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1 Introduction

Explosion protection systems designed and installed on industrial processing plants offer

protection against the prevailing and the envisioned explosion hazards. For any explosion

protection system installation, there is a non-zero probability that the system will fail to

mitigate an explosion. We will refer to this probability as the residual risk. The purpose

of this paper is to quantify this risk of explosion protection system failure in a tractable

manner. While the underlying science behind flame propagation and explosion mitigation

means is well understood, and extensively studied (Bartknecht (1993), Eckhoff (2003), Siwek

and Cesana (2001), Moore and Spring (2004)), the computation of risk of explosion protec-

tion failure for the process plant as a whole is a non-trivial problem and has received far

less attention. Owners/operators, who carry the ultimate responsibility, are making a key

decision on the acceptability of a specific safety system configuration - often without a clear

methodology to quantify or ascribe residual risk which it entails. We set out a systematic

methodology for quantifying the residual risk for installed explosion mitigation provisions

in process systems, and demonstrate how this can help in making decisions about balancing

safety requirements and cost-effectiveness.

A directed graph representation (see, e.g. West (2001), chapter 1) is used to represent the

process plant and the intended or installed explosion safety system as a whole, comprising a

set of vertices linked by directed edges. Each vertex represents a process vessel (e.g. a drier

or a cyclone) and is characterised by a set of connectivity and probability parameters. This

conceptual architecture allows the cumulative probability of failure to be computed by a

simple algebraic model. The computational model and the processing algorithm explicitly

accounts for both the principal mechanisms of failure; viz. a complete failure of the safety

system (e.g. due to a critical hardware failure) and a failure due to inadequate protection

(e.g. due to the reduced explosion pressure of a suppressed or vented explosion occurrence

still being greater than the pressure shock resistance of the vessel). This paper demonstrates

the computation of residual risk using this methodology for a typical example of a process

plant where explosible dust represents the principal explosion hazard (see Barton (2002) for

a detailed analysis of this hazard). The selected example illustrates some of the prevalent

protection issues in a simple spray drying process. The explosion protection options of explo-

sion venting, explosion suppression and explosion isolation (using either triggered chemical

barriers or triggered mechanical barriers) are considered.We demonstrate how a change in

the protection system design affects the residual risk of an unmitigated explosion, thereby

providing a clear and quantifiable trade-off between the achieved level of protection and cost.
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This methodology will also assist operators in meeting their obligations under the European

Regulations (ATEX (2005)) to assess and ascribe the residual risk of unmitigated explosions.

In the authors’ view, the proposed model is also a convincing example of collaboration be-

tween process industry practitioners and academic researchers working in operations research

to solve a challenging industrial problem.

Recently, development of a very useful calculation tool for quantitative risk assessment was

reported in van der Voort et al (2007). The focus of this reference is on computing risk

contours using knowledge of the flame propagation and the consequence of a dust explosion.

In contrast to this work, the focus of our methodology is to provide a simple and effective

means for cost/benefit analysis in choosing a explosion safety system for a given plant.

The rest of the paper is organised as follows. The next section provides a short, non-technical

tutorial on explosion protection systems. In section 3, a directed graph based representation

of such installations is presented. Section 4 provides the main contribution of this paper

where a new, systematic method to compute residual risk in an explosion protection system is

presented. This method is illustrated through a comprehensive example in section 5. Finally,

section 6 summarises the contribution and outlines the direction of present research.

2 Explosion Protection Installations: A Primer

We first outline the basic issues involved in explosion protection installations. For the sake of

completeness, the generic components and their functions are reviewed briefly. This section

also establishes some of the notation which will be used in the subsequent sections.

• A process plant typically comprises a series of interconnected vessels in which different

operations such as drying, grinding, filtering or mixing are carried out. Each vessel has its

own pressure shock resistance, which we denote by P s . This is a pressure that the vessel

can withstand without physical deformation. Many processes involve potential sources

of ignition (e.g. mechanical friction in a grinder) as well as potential fuels to cause an

explosion (e.g. any dispersed and combustible dust). In the event of an ignition, the flame

propagates from the ignition kernel causing the pressure inside a vessel to rise beyond P s ,

leading to a considerable damage to the plant and a possible risk to human life. To avoid

this scenario, explosion protection systems are installed in process plants.

