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 A B S T R A C T

This paper introduces a methodology for software vulnerability detection that combines structural and semantic 
analysis through software metrics and topic modelling. We evaluate the approach using smart contracts as a 
case study, focusing on their structural properties and the presence of known security vulnerabilities. We 
identify the most relevant metrics for vulnerability detection, evaluate multiple machine learning classifiers 
for both binary and multi-label classification, and improve classification performance by integrating topic 
modelling techniques.

Our analysis shows that metrics such as cyclomatic complexity, nesting depth, and function calls are 
strongly associated with vulnerability presence. Using these metrics, the Random Forest classifier achieved 
strong performance in binary classification (AUC: 0.982, accuracy: 0.977, F1-score: 0.808) and multi-label 
classification (AUC: 0.951, accuracy: 0.729, F1-score: 0.839). The addition of topic modelling using Non-
Negative Matrix Factorisation further improved results, increasing the F1-score to 0.881. The evaluation is 
conducted on Ethereum smart contracts written in Solidity.
1. Introduction

Understanding how structural and semantic properties of code re-
late to security vulnerabilities remains a challenge in software analysis. 
While software metrics have long been used to support defect predic-
tion in conventional systems (Okutan & Yıldız, 2014; Singh & Chug, 
2017; Singh et al., 2010), their role in identifying security-related issues 
is less clear, particularly when applied to newer software artefacts. This 
paper introduces a methodology that combines metrics-based analysis 
with topic modelling to improve the detection and classification of 
software vulnerabilities.

We evaluate this approach in the context of smart contracts, which 
are programs deployed on a blockchain that execute automatically 
when predefined conditions are met. Like conventional software com-
ponents, they are written in programming languages such as Solidity 
and can be analysed through structural metrics. They differ from tra-
ditional software in that they operate in a decentralised environment 
where code directly manages financial assets, and once deployed they 
cannot be updated through standard release cycles. These character-
istics increase the impact of vulnerabilities, since flaws may lead to 
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immediate and irreversible financial losses (Atzei et al., 2017; Aufiero 
et al., 2024; Zheng et al., 2018). This connection highlights why 
techniques from software engineering, such as the use of metrics and 
semantic analysis, are applicable to smart contracts while also requiring 
adaptation to address their specific execution and risk environment.

Although metrics such as complexity, coupling, and cohesion are 
widely studied in traditional systems (Chidamber & Kemerer, 1994; 
Zhang et al., 2007a), their effectiveness in smart contracts is still 
uncertain. Preliminary studies focusing on metric-based analysis of 
smart contracts are limited (Tonelli et al., 2023), and their connection 
to security has not been examined in detail (Destefanis et al., 2018; 
Pinna et al., 2019). Moreover, the potential benefit of incorporating 
semantic information, such as lexical patterns or latent topics (Ortu 
et al., 2022), remains largely unexplored.

This paper presents the first large-scale study on smart contracts’ 
vulnerabilities prediction and classification combining software met-
rics and topic modelling. The evaluation is conducted exclusively on 
Ethereum smart contracts written in Solidity. Whilst the general prin-
ciples of combining structural and semantic analysis may inform ap-
proaches for other programming languages, our empirical findings and 
performance metrics apply only to the Solidity smart contract domain.
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Specifically, we address the following research questions:
RQ1: Which traditional software metrics contribute the most to vulner-

ability detection in smart contracts?
RQ2: How effective are standard classifiers in predicting and classifying 

vulnerabilities based on software metrics alone?
RQ3: Can topic modelling techniques improve classifier performance for 

vulnerability classification tasks?
We evaluate the role of software metrics in vulnerability prediction 

using five widely adopted classifiers: Random Forest, Support Vector 
Machine (SVM), Gradient Boosting, Logistic Regression, and Multi-layer 
Perceptron (MLP). We adopt a two-step process to first detect vulnera-
ble contracts and then classify the specific types of vulnerabilities. Our 
methodology integrates topic modelling techniques — Latent Dirich-
let Allocation (LDA) and Non-negative Matrix Factorisation (NMF) — 
to include semantic features alongside structural ones. Treating each 
contract as a document and its associated metrics and vulnerabilities 
as words, we extract latent patterns that relate to specific vulnerability 
types. To our knowledge, this is the first study to quantify the predictive 
value of software metrics within smart contract domain and to combine 
them with topic modelling for vulnerability classification.

The integration of structural metrics with semantic analysis ad-
dresses a limitation in vulnerability detection: individual approaches 
capture only partial aspects of security-relevant code features. As we 
demonstrate in Section 3.2, vulnerabilities manifest through specific 
combinations of architectural properties (measurable via metrics) and 
implementation patterns (detectable through semantic analysis). For 
example, reentrancy vulnerabilities require both external coupling 
(structural) and specific call sequences involving financial transfers 
(semantic).

Vulnerabilities in smart contracts manifest through predictable com-
binations of structural and semantic patterns. Reentrancy attacks re-
quire both architectural conditions (external calls interacting with state 
variables, measurable through coupling metrics) and implementation 
features (specific function call sequences and state modification pat-
terns, detectable through semantic analysis). Access control vulnera-
bilities combine structural indicators (function visibility and modifier 
usage) with semantic signals (authentication-related naming patterns 
and permission checking logic).

Topic modelling enables identification of latent semantic themes 
that reflect common programming constructs, design patterns, and anti-
patterns within smart contract code. These themes capture developer 
intent and implementation approaches that correlate with vulnerability 
issues. Contracts exhibiting topic distributions associated with financial 
transfer operations may correlate with transfer-related vulnerabilities, 
while contracts showing patterns related to external interactions may 
indicate reentrancy exposures.

The main contributions of this paper are as follows:
1. A method for classifying vulnerabilities using both software 
metrics and topic modelling, based on source code analysis and 
metric extraction.

2. An assessment of software metrics’ effectiveness for vulnerabil-
ity prediction, identifying those with higher predictive value 
(e.g., Cyclomatic Complexity, Nesting Depth, Function Calls, Lo-
cal Variable Count, Coupling Between Contracts) and those with 
limited utility (e.g., Fan-In, Inheritance Depth).

3. An evaluation of five classifiers for vulnerability detection using 
metrics, with Random Forest achieving the best results in both 
binary and multi-label classification. In addition, we deliberately 
evaluated multiple classifiers representing different modelling 
paradigms to reduce model selection bias and to ensure that our 
findings are not specific to a single learning approach.

4. A topic-modelling-based classification approach combining LDA 
and NMF with software metrics, improving accuracy by com-
pared to metric-only models and including improvements for 
complex vulnerabilities such as reentrancy-eth, unused-return, and
tx-origin.
2 
This paper is organised as follows: Section 2 discusses related work, 
Section 3 introduces the methodology; Section 4 assesses the role of 
software metrics; Section 5 evaluates classifier performance. Section 6 
presents multi-label classification results; Section 7 focuses on classifi-
cation using topic modelling. Section 8 outlines limitations, Section 9 
discusses future research directions, and Section 10 concludes. The 
replication package is available at this link.1

2. Related work

We review alternative approaches to vulnerability detection in 
smart contracts, focusing on how they differ from our combined metrics 
and topic modelling methodology.
Static analysis tools. Traditional tools such as KEVM (Hildenbrandt 
et al., 2018), Oyente (Luu et al., 2016), and ContractFuzzer (Jiang et al., 
2018) rely on formal verification, symbolic execution, or fuzzing. In 
contrast to our data-driven approach, these tools depend on predefined 
vulnerability patterns and cannot adapt to variations in how known 
vulnerabilities manifest across different contracts. While they achieve 
high precision for known issues, they do not learn from code structure. 
We do not include them in our experimental comparison, since their 
goal involves pattern detection through program analysis rather than 
statistical learning.
Software metrics for vulnerability detection. Zhang et al. (2007b) showed 
that metrics such as LOC and Cyclomatic Complexity predict defects 
in traditional software. Although we adopt similar metrics, smart con-
tracts present distinct challenges due to immutability and blockchain-
specific behaviours such as reentrancy, which require adapted interpre-
tations.

VCCFinder (Perl et al., 2015) combined software metrics with repos-
itory metadata to predict vulnerable components, achieving strong 
results in traditional systems. However, their reliance on commit his-
tory is not applicable to our setting, where smart contracts are often 
deployed without subsequent updates.

Medeiros et al. (2017, 2020) reported 93.59 percent accuracy using 
metrics alone. Our approach extends this line of work by integrating se-
mantic features through topic modelling, which improves performance 
(97.7 percent accuracy) and reduces false positives.
ML approaches for smart contract vulnerabilities. Recent machine learn-
ing efforts for vulnerability detection fall into two broad categories:

Opcode- or N-gram-based Methods. Song et al. (2019) and Con-
tractWard (Wang et al., 2021) use n-gram or bigram representations 
of EVM bytecode and achieve high binary classification accuracy. In 
contrast to our metric-based approach, these methods represent code 
as token sequences and do not capture architectural features such as 
coupling or nesting depth. Moreover, they target only a small number 
of vulnerability types, typically between three and five, whereas our 
model handles thirty-three.

Graph-based Methods. Han et al. (2022) apply graph neural net-
works to smart contract structures. Although they also aim to capture 
structural relationships, their approach involves costly graph construc-
tion and is limited to a few vulnerability classes. In comparison, our 
method is computationally efficient and generalises to a wider set of 
vulnerabilities.

Pattern-specific Detectors. SCScan Hao et al. (2020) and Lou et al. 
(2020) focus on identifying specific vulnerabilities such as general 
security flaws or Ponzi schemes. These tools are not intended for 
general-purpose vulnerability detection and cannot scale beyond their 
predefined scope.

Recent advances in code representation learning, including
transformer-based models such as (Feng et al., 2020) and Graph Neural 

1 https://figshare.com/s/5d0129e78d0cf0c61274
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Networks, offer alternative approaches for capturing code semantics. 
These methods can address some limitations of traditional topic mod-
elling by maintaining syntactic awareness and capturing long-range 
dependencies in code. However, they require substantial computational 
resources and large-scale pre-training datasets, making them less ac-
cessible for many research contexts and limiting reproducibility. Our 
metrics-based approach with topic modelling provides a computation-
ally efficient alternative that maintains interpretability while delivering 
measurable performance improvements across several vulnerability 
types.

Transformer and graph neural network approaches. Recent advances in 
code representation learning, including transformer-based models such 
as CodeBERT (Feng et al., 2020) and GraphCodeBERT, offer alterna-
tive approaches for capturing code semantics. These models address 
some limitations of traditional topic modelling by maintaining syntactic 
awareness and capturing long-range dependencies in code through 
self-attention mechanisms. Graph Neural Networks (GNNs) applied to 
control flow or data flow graphs provide another promising direction, 
as demonstrated by Han et al. (2022) for smart contract analysis.

However, these approaches require substantial computational re-
sources and large-scale pre-training datasets, limiting accessibility for 
many research contexts and reducing reproducibility. Transformer-
based models like CodeBERT require pre-training on millions of code 
samples and significant GPU resources. GNN-based approaches ne-
cessitate costly graph construction from abstract syntax trees or pro-
gram dependence graphs, with Han et al. (2022) reporting their ap-
proach was limited to analysing only a few vulnerability classes due to 
computational constraints.

Our metrics-based approach with topic modelling provides a more 
computationally efficient alternative compared to transformer and GNN 
approaches, maintains interpretability whilst delivering measurable 
performance improvements across 33 vulnerability types. The two 
paradigms are complementary rather than competing: transformer 
models excel at capturing contextual semantics within individual func-
tions, whilst our approach identifies architectural patterns across en-
tire contracts. Metric-based features provide interpretable indicators 
of structural risk factors that remain accessible to security auditors, 
whereas deep learning embeddings offer limited explainability. Future 
work combining our interpretable structural analysis with transformer-
based semantic embeddings could potentially achieve superior per-
formance whilst maintaining the transparency required for security-
critical applications.
Key differentiators. To our knowledge, no prior work combines soft-
ware metrics with topic modelling for smart contract vulnerability 
detection. Existing approaches either apply metrics without capturing 
semantics (Medeiros et al., 2020), use sequence-based models without 
structural context (Song et al., 2019; Wang et al., 2021), or focus on a 
narrow set of vulnerability types (Han et al., 2022; Lou et al., 2020). 
Our hybrid method combines structural information from metrics with 
semantic information from topic distributions, enabling efficient classi-
fication across thirty-three vulnerability types. The inclusion of seman-
tic features is particularly effective for detecting complex cases, such as 
reentrancy, that are difficult to capture through metrics alone.

