implementing

what is described as the main pillars of ‘Smart Distribution’. These pillars are described
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as follows [49]:

o Smart Metering: the project implemented hundreds of consumer smart meters in
the field to provide a number of innovative functions, including management of price
signals, interruptions and failures, loads, generation, and demand profiles. This would

allow the other pillar to function.

e Smart Energy Management: Following the definition of a VPP, this pillar requires a
large number of small independent DERs which are cooperatively controlled such

that scheduled power can be manipulated for the given requirement in real time.

In the Web2Energy project, over one hundred smart meters were connected in five
locations, with non-dispatchable generators such as wind turbines and PV solar connected
to dispatched generators including Combined Heat and Power (CHP), pumped hydro
storage, and controllable industrial loads. The generators can be scheduled for greater
overall dispatch efficiency and reduce power losses within the system.

The project consisted of 5 CHP plants, 12 storage batteries (1200 kWh total), 12
PV solar farms, 3 wind farms, 2 hydro plants, 3 large industrial loads, and involved 200
residential consumers in a l-year Demand Side Management study. Outcomes of the
project highlighted the requirement of a standardised communication system for the smart
systems to interact effectively, as well as the restrictions and market regulations that, like
other VPP projects, hinder the realisation of many revenue streams that would otherwise
be available. The project was also one of the first studies to explore the requirements of
a commercially viable VPP system including communication tools, energy management,
and smart distributed generation. Critically, the exact technical specifications for this
project is not known, and little information is shared about potential commercialisation of
the concept. During the time of the project, regulation and market barriers would have

presented severe limitations.

TWENTIES

The aim of the EU TWENTIES project was to advance new technologies that would assist
in integrating the ever-increasing penetration of onshore and offshore wind generation.
Specifically, the demonstration project 2 invested in a large-scale integration of a VPP
‘Power Hub’ to reliability deliver ancillary services such as voltage control and frequency
balancing through intelligent control of the wind farms. The Power Hub was able to
optimise the outputs of the different wind turbine units to provide the highest value of
energy generation. The results from this project also indicate that the introduction of
biomass and heat pumps could reduce the COy emissions by 3.46% in comparison to the
main German power system [42]. Figure 2.6 below shows the VPP concept as visualised in

the TWENTIES project, showing the variety of potential assets that could be implemented.
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Figure 2.6: The VPP concepts developed as part of the TWENTIES project. [42]

The main findings for the project were that the field tested ‘Power Hub’ was able to
reliably deliver ancillary services such as voltage control and continuous reserves, as well as
provide an optimised output to maximise value to all included generator units. Although
the results were economically feasible, technical challenges were also identified. One of the
challenges is the initial incentivisation for generator and industrial units to take part in the
scheme and expand the size of the VPP. Another key challenge was in scaling up the VPP
commercially due to the market and regulatory design in the test countries of Denmark,
Germany and Spain. The latter is certainly a common barrier that has been identified by
multiple other VPP projects. While it is not confirmed, a speculative, critical view could
be that the engagement with locals, including prosumers that may have been unable to
understand the potential benefits of the TWENTIES project could have helped it gain

traction and support from community stakeholders.

Con Edison (2016-2017)

The Consolidated Edison Company of New York, Inc. (‘Con Edison’) VPP was a project
to create an aggregated RES platform created in partnership with SunPower for managing
and dispatching distributed generation in the most efficient and cost-effective way. The
motivation of the pilot project was to demonstrate a method in which combining PV
battery systems in hundreds of homes could be reliably and remotely operated to fully
realise the monetisable benefits. The project plan in [50] highlights the areas of New York
that experience peak demand during the day and during the night. It is clear from the map
in Figure 2.7 that as most of the high demand occurs at night, the PV solar generation
should be shifted through the use of battery storage.

The pilot was categorised into three consecutive phases that each build upon the

successes of the previous steps: customer adoption of resiliency services, VPP integration,
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Figure 2.7: The Con Edison VPP location with PV installations and indication of peak
demand time of day [43]

and market participation.

Phase 1: Customer Adoption of Resiliency Services This phase consisted of SunPower
presenting an inclusive PV and storage package to residential customers to expand the
capacity of the VPP. The chosen economic model stipulated that no upfront cost would
be imposed on the customer, instead returns would be made back over the usage life of
the system. The project estimated that with a market firm capacity value of 20 $/kW per
month, the inclusion of resilience fees would bring the Internal Rate of Return (IRR) to
approximately 3 years before profit generation, as shown in Figure 2.8. These values were
based on 2014 storage system costs, the report suggested that by 2021 the system would

be economically viable.

Phase 2: Virtual Power Plant Integration After the initial customer installations phase,
the project would then move to produce a communication network of each end user’s PV
storage system. This process required upgrading Con Edison’s existing communication
system (SCADA) with smart meters so that services and control requirements can be
communicated effectively. The system could also be performance tested to check the
VPP response to certain operation inputs so that risk can be analysed before entering the

capacity and spot markets.

Phase 3: Market Participation and Rate Design Once the VPP integration with Con
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Figure 2.8: Internal Rate of Return (IRR) of the hybrid VPP fleet based on value of firm
capacity value [50]

Edison’s SCADA system was successful, the energy company would then explore method
of market participation, although it was noted at the time of planning that there were
currently no methods to do so given the regulatory barriers. In addition, alternative
residential rate design such as Time of Use (TOU) cost was to be explored in order to
incentivise participants in the VPP to maximise their flexibility for the aggregated system.

The project had a promising background of stakeholders at the time, including the
DSO Con Edison and two large renewable energy companies SunPower and Sunverge.
Unfortunately, significant challenges arose when seeking approval from local regulatory
and community bodies to have access to the required buildings and install the equipment.
It is believed that the complexities of the installation, uncertainties and risk associated
with the untested design meant that it was unfavourable with end users. The delay caused
the termination of lead industrial partner SunPower’s contract, and the project has been
on hold since Q1 2017. This highlights one of the fundamental barriers that affect many
VPP pilot studies and commercial rollouts.

One of the critical reasons why this project failed could have been in the assumptions
about the routes to commercialise the project. It is known that little support is often
available to receive renumeration from VPP activities at the market level, which may have
led to the eventual uncertainty in profits for the final system. As discussed in the previous
section, deep understanding of the policy mechanisms and local regulatory environment, as

well as the correct technology and service enablers are vital to the success of a VPP.

AGL VPP

The AGL VPP is a large-scale distributed PV solar and battery hybrid system which has

been in successful commercial operation in Australia since its trial period in 2018. The
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system consisted of 1000 end users from residential, commercial, and industrial sectors,
and is now expanding to cover 50,000 households as of 2019 to produce 250 MW of
flexible demand, which is approximately 20% of the demand of South Australia [44]. The
installation of the PV battery hybrid system in AC and DC coupled modes are shown in
Figure 2.9.

The main service of the VPP is to provide balancing services to the grid that would
otherwise be provided by traditional synchronous generators. In partnership with Tesla,
installed wall batteries can be remotely operated to inject, hold, or absorb energy to
keep a balance between supply and demand. Results showed that the VPP could react
to dispatch ‘events’ such as frequency fluctuations in as little as 6 seconds, theoretically
allowing participation in Australia’s contingency Frequency Control Ancillary Services
(FCAS) market [51]. The map in Figure 2.10 shows the distributions of VPP PV battery

sales in terms of citizen demographics in Adelaide, Australia.

Figure 2.9: with AC coupled (left) and DC coupled (right) modes [44]

Figure 2.10: Location of VPP in Australia (left) and Distribution of VPP sales map of
Adelaide (right) [51]

During the trial phase, the VPP showed successful ability to track the required power

dispatch during a simulation frequency fluctuation event. In the example shown in Figure
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2.11, the system power response from battery storage is displayed and compared with the
target power output on a 6 second time frame. It can be seen that even on a modulation

scale as small as this that the system is successfully able to track the required output.

Figure 2.11: Example dispatch response from the VPP battery fleet compared to the target
response [51]

A major advantage of this type of VPP design is that it unlocks several lucrative
value streams, such as increasing solar self-consumption, utilising back up power during
an interruption, network support during peak power, frequency control services, and the
potential energy arbitrage opportunities on the spot market. Additionally, the VPP project
is overseen and managed by an established energy utility company, which assists in setting
up the correct stakeholder communication pathways, including end users, field installers,
DSO, TSO, regulators, and the spot market. Through the dislocation of the required
traditional balancing generators, the system can also be seen to significantly cut the carbon

impact of energy usage.

The success of this project also highlights a deep understanding of the local regulatory
environment, and that by working with existing policy mechanisms a profitable commercial
opportunity can be obtained. Additionally, taking advantage of technology and service
enablers that are commercially ready and well understood such as residential battery
storage and smart metering hugely benefited with AGL VPP’s design. These factors are

certainly to be considered when designing a community-based VPP as part of the work.
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VPPs and microgrids: In summary

Overall, VPPs and microgrids have done much to accelerate understanding of how a
net-zero grid can be achieved, and that by combining the strengths of several renewable
assets, one is able to successfully provide a clean, commercially viable energy opportunity.

The AGL VPP in Australia and sonnen VPP in Germany provide examples of
successfully commercialised opportunities. On the regulatory side, there has been a
clear understanding and ability to work with existing policy mechanisms, most notably
shifting and shedding customer load to allow for direct revenue for the power market. In
terms of technology enablers, both systems use readily available assets such as rooftop
PV solar and residential battery systems. It is possible that investing in a diverse fleet
of assets rather than centralised ones reduces the risk of whole system failure, leading
to increased overall robustness. From a societal perspective, installing rooftop solar and
batteries in homes allows citizens to have some control over their energy usage, reducing
the risk of price premiums with market fluctuations. There is also less reliance on utility
scale installs, such as wind farms, which can be viewed negatively due to the impact on
the local environment.

Unfortunately, there are examples that see less technical success overall. The Fenix
VPP was one of the first VPP concepts, and considered to be the conceptual beginning
of decentralised energy systems of this nature. The system was, however, unable to
capitalise on the available services, and the process of siloing commercial and technical
system responsibilities to fit within current energy market policy proved too complex to be
commercially viable at the time. The VPP was also made up of utility scale generators.
These generators will naturally increase the complexity of managing various stakeholder
objectives, particularly when there are several other opportunities for securing revenue
outside VPPs; PPAs and government-backed Contracts for Difference being the most
common.

This case studies review suggests that VPPs can maximise their impact by moving to
a decentralised, local approach, where more power is given to households and businesses to
actively participate in the market. Outside of frequency balancing services, the ability of
demands to shift their loads to reduce grid stress is of enormous value to operators. This
conclusion naturally turns the attention towards RECs, which promote local participation

in order to achieve emission reduction targets.

2.4 Renewable Energy Communities

The term ‘Energy Communities’ has many definitions. Traditionally, community energy
refers to collective energy actions that foster citizens’ participation across the energy
system. It has received increased attention in recent years, developing a wide range of

practices to manage community energy projects [52]. Energy communities are described as
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a non-commercial type of market actors, combining non-commercial economic aims with
environmental and social community objectives [53]. Particularly, they have been defined
in their ‘grassroots’ efforts to improve the sustainability and energy security, and therefore

fostering a close community atmosphere.

An energy community has traditionally been separated by definition to a VPP as
it usually describes the socio-economic environment in which stakeholders have shared
ownership and investment in the system to fund the project, rather than the technical
operation of the system itself. There is, however, research currently being conducted into
integrating these two concepts in addition to smart control systems, such as community
shared energy storage [54], virtual net metering and Distributed Ledger Technology (DLT)
based platforms for community flexibility provision [55], supported by cloud based services
[56]. The combination of a community driven VPP is defined as a Community VPP (cVPP)
[57].

There are clear benefits for the development of energy community driven Virtual Power
Plants (VPPs) including carbon emissions reduction for selected community stakeholders,
potential cost reductions (dependent on revenue streams), stronger sense of community
involvement, increased energy security, and even land value improvements [58]. The services
delivery to realise these benefits are also well researched and understood, but often held
back by energy market regulation and uncertainties [59, 60]. Similar to that of the VPP
in general, many challenges are centred around the current regulation which limits the
potential revenue from installing renewable energies which are community shared and
owned. Increasing local energy system capacity still leads to a problem of energy imbalance

and potential congestion within the distribution system.

The majority of citizen-led initiatives are cooperatives. Cooperatives are a socio-economic
enterprise in which citizens can collectively own and manage local renewable energy
installations and projects. Local residents can buy shares in the cooperative to fund
projects to supply energy to participants such as local businesses, residents, and community
buildings. Participants with investments in the local project then receive a form of dividend
from any profits made through sales of electricity, license agreements, and feed in tariffs.
Most profits, however, are usually fed directly back into the cooperative to fund new
sustainable projects. This is the oldest type of energy community (first developed over 40
years ago), but has progressed to focus on the reduction on emissions by publicly funding
the installation of PV solar, wind turbines, etc. The conversion of a passively operated
energy community to a virtually managed VPP system will require the addition of several
other stakeholders, increasing the complexity of the cooperative. These stakeholders include
a VPP management system to control energy flows and optimal services dispatch, energy

aggregators, utilities management, and access to the energy trading markets if required.
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Energy Community Case Studies

According to analysis conducted in [52], approximately 3,500 different energy cooperatives

are in existence in Europe, that is, decentralised and sustainable energy production projects

set up to increase consumer empowerment and community-driven initiatives for the benefit

of local citizens and the environment. The data in Figure 2.12 displays the locations of

the different local energy initiatives in European countries. It can be seen that a high

concentration exists in northern European countries such as Germany and Denmark, where

the energy policy and regulation has allowed for these types of partnerships for many

years. Table 2.2 contains an overview of the REC examples explored in detail, due to there

structure and scope similarities with the case study of this work.

Figure 2.12: Approximate number of community energy initiatives from nine countries
within Europe [52]

Table 2.2: Table Renewable Energy Community projects reviewed in detail.

community.

Name Type Location Summary Services

Sonnen REC Germany | Sharing excess DER | -peer-to-peer energy

Community & Austria | generation among | trading -mutual

(2017-present) over 10,000 end-users. | DER value increase

[61] Energy value is traded |-Shared Virtual
for the mutual benefit | Energy Storage
of all those in the | System (VESS)

-Optimal real time

energy balance
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Edinburgh REC UK Collective  generation | -Mutual DER
Solar and use of solar power | value increase
Cooperative throughout the city of | -Shared DER
(2013-present) Edinburgh. assets -Community
[62] ownership

Isle of Eigg | REC UK Community run power | -Shared energy
[63] distribution = network | storage -Local asset

for the remote Scottish | ownership -Optimal

island of Eigg operation
Repsol REC Spain Creation of solar energy | -Mutual DER
Solmatch communities to promote | value increase
(2019-present) self-consumption and | -Peer-to-peer energy
[64] cooperative ownership | trading -DER
renumeration

NEOOM REC Austria Commercial energy | -Mutual DER value
Energy communities available | increase -Shared
Communities to  residential  and | energy storage -Local
(2020-present) commercial customers | energy market

[65] to receive credit for

renewables and storage.

sonnen VPP

The German sonnen community is one of the largest VPPs in the world. It was announced
that the virtual system has reached a capacity of 250 MWh, consisting of thousands of
decentralised batteries throughout the country. Similar to the AGL VPP concept, the
effective battery fleet can be controlled in real time to provide frequency balancing services
to the grid. The company has approximately 25,000 sonnenBatteries connected to the
system as of 2023, and plans to have a capacity of over 1 GWh in the coming years. The
VPP can also perform load shifting, by absorbing excess solar generation during the day

and supporting the grid during peak load hours.
This VPP design is a good example of a decentralised system design, in that by allowing

small-scale solar and battery systems to participate in the market, far more control is
available to the system operators to provide grid services. The ability to effectively smooth
out changes in demand-side load will also become vital given the shift towards more
non-dispatchable renewable generation. This type of service provision should be a priority
for VPPs in order to remove flexible though carbon emitting fossil fuel generators from the

grid.
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Edinburgh Community Solar Cooperative

Edinburgh Community Solar Cooperative Limited (ECSC) is a solar cooperative set up in
2013 in the UK which supplies PV solar energy to 24 of the City of Edinburgh’s council
buildings. With 541 members, the funded PV solar installations supply power to the
buildings, for which the council pays the cooperative through a license agreement, with
any excess generation renumerated through the UK’s feed-in-tariff. The total generation is
approximately 2 MW and is therefore the largest energy community of its kind in the UK
[62]. According to the cooperative, £1.4 million has been invested so far in the various
sustainable projects, with 1.1 GWh of clean energy supplied each year, leading to a saving
of over 1,000 tonnes of CO2 as of 2019. Figure 2.13 shows the locations of the council PV

installations.

Figure 2.13: Locations of the 24 council and community ECSC PV solar installations

This cooperative has been able to provide low carbon and low-cost energy to a number
of buildings. However, it does not yet take advantage of the potential benefits that a
VPP system would allow, such as the storage and temporal shift of excess PV solar and
participating in energy trading markets. This is largely due to policy and regulatory

limitations of the energy market in the UK.

Energy4All

Energy4All is a Private Limited Company (PLC) established in 2002 and supports 27
independent renewable energy cooperatives, including the ECSC initiative. As a social
enterprise PLC, Energy4All can raise funds through a number of methods, including

public shares and bond offers, and through industrial connections being able to bring in
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appropriate expertise to support local initiatives financially and technically with project
needs. The technologies can range from small scale PV solar to large hydro and community
heating networks. A total of 30 MW capacity has been delivered by various Energy4All

funding and projects, and over £71 million in community funds raised as of 2020 [66].

Isle of Eigg

Eigg Electric Ltd [63] is a PLC located on the Isle of Eigg, UK supplies and distributes
renewable energy to the residents of the small island. The Isle of Eigg is cut off from the
mainland, so the community run energy distribution is responsible for supplying all power
to the 96 local residents. Given the isolation from the mainland, all parameters have to be
managed by the island operators. The electricity is generated from a mixture of hydro,
wind, and solar power. A large hydro power plant of 100 kW supplies the majority of the
demand, with two smaller 6 kW hydro turbines. Four small 6 kW wind turbines and a 50
kW PV solar array also supply power to the grid. Residents have an energy usage cap of 5
kW for residential and 10 kW for commercial buildings. With these constraints, the 184
kW is enough to supply all buildings on the island, but there are also two 64 kW diesel

generators for emergencies and use during maintenance to the other generators.

Figure 2.14: small-scale hydroelectric generator located on the Isle of Eigg [63]

During times when energy is being produced in excess a bank of 96 4V (48V series)

batteries located in the control building absorb the power to regulate the AC frequency and
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can be released when required. If there is a scenario when the batteries are fully charged and
power is still being produced, a signal is sent to switch on thermal loads in the community,
such as community hall and church heaters to shed power. Most excess power generation
events occur in the winter, but at other times if space heaters are not required, external
thermal loads are used to dump heat to the atmosphere. The hydroelectric generators can
also be restricted to limit the power output. It can be noted from the resulting energy grid
that removing the reliance on diesel generators and instead using energy from renewable

resources would have significantly reduced the environmental emissions of the island.

Repsol Solmatch

Solmatch is a commercial solar energy community concept offered by the Spanish multinational
energy company, Repsol. The company has created dozens of individual solar RECs within
Spain the owners of PV solar installations can join. When a customer signs up to
an REC, they qualify to receive a lower charge for their amount of community-based
self-consumption. This effectively reduces the energy cost when part of the REC, and
through a valid Guarantee of Origin (GoO), they are guaranteed that they consume only
clean energy when solar is being generated. The limitations are that the customer needs to
be within a 500m radius of the REC’s centre, and have sufficient, suitable rooftop area
available for a solar installation [64].

This solar-based EC has a number of local benefits. Through the validated GoOs,
Repsol can report a net quantity of avoided emissions for those customers. The design also
means that no interaction with the national energy wholesale market is required, and the
customers are still able to receive a cost benefit. The promotion of local solar installation
also allows for greener communities and additional clean power job creation for those areas.
Figure 2.15 shows an example REC set up created through this scheme. According to
Repsol, there are almost 500 different solar-based RECs currently operating in Spain since
the launch in 2019, with 6,800 tonnes of CO2 avoided as of 2024 [67].

NEOOM Energy Communities

NEOOM is an Austrian data and AI company that provides a REC commercial offering
to residential homes and Small and Medium Enterprises (SMEs). Similar to the Repsol
solar community, the NEOOM system works by aggregating groups of locally generated
clean energy, commercial flexible loads, and storage into an EC. The EC design takes
advantage of the recent enactment of the Renewable Energy Expansion Act Package (EAG),
which allows for the direct and localised sharing of energy system sources within the same
geographical location [65].

The NEOOM EC also provides all the same local benefits as Repsol, such as lowering

energy costs and promoting local awareness of climate action, whilst expanding the asset
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Figure 2.15: Example solar Energy Community created as part Repsol Solmatch [67]

scope. By allowing flexible loads and storage to participate in local balancing, the system is
not limited to clean energy generation during sun hours by releasing stored energy during
the night, displacing more of the higher emissions grid use. While less information is
available on exactly how NEOOM controls these flexible assets, it is assumed that the
system is designed to minimise dependence on grid imports over the course of the day.

Through the company knowledge base, NEOOM is one of the few EC providers to
publish how the renumeration between community members works. The key element of
the EC cost is that any community member should be able to sell energy into the EC at
the same price as would be purchased. This ensures that the incentive to provide energy
to the system remains high, and keeps the agreed price low, as local PV solar generation is
often much cheaper than retail grid energy in Europe [68].

The costs and revenues can be categorised into the following:

e Electricity consumed from the grid or the EC
e Electricity generated and delivered to the grid or the EC

e Service charges and fees for use of the EC
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On the consumption side, a typical European grid has a retail purchase price of 44
ct/kWh (gross), compared to the EC price of 23 ct/kWh (as of 2024). In this case it is
clearly beneficial to consume from the EC rather than relying on grid energy. On the
generation side, European countries such as Austria typically offer a solar Feed-in-Tariff
(FiT) of 5-10 ct/kWh. When compared to the ECs agreed price of 23 ct/kWh, there is
again a clear advantage to selling energy back to the community [69].

There are also service charges for the operation and maintenance of the EC itself, which
NEOOM publish. The community members pay an annual service fee based on the size
of the EC, starting from €7.50 per year for less than 10 members, to €3 per year for a
community of more than 100 members. Additionally, there is an internal EC FiT that
scales inversely depending on the quantity of energy that is delivered. The tariff starts at
2.4 ct/kWh for the first 500 kWh, to 1.2 ct/kWh for volumes over 1,500 kWh. This is to
promote community members to install larger generation and storage systems to incur a
smaller charge. Table 2.3 below shows an example costing for an EC community member
with an annual consumption of 4,500 kWh and PV solar generation of 3000 kWh. It is
assumed that the grid FiT is 5 ct/kWh. The resulting difference in annual cost shows that
there are advantages resulting from this type of EC, and that with an increasing number

of members the cost decreases further.

Table 2.3: Simplified example of the renumeration process of the NEOOM Energy
Communities. Adapted from [69]

Total energy (kWh) Grid-only cost (€) EC-only cost (€)

Self-consumption 2000 200 200
Import 1500 -75 -345
Export 1000 440 230
Service fees 54
Operational costs 14
Annual costs 565 153

This type of cost distribution, while simple in its design, promotes growth in the
distribution energy generation volume and ensures that all community members get fair
renumeration for their investment regardless of system size. It is also an advantage if
members shift their consumption to times when the EC generation is highest (peak sunlight
hours), to receive the highest volume of cheaper electricity.

NEOOM EC is also an excellent example of using recent energy policy to its advantage

in order to reduce investment risk and maximise participation.

VPP and Energy Community Concepts Analysis

This section presents a review of the state-of-the-art VPP systems within literature. It can

be seen from the research presented that the design can vary significantly depending on a
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number of environmental factors and constraints.

The Fenix VPP system is unique as the first true concept to be explored and have
real pilot studies conducted. One of the first key differentiating characteristics is the
distinction between the TVPP which handles the technical control and scheduling processes,
and the CVPP which handles commercial and market interactions with stakeholders.
Communication and integration between these two architectures is vital to the smooth
operation of the VPP. The available services and commercial success of a VPP depended
heavily on the market regulation and policies of the local region. The availability of a
standalone Balancing Responsible Party (BRP) to aggregate services into a single energy
flow schedule would significantly benefit the commercial operation of the VPP and allow
for additional streams of revenue.

The commercially successful concepts including the Australian AGL VPP have been
able to display the economic viability of this type of technology. The AGL VPP itself is
relatively simple in principle and only has a few output services that are delivered. The
first key service is demand and supply balancing for the Fast Frequency Response market
in Australia, and the second is the available of emergency energy storage of thousands of
energy customers with the required PV solar and battery system installed. The success
of the system is due in part to the management of the project by the DSO, AGL. It is
therefore more reasonable to be able to access the appropriate technical measurement data
and market pathways to integrate the VPP into the traditional energy grid.

Switching from a traditional VPP definition, as is the case with Fenix and Edison, to a
localised view of services delivery, removes many of the associated regulatory, technical,
and investment risks. By understanding the policy environment, providing a transparent
renumeration platform, and supporting system monitoring through smart monitoring and
10T control, the NEOOM Energy Communities concepts performs very well in promoting
prosumer participation, clean energy awareness, and electricity cost reduction.

From reviewing these different VPP and EC options, it is clear that the supporting
data behind the decision making processes is vital to commercial success. Particularly in
the case of NEOOM and Repsol ECs, where data sharing and monitoring is a key value
driver. This makes a case for understanding accurately the system design boundaries,
control requirements, and services provision through modelling and optimisation, such that
risks to the community members can be minimised.

What follows in this work is a review of energy system modelling, control and design
optimisation to support the monitoring requirements and long-term decision making of the

REC operators and the members.
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2.5 Asset Modelling, Control, and Design Optimisation

It is clear from the current state of renewables ECs that in order for the positive returns
to be realised over the project lifetime, accurate and insightful energy systems design and
modelling is a requirement. Given the nature of the problem at hand, which is to design
and operate an EC to maximise a single of multiple performance objectives, the problem
can be discretised into an energy system model. This type of approach is well-researched
over a number of years, some of which have been directly applied to community-based

systems.

Research often consists of a defined energy demand over a given period of time, and
variable system asset capacities that must be optimised within a set of technical constraints
to provide the best possible desired outcome. The work in [70] presents an in depth review
of trends, modelling and optimisation of RECs. The review also stipulates that commonly
the system assets are grouped into lumped models, represents the loads, generation (often
PV solar and wind turbines) and ESS (e.g. battery, thermal, and hydrogen storage). For
each of these asset types, their performance characteristics can be represented as a series of
mathematical formulae based on the governing principles of the technology. Several research
articles present methods for modelling the operation of these assets within a decentralised
community energy setting [71-74]. Vujanovic et al. [71] highlights that hybridising many
generation and storage assets allows the system to utilise synergies between technologies
and achieve the best performance. Some of which combine the dual demand of HVAC and
electricity when optimising for a particular objective. Alluraiah et al. [72] in particular
assessed an integrated remote microgrid design consisting of mixed wind, solar, battery,
and an integrated hydrogen load. There is, however, a clear research gap when assessing
energy community systems for islanded, rural locations, particularly when considering
different hybrid storage options including regenerative hydrogen generation, storage, and
use. This work will explore how the integration of such an asset can contribute directly

towards increased energy independence, sustainability and climate transition resilience.

The modelling fidelity of the generation and storage assets also needs to be considered.
For example, a solar system could be modelled based on first principles, as described in
[75], which considers the physical diode interaction between voltage and current passing
through the panel. At the other end of the scale, the solar asset could be considered a
simple static model where the rated capacity is multiplied by a load factor profile [74].
The choice of model resolution is again decided by the role of the model and the most

important set of the results desired by the system designer.

Finally, commonly used design and control optimisation methods are reviewed in detail.
Approaches are often categorised into Linear Programming (LP) problems [76], which
are fully deterministic in their outcome, and heuristic optimisation [77], which follows a

stochastic procedure to arrive at the optimal result. Both of these are critically reviewed,
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before presenting the chosen methodology for this work.

2.5.1 Renewable Energy Assets

The following section details the background, modelling techniques, and challenges to the
integration of solar and wind generation systems, paying close attention to applications in

rural and remote islands.