• Depending on the requirements, either explosion suppression or explosion venting means

(or both) are installed on each vessel deemed to be at risk. Explosion suppression rapidly
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deploys appropriate flame suppressant to quench the propagating flame front while explo-

sion vent panels installed onto vessel walls rupture to mitigate the rising pressure within

the plant item. Explosion venting is a passive mitigation means since the vent panels yield

at a prescribed pressure. Both the protection methodologies aim at reducing the explo-

sive pressure increase to a value below P s . In either case, it is possible to calculate the

expected reduced pressure after mitigation for a given protection system. We denote this

reduced pressure by Pred . Note that a different number of suppressors or different types

of suppressors will yield different Pred for the same vessel. The same comment applies

for the number and the types of vent panels. For a successful explosion mitigation in any

vessel, the inequality Pred < P s must hold. The parameters Pred and P s are discussed

in more detail in section 4.2.

• For explosion suppression, an explosion event is typically detected by pressure detectors,

which detect a rise (or the rate of rise) in pressure. The detector sends this signal to

a control panel which then deploys the suppressors. A control panel may be common to

several vessels which together form a protection zone. In case of explosion isolation between

connected vessels, optical flame detection is also used on the mouth of the connecting duct.

• Following a mitigated explosion event in one vessel, flame often propagates along adjoining

duct-work causing further explosions in connected vessels. An explosion due to a prop-

agated flame may be more intense than the explosion due to a direct ignition, due to

increased turbulence and a jet flame ignition; see Holbrow et al (1999) for guidance on

containment and venting of explosions due to flame propagation. The installed protection

system on each vessel should account for the possibility of explosion by flame propagation.

The ducts where there is a risk of flame propagation may have an explosion isolation bar-

rier installed which may either be a transient chemical barrier (i.e. a suppressor) or a fast

acting valve both of which reduce the likelihood of flame passage. This barrier is deployed

in the case of an explosion in the upstream or downstream vessels by the corresponding

control panel.

• In case of a chemical or a mechanical barrier as above, the time for the barrier to be

established and the time for the flame to reach the barrier can be computed (subject to

suitable assumptions). We denote these two times by tb and tf respectively. For a successful

explosion isolation, the inequality tb < tf must hold, i.e. the barrier is established before

the arrival of the flame front. The parameters tb and tf are discussed in more detail in

section 4.2.
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Fig. 1. Spray drier explosion protection installation
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3 Directed Graph Representation

In our formulation, the industrial process plants under study are represented by a fully

connected, directed graph and each vessel in the system is represented as a vertex. The

edges between the vertices represent paths of possible flame propagation (e.g. duct-work

between different vessels) in case of an ignition. Between any pair of adjacent vertices, there

are two directed edges in opposite directions. Each edge is associated with a weight which

represents the probability of flame propagating down the duct in question. The upstream and

downstream flame propagation probabilities are typically different due to the bulk movement

of the material. To represent this, we impose a restriction that any pair of adjacent vertices

(u, v) have two edges between them, one where u is a tail and another where u is a head.

This simple representation is best explained through an example. Figure 1 shows a spray

drying process. A wet dairy product is spray dried, and then passes through two fluid bed

driers that further reduce the moisture content of the final product. Dust content in the

drying air is separated by a ganged pair of cyclones, and returned through a fines return line

to the spray drier. Spray drier designs that use a fines return loop are known to be more

susceptible to dust explosion incidents because of the higher level of connectivity between

the fluid bed driers and the spray drier. In this example, explosion protection is achieved

by appropriate explosion relief vent panels installed on the cyclones, and by a three-zone

explosion suppression system. Protection zones will be explained in more detail in section 5.

