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This paper introduces a methodology for software vulnerability detection that combines structural and semantic
analysis through software metrics and topic modelling. We evaluate the approach using smart contracts as a
case study, focusing on their structural properties and the presence of known security vulnerabilities. We
identify the most relevant metrics for vulnerability detection, evaluate multiple machine learning classifiers
for both binary and multi-label classification, and improve classification performance by integrating topic
modelling techniques.

Our analysis shows that metrics such as cyclomatic complexity, nesting depth, and function calls are
strongly associated with vulnerability presence. Using these metrics, the Random Forest classifier achieved
strong performance in binary classification (AUC: 0.982, accuracy: 0.977, Fl-score: 0.808) and multi-label
classification (AUC: 0.951, accuracy: 0.729, Fl-score: 0.839). The addition of topic modelling using Non-
Negative Matrix Factorisation further improved results, increasing the Fl-score to 0.881. The evaluation is
conducted on Ethereum smart contracts written in Solidity.

1. Introduction

Understanding how structural and semantic properties of code re-
late to security vulnerabilities remains a challenge in software analysis.
While software metrics have long been used to support defect predic-
tion in conventional systems (Okutan & Yildiz, 2014; Singh & Chug,
2017; Singh et al., 2010), their role in identifying security-related issues
is less clear, particularly when applied to newer software artefacts. This
paper introduces a methodology that combines metrics-based analysis
with topic modelling to improve the detection and classification of
software vulnerabilities.

We evaluate this approach in the context of smart contracts, which
are programs deployed on a blockchain that execute automatically
when predefined conditions are met. Like conventional software com-
ponents, they are written in programming languages such as Solidity
and can be analysed through structural metrics. They differ from tra-
ditional software in that they operate in a decentralised environment
where code directly manages financial assets, and once deployed they
cannot be updated through standard release cycles. These character-
istics increase the impact of vulnerabilities, since flaws may lead to

* Corresponding author.

immediate and irreversible financial losses (Atzei et al., 2017; Aufiero
et al., 2024; Zheng et al.,, 2018). This connection highlights why
techniques from software engineering, such as the use of metrics and
semantic analysis, are applicable to smart contracts while also requiring
adaptation to address their specific execution and risk environment.

Although metrics such as complexity, coupling, and cohesion are
widely studied in traditional systems (Chidamber & Kemerer, 1994;
Zhang et al., 2007a), their effectiveness in smart contracts is still
uncertain. Preliminary studies focusing on metric-based analysis of
smart contracts are limited (Tonelli et al., 2023), and their connection
to security has not been examined in detail (Destefanis et al., 2018;
Pinna et al., 2019). Moreover, the potential benefit of incorporating
semantic information, such as lexical patterns or latent topics (Ortu
et al., 2022), remains largely unexplored.

This paper presents the first large-scale study on smart contracts’
vulnerabilities prediction and classification combining software met-
rics and topic modelling. The evaluation is conducted exclusively on
Ethereum smart contracts written in Solidity. Whilst the general prin-
ciples of combining structural and semantic analysis may inform ap-
proaches for other programming languages, our empirical findings and
performance metrics apply only to the Solidity smart contract domain.
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Specifically, we address the following research questions:

RQ1: Which traditional software metrics contribute the most to vulner-
ability detection in smart contracts?

RQ2: How effective are standard classifiers in predicting and classifying
vulnerabilities based on software metrics alone?

RQ3: Can topic modelling techniques improve classifier performance for
vulnerability classification tasks?

We evaluate the role of software metrics in vulnerability prediction
using five widely adopted classifiers: Random Forest, Support Vector
Machine (SVM), Gradient Boosting, Logistic Regression, and Multi-layer
Perceptron (MLP). We adopt a two-step process to first detect vulnera-
ble contracts and then classify the specific types of vulnerabilities. Our
methodology integrates topic modelling techniques — Latent Dirich-
let Allocation (LDA) and Non-negative Matrix Factorisation (NMF) —
to include semantic features alongside structural ones. Treating each
contract as a document and its associated metrics and vulnerabilities
as words, we extract latent patterns that relate to specific vulnerability
types. To our knowledge, this is the first study to quantify the predictive
value of software metrics within smart contract domain and to combine
them with topic modelling for vulnerability classification.

The integration of structural metrics with semantic analysis ad-
dresses a limitation in vulnerability detection: individual approaches
capture only partial aspects of security-relevant code features. As we
demonstrate in Section 3.2, vulnerabilities manifest through specific
combinations of architectural properties (measurable via metrics) and
implementation patterns (detectable through semantic analysis). For
example, reentrancy vulnerabilities require both external coupling
(structural) and specific call sequences involving financial transfers
(semantic).

Vulnerabilities in smart contracts manifest through predictable com-
binations of structural and semantic patterns. Reentrancy attacks re-
quire both architectural conditions (external calls interacting with state
variables, measurable through coupling metrics) and implementation
features (specific function call sequences and state modification pat-
terns, detectable through semantic analysis). Access control vulnera-
bilities combine structural indicators (function visibility and modifier
usage) with semantic signals (authentication-related naming patterns
and permission checking logic).

Topic modelling enables identification of latent semantic themes
that reflect common programming constructs, design patterns, and anti-
patterns within smart contract code. These themes capture developer
intent and implementation approaches that correlate with vulnerability
issues. Contracts exhibiting topic distributions associated with financial
transfer operations may correlate with transfer-related vulnerabilities,
while contracts showing patterns related to external interactions may
indicate reentrancy exposures.

The main contributions of this paper are as follows:

1. A method for classifying vulnerabilities using both software
metrics and topic modelling, based on source code analysis and
metric extraction.

2. An assessment of software metrics’ effectiveness for vulnerabil-
ity prediction, identifying those with higher predictive value
(e.g., Cyclomatic Complexity, Nesting Depth, Function Calls, Lo-
cal Variable Count, Coupling Between Contracts) and those with
limited utility (e.g., Fan-In, Inheritance Depth).

3. An evaluation of five classifiers for vulnerability detection using
metrics, with Random Forest achieving the best results in both
binary and multi-label classification. In addition, we deliberately
evaluated multiple classifiers representing different modelling
paradigms to reduce model selection bias and to ensure that our
findings are not specific to a single learning approach.

4. A topic-modelling-based classification approach combining LDA
and NMF with software metrics, improving accuracy by com-
pared to metric-only models and including improvements for
complex vulnerabilities such as reentrancy-eth, unused-return, and
tx-origin.
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This paper is organised as follows: Section 2 discusses related work,
Section 3 introduces the methodology; Section 4 assesses the role of
software metrics; Section 5 evaluates classifier performance. Section 6
presents multi-label classification results; Section 7 focuses on classifi-
cation using topic modelling. Section 8 outlines limitations, Section 9
discusses future research directions, and Section 10 concludes. The
replication package is available at this link.!

2. Related work

We review alternative approaches to vulnerability detection in
smart contracts, focusing on how they differ from our combined metrics
and topic modelling methodology.

Static analysis tools. Traditional tools such as KEVM (Hildenbrandt
etal., 2018), Oyente (Luu et al., 2016), and ContractFuzzer (Jiang et al.,
2018) rely on formal verification, symbolic execution, or fuzzing. In
contrast to our data-driven approach, these tools depend on predefined
vulnerability patterns and cannot adapt to variations in how known
vulnerabilities manifest across different contracts. While they achieve
high precision for known issues, they do not learn from code structure.
We do not include them in our experimental comparison, since their
goal involves pattern detection through program analysis rather than
statistical learning.

Software metrics for vulnerability detection. Zhang et al. (2007b) showed
that metrics such as LOC and Cyclomatic Complexity predict defects
in traditional software. Although we adopt similar metrics, smart con-
tracts present distinct challenges due to immutability and blockchain-
specific behaviours such as reentrancy, which require adapted interpre-
tations.

VCCFinder (Perl et al., 2015) combined software metrics with repos-
itory metadata to predict vulnerable components, achieving strong
results in traditional systems. However, their reliance on commit his-
tory is not applicable to our setting, where smart contracts are often
deployed without subsequent updates.

Medeiros et al. (2017, 2020) reported 93.59 percent accuracy using
metrics alone. Our approach extends this line of work by integrating se-
mantic features through topic modelling, which improves performance
(97.7 percent accuracy) and reduces false positives.

ML approaches for smart contract vulnerabilities. Recent machine learn-
ing efforts for vulnerability detection fall into two broad categories:

Opcode- or N-gram-based Methods. Song et al. (2019) and Con-
tractWard (Wang et al., 2021) use n-gram or bigram representations
of EVM bytecode and achieve high binary classification accuracy. In
contrast to our metric-based approach, these methods represent code
as token sequences and do not capture architectural features such as
coupling or nesting depth. Moreover, they target only a small number
of vulnerability types, typically between three and five, whereas our
model handles thirty-three.

Graph-based Methods. Han et al. (2022) apply graph neural net-
works to smart contract structures. Although they also aim to capture
structural relationships, their approach involves costly graph construc-
tion and is limited to a few vulnerability classes. In comparison, our
method is computationally efficient and generalises to a wider set of
vulnerabilities.

Pattern-specific Detectors. SCScan Hao et al. (2020) and Lou et al.
(2020) focus on identifying specific vulnerabilities such as general
security flaws or Ponzi schemes. These tools are not intended for
general-purpose vulnerability detection and cannot scale beyond their
predefined scope.