3. Methodology

3.1. Problem formulation

Let 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑛} denote a set of 𝑛 = 74,225 smart contracts. For 
each contract 𝑐𝑖, we extract a feature vector 𝑥𝑖 ∈ R𝑑 containing 𝑑 = 8
software metrics: fan-out, cyclomatic complexity, nesting depth, func-
tion calls, local variable count, coupling between contracts, average 
local variables, and number of raw lines.

We address the following classification tasks:
3 
Binary classification: Learn a function 𝑓 ∶ R𝑑 → {0, 1} that 
predicts whether a contract contains any medium- or high-severity 
vulnerability, where 𝑦𝑖 = 1 indicates vulnerable and 𝑦𝑖 = 0 indicates 
non-vulnerable.

Multi-label classification: Learn a function 𝑔 ∶ R𝑑 → {0, 1}33 that 
predicts the presence of 𝑚 = 33 specific vulnerability types, where 
𝑦𝑖𝑗 = 1 if contract 𝑐𝑖 contains vulnerability 𝑣𝑗 .

Enhanced multi-label classification: To improve multi-label per-
formance, we extract topic distributions 𝑡𝑖 ∈ R𝑘 from contract source 
code, where 𝑘 = 25 for LDA or 𝑘 = 45 for NMF. We then learn an 
enhanced function 𝑔′ ∶ R𝑑+𝑘 → {0, 1}33 using the augmented feature 
representation 𝑧𝑖 = [𝑥𝑖, 𝑡𝑖].

The main distinction is that topic modelling is applied only in 
the enhanced multi-label setting. Binary classification uses structural 
metrics alone. Our evaluation assesses the model’s ability to generalise 
to previously unseen patterns affected by the 33 vulnerability types 
present in our dataset, following standard machine learning evaluation 
protocols.

The remainder of this section describes the data collection, feature 
extraction, modelling steps, and evaluation protocol, following the 
workflow illustrated in Fig.  1. Our methodology addresses both binary 
classification (vulnerable vs. non-vulnerable) and multi-label classifi-
cation (identifying specific vulnerability types). The main distinction 
between the two tasks lies in the use of topic modelling, which is 
applied only to the multi-label classification.

We use the latest update2 from dataset provided by Ibba et al. (2024, 
2024c), from which we selected a random sample of 74,225 contracts. 
This is a diverse dataset, including vulnerability reports generated 
by Slither (Feist et al., 2019) (a leading static analysis tool, which 
categorises vulnerabilities as low, medium, or high3). The dataset en-
compasses contracts with a temporal distribution spanning from 2018 
to July 2023, when Smart Sanctuary’s last update occurred, providing 
a wide array of different Solidity pragma versions. The wide temporal 
span ensures the presence of different smart contract design patterns, 
ranging from several outdated functionalities (e.g., Crowdsale, Initial 
Coin Offering, and Gambling systems) to complex contracts employed 
for financial tasks and trading control.

Whilst Slither represents one of the most widely adopted static anal-
ysis tools in smart contract security research, its detection capabilities 
vary substantially by vulnerability type. Comparative benchmarking 
by Durieux et al. (2020) found that Slither detected 17% of known 
vulnerabilities across nine categories, with performance ranging from 
88% detection for reentrancy vulnerabilities to 0% for arithmetic vul-
nerabilities. When applied to 47,518 real contracts, static analysis 
tools collectively flagged 93% as vulnerable, indicating potential false 
positive issues, though precise false positive rates for specific tools 
remain unquantified in the literature. Despite these limitations, Slither 
provides a consistent and reproducible labelling framework for large-
scale empirical studies, and our focus on medium and high-severity 
classifications reduces the impact of tool-specific detection biases.

We considered as vulnerable only contracts that have at least one 
vulnerability labelled by Slither as medium (resulting in 5377 con-
tracts) or high (resulting in 1759 contracts), both high and medium 
(resulting in 3957). In total, we have 11,093 vulnerable contracts, and 
59,310 non-vulnerable. These vulnerabilities can lead to significant 
financial losses or operational impacts, based on Slither’s severity clas-
sification. We excluded low-severity vulnerabilities as they primarily 
represent code quality recommendations (style suggestions, version up-
date advisories, optimisation recommendations, advisories for missing 
events) rather than actual security threats. This filtering aligns with 
standard smart contract security assessment practices that prioritise 
vulnerabilities with potential for exploitation and financial impact. 

2 https://github.com/giacomofi/SmarthER
3 https://github.com/crytic/slither/wiki/Detector-Documentation
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Fig. 1. Workflow for smart contract vulnerability detection and classification.
Table 1
Key software metrics used in smart contract analysis.
 Metric Description  
 Lines of Code (LOC) Total No. of code lines in the smart contract  
 No. Of Contracts No. of contracts defined within the smart contract.  
 Local Variable Count No. of local variables within a function.  
 Max Local Variables Maximum No. of local variables across all functions in a contract.  
 Avg. Variable Count Average No. of local variables in all functions in a contract.  
 Number of Parameters No. of parameters provided as input to functions.  
 Function Calls No. of calls for a specific function within the contract.  
 Cyclomatic Complexity (CC) No. of linearly independent paths through a function’s source code 
 Inheritance Depth (ID) the layers of inheritance of a specific contract.  
 Nested depth (ND) the depth of nested loops and conditionals within a function  
 Coupling Between Contracts (CBC) No. of other contracts or libraries that a contract interacts with  
 State Variable Count (SVC) No. of state variables in a contract  
 Function Count No. of functions in a contract  
 Fan-In (FI) and Fan-out (FO) No. of functions that call (FI) or are called by (FO) a function  
Including low-severity classifications would conflate code quality issues 
with security vulnerabilities, introducing noise into our detection task. 
This resulted in a total of 33 vulnerabilities, available for reference in 
our replication package.

In addition to vulnerabilities, the dataset offers a rich set of software 
metrics at both the contract and function levels, including metrics such 
as inheritance depth, coupling between contracts, state variable count, 
and cyclomatic complexity. The full table of supported metrics are 
available in Table  1. To enhance the existing metrics, we introduced 
two additional structural metrics, fan-in (FI) and fan-out (FO), which 
respectively measure the number of functions that call or are called 
by a given function. These metrics offer insights into function call 
relationships within smart contracts. To extract these new metrics, we 
employed MindTheDApp (Ibba et al., 2024), a static analysis tool that 
constructs call graphs by traversing the abstract syntax trees (ASTs) of 
interconnected contracts.

Our experimental evaluation consisted of four main phases, each ad-
dressing a different aspect of vulnerability detection and classification:

Feature Selection: We employed a two-stage hybrid feature selec-
tion approach combining statistical selection with domain knowledge 
validation. The primary selection mechanism used Adaptive LASSO re-
gression, which extends standard LASSO by applying individual penalty 
weights to each coefficient based on an initial estimator. This approach 
addresses potential instabilities in feature selection that can arise from 
correlated predictors whilst maintaining the coefficient shrinkage prop-
erties that enable automatic feature selection. Recognising that purely 
algorithmic selection may exclude features with established theoret-
ical importance in software engineering contexts, we implemented 
a secondary validation stage. Features excluded by Adaptive LASSO 
underwent evaluation against defect prediction literature to identify 
metrics with documented predictive value.

Binary Classification: To distinguish between vulnerable and non-
vulnerable contracts, we employed multiple classifiers: Logistic Re-
gression, Random Forest, Support Vector Machines (SVM), Gradient 
Boosting, and Multi-Layer Perceptron (MLP). Synthetic Minority Over-
sampling Technique (SMOTE) was applied to address class imbalance.
4 
Multi-label Classification: For identifying specific vulnerability 
types, we evaluate the same set of classifiers as for binary; and applied 
class weighting to handle class imbalance.

Topic Modelling for Multi-label Classification: To enhance the 
multi-label classification, we incorporated topic modelling techniques. 
Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorisa-
tion (NMF) were applied to extract latent topics. The derived topic dis-
tributions were combined with software metrics as additional features 
for classification.

We evaluated the models using 10-fold stratified cross-validation 
and assessed using several metrics: Area Under the Curve (AUC), Accu-
racy, Precision, Recall, and F1-Score.

For our classification tasks, we considered five learners: Logistic 
Regression, Random Forest, Support Vector Machine (SVM), Gradient 
Boosting, and Multi-Layer Perceptron (MLP). These represent distinct 
modelling approaches: linear models (Logistic Regression), ensemble 
tree methods that reduce variance or bias (Random Forest reduces vari-
ance through bootstrap aggregation and Gradient Boosting reduces bias 
via sequential error correction), kernel-based classification (SVM), and 
neural networks (MLP). A detailed discussion of their characteristics 
and hyperparameter tuning is provided in Sections 5–5.2.

3.2. Rationale for combining structural metrics with semantic analysis

The integration of structural metrics with semantic analysis ad-
dresses a fundamental limitation in vulnerability detection: individ-
ual approaches capture only partial aspects of security-relevant code 
features. Structural metrics quantify architectural properties such as 
complexity and coupling, which correlate with defect probability, but 
cannot distinguish between different types of vulnerable implemen-
tations. Semantic analysis can identify implementation patterns and 
naming conventions that indicate security-relevant constructs, but lacks 
awareness of broader architectural context.

Vulnerabilities in smart contracts manifest through predictable com-
binations of structural and semantic patterns. We illustrate this with 
three examples.
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Reentrancy vulnerabilities. require both architectural conditions and 
implementation features. Architecturally, reentrancy occurs when ex-
ternal calls interact with state variables, measurable through coupling 
metrics (Coupling Between Contracts) and function call counts. Seman-
tically, reentrancy involves specific function call sequences and state 
modification patterns. Consider this vulnerable pattern:

Listing 1: Reentrancy vulnerability example
1 function withdraw(uint amount) public {
2 require(balances[msg.sender] >= amount);
3 msg.sender.call{value: amount}( " " ); //

external call
4 balances[msg.sender] -= amount; // state

change after call
5 }

Structural metrics capture high cyclomatic complexity, external 
coupling, and multiple function calls. Topic modelling captures the se-
mantic pattern through terms like ‘‘call’’, ‘‘send’’, ‘‘balance’’, ‘‘transfer’’, 
and ‘‘eth’’. Neither approach alone distinguishes this vulnerable pattern 
from secure implementations that perform state updates before external 
calls. The combination identifies contracts with both high coupling 
(structural signal) and financial transfer semantics (semantic signal).
Access control vulnerabilities. combine structural indicators with se-
mantic signals. Structurally, these vulnerabilities appear in functions 
with specific visibility modifiers and parameter counts. Semantically, 
they involve authentication-related naming patterns and permission 
checking logic. The tx.origin vulnerability demonstrates this:

Listing 2: Access control vulnerability example
1 function transferOwnership(address

newOwner) public {
2 require(tx.origin == owner); //

vulnerable: uses tx.origin
3 owner = newOwner;
4 }

Metrics capture function visibility and parameter structure. Topics 
capture terms like ‘‘owner’’, ‘‘require’’, ‘‘tx’’, ‘‘origin’’, and
‘‘msg.sender’’. Secure implementations use msg.sender instead of
tx.origin, producing different topic distributions whilst maintaining 
similar structural properties.
Weak randomness vulnerabilities. depend on predictable data sources 
for pseudorandom number generation. These vulnerabilities have min-
imal structural signatures but strong semantic patterns:

Listing 3: Weak randomness generation example
1 function random() internal view returns (

uint) {
2 return uint(keccak256(abi.encodePacked(
3 block.timestamp , block.difficulty)));
4 }

Structural metrics show standard function complexity. Topic mod-
elling identifies the problematic semantic pattern through terms like 
‘‘timestamp’’, ‘‘block’’, ‘‘difficulty’’, ‘‘hash’’, and ‘‘random’’. Contracts 
using external oracles for randomness produce different topic distribu-
tions containing terms like ‘‘oracle’’, ‘‘chainlink’’, or ‘‘vrf’’.

Topic modelling enables identification of latent semantic themes 
that reflect common programming constructs, design patterns, and anti-
patterns within smart contract code. These themes capture developer 
intent and implementation approaches that correlate with vulnerabil-
ity patterns. Contracts exhibiting topic distributions associated with 
financial transfer operations correlate with transfer-related vulnerabil-
ities, whilst contracts showing patterns related to external interactions 
indicate potential reentrancy exposures.
5 
This mechanistic understanding justifies our hybrid approach: struc-
tural metrics identify architectural risk factors, whilst topic distri-
butions identify the specific implementation patterns that transform 
architectural risk into actual vulnerabilities.