Photovoltaic (PV) Solar Systems

PV solar systems are one of the most widely adopted renewable energy generators globally,
with over 700 GW of capacity installed globally from 2 billion solar panels as of 2023 [78].
The photovoltaic effect is based on a fundamental physical process in that energy from
photons that make up the sun’s light can be used to excite electrons in within solar cells,
and produce flowing electrical current. Solar, or photovoltaic cells, were first invented in
the 1870s and have been studied extensively for use a renewable energy resource. In the
1940s and 50s pure crystalline cells were produced, but only used in exotic instances due
to the prohibitively high cost. It was not until the late 20th century that the production

cost reduced enough to make solar panels suitable for terrestrial use [79].

(b) Commercial large-scale solar farm
a) PV solar system deployed on NASA’s development made up of individual solar
(a) ¥ ploy P P
shuttle spacecraft [79]. panels

Figure 2.16: The applications of solar cells and panels have progressed significantly over
the past 50 years, from space exploration to energy production at scale.

A simple solar cell is made of of an n-type layer and a p-type layer of semiconductor.
When the energy from photons is absorbed into the n-type layer, electrons are able to break

free from the atomic structure. This creates a charged junction between the now positively
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and negatively charged layers, and electrical current flows when a circuit is applied across
the layers. Modern solar panels are made up of many individual cells connected in series

and parallel to produce the desired power output.

Figure 2.17: The electrical field induced by free electrons in the n-type layer produces
flowing current when a circuit is applied [79].

The most common cell chemistries are poly- and mono-crystalline, of which the
mono-crystalline variant is most efficient due to less induced resistance within the cell
structure [80]. There are also a number of novel chemistries currently being researched,
including single junction gallium arsenide cells, multi-junction cells, thin film chemistries,
and emerging technologies most notably pervoskite and other tandem cells [81].

For the common mono-crystalline silicon solar panels, the cells can be mathematically
represented as a simple circuit, containing a photodiode as a variable current source, as
shown in 2.18. This is known as the De Soto PV model, building on the well known
works of Duffie and Beckman [82] and is widely considered to be one of the most accurate

approaches to simulating the physical properties of a solar cell [83].

Figure 2.18: A lumped model diagram showing the mathematically modelled components
of the solar cell. Source: [83]

Figure 2.18 can be represented as the following equations:

V+IRs _1} _V—i—IRS (2.1)

I=1—1 [e :
0 Rsh
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where:

Nsnich
o= —
q

in which ¢ is the electron charge, k is the Boltzmann constant, n; is the ideality factor,
Ny is the number of series cells and T, the cell temperature. The method is also known as
the ’5 parameter model’, as there are five unknown variables to derive numerically, and are

often not shared by the manufacturer. These are the following:

e The photodiode current I,

the diode reverse saturation current Iy,

e the series resistance I,

the shunt resistance I..s,

and the diode ideality factor a.

The typical current-voltage characteristics of the solar cell is shown in Figure 2.19.
The open circuit voltage condition is met when no net current is following, and is instead
flowing through the diode. When a load is introduced, the net current is able to flow
through the external circuit, but has the inverse effect of lowering the cell voltage. This
implies that the power output given the relation P = I'V will have a maximum value across
the IV range. This is known as the Maximum Power Point (MPP), and changes depending
on the resistive load, total solar irradiance, and the cell temperature.

As stated by Duffie and Beckman [82], a solar panel can be considered as an energy
balance, where light is either converted into useful electricity or thermal energy. The latter
is then absorbed into the cell, raising the temperature, or dispersed through come natural

dissipation. This energy balance can be defined by the following equation:

(ra)Gr = nGr + UL(T. — Ta) (2.3)

Where 7« is the effective transmittance-absorptance product that when multiplied by
the irradiance Gt gives the energy absorbed into the solar module. 7, is the cell electrical
efficiency, Uy, is the loss factor describing the rate at which energy is lost to the surround
ambient temperature Tj,.

To solve the energy balance, the cell temperature set at a consistent ambient condition
is needed, known as the Nominal Operating Cell Temperature (NOCT). NOCT is measured
at an irradiance of 800 W/m?, and wind speed of 1 m/s and under no load conditions.

Substituting this back into the original equation yields the following:
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Figure 2.19: A PV solar IV curve showing the impact of changing the series resistance on
the output power voltage and current

T. - T, Gr Urnocr [1 3 (77c ] (2.4)

Tnoct — TanocTt Grnocr  Urp Ta)

The constants (;7;) are considered small compared to the other elements, so is often

estimated as 0.9 without significant loss in fidelity [82]. A major consideration is the
accuracy of different modelling techniques. Decentralised energy systems, such as PV
solar panels and wind turbines rely on switching converters for DC-DC voltage regulation,
DC-AC conversion, and frequency regulation with the grid [84]. This includes, for example,
the MPPT system required to maintain maximum power output of the system across the
range of solar irradiance levels [85]. Given the grid frequency needs to be matched at 50Hz
in Kurope, the switching frequency of such converters is often in the order of 20-80kHz.
It would be computationally impractical to model a system at such a frequency over a
10-20 year lifetime period, and therefore more common to represent the assets’ average
performance over an hour, day or month. The exact level of granularity is decided by the

use case of the model, balancing result accuracy with computational performance.

To overcome this problem, another energy balance approach is used based on the solar

cell fundamentals, as described in Equation 2.1:

P = ACGT,inmpT/e (25)
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Where P is the cell power output (W), A, is the cell area (m?), Gr; is the average solar
irradiance over time 7, 7, is the efficiency at MPP and 7. is the cell electrical efficiency.
Known manufacturer data can then be substituted into Equation 2.5, in addition to the
operating cell temperature based on Equation 2.4. A fully worked example is provided in
the methodology section.

Another key challenge with modelling and integrating PV solar systems into a remote
EC system is monitoring module derating. Derating factors can come in many forms,
including a measure of dust and dirt build-up on the modules, natural degradation of the
cells, and wire corrosion. The expected annual derating factor is often provided by the
manufacturer, and gives a measure of how much % power output will be lost. This can
be integrated into the long-term modelling to determine the actual lifetime operation of
the PV solar system. The other challenges to solar integration in islands, including space
requirements, and managing excess power generation will be discussed in later chapters.

This simplified model representation of solar systems is well documented in its applications
in the techno-economic analysis of decentralised energy systems. Research conducted in
[72] used the approach to optimise a remote microgrid design for the lowest system cost,

where the entire lifetime cashflow must be considered.

Wind Turbines

A wind turbine simply describes an electricity generating technology that is powered
solely by the movement of wind to provide rotational energy [86]. The two primary wind
turbine designs are horizontal- and vertical-axis variants, which describe the orientation
of the generator rotation. Different wind turbine designs are chosen based on the wind
characteristics of the local environment, space and cost constraints. Comprehensive
comparisons between turbine technologies are laid out in [87-90]. The instantaneous power
that can be extracted from a fluid flow is the integral of the mass flow rate, which itself is

a function of the fluid density p, area A, and fluid speed U:

_ Ldm

P=
2 dt

_ L1 3
= 2pA (2.6)

However, not all energy can be converted into power due to the Betz limit, which is the
theoretical maximum power coefficient ¢, [91] that any wind turbine is able to achieve from
the air flowing past the blades. [92]. The graph in Figure 2.20 that vertical-axis turbines
tend to operate at a lower tip speed ratio A, that is, the ratio of the rational speed and
the length of the blades. This work will focus primarily on the modelling and integration
of the three-blade horizontal-axis turbine as it is the most commercially available and
well-researched, and also generally achieves the highest c,.

When considering the ¢, and electrical losses i from conversion equipment, Equation

2.6 can be updated to the following where U is the average wind speed over the given time
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Figure 2.20: Diagram showing some types of wind turbines and their rotor power coefficient
and tip speed ratio [93]

interval:

1
Py(U) = 5 Acynl? (2.7)

The type and design of the wind turbine depends on the conditions of the installation
location. For geographical island applications, there are a number of local factors to
consider. For horizontal axis wind turbines, these can be broadly categorised into onshore
and offshore. The placement of the turbine primarily impacts the average wind speed that

is met by the turbine blades, and so is directly proportional to the energy generated [86].

Onshore: Onshore wind turbines are designed for use on land, so take advantage of
the specific weather conditions of different land formations. The interaction between the
land and air over mountains, valleys, plains or plateaus will impact the average wind speed
and variation over the year. Onshore turbines will therefore, on average, produce less
energy than their offshore counterparts. Onshore turbine size is also often a limiting factor
to energy generation, but increased reliability and maintainability is expected to reduce
overall investment cost [94]. Onshore wind is therefore more commonly considered for use
in RECs due to their low cost and smaller-scale.

Offshore: Offshore turbines are increasing being deployed at significant scales. Wind
farms installed in seas benefit from a stable wind speed without any obstacles, so can

generate more energy on average, while also allowing land to be freed up for cultivation
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and inhabitation [95]. However, the harsh environmental conditions and salt water mean
turbines are more likely to experience failures and therefore require regular maintenance

[96], with accessibility to perform such maintenance being challenging [97].

Wind Speed Variability with Height

Wind will naturally interact with obstacles on the ground, creating a velocity gradient
that increases with elevation. This phenomenon is known as wind shear, and the relationship
between wind speed and measurement height can be approximated using the log law [98].
The relationship is defined by a roughness length zp, which is a function of the terrain
type. It can be seen in Table 2.4 below that the wind speed impact due to land obstacles

can be significant.

Table 2.4: Values of surface roughness length for various types of terrain [86]

Terrain Description 2o (mm)
Very smooth, ice or mud 0.01
Calm open sea 0.20
Blown sea 0.50
Snow surface 3.00
Lawn grass 8.00
Rough pasture 10.00
Fallow field 30.00
Crops 50.00
Few trees 100.00
Many trees, hedges, few buildings 250.00
Forest and woodlands 500.00
Suburbs 1,500.00

Centres of cities with tall buildings 3,000.00

The Log Law is defined as the following, in which z is the turbine height, k is the Von

Karmen constant, Usx is the friction velocity, U(z) is the speed measured at turbine height:

In(z) = <Uk*) U(2) + In(z0) (2.8)

Wind speed measurements from an anemometer are often at a different height to the
actual turbine hub height, so the equation can be reformatted such that the wind speed
at any height U(z) can be modelled if the reference height z,, reference wind speed U(z,)

and roughness length zy are known:

In £
U(z) = Ulzr) ( iﬁ) (2.9)

Statistical methods can also be utilised to evaluate the theoretical total energy generated

at a given site. This approach is commonly based on two probability distributions: Rayleigh

67



Chapter 2

and Weibull. As discussed in [86], Rayleigh is more commonly used as only the average
wind speed over the time period is needed, whereas the Weibull distribution requires both

a shape and a scale factor to determine the outcome.

It is also common for wind turbines to be modelled numerically with a full CFD
analysis. A review by [99] details the advancements in CFD analysis of turbines of different
scales. The interactions between the blades and variable wind speeds, in addition to wakes
created by nearby rotating turbines produces an extremely complex series of interconnected
factors that will ultimately impact the power generation, control characteristics, ware, and
potential failure modes of the assets. This type of modelling is also often considered when
designing the turbine itself, including the blade profile, tip speed ratio and hub height, or
to investigate the applicability for different installation sites. Since this work is focused
primarily on the techno-economic performance of wind generation at the energy community
level, it is vital to choose an appropriate level of modelled complexity for the application.
It was therefore chosen not to explore this facet of wind turbine modelling, and to assume

that a small amount of error will exist in the approach explained above.

2.5.2 Energy Storage Systems

ESSs are vital to balancing the intermittency of the non-dispatchable renewables discussed
[100]. According to BloombergNEF, total storage capacity globally could pass 400 GW by
2030, indicating an enormous demand for grid balancing in the face of increasing volumes
of wind and solar [101]. Without storage balancing assets, the service provision is left to
traditional, flexible oil, coal and gas plants, significantly increasing the carbon emissions of
energy use. While this work has previously reviewed ESS service provision within VPPs
more broadly, it is key to also understand the applicability for energy communities, and
the advantages of modelling such assets for optimal decision making. Different ESSs have
varying strengths and weaknesses which must be taken into account. These are usually
categorised as (1) their average discharge time at rated power and (2) their total potential

storage capacity. The graph in figure 2.21 below shows the range of potential ESS options.

This work aims to compare the applicability of lithium-ion battery chemistries, as
one of the most commonly researched and implemented storage types, to a novel hybrid
hydrogen storage system. The technologies are compared in terms of their fundamental
storage processes, common modelling approaches, strengths, and weaknesses when applied
to power grids and energy communities. This review also explores the ways in which ESS
in general are vital to the success of RECs if aiming for energy independence and security,
in addition to system stability. The modelling of these systems can support complex design

decision making as well as future renewable development for remote communities.
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Figure 2.21: Suitability of various ESS technologies for grid applications [102]

Battery Energy Storage

Electrochemical batteries are one of the most critical components of model technological
advancements. TA broad range of battery chemistries exist, including commonly used
lead-acid and nickel cadmium varieties, to novel sodium sulphur and flow batteries. The
most common of all, particularly those touted for electrical grid storage applications are

lithium-ion technology.

Li-ion batteries have already seen huge commercial success in mobile phones, laptop
computers, watches, and other small-scale applications. The need for a significant reduction
in transport emissions globally has also seen the demand of li-ion batteries in electric vehicle
applications grow exponentially since the start of the 21st century, with an estimated 27
million new EVs globally by 2026 [103]. For this reason, there are a number of literature
sources considering battery modelling techniques specific to EV applications [104-106].

The chemical principle of li-ion batteries is the redox reaction that occurs between
the anode and cathode materials that make up the cell, involving the lithium ions and
electrons. The lithium ions move between the cathode and anode through the electrolyte
through the separator, while electrons travel through the external circuit [107].

A common approach to modelling electro-chemical batteries is to consider the dynamics
of the charge/discharge curve at different current levels. MATLAB and other popular
dynamic modelling software use a modified version of the Shepard battery model [108],

which describes the charge and discharge based on the terminal voltage, open circuit
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Figure 2.22: The charge in discharge characteristics of lithium ion batteries. [108]

voltage, internal resistance, discharge current and state-of-charge [109]. The model is based
on an equivalent electrical circuit, similar to the PV panel methodology. The equations

are as follows:

Discharge:
Viatt = Bo — Ri — K= (it + i) + Ae~ Pt 2.1
batt = Lo — 1% — Q_Z,t(it—i-z*)—&— e (2.10)
Charge:
: Q , Q — Bit
Veatt = Eg — Ri — K——— -K it + Ae™ " 2.11
batt 0 v =010 (S O—it it + Ae ( )

These equations are based on the non-linear cell voltage Vg4, the constant voltage Fy,
low-frequency current dynamics I, cell current I, extracted capacity it, total capacity @,
exponential voltage A, exponential capacity B, and polarisation constant K.

The formulae are arranged in the model as shown in Figure 2.23. It should be noted
that li-ion batteries also do not need to consider the non-linear exponential function that
factors in hysteresis effects in charge and discharge, as is for other battery chemistries.

Measuring the State-of-Charge (SOC) of the cell is another challenge, as the relationship
between the cell voltage and SOC is non-linear. Equation 2.12 presents the classical
approach to ’count’ the current leaving the cell (A) over time to approximate the change

in capacity (Ah), where @,, is multiplied by the cells nominal capacity (Ah).

SOC(t) = SOC(0) — Ql / S (2.12)
n J0o
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Figure 2.23: Li-ion battery equivalent circuit diagram under charging condition [108]

There are numerous examples of the application of li-ion battery chemistries in VPP
and REC applications. Storing excess energy from renewable sources in a BESS not only
increases the efficiency of final energy use, but also reduces the induced emissions from
consuming additional grid energy. A number of resources have considered control strategies
that maximise performance based on a combination of performance objectives, such as
self-consumption and self-sufficiency [110-112]. The quick response time of BESS also
allows for dynamic P2P energy trading markets to be created between participants of the
REC [113].

One of the key market differentiators of BESS in decentralised energy applications is
its low investment requirements. The cost of grid scale batteries is set to fall from a global
average of 290 $/kWh in 2022 to 175 $/kWh in 2030 [114]. This is clearly a huge benefit to
local communities that may not have the start up capital required for other ESS options.
There are also potential disadvantages to using BESS in rural and remote ECs. There
are concerns about the safety of battery cells [115], which if not properly monitored for
heat anomalies could lead to a scenario known as thermal run away [116]. Additionally,
batteries suffer from self-discharge over time when left in open circuit mode [117], which
can lead to lower efficiency if only used intermittently.

While BESS will clearly have a major role to play in balancing renewables, there is a
performance gap in the long-term, seasonal storage time frame. This is where hybridisation
with a hydrogen-based storage system could plug this performance gap, and maximise the

benefits of both technologies simultaneously.

Regenerative Hydrogen Storage

Hydrogen gas, being the most abundent molecule in the universe, is a versatile energy vector.
Traditional uses of hydrogen have been as a feedstock for the industrial and petrochemical
sectors. Hydrogen can also be combusted to produce energy directly. In recent years, there

has been growing interest in hydrogen’s use in storing and generating electricity.
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One of the most common methods of extracting electrical potential from hydrogen is
via fuel cells (FCs). FCs designs can vary in definition and internal structure, but the
fundamental principle remains similar for all. The example below explains the working
process of a Proton Exchange Membrane (PEM) FC, the most common and commercially
available variant. A PEMFC stack consists of anode and cathode layers separated by
an electrolyte. Hydrogen enters at the anode where a catalyst, typically platinum, splits
the molecule into H' protons and electrons. The protons are ’exchanged’ through the
electrolyte and meet the incoming oxygen molecules at the cathode side, which gives the
PEMFC variant its name. The electrons flow through an externally connected circuit,
meeting with the reactants at the cathode where water and heat are formed as byproducts.

The chemical equations for the anode (2.13) and cathode (2.14) are given below:

Anode side:
Hy — 2H 4 2¢” (2.13)

Cathode side: .
502 +2e” +2H" — Hy0 (2.14)

The diagram in Figure 2.24 shows the typical arrangement of components within one
FC stack. The central subassembly where the chemical reactions occur is known as the
Membrane Electrolyte Assembly (MEA), encased by bipolar plates which aid the channeling

of Hs fuel and air into the cell.

H, in Air in
— ]
H2
=) s 0,
[ o ¢
H, O
i
H,0 o H,0
< — ,
Excessgas| . __, 8‘ = Unused air
andfor | "7 and/or
water out water out
G —

Figure 2.24: Diagram showing the working principle of a hydrogen fuel cell, specifically a
PEM variant [118]

While PEMFCs are commonly assumed to be the most commercially mature of the fuel
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cell designs, other options exist in the market that are more suited to certain applications.
Fuel cells have been both used and touted for use in passenger cars [119], heavy transport
[120], shipping [121], aerospace [122], industrial processes [123], and off-grid Uninterruptable
Power Supplies (UPS) [124]. This review focuses on a comparison between PEMFC and
AFC variants, though the full range of hydrogen fuel cell options is as follows:

1. Proton Exchange Membrane Fuel Cell (PEMFC)
2. Alkaline Fuel Cell (AFC)

3. Phosphoric Acid Fuel Cell (PAFC)

4. Molten Carbonate Fuel Cell (MCFC)

5. Solid Oxide Fuel Cell (SOFC)

PEMFCs are the most dominant design due to their simple design, low operating
temperatures that allow for a quick start-up, and high power density per active area.
Disadvantages include the need to carefully control the moisture levels in the MEA to
ensure optimal ionic conductivity, and the required platinum catalyst which can be costly.
AFCs by contrast, allow the OH~ anion to travel through a liquid membrane and react
with the incoming Hs at the anode. A potassium hydroxide electrolyte is used to allow
transit of the anions. The operating temperatures range from 30-250C. Advantages of this
design include a simpler cell structure, no required catalyst leading to lower costs, and
fast start-up. However, the projected lifetime is approximately half that of the PEMFC.
A comparison between these and the other options is given in Table 2.5. This work will
focus primarily on PEMFCs due to their prevalence and competitiveness for applications

in decentralised energies and grid storage support.

Table 2.5: A comparison table displaying the key characteristics of different hydrogen fuel
cell variants [121, 125]

Variant Operating Electrolyte Efficiency Power /Module
temperature

PEMFC 60-120°C Nafion 45-55% 200 kW
membrane

AFC 30-250°C KOH 40-50% 100 kW

PAFC 160-220°C H3 POy 30-42% 400 kW

MCFC 600-800°C LisCOs3 —  43-55% 250 kW
KyCOs

SOFC 800-1000°C YSZ (yttria  50-60% 250 kW
stabilized
zirconia)

The next key component of the regenerative hydrogen storage system is the electrolyser.

The electrolysis of through PEM technology is, in principle, the opposite process of
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electricity generation from a PEMFC. Water flows in at the anode, splitting into H* and
OH™ when current is supplied. Ions travel through the electrolyte to the cathode and
are released has hydrogen gas. In anion exchange or alkaline electrolysis, water is instead
supplied at the cathode, and OH~ anions flow through the liquid hydroxide electrolyte
leaving the ions to be released as hydrogen gas. The diagrams in Figure 2.25 below show
the process of electrolysis for both PEM and Alkaline types.

Figure 2.25: Diagram displaying the operating principles of PEM and Alkaline electrolysis
[126].

When it comes to modelling, the electricity production within a PEMFC can be
represented using a very similar approach to electrolysis. The assumption is that the
internal resistances apply a negative (voltage decrease) effect in the FC and a positive

(voltage increase). For an electrolyser, this is represented as follows:

‘/el = ENerst + Vact + Vohm + ‘/;onc (215)

The voltage of the cell V,; is equal to the open circuit or Nerst voltage Vierst plus the
activation voltage Ve, the voltage loss arising through driving the electrochemical reaction,
the ohmic voltage losses V., caused by linear electrical resistance through the elements
of the cell, and the concentration voltage loss V one, caused by flow restrictions inside the
MEA as the volume of ionic/anionic flow rises [126]. The graph in Figure 2.26 displays
where the impact of the different losses occurs along a common electrolyser polarisation
curve.

The approach to model these voltage loss components will be discussed in the methodology
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Figure 2.26: A typical polarisation curve of a PEM electrolyser [127]

section. For the energy system modelling approach, it is critical to understand the overall
efficiency of conversion for both fuel cell and electrolyser at different operating regimes.
There are a number of methods that can be used to approximate this value, including for
electrolysers a variation of the Butler-Volmer equation [128]. For this work, an equations
2.16 and 2.17 used to first determine to hydrogen flow rate (in either production or
consumption), which can be combined with the voltage output in equation 2.15 and
operating current to find the overall efficiency. For both technologies, the hydrogen flow
rate fp, is found by the following:

Fuel Cell:

IN,
fr, =S <an’> (2.16)
Electrolyser:
1
fr, = Npny <nF> (2.17)

For the stoichiometric air-fuel ratio S, operating current I, number of parallel cells
N, number of electrons per hydrogen molecule n (2), Faraday constant F', and Faraday

efficiency 1y for which the derivation is shown in equation 2.18.

0.09 755
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While there are a number of examples of the use of BESS and other storage types in
rural and remote energy communities, far less research has been conducted on the potential
cost and emissions benefits of hybridising the ESS with a regenerative hydrogen system. A
study in [129] sets out a hybrid hydrogen-battery-biomass energy community with wind and
solar power generation, and results in a Levelised Cost of Energy (LCOE) of 0.084 €/kWh,
five times lower than the equivalent thermal plant. A very similar community system design,
also in Italy, with integrated solar, wind, battery and hydrogen storage, produced a far
higher result of 0.455 €/kWh [130], showing the range of potential uncertainty. Research
in [131] presents a much larger scale remote energy community with integrated hydrogen
storage, resulting in a cost of 0.128 $CAD/kWh.

Furthermore, there is limited to no knowledge of the impacts when applied to geographical
island locations. A model of hybrid hydrogen and battery energy storage system in
combination with renewable generation is used to provide electrical, as well as fresh water
and gas heating demand for a remote island in Bangladesh [132]. This work also uses
Non-Dominated Sorting Genetic Algorithm (NSGA-II); a type of multi-objective a type
of evolutionary algorithm that has a number of advantages over common deterministic
methods. These optimisation approaches are discussed in detail in the following section.
The optimal solution resulted in an LCOE of 0.17 $/kWh, which is in the range of similar
designs for this type of application. However, this work does not consider a grid-connected
case and local energy trading between community members. The system also uses the
hydrogen system for CO2 methanation rather than direct electrification via a fuel cell.

The work presented in this thesis aims to plug the gaps in knowledge across applications
of a hybrid regenerative hydrogen system for rural or islanded RECs, and how to optimise

the design for best performance.

2.5.3 Optimisation Approaches

Determining the design and size of the REC can be thought of as a complex optimisation
problem. In previously discussed works, almost all cases use some form of optimisation
routine, commonly consisting of a set of decision variables, system constraints, and an
objective function. In simple terms, the values of the decision variables are set by the
algorithm through some arithmetic means such that the objective function can be minimised
or maximised.

In the case of energy systems, the decision variables often consist of design criteria,
for example, the size of the solar system or total volume of battery storage, but can also
include the individual control inputs at each timestep of the model.

In this review, the two main optimisation approaches used in energy system modelling
applications are discussed. First, deterministic algorithms with particular focus on Linear
Programming (LP), followed by heuristic algorithms, making the primary focus NSGA-II.

Both options are attempting to solve a global optimisation problem, that is, a design
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problem where the objective function may have multi-extremal solutions within the design
domain [133], but ultimately a best solution for which the objective function is at its global
minima. This is critical for energy system applications with potential non-linearities, where
multiple good design options exist, subject to the necessary constraints.

For both categories, an assessment of applications in REC design from literature is
detailed, highlighting key strengths and limitations in the context of renewable energy
systems. Finally, the decision to utilise one of these optimisation methods is presented,
with a rationale for following the said approach.

Included at the end of the section is an analysis of commonly used software and tools
to carry out this type of modelling, and reasoning why a novel modelling framework

programmed in Python over other commercial options was chosen for this work.

Exact Methods: Linear Programming Optimisation

LP is a simple yet widespread deterministic optimisation method that represents a physical
design or planning problem as a series of linear equations and relationships. LP itself
is a historical significant area of mathematical study dating back to its use by Fourier
in the 19th century. It was not until the advent of commercial computing in the 1960s
and 1970s that LP models were finding applications in power system planning and design
optimisation [134]. One of the first examples of this was an optimal loading and dispatch
of power plants in order to meet network security constraints presented in [135].

LP and its related methods, including Mixed Integer Linear Programming (MILP) and
Non-Linear Programming (NLP), have become significant enabling algorithms in the fields
of engineering and design, having moved from an academic interest to a major element
of modelling in industrial and commercial practice. The relationships between different
assets and processes are summarised into the objective function, which is then minimised
or maximised to find the result. LP has an extensive history in energy system modelling
applications [136], and is still one of the most common modelling methods due to the
breadth of applications and transparency.

To describe the optimisation problem, continuous LPs, that is, a problem where the

input variables can take any value, can be expressed as this general algebraic form [137):

h(z,y) =0
minZ = f(x,y)s.t. g(z,y) <0 (2.19)
reX,yeY

f(z,y) is the objective function definition, for example to minimise total energy system
cost. h(z,y) are system conditions that describe the overall performance, for example the
power output of a solar array at given temperature, irradiance and sun angle conditions.
g(x,y) are constraints applied to the system, which could be to limit the size of the solar

array due to space constraints. In this example, the z and y variables are continuous
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(denoted by =z € X,y € Y), whereas for MILP problems the y outputs would be limited
to integer form ({0, 1}™), which can be beneficial when considering control systems with
discrete modes. Setting up this problem produces a multi-dimensional domain of potential
feasibility, in which the optimal solution will exist. The graph in Figure 2.27 below shows

a simple two-dimensional example of the use of constraints to define a feasible region.

Figure 2.27: Example of a constrained LP problem illustrating the feasible region [138].

The second element of the approach is the optimisation routine itself used to find the
solution, commonly designed to search out the optimal value from within a feasible design
region.

The algorithm popularised by this application is the simplex method, invented in the
mid-20th century. The simplex method follows a simple premise that given a feasibility
region, the linear structure can be used to determine the 'worst’ objective function outcome,
also known as the basic feasible solution (BFS). The BFS will exist on one of the extreme
vertices of the region. With the solution now limited to just feasible possibilities, the
algorithm simply walks through each connected vertex, checking whether the objective
function has improved with iterations. Because the problem is linear, this process will
eventually result in finding the optimal solution [139].

While other algorithms, including gradient descent and interior point methods, have
been proven to operate much more efficiently in certain applications, the premise of
iteratively evolving the objective function towards the optimal results remains.