Recent advances in code representation learning, including
transformer-based models such as (Feng et al., 2020) and Graph Neural

1 https://figshare.com/s/5d0129e78d0cf0c61274
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Networks, offer alternative approaches for capturing code semantics.
These methods can address some limitations of traditional topic mod-
elling by maintaining syntactic awareness and capturing long-range
dependencies in code. However, they require substantial computational
resources and large-scale pre-training datasets, making them less ac-
cessible for many research contexts and limiting reproducibility. Our
metrics-based approach with topic modelling provides a computation-
ally efficient alternative that maintains interpretability while delivering
measurable performance improvements across several vulnerability
types.

Transformer and graph neural network approaches. Recent advances in
code representation learning, including transformer-based models such
as CodeBERT (Feng et al., 2020) and GraphCodeBERT, offer alterna-
tive approaches for capturing code semantics. These models address
some limitations of traditional topic modelling by maintaining syntactic
awareness and capturing long-range dependencies in code through
self-attention mechanisms. Graph Neural Networks (GNNs) applied to
control flow or data flow graphs provide another promising direction,
as demonstrated by Han et al. (2022) for smart contract analysis.

However, these approaches require substantial computational re-
sources and large-scale pre-training datasets, limiting accessibility for
many research contexts and reducing reproducibility. Transformer-
based models like CodeBERT require pre-training on millions of code
samples and significant GPU resources. GNN-based approaches ne-
cessitate costly graph construction from abstract syntax trees or pro-
gram dependence graphs, with Han et al. (2022) reporting their ap-
proach was limited to analysing only a few vulnerability classes due to
computational constraints.

Our metrics-based approach with topic modelling provides a more
computationally efficient alternative compared to transformer and GNN
approaches, maintains interpretability whilst delivering measurable
performance improvements across 33 vulnerability types. The two
paradigms are complementary rather than competing: transformer
models excel at capturing contextual semantics within individual func-
tions, whilst our approach identifies architectural patterns across en-
tire contracts. Metric-based features provide interpretable indicators
of structural risk factors that remain accessible to security auditors,
whereas deep learning embeddings offer limited explainability. Future
work combining our interpretable structural analysis with transformer-
based semantic embeddings could potentially achieve superior per-
formance whilst maintaining the transparency required for security-
critical applications.

Key differentiators. To our knowledge, no prior work combines soft-
ware metrics with topic modelling for smart contract vulnerability
detection. Existing approaches either apply metrics without capturing
semantics (Medeiros et al., 2020), use sequence-based models without
structural context (Song et al., 2019; Wang et al., 2021), or focus on a
narrow set of vulnerability types (Han et al., 2022; Lou et al., 2020).
Our hybrid method combines structural information from metrics with
semantic information from topic distributions, enabling efficient classi-
fication across thirty-three vulnerability types. The inclusion of seman-
tic features is particularly effective for detecting complex cases, such as
reentrancy, that are difficult to capture through metrics alone.

3. Methodology
3.1. Problem formulation

Let C = {¢}, ¢y, ..., ¢, } denote a set of n = 74,225 smart contracts. For
each contract c;, we extract a feature vector x; € R? containing d = 8
software metrics: fan-out, cyclomatic complexity, nesting depth, func-
tion calls, local variable count, coupling between contracts, average
local variables, and number of raw lines.

We address the following classification tasks:

Machine Learning with Applications 22 (2025) 100759

Binary classification: Learn a function f RY — {0,1} that
predicts whether a contract contains any medium- or high-severity
vulnerability, where y; = 1 indicates vulnerable and y; = 0 indicates
non-vulnerable.

Multi-label classification: Learn a function g : R¢ — {0, 1}33 that
predicts the presence of m = 33 specific vulnerability types, where
y;; = L if contract ¢; contains vulnerability v;.

Enhanced multi-label classification: To improve multi-label per-
formance, we extract topic distributions #; € R* from contract source
code, where k = 25 for LDA or k = 45 for NMF. We then learn an
enhanced function g’ : R%* — {0,1}3* using the augmented feature
representation z; = [x;,1;].

The main distinction is that topic modelling is applied only in
the enhanced multi-label setting. Binary classification uses structural
metrics alone. Our evaluation assesses the model’s ability to generalise
to previously unseen patterns affected by the 33 vulnerability types
present in our dataset, following standard machine learning evaluation
protocols.

The remainder of this section describes the data collection, feature
extraction, modelling steps, and evaluation protocol, following the
workflow illustrated in Fig. 1. Our methodology addresses both binary
classification (vulnerable vs. non-vulnerable) and multi-label classifi-
cation (identifying specific vulnerability types). The main distinction
between the two tasks lies in the use of topic modelling, which is
applied only to the multi-label classification.

We use the latest update® from dataset provided by Ibba et al. (2024,
2024c), from which we selected a random sample of 74,225 contracts.
This is a diverse dataset, including vulnerability reports generated
by Slither (Feist et al.,, 2019) (a leading static analysis tool, which
categorises vulnerabilities as low, medium, or high®). The dataset en-
compasses contracts with a temporal distribution spanning from 2018
to July 2023, when Smart Sanctuary’s last update occurred, providing
a wide array of different Solidity pragma versions. The wide temporal
span ensures the presence of different smart contract design patterns,
ranging from several outdated functionalities (e.g., Crowdsale, Initial
Coin Offering, and Gambling systems) to complex contracts employed
for financial tasks and trading control.

Whilst Slither represents one of the most widely adopted static anal-
ysis tools in smart contract security research, its detection capabilities
vary substantially by vulnerability type. Comparative benchmarking
by Durieux et al. (2020) found that Slither detected 17% of known
vulnerabilities across nine categories, with performance ranging from
88% detection for reentrancy vulnerabilities to 0% for arithmetic vul-
nerabilities. When applied to 47,518 real contracts, static analysis
tools collectively flagged 93% as vulnerable, indicating potential false
positive issues, though precise false positive rates for specific tools
remain unquantified in the literature. Despite these limitations, Slither
provides a consistent and reproducible labelling framework for large-
scale empirical studies, and our focus on medium and high-severity
classifications reduces the impact of tool-specific detection biases.

We considered as vulnerable only contracts that have at least one
vulnerability labelled by Slither as medium (resulting in 5377 con-
tracts) or high (resulting in 1759 contracts), both high and medium
(resulting in 3957). In total, we have 11,093 vulnerable contracts, and
59,310 non-vulnerable. These vulnerabilities can lead to significant
financial losses or operational impacts, based on Slither’s severity clas-
sification. We excluded low-severity vulnerabilities as they primarily
represent code quality recommendations (style suggestions, version up-
date advisories, optimisation recommendations, advisories for missing
events) rather than actual security threats. This filtering aligns with
standard smart contract security assessment practices that prioritise
vulnerabilities with potential for exploitation and financial impact.

2 https://github.com/giacomofi/SmarthER
3 https://github.com/crytic/slither/wiki/Detector-Documentation
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Fig. 1. Workflow for smart contract vulnerability detection and classification.

Table 1
Key software metrics used in smart contract analysis.
Metric Description
Lines of Code (LOC) Total No. of code lines in the smart contract
No. Of Contracts No. of contracts defined within the smart contract.
Local Variable Count No. of local variables within a function.
Max Local Variables Maximum No. of local variables across all functions in a contract.
Avg. Variable Count Average No. of local variables in all functions in a contract.
Number of Parameters No. of parameters provided as input to functions.

Function Calls No.

of calls for a specific function within the contract.

Cyclomatic Complexity (CC) No. of linearly independent paths through a function’s source code
Inheritance Depth (ID) the layers of inheritance of a specific contract.

Nested depth (ND) the depth of nested loops and conditionals within a function
Coupling Between Contracts (CBC) No. of other contracts or libraries that a contract interacts with
State Variable Count (SVC) No. of state variables in a contract

Function Count No. of functions in a contract

Fan-In (FI) and Fan-out (FO) No.

of functions that call (FI) or are called by (FO) a function

Including low-severity classifications would conflate code quality issues
with security vulnerabilities, introducing noise into our detection task.
This resulted in a total of 33 vulnerabilities, available for reference in
our replication package.

In addition to vulnerabilities, the dataset offers a rich set of software
metrics at both the contract and function levels, including metrics such
as inheritance depth, coupling between contracts, state variable count,
and cyclomatic complexity. The full table of supported metrics are
available in Table 1. To enhance the existing metrics, we introduced
two additional structural metrics, fan-in (FI) and fan-out (FO), which
respectively measure the number of functions that call or are called
by a given function. These metrics offer insights into function call
relationships within smart contracts. To extract these new metrics, we
employed MindTheDApp (Ibba et al., 2024), a static analysis tool that
constructs call graphs by traversing the abstract syntax trees (ASTs) of
interconnected contracts.

Our experimental evaluation consisted of four main phases, each ad-
dressing a different aspect of vulnerability detection and classification:

Feature Selection: We employed a two-stage hybrid feature selec-
tion approach combining statistical selection with domain knowledge
validation. The primary selection mechanism used Adaptive LASSO re-
gression, which extends standard LASSO by applying individual penalty
weights to each coefficient based on an initial estimator. This approach
addresses potential instabilities in feature selection that can arise from
correlated predictors whilst maintaining the coefficient shrinkage prop-
erties that enable automatic feature selection. Recognising that purely
algorithmic selection may exclude features with established theoret-
ical importance in software engineering contexts, we implemented
a secondary validation stage. Features excluded by Adaptive LASSO
underwent evaluation against defect prediction literature to identify
metrics with documented predictive value.

Binary Classification: To distinguish between vulnerable and non-
vulnerable contracts, we employed multiple classifiers: Logistic Re-
gression, Random Forest, Support Vector Machines (SVM), Gradient
Boosting, and Multi-Layer Perceptron (MLP). Synthetic Minority Over-
sampling Technique (SMOTE) was applied to address class imbalance.