3.3. Relationship between vulnerabilities and software metrics

Our analysis reveals specific correlations between software metrics 
and vulnerability patterns. State management metrics (State Variable 
Count and Local Variable Count) show strong associations with initial-
isation and shadowing vulnerabilities, while Function Count and Pa-
rameter numbers serve as indicators for unused-return and unchecked-
transfer issues.

Cyclomatic Complexity proves particularly useful for identifying 
control flow vulnerabilities in functions with multiple execution paths. 
Inheritance Depth correlates with constructor and token-related vulner-
abilities, while Coupling Between Contracts (CBC) indicates potential 
reentrancy and transfer-related issues.

Nested Depth (ND) emerges as a key indicator for tx-origin and 
msg-value-loop vulnerabilities, especially in complex control structures. 
When combined with high Cyclomatic Complexity or numerous state 
variables, increased Nesting Depth often signals difficult-to-verify state 
transitions.

The effectiveness of these metrics varies by vulnerability type, 
suggesting the importance of a multi-metric approach. This is partic-
ularly evident in detecting complex vulnerabilities like reentrancy at-
tacks, which typically manifest through patterns across multiple metrics 
rather than through individual indicators.

4. Metrics and their contribution to vulnerability detection

Feature selection in vulnerability prediction requires balancing sta-
tistical relevance with domain expertise, as purely data-driven ap-
proaches may overlook theoretically important predictors. We imple-
mented a systematic two-stage hybrid feature selection methodology 
that combines statistical selection with literature-informed validation. 
We employed Adaptive LASSO as our primary feature selection tech-
nique. Adaptive LASSO extends standard LASSO regression by applying 
individual penalty weights to each coefficient, derived from an initial 
estimator, to improve feature selection consistency. To optimise the 
configuration, we performed a grid search across various combinations 
of alpha (regularisation strength) and gamma (adaptive weights expo-
nent) parameters. We tested alpha values ranging from 10−4 to 104 (20 
logarithmically spaced values) combined with gamma values of [0.5, 1, 
2], resulting in 60 parameter combinations evaluated through 10-fold 
cross-validation to ensure robust hyperparameter selection.
Justification for hybrid feature selection approach. We selected Adaptive 
LASSO over alternative methods for several theoretical and practical 
reasons. Random Forest feature importance, whilst interpretable, relies 
on mean decrease in impurity scores that can be biased towards high-
cardinality features and do not provide the embedded regularisation 
properties necessary for coefficient shrinkage. Recursive Feature Elim-
ination offers theoretical guarantees similar to LASSO but requires 
multiple model training iterations as features are eliminated sequen-
tially, resulting in substantially higher computational cost compared to 
a single LASSO fit, making it impractical for our grid search across 60 
hyperparameter combinations. However, purely algorithmic selection 
risks excluding features with established theoretical importance. Soft-
ware engineering literature consistently identifies Lines of Code as a 
fundamental defect predictor (Singh & Chug, 2017; Singh et al., 2010), 
yet LASSO excluded this metric. We therefore implemented a two-
stage validation: statistical selection via Adaptive LASSO followed by 
literature review of excluded features. We empirically validated this hy-
brid approach by comparing two configurations: LASSO features alone 
versus LASSO features plus Number of Raw Lines. The inclusion of 
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(a) Binary Feature Importance

  
(b) Multilabel Feature Importance

 

Fig. 2. Comparison of top software metrics features selected using binary and multilabel lasso regression.
Number of Raw Lines significantly improved overall performance, lead-
ing to a 10% increase in accuracy, confirming that domain knowledge 
complements data-driven selection. This hybrid methodology balances 
statistical rigour with theoretical foundations from defect prediction 
research.

Fig.  2 shows the feature importance as determined for both binary 
and multilabel Adaptive LASSO regression. We established a threshold 
of 0.01 for feature selection to distinguish significant features from 
those with negligible LASSO coefficients. This threshold was selected 
because the binary LASSO regression chart shows a natural break 
in feature importance around the 0.01 mark, with features above 
this threshold demonstrating substantially higher LASSO coefficients 
compared to those below. This threshold creates a model that bal-
ances complexity (number of features) with predictive power, selecting 
approximately half of the available features. The consistency of top 
features selected by the 0.01 threshold across both binary and multil-
abel classifications suggests robust feature importance patterns across 
classification types.

Recognising that LASSO’s coefficient shrinkage property can exclude 
features with subtle but documented importance in software engi-
neering contexts, we systematically evaluated whether LASSO-excluded 
features possessed established theoretical foundations in defect pre-
diction literature. The LASSO statistical selection identified seven sig-
nificant software metrics: Fan-out, Cyclomatic Complexity, Nesting 
Depth, Function Calls, Local Variable Count, Coupling Between Con-
tracts (CBC), and Average Local Variables. Following our planned 
validation stage, we assessed excluded features against established de-
fect prediction research. ‘‘Number of Raw Lines’’ demonstrated strong 
theoretical justification as a fundamental predictor in software defect 
studies (Singh & Chug, 2017; Singh et al., 2010), warranting empirical 
validation.

We conducted comparative analysis using two feature configura-
tions for binary classification: one subset, only including features with 
LASSO coefficients above 0.01, which excluded ‘‘No. of Raw Lines’’, 
‘‘Inheritance Depth’’, ‘‘No. of Parameters’’, ‘‘Fan-In’’, and features related 
to the number of local and state variables. The second subset, encom-
passes ‘‘No. of Raw Lines’’ along with the features exhibiting a LASSO 
coefficient above 0.01. Our analysis revealed that including ‘‘No. of Raw 
Lines’’ significantly improved overall performance, leading to a 10% 
increase in accuracy, aligning with insights from related work on defect 
prediction in software.

Features such as ‘‘Inheritance Depth’’ were excluded based on both 
low LASSO coefficients and limited empirical support for predictive 
power in the literature (Okutan & Yıldız, 2014). This hybrid method-
ology ensures that our feature selection process combines data-driven 
statistical analysis with domain knowledge, creating a foundation for 
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vulnerability prediction while avoiding the limitations of purely algo-
rithmic or purely expert-driven approaches.

Answer to RQ1: The most significant metrics for detecting 
vulnerabilities in smart contracts, identified through LASSO 
include Fan-out, Cyclomatic Complexity, Nesting Depth, Function 
Calls, Local Variable Count, Coupling Between Contracts (CBC), 
and Avg. Local Variables, which have been extended with No. 
of Raw Lines, according to practical evidence from related 
work in defect prediction. These metrics are important for 
understanding the structural and functional aspects that may 
contribute to vulnerabilities. Conversely, metrics like Fan-In, 
Inheritance Depth, Average Local Variables, and Number of Pa-
rameters exhibit a low LASSO coefficient and were discarded 
from our features set.

5. Binary classification: Software metrics for vulnerability predic-
tion

In this section, we address our second research question (RQ2):
How effective are standard classifiers in predicting vulnerabilities based on 
software metrics alone? Building on our previous analysis of software 
metrics, we explore how traditional classification algorithms perform 
in identifying vulnerable smart contracts.

5.1. Data preprocessing

In our data preprocessing phase, we made minimal modifications 
to the initial dataset, which pertains to the pragma version. For entries 
with missing pragma information, we inserted a placeholder ‘‘0.0.0’’ 
version, while for the remaining contracts, we preserved only the major 
Solidity version numbers (e.g., 0.5.0 from pragma solidity ˆ0.5.0). We 
chose to align with major solidity versions to ensure compatibility with 
our analysis tool, given that a contract with pragma solidity ̂0.5.0 must 
be compatible with features between versions 0.5.0 and 0.6.0.

5.1.1. Handling class imbalance (SMOTE)
Our dataset showed a significant class imbalance, where vulnerabil-

ities were distributed in 15.7% of the total sample. In our dataset, we 
have a total of 11,093 vulnerable contracts, vs. 59,310 non vulnerable. 
This imbalance can lead to biased model training, where the classifier 
might become more proficient at predicting the majority class while un-
derperforming on the minority class. To mitigate this issue, we applied 
the Synthetic Minority Over-sampling Technique (SMOTE) (Chawla 
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et al., 2002), addressing class imbalance by generating synthetic in-
stances for the minority class. SMOTE was applied within the stratified 
cross-validation process to ensure that each training subset undergoes 
the same preprocessing steps, leading to more consistent and reliable 
results. Moreover, this approach ensures that the class imbalance prob-
lem is addressed in the training data of each fold without affecting the 
natural distribution of the test data in that fold.

5.2. Model development

In selecting models for our analysis, we considered a balance be-
tween interpretability, complexity, and performance. We chose five 
standard classification methods: Logistic Regression (Cramer, 2002), 
Gradient Boosting (Friedman, 2001), Random Forest (Breiman, 2001), 
Support Vector Machine (SVM) (Boser et al., 1992) and Multi-layer 
Perceptron (MLP) (Rumelhart et al., 1986), each offering distinct ad-
vantages for our task of vulnerability prediction.

Logistic Regression served as an interpretable linear baseline to 
assess whether the vulnerability prediction problem requires non-
linear complexity. SVM was included for its theoretical foundations 
in high-dimensional classification and effectiveness in distinguishing 
between classes through kernel methods. MLP represents neural net-
work approaches, capturing hierarchical feature interactions through 
non-linear transformations to model complex patterns that simpler 
algorithms might miss. The inclusion of two ensemble methods reflects 
their fundamentally different learning philosophies. Random Forest 
employs bootstrap aggregation (bagging), building uncorrelated trees 
in parallel to reduce variance and resist overfitting. Gradient Boosting 
uses sequential error correction (boosting), where each tree iteratively 
reduces bias by correcting predecessor errors. This comparison allows 
us to determine whether bias reduction or variance reduction strategies 
are more effective for software vulnerability prediction, providing 
greater methodological insight than evaluating variants within the 
same algorithmic family (such as different neural network architectures 
or SVM kernels); ensemble diversity addresses fundamental aspects of 
the bias–variance trade-off relevant to software metrics data.

5.2.1. Hyperparameter tuning
To maximise performance of the models, we conducted hyper-

parameter tuning using a grid search with ten-fold stratified cross-
validation. This method systematically explores a range of hyperparam-
eter values to identify the optimal settings for each model, ensuring 
robust predictions. Stratified cross-validation helps in assessing the 
model’s performance across different subsets of the data, thus pre-
venting overfitting and ensuring that the model generalises well to 
unseen data. The list of hyperparameters tuned for model evaluation 
is presented in Table  2.

For Logistic Regression, we explored different regularisation
strengths (C), penalty types, and solver algorithms. The wide range of 
C values (0.001 to 100) allowed us to explore from high regularisation 
(0.001) to almost no regularisation (100). This helped in understanding 
how much the model needed to be constrained to prevent overfitting.

Gradient Boosting’s grid focused on the number of estimators, learn-
ing rate, and tree depth. The learning rates (0.01, 0.1, 0.2) represent 
a good spread from conservative to more aggressive learning. The
max_depth values (3, 4, 5) are relatively shallow, which can help prevent 
overfitting in boosting models.

Random Forest’s tuning involved varying the number of trees, max-
imum depth, and minimum samples required to split an internal node. 
The inclusion of None in max_depth allowed for full tree growth, con-
trasting with the limited depths of 10 and 20. This can show whether 
the model benefits from deeper, more complex trees or shallower, more 
generalisable ones.

For SVM, we adjusted the regularisation parameter (C), loss func-
tion, dual formulation, penalty type, tolerance for stopping criteria, and 
maximum iterations. The inclusion of both ‘‘hinge’’ and ‘‘squared_hinge’’ 
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loss functions allows for comparison between standard SVM and a 
variant that penalises violations more strongly. The wide range of C 
values (0.1 to 100) again explores different trade-offs between margin 
maximisation and misclassification.

The Multilayer Perceptron grid encompassed different hidden layer 
configurations, activation functions, and alpha values for L2 regular-
isation. These hyperparameters collectively control various aspects of 
model complexity, learning behaviour, and regularisation, allowing 
us to find the optimal balance between bias and variance for each 
algorithm on our specific dataset. The hidden layer sizes include both 
single and double layer configurations, allowing us to assess if the 
added complexity of a second hidden layer improves performance. The 
inclusion of both ‘‘relu’’ and ‘‘tanh’’ activation functions lets us compare 
a more modern, non-saturating activation (‘‘ReLU ’’) with a traditional, 
bounded one (‘‘tanh’’).