Due to the maturity of LP (as well as MILP and NLP), there is an extensive collection of
research into their uses across decentralised energy system design, planning and optimisation.
A review conducted in [136] notes 145 different tools to assess the design and operation of
mixed energy use community districts that deploy some form of deterministic optimisation.

The linear model produced in [74] considers the optimal deployment of wind and solar, and
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ultimately results in an LCOE of less than 0.1 €/kWh. A similar deterministic modelling
approach in [140] is used to determine the cost savings for members investing in the
renewable EC, and found that working cooperatively the community can save considerable
energy cost compared with the grid only scenario. The key strength of deterministic
algorithms is that, based on the input assumptions, the result can be resolved completely to
produce a single analytical solution. This process removes ambiguity in modelled outcomes

and ensures accuracy.

A number of commercial energy system design software employ LP and MILP algorithms
due to their prevalence and ability to provide defined and repeatable results. These
softwares commonly include HOMER energy [141], iHOGA [142], Plexos [143] and
MATLAB/Simulink [144].

However, there are downsides to the LP approach. One key disadvantage is that, as the
model is resolved as one solution, it is more challenging to explore the feasible domain space
and form relationships between competing objective functions. This can be proxied using
the weighted sum method to produce a scalar objective, as shown in Equation 2.20 [145],
however it limits the utility, and providing the suitable weightings can be challenging. For
example, while combining the competing objectives of lowest cost and carbon emissions is
possible, describing the relationship between these objectives and relative negative impact

is not trivial.

f(ac) = wlfl(:c) + w2f2(l') + ’w3f3($) + ... (2.20)
where:
M
> wi= 1w € (0,1) (2.21)
i=1

The other disadvantage is that because the model is exact, all timesteps are resolved
completely, which vastly increases computational complexity for hourly simulations over
a one year period, and limits the ability to create user defined control and trading logic.
Conducting a stochastic sensitivity analysis, such as Monte Carlo [142] or SOBOL [146]
analysis on the results to determine the reliance on specific inputs is also difficult (but
not impossible) to perform with such a large, fully defined model. All relationships and
model definitions also need to be linearised in order to solve, which is not always possible
for renewable energy assets because of the inherent non-linearities between environmental
inputs and power production. This is where the concept of heuristic modelling can fill a

number of performance gaps.
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Heuristic Methods: Machine Learning and Genetic Algorithms

The invention of heuristic and meta-heuristic algorithms was motivated by a need by
researchers to provide solutions to optimisation problems that were either too complex to
be fully defined or too large to return an exact result. The formed hypothesis was that
for most problems, a mathematically exact solution could be estimated by approximation
and remain accurate enough to be credible, which gave rise to robust heuristic search
algorithms.

Many heuristic algorithms are inspired by biological process, swarm/colony behaviors
or physical phenomena. These can be broadly categorised into single-solution or population
based as shown in Figure 2.28, with the latter consisting of the likes of Particle Swarm
Optimisation (PSO) and Genetic Algorithms (GA), of which GA will be the main focus
of this work. The two search schemes instilled in these procedures are the concepts of
exploration (diversification) and exploitation (intensification) [147]. Exploration generally
describes the procedure’s ability to efficiently search the feasible domain space, while
exploitation collects knowledge as the optimisation proceeds to guide the following iterations.
This idea was first applied to tabu search, one of the oldest heuristic approaches [148], but

perfectly encapsulates what GA is aiming to achieve.

Figure 2.28: The classification of metaheuristic algorithms [149]

GAs are based on the evolutionary nature of living beings, and their ability to adapt
over time to their surroundings [150], following Darwin’s ”survival of the fittest” law. The
optimal design of an energy system can be considered analogous to a natural system or
behavior, in that the assets are working together to produce the best outcome based on
the environmental factors and constraints. In the algorithm, new populations are produced
after each iterative generation that take on some of the characteristics of the previous

generation, through the concepts of crossover, mutation, and elitism which improves the
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value of the fitness function (objective function) over time. A visual illustration of the
generational progression of GAs is shown in Figure 2.29. Katoch et al. [149] produced
a thorough review of GAs and produced the following description of the procedure. A
population Y containing unique chromosomes 7 is initialised, where the chromosomes are
made up of a random spread of variables. Well performing chromosome sets are combined
according to the crossover probability C), to produce offspring O. Mutation, commonly
induced through random gaussian noise, is also applied to offspring, which ensures a degree
of diversity in the population. Some well-performing ’elite’ chromosomes are passed straight
through to the next generation, and the process continues until the termination criterion is

met.

Figure 2.29: Components of a Genetic Algorithm [151].

It can be noted how, when applied to a system design problem, the combination of
selection, crossover and mutation aids the algorithm as it can effectively explore the search
space while ensuring the exploitation of information learned from previous generations.
This reduces the probability of the optimisation result settling in a local minimum, as
shown in Figure 2.30, which can be the case for other search algorithms. The additional
benefit from a resource perspective is that each chromosome’s model can be run in parallel,
significantly improving the overall computation time.

While they are applied less often to decentralised energy system models through
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Figure 2.30: A 2D search plane illustrating the existence of both a local and global minimum.
[152]

commercial software, there are still a number of GA optimisation examples within the
literature. A particularly strong area of study is where GAs can be used to optimise battery
storage size for an energy community [153, 154], leading to reduced operational costs and
environmental impact. Ismail et al. [155] provided some of the earliest research to suggest
that a decentralised energy system of combined renewable power and battery optimised via
GA could be a viable source of power for a remote community. The optimal consumption
of shared PV solar generation using GA has also been presented [156, 157] and illustrated
the potential to optimise for multiple community agents.

While there are several advantages to GA application for decentralised energy community

design, there are also disadvantages when compared to more traditional LP/MILP optimisation.

Approach Comparison

Table 2.6 outlines the common performance and user considerations that must the factored
in when chosen a model optimisation methodology, qualitatively assessed from excellent
to poor. It can be seen that the deterministic and heuristic approaches have their own
respective strengths and weaknesses, and literature shows that both options have been
successfully applied in some form to energy systems design.

The key capabilities of the final approach need to include the following:

1. The ability to model complex asset dynamics and community trading logic quickly

and efficiently,

2. to resolve to a solution when the model may not be fully observable over the time
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period,

3. to represent storage asset charging and discharging characteristics,

4. to observe the hypothesised trade-off relationship between energy cost savings and

emissions reduction,

5. to ensure the model can be run quickly and efficiently so as to perform ensemble

sensitivity analysis.

Because of these reasons, it was decided to opt for the heuristic NSGA-II optimisation

process. Although the LP/MILP is a comprehensive, industry standard approach to

system design, the potential for performance issues and lack of multi-objective optimisation

availability in particular it means that the approximate method is more favourable.

Table 2.6: Comparison of key performance and usability considerations between the two
model and optimisation approaches.

Multi-objective
support

Sensitivity
analysis
implementation

Poor: Only a weighted scalar
multi-objective can be formed
using independent objectives

Good: Some sensitivity analysis
is possible, but all solutions will
be optimal

Factor Deterministic (LP/MILP) Heuristic (GA)
Accuracy and | Excellent: Problem is resolved | Good: Result is an
convergence to a single solution approximation of the actual
result with high accuracy
Computational Good: Energy models are | Excellent: Much lower resource
simplicity usually fast to run, but an hourly | requirement, and processes and
system model is highly resource | can parallelised
intensive
Modelling Good: Highly flexible in | Excellent: Can handle complex,
flexibility domain and asset modelling, but | non-linear relationships with
relationships must be linearised | multiple variables
for LP/MILP
Result Excellent: Problem will evaluate | Poor: Random inputs to starting
repeatability to the same solution every time | condition and mutation will result

in slightly different outcomes each
time

Excellent: NSGA-II algorithm
allows two or more objectives
to be evaluated to observe the
pareto front

Excellent: Can run sensitivities
on independent parameters and
produce non-optimal solutions

In addition, the aim of this work is to show that an optimised energy community

system can not only have the potential to save both cost and emissions for rural or islanded

communities, but to also create a bottom-up, open-source modelling tool that will allow

those communities to plan their own systems and investments. It therefore made logical
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sense to create the model and optimisation routine in Python, using openly available
products rather than commercially available software requiring licensing to operate.
The potential uncertainty induced through use of the approximate NSGA-II method

will be assessed through a sensitivity analysis of key parameters.

2.6 Review Summary

The objective of this chapter is to critically explore the barriers, opportunities, and
implications of VPP-based renewable energy systems deployment for rural and remote
islanded communities. This review highlights the major role that RECs can play in the
energy transition, and how energy system modelling and control of decentralised assets
can optimise the system design to minimise cost and maximise decarbonisation impact.

It has been noted throughout the earlier sections that VPP systems can play a vital
role in integrating decentralised, intermittent clean power into a coherent and commercially
viable energy asset. Their role in providing grid flexibility and the possibility of integrating
into the existing energy market has huge potential to reduce grid congestion to improve
resilience. The development of digital connectivity and smart-grid system allows for
enhanced grid visibility for operators, with more data feedback to optimise control
decisioning making. The aggregation of small-scale assets also allows small-scale operators
and cooperatives to enter the energy market more easily. The process of reviewing several
VPP and related microgrid case studies reveal that the concept is not without challenges.
There are several policy barriers associated with integrating into the power market, including
asset size limits, day-ahead prediction uncertainty, and lack of incentives. There are also
societal concerns regarding reliability, future government support, and cost benefits for
local citizens who are most impacted by decentralised energy assets.

The solution to several of these problems is to instead to the REC which, most
importantly, removes the requirement to navigate the energy market policy landscape at
a regional and national level. Focus can instead be turned towards realising the system
benefits at a local level. RECs are also recognised in the RED-II policy documentation,
meaning an existing framework can be used to form the REC design architecture. From
this point, the review begins to consider how an REC system model could be used in a to
shine a light on the optimal cost and environmental performance of a potentially deployable
System.

The review then covers several commonly associated renewable generation and storage
assets, assessing design choices and modelling approaches. The storage assets in particular
have complementary roles in which they operate most efficiently: batteries are excellent at
short-term response applications whereas hydrogen storage excels in seasonal and long-term
storage.

The energy system control and optimisation can take on a number of forms, and
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most commonly either a linear programming model or a heuristic optimisation is applied.
It was decided to follow a heuristic approach due to the opportunity to evaluate the
system performance on a multi-objective basis, pitting the cost benefits directly against
the emissions reduction potential. Alteratively, it is possible to combine these objectives by
means of a carbon price, however, the uncertainties regarding carbon pricing both currently
and in the future inspire considerable research and debate, so it was decided to not include
this in the approach, and keep system cost and emissions separate.

The topic of RECs is being widely discussed in the research community, particular due to
the possibilities of increased energy independence and equity among citizen cooperatives, so
exists a wide-array of methods and results in the literature. However, this work aims to sit
in the gap between REC technical design studies and what would be needed to widespread
uptake of such systems. What was identified here was a lack of an approach to quantify
uncertainty regarding the performance of such systems, particular when considering energy
storage configurations and investment risk attributed to decentralised assets, as well as how
modelling could be used to guide supportive policy frameworks for future REC deployment.

These insights and identified novel research areas are brought forward and expanded in
the following methodology chapter. Emphasis is placed on balancing environmental and
economic performance for the REC field test location, and modelling the most effective
storage configuration in an accurate and computation resource efficient manner. The
literature review has been vital to identifying the challenges and opportunities of RECs
and VPPs, and how the gaps in the literature will positively contribute to the energy

sustainability goals of Europe and the rest of the world.
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Case Study Definition and
Modelling Methods

3.1 Overview

This section presents the materials and methodology of this research, starting with an
overview of the field study location around which the Energy Community system will be
designed and modelling. Collection of local energy demand and weather data is used to
guide and optimise the design of the remote energy system.

The modelling approach is then laid out in detail, presenting the asset model definitions,
governing equations and assumptions. A description of the system control follows, and
how the integration with the genetic algorithm-based optimisation logic was achieved.
The objective function formulations are also discussed, considering the techno-economic
metrics of Present Value (PV) and Internal Rate of Return (IRR) of the Renewable Energy
Community (REC) system, and decarbonisation potential against the counterfactual. These
outcomes can then be compared against the counterfactual, grid-only scenario.

The purpose of the model is to allow analysis of the REC system’s performance without
the need to test or deploy the assets in the field, significantly reducing the associated risks
and costs of such activities. One of the key novel elements of this work is the analysis
of a hybrid battery and hydrogen energy storage system to trade-off the benefits of both
technologies. When considering high power, remote energy systems, there are also safety
factors to be taken into account, in addition to the clear cost benefits. These safety
regulations can be difficult and costly to meet, particularly when deploying systems in
remote and rural locations. Model-based design allows for significant knowledge to be
gained about the potential performance of the system without having to manage the risks
associated with large-scale batteries and stored hydrogen.

The sensitivity analysis method is laid out, as well as plausible ranges of uncertainty

across key modelling assumptions of each of the assets. This approach employs Sobal
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sensitivity analysis to provide the statistical range of uncertainty against the central,

optimised result.
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3.2 Field Test Location

The characteristics of the final deployment location dictate several aspects of the final
Energy Community design. The number of solar hours and average wind speed will
naturally impact the degree to which renewable energy can be produced. Additionally, the
local demographic and the way power is consumed over the course of the year will influence

the system design decisions of the energy storage system to maximise performance.

3.2.1 Location Overview, Geography, and Climate

In this case study the location of the Energy Community deployment is the island of
Formentera; a remote and largely rural location south of Ibiza and in the Mediterranean
Sea.

Formentera is the smallest of the Balearic Island chain, measuring just 19 km across at
its widest point, and with its main civic centre being Sant Francesc Xavier towards the
north of the island. The island has approximately 11,000 inhabitants as of 2023.

Figure 3.1: Map showing the location of Formentera in relation to the Iberian peninsula.

While Formentera’s economy has been historically one of fishing, agriculture and
maritime trade, like the other Ballearic islands it has shifted towards a dependence on
tourism, particularly during the summer months. The move to a tourism focused economy
has caused a huge change in the resource consumption habits of the island. In the case of
electricity, demand can grow from a base load of 4 MW in early spring to over 16 MW
during peak summer months.

The island has a local power grid connected in the north to Ibiza via a sea-cable,

and renewable generation on the island in the form of a 2 MW solar farm. These two
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sources combined are able to support power demand needs during times of low demand.
However, the island also has an 18 MW diesel generator and 13 MW open cycle gas turbine
(OCGT) to provide peaking power. Not only are these generators incredibly costly, with
this particular OCGT known to be one of the most expensive in all of Spain, they also
produce thousands of tonnes of CO2 annually.

In recent years, the island has recognised the growing need to reduce the emissions
from energy consumption. In 2019, the local ’consel insulae de Formentera’ announced
plans to reduce emissions by 40% by 2030, in line with the EU’s net-zero ambition. To
maintain a strong tourism economy, the island will need to consider how best to manage
the varying daily and annual power demand while also removing the dependence on flexible
fossil fuel generators. This is where a hybrid renewable energy storage system could play

an important role in the island’s net-zero future.

Local Climate

Like much of the mainland Iberian peninsula, Formentera has a warm, arid-like climate.
The island enjoys a high level of solar irradiance throughout the year, reaching an average
4.6 Sun Peak Hours (SPH), that is, the number of hours per day that the irradiance exceeds
the nominal 1000 W/m?2. The hourly solar irradiance of the island in 2023 is shown in
Figure 3.2, along with the hourly temperature and wind speed.

It should be noted that the island generally sees lower average wind speeds than much of
Europe, which could make the possibility of wind generation less attractive for potential EC
developers. The current environmental laws surrounding the protection of migrating birds
also hampers current deployment. Despite this, the model will test the cost effectiveness of
wind generation to present a scenario where the environmental protections are lifted for
small-scale wind turbine generation only.

The weather data is collected via API from Global Solar Atlas and NASA’s Power
LARC database [158].

Power Grid Emissions

When considering the impact a potential energy community system and measurable
benefits, it is key to define the current status of induced emissions through the current
energy grid. All centralised power grids will have a value of embedded emissions at each
node of consumption, due to the variety and location of generators providing electricity.
Formentera has a mix of local generation from both renewable and fossil origins, but relies
heavily on the sea-cable from Ibiza, which itself is connected via the island of Majorca to
mainland Spain. To get an accurate measurement of the emissions intensity of at the REC
node on Formentera, an analysis of the emissions via interconnection has to be included,

considering the connection back to the mainland.
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Figure 3.2: The meteorological conditions by hour of day and day of year for the proposed
EC location.

Generation and demand data collected from the Spanish Transmissions System oPerator
(TSO) RED Electrica de Espana (REE) has been used to build up a dataset for the local
grid emissions at the REC node for each hour over one year [159]. This is achieved by
first calculating the emissions intensity of the mainland, then applying this value to the
interconnection activity in combination with local generation in Majorca. This process
continues for each island until an accurate value for emissions intensity for Formentera is
derived. The diagram in Figure 3.3 displays the flow of interconnections from the mainland
to the proposed EC.

The reason why this analysis is so critical is that while strides have been made towards
providing the Balearic Islands with more renewable energy, the remote nature and extreme
seasonal differences in demand mean that all the islands still rely heavily on unabated coal
and gas generators. This is to provide flexibility, and, although interconnection from the
mainland can theoretically provide a vast majority of clean power, there are reliability and
maintenance factors to consider that ultimately mean the islands cannot rely solely on
them.
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Figure 3.3: The interconnections between the mainland and Formentera, illustrating the
increase in emissions intensity of the island communities.

The graph in Figure 3.4 shows the historical emissions intensity of the island based on
the data from the Distribution System Operator (DSO). Emissions have remain very high
compared to the Spanish mainland, peaking at over 600 gCOze/kWh during the summer
tourist season. While the emissions remain high until 2019, the COVID 19 pandemic in
2020 caused a significant reduction in tourist activity, which can be observed as a dip in
the maximum emissions. This was because a lower demand for electricity from lower island
occupancy led to less need for the local diesel and gas turbine engines to provide peaking

power, and hence less emissions were released.

The challenge with defining a suitable baseline for the grid emissions intensity is that
it is always likely to vary, not only throughout the year but also into the future as more
decarbonisation efforts are taken to reduce reliance on the heavy emitters on the island of
Formentera. However, such research regarding the projection of future emissions intensity
of nations is a field of study in itself, and has therefore not been considered as part of
this work. Instead, it was chosen to adopt a conservative view of the average emissions in
recent years to provide a trade-off between the historically high emissions of the island,
and what will likely be a steady reduction in emissions over the coming years. Therefore, it
was decided to take the 2020 emissions intensity average as the baseline for this work. The
reasons for this are that, firstly, the data has been actually measured so is a historically
accurate representation of the island, and secondly the COVID 19 pandemic induced a

scenario in which lower reliance on fossil fuels occurred. Therefore, one could argue that
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Figure 3.4: Historical emissions intensity on the Island of Formentera 2017-2020, obtained
from REE.

it is most representative of a near future grid emissions state of the island of Formentera
under normal tourist demand and local activities.

Figure 3.5 shows the emissions in 2020 with the average emissions intensity plotted.
Based on this analysis, an average intensity value of 325 gCOge/kWh was chosen as a

conservative view of the grid emissions on the island.
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Formentera Island Grid Emissions Intensity 2020
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Figure 3.5: Daily and annual average emissions in 2020 for Formentera, obtained from
REE.

3.2.2 Energy Community Definition and Building Load Profiles
Proposed Energy Community

The proposed energy community test site is located north of the civic centre of St Francesc,
and consists of a number of community owned and private buildings. The selection is

shown in Figure 3.6.

Energy Community Building Locations
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Figure 3.6: Locations of the individual buildings

The first is the ’Culture building’, named here as the community centre, a community-owned
hub consisting of a library and small cinema; the second a primary school; the third are

council offices and a youth centre; and the fourth a secondary school. For this work the
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(a) The Community Centre in Formentera (b) Current solar capacity installed on the
roof of the small school

Figure 3.7: Proposed REC location on the island of Formentera

inclusion of three residential properties nearby were also considered as they consist of
different load and demand requirements for power.

All buildings are located within 500m of one another, and are connected downstream
of the same secondary substation. The total renewable energy generation volume will be
restricted such that it does not exceed 200 kW. These prerequisites ensure that the REC
design complies with the latest EU decree law 199-2021 for energy communities, and allows
the creation of a local, virtual energy trading layer on top of the existing power utility
market.

The chosen renewable and storage assets include decentralised solar arrays installed on
each of the roofs of the buildings, one or more micro-wind turbine generators, and a hybrid
battery and hydrogen storage system that is shared between the community members. The

conceptual design on the system is shown in Figure 3.8.

Building Load Profiles

A number of approaches can be employed to determine the building load of the REC model.
Energy demand is highly impacted by the timing of various activities and the level of
occupancy, and can therefore vary significantly for different building roles and services.
A common option is to take a bottom-up approach to building a composite view of
different buildings demands. Osman at el. [160] proposed a model to investigate the impact
of different household activities and behaviours on the timing and volume of demand across
lighting, appliance loads and hot water use. The model uses a probablistic methodology
calibrated to historical data and is able to generate stochastic yet realistic load profiles.

However, a key downside of this approach is the availability of input data, which for
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Figure 3.8: A simplified overview of the Energy Community design highlighting key assets.

building types outside of residential is scarce. Additionally, the authors not that modelling
short, sharp demands such as water boiling are largely overlooked. Thirdly, there is
limited consideration for location and demographic effects, including the characteristics of

households and local climate conditions outside of the time of day.

Another option is to collect real data about the buildings in question and fill any gaps
in the knowledge with a categorised data profile for the building type. This approach can
be used to fill gaps in pre-existing load knowledge about the building types to build up
a complete picture of the hourly profile. The methodology implemented in this work is
similar to that used by Lage et al. [161], who used building load classifications at an hourly
granularity to determine the techno-economic benefits of energy communities in Italy and

Portugal.

Because of the nature of this data collection exercise, and privacy restrictions on the
use of personal consumption information, some buildings’ data profiles have been part
synthesised using a combination of real monthly data and an archetypal daily load profile
of that building.

For example, while annual data was available for the residential buildings, it was
not possible due to privacy reasons to collect hourly data. Where this has occurred,
the definition of the local climate in Formentera has been used to match the assumed
consumption profile with load profile data from the National Renewable Energy Laboratory
(NREL) building stock database. The approach to data collection and quantification of
building profiles for the US, including those used here, is explained in detail in a report
published by the US Department of Energy and produced by NREL in 2022 [162].

It can be seen in Figure 3.9 that Formentera is located in a hot, semi-arid climate

or category Bsh according to the Koppen Climate Classification system [163]. This
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Figure 3.9: Map displaying the classification of Képpen climate regions in Europe [163].

classification can be cross referenced with equivalent climate from the NREL database
to get archetypal load profiles for residential properties, as well as commercial properties
including schools, hospitals, community centres, hotels and offices. It should be noted
that while this provides a great estimation for the true hourly profile, the NREL data
is measured from US buildings stock, so will naturally differ slightly from the equivalent
European variant. The database is classified by US state, and suggests that the climate of
Formentera most closely matched the classification of Arizona, so those profiles have been
used for this work.

The graphs in Figure 3.10a and 3.10b display the monthly and daily load profiles for
the REC members grouped by building type. The monthly demand is based on true data
collected from the site, whereas the hourly load profiles are supplied by archetypal buildings
within the same climate classification, for both weekday and weekend loads.

Table 3.1 shows the different granularities of load data that has been successfully
collected for the participating buildings within the proposed REC. The community centre
has the most data available, with almost one year’s worth of hourly load profile data. For
the other building types, including the schools, offices and residences, only an annual total
could be collected due to privacy restrictions. Therefore, the NREL data has been used to
estimate the daily load profile, which is then projected over the course of the year such that
the total annual load is equal to the true value collected from the field. The normalised
tabular data for the building loads used, in hourly increments, is included for reference in
Table B.1 of the Appendix.

Where the monthly load data is available, as in the case of the community centre, a
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(a) Real load profile data collected from (b) Archetypal hourly building load profiles
proposed EC buildings. over the course of one day.

Figure 3.10: The composite components of the load input assumptions for EC members.

Table 3.1: A summary of load data available for each of the Energy Community Buildings
in Formentera

Building Name Daily load  Monthly Load Annual Load
Community Centre  Measured Measured Measured
Small School NREL data Static Measured
Large School NREL data Static Measured
Council Offices NREL data Static Measured
Three Residences NREL data Static Measured

spline function is used to scale the daily load profile data such that it will sum up to the
total annual measured load. Figure 3.11 shows this methodology applied to the community
building monthly load. The next step is then to scale the daily load profile to follow this

curve.

Once the appropriate NREL load profiles are matched to the building definitions as
shown in Figure 3.10b and the monthly data is splined where needed, the loads can then
be summed to provide a representation of the total electrical load expected from the REC
in Formentera of the course of one year, as shown in Figure 3.12. The peak demand occurs
in the summer period between July and early September, caused by the increase electrical
load in the Community Building. Daily peak demand occurs at the same time throughout
the year between 8:00 and 11:00 when building occupancy grows to its maximum level. The
second peak can be seen in the evening, when occupants are leaving the buildings or are
more likely to be operating appliances, for cooking purposes in the case of the residential
buildings.

It can be noted from the data in Table 3.2 that the community building has the highest
load of all the REC members, peaking at 34.5 kW during the peak summer period. This is

because of the various uses that the building performs, including a public library, cinema,
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Monthly Measured Data and Hourly Interpolated Data for the Community Building
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Figure 3.11: Illustration of the spline function used to fit the daily and monthly measured
load profiles into the annual total load expectation

Table 3.2: Building load statistics for the different members of the REC

Building Name Minimum Maximum Average Annual Total (kWh)
Community Centre 0.77 34.5 6.9 61,100
Small School 0.4 3.9 2.1 18,800
Large School 1.0 9.2 5.1 44,800
Council Offices 0.5 5.7 3.2 28,300
Three Residences 0.4 3.0 1.4 12,000

and social centre hosting various community activities. The schools, though stated as
primary and secondary schools, are both small even by urban standards, leading to a lower
average and peak power requirement. The residential buildings have a peak demand of
approximately 1 kW per household and a total of 4,000 kWh per year, which is common of
average family households in Europe. Note that for this work, the service demands are
fixed for each hourly time slice, and flexible loads based on time or price signals are not
being considered.
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All Energy Community Building Loads
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Figure 3.12: Heat map illustrating the total daily load for all buildings in the REC

3.3 Energy Community Asset Models

The creation of an REC model begins with the definition of the individual asset models that
will be used in the final deployed system. As expressed in the literature, this work follows
the process consistent with research by selecting the most commonly used decentralised
renewable generation assets: PV solar arrays and micro wind turbines. Where this work
diverges from other current research is in the exploration of energy storage options. Several
works have modelled the use of battery storage systems for use in RECs, but very few,
if any, have performed a direct comparison with a hybrid battery and hydrogen storage
system across a number of competing cost and emissions reduction objectives. This thesis

aims to fill this gap in the research.

In order to balance the additional competing demands of high-quality modelling results
with limits to computation complexity, it was decided to create what is known as ’grey
box’ lumped models. These models exist between completely transparent equations and
assumptions based on first principles, which are very complex to represent, and ’black box’
models, which use a set of simplifying relationships to limit the quantity of inputs required

to produce an accurate outcome.

Within this work, a critical assessment of this approach with be performed in the
discussion section, debating whether this technical trade off was necessary and worth
reducing model fidelity in place of program usability, commercial potential, and use of
understanding. First an outline is presented detailing the principles and equations used in
the photovoltaic (PV) solar and wind turbine models, before moving onto the battery and

hydrogen storage systems.
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3.3.1 PV Solar Array

The lumped model is based on the equations laid out in section 2.5.1. The PV solar array
model uses the previously defined inputs of irradiance and temperature along with some
additional constants to calculate the expected power output from the generator. A crucial
assumption made in this case is that the array is fixed at a particular tilt angle, which is
optimised based on the latitude of EC location. Irradiance measured from the sun is often
given as Global Horizontal Irradiance (GHI), which is equal to the total of all instances of
irradiance on a flat surface, as shown in Figure 3.13a. This always includes Direct Normal
Irradiance and Diffuse Horizontal Irradiance (DHI), and often will consider ground reflected

radiation, although this is always very small compared to the other components. Since

the solar array will be tilted, the GHI must be adjusted to account for the Plane-of-Array
(POA) irradiance.