Multi-label Classification: For identifying specific vulnerability
types, we evaluate the same set of classifiers as for binary; and applied
class weighting to handle class imbalance.

Topic Modelling for Multi-label Classification: To enhance the
multi-label classification, we incorporated topic modelling techniques.
Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorisa-
tion (NMF) were applied to extract latent topics. The derived topic dis-
tributions were combined with software metrics as additional features
for classification.

We evaluated the models using 10-fold stratified cross-validation
and assessed using several metrics: Area Under the Curve (AUC), Accu-
racy, Precision, Recall, and F1-Score.

For our classification tasks, we considered five learners: Logistic
Regression, Random Forest, Support Vector Machine (SVM), Gradient
Boosting, and Multi-Layer Perceptron (MLP). These represent distinct
modelling approaches: linear models (Logistic Regression), ensemble
tree methods that reduce variance or bias (Random Forest reduces vari-
ance through bootstrap aggregation and Gradient Boosting reduces bias
via sequential error correction), kernel-based classification (SVM), and
neural networks (MLP). A detailed discussion of their characteristics
and hyperparameter tuning is provided in Sections 5-5.2.

3.2. Rationale for combining structural metrics with semantic analysis

The integration of structural metrics with semantic analysis ad-
dresses a fundamental limitation in vulnerability detection: individ-
ual approaches capture only partial aspects of security-relevant code
features. Structural metrics quantify architectural properties such as
complexity and coupling, which correlate with defect probability, but
cannot distinguish between different types of vulnerable implemen-
tations. Semantic analysis can identify implementation patterns and
naming conventions that indicate security-relevant constructs, but lacks
awareness of broader architectural context.

Vulnerabilities in smart contracts manifest through predictable com-
binations of structural and semantic patterns. We illustrate this with
three examples.
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Reentrancy vulnerabilities. require both architectural conditions and
implementation features. Architecturally, reentrancy occurs when ex-
ternal calls interact with state variables, measurable through coupling
metrics (Coupling Between Contracts) and function call counts. Seman-
tically, reentrancy involves specific function call sequences and state
modification patterns. Consider this vulnerable pattern:

Listing 1: Reentrancy vulnerability example

function withdraw(uint amount) public {

2 require(balances [msg.sender] >= amount);

msg.sender.call{value: amount}(""); //
external call

4/  balances[msg.sender] -= amount; // state

change after call

}

o

Structural metrics capture high cyclomatic complexity, external
coupling, and multiple function calls. Topic modelling captures the se-
mantic pattern through terms like “call”, “send”, “balance”, “transfer”,
and “eth”. Neither approach alone distinguishes this vulnerable pattern
from secure implementations that perform state updates before external
calls. The combination identifies contracts with both high coupling

(structural signal) and financial transfer semantics (semantic signal).

Access control vulnerabilities. combine structural indicators with se-
mantic signals. Structurally, these vulnerabilities appear in functions
with specific visibility modifiers and parameter counts. Semantically,
they involve authentication-related naming patterns and permission
checking logic. The tx.origin vulnerability demonstrates this:

Listing 2: Access control vulnerability example

function transferOwnership(address
newOwner) public {

2 require(tx.origin == owner); //

vulnerable: uses tx.origin

3 owner = newOwner;

4}

Metrics capture function visibility and parameter structure. Topics
capture terms like “owner”, ‘“require”, “tx”, ‘“origin”, and
“msg.sender”. Secure implementations use msg.sender instead of
tx.origin, producing different topic distributions whilst maintaining
similar structural properties.

Weak randomness vulnerabilities. depend on predictable data sources
for pseudorandom number generation. These vulnerabilities have min-
imal structural signatures but strong semantic patterns:

Listing 3: Weak randomness generation example

function random() internal view returns (
uint) {

return uint (keccak256(abi.encodePacked(

block.timestamp, block.difficulty)));

& W N

}

Structural metrics show standard function complexity. Topic mod-
elling identifies the problematic semantic pattern through terms like
“timestamp”, “block”, “difficulty”, “hash”, and “random”. Contracts
using external oracles for randomness produce different topic distribu-
tions containing terms like “oracle”, “chainlink”, or “vrf”.

Topic modelling enables identification of latent semantic themes
that reflect common programming constructs, design patterns, and anti-
patterns within smart contract code. These themes capture developer
intent and implementation approaches that correlate with vulnerabil-
ity patterns. Contracts exhibiting topic distributions associated with
financial transfer operations correlate with transfer-related vulnerabil-
ities, whilst contracts showing patterns related to external interactions
indicate potential reentrancy exposures.
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This mechanistic understanding justifies our hybrid approach: struc-
tural metrics identify architectural risk factors, whilst topic distri-
butions identify the specific implementation patterns that transform
architectural risk into actual vulnerabilities.

3.3. Relationship between vulnerabilities and software metrics

Our analysis reveals specific correlations between software metrics
and vulnerability patterns. State management metrics (State Variable
Count and Local Variable Count) show strong associations with initial-
isation and shadowing vulnerabilities, while Function Count and Pa-
rameter numbers serve as indicators for unused-return and unchecked-
transfer issues.

Cyclomatic Complexity proves particularly useful for identifying
control flow vulnerabilities in functions with multiple execution paths.
Inheritance Depth correlates with constructor and token-related vulner-
abilities, while Coupling Between Contracts (CBC) indicates potential
reentrancy and transfer-related issues.

Nested Depth (ND) emerges as a key indicator for tx-origin and
msg-value-loop vulnerabilities, especially in complex control structures.
When combined with high Cyclomatic Complexity or numerous state
variables, increased Nesting Depth often signals difficult-to-verify state
transitions.

The effectiveness of these metrics varies by vulnerability type,
suggesting the importance of a multi-metric approach. This is partic-
ularly evident in detecting complex vulnerabilities like reentrancy at-
tacks, which typically manifest through patterns across multiple metrics
rather than through individual indicators.

4. Metrics and their contribution to vulnerability detection

Feature selection in vulnerability prediction requires balancing sta-
tistical relevance with domain expertise, as purely data-driven ap-
proaches may overlook theoretically important predictors. We imple-
mented a systematic two-stage hybrid feature selection methodology
that combines statistical selection with literature-informed validation.
We employed Adaptive LASSO as our primary feature selection tech-
nique. Adaptive LASSO extends standard LASSO regression by applying
individual penalty weights to each coefficient, derived from an initial
estimator, to improve feature selection consistency. To optimise the
configuration, we performed a grid search across various combinations
of alpha (regularisation strength) and gamma (adaptive weights expo-
nent) parameters. We tested alpha values ranging from 10~* to 10* (20
logarithmically spaced values) combined with gamma values of [0.5, 1,
2], resulting in 60 parameter combinations evaluated through 10-fold
cross-validation to ensure robust hyperparameter selection.

Justification for hybrid feature selection approach. We selected Adaptive
LASSO over alternative methods for several theoretical and practical
reasons. Random Forest feature importance, whilst interpretable, relies
on mean decrease in impurity scores that can be biased towards high-
cardinality features and do not provide the embedded regularisation
properties necessary for coefficient shrinkage. Recursive Feature Elim-
ination offers theoretical guarantees similar to LASSO but requires
multiple model training iterations as features are eliminated sequen-
tially, resulting in substantially higher computational cost compared to
a single LASSO fit, making it impractical for our grid search across 60
hyperparameter combinations. However, purely algorithmic selection
risks excluding features with established theoretical importance. Soft-
ware engineering literature consistently identifies Lines of Code as a
fundamental defect predictor (Singh & Chug, 2017; Singh et al., 2010),
yet LASSO excluded this metric. We therefore implemented a two-
stage validation: statistical selection via Adaptive LASSO followed by
literature review of excluded features. We empirically validated this hy-
brid approach by comparing two configurations: LASSO features alone
versus LASSO features plus Number of Raw Lines. The inclusion of
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(b) Multilabel Feature Importance

Fig. 2. Comparison of top software metrics features selected using binary and multilabel lasso regression.

Number of Raw Lines significantly improved overall performance, lead-
ing to a 10% increase in accuracy, confirming that domain knowledge
complements data-driven selection. This hybrid methodology balances
statistical rigour with theoretical foundations from defect prediction
research.

Fig. 2 shows the feature importance as determined for both binary
and multilabel Adaptive LASSO regression. We established a threshold
of 0.01 for feature selection to distinguish significant features from
those with negligible LASSO coefficients. This threshold was selected
because the binary LASSO regression chart shows a natural break
in feature importance around the 0.01 mark, with features above
this threshold demonstrating substantially higher LASSO coefficients
compared to those below. This threshold creates a model that bal-
ances complexity (number of features) with predictive power, selecting
approximately half of the available features. The consistency of top
features selected by the 0.01 threshold across both binary and multil-
abel classifications suggests robust feature importance patterns across
classification types.

Recognising that LASSO’s coefficient shrinkage property can exclude
features with subtle but documented importance in software engi-
neering contexts, we systematically evaluated whether LASSO-excluded
features possessed established theoretical foundations in defect pre-
diction literature. The LASSO statistical selection identified seven sig-
nificant software metrics: Fan-out, Cyclomatic Complexity, Nesting
Depth, Function Calls, Local Variable Count, Coupling Between Con-
tracts (CBC), and Average Local Variables. Following our planned
validation stage, we assessed excluded features against established de-
fect prediction research. “Number of Raw Lines” demonstrated strong
theoretical justification as a fundamental predictor in software defect
studies (Singh & Chug, 2017; Singh et al., 2010), warranting empirical
validation.