5.3. Model evaluation

We evaluated the models using combined metrics: ROC Area Under 
the Curve (AUC), Precision, Recall, and F1-Score as per Shepperd 
et al. (2019). We employed AUC to measure overall discriminative 
power regardless of threshold choice, Accuracy to measure overall cor-
rectness, Precision to measure the correctness of positive predictions, 
Recall to measure the ability to find all positive instances, and the 
F1-score to provide a single metric balancing precision and recall. 
This combined metric evaluation is crucial for vulnerability detection, 
where both false negatives (missed vulnerabilities) and false positives 
(wasting developer time) carry significant costs. This evaluation helps 
us comparing the strengths and weaknesses of each model in predicting 
vulnerabilities.

We employed an evaluation protocol using stratified train-test splits 
(80/20) with fixed random seeds to ensure reproducibility. Hyper-
parameter optimisation was conducted using 10-fold stratified cross-
validation applied to the training data, with the held-out test set 
being separated throughout the model selection process to prevent 
data leakage. Final performance metrics were computed only on this 
independent test set after hyperparameter selection was complete.

5.4. Results and discussion of binary classification

Table  3 shows the performance of each model, including AUC, 
accuracy, precision, recall, and F1-score along with their standard 
deviations, reflecting both the average performance and consistency 
across cross-validation folds. Fig.  3(a) shows the ROC curves trend for 
binary classification models, highlighting that all models provide strong 
discriminative power, with AUC scores above 0.86. Random Forest 
achieves the highest AUC (0.982), with its curve indicating excellent 
true positive rates across all false positive rate thresholds. The steep ini-
tial rise of the Random Forest curve demonstrates its ability to identify 
vulnerable contracts with minimal false positives. Gradient Boosting 
and MLP show similar performance trajectories with AUC scores of 
0.966 and 0.969, respectively. Logistic Regression and SVM exhibit 
more gradual curves reflecting their lower discriminative power. These 
ROC curve patterns align with the performance metrics presented in 
Table  3. Random Forest tuned with None limit of tree’s depth, 2 
samples for node split, and with 200 number of trees, outperforms 
the others, achieving the highest values across all metrics, indicating 
it offers the best balance between detecting vulnerable contracts and 
minimising false positives.

However, most models exhibit low precision, particularly Logis-
tic Regression, SVM, MLP, and Gradient Boosting, which suggests a 
tendency to overpredict the majority class (non-vulnerable contracts). 
While this aligns with our priority of maximising recall to ensure 
vulnerable contracts are not missed, it leads to an increased rate of false 
positives.



G. Ibba et al. Machine Learning with Applications 22 (2025) 100759 
Table 2
Key hyperparameters tuned for each model.
 Model Hyperparameter Description  
 
Logistic Regression

C Inverse of regularisation strength; controls trade-off between 
training error and model complexity.

 

 Penalty Type of regularisation: L1 (sparse models), L2 (prevents large 
coefficients), Elasticnet (combines both).

 

 Solver Optimisation algorithm; affects convergence and efficiency.  
 
Gradient Boosting

n_estimators Number of boosting stages; more can increase capacity but may 
overfit.

 

 Learning_rate Shrinks the contribution of each tree, controlling the learning rate.  
 Max_depth Limits tree complexity; deeper trees may overfit.  
 Min_samples_split Minimum samples for node split; prevents overfitting.  
 
Random Forest

n_estimators Number of trees; more trees improve performance but increase cost. 
 Max_depth Limits tree depth, balancing complexity and overfitting.  
 Min_samples_split Similar to Gradient Boosting; controls node formation.  
 

Support Vector Machine

C Regularisation parameter; it controls the trade-off between 
achieving a low training error and a low testing error that is, the 
ability to generalise.

 

 Loss Loss function; ‘‘squared_hinge’’ penalises violations more strongly 
than regular hinge loss.

 

 Dual Determines whether to solve the dual or primal optimisation 
problem.

 

 Penalty Specifies the norm used in the penalisation, with ‘‘l2’’ being the 
standard Euclidean norm.

 

 Tol Sets the tolerance for stopping criteria, determining the precision of 
the solution.

 

 max_iter Defines the maximum number of iterations for the solver to 
converge.

 

 
Multilayer Perceptron

hidden_layer_sizes Specifies the number and size of hidden layers in the neural 
network, determining the model’s complexity and capacity to learn.

 

 Activation Defines the non-linear function applied to the weighted sum of 
inputs at each neuron, affecting how information flows through the 
network.

 

 Alpha Controls the strength of L2 regularisation (weight decay) applied to 
the weights, helping to prevent overfitting.

 

Table 3
Performance metrics for binary classification models (Test/Training).
Model AUC Accuracy Precision Recall F1-Score
Logistic Regression 0.868 0.879 ± 0.000746 / 0.803 0.281 ± 0.00104 / 0.865 0.720 ± 0.00651 / 0.717 0.404 ± 0.00158 / 0.784
Gradient Boosting 0.966 0.951 ± 0.000904 / 0.954 0.549 ± 0.00621 / 0.565 0.840 ± 0.00321 / 0.854 0.664 ± 0.00462 / 0.680
SVM 0.867 0.893 ± 0.000940 / 0.892 0.307 ± 0.00233 / 0.305 0.695 ± 0.00597 / 0.693 0.426 ± 0.00284 / 0.424
MLP 0.969 0.936 ± 0.00271 / 0.941 0.468 ± 0.0119 / 0.494 0.896 ± 0.00610 / 0.931 0.615 ± 0.00918 / 0.645
Random Forest 0.982 0.977 ± 0.000248 / 0.993 0.780 ± 0.00270 / 0.981 0.837 ± 0.00503 / 0.969 0.808 ± 0.00238 / 0.943
 
(a) Binary Classification

  
(b) Multilabel Classification

 

Fig. 3. ROC curves trend for binary and multilabel vulnerability detection classifiers.
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Fig. 4. Metrics distribution after bootstrap validation on random forest for binary classification.
The low standard deviations across all metrics indicate that the 
models are stable in their performance.

To assess the generalisation capability of our best-performing model 
(Random Forest), we employed a bootstrap validation procedure (Davi-
son & Hinkley, 1997). This method involved 1000 iterations of resam-
pling with replacement from our test set, followed by model evaluation 
on each resampled dataset. We computed key performance metrics—
accuracy, precision, recall, F1-score, and AUC—for each iteration, en-
abling us to estimate both the central tendency and variability of model 
performance.

The resulting distributions, presented in Fig.  4, reveal consistently 
high performance across all metrics. The model demonstrates stability 
in accuracy (centred at 0.9775) and AUC (centred at 0.9825), as 
evidenced by their narrow distributions. While precision and recall 
show slightly wider distributions, centred at 0.782 and 0.838, respec-
tively, they still indicate robust performance. The F1-score, balancing 
precision and recall, centres around 0.809. In addition to evaluating 
performance metrics, we considered the out-of-sample percentage in-
herent in the bootstrap validation process. Since each bootstrap sample 
is drawn with replacement, approximately 37% of the test set instances 
are left out of each resampled dataset on average (often referred as 
out-of-bag samples) (Efron, 1992). These out-of-bag samples instances 
provide an additional layer of evaluation for the model, mimicking 
unseen patterns and further challenging the generalisation capabilities 
of our Random Forest model. By estimating both the central tendency 
and variability of the metrics across the 1000 bootstrap iterations, we 
observed consistent performance and demonstrated the robustness of 
the model against out-of-bag variation. These results provide statistical 
evidence of our model’s reliable and generalisable performance in 
identifying vulnerable smart contracts.

To further validate the outcome, we compared our best-performing 
model with a dummy classifier, which served as a baseline model. 
Our dummy model was evaluated employing the ‘‘stratified’’ strategy, 
respecting the training set’s class distribution, and returned 0.49 in 
accuracy, 0.05 in precision, 0.49 in recall, and 0.10 in f1-score, and 
its AUC value floats around 0.49. The Random Forest model signifi-
cantly outperforms the dummy classifier across all metrics, with higher 
accuracy (0.9772 vs. 0.4997), precision (0.7808 vs. 0.0564), recall 
(0.8361 vs. 0.4934), F1-score (0.8075 vs. 0.1013), and AUC (0.9825 
vs. 0.4967) demonstrating that the Random Forest model effectively 
captures predictive patterns in the dataset, far exceeding the baseline 
performance of random guessing or majority class prediction.
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6. Smart contract vulnerability detection using multilabel classi-
fication

Our initial approach identified whether a smart contract was vul-
nerable but did not specify the types of vulnerabilities. To address 
this gap, we reformulated the experiment as a multi-label classifi-
cation problem, where each type of vulnerability was treated as a 
distinct label, allowing for more detailed identification and capturing 
feature relevance across all vulnerability types while still allowing 
for label-specific feature selection. Aligning with the binary classifi-
cation task, we considered exclusively high and medium impacting 
vulnerabilities, filtering out, information reports, optimisation advice, 
and low-impact exposures. This filtering process outcome retains 33 
different vulnerabilities.

First, we independently applied the principle of adaptive LASSO to 
each label while maintaining a unified feature space across all labels. 
We examined the feature importance for each class, observing that 
‘‘No. of Parameters’’ consistently ranked high across multiple vulner-
abilities, suggesting its importance in predicting various vulnerability 
types. ‘‘Cyclomatic Complexity ’’ and ‘‘ No. of Functions’’ also show strong 
predictive power across many categories. Some features exhibit high 
importance for specific vulnerabilities while being less significant over-
all. A significant example is the ‘‘Fan-in’’ metric, which ranks highly for 
‘‘arbitrary-send-eth’’ but shows lower general importance.

Fig.  2(b) shows the aggregated feature importance, providing an 
overview of predictor relevance. The top five features are ‘‘No. of 
Parameters’’, ‘‘Cyclomatic Complexity ’’, ‘‘Local Variable Count ’’, ‘‘Fan-
Out ’’, and ‘‘No. Of Raw Lines’’. This confirms our previous findings, 
suggesting that function complexity and structure are key indicators 
of vulnerability. ‘‘CBC ’’ (Coupling Between Contracts), and ‘‘No. of 
Functions’’, are identified as important predictors.

This approach balances general predictive power with vulnerability-
specific indicators. The results show the importance of considering 
multiple metrics in vulnerability analysis, as different code properties 
contribute variously to different types of vulnerabilities.

6.1. Data preprocessing

In this analysis, we focused only on contracts identified as vul-
nerable, replacing the column reporting the vulnerability exposing 
the sample with 33 new columns (one for each vulnerability), each 
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representing a specific vulnerability type (1 indicating the presence of a 
specific vulnerability, 0 indicating its absence). This approach provided 
a more granular understanding of the vulnerabilities present in the 
contracts.

Given that our dataset encompassed samples exposed to vulnera-
bilities categorised according to varying degrees of impact, we imple-
mented a strategic filtering process: we retained only those vulnera-
bilities classified as having high or medium impact, as these repre-
sent the most severe potential consequences for smart contracts. This 
methodological decision aligns with the principle of prioritising secu-
rity concerns that pose the greatest risk, allowing us to concentrate our 
predictive efforts on vulnerabilities that could significantly compromise 
contract integrity, functionality, or user assets.

In our dataset, we also have vulnerabilities that we can classify as 
rare vulnerabilities. These are the vulnerabilities less represented in 
our dataset, such as ‘‘msg-value-loop’’, ‘‘unchecked-send’’, and ‘‘mapping-
deletion’’, counting respectively 10, 32, and 44 samples. We decided 
not to exclude these rare vulnerabilities from our dataset for the 
classification task. This choice was driven by the need to evaluate 
our models’ performance across the entire spectrum of vulnerability 
types, including those infrequently encountered. By including these 
rare instances, we aimed to assess the robustness and generalisability 
of our predictive models in handling imbalanced data characteristics 
inherent in real-world vulnerability distributions. This approach allows 
us to observe how model performance varies across common and rare 
vulnerability types, providing insights into potential limitations and 
areas for improvement.

We maintained the data preprocessing methods described earlier, 
including grid search with K-Fold stratified cross-validation for hyper-
parameter optimisation. We used KFold stratified cross-validation with 
random splits to assess the model’s generalisation to unseen held-out 
data, and while rare cases may be unevenly distributed across folds, 
this approach simulates real-world conditions.

Since SMOTE is not directly compatible with multi-label data, we 
handled class imbalance by assigning weights to classes based on their 
prevalence to ensure that minority classes were adequately considered 
during model training, which helps reduce the risk of overfitting and 
preserves the integrity of the original data distribution.