Atmospheric
Scattering

(a) Diagram displaying the different (b) A vector diagram showing the relationship
irradiance components that make up GHI. between horizontal and model (POA)
[164] irradiance. [165]

Figure 3.13: The impact of different irradiance measures on the power output of a solar
module

The relationship between GHI and POA is as follows:

Seursin(a + )

sin(a) (3:1)

Spoa =

In this equation, « is the elevation angle and 3 is the panel tilt angle. It should be
noted here that some solar arrays have active solar tracking, however, for this model a
fixed tilt angle is assumed to minimise additional system costs.

The elevation angle « is a function of the installation location’s latitude ¢ and the

sun’s declination angle § as it changes with time throughout the year.

a=90—¢+35 (3.2)
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where:

360
= 23.45sin | ——(284 .
§ = 23.45sin [365( 84 + d)} (3.3)

with 23.45° being the angle of the earth’s tilt about its rotational axis relative to the
sun, 284 signifies the day of solar equinox, and d is the input day of the year.

The PV solar array model uses the newly derived POA irradiance in combination
with the ambient temperature data along with some additional constants to calculate the
expected power output from the generator. The overall relationship is summarised in the

equation below:

Gr
T,5TC

Ppy = P.Dy < > [1+ ap(T, — Te, STC)] (3.4)

The derating factor Dy is the impact on the power output of factors such as soiling and
natural cell degradation. As discussed in the literature review section, the key unknown
in this case is the cell temperature 7., which ultimately determines the impact to which
natural heating the panel from solar energy is degrading the photovoltaic effect. This can
be derived using the Nominal Operating Cell Temperature (NOCT) condition, which is to
measure against a standard amount of heating at a known irradiance, ambient temperature
and wind speed to estimate the impact. The NOCT condition (usually between 40-45°C)

is given by the panel manufacturer.

Gr
T.=T,+ (Tc,NOCT - Ta,NOCT) <(;TNOCCZ‘> <1 - 1%) (35)

The final unknown in this equation is the panel efficiency at Maximum Power Point

Tracking (MPPT) 7,,p, which can be found by substituting in the following:

Nmp = nmp,STC[l + ap(Tc - Tc,STC)] (3'6)

Nmp,sTC 1S given by the manufacturer as the rated power in W of the panel or array.
Performing this final substitution results in this equation describing the power output of

the solar array for a set of given input conditions:

Gr,NocT

T, = (3.7)

1+ (TC,NOC’T - Ta,NOC’T) (GT,?VT(;CT) [apn";z;STc]

m 17 TC
To+ (Te.nocT — Ta,NOCT) <7GT ) [1 — ”’STC(WO"’ ’STC)}

Ppy = PV power output (W)

Dy = derating factor (%)

G = POA irradiance (W/m?)

Grsrc = irradiance under standard conditions (1000 W/m?)
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oy, = thermal power coefficient (%)

T. = PV cell temperature (°C)

T. sTc = PV cell temperature under standard test conditions (25°C)
T, = ambient temperature (°C)

T. xocr = NOCT (40-45°C)

To,nocT = NOCT ambient temperature (20°C)

Grnocr = NOCT irradiance (800 W/m?)

Nmp = efficiency at MPP (%)

Ta = solar transmittance 7 and absorptance « of the cell
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3.3.2 Wind Turbine

Similar to the PV solar model, the assumptions for the wind turbine power output are
built upon those laid out in Section 2.5.1, and use a ’grey box’ approach to balance model
performance and usability.

The first step of the model formulation is determining the true wind speed met by
the turbine blades at the hub height. The wind speed data from NASA powerLARC is
measured at 10m above ground level (not mean sea level) at the coordinate location. This
is achieved using the log law as introduced in equation 2.9.

From studying Formentera’s local area and considering the rural nature of the environment
even near to the main town of St Francesc, it is logical to give a roughness height zg of
0.05 metres. This aligns with Table 2.4 suggestion of some obstacles including crops and
small trees, but overall surface impact is low.

From here, the modelling approach diverges slightly from the literature, as instead of
using a combination of blade swept area and the coefficient of performance to find the
output power, IEC standard power curves are used to approximate the output of a range
of turbine types across the entire operating range.

The Wind Integration National Dataset (WIND) tool created by NREL [166] uses
the IEC standards and assesses a range of installations across the USA to correlate the
performance output by wind speed to the standards. The IEC 61400 turbine design
standards specify the requirements to operate a certain ranges of wind speeds to provide
the optimal power output. Below, Table 3.3 describes the classes used in this model, and
the average corresponding wind speed requirements for maximum performance. To protect
the turbine from damage at higher wind speed, each classification is given a cut-out speed

as also shown in the table.

Table 3.3: Wind turbine IEC class for corresponding average wind speeds used in modelling
turbine power output. [167]

Turbine class Wind conditions Rated average speed cut-in cut-out
IEC-I High winds 10 m/s 3m/s 25m/s
IEC-II Medium/variable winds 8.5 m/s 3m/s 25m/s
IEC-III Low winds 7.5 m/s 3m/s 22m/s
Offshore High winds 10 m/s 4m/s 25m/s

The choice of IEC class is linked to the local average wind speed, so will be chosen
automatically by the model to optimise performance. There is also a final class provided
for offshore wind turbines, so is not a function of wind speed, but rather the location of
installation. The performance curves for each of the different classes are shown in Figure
3.14. The full dataset from which the performance is interpolated is included in Table B.2
of the Appendix.

By simplifying the initial Equation 2.7 the estimation of the wind power output Py is
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Figure 3.14: Graph showing the performance characteristics of the IEC classes.

as follows:

Py = Prpcoeffne (3'8)

P, = turbine output power (kW)
P, = turbine rated power (kW)
Peoeff = power coeflicient (%)
ne = electrical efficiency (%)

The electrical efficiency 7, can be approximated from literature, particularly an in-depth
study produced by researchers at NREL in 2021. The result showed that among other
potential external factors that can cause losses, including degradation, icing, mechanical
failure, electrical losses in inversion and connection to the grid which can be significant
[168]. For this work, a 7. value of 97% is assumed.

While this model does not explicitly consider the complex nature of fluid flows around
the turbine blades, the p...rs value being based on real measured output from turbine assets

goes some way to describing, in aggregate, the various forces and turbulent behaviours
that are acting.
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3.3.3 Battery Storage System

The main role of the battery storage asset is to provide short term, fast response to demand
when the generation assets are not generating power. The approach here uses a similar but
simplified version of the Shepard battery model discussed in the literature review.

In essence, since the model does not need to have direct visibility of the voltage and
current levels in the system (as it is assumed that a DC control system will manage this),
only the state of charge needs to be accurately tracked to provide a signal to the rest of the
Energy Community system as to whether the asset is available to provide or store energy.
The battery system contains two parts: a charge model and a discharge model. The models
take the power requirement from the battery and outputs the resulting State-of-Charge
(SOCQ) for the end of the time step, as shown in Equations 3.9 and 3.10 below.

Charge phase:

Qi + fttH PehargeNcharge, dt

SOCi1 = 5

e 100 (3.9)

Discharge phase:

t+1
Qt— ft Pdischargendischargev dt

SOCi11 = 5

e 100 (3.10)

Battery systems often specify a maximum charge and discharge power, due to the
current limits through connecting cables and to minimise thermal risks. This model also
has the ability to limit the volume of energy in kWh that can be absorbed or released by
the battery asset.

SOC41 = battery SOC in next timestep (%)
Q: = battery current state of change (%)

Qi = battery initial state of charge (%)
Peharge = maximum charge power (kWh)
Piischarge = maximum discharge power (kWh)
Neharge = charging efficiency (%)

discharge = discharging efficiency (%)

These outputs are subject to the minimum and maximum SOC limits. The model can
also include degradation in the battery capacity linearly as a function of charge cycles, as

shown below:

Q) =Qi —al (3.11)

Where (1) is the dynamic capacity (kWh) as a function of charge cycles [ (cycles) and
alpha is the aging factor (kWh/cycle).
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3.3.4 Regenerative Hydrogen Storage System

In contrast to the battery storage, the regenerative hydrogen system’s main role is to
provide long-term balancing of the energy system, smoothing demand fluctuations between
weekdays and weekends, and seasonal shifts in power generation. The model consists of
a Proton Exchange Membrane Fuel Cell (PEMFC) and an Anion Exchange Membrane
(AEM) electrolyser capable of consuming and producing hydrogen, respectively. The system
also considers a hydrogen storage module with its own rated capacity and efficiency. The
overall equations are similar to those of the simplified battery model in that the electrolyser
and fuel cell analogously represent the charge and discharge elements. The system can

therefore be shown as the following:

Electrolyser phase:
t+1
Qr2,t+1 = QmH2t +/ Peineinstor, dt (3.12)
¢

Fuel cell phase:
t+1
SOCHZ,H—I = QHQ,t - / Pfcnfcnstorydt (3'13)
t

QH2,1+1 = next time step hydrogen energy stored (kWh)
Q2 = current time step hydrogen energy stored (kWh)
P,; = electrolyser rated electrical power (kW)

Py, = fuel cell rated electrical power (kW)

ne = electrolyser efficiency (%)

nse = fuel cell efficiency (%)

Nstor = pressurised storage efficiency (%)

Also similar to the battery model, the regenerative hydrogen system is also subject to
SOC minimum and maximum constraints and will not operate beyond these limits even

when considering the fuel cell, electrolyser and storage efficiencies.

The asset models as described are implemented in coded form to the overall REC modelling
framework. Sample code for the PV solar and Battery Energy Storage System (BESS)
assets is included in Appendix C.1 for reference, showing where the design assumptions
are inputted and processed to provide the power measures for each simulation timestep.
In particularly, the power and SOC control of the BESS can be seen in the function

findNextStep, which is explained in more detail in next section.
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3.4 System Control Logic and Trading

All REC designs require a specific control logic that will maximise the performance of the
available renewable assets and benefits (increased reliability, reduced cost and emissions) to
the community members. In this section the fundamentals of the control logic are outlined,
highlighting the roles of each asset and how the power is delivered to the consumer.

In this model, the low-level control of system assets including voltage regulation,
inversion, rectification, and other embedded properties are not included. This is because
these technologies often operate on a MHz switching frequency, and as the model here is
built to assess long-term annual to lifetime performance, it is computationally impractical
to model these processes completely. It is therefore assumed that the losses incurred are
included in the efficiencies of the individual assets that use them, such as the MPPT
inverter needed for solar installations.

Here, the macro decision-making of the energy management system hour-by-hour is
discussed, and the data collected about the states of the individual components needed to
provide robust, reliable control.

Since it is common for RECs to have multiple, independent members, it is also vital
to consider how energy flows between production and consumption during each hour. A
simple energy trading logic has been designed to manage which load is consuming which
asset at any given moment, how much grid energy is consumed, and what is the effect
cost of electricity at every time step. Using this method, it is possible to evaluate, on a

load-by-load basis, the cost and decarbonisation benefits of connecting to the REC system.

3.4.1 Energy Management Strategy

The Energy Management Strategy for the hybrid storage system is shown in Figure 3.15.

Excess electricity Battery is charged Electrolyser is Hydrogen storage is
detected to maximum activated filled

Battery is
discharged to
minimum

No excess
electricity detected

Fuel cell activated

Figure 3.15: Flowchart with a simplified view of the energy management control logic

Recharged battery
power to load

The control logic is simple in its design, but can also be nuanced in its bias towards
different technologies based on capacity and availability. The system adheres to a load
following approach, in that renewable generation will always be used first to satisfy the
current REC demand, then, if in excess of demand, will either be absorbed by the hybrid
storage system or sent to the grid. When renewable generation is not available in excess of
demand, the system will dynamically switch to the storage systems to balance the load, or

use grid power.
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A challenge here is in choosing when to activate the battery and hydrogen storage
system to prioritise best performance. Because the battery performs well in fast response
applications and can quickly match demand, it is most logical for it to be used first. Then
when the battery is running low, the hydrogen system activates to provide a lasting, firm
response to the demand. The hydrogen storage is not as fast responding as batteries,
and usually take 2-3 minutes to warm up to operating conditions. In practical terms, the
battery is actually being charged by the fuel cell while the hydrogen system is active, as
the fuel cell cannot modulate its output without incurring performance losses. Batteries
also suffer from current leakage over long periods, so it also may make practical sense to
install a smaller battery and trade-off against a larger hydrogen system if extended storage
is needed. This performance trade-off is to be tested in this thesis.

Therefore, under excess supply conditions the battery charges first to be ready for the
next demand response, followed by the long-term hydrogen storage, with any remaining
supply sold to the grid at the specified feed in tariff. Then, when supply is no longer in
excess, the battery discharges first, followed by the hydrogen storage system. If all storage
systems are empty, grid power is imported.

For completeness, the management strategy was tested in reverse, with the hydrogen
system responding first, followed by the battery system. It was found that this provided
worse performance overall, so was decided to proceed with the chosen strategy. Ideally,
and like similar approaches from the literature, the storage operation would be directly
optimised, in which every hour of operation acts as a design variable, controlling the
levels of charge and discharge. However, this process is very computationally intensive,
particularly for non-linear models, so was impractical to implement based on the objectives
of this work.

A complete view of the energy management system including flow within the optimisation

process is shown in Figure 3.18 later in this chapter.

3.4.2 Community Energy Trading

There a numerous methods for modelling and simulating decentralised energy trading logic
applicable to an REC. The most commonly cited is the P2P energy trading approach, in
which the REC members are able to autonomously calculate the energy shared among the
system independently of a system operator or centralised power market. In this scenario,
community members collectively benefit from a series of bilateral transactions in which
energy is virtually transferred from its supply source to the demand. Under this approach,
it is assumed that all REC members collectively invest in generation and storage assets, and
that competition is not considered, similar to the way in which cooperatives are managed
in the UK and Europe. The objective is to therefore reduce the system cost as much as
possible, while not necessarily providing the lowest cost on a per member basis.

Another approach is to create a local energy market, which follows a structure more
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similar to that of the standard power market mechanism, except that it is controlled and
managed by the energy community. Members submit supply bids and demand bids to
a pool, then the price is set where the two supply and demand curves cross, otherwise
known as the marginal price. This is generally thought of as a good approach to represent
consumer competitive behaviours and to reflect the opportunity cost for prosumers for
investing in their respect assets. This method therefore allows a small degree of market
competition between members with the view that this will bring down the opportunity
cost, reducing the effective energy price for all members.

One of the questions surrounding RECs is the level to which competition between
community members should be allowed, and to what extent this would mutually benefit
the overall system investment cost and returns. The main results of this work will consider
the non-competitive trading arrangement of the EC only, but will also test, as a sensitivity,

the behaviour of the model when a competitive market is applied.

Non-Competitive Trading

In this approach, it is assumed that while members have physical renewable installation on
the property, they all share the same access to the virtual ’pool’ of generation and storage
at any given moment. Energy available in excess will be provided in equal measures to
all members with a demand. This can be thought of as filling up ’buckets’, where each
members demands can be represented as buckets of different sizes.

While the demands are being satisfied equally at first, once the smaller demand buckets
are 'full’, then the larger demands will continue to be filled. Once all the excess supply has
been used, it is likely that the members with the largest excess demand remain unsatisfied
by the REC. A small excess demand is therefore beneficial to a given community member,
which would encourage either the installation of additional renewables, or to reduce demand
through efficiency measures. It can be noted that there is no direct market competition
between members. This process is illustrated in Figure 3.16.

The process can also be broken down into three distinct stages:

Stage 1 - Equal energy distribution For each timestep ¢, the process begins by

dividing the total renewable supply E; equally among all member demands.

E
Epm¢ = min (Mt Dm> (3.14)
Where:

e M is the total number of demand buckets.

e D, is the demand capacity of bucket m.
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Figure 3.16: Simple energy trading concept of the EC, showing (left) an example with low
generation and (right) high generation.

Stage 2 - Allocate the residual After the initial step, any remaining demand gets

distributed to the other, unfilled demands in an iterative procedure.

E .

Epp¢ = min (tm‘”‘"" Dm) (3.15)
Mremaining

Where:

® Ei remaining is the remaining renewable supply after filling the previous buckets.

® M,emaining is the number of remaining unfilled buckets.

Stage 3 - Termination condition The process continues until all E} is allocated.

M
> By =E (3.16)
m=1

Market-based Trading
This sensitivity tests the behaviour of the system design when, instead of a collaborative

trading environment, a competitive logic is applied across the REC. The simple market
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clearing process considers the battery, renewable supply bids, and the grid. The grid only
supplies energy when REC offers are uncompetitive or unavailable, and after all feasible

renewable energy and battery storage have been used.

Energy Storage Considerations: For this sensitivity it is assumed that, unlike the
generation assets, the hybrid energy storage system is still a shared asset which operates
independently of the community members. Essentially, the storage will still absorb any
excess renewable generation by default, and release energy to supply community demand in
any given hour. The storage therefore submits offers for supply and bids for demand that

are equal to the known excess supply or demand, such that the SOC limits are not exceeded.

Stage 1 - Supply offers: Each renewable installation submits an offer S; with an

associated price P;, and the offers are sorted by price:

P<P<---<P, (3.17)
Where:
e S; is the volume of energy submitted by community member ¢ as an offer.
e P; is the price of the renewable energy offer from community member 4.

e 1 is the number of renewable installations submitting offers.

Stage 2 - Clearing price: The marginal clearing price is determined by the last offer

used to meet demand:

k—1 k
Pmarginal = Pk: where Z Sz < Dtotal < Z Sz (318)
=1 =1

Where:

® Prarginal s the clearing price of the market, determined by the last supply offer P.
e [k is the index of the last offer used in the market clearing process.

° Zi.:ll S; is the sum of all offers before the marginal offer.

® Diya is the total demand from all members.

In situations where assets, such as similar PV solar, offer in at the same price, a very small

random number (order of 107®) is added to each supply offer to resolve tie-breaks.

111



Chapter 3

Stage 3 - Market balance: The total energy supplied (from renewable offers and
battery discharge) must meet the total demand:

Z Sl + Stdischarge + Sgrid = Dtotal (319)

(]

Where:

e ) .S, is the total energy supplied by all renewable installations.
® Stdischarge is the energy supplied by the storage.

e Syriq is the energy supplied by the grid.

® Dioiq1 is the total demand from all community members.

The market then ’clears’ and is assumed to operate on a pay-as-cleared approach,
where all participants pay the same price, which is equal to the marginal supply offer. An
illustration of how the marginal clearing price is set is shown in Figure 3.17. It can be
seen that the total demand when netting off self-consumption for this EC is 16 kWh in
the sample timestep. Given the offers of each prosumer, this points to a marginal price of
the decentralised market of 0.17 €/kWh. Any bids under the marginal price will receive
renumeration at that set price, whereas any over the margin are only able to sell energy
back to the grid at the feed-in-tariff rate. It should be noted that under this scheme, certain
prosumer offers will be able to receive a profit over and above their assumed LCOE costs,
but also means that all demand bids pay a higher rate compared to if the total demand
was lower.

This type of market design is known as a post-delivery LEM pool market [169], as it
assumes that the energy has already been fairly distributed among community members
as in section 3.4, and is aiming to evaluate the cost renumeration structure that follows.
However, since the cost savings/profits are also evaluated, the outcome can be harnessed
as an objective function in the design optimisation loop to determine the optimal system

sizing for maximum market opportunity.

3.5 Design Optimisation and Performance Analysis

Once the asset models and control logic has been determined, the REC model can be
simulated over the course of a one-year period. The final step is to implement a design
optimisation logic such that the system size and performance can be optimised for the one

year simulation period.
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Indicative marginal price curve for the energy community with
five prosumer members
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Figure 3.17: Graph illustration of how the marginal price is set under the simple
decentralised energy market scheme.

The first part of the section describes the economic and environmental objective
functions used to drive the optimisation routine towards the optimal outcome. The second
part details how the Non-Dominated Sort Genetic Algorithm (NSGA-II) is integrated with

the model and executed, as well as the assumptions and setting for the procedure.

3.5.1 Economic and Environmental Objective Functions

The objective functions can be broadly categorised into being economically or environmentally
driven. Economic objectives concern the financial viability of the REC as a project to be
undertaken by location stakeholders compared to other energy delivery methods, whereas
environmental objectives measure the extent to which the system is able to reduce the
quantity of embedded carbon emissions produced from energy consumption.

Like any new technology or process, a comprehensive economic evaluation is required to
ensure confidence that the design will provide the required level of return for the community.
Often the Net Present Value (NPV) of a given investment is used to measure its returns.
The NPV is derived to represent the value of an investment to the REC as a business. The
investment is considered worthwhile (producing returns) if the NPV is more than zero at
the end of the investment terms, which for the community-based systems is 20 years, and

is evaluated using equation 3.20 below:
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—C1— 04 —Cr —Or

—C T s |
R Tt asRT

(3.20)

Where:

e () is the initial capital investment (CAPEX)
e (7 is the capital investment for year T’

e Or is the operations costs (OPEX) for year T’

e 7 is the discount rate of the investment

It can be noted here that given the CAPEX and OPEX values are measured as positive
here, they are subtracted from the system value year-on-year such that under this current
definition, there is no path to producing a positive return. This is because the cost of the
REC system is effectively behind compared to a counterfactual scenario in which only the
grid is used to provide electrical power. This equation therefore needs to be modified to
evaluate the effective opportunity cost of grid only use when the REC is instead being

operated. This can be achieved with the following:

-C1— 01+ Gy —Cr — Or +Gr
141 (1+i)T

Where G is the counterfactual opportunity cost of grid use only. This effectively

—Co+ (3.21)

values the REC as an alternative system and will produce a positive NPV if the discounted
investment cost is less than the discounted grid-only utilisation. This can be rewritten

simply in equation 3.22 below, where R; is the total in and out cashflow of the system.

n Ry
Npy =S B 22
g%u+wﬁ (3:22)

In this form, it can now be noted that if the in- and outflows as well as discount rates
were valued in such a way as to produce a NPV of zero, the project would break even. The
CAPEX and OPEX and grid costs are a function of the system boundaries, whereas the
discount rate is a measure of the capital risk or cost of capital for the investment, and can
vary based on the type of system. The equation can therefore be rearranged to evaluate
the maximum discount rate, or Internal Rate of Return (IRR) possible from a system still
capable of breaking even. The IRR is another popular approach to economic analysis as it
measures the allowable volume of risk undertaken by the project and gives confidence in

the return.

n

Rt

o=NPV =S — T 3.23
;%(1+IRRF“ (3:23)
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Another key metric in the financial analysis that can be sources from this equation
is the payback period, which is the term over which the system is assumed to be able to
return its investment. This is found by solving Equation 3.23 for the time period T" when
NPV is equal to zero.

The final metric is the LCOE, which, as discussed in the literature review, is key to
comparing single generation assets and entire integrated systems on a like-for-like basis.
Particularly when comparing storage assets, it is important to present their economic
performance within the REC on a common basis. LCOE is defined as the total lifetime cost
of the asset divided by the total electricity delivered to the consumer in gCOz/kW h, where
Er; is the energy delivered per asset j over the one-year time period 1. The investment

quantities are also discounted over the system lifetime.

> 1—0Cr;j + Or,
> 10 B,

A range of different assessments exist for the economics of renewables assets, as it is

LCOE; =

(3.24)

highly dependent on the capital requirement, location, weather conditions, delivery and
connection costs, and available labour at the installation site. The results for CAPEX,
OPEX and lifetime parameters are included in the subsequent section, and are assumed to
include the Balance of Plant (BOP) costs, such as DC-AC inverters, wiring, connection
costs, and Internet of Everything (IoT) control equipment. A range of literature sources
are used to determine the final economic assumptions, and the sensitivity analysis will be
used to test the credible range of outcomes.

For the optimisation routine, it is most consistent to adopt NPV as the economic
objective function, as it includes the assumed discount rate of 5%, though the payback
period could equally be used to provide the same optimal input signal to the model.

The environmental objectives are mostly concerned with using the embedded emissions
of the EC system, including any generation assets and storage, and comparing this with the
embedded grid energy carbon, also known as the scope 2 emissions. This section previously
discussed how analysis of the local grid of the Balearic Islands is used to evaluate the
emissions, which will be compared to the life cycle emissions of the REC. The environmental
impact was estimated through the Global Warming Potential (GWP) of the assets, which
when summed up together and divided by the total energy delivered over the system

lifetime derives the emissions intensity.

Y1 Elj e E;

EIsystem = Z;nzl Ej

(3.25)

Where:
o Elgystem is the emissions intensity of the system

e E1; is the embedded emissions intensity of asset j
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e E; is the energy delivered by asset j

The embedded emissions values were extracted from studies in the literature, and provide
an up-to-date view of the carbon produced during the material extraction, manufacturing
and installation process (cradle-to-gate), but do not include the end-of-life transport and
disposal /recycling impacts. There is far less reliability information available for the life
cycle emissions of the regenerative hydrogen system, so where necessary, assumptions based
on emissions from similar technologies are used. This will again be tested as part of the
sensitivity and uncertainty propagation analysis.

The created modelling tool can also calculate the percentage of self-consumption
achieved by each building within the energy community, which is a measure of the extent
to which the community member has used REC generation energy as a percentage of their
total consumption. This is useful when comparing the effective environmental performance

on a member-by-member basis as it is known how much clean energy is used.

3.5.2 Genetic Algorithm Implementation

Designing and configuring the optimal system sizing for a hybrid decentralized energy
system is a complex process. There are a number of non-linear phenomena being simulated,
and many potential design objectives and constraints. The chosen objective functions
considering both cost and carbon reduction are the NPV and the annualised system
emissions intensity. The objective functions rely on varying the capacities of the PV solar,
wind, battery, and hydrogen storage installations at the site.

The NSGA-II uses a heuristic evolutionary learning algorithm with a population of
potential design solutions within the defined constraints. It then ranks the population based
on a non-dominated sorting, producing a Pareto front of optimal solutions by minimising
both objective functions. Each individual in the population was determined based on
the simulation of the model of a one-year period and evaluating the two objectives. The
best performing individuals are passed to the next generation, whereas a combination of
mutations and created offspring (crossover) determines the remaining individuals. The
solving process for NSGA-II implementation, including the overall REC control logic is
shown in Figure 3.18. The software implementation of the algorithm within the model is
shown in Python code form in Appendix B, showing the input variables described within

this section.
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Figure 3.18: Hybrid energy system model approach with multi-objective optimisation
algorithm NSGA-II solving process.
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It is well known that the NSGA-II algorithm, like all meta-heuristic optimisation
processes, provides a highly accurate estimation of the exact solution, rather than the
solution itself. This is because finding the exact solution for a highly non-linear problem
like the REC design model set out would be too computationally complex and impractical
to implement, as discussed in the literature review of optimisation approaches. Therefore,
the algorithms parameters need to be chosen such that they will accurately and repeatably
produce a solution to the problem. For the NSGA-II algorithm, the main parameters that
are adjusted are the population, number of generations, mutations rate, and crossover rate.

The population is the number of individual model solutions in each generation that are
able to evolve over time. Generally speaking, the greater the population size, the more
genetic variations are available, leading to a more global solution and avoids the population
getting ’stuck’ in a local minimum. This comes at a higher computation cost, and can lead
to diminishing returns at higher population sizes.

A generation represents a single iteration of the procedure, so 'maximum generations’
is the highest number of iterations that can proceed before the algorithm terminals. Like
population size, more generations will allow more time for the population to search the
design domain for the best solution, but too many will take more time to solve and have
diminishing returns.

The 'mutation rate’ is the probability of a random mutation in the design variables
happening for a given member of the population. A lower mutation rate can be more stable
when executing, but a higher mutations allows for more randomness and better searching
of the design domain.

"Crossover’ is the rate at which parents which produce offspring with a combination of
their genetic data. This allows for better searching by combining information gained about
the design domain by well-performing individuals when high, but can also lead to solution
instability.

To find the settings used in this analysis, a spread of settings for each of the variables
presented was inputted into the program and tested in isolation. Table 3.4 below shows

the spread of variable values used.

Table 3.4: Spread of parameters values tested to determine the best operation of the

NSGA-II

Parameter Upper sensitivity Lower sensitivity
Population Size 200 50
Max Number of Generations 250 100
Mutation Rate 0.9 0.1
Crossover Rate 1.0 0.5

The resulting Pareto fronts of all tested parameters are shown in Figure 3.19. It can be

noted towards the upper end of the curve that a lower population certainly has a negative
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impact on the result, as the values are dominated by other, better solutions in the region.
This indicates that this setting has not allowed the algorithm to search the domain as
effectively. Low generations and low crossover also appear to have lowered the optimisation
performance significantly, with a high crossover also seeming sub-optimal. The mutation

results impact was less clear, so setting the value to the default central value would be a
reasonable choice.
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Figure 3.19: Resulting Pareto optimality fronts used to find the best NSGA-II settings

Based on this analysis, the chosen optimisation parameters were set as given below in
Table 3.5. The lower limit for all system assets was set to zero, while the upper limit as set
to 200 kW in line with the adopted REC regulation as discussed in the literature review.