We conducted comparative analysis using two feature configura-
tions for binary classification: one subset, only including features with
LASSO coefficients above 0.01, which excluded “No. of Raw Lines”,
“Inheritance Depth”, “No. of Parameters”, “Fan-In”, and features related
to the number of local and state variables. The second subset, encom-
passes “No. of Raw Lines” along with the features exhibiting a LASSO
coefficient above 0.01. Our analysis revealed that including “No. of Raw
Lines” significantly improved overall performance, leading to a 10%
increase in accuracy, aligning with insights from related work on defect
prediction in software.

Features such as “Inheritance Depth” were excluded based on both
low LASSO coefficients and limited empirical support for predictive
power in the literature (Okutan & Yildiz, 2014). This hybrid method-
ology ensures that our feature selection process combines data-driven
statistical analysis with domain knowledge, creating a foundation for

vulnerability prediction while avoiding the limitations of purely algo-
rithmic or purely expert-driven approaches.

r “
Answer to RQ1: The most significant metrics for detecting
vulnerabilities in smart contracts, identified through LASSO
include Fan-out, Cyclomatic Complexity, Nesting Depth, Function
Calls, Local Variable Count, Coupling Between Contracts (CBC),
and Avg. Local Variables, which have been extended with No.
of Raw Lines, according to practical evidence from related
work in defect prediction. These metrics are important for
understanding the structural and functional aspects that may
contribute to vulnerabilities. Conversely, metrics like Fan-In,
Inheritance Depth, Average Local Variables, and Number of Pa-
rameters exhibit a low LASSO coefficient and were discarded
from our features set.

5. Binary classification: Software metrics for vulnerability predic-
tion

In this section, we address our second research question (RQ2):
How effective are standard classifiers in predicting vulnerabilities based on
software metrics alone? Building on our previous analysis of software
metrics, we explore how traditional classification algorithms perform
in identifying vulnerable smart contracts.

5.1. Data preprocessing

In our data preprocessing phase, we made minimal modifications
to the initial dataset, which pertains to the pragma version. For entries
with missing pragma information, we inserted a placeholder “0.0.0”
version, while for the remaining contracts, we preserved only the major
Solidity version numbers (e.g., 0.5.0 from pragma solidity "0.5.0). We
chose to align with major solidity versions to ensure compatibility with
our analysis tool, given that a contract with pragma solidity "0.5.0 must
be compatible with features between versions 0.5.0 and 0.6.0.

5.1.1. Handling class imbalance (SMOTE)

Our dataset showed a significant class imbalance, where vulnerabil-
ities were distributed in 15.7% of the total sample. In our dataset, we
have a total of 11,093 vulnerable contracts, vs. 59,310 non vulnerable.
This imbalance can lead to biased model training, where the classifier
might become more proficient at predicting the majority class while un-
derperforming on the minority class. To mitigate this issue, we applied
the Synthetic Minority Over-sampling Technique (SMOTE) (Chawla
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et al., 2002), addressing class imbalance by generating synthetic in-
stances for the minority class. SMOTE was applied within the stratified
cross-validation process to ensure that each training subset undergoes
the same preprocessing steps, leading to more consistent and reliable
results. Moreover, this approach ensures that the class imbalance prob-
lem is addressed in the training data of each fold without affecting the
natural distribution of the test data in that fold.

5.2. Model development

In selecting models for our analysis, we considered a balance be-
tween interpretability, complexity, and performance. We chose five
standard classification methods: Logistic Regression (Cramer, 2002),
Gradient Boosting (Friedman, 2001), Random Forest (Breiman, 2001),
Support Vector Machine (SVM) (Boser et al., 1992) and Multi-layer
Perceptron (MLP) (Rumelhart et al., 1986), each offering distinct ad-
vantages for our task of vulnerability prediction.

Logistic Regression served as an interpretable linear baseline to
assess whether the vulnerability prediction problem requires non-
linear complexity. SVM was included for its theoretical foundations
in high-dimensional classification and effectiveness in distinguishing
between classes through kernel methods. MLP represents neural net-
work approaches, capturing hierarchical feature interactions through
non-linear transformations to model complex patterns that simpler
algorithms might miss. The inclusion of two ensemble methods reflects
their fundamentally different learning philosophies. Random Forest
employs bootstrap aggregation (bagging), building uncorrelated trees
in parallel to reduce variance and resist overfitting. Gradient Boosting
uses sequential error correction (boosting), where each tree iteratively
reduces bias by correcting predecessor errors. This comparison allows
us to determine whether bias reduction or variance reduction strategies
are more effective for software vulnerability prediction, providing
greater methodological insight than evaluating variants within the
same algorithmic family (such as different neural network architectures
or SVM kernels); ensemble diversity addresses fundamental aspects of
the bias—variance trade-off relevant to software metrics data.

5.2.1. Hyperparameter tuning

To maximise performance of the models, we conducted hyper-
parameter tuning using a grid search with ten-fold stratified cross-
validation. This method systematically explores a range of hyperparam-
eter values to identify the optimal settings for each model, ensuring
robust predictions. Stratified cross-validation helps in assessing the
model’s performance across different subsets of the data, thus pre-
venting overfitting and ensuring that the model generalises well to
unseen data. The list of hyperparameters tuned for model evaluation
is presented in Table 2.

For Logistic Regression, we explored different regularisation
strengths (C), penalty types, and solver algorithms. The wide range of
C values (0.001 to 100) allowed us to explore from high regularisation
(0.001) to almost no regularisation (100). This helped in understanding
how much the model needed to be constrained to prevent overfitting.

Gradient Boosting’s grid focused on the number of estimators, learn-
ing rate, and tree depth. The learning rates (0.01, 0.1, 0.2) represent
a good spread from conservative to more aggressive learning. The
max_depth values (3, 4, 5) are relatively shallow, which can help prevent
overfitting in boosting models.

Random Forest’s tuning involved varying the number of trees, max-
imum depth, and minimum samples required to split an internal node.
The inclusion of None in max_depth allowed for full tree growth, con-
trasting with the limited depths of 10 and 20. This can show whether
the model benefits from deeper, more complex trees or shallower, more
generalisable ones.

For SVM, we adjusted the regularisation parameter (C), loss func-
tion, dual formulation, penalty type, tolerance for stopping criteria, and
maximum iterations. The inclusion of both “hinge” and “squared hinge”
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loss functions allows for comparison between standard SVM and a
variant that penalises violations more strongly. The wide range of C
values (0.1 to 100) again explores different trade-offs between margin
maximisation and misclassification.

The Multilayer Perceptron grid encompassed different hidden layer
configurations, activation functions, and alpha values for L2 regular-
isation. These hyperparameters collectively control various aspects of
model complexity, learning behaviour, and regularisation, allowing
us to find the optimal balance between bias and variance for each
algorithm on our specific dataset. The hidden layer sizes include both
single and double layer configurations, allowing us to assess if the
added complexity of a second hidden layer improves performance. The
inclusion of both “relu” and “tanh” activation functions lets us compare
a more modern, non-saturating activation (“ReLU”) with a traditional,
bounded one (“tanh”).

5.3. Model evaluation

We evaluated the models using combined metrics: ROC Area Under
the Curve (AUC), Precision, Recall, and F1-Score as per Shepperd
et al. (2019). We employed AUC to measure overall discriminative
power regardless of threshold choice, Accuracy to measure overall cor-
rectness, Precision to measure the correctness of positive predictions,
Recall to measure the ability to find all positive instances, and the
Fl-score to provide a single metric balancing precision and recall.
This combined metric evaluation is crucial for vulnerability detection,
where both false negatives (missed vulnerabilities) and false positives
(wasting developer time) carry significant costs. This evaluation helps
us comparing the strengths and weaknesses of each model in predicting
vulnerabilities.

We employed an evaluation protocol using stratified train-test splits
(80/20) with fixed random seeds to ensure reproducibility. Hyper-
parameter optimisation was conducted using 10-fold stratified cross-
validation applied to the training data, with the held-out test set
being separated throughout the model selection process to prevent
data leakage. Final performance metrics were computed only on this
independent test set after hyperparameter selection was complete.

5.4. Results and discussion of binary classification

Table 3 shows the performance of each model, including AUC,
accuracy, precision, recall, and Fl-score along with their standard
deviations, reflecting both the average performance and consistency
across cross-validation folds. Fig. 3(a) shows the ROC curves trend for
binary classification models, highlighting that all models provide strong
discriminative power, with AUC scores above 0.86. Random Forest
achieves the highest AUC (0.982), with its curve indicating excellent
true positive rates across all false positive rate thresholds. The steep ini-
tial rise of the Random Forest curve demonstrates its ability to identify
vulnerable contracts with minimal false positives. Gradient Boosting
and MLP show similar performance trajectories with AUC scores of
0.966 and 0.969, respectively. Logistic Regression and SVM exhibit
more gradual curves reflecting their lower discriminative power. These
ROC curve patterns align with the performance metrics presented in
Table 3. Random Forest tuned with None limit of tree’s depth, 2
samples for node split, and with 200 number of trees, outperforms
the others, achieving the highest values across all metrics, indicating
it offers the best balance between detecting vulnerable contracts and
minimising false positives.