Figure 2 shows the corresponding directed graph representation for this process. We can use
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Fig. 2. Directed graph representation for spray drier system
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vertices and vessels interchangeably; keeping in mind that one is an abstract representation

of the other. Table 1 lists all the vertices for reference.

It is worth mentioning that this is not a simple graph (see West (2001) for a definition)

since it will always have multiple edges. This restricts the applicability of standard tools of

representing graphs and performing operations such as enumeration. However, the graphs

of real process plants rarely have more that 8 vertices, so that the computation of joint

probabilities is not too taxing.

4 A Model for computation of residual risk

4.1 Assumptions

We first introduce the assumptions and the notation, which are used to specify the resid-

ual risk model. The assumptions are based on experience of professionals in the explosion

protection industry regarding what needs to be taken into account in modelling the residual

risk.

• We use the probability of an unmitigated explosion in any one of the vessels in the process

in a given unit of time as a proxy for residual risk. The unit of time may be consistent

with the maintenance schedule, although any other time duration may be postulated for
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comparing different safety configurations.

• In any vessel, an ignition may occur at any location with equal probability.

• An unmitigated explosion in any vessel or at any vertex is considered as a failure. We do

not account for differing severity of failure in different vessels. In reality, failure of some

vessels may merely lead to inconvenience rather than a catastrophe. However, treating

all failures as equally catastrophic still yields valuable information in comparing different

choices of safety system configurations.

• Given an ignition event at a vertex, only the probabilities of an unmitigated explosion

at the same vertex or adjacent vertices are considered in the computation of risk. This

assumption is made mainly for simplicity of exposition and can easily be relaxed in practice.

• We assume that there is only one type of detector and at most two different types of

suppressors on any vessel. This is a fairly realistic assumption from a practical point of

view. Note that the number of suppressors or detectors are not restricted. A given vessel

can have any number of suppressors (resp. detectors) but they can be of at most two

different types (resp. of the same type). Given an ignition, an unmitigated explosion is

assumed to occur when any one detector or any one suppressor fails.

• We also assume that there are at most two different types of vent panels on any vessel.

• In practice, there may be multiple flame paths between two vessels. We will consider these

paths to be independent and compute the total probability of flame propagation over all

paths in such cases. In the example of section 5, we have shown the individual probabilities

along each path for completeness; please see table 5 in the Appendix.

• Pred , P s , tb , tf and the fundamental flame propagation probabilities Qs
f (defined in the

next section) are assumed to be known and are assumed to be stationary through time.

4.2 Definition of model parameters

In the model for computation of risk based on a graph representation, each vertex i of the

system is characterised by a set of parameters described in this section.

(1) QE(i) is the probability of an occurrence of an ignition event in any vessel i , which,

if not effectively suppressed or vented, will result in an unmitigated explosion. For a

given process plant and over a given period of time, we assume that
∑

i QE(i) = 1, i.e.

we compute the probability of an unmitigated explosion given an ignition in one of the

vessels.

(2) k1(i) and k2(i) are the number of vent panels of type 1 and type 2 respectively, mounted

on vessel i. Default values of k1(i) and k2(i) are 0. If there is only one type of vent panel,
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then k1(i) denotes the number of vent panels and k2(i) = 0. Vent panels of different

types will have different mean time between failures (MTBFs) and different properties

with regards to achieved Pred .

(3) k3(i) is the number of detectors on a vessel i. There are two main ways of detecting an

ignition. Pressure detectors detect the change in pressure after sufficient combustion has

occurred, while flame detectors respond to incidents when the ignition location is close

to the detector. The speed of response of a pressure detector is almost independent of

ignition location, and a single detector can suffice for even large vessels. Note however

that a single flame detector placed far from the point of ignition may end up detecting

the ignition too late and fail to deploy explosion isolation measures in time to prevent

explosion propagation upstream/downstream. Multiple flame detectors can be placed

to cover the entire volume of larger vessels - often resulting in faster detection than with

pressure detection.