The pymoo module created and maintained by Blank et al. [170] was used to implement
the NSGA-IT algorithm in Python.

Table 3.5: Table showing the main NSGA-II algorithm control setting used in determining
the design solution

Parameter Value
Population Size 100
Max Number of Generations 200
Mutation Rate 0.5
Crossover Rate 0.9
Lower Bounds (all assets) 0 kW/kWh

Upper Bounds (all assets) 200 kW/kWh

The input parameters were set into the simulation model with the selected objective
functions and run within the NSGA-II algorithm. The optimisation ran to the maximum
allowed number of generations before terminating. Due to the bound nature of the

problem, the component capacity variables start as a random distribution, from which the
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non-dominated solutions on the Pareto front are derived. Well-performing individuals are
moved forward to the next generation, as well as a selection of offspring and individuals
that have experienced random mutation. As the generations progress, the population
steadily converges on a large set of non-dominated solutions that align with the Pareto
front between best system economics and decarbonisation performance, denoted by the
objective functions of cost savings and emissions intensity. The graph in Figure 3.20 shows
the convergence of the objective function products during the progression through the first
200 generations of the hybrid system optimisation, which will converge towards a single

value.

Figure 3.20: Convergence of the optimisation pareto front as shown by an aggregated scalar
objective function minimising towards a single value

3.6 Model Assumptions

This sections documents all the model variables and assumptions made to produce the
results presented in this thesis. Where available, a number of literature sources have been
used to determine a credible value for each assumption and included in the Table 3.6 to
Table 3.10 below. Also included are the ranges for variables that will be utilised in the
analysis of error propagation within the results. Many factors, such as the embedded
carbon of different assets are far less certain overall. For this reason, embedded emissions
values have had a 30% standard uncertainty applied to the central expectation, in line
with the approach taken by Arowolo et al. [171] assessing a similar, decentralised PV solar
mixed asset model. Additional references are also added to support the stated range of

uncertainties.
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Table 3.6: Table of the global model assumptions

Variable Value Unit Sensitivity Range
Project location St Francisc, Formentera

Coordinates 38.706, 1.4335

Base data year 2023 year

Project period 20 years

Discount rate 5% 2%
Inflation rate 2% 1%
Local grid emissions 325 gCO2/kWh

Local grid cost 0.3 €/kWh

Table 3.7: PV technical parameters and assumptions

Variable Value Unit Source Sensitivity range
(+/-)

CAPEX 2,500 €/kW [124, 171, 172] 250

OPEX 30 €/kW /year [124, 171,172] 15

Power per panel 400 W [124] 5

Panel area 2 m? [173] 0.05

Derate factor 0.40% V /year [173]  0.05%

Power thermal coefficient  -0.35% W/°C [173] 0.05%

Lifetime 20 years [173] 0O

NOCT 45 °C (174] 1

Embedded carbon 1826 kgCOo /kW [175]  30%

emissions

Tnoct 25 °C [174] 0

Gnoct 800 W/m [174] 0

Tstd 25 °C [174] 0

Gstd 1,000 W/m [174] 0

Taualpha 0.9 [176] O

Table 3.8: Wind Turbine technical parameters and assumptions
Variable Value Unit Source Sensitivity range
(+/-)

CAPEX 2850 €/kW [177) 250
OPEX 16 €/kW /year [177] 0.5
Hub height 20 m Author estimate 0.5
Roughness height 0.05 m Author estimate 0.01
Lifetime 20 years Author estimate 0
Embedded carbon 1,800 kgCO2/kWp [178] 30%

emissions
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Table 3.9: Battery technical parameters and assumptions

Variable Value Unit Source Sensitivity range
(+/-)

CAPEX 328 €/kWh [179] 100

OPEX 22 € /kWh/year [179] 3

Round trip efficiency 95% 179 2%

Depth of discharge 95% Author estimate 0

Lifetime 10 years Author estimate 0

Max cycles 8,000 cycles Author estimate 0

Embedded carbon 254 kgCO2/kWh [180] 30%

emissions

Table 3.10: Hydrogen Storage Energy technical parameters and assumptions

Variable Value Unit Source Sensitivity range
(+/-)

CAPEX fuel cell 1,250 €/kW [179] 250

OPEX fuel cell 13 €/kW /year [179] 5

CAPEX electrolyser 1,500 €/kW [181] 250

OPEX electrolyser 14 €/kW /year [181] 5

CAPEX hydrogen storage 20 €/kWh [182] 0.5

Efficiency fuel cell 46% [179] 5%

Efficiency electrolyser 68% 179] 5%

Depth of  hydrogen 95% Author estimate 0

discharge

Embedded carbon 73.3 kgCO2 /kW [183] 30%

emissions fuel cell

Embedded carbon 239 kgCOy/kW [183] 30%

emissions electrolyser

Embedded carbon 5.2 kgCO2/kWh [184] 30%

emissions hydrogen

storage

Lifetime 20 years [185] O

3.7 Technical Structure and Execution

This final section of the methodology describes how an REC model instance is created
and executed as with the designed software architecture. One of the novel developments
explored in this work is a energy system modelling tool using open-source software, rather
than the more restrictive and less novel approach of using existing, commercially available
software packages. Not only are there far more limited areas of exploration within the
literature, but most commercial packages are unable to perform flexible, multi-objective
modelling and simulation of a decentralised, renewable energy community. The choice to
develop the tool in Python gives the freedom to explore a number of different options and
configurations.

The diagram in Figure 3.21 displays the model architecture as designed in Python.
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Figure 3.21: The object-based architecture of the system model implemented in Python

The model consists of different object entities which contain all the data and functions
to model the generation and storage assets, collect local weather data, compile the full
energy system, and execute the optimisation procedure. An REC model is created by the

following steps:

e Define location and collect local meteorological data: The user must start by
simply defining the town and city of the desired EC location, then the program uses
an open-source geolocator tool to get the coordinate location and begin downloading
wind speed, temperature and solar irradiance data from the NASA PowerLARC

database for the chosen base year.

e Define the generation and storage assets: The user must then create instances
for the assets that will be included in the EC design. When creating an instance, the
initial asset type (i.e. wind turbine, solar panel, etc.), including capacity and type,
is also defined. This process is the same for the energy storage assets (Battery and

hydrogen storage).

e Define the building loads: The user can either input custom electrical loads or
choose from one of the preset load profiles from the NREL dataset discussed in the
previous section. To define a custom profile, the hourly weekday and weekend load
profile must be added, as well as the monthly average total consumption. The model
then uses this information to synthesise the building load profile over the course of
one year. When using the archetypal profiles, only the annual energy consumption

must be specified.
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e Create the energy system instance: Once all sub-systems have been defined,
they are then added to an energy system instance. This object manages all aspects
of the model, including the main model execution, storing input assumptions and

recording outputs, and visualising the results.

e Run the optimisation routine: The model can be executed independently of the
optimisation routine to ensure no errors are present. Once complete, the optimisation
model is started, and terminates once the termination criteria are met. This is usually

defined as a maximum number of NSGA-II generations.

Once all steps have been completed, the model’s output provides the multi-objective
optimisation routine, which is in the form of a pareto front describing the non-dominating
relationship between the two chosen objective functions of cost and decarbonisation. It
is then the decision of the user whether to explore the design domain further and run

simulations for specific optimal results.
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Results

This chapter presents the results of the REC system model created in this thesis. The
primary objective is to support the climate transition objectives of the local community on
the island of Formentera, whilst ensuring low-cost, secure energy availability. The creation
of an energy system model, capable of testing and optimising several renewable assets and
load profiles to assess the routes to commercial deployment of REC systems is essential for

the energy transition of any geographical island.

The first part of this chapter details the asset validation process, ensuring that the
performance is representative of the real world technology. The second introduces and
evaluates the optimal REC system design achieved through multi-objective, evolutionary
optimisation. The major result presented is the true impact in terms of cost and
decarbonisation potential that could be attained via the REC design, including the relevant

design choices and trade offs to achieving either optimal performance outcome.

The third part of this chapter defines and tests a couple of scenarios that could affect
the design and operation of the REC. The first scenario test provides an analysis of the
hybridisation of battery and hydrogen storage technology compared to their standalone
counterparts, to quantify any benefits in combining assets to minimise drawbacks of the
storage options. The second scenario test presents a comparison of two potential trading
policies that could be utilised by the REC members, a ’friendly’ trading logic and a

‘competitive’ local market design, as outlined in Chapter 3.

Finally, this chapter concludes with a detailed investigation into the potential error
propagation in the model due to input parameter uncertainty. The variable sensitivities
outlined in Tables 3.7 to 4.1 state the sensitivities used in a Monte Carlo assessment, followed

by a Sobol sensitivity analysis to identify the inputs driving the maximum uncertainty.
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4.1 Asset Model Validation

The motivation for the creation of a Renewable Energy Community (REC) model is to
accurately and credibly project the energy system performance under a number of different
scenarios. It is therefore crucial to understand the accuracy of the individual asset models
that are providing hourly power generation to the EC. The concept of the approach is that
the developed software is location and system size agnostic, in that any volume of solar and
wind generation can be applied and in any technically feasible location around the world.

This section includes a validation of the photovoltaic (PV) solar and wind turbine
asset models. The results include a sample annual dataset consisting of real measured
performance and environmental conditions, measured against the simulation to determine a
representative error. As discussed in the previous section, the chosen asset parameterisation
methodologies are based on a trade-off between performance and practically of a "white-box’
fully resolved model and a ’black-box’ simplified model. Understanding the potential
simulation error can be used in the analysis to determine if further model enhancements

are required.
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4.1.1 PV Solar

The PV solar is a crucial generation technology in the field test location of Formentera due
to the high solar potential of the Balearic Islands. Accessing PV solar test data, including
the measured power and environmental conditions for southern Spain is challenging, so
data provided by the The National Renewable Energy Laboratory (NREL) is used to for
validation.

NREL performed a variety of PV solar tests of the course of several years, and have
included all the required technical parameters to recreate the asset in the model, as shown
in Table 4.1 below. The test system is an amorphous tandem junction solar cell technology,

with a rated power output of 40 W.

Table 4.1: The technical cell parameters of the PV solar test set-up [186].

Parameter Value Unit
Location Golden, Colorado
Coordinates 39.74°, -105.18°

Rated power (P;) 40 W
Cell area (A) 0.079 m?
Thermal power coefficient () -0.22 %/°C
Efficiency (n) 20%

Tilt angle () 40°

Azimuth angle («) 180°

Figure 4.1: NREL PV solar test set up in Golden, Colorado.

The data covers a one-year period in 15-minute intervals starting in August 2012
over the daylight periods, equating to 12,070 validation points total. The global horizon
irradiance (GHI), ambient temperature, wind speed, and measurement time stamp are
recorded in addition to the cell temperature and power output. The assumptions in the

table above are set into the model and the asset is simulated over the same period and in
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the same geographical location.

Figure 4.2 displays a sample 5-day period comparing the recorded test data with the
asset simulation output. As can been seen, the model performance shows good agreement
with the test data, even accurately reflecting the tips and changes in power output due to
clouding effects. When analysing the error histogram in Figure 4.2 it can also be seen that
the absolute error mode is 0.4-0.7 W, or just over 1% error. Considering the mean error,

this increases to approximately 5%.

Figure 4.2: A portion of the solar validation data compared to the modelled result.

While an error is observable between the measured and simulated data, an effective
95% confidence is an acceptable result over a one year period. Changes in light scattering,
reflections, heat transfer due wind speed variation, and manufacturing defects in the solar
cell are among a number of factors not directly captured in the model that may be causing

the variation observed.
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Figure 4.3: Histogram illustrating the error distribution and variance over the validation
time horizon (one year).

4.1.2 Wind Turbine

Like the PV solar validation approach, the wind turbine asset model is validated against
real measured performance and environmental conditions. Since there are currently no
wind turbine installations on Formentera, wind power generation results are taken from
another island, Gokgeada, in Turkey. This island has two 900 kW wind turbines installed
that supply power directly to the local grid. The data was provided from one of the

turbines in hourly increments for 2019.

Table 4.2 below includes the model parameterisation employed to align the simulation
with the physical test data. The average wind speed at the installation site is 7.5 m/s which
matches the design requirements of the on-shore IEC-II type turbine, so the corresponding

performance profile is chosen for the model test.

Figure 4.5 shows a sample 10-day period of the asset model performance comparison
against the Gokceada wind turbine. It can be seen as with the PV solar result that the
model shows good overall agreement with the measured power generation. The model is
able to successfully capture the changes in generation output with the change in wind
speed, and considers the difference in wind speed measurement height (10m) with the hub

height (m) using the log law Equation 2.8.
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Figure 4.4: The Gokgeada installation site of the wind turbines used for model validation.

Table 4.2: The technical parameters required for the wind turbine model [187]

Parameter Value Unit
Location Gokceada, Turkey

Coordinates 40.18°, 25.94°

Rated power (P;) 900 kW
Hub height (z) 40 m
Roughness length (z) 0.03 m
Turbine classification IEC-IT (low winds)

The error over the one-year test period is less than 1% on average, which is reassuring
given the complexity of wind turbine operation, and the fact that the model does not
explicitly consider the hugely complex fluid dynamics and energy transfer. The error
histogram affirms the low error margin, with a mode of 0-2.6 kW of error, or 0.26% of the
rated asset power. This result gives a good degree of confidence that the modelled result
will be minimally impacted by potential induced errors in the wind turbine asset. In terms
of the representation of the wind generation in the asset model, it is assumed that the
generation could consist of multiple micro-wind turbines of the same technical specification
as opposed to a single, large turbine generator. For example, if the optimal deployment is
equal to 100 kW of wind capacity, it is assumed for practical installation purposes that
the true system would consist of 3-4 smaller wind turbines of suitable size to be deployed
within or near the rural energy community, and as such the generator can be connected

down stream of the same secondary substation.
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Wind Turbine Asset Model Validation
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Figure 4.5: An example section of wind validation data compared to the modelled outcome.
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4.2 Multi-Objective Optimisation of the Renewable Energy

Community System

The assumptions outlined in the methodology section were inputted into the model,
including the five fixed building electrical loads. The variables consist of the optimised
capacities for PV solar, wind generation, battery storage and hydrogen storage. The
optimisation has a maximum restriction on asset size of 200 kW in line with the RED-III

policy framework. The NSGA-II algorithm was run with the following settings:

Table 4.3: NSGA-II optimisation settings

Parameter Value
Population size 100
Crossover probability — 50%
Mutation probability — 90%
Max generations 200

The input parameters were set into the simulation model with the selected objective
functions over maximum system present value and minimum emissions intensity. The
optimisation ran to the maximum allowed number of generations before terminating. Due
to the bound nature of the problem, the component capacity variables start as a random
distribution, from which the non-dominated solutions on the Pareto front are derived.
Well-performing individuals are moved forward to the next generation, as well as a selection
of offspring and individuals that have experienced random mutation. As the generations
progress, the population steadily converges on a large set of non-dominated solutions
that align with the Pareto front between best system economics and decarbonisation
performance.

The primary case studied was the hybrid architecture consisting of a lithium battery
and a hydrogen storage system. Within the resulting Pareto front in Figure 4.6, each point
on the graph represents a different combination of design choices to be made by the REC
developers to achieve the highest economic returns and lowest net carbon output. The
lifetime cost savings potential ranges from approximately 150,000€ to 190,000€), while the
emission intensity ranges from 59 to 93 gCOqe/kWh.

Within this Pareto front exists the information and insight required to design and build
the optimal REC system for the island of Formentera. It is interesting to note that the
savings do not start at zero, implying that below 150,000€ returns the configuration was
able to increase in economic performance as well as decarbonisation before reaching an
inflection point. At this point, it becomes clear that the net savings were able to continue
increasing, while the net emissions reached their minimum and began to climb again. At
the other end of the front, the gradient began to increase as the returns increase but also

the emissions intensity. This continued up to the point where the system can no longer
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Pareto Front in Objective Space
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Figure 4.6: The set of Pareto optimal solutions for the REC system design

provide additional savings without an exponential increase in embedded emissions and
therefore environmental impact.

Deeper analysis can be conducted of the various system design choices by graphing the
change in asset sizing that corresponds to each side of the objective space, that being the
range of design choices to achieve the best cost savings and/or best decarbonisation.

It can be seen more clearly in Figure 4.7 that the renewable generation and storage
sizing choices has a direct impact on the performance objective. The graph displays the
capacities of PV solar, wind power, battery, fuel cell, and electrolyser systems with the
final population arranged by the two objective functions. The best economic outcome
is on the left, while the best environmental outcome is on the right. It can be observed
that all systems generally tend towards an increase in capacity as the emissions improve.
This is most likely because a larger total off-grid capacity has a higher self-consumption
rate, and therefore is relying less on the grid which has a high emissions intensity of 325
gC0O2¢/kWh. The REC was consequently able to reduce emissions to a greater extent.
This, of course, negatively impacts on the economics of the REC as more capital has to be
invested into a more substantial design. It appears from the graph that the wind power,
as well as the fuel cell and electrolyser, which make up the RHFC and are most sensitive
to changes in the objective function. The following section explores the chosen optimal
design, and details why the capacities affect the objective functions in this way. As the

Pareto efficient solutions move towards the lowest emissions objective, most assets increase
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Optimal Population Variables Sorted by Objective Function

80 40
——- PV solar —— Battery =
70 4=~ Wind power —— Fuel cell 35 =
Electrolyser B
—_ 3
= =
= 604 F30 8
5 ks
2 50 L 25 ™
=) =
2 %
= 40 A - 20 5
| <]
— [ &)
Z )
o i L
= 30 15 Z
E 1
5 20 ~ - 10 -E:
g =
E
10 5 8
&
0 . T 0
Best Cost Best Emissions

Figure 4.7: The change in renewable asset size with specific performance target

in size, with the exception of solar energy generation, which appears to remain relatively
stable at approximately 60-65 kW of rated power. Wind generation, by contrast, increases
from 28 kW under optimal savings conditions to over 65 kW.

The changes in storage system asset sizing are more nuanced as there are a number of
second order decision making processes going into the final capacity. The battery storage
sees a decrease as the design moves away from best cost and towards best emissions
reduction, with a notable step change. The battery sizing peaks at approximately 17 kWh
before steadily declining towards the right of the graph. An analysis of this behaviour
is explored further in the discussion section on this thesis. The fuel cell and electrolyser
sub-models increase in size between best cost and best emissions reduction. This result
makes logical sense as both assets are required and in the correct proportionality to create a
fully utilised and efficient hydrogen storage system. The fuel cell size ranges between 10-28
kW and the optimal electrolyser size lies between 17-23 kW. The pressurised hydrogen
storage tank is not optimised directly, but is instead sized based on the maximum seasonal
storage requirement over the one-year simulation period based on the optimal fuel cell and

electrolyser combination.

4.2.1 Optimal System Design

While the Pareto front is a useful tool to understand the range of potential optimal solutions,

a system design must be chosen such to allow an investigation of the dynamics of the
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system and the internal decision-making. There are several methods that can be used to
choose a ‘best’ trade-off system from the population to perform further analysis. Based on
the research conducted by Wang and Rangaiah [188], it was chosen to use Simple Additive
Weighting (SAW). SAW normalises both objective function values, where zero is the worst
possible result and one is the most improved. The values are then summed up for each

member of the population to find the best overall solution.

f%, for a maximisation criterion, where f;+ = max f;;,
F. = fj eEm (4 1)
0T £ L - . '
P for a minimisation criterion, where fj_ = min f;;.
j eEm

A=) F; (4.2)
j=1

Fj; is the normalised set of objective functions j for Pareto population 4, f;; is the
initial set, and f;+ is and f;- is the maximum and minimum criteria of the set, respectively.
A; then provides the best set of design variables to use in the hybrid REC. The system
was then simulated to perform analysis of all performance indicators.

By performing the calculation over all multi-objective results, a feasible design is derived
that attempts to trade-off the relationship equally between cost and decarbonisation. The
resulting asset sizes are shown in Table 4.4 below. It should be noted here for clarity that
this REC combination of system design choices will, by definition, exist somewhere within

the pareto front approximately on the apex between the two objective functions.

Table 4.4: Optimal decentralised asset sizing for the Formentera REC

REC Asset Value
PV Solar 63 kW
Wind Turbine(s) 40 kW
Battery Storage 12 kWh
Fuel Cell 24 kW
Electrolyser 16 kW

Hydrogen Storage Tank 2,318 kWh

Figure 4.8 contains two one-week sample periods obtained from the simulation, displaying
the balance of each asset and their contribution to balancing the total REC load. Typical
summer and winter periods are used to observe the seasonal variation in the system’s
response. The REC load was higher on average during the summer period. The higher
seasonal demand is due in part to the increased use of air conditioning to ensure comfortable
habitation in the climate of Formentera. The higher load leads to increased reliance and
the energy grid to fill gaps in the consumption requirement when the Energy Storage

System (ESS) was unavailable. The winter period, by contrast, was able to satisfy the load
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requirement with the exception of some short periods.

Energy Consumption Breakdown by Source in the Summer
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Figure 4.8: Energy generation hour-by-hour breakdown by source. Example shown includes
a typical summer (August 2023) and winter (February 2023) week.

It can be seen from the graph that the PV solar generation provides the majority of the
renewable power during the summer due to the high average peak sun hours. The battery
and hydrogen system can then use the excess solar to charge or generate hydrogen. Once
the peak sun hours have past, the battery, supplemented by any available wind generation,
discharges to balance the load. Once the battery has been discharged completely, the
hydrogen fuel cell is then activated to provide baseline power. Grid power is only used
in instances when both the battery and hydrogen systems cannot provide enough power
output to balance the load. Occurrences of this nature can be seen during late evening
periods where building loads across the Renewable Energy Systems (RES) can be almost
at their peak. This shows that although the REC can operate largely off-grid, it is still
beneficial from an economic and emissions perspective to remain grid-connected from
the short period when the REC generation and hybrid storage cannot fully balance the
consumption.

The hydrogen system requires a maximum storage of 2,318 kWh, which was evaluated
from the simulation as the storage required to avoid any state-of-charge limits. The value
therefore is a worst-case scenario for the system, as it is likely that a smaller storage would
be chosen in accordance with the installation space available within the REC. Given the

Lower Heating Value (LHV) of hydrogen and the average fuel cell efficiency of 46%, the
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system would require approximately 21.9 m? volume of hydrogen stored at 35bar, to supply

the required quantity of a one-year period.
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Figure 4.9: The annual weekly-averaged daily operation of the hybrid combined storage,
and PV solar and wind generation.
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The heat maps in Figure 4.9 illustrate the daily generation of the wind and solar assets,
and the SOC of the battery and hydrogen storage. SOC here is also used to refer to
the so-called ’state-of-hydrogen’, a measure of the volume of chemical storage available
compared to the maximum possible stored. The hourly data is aggregated into one-week
average results over the course of a day to create maps that display the weekly average 24

hours period on the y-axis, and the weeks of the year on the x-axis.

Starting with the solar generation data, it can be observed that the majority of the solar
potential increases in the late-spring to early autumn-period, in line with the seasonality
in the northern hemisphere. This dynamic has a direct impact on the excess generation
availability that can be used to charge the battery or generate hydrogen. There is also, as
expected, a huge dependence on the time of day which correlates to when solar power is
available, and, although to a lesser degree, across the year. By contrast, the wind generation
is far more evenly spread over the year. There does appear to be a correlation between
the winter months and higher wind generation, possibly due to the higher probability of
seasonal storms and changing weather, resulting in higher average wind speeds. A small
increase in power output in the afternoon can also be seen in the summer months. This
phenomenon is common to warm, coastal climates as warming of the lands surface during
the day causes uneven patches of air pressure, inducing localised breezes in the afternoon

and evening.

It is interesting to note that the characteristics of the generation activities over the
one-year simulation period have a direct impact on storage State-of-Charge (SOC). Starting
with the battery storage system, the SOC commonly reaches a maximum over the midday
period. This is due to the daily utilisation of the excess solar generation to charge the
battery system. The hourly building load also drops significantly after the early morning
period, allowing for additional excess charging power. When the battery is then required
in the evening period, it discharges to satisfy the load, reducing the average state-of-charge.
The lowest average state of charge occurs in the very early morning period, particularly
during low wind generation volumes in the summer months. In the winter period, the
building loads are lower on average, and wind generation is higher, so the BESS is more

likely to maintain charge throughout a 24-hour period.

The hydrogen system performs a different energy storage role to the battery, in that it
allows for the seasonal shift of stored generation to annual costs. This is a role commonly
associated with natural gas, pointing to a potential opportunity for hydrogen in the future.
The hydrogen storage volume is much larger by energy potential than the battery; a
difference that is reflected in the state of storage graph, in that the level of stored hydrogen
changes very little on average throughout a 24 hour period. However, over the course of a
number of weeks, the storage volume can change significantly. The period from January to
February, and in October, are the average low points for hydrogen storage. This observation

is due to the requirement for storage energy in the months before these periods, causing
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an overall deficit. Essentially, high building power demand in August and September leads
to larger volumes of storage withdrawal. Similarly, the December to January period sees
lower solar and wind potential. The storage volume peaks in the period from June-July
and again in November. The graph in Figure 4.10 shows the direct comparison between
the two storage systems, directly illustrating the different roles that the hydrogen and

battery technologies are playing in balancing the needs of the energy community.

Annual REC Storage State of Charge

— Lithium Battery [12 kWh]
—— Hydrogen System [2318 kWh]

State of Charge (%)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Simulation Timestep (Hourly)

Figure 4.10: A comparison of the state of charge between the hydrogen and battery storage
systems on an hourly basis.

Techno-economic Assessment

Table 4.5 below shows a full breakdown of the economic and environmental performance
of each grouped asset. The solar array was able to deliver the most energy to the REC
due to the high capacity of 63 kW, but also the higher solar potential on the island of
Formentera of 4.8 kWh/m?, compared to London, UK, of 2.9 kWh/m?. Energy generated
from wind provides the next greatest portion of over 24%, the benefit of which is that
energy is generated during the night period as well as the day to charge the battery and a
steady quantity of hydrogen. The battery itself was relatively small compared to the other
components and responds only when energy generated is no longer available in excess of
supply. The fuel cell and electrolyser were sized at 24 kW and 16 kW, respectively. It is
interesting to note that the electrolyser was smaller in power input capacity than the fuel
cell, even though the efficiencies would dictate the fuel cell would need to approximately
half the rated power of the electrolyser to achieve the same capacity factor. The increased
generation from wind power over a longer simulation period may allow the electrolyser to
operate at increased capacity factors and make up the fuel cell’s lower efficiency.

It is important to analyse each component on an individual basis to fully understand
their contribution to the economic and emissions performance within the system. This
not only would help confirm the results seen in the Pareto optimality, but also assist a

potential system designer to identify the most important assets, any particularly sensitive
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parameters, from a practical perspective while allowing for the assessment of the risks

associated with each.

Table 4.5: Optimal REC system design key technoeconomic results

Technology Energy Capacity CAPEX OPEX LCOE Emissions

Asset Delivered Factor (€) (€/year) (€/kWh) (gCO2e/kWh)
(kWh) (%)

PV Solar 116,000 21 158,000 1,900 0.08 48.7

[63 kW]

Wind 68,400 19 91,200 1,300 0.10 15.2

Turbine(s)

[40 kW]

Lithium 3,900 8 3,800 250 0.08 75.5

Battery [12

KWh

Hydrogen 26,600 13 99,800 570 0.15 33.3

System

2318 KWH]

The solar array has the largest capital and operational costs compared with the wind
power alternative due to the higher unit costs per kW. Despite this, since the PV solar
was able to achieve a greater capacity factor, which is the measure of energy output as a
ratio of the total potential output of the same period. PV solar is naturally limited by
the hours of solar available, while wind power is limited by the average wind speed and
distribution. The higher capacity is the main mechanism which produced a lower Levelised
Cost of Electricity (LCOE) for the PV solar of 0.08 €/kWh compared with wind power of
0.10 €/kWh, despite the higher CAPEX and OPEX costs. This result also implies that
although wind power is possible with the REC, it may be beneficial from a financial point
of view to study a PV solar generation only option due to the potential impracticalities of
local wind turbines. The inverse was then observed for the environmental impact, in that
the PV solar has considerably higher embedded emissions of 48.7 gCOze/kWh compared
with 15.2 gCO2e/kWh expected from equivalent wind energy. These results show good
agreement with reported embedded emissions from the IPCC AR5 report [189] of 40-45
gCO2¢/kWh and 13 gCOqe/kWh for solar and wind, respectively.