However, most models exhibit low precision, particularly Logis-
tic Regression, SVM, MLP, and Gradient Boosting, which suggests a
tendency to overpredict the majority class (non-vulnerable contracts).
While this aligns with our priority of maximising recall to ensure
vulnerable contracts are not missed, it leads to an increased rate of false
positives.
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Table 2
Key hyperparameters tuned for each model.
Model Hyperparameter Description
C Inverse of regularisation strength; controls trade-off between
Logistic Regression training error and model complexity.
Penalty Type of regularisation: L1 (sparse models), L2 (prevents large
coefficients), Elasticnet (combines both).
Solver Optimisation algorithm; affects convergence and efficiency.
n_estimators Number of boosting stages; more can increase capacity but may
Gradient Boosting overfit
Learning_rate Shrinks the contribution of each tree, controlling the learning rate.
Max_depth Limits tree complexity; deeper trees may overfit.
Min_samples_split Minimum samples for node split; prevents overfitting.
n_estimators Number of trees; more trees improve performance but increase cost.
Random Forest Max_depth Limits tree depth, balancing complexity and overfitting.
Min_samples_split Similar to Gradient Boosting; controls node formation.
C Regularisation parameter; it controls the trade-off between

achieving a low training error and a low testing error that is, the

bility t lise.
Support Vector Machine @bty to genmeralise

Loss Loss function; “squared hinge” penalises violations more strongly
than regular hinge loss.

Dual Determines whether to solve the dual or primal optimisation
problem.

Penalty Specifies the norm used in the penalisation, with “I2” being the

standard Euclidean norm.

Tol Sets the tolerance for stopping criteria, determining the precision of
the solution.

max_iter Defines the maximum number of iterations for the solver to
converge.

hidden_layer sizes Specifies the number and size of hidden layers in the neural

Multilayer Perceptron network, determining the model’s complexity and capacity to learn.

Activation Defines the non-linear function applied to the weighted sum of
inputs at each neuron, affecting how information flows through the
network.

Alpha Controls the strength of L2 regularisation (weight decay) applied to

the weights, helping to prevent overfitting.

Table 3
Performance metrics for binary classification models (Test/Training).
Model AUC Accuracy Precision Recall F1-Score

Logistic Regression 0.868 0.879 + 0.000746 / 0.803 0.281 + 0.00104 / 0.865 0.720 + 0.00651 / 0.717 0.40 0.00158 / 0.784

+
Gradient Boosting 0.966 0.951 + 0.000904 / 0.954 0.549
+

+ 0.00621 / 0.565 0.840 + 0.00321 / 0.854 0.66 0.00462 / 0.680
SVM 0.867 0.893 + 0.000940 / 0.892 0.307 + 0.00233 / 0.305 0.695 +
MLP 0.969 0.936 + 0.00271 / 0.941 0.468 + 0.0119 / 0.494 0.896 + 0.00610 / 0.931 0.61 0.00918 / 0.645

4 +
4+
0.00597 / 0.693 | 0.426 + 0.00284 / 0.424
5+
8 +

Random Forest 0.982 0.977 + 0.000248 / 0.993 0.780 + 0.00270 / 0.981 0.837 + 0.00503 / 0.969 0.80 0.00238 / 0.943

Binary Vulnerability Detection Classifiers - ROC Curves

Multilabel Vulnerability Detection Classifiers - ROC Curves
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Fig. 3. ROC curves trend for binary and multilabel vulnerability detection classifiers.



G. Ibba et al.

Machine Learning with Applications 22 (2025) 100759

Metrics distribution after bootstrap validation on random forest (1000 iterations, 95% CI)
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Fig. 4. Metrics distribution after bootstrap validation on random forest for binary classification.

The low standard deviations across all metrics indicate that the
models are stable in their performance.

To assess the generalisation capability of our best-performing model
(Random Forest), we employed a bootstrap validation procedure (Davi-
son & Hinkley, 1997). This method involved 1000 iterations of resam-
pling with replacement from our test set, followed by model evaluation
on each resampled dataset. We computed key performance metrics—
accuracy, precision, recall, F1-score, and AUC—for each iteration, en-
abling us to estimate both the central tendency and variability of model
performance.

The resulting distributions, presented in Fig. 4, reveal consistently
high performance across all metrics. The model demonstrates stability
in accuracy (centred at 0.9775) and AUC (centred at 0.9825), as
evidenced by their narrow distributions. While precision and recall
show slightly wider distributions, centred at 0.782 and 0.838, respec-
tively, they still indicate robust performance. The Fl-score, balancing
precision and recall, centres around 0.809. In addition to evaluating
performance metrics, we considered the out-of-sample percentage in-
herent in the bootstrap validation process. Since each bootstrap sample
is drawn with replacement, approximately 37% of the test set instances
are left out of each resampled dataset on average (often referred as
out-of-bag samples) (Efron, 1992). These out-of-bag samples instances
provide an additional layer of evaluation for the model, mimicking
unseen patterns and further challenging the generalisation capabilities
of our Random Forest model. By estimating both the central tendency
and variability of the metrics across the 1000 bootstrap iterations, we
observed consistent performance and demonstrated the robustness of
the model against out-of-bag variation. These results provide statistical
evidence of our model’s reliable and generalisable performance in
identifying vulnerable smart contracts.

To further validate the outcome, we compared our best-performing
model with a dummy classifier, which served as a baseline model.
Our dummy model was evaluated employing the “stratified” strategy,
respecting the training set’s class distribution, and returned 0.49 in
accuracy, 0.05 in precision, 0.49 in recall, and 0.10 in fl-score, and
its AUC value floats around 0.49. The Random Forest model signifi-
cantly outperforms the dummy classifier across all metrics, with higher
accuracy (0.9772 vs. 0.4997), precision (0.7808 vs. 0.0564), recall
(0.8361 vs. 0.4934), Fl-score (0.8075 vs. 0.1013), and AUC (0.9825
vs. 0.4967) demonstrating that the Random Forest model effectively
captures predictive patterns in the dataset, far exceeding the baseline
performance of random guessing or majority class prediction.

6. Smart contract vulnerability detection using multilabel classi-
fication

Our initial approach identified whether a smart contract was vul-
nerable but did not specify the types of vulnerabilities. To address
this gap, we reformulated the experiment as a multi-label classifi-
cation problem, where each type of vulnerability was treated as a
distinct label, allowing for more detailed identification and capturing
feature relevance across all vulnerability types while still allowing
for label-specific feature selection. Aligning with the binary classifi-
cation task, we considered exclusively high and medium impacting
vulnerabilities, filtering out, information reports, optimisation advice,
and low-impact exposures. This filtering process outcome retains 33
different vulnerabilities.

First, we independently applied the principle of adaptive LASSO to
each label while maintaining a unified feature space across all labels.
We examined the feature importance for each class, observing that
“No. of Parameters” consistently ranked high across multiple vulner-
abilities, suggesting its importance in predicting various vulnerability
types. “Cyclomatic Complexity” and “ No. of Functions” also show strong
predictive power across many categories. Some features exhibit high
importance for specific vulnerabilities while being less significant over-
all. A significant example is the “Fan-in” metric, which ranks highly for
“arbitrary-send-eth” but shows lower general importance.

Fig. 2(b) shows the aggregated feature importance, providing an
overview of predictor relevance. The top five features are “No. of
Parameters”, “Cyclomatic Complexity”, “Local Variable Count”, “Fan-
Out”, and “No. Of Raw Lines”. This confirms our previous findings,
suggesting that function complexity and structure are key indicators
of vulnerability. “CBC” (Coupling Between Contracts), and “No. of
Functions”, are identified as important predictors.

This approach balances general predictive power with vulnerability-
specific indicators. The results show the importance of considering
multiple metrics in vulnerability analysis, as different code properties
contribute variously to different types of vulnerabilities.

6.1. Data preprocessing
In this analysis, we focused only on contracts identified as vul-

nerable, replacing the column reporting the vulnerability exposing
the sample with 33 new columns (one for each vulnerability), each
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representing a specific vulnerability type (1 indicating the presence of a
specific vulnerability, O indicating its absence). This approach provided
a more granular understanding of the vulnerabilities present in the
contracts.

Given that our dataset encompassed samples exposed to vulnera-
bilities categorised according to varying degrees of impact, we imple-
mented a strategic filtering process: we retained only those vulnera-
bilities classified as having high or medium impact, as these repre-
sent the most severe potential consequences for smart contracts. This
methodological decision aligns with the principle of prioritising secu-
rity concerns that pose the greatest risk, allowing us to concentrate our
predictive efforts on vulnerabilities that could significantly compromise
contract integrity, functionality, or user assets.

In our dataset, we also have vulnerabilities that we can classify as
rare vulnerabilities. These are the vulnerabilities less represented in
our dataset, such as “msg-value-loop”, “unchecked-send”, and “mapping-
deletion”, counting respectively 10, 32, and 44 samples. We decided
not to exclude these rare vulnerabilities from our dataset for the
classification task. This choice was driven by the need to evaluate
our models’ performance across the entire spectrum of vulnerability
types, including those infrequently encountered. By including these
rare instances, we aimed to assess the robustness and generalisability
of our predictive models in handling imbalanced data characteristics
inherent in real-world vulnerability distributions. This approach allows
us to observe how model performance varies across common and rare
vulnerability types, providing insights into potential limitations and
areas for improvement.

We maintained the data preprocessing methods described earlier,
including grid search with K-Fold stratified cross-validation for hyper-
parameter optimisation. We used KFold stratified cross-validation with
random splits to assess the model’s generalisation to unseen held-out
data, and while rare cases may be unevenly distributed across folds,
this approach simulates real-world conditions.

Since SMOTE is not directly compatible with multi-label data, we
handled class imbalance by assigning weights to classes based on their
prevalence to ensure that minority classes were adequately considered
during model training, which helps reduce the risk of overfitting and
preserves the integrity of the original data distribution.