(4) k4(i) and k5(i) and are the number of suppressors of type 1 and type 2 respectively,

mounted on vessel i. Default values of k4(i) and k5(i) are 0. If there is only one type of

suppressor, then k4(i) denotes the number of suppressors and k5(i) = 0. As mentioned

in the previous section, there are many types of suppressors. It is realistic to assume

that there are at most two types of suppressors on any particular vessel.

(5) Assuming the time between failures to be a Poisson distributed random variable (see,

e.g. Grimmett and Stirzaker (2001), section 6.8), The probability of failure of a partic-

ular component j on vessel i in one random year is given by

πj(i) = 1− e−λj(i). (1)

For each vessel, parameters λj (which are reciprocals of the corresponding MTBFs) are

defined for vents of at most two different types (j = 1, 2), detectors of a single type

(j = 3) and suppressors of at most two different types (j = 4, 5). These parameters and

the values used in our spray drier example are tabulated in table 2. The MTBFs shown

in the table are not meant to be accurate or even pertinent for the specific hardware, but

are deemed to be representative for our purpose. For simplicity, we assume that πj(i)

for a given j is the same for all the vertices i in the graph, although different vessels

may have protection components of different makes (and hence different MTBFs) in

reality.

(6) In addition, different vessels are grouped together into zones (or equivalently, different

vertices are grouped together into sub-graphs). Each zone has a single control panel

with a specified MTBF (λ6(j) for a zone j). All the suppressors in a zone are deployed

simultaneously with any detection in the zone. Grouping protection systems into zones
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reduces the consequence of flame transfer between vessels in the same zone.

(7) A fast acting valve may be installed between two vessels i, k to reduce the possibility

of flame passage. Its MTBF is represented by λ7(i, k), with π7(i, k) computed as in (1).

(8) If there is a suppressor installed on a pipe connecting two vessels i and j, its MTBF is

denoted by λ4(i, j) and the probability of its failure is denoted by π4(i, j).

(9) Pred(i, j) is the reduced pressure at vertex i due to ignition at vertex j and P s(i) is

the pressure shock resistance of vertex i. Both Pred(i, j) and P s(i) are assumed to be

independent normal variables with specified means and variances which are assumed to

be stationary through time. The specified values of these parameters are intentionally

very conservative both representing the worst case, to err on the side of caution. A

judgement needs to be made about the choice of mean values of these variables to

ensure that the computation of risk is realistic and is not affected excessively by the

built-in safety factors in the design of any protection system. We have elected a standard

deviation of 10% of the nominal value for both Pred(i, j) and P s(i) , and the values

quoted for Pred(i, j) and P s(i) are two standard deviation limit values.

(10) Qvessel(i, j) represents the probability that the explosion protection hardware system

does not fail but the reduced pressure is still higher than the pressure shock resistance

of the vessel:

Qvessel(i, j) = P (Pred(i, j) − P s(i) > 0) . (2)

This allows us to represent the proximity of Pred(i, j) to P s(i) in the system design and

account for any intentional design safety factors in our computation of residual risk.

(11) In a similar manner we can define a set of parameters relating to the connectivity

between plant items and any isolation barriers installed. tb(i, j) is the time from ignition,

for the flame propagation barrier (either a chemical barrier or a valve) to be established

when the flame is propagating from an ignition in vessel i to vessel j and tf(i, j) is

the time that the flame front will arrive at the barrier location. tb(i, j) and tf(i, j) are

assumed to be independent normal variables with specified means and variances which

are stationary through time. Once again, the specified values of these parameters are

invariably very conservative, both representing the worst case to err on the side of

caution. For reasons similar to those employed for Pred(i, j) and P s(i) , we have chosen

to assume a standard deviation of 10% of the nominal value for both tb(i, j) and tf(i, j) ,

and that the values quoted for tb(i, j) and tf(i, j) are the two standard deviation limit

values. Qbarrier(i, j) in (3) represents the probability that the isolation barrier hardware

is actuated and the barrier is established, but the barrier is deployed too late to stop

the flame from reaching the next vertex.