At €100k, the hydrogen system CAPEX was a twenty times that of the battery system.
This trend carries over into the LCOE results, where an approximate doubling of the
levelised cost was observed for hydrogen compared with lithium batteries. These outcomes
are in line with similar hydrogen system results found in the literature [190], where the
investment required results in a significantly higher cost. It is widely known that hydrogen
technology is a less financially viable alternative for many applications, so this result was
somewhat expected. This could change in the near future as costs of hydrogen technology

reduce.
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The emissions output from the battery per kWh delivery was far higher than the
hydrogen solution at 76 gCO2e/kWh and 33 gCOse/kWh, respectively. The trend is
also supported by the population variables in Figure 4.7, in which its noted that as the
hydrogen assets increase in capacity, the emissions result improved, while the net savings

deteriorated.
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Figure 4.11: Present value curve for the central scenario compared to grid-only use.

Figure 4.11 contains the present value curve of the grid-only case, that is when electricity
cost is paid to the utility company over the project period. The curve starts at zero as
there is no capital cost associated with grid usage, but the operational cost per year is high.
By contrast, the modelled REC requires an initial investment of 353,000€. However, the
lower year-on-year cost means that the system can pay off the investment cost, described
as the payback term, in 9 years (start year is to the base of 1). The project ends with
a final total savings of 180,000€ when the inflation and discounts rates of 2% and 5%,
respectively, are considered. The result produces an IRR of 11.1%, annualised savings of
9.7%, and an average system LCOE of 0.155 €/kWh.

Considering the historical and currently observed trends in renewable energy generation
and energy storage equipment cost, it is projected that by 2030 and beyond there will
continue to be a substantial decrease in the financial requirements for this type of system.
The results shown here are therefore towards the upper bounds in terms of uncertainty

about the future cost of an REC implementation.

REC members’ net savings and environmental impacts

The model not only provides a global view of the potential impact of an REC configuration
but is also able to analyse the reduction in cost and emissions on a per load basis. There
were five discretised loads within the model, with each being able to mutually accept and

trade energy with the decentralised assets. The REC provided a considerable degree of
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self-consumption, ranging from 91.1% for the largest load to over 98% for the smallest.
In terms of impact on the energy cost, the new LCOE ranged between 0.16-0.17 € /kWh
compared to 0.30 €/kWh for grid-only. The decarbonisation of energy usage was also seen

to be in the range 75-77% in the first year of installation.
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4.2.2 REC System Performance at the Extrema

During the study, it was vital to understand not only the characteristics of the system at
the ‘best’ result, denoted in this work as the central optimal case, but also the performance
at the extremes of the multi-objective optimisation. The result gives an indication as to
how sensitive the result was to changing parameters. In place of using a weighted approach,
the generation and storage asset capacity variables were found by simply evaluating the
Non-dominated Sorting Genetic Algorithm (NSGA-II) optimisation individual’s results at
both end of the Pareto front, as shown in Figure 4.6. Table 4.6 contains the results of the

three chosen REC configurations in terms of hybrid generation and storage capacities.

Table 4.6: Comparison REC configurations for extreme cases for net savings and
decarbonisation potential compared with the central optimal case.

Best net savings Central Optimal Best emissions
savings
REC Delivered 81,000 153,000 160,000
(kWh)
Self-Consumption 51% 95% 99.9%
LCOE (€/kWh) 0.149 0.155 0.180
Net Savings (€) 188,000 180,000 150000
Simple Savings 10.1% 9.7% 8.3%
IRR 14.1% 11.1% 7.4%
Payback Term 7.7 8.9 11.6
(years)
Emissions 85 68 62
(gC0O2e/kWh)

Under the lowest cost scenario, the energy community reaches a net saving of 187,000€,
compared to the lowest emissions which sees a drop to 156,000€. The clear reason for
this is the increase in investment in the system to size up both the generation and storage
systems, as shown in Table 4.7. The LCOE is similar between the low cost and central
optimal outcome, though the emissions see a wider gap emerge between outcomes, with
85 gCO2e/kWh and 62 gCO2e/kWh achieved for the former and latter, respectively. The
lowest emissions scenario displays a far higher LCOE at 0.180 €/kWh, an increase of 13%.
One of the most prominent changes between the extrema scenarios is the Internal Rate
of Return (IRR) which ranges from 7.4-14.1%. It is often suggested that an IRR of at
least 12% for an emerging energy product of service is desired as a minimum, considering
potential investment risk, indicating that an optimal system towards the optimal cost end
of the Pareto front would be more desirable for commercial deployment.

As explained in Figure 4.7, the optimal asset sizing can vary considerably depending
on the target objective function. The system sees considerable emissions benefit from

deploying additional wind generation and hydrogen storage to squeeze out the requirement
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for grid imports and maximise self-consumption. The challenge with reaching 100% energy
independence is that it is observed to get almost exponentially more expensive due to
the moments of high load and low intermittent generation that need to be balanced via

long-term storage.

Table 4.7: Energy community asset sizing at the optimisation extrema

Technology Lowest cost size Lowest emissions size
PV Solar 63.0 kW 60.5 kW

Wind Turbine(s) 28.2 kW 63.6 kW
Battery 17.0 kWh 2.70 kWh

Fuel Cell 10.5 kW 28.7 kW
Electrolyser 12.3 kW 22.5 kW
Hydrogen Storage 1,312 kWh 4,365 kWh
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Figure 4.12: The absolute change in power import volume between the lowest cost and
lowest emissions scenarios

Figure 4.12 shows the change in import volume in each hourly time slice between the two
extrema scenarios. Negative values indicate more import and positive indicate less. It can
be seen here that the system experiences particular moments or periods throughout the year
when it is very challenging to ensure independence from the grid. When evaluated together
with the power generation and storage heat maps in Figure 4.9, the lowest overall periods
of energy independence are the periods of September-October and January-February. This
is due to the lower wind and solar generation, and the lower hydrogen reserves after high
levels of withdrawal over the peak summer period. This dynamic shows the importance of
long-term grid storage for ensuring energy security, as well as that hydrogen could play a
potential role in providing this service. There is also a pattern in grid requirement needed,
particularly during the evening period throughout the year, which is commonly a peak
time of high power demand, and hence more challenging and more costly to cover with

storage availability.

A side-by-side comparison of the energy delivery dynamics between the scenarios brings

further understanding to the points of highest stress throughout the year.
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Lowest Emissions Energy Consumption Breakdown by Source
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Figure 4.13: Percentage of demand delivered by each of the renewable asset classes over
the three scenarios.

4.3 Sensitivity Scenarios

This section documents the results of the two main sensitivity scenarios that were tested
as part of the multi-objective design optimisation of the REC in Formentera. There
are understandably a number of potential configurations, both in terms of the physical
system planning as well as the energy system integration and trading policy that might
impact the ultimate performance of the energy community and the way in which it is
managed by local stakeholders. The first of these scenario sensitivities tests the storage
configuration options, and whether it is beneficial to hybridise the electrochemical battery
and hydrogen technologies to maximise performance. The second, more policy driven
scenario, is considering the energy trading regime of the community, and how the resulting
optimal energy community design may in reality be driven differently if a competitive

trading regime is implemented, as opposed to the standard cooperative sharing that has
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been assumed.

4.3.1 Scenario Set 1: Battery and Hydrogen Storage Comparison

As detailed in the motivation of this section, the key contributor to the decarbonisation
of the energy grid is the efficient utilisation of storage technologies. This sensitivity aims
to answer the question of how much benefit does the hybridising battery and hydrogen
storage bring to the daily operation of the REC. The hypothesis is that, under normal load
conditions, the battery is able to provide short-term, high-power and quickly respond to
demand, whereas the hydrogen system, with a lower round-trip efficiency, is advantageous
when covering long durations of storage requirement.

For this test set-up, the model was configured such that only battery or hydrogen
storage could be used independently. These were then run through the multi-objective

optimisation routine to observe the impact and to compare with the hybrid result.

Pareto optimal fronts comparing battery, hydrogen and hybrid systems
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Figure 4.14: A Pareto front comparison between battery-only, hydrogen-only, and the
hybrid storage system set up

Figure 4.14 illustrates the Pareto fronts produced with binary storage choices. For both
cases, a single storage technology performs worse overall compared to the hybrid approach.
The reason for this is again due to the nuanced relationship between storage and excess

power generation throughout the model year, as well as the technical limitations of the

individual technology.
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Starting with the battery only scenario, the result indicates that this configuration
produces the lowest overall performance. Breaking down the simulation dynamics, it is
observed that the battery is generally being sized to perform well in providing response to
high demand during or right after a balanced period between the load and the generation.
This means that over a longer period, the battery suffers more from degradation and leakage
current, and therefore does not perform as well in this role. Additionally, the embedded
carbon of the battery, at 75 gCOge/kWh, is much higher than that of the generation
technologies and hydrogen storage over its lifetime. The ability to decarbonise to the same
extent as the hybrid storage is significantly reduced when working alone, achieving the
lowest emissions intensity of 140 gCO2e/kWh compared with the hybrid solution of less
than 70 gCO2¢/kWh.

The plot in Figure 4.15a shows the range of Pareto optimal design solutions when
considering only battery as the storage option. As expected, the battery size is far higher
than it otherwise would need to be if the hybridisation with hydrogen is considered, reaching
over 90 kWh to ensure optimal performance in the low emissions objective. The limited
factor in this case is the embedded carbon. In the cost optimal scenario, the optimisation
elects to have almost no storage, to rely on the intermittent renewable to provide cost
benefit. This significantly increases grid dependence and would suggest that the system

has no means of balancing demand during daily and seasonal variation.
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Figure 4.15: The optimal system sizing with binary storage choice ranging from best cost
to best decarbonisation performance

The hydrogen-only scenario, by contrast, has a different set of reasons for why the
performance is less than that of the hybrid system. While the fuel cell and electrolyser
assets benefit from having lower embedded carbon, they are significantly more expensive,
with an LCOE of 0.15 €/kWh compared to 0.10 €/kWh of the battery. The cost is

therefore the first significant barrier.
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The second limitation is due to the operational limits of the fuel cell and electrolyser.
The battery is assumed to be able to charge and discharge energy up to twice its rated
capacity, whereas the fuel cell and electrolysers are limited to their rated outputs. This
indicates that, under normal operating conditions, the hydrogen storage system has far
lower flexibility. This, combined with the higher capital and operational expenditure of
the hydrogen technology, leads to a natural optimal limit for its deployment. In the hybrid
scenario, the battery is able to fill the gaps in between the hydrogen system utilisation,
such that the operational limits are less of a problem.

The graph in Figure 4.15b illustrates the optimal hydrogen only system sizing, where it
can be observed that the optimisation routine actually deploys less hydrogen capacity than
the hybrid result. This could be due to the fact that the hydrogen system working alone is
less efficient overall at valley-filling gaps in renewable energy generation compared to the
flexibility of the battery storage. The hydrogen assets also need more excess generation
to make up for the inflexibility, adding to the cost and embedded carbon of the energy
community.

Overall, the hybrid approach provides the best solution, due to the following observations:

1. The battery asset, while flexible, is not able to perform the same long duration

storage duties as hydrogen due to current leakage that limits efficiency.

2. The battery model has a much higher embedded emissions originating from the

manufacture of the lithium polymer chemistry.

3. While the hydrogen asset excels in long-duration storage, it is limit by its peak rated

operation.

4. The fuel cell and the electrolyser assets both have a high capex and opex, leading to

a higher levelised cost.

4.3.2 Scenario Set 2: REC Energy Trade Policies

The trading policy in the base REC design scenario is based on a friendly regime in which
community members share a 'pool’ of RES and storage assets. It is assumed, therefore,
that the community is working together to minimise the total system cost and produce
the best performing system. This scenario tests the case where competitiveness between
community members is assumed. In this latter case, each member has their own generation
asset and offers into the locally created energy market.

The social and economic implications sit at the heart of any REC policy design, so
assessing the impact of different energy trading regimes is crucial. In the friendly trading
regime, there is a better opportunity for energy equity among members, as all participants
are sharing their assets, and it ensures that smaller, lower consumption members still

benefit. However, there may be some additional complexity regarding the way in which
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the community is governed and renumeration and reinvestment volumes are managed. By
contrast, in the competitive market trading regime, members act far more independently,
and it is up to their individual investment decision making to provide the optimal asset
sizing. While this simplifies the management of the REC from the top-down, in reality it
could lead to potentially unequal access to REC benefits, with larger, lower cost systems
extracting higher value. The market is modelled as pay-as-cleared, where the price paid
and received is equal to the marginal offer. This was done to simplify the model, and
ensure scalability as it reflects the process of national wholesale markets, but could have
the downside of providing significant profits for low cost participants.

For this test, the community size was reduced from five to three members to simplify
the approach, and rather than the option for both wind or solar generation, it is assumed
that only PV solar is available to deploy. The three community members included are the

large school, small school, and council offices, as shown in Figure 4.16.

Figure 4.16: Reduced set of community buildings to test trading impacts

The optimisation for the sensitivity was switched to a single objective function to
minimise cost, as this is primarily a test of market-driven decision-making by the model.
The baseline ’friendly’ case uses the standard lowest system cost objective, whereas the
‘competitive’ policy regime tries to reduce the total energy price including import costs.
The results of the optimisation routine are shown in Figure 4.17a and 4.17b below:

It can be seen in Figure 4.17a that there is a notable reduction in LCOE across all
buildings when the shared trading logic is used over the competitive local market simulation.
The market model results in an LCOE of approximately 0.23 €/kWh across all three
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Figure 4.17: The impact on system sizing and LCOE performance under different local
trading regimes.

buildings, reducing to between 0.19-0.20 €/kWh for the friendly trading case.

The main difference between the two is in the optimisation objective, in that the
base scenario uses the system cost, so has an aggregated view of the entire system and
is therefore aiming to achieve mutual benefit across all the community members. The
competitive trading, by contrast, is only able to observe the recorded prices in each hour
that the buildings are required to pay or receive in renumeration based on their position
in the market merit order. If the member is lower in the order, they are able to sell
their excess energy and receive the dual benefit of self-consumption and payment for sold
volumes. However, if the members asset is further up the merit order, they risk their excess
generation falling outside of the margin, not receiving renumeration, and damaging their
perceived energy equity.

Based on this dynamic, it is more beneficial under the competitive scenario for the
community members to maximise self-consumption and minimise the risk of grid export.
This can be seen in the choice of asset size to be deployed, in that each building utilises a
PV solar capacity that is proportional to their specific annual building load, and any excess
generation is not as useful. This phenomenon may also explain the choice to deploy a lower
capacity of storage compared with the baseline ’friendly’ scenario, in that the availability
of excess generation to be used for storage is lower, as the members are not as easily able
to observe the global benefit for higher storage capacity due to the objective function used.

The baseline case by comparison deploys a much higher volume of PV solar generation
and storage, as the global cost benefit is greater when considering the combined impact
for all community members. It can be noted that, even though PV solar can be deployed
across each building, the volumes are uneven. This is because the objective function

considers all assets to be shared equally, and so the physical location of deployment is
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not as important. The observed outcome could be crucial of this type of REC, as some
buildings may have more or less space available to install generation and storage assets. An
assumptions of shared, cooperatively owned systems could be of huge benefit to locations
such as Formentera, or more built-up areas with strict environmental policies. Additionally,
the total cost impact increases the visibility and utility of the battery energy storage system,
which can be seen to increase in size considerably under the default trading scheme.

This scenario comparison shows that the choice of trading policy in an REC is not just
an operational decision, but impacts the distribution of economic benefit. It has shown
that the ’friendly’ trading regime tends to promote greater equity and storage resilience,
whereas competitive markets, as the principle suggests, can still maximise individual gain

but at the cost of community energy sharing and fairness.
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4.4 Results Uncertainty Analysis

Like all modelling techniques, a certain degree of uncertainty in the input assumptions
exists, leading to varying results and outcomes. The acceptability of this uncertainty is
ultimately a decision made by the REC developers, including the extent to which investment
risk can be absorbed by the local community if the system was to provide a slightly different
level of performance.

The factors that will impact uncertainty can be broadly categorised into the following

groups:

1. System assets sizes and achievable performance
2. Uncertainty in asset investment needed and operational costs

3. External forces impacting the community

Starting with the system performance itself, variation in actual energy generated or
stored, even if only minor, could have a measurable impact on the total system performance
over its projected lifetime. Variations in manufacturing quality are commonly cited as
contributing to different output efficiencies. For example, in the case of PV solar panels, a
process of 'binning’ is used to categorise the power output of the silcon-based cells with
the aim to somewhat account for performance differentials, though cannot fully remove the
uncertainty. Similarly for the battery and hydrogen storage technologies, small changes
in the internal chemistries, age and condition could change the storage potential. For
batteries, slight differences in electrolyte concentration, electrode thickness and condition
of the contacts would affect the internal resistance, causing alternative responses to thermal
variations and self-discharge rate. The PEMFC and AEM Electrolyser, while consisting of
slightly alternate design characteristics, share the same fundamental principles internally.
Differentials in the membrane thickness, the distribution of catalytic compounds, and
exposure to different thermal and humidity conditions would all contribute to a change in
the overall efficiency of the regenerative hydrogen storage system. Performance assumptions
including the power output, efficiency, and derating factors have been used to represent
uncertainty in performance.

Current and future uncertainty in technology costs is an intuitive factor to consider
when designing a renewable system of this scale. The research conducted in this study has
aimed to consider up-to-date technology costs data, but the renewable landscape is ever
changing as new manufacturing methods and increasing market sizes will naturally move
the cost assumptions. Accounting for future uncertainty is also challenging, due to the
range of possible climate transition outcomes for a given country, or even localised area in
which the REC is established. In this work, variations in the CAPEX and OPEX are both

considered.
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Additionally, the impact of differing weather conditions are tested on the optimal REC
system design. Uncertainty in the weather conditions are handled separately to the design
variable set, as they are less controllable and predictable compared to the impacts of
manufacturing and system losses. Ten weather years from 2014 to 2023 are used to evaluate
potential uncertainty produced, both in the current year and in future.

This section provides the resulting uncertainty based on two approaches. The first is
a simple Monte Carlo analysis, which takes a random sample of the variation in inputs
assumptions between the specified upper and lower limits, and provides a statistical
analysis based on the impact of the uncertainty. The second approach goes a step further
in decomposing the variance observed in the Monte Carlo assessment to implement a Sobol
sensitivity analysis. The aim of Sobol is to quantify how much of the observed variation in
the result can be attributed to a given variable, the implications of which could be hugely
beneficial in understanding where uncertainty is having the biggest impact in the model.

The definition of the variation in each input used in the uncertainty analysis is given in
Tables 3.7 to 3.10. Some definitions are informed by research into the relevant literature,
manufacturer specifications, and discussions with industry experts, while all others are

defined as a suitable standard error in based on the variable magnitude.

4.4.1 Parameter Uncertainty Propagation

The analysis was produced using a Monte Carlo analysis approach implemented in Python.
Firstly, extreme case scenarios were produced where all model uncertainties were set to their
best and worst possible outcomes in terms of cost and carbon reductions. The objective
was to produce the total feasible range of uncertainty that could be measured using the
REC model configuration. This is useful for understanding the bounds of the problem,
and identifying the credibility of the central result based on the measured variation.
Figure 4.18 shows a recreation of the present value and payback curve of the central
optimal scenario compared to the grid-only counterfactual, as in Figure 4.11. This new
graph includes error bas to represent the maximum variation in returns measured based
on the uncertainty definition. Also illustrated is the range of payback period expected
given the propagation of this uncertainty throughout the lifetime of the REC system. In
the worst case scenario, the REC investment results in a lifetime savings of 151,000€,
compared to the central optimal case of 180,000€, or a potential downside investment risk
of -16%. However, in the best case scenario, the system returns a net saving of 211,000€
over the 20 year period, or a percentage upside of 17%. The aggregate LCOE follows a
similar trend, with a downside of 15% compared to the nominal 0.155 €/kWh cost, and
an upside of -16% reduction. The NPV graph indicates that the difference in the payback
period for the project could be delayed in excess of one year under the downside risk
scenario, but on the other hand experience an advance of one year and three months in the

upside case. A summary of the key performance indicators between scenarios is available
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Figure 4.18: REC system NPV graph with the included maximum impact of parameter
uncertainty.

in Table 4.8, where it can be noted that there is a similar variation in the system emissions
intensity, with a symmetrical -19% reduction on the upside and 19% increase in carbon on

the downside.

Table 4.8: Summary of key performance parameters considering the maximum degree of
uncertainty propagation in the REC model.

Parameter Worst Case Central Optimal Best Case
Savings (€) 151,000 180,000 221,000
Aggregate LCOE (€/kWh) 0.179 0.155 0.130
Payback Period (years) 10.4 8.9 7.5
IRR (%) 8.6% 11.1% 14.3%
Emissions Intensity (gCO2e/kWh) 81.9 68.4 55.0

While it is useful to observe and understand the total range of possible uncertainty
produced in the model, in reality the statistical likelihood (assuming a linear distribution
of uncertainty in each parameter) of all values of a given parameter sample being at the
lower or upper end of the uncertainty is extremely small. Understanding the impact of
the parameter distribution would go a step further to shining a light on the true result of

uncertainty in the model.

The Monte Carlo analysis was implemented by first defining the uncertainty range as
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performed for the best and worst scenarios. The program would then randomly generate a
parameter value within the set range for every input assumption, including asset efficiency,
CAPEX, inflation rate, etc. This random sample group would then be applied to the
model and simulated, storing the performance result. This process is repeated for 10,000
iterations to achieve a suitably large sample size. The results of the analysis are shown in
Figures 4.19a and 4.19b.
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Figure 4.19: Uncertainty distribution of system LCOE and payback period resulting from
the Monte Carlo assessment

As expected, even when observing the statistical distribution of uncertainty, the range
of possible input assumption error has a measurable impact on the aggregate LCOE of
the REC, though the expected variation is far smaller. The standard deviation reaches
only 0.5 ct/kWh, with a 25th and 75th percentile of 0.150 €/kWh and 0.158 €/kWh,
respectively. A similar difference is seen in the return periods, with an STD of 0.3 years of
approximately 4 months, and a 25th and 75th percentile of 8.7 and 9.2 years, respectively.
This result illustrates that, as expected, the true expectation of uncertainty in the result is
far lower than when evaluated on absolute terms.

The emissions intensity, while a key performance metric in measuring the environmental
effectiveness of the renewable energy community, has its own degree of uncertainty. The
associated error margin is far smaller than that of the economic factors relative to the
counterfactual grid-only scenario, with a spread between 63.1-73.7 gCOge/kWh for the
25th and 75th percentile, respectively. This points to a firm ability of the system to provide
valuable emissions reduction even when error is considered.

Assessing the uncertainty of an engineering project, such as this proposed implementation

of an REC on the island of Formentera is critical for several reasons. An understanding of
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Figure 4.20: Uncertainty distribution of system LCOE and payback period resulting from
the Monte Carlo assessment

modelling errors and how they may propagate is key to helping identify system weak points
and improve resilience under stressful conditions. For example, evaluating whether the
storage system will be available at a given time to provide power at a peak demand period
would be vital to ensuring energy security. Chiefly, the error propagation approach used in
this work is to support the costing and design decision-making processes, to help reduce
financial risk for the energy community members and prevent costly project overruns. An
assessment of uncertainty increases stakeholder confidence, ensuring due diligence has been
conducted to understand the risks and building trust among all involved. These important
elements will be discussed further within the context of the entire thesis in the following

chapter.

Impact of weather conditions

In the previous uncertainty analysis, changes to the weather conditions are not included in
the set of variable design parameters. There are a number of reasons for this decision.
First is the matter of predictability and variability. While variation exists within
engineering designs, materials and manufacturing processes, they are often more predictable
once the design parameters have been defined. Additionally, and in the case of PV solar
panels for example, the performance can be statistically modelled based on historical
data and performance. By contrast, weather conditions are complex, being driven by
uncontrollable factors such as storms, extreme temperature events or even seismic activity.

These factors are generally viewed as highly variable and challenging to predict over longer
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time frames, often require their own modelling approaches.

This analysis illustrates the independent impact of changing the input weather year on
the performance of the optimised REC system design. The NASA powerLARC database
used in this work has historical weather data reaching back several years. To evaluate any
impact on performance, the data for the 10 years between 2014 and 2023 were extracted

and implemented in the model.
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Figure 4.21: Average monthly solar irradiance and wind speed data by year from 2014-2023.

Figure 4.21 above displays the key average monthly meteorological input parameters
(solar irradiance in W/m? and wind speed in m/s) over each weather year. While the solar
irradiance remains relatively consistent throughout each weather year, the wind speed is
far more variable. This is particularly noticeable in the autumn and winter months, when
the average monthly wind speed could range from 3 m/s to over 8 m/s, easily doubling the
expected monthly generation from the wind turbine. There are two years in the sample
set when the solar irradiance in peak summer falls below 300 W/m?, but is relatively
stable overall. The result suggests PV solar generation is likely of lower risk given the
higher guarantee of stable output and returns compared to wind generation, which sees
considerable variation over several years.

Figure 4.22 above contains a bar graph of the resulting LCOE and emissions intensity
characteristics of the optimal system model based on the input weather year. The REC
design was optimised using the weather data from 2023, so it is understandable why that
year provides the best combined performance. If the system was optimised specifically for
a different year, this would naturally present a different set, though still optimal, results.

Interestingly, 2021 provides a slightly improved emissions intensity at 63 gCOge/kWh
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Figure 4.22: Resulting variation by weather year in the system LCOE and emissions
intensity

compared to the reference 2023 at 68 gCO2e/kWh. 2021 benefits from a marginally higher
annual wind potential, which could have allowed the storage to operate more efficiently
during times of lower power production, and hence lowering the total emissions of the
system.

Overall, however, the system performance could worsen under different weather
conditions. The mean LCOE overall all years is equal to 0.168 €/kWh; 8% higher
than the optimal result based on 2023. The mean emissions intensity is 72.8 gCOqe/kWh,
or 7% higher than nominal. The maximum extrema cases are even more broad, with 0.172
€/kWh reached in the weather years 2015 and 2022, and 82 gCOze/kWh in the latter.
This result shows the critical impact of weather uncertainty on the result, with analysis of

how it should be incorporated into the system design process.

4.4.2 Sensitivity Analysis

The final build on the variance assessment approach was to conduct a sensitivity analysis
using Sobol’s method. As discussed in the previous section, Sobol is a commonly used tool
in engineering design to estimate the importance of the input parameters and influence
they have individually on the solution [191]. The Sobol method was chosen over other
sensitivity analysis approaches, such as Morris and FAST, for its ability to manage
non-linear relationships between parameters, and quantify their precise influence on the
performance of the model. In this way, Sobol provides quantitative, policy-relevant results

and robust actionable insights regarding potential design risks of the REC. Additionally,
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Sobol naturally builds on the Monte Carlo simulations presented, so fits well with the
overall methodology of this analysis. Using the approach, the most critical design variables
can be identifying and closely controls such that their influence on the ultimate performance
of the system can be minimised. Crucially for remote energy communities, they may have
limited maintenance resources and monitoring equipment, so the ability to prioritise project
tasks and understanding any weaknesses in the design before it is deployed could be hugely
beneficial and may save cost in turn. The Sobol method was applied to the REC model
using the open-source SALib [192, 193] for the selection of variables defined in Tables 3.7
to 3.10 across PV solar, wind, battery and hydrogen storage technologies, in addition to

the global financial parameters.
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Figure 4.23: Ranking of the most sensitive variables contributing to the system LCOE
derived via SOBOL method

Figure 4.23 shows a graph illustrating the top ranking most influential model variables
on the resulting LCOE of the system. For the analysis, the normalised % contribution was
limited to show only variables with a share above 2.5%, to avoid statistically insignificant
results. It can be observed that, as somewhat expected, all of the most sensitive variables
relate to the capital investment and operation of the renewable assets. However, a deeper
analysis of the variable ranking reveals some interesting characteristics of the system.