We kept our original model selection and we expanded our hyperpa-
rameter search to include: “max_features” for Random Forest and Gra-
dient Boosting, controlling the number of features considered for split-
ting, which helps manage overfitting; “subsample” for Gradient Boost-
ing, determining the fraction of samples used for training each tree,
aiding in variance reduction. For Multilayer Perceptron we added the
learning rate schedule (“constant” vs. “adaptive”), which adjusts how
quick the model learns. In contrast, “max_iter” and “early _stopping”,
balance training thoroughness with overfitting prevention. Finally, we
added the “solver” choice (“adam” vs. “sgd”), affecting optimisation
strategy and convergence speed. These additions allowed for finer
control over model complexity, generalisation capability, and training
dynamics, considering the complexity given by the reformulation of the
problem as a Multilabel classification task.

6.2. Multi-label classification results

The classifier performances are presented in Table 4, with ROC
curves shown in Fig. 3(b). The ROC curves reveal important perfor-
mance patterns through micro-average (solid lines) and macro-average
(dashed lines) comparisons. SVM and MLP showed significant gaps
between micro and macro-average AUC, indicating poor performance
with rare vulnerabilities. Similarly, Logistic Regression exhibited a 10%
gap, suggesting inadequate prediction of less common vulnerabilities.
Random Forest emerged as the top performer, showing minimal micro-
macro AUC gap and achieving the highest overall metrics (AUC: 0.951,
accuracy: 0.729, Fl-score: 0.839). Its balanced precision (0.890) and
recall (0.839) demonstrate robust vulnerability detection capabilities.

10
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While low standard deviations indicate good stability, a 0.2 difference
between training and testing accuracy suggests some overfitting, partic-
ularly challenging given our 33 distinct vulnerability labels. Gradient
Boosting showed strong AUC (0.927) and precision (0.909) but dis-
played higher variability in accuracy and F1-score. Logistic Regression
and SVM, despite high precision, showed limited practical utility due
to low recall and accuracy. MLP demonstrated moderate but stable
performance across metrics.

The bootstrapping validation shown in Fig. 5 demonstrates the
Random Forest model’s robustness and generalisability. As discussed
in the binary classification results 5.4, the out-of-bag samples pro-
vide an additional layer of evaluation, ensuring that the model is
continuously evaluated on unseen vulnerable patterns. The narrow
distributions across all metrics, particularly the high and stable AUC,
indicate that our multilabel classifier performs consistently well across
different subsets of the data. The slight discrepancy between precision
and recall distributions suggests a potential area for fine-tuning. Ad-
justing the model to improve recall without significantly sacrificing
precision could enhance overall performance, especially for detecting
rarer vulnerability types.

Similarly to the binary classification problem, we compared the
performances of our best model with a dummy classifier. Again, our
best-performing model (Random Forest), outclasses the dummy classi-
fier across all metrics in our multilabel classification task. The Random
Forest achieves substantially higher accuracy (0.729 vs. 0.015), pre-
cision (0.890 vs. 0.147), recall (0.794 vs. 0.143), Fl-score (0.839 vs.
0.145), and AUC (0.9508 vs. 0.5004), and this large gap demonstrates
that the Random Forest model effectively captures complex patterns in
the dataset, far exceeding the baseline performance of random guessing
or stratified prediction strategies.

The Random Forest model demonstrates varied performance across
different vulnerability types, as outlined in Table 7. This table presents
a subset of results for brevity; the full dataset is available in our
replication package.* It shows strong performance for common vulnera-
bilities like “reentrancy-eth” (F1-score: 0.945) and “tx.origin” (F1-score:
0.895). However, it struggles with rare or complex vulnerabilities
such as “suicidal”’, and ‘‘msg-value-loop”, failing to detect these en-
tirely (Fl-scores of 0). The model’s performance on vulnerabilities
like “unchecked-send” (F1-score: 0.2) and “controlled-array-length” (F1-
score: 0.286) indicates challenges in balancing precision and recall
for less frequent issues. High AUC scores (often > 0.95) for most
vulnerabilities suggest good overall discriminative power, even when
Fl-scores are lower. These results highlight the model’s effectiveness
for common vulnerabilities but also reveal limitations in handling rare
or complex cases.

s N
Answer to RQ2: The random forest model demonstrated its
significant effectiveness in discriminating between vulnerable
and non vulnerable contracts, achieving an AUC score of
0.982, accuracy of 0.977, precision of 0.780, recall of 0.837,
and Fl-score of 0.808. The random forest model also out-
classed the other models in the multilabel classification task,
achieving the highest performance metrics, with an AUC of
0.951, accuracy of 0.729, precision of 0.890, recall of 0.794,
and an F1-score of 0.839, indicating overall robust predictive
capabilities.

\

7. Topic modelling-based classification for vulnerability detection
Building on the limitations identified in the previous section regard-

ing traditional classifiers, we explored the potential of topic modelling
techniques to enhance vulnerability classification in smart contracts.

4 https://figshare.com/s/5d0129e78d0cf0c61274
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Table 4

Performance metrics for multilabel classification models (Test/Training).
Model AUC Accuracy Precision Recall F1-Score
Logistic Regression 0.833 0.153 + 0.00648 / 0.159 0.686 + 0.0201 / 0.694 0.189 + 0.00549 / 0.187 0.296 + 0.00818 / 0.295
Gradient Boosting 0.927 0.606 + 0.209 / 0.672 0.909 + 0.206 / 0.953 0.659 + 0.00772 / 0.717 0.764 + 0.113 / 0.818
SVM 0.702 0.136 + 0.00537 / 0.141 0.739 + 0.0173 / 0.748 0.153 + 0.00582 / 0.154 0.254 + 0.00890 / 0.255
MLP 0.748 0.571 + 0.00772 / 0.598 0.848 + 0.00789 / 0.886 0.642 + 0.00900 / 0.662 0.731 + 0.00634 / 0.758
Random Forest 0.951 0.729 + 0.00542 / 0.955 0.890 + 0.00504 / 0.964 0.794 + 0.00651 / 0.996 0.839 + 0.00551 / 0.980

Metrics distribution after bootstrap validation on random forest (multilabel) (1000 iterations, 95% CI)
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Fig. 5. Metrics distribution after bootstrap validation on random forest for multilabel classification.

Specifically, we employed Latent Dirichlet Allocation (LDA) and Non-
Negative Matrix Factorisation (NMF) to introduce a semantic dimension
to our analysis.

LDA is a probabilistic model that assumes each document (in this
case, each smart contract) is a mixture of topics, with each topic
comprising a distribution of words. This model excels at discovering
the multi-topic nature of contracts and provides interpretable results
through topic probabilities. NMF is a matrix factorisation technique
that decomposes the document-term matrix into two non-negative
matrices, reflecting document-topic and topic-term associations, and
is effective in identifying distinct, non-overlapping components within
the data.

Topic distributions can be used as additional features in machine
learning classifiers, helping to identify semantic similarities between
contracts that may indicate shared vulnerabilities.

7.1. Source code preprocessing

We extract function source code from smart contracts and prepro-
cess it through several steps. The process includes text normalisation by
removing whitespace and punctuation, splitting camel case and snake
case identifiers, and applying custom tokenisation. This involves filter-
ing tokens by length and excluding those starting with underscores. The
preprocessed data was then used to construct a term dictionary and
a document-term matrix, capturing the lexical variety and frequency
patterns in the smart contract codebase.

7.2. Topic model evaluation

We conducted a grid search to optimise LDA topic modelling using
Gensim’s LdaMulticore with the following configuration: 100 passes
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through the corpus, chunk size of 100 documents for batch process-
ing, and asymmetric alpha to allow topics to have different prior
weights. The model used 100 iterations for convergence assessment,
with random state fixed at 100 for reproducibility. Cross-validation
stability was ensured through consistent random seeds across all model
configurations. We tested topics from 5 to 45 in 5-step increments and
n-grams from 1 to 4, which range was selected to balance granularity
with specificity: 15 topics provided a baseline for broad themes, while
45 topics allowed exploration of finer patterns within our 33 distinct
vulnerabilities. Our n-gram selection (1 to 4) was based on practical
constraints. Topic modelling effectiveness diminishes with higher n-
gram sizes due to increased sparsity and reduced generalisability. We
chose quadgrams as the upper limit due to our dataset’s contextual
nature and size—analysing only vulnerable samples’ function source
code meant larger n-grams would offer minimal benefits while in-
creasing computational costs. We evaluated LDA models using the c_v
coherence score, which measures semantic similarity between high-
scoring words in topics. By plotting coherence scores against topic
counts, we identified optimal configurations balancing detail with in-
terpretability. The model with the highest coherence score was selected
for further analysis. For NMF, we employed a parallel evaluation
strategy using scikit-learn’s TfidfVectorizer, maintaining the same topic
and n-gram ranges, and by employing default convergence criteria
(tolerance of le~*, maximum 200 iterations). The NMF algorithm em-
ployed coordinate descent solver with beta_loss set to “frobenius” for
standard squared loss minimisation. We selected the optimal NMF
model based on reconstruction error, which measures how accurately
the model represents the original data. Lower errors indicated better
fit and more precise topic representation. For both approaches, we
extracted topic distributions per document to support subsequent anal-
ysis. Visualisation of model performance across parameters informed
our selection process, optimising for interpretability, coherence, and
minimal reconstruction error while maintaining model stability.
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Table 5

Selected sample of the extracted topics by the LDA and NMF models.
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Model Top words Semantic interpretation Key Vulnerabilities

LDA send, eth, fee, back, balance Financial transfer operations Reentrancy, unchecked sends, ETH transfer issues
LDA price, order, reward, storage, seller Market and storage logic State manipulation, price oracle attacks