We kept our original model selection and we expanded our hyperpa-
rameter search to include: ‘‘max_features’’ for Random Forest and Gra-
dient Boosting, controlling the number of features considered for split-
ting, which helps manage overfitting; ‘‘subsample’’ for Gradient Boost-
ing, determining the fraction of samples used for training each tree, 
aiding in variance reduction. For Multilayer Perceptron we added the 
learning rate schedule (‘‘constant ’’ vs. ‘‘adaptive’’), which adjusts how 
quick the model learns. In contrast, ‘‘max_iter ’’ and ‘‘early_stopping ’’, 
balance training thoroughness with overfitting prevention. Finally, we 
added the ‘‘solver ’’ choice (‘‘adam’’ vs. ‘‘sgd’’), affecting optimisation 
strategy and convergence speed. These additions allowed for finer 
control over model complexity, generalisation capability, and training 
dynamics, considering the complexity given by the reformulation of the 
problem as a Multilabel classification task.

6.2. Multi-label classification results

The classifier performances are presented in Table  4, with ROC 
curves shown in Fig.  3(b). The ROC curves reveal important perfor-
mance patterns through micro-average (solid lines) and macro-average 
(dashed lines) comparisons. SVM and MLP showed significant gaps 
between micro and macro-average AUC, indicating poor performance 
with rare vulnerabilities. Similarly, Logistic Regression exhibited a 10% 
gap, suggesting inadequate prediction of less common vulnerabilities. 
Random Forest emerged as the top performer, showing minimal micro-
macro AUC gap and achieving the highest overall metrics (AUC: 0.951, 
accuracy: 0.729, F1-score: 0.839). Its balanced precision (0.890) and 
recall (0.839) demonstrate robust vulnerability detection capabilities. 
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While low standard deviations indicate good stability, a 0.2 difference 
between training and testing accuracy suggests some overfitting, partic-
ularly challenging given our 33 distinct vulnerability labels. Gradient 
Boosting showed strong AUC (0.927) and precision (0.909) but dis-
played higher variability in accuracy and F1-score. Logistic Regression 
and SVM, despite high precision, showed limited practical utility due 
to low recall and accuracy. MLP demonstrated moderate but stable 
performance across metrics.

The bootstrapping validation shown in Fig.  5 demonstrates the 
Random Forest model’s robustness and generalisability. As discussed 
in the binary classification results 5.4, the out-of-bag samples pro-
vide an additional layer of evaluation, ensuring that the model is 
continuously evaluated on unseen vulnerable patterns. The narrow 
distributions across all metrics, particularly the high and stable AUC, 
indicate that our multilabel classifier performs consistently well across 
different subsets of the data. The slight discrepancy between precision 
and recall distributions suggests a potential area for fine-tuning. Ad-
justing the model to improve recall without significantly sacrificing 
precision could enhance overall performance, especially for detecting 
rarer vulnerability types.

Similarly to the binary classification problem, we compared the 
performances of our best model with a dummy classifier. Again, our 
best-performing model (Random Forest), outclasses the dummy classi-
fier across all metrics in our multilabel classification task. The Random 
Forest achieves substantially higher accuracy (0.729 vs. 0.015), pre-
cision (0.890 vs. 0.147), recall (0.794 vs. 0.143), F1-score (0.839 vs. 
0.145), and AUC (0.9508 vs. 0.5004), and this large gap demonstrates 
that the Random Forest model effectively captures complex patterns in 
the dataset, far exceeding the baseline performance of random guessing 
or stratified prediction strategies.

The Random Forest model demonstrates varied performance across 
different vulnerability types, as outlined in Table  7. This table presents 
a subset of results for brevity; the full dataset is available in our 
replication package.4 It shows strong performance for common vulnera-
bilities like ‘‘reentrancy-eth’’ (F1-score: 0.945) and ‘‘tx.origin’’ (F1-score: 
0.895). However, it struggles with rare or complex vulnerabilities 
such as ‘‘suicidal’’, and ‘‘msg-value-loop’’, failing to detect these en-
tirely (F1-scores of 0). The model’s performance on vulnerabilities 
like ‘‘unchecked-send’’ (F1-score: 0.2) and ‘‘controlled-array-length’’ (F1-
score: 0.286) indicates challenges in balancing precision and recall 
for less frequent issues. High AUC scores (often > 0.95) for most 
vulnerabilities suggest good overall discriminative power, even when 
F1-scores are lower. These results highlight the model’s effectiveness 
for common vulnerabilities but also reveal limitations in handling rare 
or complex cases.

Answer to RQ2: The random forest model demonstrated its 
significant effectiveness in discriminating between vulnerable 
and non vulnerable contracts, achieving an AUC score of 
0.982, accuracy of 0.977, precision of 0.780, recall of 0.837, 
and F1-score of 0.808. The random forest model also out-
classed the other models in the multilabel classification task, 
achieving the highest performance metrics, with an AUC of 
0.951, accuracy of 0.729, precision of 0.890, recall of 0.794, 
and an F1-score of 0.839, indicating overall robust predictive 
capabilities.

7. Topic modelling-based classification for vulnerability detection

Building on the limitations identified in the previous section regard-
ing traditional classifiers, we explored the potential of topic modelling 
techniques to enhance vulnerability classification in smart contracts. 

4 https://figshare.com/s/5d0129e78d0cf0c61274

https://figshare.com/s/5d0129e78d0cf0c61274
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Table 4
Performance metrics for multilabel classification models (Test/Training).
Model AUC Accuracy Precision Recall F1-Score
Logistic Regression 0.833 0.153 ± 0.00648 / 0.159 0.686 ± 0.0201 / 0.694 0.189 ± 0.00549 / 0.187 0.296 ± 0.00818 / 0.295
Gradient Boosting 0.927 0.606 ± 0.209 / 0.672 0.909 ± 0.206 / 0.953 0.659 ± 0.00772 / 0.717 0.764 ± 0.113 / 0.818
SVM 0.702 0.136 ± 0.00537 / 0.141 0.739 ± 0.0173 / 0.748 0.153 ± 0.00582 / 0.154 0.254 ± 0.00890 / 0.255
MLP 0.748 0.571 ± 0.00772 / 0.598 0.848 ± 0.00789 / 0.886 0.642 ± 0.00900 / 0.662 0.731 ± 0.00634 / 0.758
Random Forest 0.951 0.729 ± 0.00542 / 0.955 0.890 ± 0.00504 / 0.964 0.794 ± 0.00651 / 0.996 0.839 ± 0.00551 / 0.980
Fig. 5. Metrics distribution after bootstrap validation on random forest for multilabel classification.
pecifically, we employed Latent Dirichlet Allocation (LDA) and Non-
egative Matrix Factorisation (NMF) to introduce a semantic dimension 
o our analysis.
LDA is a probabilistic model that assumes each document (in this 

ase, each smart contract) is a mixture of topics, with each topic 
omprising a distribution of words. This model excels at discovering 
he multi-topic nature of contracts and provides interpretable results 
hrough topic probabilities. NMF is a matrix factorisation technique 
hat decomposes the document-term matrix into two non-negative 
atrices, reflecting document-topic and topic-term associations, and 
s effective in identifying distinct, non-overlapping components within 
he data.
Topic distributions can be used as additional features in machine 

earning classifiers, helping to identify semantic similarities between 
ontracts that may indicate shared vulnerabilities.

.1. Source code preprocessing

We extract function source code from smart contracts and prepro-
ess it through several steps. The process includes text normalisation by 
emoving whitespace and punctuation, splitting camel case and snake 
ase identifiers, and applying custom tokenisation. This involves filter-
ng tokens by length and excluding those starting with underscores. The 
reprocessed data was then used to construct a term dictionary and 
 document-term matrix, capturing the lexical variety and frequency 
atterns in the smart contract codebase.

.2. Topic model evaluation

We conducted a grid search to optimise LDA topic modelling using 

ensim’s LdaMulticore with the following configuration: 100 passes 
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through the corpus, chunk size of 100 documents for batch process-
ing, and asymmetric alpha to allow topics to have different prior 
weights. The model used 100 iterations for convergence assessment, 
with random state fixed at 100 for reproducibility. Cross-validation 
stability was ensured through consistent random seeds across all model 
configurations. We tested topics from 5 to 45 in 5-step increments and 
n-grams from 1 to 4, which range was selected to balance granularity 
with specificity: 15 topics provided a baseline for broad themes, while 
45 topics allowed exploration of finer patterns within our 33 distinct 
vulnerabilities. Our n-gram selection (1 to 4) was based on practical 
constraints. Topic modelling effectiveness diminishes with higher n-
gram sizes due to increased sparsity and reduced generalisability. We 
chose quadgrams as the upper limit due to our dataset’s contextual 
nature and size—analysing only vulnerable samples’ function source 
code meant larger n-grams would offer minimal benefits while in-
creasing computational costs. We evaluated LDA models using the c_v 
coherence score, which measures semantic similarity between high-
scoring words in topics. By plotting coherence scores against topic 
counts, we identified optimal configurations balancing detail with in-
terpretability. The model with the highest coherence score was selected 
for further analysis. For NMF, we employed a parallel evaluation 
strategy using scikit-learn’s TfidfVectorizer, maintaining the same topic 
and n-gram ranges, and by employing default convergence criteria 
(tolerance of 1𝑒−4, maximum 200 iterations). The NMF algorithm em-
ployed coordinate descent solver with beta_loss set to ‘‘frobenius’’ for 
standard squared loss minimisation. We selected the optimal NMF 
model based on reconstruction error, which measures how accurately 
the model represents the original data. Lower errors indicated better 
fit and more precise topic representation. For both approaches, we 
extracted topic distributions per document to support subsequent anal-
ysis. Visualisation of model performance across parameters informed 
our selection process, optimising for interpretability, coherence, and 

minimal reconstruction error while maintaining model stability.
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Table 5
Selected sample of the extracted topics by the LDA and NMF models.
 Model Top words Semantic interpretation Key Vulnerabilities  
 LDA send, eth, fee, back, balance Financial transfer operations Reentrancy, unchecked sends, ETH transfer issues  
 LDA price, order, reward, storage, seller Market and storage logic State manipulation, price oracle attacks  
 LDA spend, nonce, supplyburn, variable, burninstead Token supply and burn Front running, access control  
 LDA great, botbotuniswap, wallet, uniswaprouter, seconduniswap Wallet and DEX operations Front running, reentrancy, price oracle attacks  
 LDA trading, open, liquidityeth, trading, uniswaprouter Trading control and liquidity MEV attacks, liquidity manipulation  
 LDA tokend, nexttokend, previoustokend, ownership, approval Token ownership and management Access control  
 LDA time, raise, beneficiary, invest, amount Crowdsale and ICO mechanics Timestamp dependence, investment fraud patterns  
 LDA shareholder, fee, share, feebuy, feesell Fee distribution Fee manipulation  
 LDA uniswap, great, takefee, trading, open Uniswap trading and fees DEX manipulation, fee manipultation  
 LDA result, receive, profit, player, winner Gaming and gambling logic Randomness manipulation, unfair game mechanics, timestamp dependence 
 NMF tokenamount, unavoidable, slippage, ethamount, liquidity Slippage and liquidity provision Slippage attacks, reentrancy  
 NMF fees, swapping, selltotalfees, buytotalfees, transfer Buy/sell fee systems Fee manipulation, reentrancy  
 NMF tokenid, preownershipaddr, address, owner, msgsender ERC721 ownership tracking Access control, NFT transfer issues  
 NMF path, address, amounttoliquify, amounttoswap, amountethliquidity DEX operations Path manipulation, reentrancies  
 NMF preownershippacked, balance, tokenid, slot, burned NFT gas optimisation (ERC721A) Gas griefing, DoS, access control  
 NMF spender, approveaddress, allowedmsgsenderspender, value ERC20 transfer Access control, reentrancy  
 NMF tokenamount, ethamount, addliquidityuint, local, blocktimestamp Liquidity timing and MEV MEV exploitation, time dependency, front running, reentrancy  
 NMF percent, frequencyinseconds, enabled, set, percentforlpburn Automatic liquidity pool burn Front running, DoS  
 NMF rewards, valutapproverewards, strategist, vault, keeper Yield farming vault Access control, reentrancy, DoS  
 NMF newvotes, ncheckpoints, oldvotes, blocknumber, votes Voting system DoS, time dependency bugs, access control  
7.3. Topics interpretability and semantic relevance for vulnerability detec-
tion

To assess the interpretability and validate their relevance for our 
vulnerability detection task, we manually examined the topics ex-
tracted from both LDA and NMF models through semantic analysis. 
Both LDA and NMF extracted semantically meaningful topics, that 
represent several design patterns of smart contract functionalities.