The largest cost dependency in the renewable energy community is relating to the
PV solar assets, with both the operational expenditure and capital investment ranking
highest. This is due primarily to the PV solar being such a large portion of the total energy
supply, which as shown in figure 4.13 provides approximately 50% of the total annual
energy demand, and generates 164 MWh in the central optimal case. It is interesting to
note that the Opex presents a higher level of cost risk to the system than the initial capital
investment. This is likely due in part to the highly relative uncertainty in the assumptions

provided. Literature sources on the topic, such as those presented in [124], [171] and [194]
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result in a broad range of 15-45€ per kW in annual upkeep of the PV assets. A similar
justification can be considered in the case of the wind assets, in which the opex and capex
costs are the next most sensitive in influencing the levelised cost. Wind generation provides
less of the building electricity demand overall at 68.4 MWh per year.

The final parameters that are above the sensitivity threshold are the capital investment
costs for the hydrogen fuel cell and electrolyser. Hydrogen fuel cells are assumed to come
at a high cost of 1,250€ in the nominal case, with an approximate uncertainty of 250€.
Anion Exchange Membrane (AEM) electrolysis is assumed to be higher still, at 1,500€ per
kW. Modelling results show that the regenerative hydrogen storage system provides 26.6
MWh of stored energy to the REC, or 16% of that which generated by the solar assets. It
makes logical sense, therefore, that on a levelised cost basis, the hydrogen system combined
would be 17% of the sensitivity share of the PV solar opex, which ranks highest in this
analysis.

The battery storage system does not appear above the sensitivity threshold, likely
because at just 4 MWh storage provided per year, changes in battery capex and opex may

not be a high financial risk to the overall renewable energy community proposition.
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Figure 4.24: Most sensitive variables contributing to the system emissions intensity derived
via SOBOL method

Figure 4.24 above shows a ranking of the most sensitive parameters to the resulting
embedded and grid emissions intensity of the optimal system. Compared to the levelised
cost result, the implications for increased emissions risk are far clearer. PV solar embedded
carbon contributes the overwhelming majority of sensitivity to the result. When looking at
the embedded carbon assumptions, the findings here make logical sense. Every kW rated
capacity of PV solar, including the panels and balance of plant (BOP) equates to 1,826 kg

of carbon dioxide equivalent. This assumption from literature is far higher than that of
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a kW capacity of wind power, with 520 kg of carbon embedded during manufacture and
distribution to installation site.

When accounting for the modelled load factors, PV solar is comparable to the emissions
intensity carbon of the hydrogen ESS, at 35.2 and 33.3 gCO2e/kWh, respectively. The
difference here is that, as discussed in the cost sensitivity, the high dependency on solar for
the bulk of the REC operation generates a higher sensitivity to the result. By contrast,
wind generation sees a far lower emissions intensity at just 15.2 gCOge/kWh.

The Sobol sensitivity analysis highlights that there a several key risk factors to consider
in specifying the RES design beyond seeking the optimal cost and environmental behaviour.
Certain design parameters and variables are going to have a higher impact on the uncertainty
on the system performance. Keeping track of project risks whilst aiming for the optimal
trade off relationship between cost and decarbonisation could be hugely valuable in ensuring

a viable energy transition for rural and remote communities such as the one on Formentera.
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Discussion

5.1 Research Context and Objectives

The overarching objective laid out in this study was to design, model and optimise a
Renewable Energy Community (REC) for the benefit of remote and islanded locations.

Rural and geographically islanded communities face a number of energy related
challenges, including energy security, higher average costs, and reliance on back-up
fossil-based generation. These problems will likely compound over time as the energy
transition continues in Europe towards net-zero, the risk of higher intermittency and energy
security concerns mentioned will begin to compound. There is a risk, therefore, of these
communities being left behind in the transition, being far from urban and industrial cores
with better access to clean energy resources.

RECs, being an extension of the Virtual Power Plant (VPP) definition, offer an ability
to minimise the transition risks that could impact rural living standards and maximise
the benefits of clean energy resources for community members. However, existing research
shows that their reach can be limited, driven by uncertain financial performance and
limited policy support within the wider energy market frameworks that exist, leading to
a significant societal nervousness around the proposed decentralised energy approach. A
better understanding of these factors, as well as the design and optimisation of RECs could
benefit hugely from comprehensive modelling and analysis.

A number of previous studies have explored renewable energy assets and their integration
into energy communities. Managing the decentralised trading logic through Peer-to-Peer
(P2P) contracts is also a major area of research, and is playing a key role in the commercial
uptake of these systems.

Gaps remain, however, in the understanding of the performance of these systems. In
particular, gauging the trade-off relationship between cost and decarbonisation, particularly
under real world constraints and policy limitations. Furthermore, little research has been

conducted into the performance uncertainty in these renewable assets and control systems,
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and by extension the sensitivity of asset variation and influence on the REC system.

The results of this study show that, for cost reduction and decarbonisation of the
energy supply, there is a benefit to introducing the conceptual REC design developed here
to the case study location of Formentera, Spain. The outcome presented is in agreement
with a number of supporting research pieces, that suggest RECs are a positive approach
to engaging local citizens in decarbonisation activities while providing real cost benefit.
Additionally, the results demonstrate a clear trade-off relationship between cost and
decarbonisation; an area of study which has been explored very narrowly so far within the
literature. The study also found that by hybridising the storage system by combining both
electrochemical batteries and a regenerative hydrogen storage system, there is an overall
net benefit for both cost and emissions reduction.

The policy definition laid out in the European RED-III documentation defines the
concept of a renewable energy community, but the means of investment and payment
distribution are more vague. This study considers both a cooperative approach to investment
and returns, as well as a simple local energy market with a competitive element. The
results show that a cooperative approach to financing and investment provides greater
returns community-wide, a statement that further reinforces the findings from successful
energy communities from the literature.

The use of Monte Carlo simulations and Sobol sensitivity analysis reveal two key
outcomes. The first is that there is measurable uncertainty and the potential for error to
propagate through the system, which if the system was to be deployed, should be managed
appropriately. The second being that specific design parameters and asset variation can
significantly impact overall performance, highlighting the need for robust planning and
tighter controls on particular design decisions.

This work also innovates on existing REC models from the literature, including those
presented by Kang et al. [112] and Fleischhacker et al. [195]. The former presents
a comprehensive optimisation model, but only considers the cost element of the REC,
without potential impact on emissions reductions. The multi-objective model in this
work, considering both cost and emissions, opens up the potential for carbon-based policy
support, such as carbon Contracts for Difference (CFDs) and other pricing structures. Both
examples also do not consider the uncertainty in the results and sensitivity to particular
input parameters, closing off further potential for specific analysis and contribution to future
support structures. Other works also often use proprietary software, such as HOMER, or
MATLAB, which do not allow for the open-source scalability of Python-based development.

Table 5.1 below lists the research questions defined at the start of this work, how the

research problem was addressed, and the key outcomes and novelty of the result.

From the answers to the research questions presented, the following novel contributions to

the field are as follows:
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Table 5.1: Thesis research questions with how each objective has been addressed and the
key outcomes

Research Question Approach to Addressing Key Outcomes

Summary

REC deployment for Literature and policy review; Design principles and deployment

rural islands contextual analysis using barriers identified; tailored
Formentera case study guidance for remote energy

transitions

Modelling REC Development of a multi-domain Validated, generalised model

dynamics energy system model with real of REC operation under local
data inputs (demand, weather, conditions
emissions)

Design exploration and Multi-objective optimisation Quantified trade-offs between

optimisation using NSGA-II; comparison of cost and emissions; optimal
Pareto-optimal designs system configurations proposed

Hybrid storage benefits Scenario modelling of Hybrid storage shown to enhance
battery-only, hydrogen-only, flexibility and reduce unmet
and hybrid configurations demand and costs

Assess uncertainty Ran Monte Carlo simulations and  Identified key design risks and

propagation and Sobol sensitivity analysis sensitive parameters to guide

sensitivity future planning and support

potential policy development.

1. The modelling and optimisation of an REC design specifically for remote islanded
communities, including the hybridisation of battery and hydrogen storage under a

multiobjective framework.

2. The representation and comparison of two different decentralised energy trading

mechanisms (cooperative and competitive trade).

3. The incorporation of uncertainty analysis through both Monte Carlo simulations and

Sobol method to evaluate robustness of results, a key gap in current REC study.

Given the overall findings presented, the following sections will provide a detailed view
at the each key insight, starting with the modelling results and validation, cost-to-emissions

trade-off characteristics, asset sizing and hybrid storage configurations.

5.2 Multi-Objective Design Results

One of the most significant results presented in this work is the prevalence of the trade-off
relationship between energy cost reductions and decarbonisation potential of the renewable
energy community. The clear dichotomy has been the subject of several research pieces in
the context of energy systems and microgrids, in which the objective is to achieve both a
cost savings and reductions in carbon emissions.

To provide the lowest cost, similar studies employing either Mixed Integer Linear

Programming (MILP) and hourly simulations with the NSGA-II procedure as adopted in
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this work have demonstrated a tendency towards reliance on diesel generation or other fossil
options, including those presented by Zhu et al. [196] and Araoye et al. [197]. Reduction
in emissions intensity alone is seldom considered a single objective function, as it can often
result in overcapacity of renewable energy and storage asset capacities, leading to infeasibly
large investment requirements. Results presented by Park et al. [198] and Schram et al.
[199] are the closest comparison to a multi-objective optimisation considering cost and
decarbonisation for an energy community. The difference in both these cases are that they
do not consider the specific case for an islanded community in Europe, and that the specific
definitions of the objective functions are different, which naturally will lead to alternative

research outcomes in comparison to this work.

Pareto Front in Objective Space
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Figure 5.1: Pareto front resulting from the REC system multi-objective optimisation

The Pareto front in Figure 5.1 shows a similar overall trade-off relationship that has been
observed in literature. When the system is small, a saving in both costs and emissions can
be achieved, which occurs when the system savings are less than 155,000€, or to the left of
the Pareto front. However, to achieve a higher level of carbon abatement, more investment
has to be put in to oversize the system for events when additional renewable energy
generation and storage are needed. Each component is modelled to consider the life cycle
embedded carbon, which means that it is impossible to achieve zero carbon. Eventually
the optimisation for lowest emissions results in an exponential level of investment, as seen
on the right of the Pareto front.

This result is in line with other similar literary outcomes, including Schram et al. [199],
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who showed that at emissions approaching less than 300 gCOge/kWh the energy cost
begins to climb at a faster rate exceeding 0.05 €/kWh. If the trend was to continue, the
Pareto front would intersect 100 gCO2e/kWh close to 0.12 € /kWh, which would align with
the outcomes of this work at 85 gCO2e/kWh and 0.15 €/kWh towards the top end of the
front. Unlike this work from the literature, this study presented considers a rural location
for the set up, and is not only deploying a battery storage system but is also optimising
the sizing and utilisation of a hybridised regenerative hydrogen storage. The result from
the literature is also considering the wholesale energy market cost, whereas the energy
community created here is assumed to operate solely on the retail side, which can go some
way to explain the difference in costs.

When considering the results for cost optimisation only, there exists a larger body of
research to validate the outcomes of this work. Table 5.2 below summarises a range of
Levelised Cost of Electricity (LCOE) results from literature with similar smart grid and
renewable energy architectures, incorporating hydrogen storage where available. It should
be noted that specific parameters such as renewable energy availability, local technology
costs, and system sizing may induce uncertainty in the resulting total system LCOE. For
example, locations with higher solar potential are naturally able to achieve a lower PV
solar LCOE, and conversely, remote areas with high delivery and installation costs would
experience higher project costs. The resulting average is 0.13 €/kWh, which is in good

agreement with central economic and environmental trade-off case produced in this work.

Table 5.2: Comparison of the levelised cost of electricity results of similar hybrid hydrogen
smart grid systems within the literature.

Reference Smart Assets Location Approx LCOE
grid Scale (€/kWh)
architecture

This work Energy Solar,  wind, Formentera, 100 kW 0.15
community  battery/RHFC  Spain

[190] DC Solar, Sub-saharan 100 kW 0.16
microgrid battery/RHFC  Africa

[200] AC Solar /wind, Morocco 1 MW 0.07
microgrid genset/RHFC

[201] AC Solar/wind, India 1 MW 0.08
microgrid hydrogen

[202] Energy Solar /wind, Ghana 100 kW 0.26
community  battery/RHFC

[131] Energy Solar/wind, Canada IMW 0.08

community  hydrogen

The goal for EU countries outlined in the Renewable Energy Direct (RED) policy
documentation is to achieve an emissions reduction of 45% by 2030 against 1990 levels.

The results here can be seen to align with this aspiration, as if the REC configuration was
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to be constructed, the emissions reduction could be as high as 82% for the community,
propelling them towards the future climate objectives of the region. Results from [199] and
[195] suggest that RECs will eventually be vital to reducing energy costs and emissions for
communities, and that modelling of these systems will assist urban planners and developers
to consider the optimal trade-off arrangement between the two objective functions. The
literature also consistently poses the argument that emissions reductions begin to diminish
exponentially with increasing system scale, adding to the critical nature of such modelling

exercises.

5.3 System Performance and Renewable Asset Sizing

The model was designed and created to optimally size and simulate, at an hourly granularity,
the REC operation and ultimate performance over a one year period. A discounted financial
evaluation is then used to determine the final system savings over the assumed 20-year
lifespan. The model can efficiently size a range of renewable and storage assets for any
scale of energy demand comprised of any number of REC members, and be located any
where in the world. For this study, the location of Formentera was used, due to its unique
set of climate and local energy security challenges, in addition to the varying degrees of
renewable energy potential for wind and solar generation.

Once the Pareto front was derived using the NSGA-II algorithm, the SAW method
found the theoretical optimal trade-off system between cost and carbon reduction. The
results in Table 5.3 shows the central performance expectation between the best net savings

and best net emissions configurations.

Table 5.3: Comparison REC configurations for extreme cases for net savings and
decarbonisation potential compared with the chosen nominal case.

Best net savings  Central optimal Best emissions
savings
REC Delivered 81,000 153,000 160,000
(kWh)
Self-Consumption 51% 95% 99.9%
LCOE (€/kWh) 0.149 0.155 0.180
Net Savings (€) 188,000 180,000 150,000
Simple Savings 10.1% 9.7% 8.3%
IRR 14.1% 11.1% 7.4%
Payback Term 7.7 8.9 11.6
(years)
Emissions 85 68 62
(gCO2e/kWh)

The hourly simulation of the optimal REC system shows how the different assets

contribute to meeting the building demand. PV solar, at 63 kW, provides the majority
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of the renewable power, which is balanced during peak hours by the storage system. PV
solar is the dominant generator due to its lower levelised cost of 0.06 €/kWh, in line with
a recent International Renewable Energy Agency (IRENA) report on renewable costs [203].
Figure 4.9 shows how, during the solar peak hours, the excess energy is used to charge the
battery to 100%, after which it can be discharged intermittently throughout the afternoon
to smooth difference in the demand and generation curve.

Wind generation, at 40 kW, is sized smaller than the solar system, and with a lower
capacity factor produces 42% less power annually at 68 MWh. Despite this, wind generation
still has a key role to play in the REC operation. While the interplay between solar and
battery exists to balance the short-term differences in supply and demand, the longer-term
and seasonal fluctuations are handled by a combination of wind generation and regenerative
hydrogen storage. When looking at Figure 4.7, one observation made was that the capacity
of wind power and fuel cell output scale almost exactly. In the low cost scenario, the
volumes are low, whereas in the low carbon scenario volumes climb to an optimally high
level. It is clear that the additional wind generation is being used to produce hydrogen via
electrolysis, which also grows in capacity with wind, which is then released when available.
The fuel cell size has to scale because unlike the battery, output is limited to the rated size
of the asset.

Research such as that presented in [204] evaluates the impact of co-locating battery
and hydrogen Energy Storage System (ESS). While the result shows an increase in both
cost savings and emissions when the system is hybridised, it does not seem to explain
why this is the case, or how the roles of the storage assets are impacted. It is clear from
this analysis that the hybrid ESS is taking on different roles based on the strengths and
weaknesses of the technologies, with the batteries’ ability to response with a high burst
of power making it perfect for short-term, cost-effective smoothing, whereas regenerative
hydrogen having limited output but greater capacity and lower embedded carbon, is more

suited to seasonal duties.

5.4 Additional Scenarios

In addition to the main optimisation study, two sensitivity scenarios were also tested. The
first of which was to test the performance impact of limiting the storage system to either
battery or hydrogen technology. The main objective of this sensitivity was to confirm, in
accordance with the literature, that the hybridisation approach to storage for decentralised
energy communities would be the best option for optimal performance.

The result of the scenario testing showed a benefit to the hybridisation design route.
In the case of the battery-only scenario, the system embedded carbon doubled from 68
gCO02e/kWh to over 140 gCOze/kWh, illustrating the effect of the higher life cycle emissions
of the technology compared to hydrogen which is at 75.5 gCOge/kWh. The sub-optimal
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seasonal role for batteries also limits the cost-effectiveness. Similarly, a hydrogen only
system is also limited by the increased cost of the fuel cell and electrolyser components
compared with battery. This result is also in line with the conclusions of [204] which
demonstrated a reduction in cost and COqy emissions by 46.2% and 11.3 %, respectively,

when a battery is introduced to the hydrogen storage system.

The second sensitivity was a simplified test of REC trading policy for the test design.
The current policy of RECs is based on the RED II defined, which states that they must be
distinct legal entities, with community members being able to participate voluntarily. The
members can include anyone from individual households to local authorities and subject
matter experts. The case study here considers the inclusion of a primary school, secondary
school, community centre, council offices, and 3 residential buildings, representing a mixture
of private entities and local government. The goal must be to maximise the environmental,

social and economic welfare of those entities.

The policy does not, however, explicitly impose a financial structure to the REC, and
how investments will be renumerated among members. The two main options are the
cooperative approach where all investments and therefore assets are shared equally among
members, and the other being the creation of a local market where members are in soft
competition for the best energy price. The objective of this sensitivity was to test which

policy configuration would be best for the REC in Formentera.

The results show that for all entities involved, the novel cooperative energy trading
logic would provide the best outcome. Energy costs would be decreased by as much as 17%
compared with the competitive trade, in which members are trying to size their individual

installation such that their energy bids clear the demand margin in each hour.

While competitive energy trading is a widely researched topic among many related
disciplines, such as those explored in [205], less has been dedicated to the direct comparison
of competitive and non-competitive trading arrangements for this application present in
this study. The cooperative trading logic implemented attempts to fairly distribute energy
among the members such that all benefit equally, aligning with other cooperatives trading
arrangements tested in literature. The conclusions of [206] demonstrated the benefits of a

game theory-based coalition of entities provides the best overall system cost.

The topic of energy trading logic is a large and complex undertaking, and there are a
number of limitations and improvements that could be applied to the implementation of the
sensitivity scenario presented. Considering P2P energy trading, such as the investigation
presented in [207] could be vital in ensuring a digital infrastructure for REC members to
communicate and interact with the energy grid. Uncertainties around the financial policies
of RECs allow for much research on this topic, and would certainly be a key contributor to

the financial success of such a system.
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5.5 Uncertainty and Sensitivity Analysis

The robustness of the REC optimal design results was subject to a Monte Carlo analysis as
well as the implementation of the Sobol method to seek out the most sensitive parameters

on the final performance outcome.

The Monte Carlo results concluded that based on the variable assumptions and
uncertainty ranges, a possible deviation of 4% in total system LCOE between the 25th
and 75th percentile values could be expected. This result is within the suitable uncertainty
range of 5%. Similarly, the emissions deviation is considered up to 7% above and below
the central value. This deviation is much larger, and is driven by the range of embedded
carbon outcomes that are assumed from literature. The payback period is expected to by
within 8.7-9.2 years within the 25th and 75th percentile, again giving confidence that the

project would give reasonable returns even in a downside scenario.

Providing confidence of the project success is critical for a relatively novel endeavour
such as implementing an REC. The local entities are far less likely to be able to expose
themselves to financial risk, as many will be small local government entities and households.
The REC therefore needs to prove it can perform as expected under the estimated level of

uncertainty.

The Sobol method results in a number of interesting sensitivity outcomes. When
considering the cost objective, the most sensitive parameters related to the investment
costs of the assets, starting the PV solar as it was the largest total investment required
for the REC, with the opex and capex variables at 37% and 26% of the total normalised
sensitivity to system LCOE. This was then followed by the wind asset’s opex and capex,
which makes logical sense as it is the next largest asset in the system, at 17% and 11%,
respectively. Finally, the regenerative hydrogen system, namely the fuel cell and electrolyser

capexes were the final sensitivities that are within the significant range.

There is limited literature to compare with the uncertainty result applied to RECs,
certainly when considering the hybrid storage solution. Research presented in [208] used
an error propagation approach to assess the impact of parameter variability on system
LCOE. The results showed that while asset investment costs were significant factors of
uncertainty, the approach placed more significance on the external energy price and load
factor variation, uncertainties that were not explicitly considered as part of this work.
Because of this, the results illustrated are potentially wider range of uncertainty compared
to that which as been presented in this work, but here the focus is more on internal design
and asset decisional as opposed to external, uncontrollable forces that might affect the
REC profitability.

This result highlights the need to identify these weak points in the system that could
lead to great financial of environmental uncertainty, with greater care and attention can be

placed on these areas in the planning and design process. The investment costs, maintenance
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requirements, and other high risk variables can have careful controls placed on them, such
that their impact is minimised. This type of analysis could be of huge benefit to rural and
islanded communities, as they may have limited resources to consider all possible elements
of risk in the REC design.

5.6 Synthesis and Broader Implications of RECs

The results presented in this work demonstrated through system modelling that an REC
is a viable solution to solving many of the climate and energy security related problems
of rural and remote communities. Through the integration of multiple renewable assets,
hybrid battery and hydrogen storage, flexible trading options, and a multi-objective design
optimisation, the research laid out in this work outlines the building blocks for future clean
energy systems for islands such as Formentera.

Initiatives such as Sonnen community, NEOMM and Repsol solar have represented
various commercial strategies for maximising the positive impact of decentralised generation
throughout Europe and propel those markets towards net-zero. NEOMM in particular,
represents an approach to cooperative participation that promotes participation in which
community members have successfully transitioned to renewable technology, with less
reliance on the grid, and a measurable reduction in carbon emissions as a result.

The model presented in this work assumes a baseline grid emissions intensity in the first
year of 325 gCOqe/kWh, estimated based on power market data from Spanish operator
REE. The emissions intensity is reduced to 68 gCOge/kWh in the central optimal design
case. Given the annual build load of 165 MWh, this represents an emissions reduction of
42.4 tonnes of CO2 in the first year of operation, equal the annual output of 27 petrol
vehicles (assuming an EU average emissions 105 gCOy/km [209] and 15,000 km driven
per year), or the equivalent emissions stored in one hectare of forest. It also suggests a
potential 79% reduction in emissions. The system also achieved an LCOE of 0.155 € /kWh,
far lower than the assumed average retail grid price of 0.30 €/kWh as of 2024, and a net
lifetime saving of 180,000€.

The results confirm along with leading literature that flexible, co-located storage is
the optimal choice to provide the best annual performance for the system. The combined
battery and hydrogen ESS take on different roles and trade-off each others’ weaknesses
to ensure the best outcome. The battery is best suited to smoothing out short-term,
hourly imbalances in supply and demand, whereas the hydrogen system excels at long-term,
seasonal storage duties, particularly in months with higher excess renewable generation.

The concept of cooperative energy trading between community members has the
possibility to further enhance energy equity within rural locations. There is limited
literature on specific policies used for RECs, this is a research area that will continue to

play a key role in the commercial viability and attractiveness of RECs in the future. Policy
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makers should therefore shape REC regulations based on the shared goals of all members
within the community, and incentivises collective investment in decentralised assets in
addition to private, small-scale generation. The access to digital monitoring and visibility
will also play a key part in the success of these prosumer community clusters, as it will
allow grid operators to plan the network more effectively, and possibly reduce investment

in local grid upgrades where it would no longer be needed.

The flexibility and breadth of potential scenarios that could be tested using the REC
model produced in this work could have implications for a number of stakeholders, the key
groups of which would be the REC developers/owners, the local network operators, and

government policy makers.

The main utility for REC developers is the ability to set up the local community
environment based on real demand assumptions and technology choices, then estimate
the potential cost and emissions savings through various optimal design strategies. The
operator could then choose to trade-off emissions reduction with available investment to
design the best possible REC for the given situation. The sensitivity analysis can also be
used to track higher risk investments and assets that are most likely to impact performance.
The developers can also communicate the benefits of participation to the local community

before installing and testing real equipment.

For local network operators, RECs could significantly improve visibility of decentralised
generation assets, providing them with tools to better plan network maintenance and
upgrades. The virtual monitoring of the different REC assets can be shared with the
operators in real time so that they can make optimal choices relating to electricity delivery
to minimise costs. As discussed in the literature review of barriers for VPPs, this is one of

the biggest challenges facing network operation with increasing intermittent renewables.

For local government and policy makers, the capabilities of the REC model could
have significant implications for future clean, decentralised network planning and support.
The current policy and regulation surrounding RECs is limited but growing in different
European countries as popularity increases. The results of this work point to the potential
for a number of policy recommendations and support mechanisms that could accelerate the
uptake of RECs in remote and rural locations. In addition to the trading arrangements, the
analysis presented in this work shows that the REC system cost is particularly sensitive to
the capital and operational costs of the renewable assets, as well as the discount rate of the
system. A key policy could encourage renewable investment by providing targeted subsidies
for technology that would be used to create an REC, easing the investment risk imposed
by wind and solar requirements. Additionally, the benefits of hybridising batteries with
regenerative suggest the potential for further subsidies for hydrogen generation and storage
technology. As of 2024, hydrogen fuel cell and electrolyser costs remain high after many
years of continued development, presenting another risk to the success of the system. And

finally, while flexible loads were not considered as part of this work, it was clear that the
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ability to satisfy high demand in all parts of the year was the most costly challenge for the
REC, with investment costs increasing exponentially as grid independence tended towards
100%. Therefore, incentives for demand shedding within community members at times
of high demand could considerable reduce overall costs whilst gaining all the emissions
reduction benefits of the REC, which could be achieved through specialised tariff designs
for those with flexible loads. Most of all, funding support for environmental schemes, local
land protection, and supporting local skilled roles in renewable technology maintenance
should all be considered potential REC policies to remove the barriers to implementation

for rural members.

Institutional shifts in the way that decentralised renewables are perceived and managed
would, by necessity, need to change in order for the uptake of energy communities to
accelerate in future. Community-based governing structures establishing cooperative energy
sharing models would provide the overall steer. These non-profit governing bodies would
manage public engagement, such as town hall meetings and marketing through local
media, as well as memberships and voting rights. They would also need to offer a fully
transparent financial management process and reinvestment decision-making process. In
Furope, interpretation of the REC definition from the RED-II documentation is growing,
but more needs to be done to accelerate the regulatory frameworks and legal recognition of
such systems. Operators should also simplify the process of grid connection and installation
of new renewable assets. Utility company should also allow for collective self-consumption,
and in return can be provided visibility on the generation and consumption activities to
manage the local grid more effectively. Finally, funding and grant platforms should be set
up to allow early-stage development of RECs, moving into loan arrangements for more
mature community frameworks. A significant issue identified is access to technical skills
needed to operate and maintain the assets. Therefore, setting up funds for local citizens to
retrain and work towards qualifications in renewable systems engineering would also be
beneficial. This will also tie the local community closer to the ownership and daily running

of the new assets, fostering a sense of independence.

This view is supported by research presented by Taffuri et al. [210], who outline the
importance of visibility, transparency and local education surrounding RECs such that
the potential members understand the benefits and minimise worries regarding costs and
energy security. As detailed by Slee [211], energy communities in Scotland are eligible to
receive up to 100% in grant funding towards community-led renewable projects. A common
issue raised in the literature is the risk of over-commercialisation of the system, where
larger corporate entities may be able to own and sell REC services at a premium to those
willing to pay. While this socio-political characteristic will always play a role in the energy
industry, minimising the involvement of private investment and ensuring community-owned

energy is incentivised will preserve the benefits and cost reductions found in this study.

If the governing frameworks and regulation surrounding RECs is successful, an ever-present
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issue is the public perception of renewables in rural and aesthetic areas. In addition to
transparent governing and community engagement, framing the REC around shared
ownership and explaining both the risks and benefits will help to provide clarity to those
with fears that the new technology may impact the economy and identity of the area.
Community involvement, and in particular providing training and qualifications to local
people so that they are able to manage the system will support the sense of maintained
community and natural incorporation of the REC into the heart of rural identity.