LDA spend, nonce, supplyburn, variable, burninstead Token supply and burn Front running, access control

LDA great, botbotuniswap, wallet, uniswaprouter, seconduniswap Wallet and DEX operations Front running, reentrancy, price oracle attacks
LDA trading, open, liquidityeth, trading, uniswaprouter Trading control and liquidity MEV attacks, liquidity manipulation

LDA tokend, nexttokend, previoustokend, ownership, approval Token ownership and management Access control

LDA time, raise, beneficiary, invest, amount Crowdsale and ICO mechanics Timestamp dependence, investment fraud patterns
LDA shareholder, fee, share, feebuy, feesell Fee distribution Fee manipulation

LDA uniswap, great, takefee, trading, open Uniswap trading and fees DEX manipulation, fee manipultation

LDA result, receive, profit, player, winner Gaming and gambling logic Randomness manipulation, unfair game mechanics, timestamp dependence
NMF tokenamount, unavoidable, slippage, ethamount, liquidity Slippage and liquidity provision Slippage attacks, reentrancy

NMF fees, swapping, selltotalfees, buytotalfees, transfer Buy/sell fee systems Fee manipulation, reentrancy

NMF tokenid, preownershipaddr, address, owner, msgsender ERC721 ownership tracking Access control, NFT transfer issues

NMF path, address, amounttoliquify, amounttoswap, amountethliquidity DEX operations Path manipulation, reentrancies

NMF preownershippacked, balance, tokenid, slot, burned NFT gas optimisation (ERC721A) Gas griefing, DoS, access control

NMF spender, approveaddress, allowedmsgsenderspender, value ERC20 transfer Access control, reentrancy

NMF tokenamount, ethamount, addliquidityuint, local, blocktimestamp Liquidity timing and MEV MEV exploitation, time dependency, front running, reentrancy
NMF percent, frequencyinseconds, enabled, set, percentforlpburn Automatic liquidity pool burn Front running, DoS

NMF rewards, valutapproverewards, strategist, vault, keeper Yield farming vault Access control, reentrancy, DoS

NMF newvotes, ncheckpoints, oldvotes, blocknumber, votes Voting system DoS, time dependency bugs, access control

7.3. Topics interpretability and semantic relevance for vulnerability detec-
tion

To assess the interpretability and validate their relevance for our
vulnerability detection task, we manually examined the topics ex-
tracted from both LDA and NMF models through semantic analysis.
Both LDA and NMF extracted semantically meaningful topics, that
represent several design patterns of smart contract functionalities.

Table 5 highlights a selected sample of topics from both the NMF
and LDA models, outlining the semantic coherence between discovered
topics and vulnerability classes. The correlation between these topics
and specific vulnerabilities reflects the implementation of specific de-
sign patterns. Topics including financial transfer operations (“send”,
“eth”, “fee”, “transfer”, “balance”) directly correlate with reentrancy
vulnerabilities, because such patterns often involve external calls with-
out proper state protection, creating preconditions exploited in attacks
like the infamous DAO incident.

Market and storage logic topics (“price”, “order”, “storage”) cor-
relate with oracle manipulation vulnerabilities as they include code
structures dependent on external stat that can be artificially influ-
enced through loans or coordinated market actions. Moreover, storage
logic topics, could include timing mechanisms that could introduce
time-dependency and manipulation vulnerability patterns.

Trading and liquidity management topics align with Maximal Ex-
tractable Values (MEV) attacks, since they represent the exact patterns
that automated extraction bots target for front-running and sandwich
attacks.

The gaming logic topic extracted by the LDA model correlate with
randomness manipulation. In fact, blockchain gaming patterns are
based on predictable data sources on the chain. ERC721 ownership top-
ics correlate with the access control vulnerabilities, as they capture the
authentication patterns where msg.sender versus tx.origin confusion
commonly occurs. Similarly, ERC20 management logic topics, align
with race condition and access control vulnerabilities since they rep-
resent the approve/transferFrom mechanism exposed to front-running
vulnerabilities.

Automatic liquidity pool burn mechanisms represent systematic
token destruction processes designed to reduce circulating supply and
increase token value. These contracts include percentage-based burning
logic with time-frequency controls. The semantic patterns captured
(“frequencyinseconds”, “enabled”, “percentforlpburn”) correlate with
front-running vulnerabilities because attackers can monitor pending
burn transactions and execute trades before burn events affect to-
ken prices. DoS vulnerabilities may emerge when burn mechanisms
consume excessive gas or create bottlenecks in contract execution.

Wallet and Decentralised exchange (DEX) operations related topics
encompass DEX interactions, market maker protocols, and external wal-
let integrations. These patterns involve state transitions across multiple
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contracts and external calls to swap, add liquidity, and manage token
reserves. The correlation with front-running, reentrancy, and price ora-
cle attacks stems from the predictable nature of these operations where
attackers can observe pending transactions and manipulate prices or
exploit state inconsistencies during multi-step processes.

Yield farming vault systems implement investment strategies where
users deposit tokens to earn rewards through various DeFi (decen-
tralised finance) protocols. These contracts manage user deposits, cal-
culate rewards, and execute withdrawal mechanisms involving multiple
external protocols. The semantic clustering around vault management
correlates with access control vulnerabilities through privileged role
management, reentrancy risks from external protocol interactions, and
DoS vectors through reward calculation processes.

Voting system patterns capture governance mechanisms where to-
ken holders participate in protocol decisions through weighted voting
based on token holdings or delegation. These systems track vote counts,
manage proposal states, and implement time-based voting periods. The
correlation with DoS, time dependency, and access control vulnerabili-
ties arises from the computational demands of vote tallying, timestamp-
dependent voting windows, and manipulation of voting power through
various attack vectors.

7.4. Qualitative analysis — relationships between vulnerabilities and topics

Our dataset encompasses vulnerabilities with varying degrees of
semantic detectability through topic modelling. This analysis exam-
ines why certain vulnerabilities correlate with extracted topics while
others remain challenging to detect through semantic patterns alone.
Reentrancy vulnerabilities demonstrate strong correlation with finan-
cial transfer topics. These vulnerabilities involve external calls using
specific functions (“call”, “send”, “transfer”’) and appear within fee
management and liquidity patterns. The semantic clustering of terms
like “send”, “transfer”, “call”, and “balance” captures the code con-
structs where reentrancy occurs. Consider the following vulnerable
pattern:

Listing 4: Reentrancy vulnerability example

function withdraw(uint amount) public {
require(balances [msg.sender] >= amount);

3 // external call

4 msg.sender.call{value: amount}("");

5 // state change after call

6| balances[msg.sender] -= amount;

7|}

N

The code snippet 4 exhibits the reentrancy vulnerability through
a violation of the check-effects interaction pattern: the state update
occurs after the external call. The call function forwards all available
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gas to the recipient, enabling an attacker to recursively invoke withdraw
before the balance update completes, thereby draining the contract.
The topic model identifies this pattern through the co-occurrence of
financial terms (“call”, “eth”, “send”) with balance management terms
(“balance”, “amount”, “fee”), which appear in our LDA and NMF
financial transfer topics. The topic model captures this vulnerability
pattern by identifying the co-occurrence of external value transfers with
balance management operations—contracts containing both seman-
tic elements receive high probabilities for reentrancy-related topics,
enabling detection without explicit control flow analysis.

The “tx.origin” vulnerability included in our dataset involves using
the “tx.origin” address (it identifies the original address that sent
the transaction) for authorisation, which can be exploited for phish-
ing attacks. Using these Solidity feature for authorisation, creates se-
mantic detectable patterns (e.g. “tx.origin”, “owner”, “sender” around
transaction origin checking). The following example showcases the
vulnerability issue:

Listing 5: tx.origin vulnerability example

function transferOwnership(address
newOwner) public {

2 // vulnerable: uses tx.origin
3 require(tx.origin == owner);
4 owner = newOwner;

5|}

The vulnerability 5 arises from the semantic distinction between
tx.origin and msg.sender. While tx.origin refers to the externally owned
account that initiated the transaction chain, msg.sender identifies
the immediate caller. An attacker can exploit this distinction by writ-
ing a malicious contract that, when invoked by the owner, subse-
quently calls transferOwnership. The authorisation check, passes because
tx.origin remains the owner despite the malicious contract being
the immediate caller. Secure implementations employ msg.sender
for authorisation, which correctly identifies the immediate calling con-
text. Topic models detect this vulnerability through the presence of
“tx”, “origin”, “owner”, and “sender” terms, which appear in our token
ownership and management topics. The distinction between secure
and vulnerable code manifests in the specific term “tx.origin” versus
“msg.sender”, both of which the topic model captures through its
vocabulary distribution.

Vulnerabilities due to bad randomness generation, which in our
dataset are identified as “weak-prng” correlate with topics containing
“hash”, “timestamp”, “blocktimestamp”, and “block” terms. These ex-
posures, rely on the deterministic nature of blockchain data sources
used for pseudorandomness. Gaming and crowdsale topics capture
these patterns since they frequently require randomness for fair distri-
bution or outcome determination. The following code snippet demon-
strates this vulnerability in a gambling context:

Listing 6: Weak pseudorandom number generation in gambling

function playLottery() public payable {

2 require (msg.value == 1 ether);

3 uint random = uint(keccak256 (abi.
encodePacked (

4| block.timestamp, block.difficulty)))

if (random < 10) { // 10 payable(
msg.sender) .transfer (address (this) .
balance) ;

s| )

o

The vulnerability 6 originates from the predictability of the entropy
sources: block.timestamp can be influenced by miners within certain
bounds, while block.difficulty adjusts predictably according to the net-
work hash rate. An attacker (possibly with mining capabilities), can
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manipulate these values to predict or influence the random outcome,
thereby subverting the intended fairness of the lottery. Secure im-
plementations employ external oracles (such as Chainlink VRF) that
provide verifiable randomness from off-chain sources. The topic model
identifies this pattern through terms like “timestamp”, “block”, “hash”,
“random”, “player”, and “winner”, which appear in our gaming and
gambling logic topics. Contracts employing external oracles produce
different topic distributions containing terms like “oracle”, “chainlink”,
or “vrf”’, enabling the model to distinguish between vulnerable and
secure randomness generation approaches through different semantic.