Table  5 highlights a selected sample of topics from both the NMF 
and LDA models, outlining the semantic coherence between discovered 
topics and vulnerability classes. The correlation between these topics 
and specific vulnerabilities reflects the implementation of specific de-
sign patterns. Topics including financial transfer operations (‘‘send’’, 
‘‘eth’’, ‘‘fee’’, ‘‘transfer’’, ‘‘balance’’) directly correlate with reentrancy 
vulnerabilities, because such patterns often involve external calls with-
out proper state protection, creating preconditions exploited in attacks 
like the infamous DAO incident.

Market and storage logic topics (‘‘price’’, ‘‘order’’, ‘‘storage’’) cor-
relate with oracle manipulation vulnerabilities as they include code 
structures dependent on external stat that can be artificially influ-
enced through loans or coordinated market actions. Moreover, storage 
logic topics, could include timing mechanisms that could introduce 
time-dependency and manipulation vulnerability patterns.

Trading and liquidity management topics align with Maximal Ex-
tractable Values (MEV) attacks, since they represent the exact patterns 
that automated extraction bots target for front-running and sandwich 
attacks.

The gaming logic topic extracted by the LDA model correlate with 
randomness manipulation. In fact, blockchain gaming patterns are 
based on predictable data sources on the chain. ERC721 ownership top-
ics correlate with the access control vulnerabilities, as they capture the 
authentication patterns where msg.sender versus tx.origin confusion 
commonly occurs. Similarly, ERC20 management logic topics, align 
with race condition and access control vulnerabilities since they rep-
resent the approve/transferFrom mechanism exposed to front-running 
vulnerabilities.

Automatic liquidity pool burn mechanisms represent systematic 
token destruction processes designed to reduce circulating supply and 
increase token value. These contracts include percentage-based burning 
logic with time-frequency controls. The semantic patterns captured 
(‘‘frequencyinseconds’’, ‘‘enabled’’, ‘‘percentforlpburn’’) correlate with 
front-running vulnerabilities because attackers can monitor pending 
burn transactions and execute trades before burn events affect to-
ken prices. DoS vulnerabilities may emerge when burn mechanisms 
consume excessive gas or create bottlenecks in contract execution.

Wallet and Decentralised exchange (DEX) operations related topics 
encompass DEX interactions, market maker protocols, and external wal-
let integrations. These patterns involve state transitions across multiple 
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contracts and external calls to swap, add liquidity, and manage token 
reserves. The correlation with front-running, reentrancy, and price ora-
cle attacks stems from the predictable nature of these operations where 
attackers can observe pending transactions and manipulate prices or 
exploit state inconsistencies during multi-step processes.

Yield farming vault systems implement investment strategies where 
users deposit tokens to earn rewards through various DeFi (decen-
tralised finance) protocols. These contracts manage user deposits, cal-
culate rewards, and execute withdrawal mechanisms involving multiple 
external protocols. The semantic clustering around vault management 
correlates with access control vulnerabilities through privileged role 
management, reentrancy risks from external protocol interactions, and 
DoS vectors through reward calculation processes.

Voting system patterns capture governance mechanisms where to-
ken holders participate in protocol decisions through weighted voting 
based on token holdings or delegation. These systems track vote counts, 
manage proposal states, and implement time-based voting periods. The 
correlation with DoS, time dependency, and access control vulnerabili-
ties arises from the computational demands of vote tallying, timestamp-
dependent voting windows, and manipulation of voting power through 
various attack vectors.

7.4. Qualitative analysis — relationships between vulnerabilities and topics

Our dataset encompasses vulnerabilities with varying degrees of 
semantic detectability through topic modelling. This analysis exam-
ines why certain vulnerabilities correlate with extracted topics while 
others remain challenging to detect through semantic patterns alone. 
Reentrancy vulnerabilities demonstrate strong correlation with finan-
cial transfer topics. These vulnerabilities involve external calls using 
specific functions (‘‘call’’, ‘‘send’’, ‘‘transfer’’) and appear within fee 
management and liquidity patterns. The semantic clustering of terms 
like ‘‘send’’, ‘‘transfer’’, ‘‘call’’, and ‘‘balance’’ captures the code con-
structs where reentrancy occurs. Consider the following vulnerable 
pattern:

Listing 4: Reentrancy vulnerability example
1 function withdraw(uint amount) public {
2 require(balances[msg.sender] >= amount);
3 // external call
4 msg.sender.call{value: amount}( " " );
5 // state change after call
6 balances[msg.sender] -= amount;
7 }

The code snippet 4 exhibits the reentrancy vulnerability through 
a violation of the check-effects interaction pattern: the state update 
occurs after the external call. The call function forwards all available 
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gas to the recipient, enabling an attacker to recursively invoke withdraw
before the balance update completes, thereby draining the contract. 
The topic model identifies this pattern through the co-occurrence of 
financial terms (‘‘call’’, ‘‘eth’’, ‘‘send’’) with balance management terms 
(‘‘balance’’, ‘‘amount’’, ‘‘fee’’), which appear in our LDA and NMF 
financial transfer topics. The topic model captures this vulnerability 
pattern by identifying the co-occurrence of external value transfers with 
balance management operations—contracts containing both seman-
tic elements receive high probabilities for reentrancy-related topics, 
enabling detection without explicit control flow analysis.

The ‘‘tx.origin’’ vulnerability included in our dataset involves using 
the ‘‘tx.origin’’ address (it identifies the original address that sent 
the transaction) for authorisation, which can be exploited for phish-
ing attacks. Using these Solidity feature for authorisation, creates se-
mantic detectable patterns (e.g. ‘‘tx.origin’’, ‘‘owner’’, ‘‘sender’’ around 
transaction origin checking). The following example showcases the 
vulnerability issue: 

Listing 5: tx.origin vulnerability example
1 function transferOwnership(address

newOwner) public {
2 // vulnerable: uses tx.origin
3 require(tx.origin == owner);
4 owner = newOwner;
5 }

The vulnerability 5 arises from the semantic distinction between
tx.origin and msg.sender. While tx.origin refers to the externally owned 
account that initiated the transaction chain, msg.sender identifies 
the immediate caller. An attacker can exploit this distinction by writ-
ing a malicious contract that, when invoked by the owner, subse-
quently calls transferOwnership. The authorisation check, passes because
tx.origin remains the owner despite the malicious contract being 
the immediate caller. Secure implementations employ msg.sender
for authorisation, which correctly identifies the immediate calling con-
text. Topic models detect this vulnerability through the presence of 
‘‘tx’’, ‘‘origin’’, ‘‘owner’’, and ‘‘sender’’ terms, which appear in our token 
ownership and management topics. The distinction between secure 
and vulnerable code manifests in the specific term ‘‘tx.origin’’ versus 
‘‘msg.sender’’, both of which the topic model captures through its 
vocabulary distribution.

Vulnerabilities due to bad randomness generation, which in our 
dataset are identified as ‘‘weak-prng’’ correlate with topics containing 
‘‘hash’’, ‘‘timestamp’’, ‘‘blocktimestamp’’, and ‘‘block’’ terms. These ex-
posures, rely on the deterministic nature of blockchain data sources 
used for pseudorandomness. Gaming and crowdsale topics capture 
these patterns since they frequently require randomness for fair distri-
bution or outcome determination. The following code snippet demon-
strates this vulnerability in a gambling context:

Listing 6: Weak pseudorandom number generation in gambling
1 function playLottery() public payable {
2 require(msg.value == 1 ether);
3 uint random = uint(keccak256(abi.

encodePacked(
4 block.timestamp , block.difficulty)))

if (random < 10) { // 10 payable(
msg.sender).transfer(address(this).
balance);

5 }
6 }

The vulnerability 6 originates from the predictability of the entropy 
sources: block.timestamp can be influenced by miners within certain 
bounds, while block.difficulty adjusts predictably according to the net-
work hash rate. An attacker (possibly with mining capabilities), can 
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manipulate these values to predict or influence the random outcome, 
thereby subverting the intended fairness of the lottery. Secure im-
plementations employ external oracles (such as Chainlink VRF) that 
provide verifiable randomness from off-chain sources. The topic model 
identifies this pattern through terms like ‘‘timestamp’’, ‘‘block’’, ‘‘hash’’, 
‘‘random’’, ‘‘player’’, and ‘‘winner’’, which appear in our gaming and 
gambling logic topics. Contracts employing external oracles produce 
different topic distributions containing terms like ‘‘oracle’’, ‘‘chainlink’’, 
or ‘‘vrf’’, enabling the model to distinguish between vulnerable and 
secure randomness generation approaches through different semantic.

Vulnerabilities involving ‘‘unchecked-transfer’’ occur within transfer 
operations but may require understanding control flow beyond seman-
tic content. These vulnerabilities appear in ERC20 token transfer topics 
but depend on both missing error handling and semantic patterns, 
creating ambiguous detection signals. The Example 7 showcases the 
issue:

Listing 7: Unchecked transfer return value example
1 function distributeTokens(address[] memory

recipients , uint amount) public {
2 for (uint i = 0; i < recipients.length;

i++) {
3 token.transfer(recipients[i], amount);

// return value not checked
4 ownership[recipients[i]] = true;
5 }
6 }

Specific ERC20 token implementations return false to notify trans-
fer failure rather than reverting execution. When the return value 
remains unchecked, failed transfers do not halt execution, resulting 
in incorrect state updates (in this case, granting ownership despite 
transfer failure). Secure implementations either verify the return value 
explicitly or employ SafeERC20 wrapper libraries that revert on failure. 
The topic model captures terms like ‘‘transfer’’, ‘‘token’’, ‘‘ownership’’, 
‘‘approval’’, which appear in our token ownership and management 
topics. However, detection complexity arises because both vulnerable 
and secure implementations employ identical vocabulary. The distinc-
tion lies in the presence or absence of error checking logic rather than 
semantically distinct patterns.

Vulnerabilities involving token management such as ‘‘arbitrary-
send-erc20’’ vulnerability intersects with token transfer topics through 
ERC20-related terminology. However, detection complexity arises be-
cause legitimate token transfers use identical semantic patterns to vul-
nerable implementations, requiring structural analysis to differentiate 
secure from insecure code.

However, our dataset also encompasses a subset of vulnerabilities 
that, given their structural rather than semantic nature, may prove 
challenging to detect with topic modelling. The vulnerability ‘‘msg-
value-loop’’ occurs within loop constructs and requires control flow 
analysis rather than semantic understanding, and it can be difficult 
for topic models to identify the iterative context that enables this 
vulnerability. The ‘‘mapping-deletion’’ represent another vulnerability 
that topic features alone may completely miss, since it involves wrong 
deletion logic, and does not rely on specific semantic patterns.

Vulnerabilities involving the management of ERC20 and ERC721 
tokens, may introduce false positives and negatives in our analysis. 
Topic models identify semantic patterns, but many implementations 
(such as OpenZeppelin) use established libraries that are secure. The 
presence of semantic patterns related to these exposures does not 
necessarily indicate vulnerability, creating semantic ambiguity.

7.5. Results — employing topics as additional features

After extracting topic distributions, we augmented our dataset with
K additional features, where K is the number of topics identified. To 
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Table 6
General performance metrics for random forest with topic modelling (Test/Training).
Model AUC Accuracy Precision Recall F1-Score
RF 0.951 0.730 ± 0.00542 / 0.956 0.890 ± 0.00504 / 0.964 0.794 ± 0.00651 / 0.995 0.840 ± 0.00551 / 0.980
RF with NMF 0.986 0.785 ± 0.00484 / 0.974  0.961 ± 0.00344 / 0.988 0.814 ± 0.00624 / 0.989 0.881 ± 0.00410 / 0.988
RF with LDA 0.955 0.789 ± 0.00294 / 0.952 0.903 ± 0.00417 / 0.962 0.802 ± 0.01011 / 0.998 0.849 ± 0.00626 / 0.980
Table 7
Comparison of standard random forest vs. topic modelling enhanced approaches.