Qbarrier(i, j) = P (tb(i, j) − tf(i, j) > 0) . (3)
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(12) Let Qs
f (i, j) be the fundamental flame propagation probability between vertices i and j.

This will depend on duct diameter and length, the relative volumes of connected vessels,

the material explosibility etc. Relative magnitudes of these probabilities may be deter-

mined from qualitative knowledge. As an example, Qs
f (2, 3) is likely to be significantly

higher than Qs
f (1, 3) in the spray drier installation mentioned in the previous section,

for any realistic protection installation. The total flame propagation probability from

vertex i to vertex j, Qs(i, j), is the summation of the probability of complete hardware

failure of barrier and the probability due to late activation of barrier:

Qs(i, j) = Qs
f (i, j)×

(
Qh(i, j) + (1−Qh(i, j))×Qbarrier(i, j)

)
(4)

where Qh(i, j) is the probability of hardware failure and (1−Qh(i, j))×Qbarrier(i, j)

is the failure due to late activation of barrier. Qh(i, j) may itself be computed as π3(i)+

(1 − π3(i))π4(i, j) if the preceding vessel i is protected passively by explosion venting

and a single detector or as π4(i, j) if the preceding vessel is protected by explosion

suppression. The reason for this difference is that the failure of detector in the latter

case will cause the vessel i to fail, and its role in the flame propagation to vessel j is

then insignificant. The case when the preceding vessel has multiple detectors can be

dealt by using β(i) defined in the next section in place of π3(i), in the computation of

Qh(i, j) above.

When all the above parameters are specified for each vertex and each edge in the graph, we

have all the information necessary to compute residual risk in the system. There are a variety

of ways in which this information can be represented in software. The purpose of this paper,

however, is to outline a methodology rather than to discuss its precise implementation.

It is also worth mentioning that the residual risk computed using this method is valuable

mainly as a tool for comparison of different configurations of explosion protection systems,

e.g. using different types of suppressors on a vessel yielding different Pred or using a me-

chanical barrier (i.e. a valve) instead of a chemical barrier (i.e. a suppressor). Some of the

parameters above (such as Qs
f (i, j)) have to be based on qualitative knowledge and some

of the assumptions are not realistic in all situations (such as the exact ignition location is

ignored). However, provided the same assumptions and the same parameters are used in

computing the residual risk for two or more safety system configurations, the model provides

very valuable information enabling the user to make an informed decision about the choice

of the safety system. We support this assertion by way of a detailed illustration in section 5.
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4.3 Algebraic formula for computation of risk

The risk of failure of any vertex i due to ignition in vertex j is denoted by Ri,j and it can

be computed as the sum of risk of hardware failure and the risk of inadequate protection:

R
′
i = α(i) + (1− α(i))β(i) + (1− α(i))(1− β(i))× γ(i), (5)

Ri,j = R
′
i + (1−R

′
i)×Qvessel(i, j) (6)

where α(i) = α1(i) + (1− α1(i))× α2(i)) is the probability of failure of any one vent panel.

The computation of α1(i) and α2(i) based on the number of vent panels is summarised in

table 3.

β(i) =
k3−1∑

j=0

(π3(i))(1− π3(i))
j if k3 > 0,

= 0 otherwise

is the probability of failure of any one detector and γ(i) = γ1(i) + (1 − γ1(i))γ2(i) is the

failure probability of failure of any one suppressor. The computation of γ1(i), γ2(i) based on

the number of suppressors is summarised in table 4.

The terms in the expression (6) for Ri,j may be explained as follows. The first term in the

expression (5) for R
′
i represents an explosion due to an ignition event not being vented.

The second term represents an explosion due to an ignition event not being detected. The

last term represents an explosion due to failure of suppressor of either types. R
′
i as a whole

represents the probability that an unmitigated explosion occurs in vessel i due to hardware

failure, given an ignition event. Finally, the second term in the expression for Ri,j represents

the failure of vessel i due to partial or inadequate protection.