In summary, the work presented here provides a novel contribution to the research
field of REC through a model capable of providing the cost and environmentally optimal
REC system design for remote and rural locations. The additional scenario explored and
uncertainty analysis support the case for further research into community engagement
models and targeted support to facilitate the growth in this promising field of energy and
resources. The modelling framework is completely modular and can be easily adapted to
other locations, allowing for numerous combinations of building loads, community member
types, and renewable assets to be tested, unlocking a host of potential policy support
programs and ultimately could assist those considering investing in a community-owned
energy system. To make it more accessible to non-technical stakeholders, a simple user
interface could be developed, allowing users to input their location, load and generation
parameters, and allow the model to optimise for their individual REC case. The model
does not use any proprietary software, and was instead developed in Python such that
it can remain open-source and available to potential use and further development in the

future.
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Conclusions

6.1 Main Conclusions of this Study

This thesis lays out the application of modelling and optimisation of decentralised renewable
energy systems for rural and islanded communities. The market for decentralised renewables
has continued to increase in recently years as the impacts of climate, particularly on remote
citizens, begins to become a reality for many in Furope and the wider globe. Europe’s
policies to achieve its ambitious climate objective of a 65% reduction in emissions by 2030
are, while supportive of urban areas and connected communities, at risk of leaving rural
communities and islanded locations behind in the transition. This hypothesis is due in part
to lower investment, infrastructure visibility, and higher energy costs compared with larger
population centres. This discussion comes at an interesting time for Europe as policymakers
work to facilitate the potential benefits of aggregating decentralised renewables, one such
method being the REC. The steady cost reduction in PV solar and wind power as seen
over the past years has also accelerated growth in the decentralised energy sector. The
rise of cost-effective battery storage and hydrogen technology is set to make considerable

impact on how energy is stored and transported as a vector.

The main objective for this work was to investigate the economic and environmental
performance of a Renewable Energy Community (REC) for the case study location of
the island of Formentera, Spain. With a low population and economy heavily reliant on
tourism, Formentera presents an archetypal community that may struggle in future to
decarbonise its economic activities and support local people. Critical obstacles to the
implementation of Virtual Power Plants (VPPs) were evaluated from the literature, leading
to the choice to focus on research and analysis of RECs to solve the novel problem laid out.

The case study system was defined based on data collected of the local climate
and building loads that would take part in the REC. The renewable assets consisted
of distributed photovoltaic (PV) solar, small-scale wind turbines, and a hybridised battery

and hydrogen storage system. The results from this study show that there is an inherent
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trade-off relationship between cost reduction and ability to decarbonise the energy system.
By using a model built in Python, several different economic and environmental scenarios
can be assessed. The implementation of a multi-objective algorithm gives potential system
designers and policymakers a range of possible solutions. In this case, the optimal design
results in a Levelised Cost of Electricity (LCOE) of 0.16 €/kWh, a project Internal Rate
of Return (IRR) of 11.1% and a return period of 8.9 years. Greenhouse gas emissions were
reduced by 79% in the first year of installation to 68 gCOge/kWh. Analysis of similar
models from the literature are in agreement with these results, which in the case of LCOE
varies from 0.08-0.26 €/kWh between different energy community and microgrid projects.

The uncertainty and sensitivity analysis revealed that there is measurable investment
risk involved with the adoption of the optimal REC design, though these risks can be
kept to a minimum by closely tracking the most sensitive design and decision variables,
including the solar and wind capital and operational costs.

Additional scenarios tested point to significant advantages of a co-located battery and
hydrogen storage system, as the combined technologies are able to compensate for each
other’s weaknesses, producing a 19% and 5% improvement in both emissions intensity and
net savings of the system, respectively, compared to a hydrogen-only alternative.

The policy environment for decentralised renewable is constantly evolving. The abilities
of the novel REC modelling framework could be used by policy makers to guide targeted
incentives for deployment and protect participant from the most significant investment and
operational risks. Crucially, the modelling presented in this thesis provides a quantitative
guide for potential developers, government entities, and network operators on how to
trade-off system cost with positive climate impact to produce the optimal REC system for
a given rural and remote scenario for the benefit of the local people.

The results of this work are already being applied in a commercial setting. The core
model, named the ’Smart Planning Tool’, is currently being tested as part of a wider energy
system modelling and optimisation software package to help key stakeholders understanding

the benefits of localised clean energy deployment.

6.2 Recommendations for Further Work

While the flexibility and adaptability of the modelling framework has been explored in
detail, there are some limitations and topics for further investigation in this field.

The operational relationship between demand requirement, generation and storage are
relatively fixed in the model presented, in that the demand is not able to flex in to reduce
system stress. There has been considerable research into flexible loads as a vehicle to
reduce peak demand and system costs. Therefore, its implementation into a REC system
could be hugely beneficial.

The approach and modelling parameters used are novel in their design, such that there
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is little research and data to directly validate performance. Ideally, a system designed
using this modelling framework would be deployed and tested in the field. Accompanying
laboratory validation may also be used to guide the parameterisation of the renewable
assets further, and could improve the accuracy of the result. Particularly in the case of
the storage systems, the models were simplified to trade-off computational complexity and
ensure the program remains usable. Validating the storage performance, reliability, and
interactions with generation should be prioritised in future work. Particularly in the case
of hydrogen which gained significant traction in the past years, but as of 2024 is facing
significant investment and project hurdles in Europe. As part of this work, plans were
made to validate the model performance against a real world deployment of the REC
system. While a complete validation was not achievable in this study, reference materials
regarding the set up and function of the REC field test system is included in Appendix
Al

Lastly, this thesis evaluated simple implementations of energy trading policy to assess
the impact of cooperative and competitive trading regimes. Future research should build
on this further, perhaps through the implementation of a live Peer-to-Peer (P2P) trading
logic to better analyse the benefits to individual community members. Additional to the
trading policy, the model could also be improved by varying the grid parameters with time,
such as the retail power price and grid emissions intensity, and how these might evolve in
future. Different policy support mechanisms including feed-in-tariffs and investment grants
could then be dynamically tested depending on the expected emissions reductions achieved
and size of community served over a given period, and other qualification criteria, tying
the analysis in with potential government support mechanisms for such an REC system.

From a model development perspective, creating the modularity to allow for flexible
load testing and optimisation would be a high priority. Following on from this would be
the integration of exogenous price signals for other local market services, such as local
grid balancing, allowing for more value to be extracted from the REC. Finally, additional
modularity to test other energy trading regimes, as these are vital to the socio-economic
performance and energy equity of the system.

Further robust assessment of the external factors challenging and supporting a specific
REC deployment opportunity could improve knowledge precision regarding the input
assumptions. Rigorous analysis of the benefits of such system for remote and rural
locations will ensure buy-in support from all related stakeholders, and most importantly,

clean renewable energy for the future.
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Appendix A

Supplementary Analysis

A.1 Solution Deployment and Test

Another aim of this work that has not been stated in detail was to deploy a test REC system
to the island of Formentera to validate the renewable asset performance. A test system
was procured alongside this thesis and was eventually installed within the defined energy
community, however, due to time and cost constraints the validation was not possible.
However, this section briefly described some of the technical aspects of the REC storage
design, highlighting the practical design considerations and challenges.

Due to cost restrictions, the full optimal system could not be realised for the project,
so a smaller but still cost and environmentally effective system was designed using the
modelling framework. The REC consisted of 15kW PV solar installation in two 7.5kW
parallel strings connected to a 15kW three phase inverter. A battery stack made up of three
4.8kWh units equating to 14.4kWh was also chosen, to be combined with the hydrogen
system. The PEM fuel cell was a 4kW air-cooled unit which consumed hydrogen from a
1,000 litre cylindrical pressure vessel where it is stored at 30 bar and generated from the
connected electrolyser. The AEM electroylser stack consisted of three 2.4kW units wired
into the same three phase supply as the PV solar array. The full schematic is shown in
Figure 5.1

The specific energy community policy requirements in Spain, based on Real Decreto
244/2019, dated 5 April and itself based on the RED-II directive, instructs that less than
50,000 citizens and assets less than 2,000 meters apart can be designated as an REC.

Figure A.2a shows the new solar installation on the roof of the community centre
building. This solar array is addition to the existing capacity installed at the small and
large schools as well as the council offices. Figure A.2b includes images of the battery
storage stack connected in series to the 48V DC terminals of the distributor bus at a
recommended discharge current of 75A.

Figure A.3a then shows the main hydrogen storage system cabinet, complete with (1)
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Figure A.1: REC asset schematic for the installation on Formentera

the 4kW PEM fuel cell and (2) the 7.2kW electrolyser stack. In addition to the electrolysers,
there is a water treatment tank to ensure the conductivity of the input water is at an
acceptably low range and remains at a constant input pressure of 1.5-4 bar, and a hydrogen
dryer to ensure a purity of 99.9% H2. The fuel cell is connected to the 48V distributor bus
in parallel to the battery storage, whereas the electrolysers are fed power via the mains
230V AC, producing hydrogen at 35 bar for the pressure vessel, shown in Figure A.3b. All
pressures are carefully monitored and controlled by a series of pressure regulation valves
for each input and output of the hydrogen system.

All systems are monitored and controlled by the central hydrogen management system,
provided by the electrolyser manufacturer, Enapter. There is then an MQTT messaging
system that allows the measured system data to be passed to the energy management
and trading platform to make decisions regarding charge and discharge states to optimise
the virtual flow of energy to the different community members. Much of the electrical
monitoring is also handled by the three-phase inverter system and 48V lynx DC bus, which
are shown in Figure A.4.

Due to project time constraints a direct performance validation was not able to be
performed, but the output of the system can be measured and seen as operating effectively

on the island. Figure A.5 illustrates the operation of the system for a portion of the month
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(a) New 15kW rooftop solar installation on (b) Battery cabinet housing the 14.4kWh stack
the Community Centre

Figure A.2: Solar and battery installations for the REC in Formentera

of July 2024. It can be seen that the storage system is making use of the excess PV solar
generation when available and charging the battery system first, before producing hydrogen
for storage via the electrolyser stack. Like the model simulation, the battery handles hourly
and daily differences between supply and demand, whereas the hydrogen storage fills over
a longer period to be used for long-term balancing.

The result of this deployment shows that even as a smaller, simplified version of the
optimal system modelled in this work, the proposed REC design is able to successfully
operate and provide benefits by reducing dependence on the grid for electricity, therefore

increasing energy security and embedded emissions.
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(a) The hydrogen system cabinet consisting (b) Installation of the 1,000 litre hydrogen
of the [1] the 4kW fuel cell and [2] the 7.2kW pressure vessel.
electrolyser stack.

Figure A.3: The hydrogen system installation showing the cabinet and storage tank.

Figure A.4: The 15kVA three-phase inverter and 48V DC bus to manage the DC power
generation and battery storage for the REC system.
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Figure A.5: Example REC system operation for the month of July 2024.

201



Appendix B

Input data tables

Table B.1: Adopted building power load profiles for the hourly simulation [normalised]

Hour | Hospital Hotel Office  Residence School Commercdndustry
0 0.19 0.21 0.10 0.17 0.11 0.14 0.37
1 0.19 0.16 0.10 0.15 0.11 0.13 0.37
2 0.18 0.14 0.10 0.13 0.11 0.14 0.36
3 0.28 0.15 0.11 0.17 0.11 0.17 0.37
4 0.33 0.20 0.15 0.27 0.11 0.18 0.36
5 0.54 0.43 0.35 0.38 0.24 0.34 0.35
6 0.77 0.68 0.45 0.46 0.47 0.42 0.30
7 0.87 0.70 0.83 0.43 0.76 0.61 0.30
8 0.94 0.61 1.00 0.38 0.84 0.81 0.85
9 0.98 0.47 0.96 0.31 0.89 0.88 0.91
10 1.00 0.41 0.95 0.31 0.94 0.97 0.98
11 0.97 0.42 0.94 0.33 0.97 1.00 1.00
12 0.98 0.40 0.96 0.35 0.98 0.99 0.91
13 1.00 0.39 0.94 0.35 1.00 0.97 0.92
14 0.99 0.40 0.93 0.39 1.00 0.96 0.99
15 0.99 0.45 0.96 0.58 0.99 0.95 1.00
16 0.98 0.54 0.90 0.80 0.87 0.94 0.35
17 0.72 0.76 0.72 0.96 0.77 0.89 0.35
18 0.60 0.90 0.64 0.99 0.76 0.83 0.35
19 0.46 1.00 0.55 1.00 0.72 0.74 0.37
20 0.37 0.98 0.48 0.86 0.29 0.53 0.36
21 0.27 0.79 0.23 0.62 0.11 0.22 0.38
22 0.22 0.50 0.12 0.40 0.11 0.20 0.37
23 0.20 0.30 0.10 0.23 0.11 0.20 0.38
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Table B.2: Wind turbine performance profiles by IEC classification

Speed (m/s) IEC_1 IEC_2 IEC_3 off _shore
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0.0043 0.0052 0.0054 0
4 0.0323 0.0432 0.053 0.0281
) 0.0771 0.1031 0.1351 0.074
6 0.1426 0.1909 0.2508 0.1373
7 0.2329 0.3127 0.4033 0.2266
8 0.3528 0.4731 0.5952 0.3443
9 0.5024 0.6693 0.7849 0.4908
10 0.6732 0.8554 0.9178 0.6623
11 0.8287 0.9641 0.9796 0.815
12 0.9264 0.9942 1 0.9179
13 0.9774 0.9994 1 0.9798
14 0.9946 1 1 1
15 0.999 1 1 1
16 0.9999 1 1 1
17 1 1 1 1
18 1 1 1 1
19 1 1 1 1
20 1 1 1 1
21 1 1 1 1
22 1 1 1 1
23 1 1 0 1
24 1 1 0 1
25 1 1 0 1
26 0 0 0 0
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Sample Model Code

This appendix section contains some of the model code that is referenced in the methodology

section.

C.1 Energy System Model Classes

class energySystem:
" parent to all model classes (base that can have more global variables
— added)
Args:
name
win
def __init__(self,name,capacity):
self.initialName = name
self.capacity = capacity
self.unit = "kW"
self .name = self.initialName+" ["+str(round(self.capacity))+"

« "+self.unit+"]"

def updateName (self):
self .name = self.initialName+" ["+str(round(self.capacity))+"

< "+self.unit+"]"

class pvSolar(energySystem) :
" Create a PV solar array class (either solar or wind asset s REQUIRED)

Args:
capacity (ki)
panel (W)
panel_a (m2) Defaults to 2.
tilt: panels tilt angle from horizontal (°) Defaults to 35.
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nmnn

def

derate: power derate factor (7/yr) Defaults to 0.004.

alpha: thermal coefficient (J/°C) Defaults to -0.003.

noct: Nominal Operating Cell Temperature (°C) Defaults to 2.
lifetime: system lifetime (years) Defaults to 20.

capex: capital cost (€/kW) Defaults to 1500.

opex: operational cost (€/kW/year) Defaults to 18.

emissions: emissions intensity (gCO2e/kWh) Defaults to 43.

lat: latitude of installation (°) Defaults to location latitude

__init__(self, name, capacity, panelPowerW,

panelAream2=2,tiltAngle=False,powerDerate=0.004,thermalCoefficient=-0.0022,

nmnn

All

—

NOCT=50,1lifetimeYears=20, capexEUR=2500, opexEURkW=30, emissionsgC02ekWh=43, embedded=1826) :

super() .__init__(name,capacity)

self.energykWh = np.zeros(8760)
self.capacity = capacity

self.panelPowerW = panelPowerW

self .panelAream? = panelAream2

self.powerDerate = powerDerate

self.thermalCoefficient = thermalCoefficient

self .NOCT = NOCT

self.lifetimeYears = lifetimeYears

self.capexEUR = capexEUR

self.opexEURKW = opexEURkW

self.emissionsgC02ekWh = emissionsgC02ekWh

self.latitude = globalConfig.lat

self.efficiency = self.panelPowerW/(self.panelAream2*1000)

self.embedded = embedded

if tiltAngle == False:
self.tiltAngle = globalConfig.lat
else:
self.tiltAngle

tiltAngle

energy classes contain methods to calculate performance measurements,

these include:

- efficiency (%)

- direct irradiance (W)

- power output (given specific environmental conditions)
- Levelised Cost of Energy (€/kWh)
- project cashflow

- yearly energy delivery (for stimulation)

nmnn
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def

def

def

def

updateCapacity(self,value):

self.capacity = np.around(value,?2)

findEfficiency(self):
return self.panelPowerW/(self.panelAream2*1000)

findPOA(self):
" output the point of incidence of solar irradiance using the solar

— array tilt, latitude, asumuth angle and time of year

Args:

G: irradiance (W/m2)
def d2r(d):

return d*np.pi/180

day =

np.linspace(0,365*1len(globalConfig.irradianceWm?2) /8760,

— len(globalConfig.irradianceWm2))

delta = 23.45%np.sin((360/365) *(284+day))

alpha = 90 - self.latitude + delta

return np.array(globalConfig.irradianceWm2+np.sin(d2r(alpha +
— self.tiltAngle))/np.sin(d2r(alpha)))

findPower(self):
" finds the output power of solar asset, taking into account the
— thermal coefficient (alpha) and the NOCT conditions

Args:
G: global irradiance

T: ambient temperature

Returns:

self.p_vals: array of power output wvalues for the given inputs

nmnn

Gp = self.findPOA()

def load_irr_from_file():

df = pd.read_excel('inputs/Golden_aSiTandem90-31.x1lsx',skiprows=2)
Gp = df ['POA irradiance CMP22 pyranometer (W/m2)'].to_numpy()
return Gp

noctT = 20

noctG = 800
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def

def

stdT = 25
stdG = 1000
tauAlpha = 0.9

e = self.findEfficiency()

num = globalConfig.temperatureC + (self.NOCT - noctT)*(Gp/noctG) *
— (1-((ex(1-self.thermalCoefficient*stdT))/taullpha))

den = 1 + (self.NOCT - noctT)*(Gp/noctG) * ((self.NOCT*e)/tauAlpha)
cell_t = num/den

thermal_impact = 1 + (self.thermalCoefficient)*(cell_t - stdT)
irradiance_ratio = self.capacity*(Gp/stdG)

out = irradiance_ratio * thermal_impact

self.energykWh = out

# out = pd.DataFrame({'Power': self.energykWh, 'Cell temp': cell_t,
— 'Irradiance’': globalConfig.irradianceWm2, 'Temp':

— globalConfig.temperatureC})

# out.to_csv('outputs/PV_model_power.csv')

return self.energykWh

findLCOE(self):

mn finds the Levelised cost of Energy (must run find power first!)

Returns:

LCOE walwue
energy = np.sum(np.abs(self.energykWh))*self.lifetimeYears
self.lcoe = (self.capacity*(self.capexEUR+self.lifetimeYears *
— self.opexEURkW))/(energy)

return self.lcoe

findCashflow(self):
"r-determines the asset cashflow over the system lifetime, taking into
— account CAPEX and annual OPEX

Returns:

cashflow: value for each year as an array
win
cashflow = np.zeros(20)
for index, x in enumerate(cashflow):

cashflow[index] = cashflow[index]-(self.opexEURkW*self.capacity)

if (index % self.lifetimeYears) ==

cashflow[index] = cashflow[index]-(self.capexEUR*self.capacity)

return cashflow
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def

def

def

def

def

def

findYearlyEnergy(self):

""" calculates the yearly energy output for performanc assessment

Returns:

yearly energy generated
self.yearlyOutput = np.sum(self.energykWh[self.energykWh > 0])
return self.yearlyOutput

findEmissions(self):
self .emissionsgC02ekWh = (self.embedded*self.capacity*1000) /
— (self.findYearlyEnergy()*self.lifetimeYears)

return self.emissionsgC02ekWh

findCostPerYear(self):
cf = self.findCashflow()
self.costPerYearEUR = np.sum(cf[0:self.lifetimeYears])/self.lifetimeYears

return self.costPerYearEUR

findCapacityFactor(self):
self.capacityFactor = (self.findYearlyEnergy()/(365*24xself.capacity))

return self.capacityFactor

finalResults(self):

self.results = {
'Name': self.name,
'"Energy-Delivered-kWh': self.findYearlyEnergy(),
'Capacity-Factor': self.findCapacityFactor(),
'Capital-Cost': self.capexEUR*self.capacity,
'Operational-Cost': self.opexEURkW*self.capacity,
'Levelised-Cost': self.findLCOE(),
'Emissions': self.emissionsgC02ekWh

}

return self.results

terminateStep(self):

self.findEmissions ()

class Battery(energySystem) :

" Create a battery energy storage asset class instance. Lithium battery s

—

—

used, but lead acid or other could be similarly implemented if data is

known.
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Args:
name:
capacity:
eff:
soc:
dod:

mazx_cycles:

mazr_age:
capex:
opex:
emtsSsStons:

lifetime:

nmnn

battery asset mame

battery capacity (kWh)

effictency (/) Defaults to 90.

initial state of charge (7)) Defaults to 100.
depth-of-discharge (7) Defaults to 90.

mazimum lifetime cycles Defaults to 5000.
mazimum lifetime age (years) Defaults to 8
capital cost (€/kWh) Defaults to 350.
operational cost (€/kWh/yr) Defaults to 22.
emtsstons intensity (9CO2e/kWh) Defaults to 89.

battery mazimum lifetime (years) Defaults to 8.

def __init__(self, name, capacity, totalEfficiency=95, state0fCharge=100,
— depthOfDischarge=90,

maximumCycles=8000, maximumAge=10, capexEURkwh=328, opexEURkWhYear=22,

— emissionsgC02ekWh=89,
lifetimeYears=10, embedded=254):

super() .

init__(name,capacity)

self.energykWh = np.zeros(8760)

self.capacity = capacity

self.totalEfficiency = totalEfficiency
self.state0fCharge = stateOfCharge
self.depthOfDischarge = depthOfDischarge

self .maximumCycles = maximumCycles

self .maximumAge = maximumAge
self.capexEURkwh = capexEURkwh
self.opexEURkWhYear = opexEURkWhYear
self.emissionsgC02ekWh = emissionsgC02ekWh

self.socValues = np.zeros(8760)

self.socStart = np.zeros(8760)

self.lifetimeYears = lifetimeYears

self.yearlyOutput = O

self .maxOutput = self.capacity
self .kWh = np.zeros(8760)

self.unit

llkwhll

self.embedded = embedded

def updateCapacity(self,value):

self.capacity = np.around(value,2)

def findNextStep(self,value):

""" This method ts used to step forward the model simulation for the

— Llithtum ion battery
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Args:
value: the energy determined to be available to be sent to/from the
— battery (kWh)

Returns:
energy: the actual hourly energy sent to/from the battery (kWh)
kwhRemaining = np.around(self.capacity *
— (self.state0fCharge/100-(1-self.depth0fDischarge/100)) *
— (self.totalEfficiency/100),2)
kwhToFull = np.around(self.capacity*(1-self.state0fCharge/100) /
— (self.totalEfficiency/100),2)
self .kWhSet.append (kwhRemaining)
# Inittal check to make sure storage can operate, if not them no energy
— 15 converted
# Battery Discharge Model
if value > O:
if value >= kwhRemaining:
energy = copy.deepcopy(kwhRemaining)
self.state0fCharge = 100-self.depthOfDischarge
else:
energy = value
self.state0fCharge = self.state0fCharge -
— 100*(energy*(100/self.totalEfficiency)/self.capacity)
# Battery Charge Model
else:
if -value >= kwhToFull:
energy = -copy.deepcopy (kwhToFull)
self.state0OfCharge 100

else:
energy = value
self.state0fCharge = self.state0fCharge +
— 100*(-energy/(100/self.totalEfficiency)/self.capacity)

return energy

def initialStep(self):
"thInitial simulation function (mostly for resetting important
— parameters)
win
# TODO move initial functions from simulation function to here
self.socValues = np.zeros(8760)
self.socStart = np.zeros(8760)
self .kWh = np.zeros(8760)
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def

def

def

def

self.yearlyQutput = 0
self .kWhSet = []

return

terminateStep(self):

" final simulation function (used to perform final processes and
< cleanup)

self .kWh = np.array(self.kWhSet)

self.findEmissions ()

return

findLifespan(self):
""" Defines the lifespan of the battery based on cycle usage and the

— theoretical mazr age

Returns:
self.lifetime: the lifetime of the asset (years)
cycles = np.sum(np.abs(self.energykWh))/(self.capacity)
self.lifetimeYears = round(self.maximumCycles/(cycles+1))
if self.lifetimeYears > self.maximumAge:
self.lifetimeYears = self.maximumAge

return self.lifetimeYears

findLCOE(self):

mnn finds the Levelised cost of Energy (must run find power first!)

Returns:

LCOE wvalue
lifespanYears = self.findLifespan()
num = (self.capexEURkwh*self.capacity +
< (lifespanYears*self.opexEURkWhYear*self.capacity))
den = (up.sum(np.abs(self.energykWh))*lifespanYears)
self.lcoe = num/den

return self.lcoe

findCashflow(self):
" determines the asset cashflow over the system lifetime, taking into
— account CAPEX and annual OPEX

Returns:

cashflow: value for each year as an array
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def

def

def

def

def

nmnn

cashflow = np.zeros(20)
for index, x in enumerate(cashflow):
cashflow[index] = cashflow[index]-(self.opexEURkWhYear*self.capacity)
if (index % self.lifetimeYears) ==
cashflow[index] =
< cashflow[index]-(self.capexEURkwh*self.capacity)

return cashflow

findYearlyEnergy(self):

""" calculates the yearly energy output for performanc assessment

Returns:

yearly energy output
self.yearlyOutput = np.sum(self.energykWh([self.energykWh > 0])
return self.yearlyOutput

findEmissions(self):
self.emissionsgC02ekWh = (self.embedded*self.capacity*1000) /
— ((self.findYearlyEnergy()+0.001)*self.findLifespan())

return self.emissionsgC02ekWh

findCostPerYear(self):
cf = self.findCashflow()
self.costPerYearEUR = np.sum(cf[0:self.lifetimeYears])/self.lifetimeYears

return self.costPerYearEUR

findCapacityFactor(self):
self.capacityFactor = (self.findYearlyEnergy()*2)/(365%24xself.capacity)

return self.capacityFactor

finalResults(self):

self.results = {
'Name': self.name,
'Energy-Delivered-kWh': self.findYearlyEnergy(),
'Capacity-Factor': self.findCapacityFactor(),
'Capital-Cost': self.capexEURkwh*self.capacity,
'Operational-Cost': self.opexEURkWhYear*self.capacity,
'Levelised-Cost': self.findLCOE(),
'Emissions': self.emissionsgC02ekWh

}

return self.results
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C.2 Multi-objective Optimisation Routine

def multiOptimise(sys,pop=100,gens=250,mutation=0.5,crossover=0.75):
sys.totalCost = []

with open(r"optimsys.pkl","wb") as file:

pickle.dump(sys,file)

class myProblem(ElementwiseProblem) :

# initial, upper, lower, idxr = processObjects.initials(system)

def

def

__init__(self, sys, *xkwargs):
super () .__init__(sys,
n_obj = 2,**kwargs)
initial, upper, lower, index = initials(sys)
self.x1 = np.asarray(lower)
self.xu = np.asarray(upper)

self.n_var = index

_evaluate(self, x, out, *args, *xkwargs):
with open(r"optimsys.pkl","rb") as file:
system = pickle.load(file)
idx = 0
for generator in system.generator:
generator.updateCapacity (x[idx])
idx += 1
for storage in system.storage:
if isinstance(storage,energyObjects.Battery) is True:
storage.updateCapacity(x[idx])
idx += 1
else:
storage.fuelCellPowerkW = np.around(x[idx],2)
idx += 1
storage.electrolyserPowerkW = np.around(x[idx],2)

idx += 1

system.simulation()

F1 = system.findSavings()

F2 = system.findGlobalDecarbonisation()
out ["F"] = [F1,F2]

class MyCallback(Callback):

def

__init__(self) -> None:
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super() .__init__()
self.data["best"] = []

problem = myProblem(sys)

algorithm = NSGA2(
pop_size=pop,
sampling=FloatRandomSampling(),
crossover=SBX (prob=crossover, eta=15),
mutation=PM(prob=mutation, eta=20),

eliminate_duplicates=True

termination = get_termination("n_gen", gens)

print ("Running multi-objective optimisation routine..

res = minimize(problem,
algorithm,
termination,
seed=1,
save_history=True,
callback=MyCallback(),

verbose=True)

return res

‘n)
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