Vulnerability Standard Random forest Random forest + LDA Random forest + NMF
AUC Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score

arbitrary-send-erc20 0.981 0.833 ± 0.059 0.641 ± 0.067 0.725 ± 0.066 0.970 0.920 ± 0.023 0.451 ± 0.044 0.605 ± 0.031 0.979 1.000 ± 0.000 0.451 ± 0.044 0.622 ± 0.039
suicidal 0.656 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.484 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.997 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
uninitialised-state 0.946 0.843 ± 0.045 0.708 ± 0.044 0.770 ± 0.033 0.954 0.912 ± 0.023 0.687 ± 0.019 0.784 ± 0.018 0.977 1.000 ± 0.012 0.584 ± 0.036 0.738 ± 0.030
arbitrary-send-erc20-permit 1.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
controlled-delegatecall 0.997 0.897 ± 0.029 0.788 ± 0.063 0.839 ± 0.047 0.967 0.933 ± 0.022 0.800 ± 0.102 0.862 ± 0.068 1.000 0.960 ± 0.000 0.686 ± 0.072 0.800 ± 0.047
reentrancy-eth 0.994 0.972 ± 0.003 0.920 ± 0.005 0.945 ± 0.004 0.995 0.983 ± 0.007 0.932 ± 0.009 0.957 ± 0.008 0.997 0.992 ± 0.001 0.932 ± 0.010 0.961 ± 0.006
reentrancy-no-eth 0.969 0.850 ± 0.017 0.720 ± 0.018 0.761 ± 0.016 0.971 0.850 ± 0.011 0.720 ± 0.020 0.780 ± 0.016 0.978 0.842 ± 0.029 0.758 ± 0.024 0.798 ± 0.023
tx-origin 0.992 0.902 ± 0.026 0.889 ± 0.030 0.895 ± 0.016 0.991 0.894 ± 0.026 0.884 ± 0.014 0.889 ± 0.016 0.995 0.963 ± 0.004 0.907 ± 0.025 0.934 ± 0.013
unchecked-transfer 0.962 0.750 ± 0.015 0.616 ± 0.031 0.677 ± 0.023 0.964 0.851 ± 0.025 0.639 ± 0.046 0.730 ± 0.039 0.988 0.923 ± 0.013 0.676 ± 0.032 0.781 ± 0.024
weak-prng 0.958 0.852 ± 0.095 0.511 ± 0.018 0.639 ± 0.020 0.969 0.857 ± 0.061 0.444 ± 0.122 0.585 ± 0.120 0.993 0.929 ± 0.079 0.481 ± 0.072 0.634 ± 0.057
unchecked-send 0.872 0.600 ± 0.389 0.111 ± 0.139 0.200 ± 0.267 0.943 1.000 ± 0.000 0.300 ± 0.098 0.462 ± 0.163 0.960 1.000 ± 0.000 0.100 ± 0.000 0.182 ± 0.000
unchecked-lowlevel 0.940 1.000 ± 0.064 0.500 ± 0.115 0.667 ± 0.091 0.931 1.000 ± 0.047 0.667 ± 0.065 0.800 ± 0.041 0.941 1.000 ± 0.000 0.444 ± 0.096 0.615 ± 0.077
msg-value-loop 0.987 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.827 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.802 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
unprotected-upgrade 0.959 0.909 ± 0.000 0.769 ± 0.192 0.833 ± 0.155 1.000 1.000 ± 0.000 1.000 ± 0.178 1.000 ± 0.135 1.000 1.000 ± 0.000 0.333 ± 0.215 0.500 ± 0.188
evaluate the predictive power of these topic-based features, we set 
up an experiment combining the topic distributions with traditional 
software metrics as input features. This approach tested the hypothesis 
that integrating topic-based features with established metrics would 
improve the classifiers’ performance.

7.5.1. Classification employing topic distributions and metrics as features
We constructed our feature set by combining topic distributions 

from medium and high-impact vulnerable contracts with their software 
metrics. Using Non-Negative Matrix Factorisation (NMF), we achieved 
a reconstruction error of 0.000100 with 45 topics and 4-grams. Latent 
Dirichlet Allocation (LDA) reached a peak coherence score of 0.61 
with 5 topics and 4-grams. For each document, we created a Topic 
Distribution column containing the topic probability vector, which we 
concatenated with software metrics for classification. Despite 5 topics 
yielding the highest LDA coherence score, we opted for 20 topics based 
on four key factors:
Stability Across N-gram Models: The 20-topic configuration main-
tained high coherence across 1-gram to 3-gram models.
Alignment with Known Vulnerability Types: This choice better 
aligned with our 33 vulnerability types.
Balance Between Specificity and Generalisability: It captured mean-
ingful patterns while avoiding overfitting to specific phrases.
Enhanced Feature Set: The larger topic count enabled detection of 
subtle vulnerability-related patterns.

The incorporation of topic distributions from LDA and NMF en-
hanced the Random Forest model’s performance across all metrics (see 
Table  6). The NMF-based model achieved the highest improvements, 
increasing precision from 0.890 to 0.961, AUC from 0.951 to 0.986, and 
recall from 0.794 to 0.814. The LDA-based model showed modest gains, 
with recall improving from 0.794 to 0.802 and F1-score from 0.839 to 
0.849. Both approaches improved overall accuracy from 0.729 to 0.79. 
While NMF achieved higher overall scores, LDA demonstrated bet-
ter generalisation potential, showing a smaller accuracy gap between 
training and testing (0.173 vs 0.189 for NMF). Both topic distribu-
tion methods reduced overfitting compared to the baseline model, as 
evidenced by decreased training-testing performance gaps.

Table  6 compares the standard Random Forest model with LDA 
and NMF-enhanced versions, showing improved accuracy and F1-scores 
across several vulnerabilities. Table  7 details performance by vul-
nerability type. The NMF model significantly improved detection of 
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‘‘unchecked-transfer ’’ vulnerabilities (F1-score: 0.781 vs. 0.677 base-
line), while LDA showed moderate improvement (F1-score: 0.730). 
Topic modelling enhanced detection rates for complex vulnerabilities 
while maintaining performance on well-detected cases. Both ‘‘reen-
trancy’’ types showed improvements, confirming that our semantic 
clustering capture the code constructs, as formulated in our qualitative 
analysis: reentrancy-eth increased from 0.945 (RF) to 0.957 (LDA) and 
0.961 (NMF), while ‘‘‘‘reentrancy-no-eth’’ improved from 0.761 (RF) to 
0.780 (LDA) and 0.798 (NMF). However, rare vulnerabilities like ‘‘suici-
dal’’ and ‘‘msg-value-loop’’ remained undetected across all models. Some 
vulnerabilities showed mixed results: ‘‘arbitrary-send-erc20’’ decreased 
from 0.725 (RF) to 0.605 (LDA) and 0.622 (NMF), while ‘‘unprotected-
upgrade’’ improved with LDA (F1-score: 1.000) but declined with NMF 
(0.500). The ‘‘weak-prng’’ vulnerability showed slight decreases (0.639 
RF, 0.585 LDA, 0.634 NMF). Despite theoretical expectations that 
timestamp and randomness-related semantic patterns would aid detec-
tion, these terms appear frequently across many contract types, creating 
semantic noise rather than discriminative signals. This demonstrates 
that semantic ubiquity can reduce topic modelling effectiveness even 
when conceptual correlations exist.

These results indicate that smart contract security requires a com-
bined approach. Topic modelling proves effective for vulnerabilities 
like ‘‘reentrancy’’ and ‘‘unchecked-transfer’’, while traditional meth-
ods better detect others like ‘‘arbitrary-send-erc20’’. In practice, teams 
should balance improved detection rates with results interpretabil-
ity, potentially combining machine learning detection with targeted 
manual reviews. However, the results also reveal that our approach 
struggles with rare vulnerabilities lacking sufficient training exam-
ples or those requiring dynamic analysis for detection. The observed 
train-test performance gaps primarily reflect the inherent challenges 
of learning from extreme class imbalance rather than conventional 
overfitting. Our dataset contains 33 vulnerability types with highly 
skewed distributions, creating a fundamental data scarcity problem 
where powerful algorithms can memorise specific patterns of rare 
classes during training but struggle to generalise the same patterns to 
unseen data. We implemented several mitigation strategies including 
balanced class weighting, constrained hyperparameters, and strati-
fied cross-validation. However, the performance gap persists because 
regularisation cannot create information that does not exist in the 
training data. The stratified cross-validation results provide the most 
reliable performance indicators, as they average across multiple train-
test partitions, with our bootstrap validation confirming result stability 
within the statistical constraints imposed by data availability.
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Answer to RQ3: The integration of topic distributions derived 
from LDA and NMF as additional features in our dataset 
showed modest improvements in multi-label classifier per-
formance for vulnerability detection. The Random Forest 
classifier, trained with NMF-based topic distributions, im-
proved the score for all metrics. The methodology showed 
particular efficacy in enhancing the detection of common vul-
nerabilities but demonstrated limited improvement for rare 
vulnerability types. These insights suggest that topic distri-
butions can contribute to more robust vulnerability detection 
models, though the overall improvement may not be uniform 
across all aspects of the classification task, considering the 
possible noise introduced by topics distribution on vulnera-
bilities that heavily rely on metrics, and the highly skewed 
distributions of the 33 vulnerabilities encompassed within our 
dataset.

8. Threats to validity

Our study faces several validity threats, which we address through 
mitigation strategies.

Internal validity. We minimised feature selection bias by em-
ploying Adaptive LASSO, which improves feature consistency in high-
dimensional datasets. To reduce model selection bias, we evaluated 
multiple classifiers representing different modelling paradigms; this 
design choice is introduced in the contributions section and discussed 
here for completeness.

External validity. While our dataset is substantial (74,225 con-
tracts), it may not capture all possible vulnerability types or con-
tract design patterns. To reduce over-representation of specific coding 
practices, we drew contracts from diverse sources (SmartBugs Cu-
rated, Smart Sanctuary, Smart Corpus). Nonetheless, results may not 
generalise to all deployment contexts.

Construct validity. Our reliance on Slither for vulnerability de-
tection introduces several methodological constraints. Static analysis 
tools operate on source code without contract execution, limiting de-
tection of runtime-dependent vulnerabilities. Comparative benchmark-
ing (Durieux et al., 2020) demonstrates that Slither’s detection accu-
racy varies substantially across vulnerability categories, with strong 
performance for reentrancy detection (88% on annotated vulnerable 
contracts) but poor performance for arithmetic vulnerabilities (0% de-
tection). Precise false positive and false negative rates for Slither across 
our 33 vulnerability types remain unquantified in existing literature, 
representing a limitation in our ground truth validation. Alternative 
tools such as Mythril, Securify, and Oyente offer complementary detec-
tion capabilities. Durieux et al. (2020) found that combining multiple 
tools detected 42% of known vulnerabilities compared to 17% for 
Slither alone, suggesting that our Slither-only labelling may underrep-
resent certain vulnerability types whilst potentially overrepresenting 
others. Cross-validation with alternative tools on a sample of contracts 
could strengthen label confidence but was beyond this study’s scope 
due to tool version incompatibility and computational constraints. 
Our filtering strategy affects dataset composition. By retaining only 
medium and high-severity vulnerabilities, we excluded low-severity 
issues representing code quality concerns rather than exploitable vul-
nerabilities. Whilst this aligns with security auditing priorities, it in-
troduces selection bias: our models cannot identify low-severity issues 
that might become exploitable through contract interactions or specific 
deployment contexts. The severity classifications themselves reflect 
Slither’s assessment framework, which may not align with all real-
world exploitation scenarios. A subset of our dataset includes manually 
verified labels (SmartBugs Curated), providing partial validation of 
Slither’s classifications for common vulnerability patterns. However, 
the majority of our 74,225 contracts rely solely on Slither’s automated 
classification. Topic modelling applies a bag-of-words assumption to 
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source code, which does not fully capture program structure. Despite 
this limitation, our empirical results show measurable improvements, 
suggesting that topics capture meaningful patterns even within this 
constraint.

Adversarial risk. In practice, attackers may attempt to evade de-
tection through obfuscation or proxy patterns. Solidity’s use of fixed 
keywords limits such attacks, but shadowing remains a potential risk 
for metric and topic-based detection. Nevertheless, more sophisticated 
altering techniques, such as using proxy patterns or indirect func-
tion calls, could circumvent both metric-based and topic-based detec-
tion. These approaches might manipulate structural metrics by dis-
tributing functionality across multiple contracts or alter semantic pat-
terns through indirection layers that shadow vulnerability-related code 
constructs from static analysis.

Model bias and representativeness. We acknowledge that model 
bias due to over-representation of certain contract types or coding 
styles in our training data could affect performance on contracts with 
different architectural patterns. This bias could manifest in reduced 
detection accuracy for contracts employing novel design patterns, alter-
native development frameworks, or domain-specific implementations 
that deviate from mainstream coding conventions. Such representa-
tional limitations underscore the importance of continuous dataset 
expansion and validation across diverse contract architectures to ensure 
robust generalisation of our vulnerability detection approach.