The risk of failure of any vertex due to an ignition in vertex i may be denoted by δi and can

be computed as:

δi = QE(i)


Ri,i + (1−Ri,i)

∑

j∈Φi

Qs(i, j)×Rj,i


 (7)

where Φi denotes the set of vertices adjacent to vertex i. Each Rj,i is computed as in (6). Note

that the first term represents an event where an ignition in vertex i causes an unmitigated

explosion in the vertex i. The second term with a summation over j represents an event

where there is no unmitigated explosion in vertex i given an ignition in the same vertex,
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however, the flame propagates to a neighboring vertex j causing an unmitigated explosion

in vertex j.

Instead of computing “per-ignition” risk (due to ignition in each vertex i) δi as above, one

may choose to compute “per-vertex” risk, i.e. the total risk of failure in each vertex due to

ignition in the same vertex or any of the connecting vertices. Denoting this risk by ζi, it can

be seen that

ζi = QE(i)×Ri,i +
∑

i∈Φj

QE(j)× (1−Rj,j)×Qs(j, i)×Ri,j (8)

The overall residual risk R is computed as

R =
∑

j



π6(j) + (1− π6(j))×

∑

i∈Ψj

ζi



 (9)

where the summation is over all zones and Ψ1, Ψ2, . . . are zones with corresponding control

panel MTBFs λ6(1), λ6(2) etc.

Note that the sum of probabilities can theoretically exceed unity in the computation of ζi,

δi etc. However, the risk of failure in any vessel approaching unity would be an unrealistic

(and certainly unacceptable) scenario in any practical safety installation and we have chosen

to ignore such unrealistic cases from our model. If necessary, these cases can be dealt with

using min(·, 1) operator throughout the computation of probability parameters. In case where

min(·, 1) is used to limit probability to 1, R can no longer be interpreted as a probability.

However, it will still serve as a (somewhat heuristic) measure of residual risk.

Here, it is worth re-emphasizing that the risk R is computed for one unit of time and

a different value will be obtained if we consider a different length of time (and hence a

different set of parameters). In any case, the proposed computational model can not be

expected to yield an exact value of residual risk for a particular length of time, since some of

the underlying assumptions are based on qualitative knowledge and can not be easily verified.

However, as mentioned in section 4.2, the main purpose of this model is to compare two or

more safety configurations under the same set of parameters, time horizon and assumptions.

From a representational point of view, it is possible to model R
′
i in (5) as a fault tree (see,

e.g. Bedford and Cooke (2001) and O’Connor (2002)). However, this does not seem to benefit

the actual computation of residual risk and hence is not explored further.

Lastly, it is worth mentioning that knowledge of graph theory is not required for the imple-

mentation of the model. The representation of the system is in terms of a set of vertices,
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which may be represented by a variety of data structures, while the computational model is

in terms of simple algebraic formulae.

5 Example of the computation of residual risk

5.1 Description of the process

Figure 1 shows our example of a simple spray drying process, with its vertices enumerated in

table 1. Using suitable fuel explosibility rate constant, maximum explosion pressure, vessel

volumes, vessel strengths, detection pressures and vent activation pressures for the protec-

tion system it is possible to derive predicted reduced explosion pressures for each plant item,

either using proprietary software (e.g. Siwek and Cesana (2001)) or in-house software pack-

ages (the numerical values used for computation of model parameters are available from

the authors). Of course, other means for calculating or deriving these pressures are equally

valid. Those pertinent to our example are shown in table 5. Table 6 lists the tb , tf and

Qbarrier(i, j) values for those plant interconnections where explosion isolation is employed.

tb and tf have been calculated using our in-house calculation tools with representative hard-

ware and input parameters, such as material explosibility, vessel size, duct diameter and

process air flow. Once again other means for calculating these times are equally valid.

Finally we need to determine the probability of flame propagation between vertices. As

described in section 4.2, this comprises terms for the hardware Qh(i, j) and the fundamental

flame propagation probability Qs
f (i, j). We must ascribe a value for the latter, and this is

subject to a degree of uncertainty. However, with the large corpus of experimental data

available both in the literature and in-house, it is possible to determine ‘representative’

values depending on the particular geometric configuration (source vessel, duct diameter

and length etc.) and material explosibility.

The connectivity parameters relevant of our example are shown in table 5 and are deemed

representative for the example process plant and elected isolation hardware. It should be

noted that in the case where there are multiple flame paths between vertices (e.g. there are

three between the two fluid bed driers), then the arithmetic sum of the probabilities is taken

to err on the side of safety. We can now calculate the residual risk of safety system failure

due to either an ignition in vertex i (per-ignition risk, δi) or the total risk of failure of each

vertex due to ignition in any vertex (per-vertex risk, ζi). These residual risks are shown in
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tables 7 and 8 respectively. We have assumed in this instance that the probability of ignition

for each vertex is equal, which is not unreasonable considering the nature of the spray drying

process. However, this would not be the case in a process plant where one vessel was much

more likely to have an explosion due to the propensity of ignition sources (e.g. sparks from

a grinder).

For the same process and the same protection hardware, the safety configuration can be

changed by changing the zones in the protection system. From figure 1 we can see that the

protection system is divided into three discrete ‘zones’, whereby detection in any one zone

leads to the actuation of all the suppressors in that zone only. From table 5 we can see

there is a high level of connectivity between the two fluid bed driers, and the consequence of

flame transfer would lead to an enhanced explosion in the connected vessel. This enhanced

secondary explosion is likely to be more severe than the point ignition assumption that was

used in designing the explosion protection on this plant item. This of course affects the

calculated risk for this vertex as can be seen by the magnitude of Qvessel(2, 3). In order to

reduce this risk, it would be common practice to merge zone 2 and zone 3 such that actuation

of either detector on the fluid bed driers would deploy both suppression systems. This will

significantly reduce the explosion severity in the connected vessel since any flame that does

transfer will be trying to ignite an atmosphere that will be engulfed in suppressant. This is

represented in our calculation as can be seen from table 9 where the residual risk in both

the fluid bed driers (ζ2 and ζ3) is now much reduced.

It is interesting to continue this line of action and combine the whole protection system

into a single zone and recalculate ζi, see table 10. With all three vessels under the same

control zone, Qs
f (i, j) for the connections between these vessels is set to zero. While this

yields further reduction in ζ2 and ζ3, the isolation barriers no longer add benefit in terms of

residual risk and may be considered an inefficient use of financial resources directed towards

plant safety. Further, a single zone system is more prone to nuisance actuations.

The interested reader is referred to Ganguly et al. (2007), Lade and Moore (2008) and Moore

and Lade (2009) for further and more extensive use of this model of computing the residual

risk of safety system failure.
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6 Conclusion

This paper addresses the problem of ascribing residual risk for an industrial explosion pro-

tection system. Drawing on the domain knowledge of explosion protection professionals, we

have designed a simple but effective algebraic model based on bi-directed graphs to compute

the residual risk. This also demonstrates the adaptation of existing analytical tools in oper-

ational research to challenging, real life problems. The proposed model captures the residual

risk of a protection installation in a meaningful way and allows us to analyze quantitatively

the cost/benefit trade-offs in different protection system configurations. Even though some of

the mathematical tools used will be unfamiliar to the process engineers, the actual method-

ology is quite simple to implement and does not require knowledge of graph theory. The

authors feel that this model is an extremely useful aid for better and more informed design

decisions, leading to enhanced overall process safety and greater overall cost effectiveness in

protection system design.

The methodology presented here is suited for explosion protection systems in industrial

process plants. Modification and adaptation of this model to address specific issues in the

computation of risk for other explosion protection applications, such as protection on offshore

platforms, is a topic of current research.