Semantic noise from topic modelling. Our approach faces inher-
ent limitations arising from semantic noise in topic modelling appli-
cations to source code. Both LDA and NMF techniques assume bag-
of-words representations that may be fundamentally misaligned with 
program semantics, where token sequences are governed by syntax 
rather than semantic patterns. LDA’s probabilistic assumption that 
documents represent mixtures of topics may not adequately capture 
the deterministic nature of code structures, while NMF’s non-negative 
matrix factorisation approach, though effective at identifying distinct 
patterns, can struggle with the hierarchical and syntactic relationships 
inherent in programming languages. Our empirical results demonstrate 
that while NMF-derived features provided greater performance im-
provements than LDA across most metrics, both approaches showed dif-
ferential benefits across vulnerability types. The varying effectiveness 
suggests that the semantic representations extracted by these models 
may sometimes introduce confounding signals rather than meaning-
ful abstractions, particularly for vulnerabilities that depend primarily 
on structural properties rather than lexical patterns captured through 
bag-of-words assumptions.

Limitations with rare vulnerabilities. Our approach fails for sev-
eral rare but potentially critical vulnerabilities. Vulnerabilities with 
fewer than 50 training examples (suicidal: 0 F1-score, msg-value-loop: 
0 F1-score, unchecked-send: F1-score 0.2) show near-zero detection 
rates across all configurations, including topic-enhanced models. This 
represents a fundamental limitation of supervised learning approaches 
when confronted with extreme class imbalance rather than a hyperpa-
rameter tuning issue. The inherent data scarcity problem means that 
no amount of regularisation can create information that does not exist 
in the training data. Whilst class weighting and balanced sampling 
partially address common vulnerabilities, they cannot overcome the 
statistical challenge of learning reliable decision boundaries from fewer 
than 50 positive examples distributed across 10 cross-validation folds. 
This limitation affects the external validity of our findings, as the 
model cannot generalise to rare vulnerability patterns not adequately 
represented in training data.

Conclusion validity. We mitigated class imbalance with SMOTE 
(binary classification) and class weighting (multi-label classification). 
We also used multiple performance metrics and bootstrap validation 
to test stability and robustness. Results were consistent across these 
checks, supporting the reliability of our findings.



G. Ibba et al. Machine Learning with Applications 22 (2025) 100759 
9. Future work

Our study establishes a foundation for combining software met-
rics with topic modelling in smart contract vulnerability detection, 
revealing several directions for future research.

Cross-platform evaluation and generalisability. While our
methodology demonstrates effectiveness within the Ethereum ecosys-
tem, validation across alternative blockchain platforms represents a 
critical research direction. Future work should evaluate the approach 
on other smart contract based platforms such as Solana, Cardano, and 
Hyperledger platforms, addressing the challenges of platform-specific 
programming languages and tooling ecosystems. Such cross-platform 
studies would provide empirical evidence about the transferability 
of our metrics-topic modelling framework and clarify performance 
variations across different blockchain environments.

Advanced representation learning. The limitations observed with 
traditional topic modelling suggest potential benefits from more sophis-
ticated semantic analysis techniques. Transformer-based approaches 
such as CodeBERT and GraphCodeBERT offer promising alternatives 
that could capture both structural and semantic properties of code in a 
more integrated manner. These models may address some of the noise 
issues we identified with LDA and NMF while providing more nuanced 
understanding of code semantics within syntactic constraints.

Rare Vulnerability Detection Our findings reveal fundamental 
challenges in detecting rare vulnerability classes using traditional su-
pervised learning approaches. Several critical vulnerabilities (suicidal, 
msg-value-loop, mapping-deletion) showed zero detection rates despite 
various mitigation strategies. Future research should explore alter-
native paradigms specifically designed for extreme class imbalance 
scenarios.

Focal loss and cost-sensitive learning. Focal loss (Lin et al., 2017) 
addresses class imbalance by down-weighting well-classified examples 
and focusing learning on hard cases. Unlike standard cross-entropy with 
class weights, focal loss dynamically adjusts the loss contribution based 
on prediction confidence, potentially improving rare vulnerability de-
tection. Implementation would require extending our Random Forest 
classifier to support custom loss functions or adopting gradient boosting 
frameworks that natively support focal loss.

Few-shot learning approaches. Few-shot learning techniques, par-
ticularly prototypical networks and matching networks, are designed to 
learn from limited examples by leveraging meta-learning across related 
tasks. Applied to vulnerability detection, this could involve training on 
common vulnerability types and adapting to rare ones through metric 
learning. Siamese networks could learn similarity metrics between 
code representations, enabling classification of rare vulnerabilities by 
comparing them to learned prototypes rather than requiring extensive 
training examples.

Anomaly detection frameworks. Reframing rare vulnerability de-
tection as an anomaly detection problem offers a complementary ap-
proach. One-class SVM, isolation forests, or autoencoder-based methods 
could model the distribution of secure code, flagging deviations as 
potentially vulnerable. This approach shifts from learning vulnerabil-
ity patterns (which requires many examples) to learning normality 
patterns (which can leverage the abundance of non-vulnerable code). 
Hybrid systems combining supervised classification for common vulner-
abilities with anomaly detection for rare cases represent a promising 
research direction.

Synthetic data augmentation. Program transformation techniques 
could generate synthetic vulnerable contracts by systematically intro-
ducing known vulnerability patterns into secure code. Whilst requiring 
careful validation to avoid introducing artifacts, this approach could 
provide additional training examples for underrepresented vulnerabil-
ity classes. Combining this with adversarial training might improve 
model robustness.

Integration with Deep Learning Approaches Whilst computa-
tional constraints precluded direct comparison with transformer-based 
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models such as CodeBERT or GraphCodeBERT in this study, future 
work should investigate hybrid architectures combining our inter-
pretable metric-based approach with deep learning semantic represen-
tations. Such integration could address complementary weaknesses: 
transformer models capture fine-grained semantic patterns but lack 
architectural context, whilst our metrics provide structural indica-
tors but may miss subtle implementation details. Potential integra-
tion strategies include: (1) using CodeBERT embeddings as additional 
features alongside metrics and topic distributions, (2) employing at-
tention mechanisms to weight metric importance based on learned 
code representations, or (3) developing multi-task learning frame-
works where structural metrics guide transformer attention towards 
security-relevant code regions. These approaches would require careful 
evaluation on representative dataset subsets to balance computational 
feasibility with methodological rigour.

Complete baseline comparisons. While computational constraints 
limited our comparison scope, future work should evaluate our ap-
proach against state of the art deep learning models for smart contract 
vulnerability detection. Such comparisons should include graph neural 
networks, sequence models, and ensemble methods, potentially using 
representative dataset subsets to balance computational feasibility with 
methodological rigour.

Enhanced future engineering. The interaction between structural 
metrics and semantic features warrants further investigation. Future 
studies could explore class-aware gating mechanisms, cost-sensitive 
training approaches, and alternative code representation techniques 
that better capture vulnerability-inducing patterns while minimising 
semantic noise.

Vulnerability specific feature engineering. Future research could 
explore ablation studies to isolate individual metric contributions and 
quantify their isolated predictive power across different vulnerability 
classes. This empirical validation could inform the development of 
vulnerability-specific models that optimise feature sets for particular 
security issues. Reentrancy vulnerabilities might benefit from models 
emphasising coupling and function call metrics, while access con-
trol issues could prioritise modifier-related features. Such specialised 
approaches could potentially improve detection accuracy compared 
to general-purpose classification while providing clearer insights into 
the structural patterns that predispose contracts to specific exposure 
types. Moreover, investigating class-aware feature selection techniques 
could help identify optimal metric combinations for rare vulnerability 
detection, addressing current limitations in handling underrepresented 
vulnerability classes through targeted feature engineering strategies.

Cross-Platform Evaluation and Generalisability Whilst our
methodology demonstrates effectiveness within the Ethereum ecosys-
tem, validation across alternative blockchain platforms represents an 
important research direction. Future work should evaluate the ap-
proach on other smart contract platforms such as Solana (Rust-based), 
Cardano (Plutus/Haskell), and Hyperledger Fabric (Go/Java), address-
ing the challenges of platform-specific programming languages and 
tooling ecosystems. Each platform presents distinct characteristics: 
Solana’s architecture differs fundamentally from Ethereum’s, Cardano 
employs functional programming paradigms, and Hyperledger targets 
permissioned networks with different security assumptions. Adapting 
our metrics-topic modelling framework would require platform-specific 
metric extractors, vulnerability taxonomies aligned with each plat-
form’s attack surface, and validation that topic modelling effectively 
captures semantic patterns in non-Solidity languages.

Such cross-platform studies would provide empirical evidence about 
the transferability of combining structural metrics with semantic anal-
ysis for vulnerability detection, clarifying whether performance varia-
tions reflect fundamental differences in programming paradigms, plat-
form architectures, or developer practices across blockchain ecosys-
tems.

These research directions reflect the multifaceted nature of smart 
contract security challenges, where no single approach provides com-
plete coverage across all vulnerability types and deployment contexts. 
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The immutable nature of smart contracts increases the consequences 
of security failures, making robust vulnerability detection systems es-
sential for blockchain ecosystem stability. While our study demon-
strates the value of combining structural and semantic analysis, sig-
nificant gaps remain in detecting rare vulnerabilities and ensuring 
cross-platform applicability.

10. Conclusions

10.1. Practical implementation considerations

The deployment of our vulnerability detection methodology in real-
world development environments involves several practical considera-
tions that warrant discussion:

Computational requirements: Our approach combines static anal-
ysis with topic modelling, both of which present manageable compu-
tational demands for typical smart contract auditing scenarios. Static 
analysis using tools like Slither operates efficiently on individual con-
tracts, while topic modelling represents a one-time training overhead 
that can be amortised across multiple auditing sessions. For typical 
decentralised applications (dApps) projects involving hundreds of con-
tracts, computational costs remain within practical bounds for most 
development teams.

Integration challenges: The primary barriers to adoption relate 
to dependency management rather than computational constraints. 
Smart contract analysis requires access to all external dependencies 
and library imports, which may not always be available in devel-
opment environments. Version compatibility presents another chal-
lenge, as emerging Solidity versions may introduce incompatibilities 
with existing analysis tools or require model retraining to handle new 
vulnerability patterns.

Adoption barriers: The primary barriers to adoption relate to 
dependency management rather than computational constraints. Smart 
contract analysis requires access to all external dependencies and li-
brary imports, which may not always be available in development envi-
ronments. Version compatibility presents another challenge, as emerg-
ing Solidity versions may introduce incompatibilities with existing 
analysis tools or require model retraining to handle new vulnerability 
patterns.

Workflow integration: The methodology can be integrated into 
continuous integration pipelines as an automated pre-screening step, 
flagging contracts that warrant manual security review. Development 
teams should balance automated detection capabilities with expert 
audit processes, using our approach to prioritise security attention 
rather than replace human analysis.

10.2. Conclusion

Our study demonstrates that combining software metrics with topic 
modelling can provide measurable improvements for smart contract 
vulnerability detection, while revealing important limitations of current 
approaches. Metrics like Cyclomatic Complexity, Nesting Depth, and 
Function Calls emerge as significant vulnerability predictors, and our 
Random Forest classifier achieved strong performance for common 
vulnerability types in both binary and multi-label classification tasks. 
The integration of topic modelling, particularly through Non-Negative 
Matrix Factorisation, enhanced classification performance for certain 
vulnerability classes, improving F1-scores from 0.839 to 0.881.

However, our results also highlight significant challenges in vul-
nerability detection. The approach struggles with rare vulnerabilities 
that lack sufficient training examples, with several exposure patterns 
(e.g., suicidal, msg-value-loop) showing zero detection rates across 
all models. The inherent class imbalance in vulnerability datasets 
creates fundamental data scarcity problems that cannot be resolved 
through regularisation alone. Topic modelling provides differential 
benefits across vulnerability types, suggesting that semantic features 
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complement structural metrics for some vulnerabilities while offering 
limited value for others.

The significant gaps identified in our study point to multiple critical 
research directions, including the need for specialised approaches to 
rare vulnerability detection, cross-platform validation, and integration 
with more sophisticated code representation techniques. Future work 
should also focus on exploring advanced topic modelling techniques to 
minimise semantic noise, and exploring techniques such as anomaly 
detection, class-aware gating mechanism, and cost-sensitive training 
approaches.
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