At present, this methodology has been implemented on trial examples in a prototype software

at Kidde Research,UK. A full-scale implementation along with drafting of the required design

rules and carrying out the necessary physical experiments is currently in progress.
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Appendix

Tables for the Spray Drier Example

Table 1. List of vertices for Spray Drier example

Vertex Component

1 Spray drier

2 Fluid bed drier 1

3 Fluid bed drier 2

4 Cyclone 1

5 Cyclone 2

Table 2. Notation for πj(i) and values for the spray drier example (only one type of vent

panel assumed)

Component j 1
λj(i)

πj(i) (or πj(i, k) for valve)

vent panel type 1 1 50000 0.000020

detector 3 4000 0.000250

suppressor type 1 4 30000 0.000033

suppressor type 2 5 50000 0.000020

control panel 6 25000 0.000040

valve 7 2000 0.000500
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Table 3. Computation of α1(i) and α2(i) based on the number of vent panels (k1(i), k2(i))

and πj(i) as defined in equation (5).

k1 = k2 = 0 k1 > 0, k2 = 0 k1 > 0, k2 > 0

α1 0
∑k1−1

j=0 (1− π1(i))
j × π1(i)

∑k1−1
j=0 (1− π1(i))

j × π1(i)

α2 0 0
∑k2−1

j=0 (1− π2(i))
j × π2(i)

Table 4. Computation of γ1(i) and γ2(i) based on the number of suppressors (k4(i), k5(i))

and πj(i) as defined in equation (5).

k4 = k5 = 0 k4 > 0, k5 = 0 k4 > 0, k5 > 0

γ1 0
∑k1−1

j=0 (1− π4(i))
j × π4(i)

∑k1−1
j=0 (1− π4(i))

j × π4(i)

γ2 0 0
∑k2−1

j=0 (1− π5(i))
j × π5(i)
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Table 5. Probabilities of flame propagation through interconnections.

(i, j) Qs
f (i, j) Qh(i, j) Qvessel(i, j)

(1,2) 5.20× 10−3 1.00 1.00

(1,2) 8.98× 10−3 3.33× 10−5 1.00

(1,3) 5.13× 10−3 1.00 1.00

(1,4) 2.86× 10−2 1.00 1.82× 10−2

(1,5) 2.86× 10−2 1.00 1.82× 10−2

(2,1) 5.75× 10−3 5.00× 10−4 5.95× 10−11

(2,1) 8.12× 10−3 1.00 5.95× 10−11

(2,3) 5.40× 10−3 1.00 1.00

(2,3) 8.98× 10−3 1.00 1.00

(2,3) 5.48× 10−3 1.00 1.00

(3,1) 5.75× 10−3 5.00× 10−4 1.00

(3,2) 5.48× 10−3 1.00 1.00

(3,2) 8.12× 10−3 1.00 1.00

(3,2) 5.48× 10−3 1.00 1.00

(4,1) 1.05× 10−1 1.00 5.95× 10−11

(4,5) 2.60× 10−1 1.00 1.82× 10−2

(5,1) 1.05× 10−1 1.00 5.95× 10−11

(5,4) 2.60× 10−1 1.00 1.82× 10−2
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Table 6. Qbarrier(i, j) for two isolation barriers

Qbarrier(i, j)

Isolation barrier 1 (1,2) 2.09× 10−5

Isolation barrier 2 (2,1) 2.34× 10−3

Isolation barrier 2 (3,1) 6.66× 10−11

Table 7. Risk computation per ignition (with three zones)

δ1 3.41× 10−3

δ2 6.49× 10−3

δ3 6.26× 10−3

δ4 3.14× 10−3

δ5 3.14× 10−3

Table 8. Risk computation per vessel (with three zones)

ζ1 1.11× 10−4

ζ2 7.95× 10−3

ζ3 7.77× 10−3

ζ4 4.64× 10−4

ζ5 4.64× 10−4
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Table 9. Risk Computation per vessel (with two zones)

ζ1 1.11× 10−4

ζ2 2.23× 10−3

ζ3 2.25× 10−3

ζ4 4.64× 10−4

ζ5 4.64× 10−4

Table 10. Risk Computation per vessel (with one zone)

ζ1 1.10× 10−4

ζ2 7.37× 10−4

ζ3 7.37× 10−4

ζ4 4.64× 10−4

ζ5 4.64× 10−4
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