Vulnerabilities involving “unchecked-transfer” occur within transfer
operations but may require understanding control flow beyond seman-
tic content. These vulnerabilities appear in ERC20 token transfer topics
but depend on both missing error handling and semantic patterns,
creating ambiguous detection signals. The Example 7 showcases the
issue:

Listing 7: Unchecked transfer return value example

function distributeTokens (address[] memory
recipients, uint amount) public {

2 for (uint i = 0; i < recipients.length;
i++) {
3 token.transfer (recipients[i], amount);

// return value not checked
4 ownership[recipients[i]] = true;
5 }

6 }

Specific ERC20 token implementations return false to notify trans-
fer failure rather than reverting execution. When the return value
remains unchecked, failed transfers do not halt execution, resulting
in incorrect state updates (in this case, granting ownership despite
transfer failure). Secure implementations either verify the return value
explicitly or employ SafeERC20 wrapper libraries that revert on failure.
The topic model captures terms like “transfer”, “token”, ‘“‘ownership”,
“approval”, which appear in our token ownership and management
topics. However, detection complexity arises because both vulnerable
and secure implementations employ identical vocabulary. The distinc-
tion lies in the presence or absence of error checking logic rather than
semantically distinct patterns.

Vulnerabilities involving token management such as “arbitrary-
send-erc20” vulnerability intersects with token transfer topics through
ERC20-related terminology. However, detection complexity arises be-
cause legitimate token transfers use identical semantic patterns to vul-
nerable implementations, requiring structural analysis to differentiate
secure from insecure code.

However, our dataset also encompasses a subset of vulnerabilities
that, given their structural rather than semantic nature, may prove
challenging to detect with topic modelling. The vulnerability “msg-
value-loop” occurs within loop constructs and requires control flow
analysis rather than semantic understanding, and it can be difficult
for topic models to identify the iterative context that enables this
vulnerability. The “mapping-deletion” represent another vulnerability
that topic features alone may completely miss, since it involves wrong
deletion logic, and does not rely on specific semantic patterns.

Vulnerabilities involving the management of ERC20 and ERC721
tokens, may introduce false positives and negatives in our analysis.
Topic models identify semantic patterns, but many implementations
(such as OpenZeppelin) use established libraries that are secure. The
presence of semantic patterns related to these exposures does not
necessarily indicate vulnerability, creating semantic ambiguity.

7.5. Results — employing topics as additional features

After extracting topic distributions, we augmented our dataset with
K additional features, where K is the number of topics identified. To
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Table 6

General performance metrics for random forest with topic modelling (Test/Training).
Model AUC Accuracy Precision Recall F1-Score
RF 0.951 0.730 + 0.00542 / 0.956 0.890 + 0.00504 / 0.964 0.794 + 0.00651 / 0.995 | 0.840 + 0.00551 / 0.980
RF with NMF | 0.986 | 0.785 + 0.00484 / 0.974 0.961 + 0.00344 / 0.988 | 0.814 + 0.00624 / 0.989 | 0.881 + 0.00410 / 0.988
RF with LDA 0.955 | 0.789 + 0.00294 / 0.952 0.903 + 0.00417 / 0.962 0.802 + 0.01011 / 0.998 | 0.849 + 0.00626 / 0.980

Table 7

Comparison of standard random forest vs. topic modelling enhanced approaches.
Vulnerability Standard Random forest Random forest + LDA Random forest + NMF

AUC Precision Recall Fl-score AUC Precision Recall Fl-score AUC Precision Recall F1-score

arbitrary-send-erc20 0.981 0.833 + 0.059 0.641 + 0.067 0.725 + 0.066 0.970 0.920 + 0.023 0.451 + 0.044 0.605 + 0.031 0.979 1.000 + 0.000 0.451 + 0.044 0.622 + 0.039
suicidal 0.656 0.000 + 0.000 0.000 + 0.000 0.000 + 0.000 0.484 0.000 + 0.000 0.000 + 0.000 0.000 + 0.000 0.997 0.000 + 0.000 0.000 + 0.000 0.000 + 0.000
uninitialised-state 0.946 0.843 + 0.045 0.708 + 0.044 0.770 + 0.033 0.954 0.912 + 0.023 0.687 + 0.019 0.784 + 0.018 0.977 1.000 + 0.012 0.584 + 0.036 0.738 + 0.030
arbitrary-send-erc20-permit 1.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000
controlled-delegatecall 0.997 0.897 + 0.029 0.788 + 0.063 0.839 + 0.047 0.967 0.933 + 0.022 0.800 + 0.102 0.862 + 0.068 1.000 0.960 + 0.000 0.686 + 0.072 0.800 + 0.047
reentrancy-eth 0.994 0.972 + 0.003 0.920 + 0.005 0.945 + 0.004 0.995 0.983 + 0.007 0.932 + 0.009 0.957 + 0.008 0.997 0.992 + 0.001 0.932 + 0.010 0.961 + 0.006
reentrancy-no-eth 0.969 0.850 + 0.017 0.720 + 0.018 0.761 + 0.016 0.971 0.850 + 0.011 0.720 + 0.020 0.780 + 0.016 0.978 0.842 + 0.029 0.758 + 0.024 0.798 + 0.023
tx-origin 0.992 0.902 + 0.026 0.889 + 0.030 0.895 + 0.016 0.991 0.894 + 0.026 0.884 + 0.014 0.889 + 0.016 0.995 0.963 + 0.004 0.907 + 0.025 0.934 + 0.013
unchecked-transfer 0.962 0.750 + 0.015 0.616 + 0.031 0.677 + 0.023 0.964 0.851 + 0.025 0.639 + 0.046 0.730 + 0.039 0.988 0.923 + 0.013 0.676 + 0.032 0.781 + 0.024
weak-prng 0.958 0.852 + 0.095 0.511 + 0.018 0.639 + 0.020 0.969 0.857 + 0.061 0.444 + 0.122 0.585 + 0.120 0.993 0.929 + 0.079 0.481 + 0.072 0.634 + 0.057
unchecked-send 0.872 0.600 + 0.389 0.111 + 0.139 0.200 + 0.267 0.943 1.000 + 0.000 0.300 + 0.098 0.462 + 0.163 0.960 1.000 + 0.000 0.100 + 0.000 0.182 + 0.000
unchecked-lowlevel 0.940 1.000 + 0.064 0.500 + 0.115 0.667 + 0.091 0.931 1.000 + 0.047 0.667 + 0.065 0.800 + 0.041 0.941 1.000 + 0.000 0.444 + 0.096 0.615 + 0.077
msg-value-loop 0.987 0.000 + 0.000 0.000 + 0.000 0.000 + 0.000 0.827 0.000 + 0.000 0.000 + 0.000 0.000 + 0.000 0.802 0.000 + 0.000 0.000 + 0.000 0.000 + 0.000
unprotected-upgrade 0.959 0.909 + 0.000 0.769 + 0.192 0.833 + 0.155 1.000 1.000 + 0.000 1.000 + 0.178 1.000 + 0.135 1.000 1.000 + 0.000 0.333 + 0.215 0.500 + 0.188

evaluate the predictive power of these topic-based features, we set
up an experiment combining the topic distributions with traditional
software metrics as input features. This approach tested the hypothesis
that integrating topic-based features with established metrics would
improve the classifiers’ performance.

7.5.1. Classification employing topic distributions and metrics as features

We constructed our feature set by combining topic distributions
from medium and high-impact vulnerable contracts with their software
metrics. Using Non-Negative Matrix Factorisation (NMF), we achieved
a reconstruction error of 0.000100 with 45 topics and 4-grams. Latent
Dirichlet Allocation (LDA) reached a peak coherence score of 0.61
with 5 topics and 4-grams. For each document, we created a Topic
Distribution column containing the topic probability vector, which we
concatenated with software metrics for classification. Despite 5 topics
yielding the highest LDA coherence score, we opted for 20 topics based
on four key factors:

Stability Across N-gram Models: The 20-topic configuration main-
tained high coherence across 1-gram to 3-gram models.

Alignment with Known Vulnerability Types: This choice better
aligned with our 33 vulnerability types.

Balance Between Specificity and Generalisability: It captured mean-
ingful patterns while avoiding overfitting to specific phrases.
Enhanced Feature Set: The larger topic count enabled detection of
subtle vulnerability-related patterns.

The incorporation of topic distributions from LDA and NMF en-
hanced the Random Forest model’s performance across all metrics (see
Table 6). The NMF-based model achieved the highest improvements,
increasing precision from 0.890 to 0.961, AUC from 0.951 to 0.986, and
recall from 0.794 to 0.814. The LDA-based model showed modest gains,
with recall improving from 0.794 to 0.802 and F1-score from 0.839 to
0.849. Both approaches improved overall accuracy from 0.729 to 0.79.
While NMF achieved higher overall scores, LDA demonstrated bet-
ter generalisation potential, showing a smaller accuracy gap between
training and testing (0.173 vs 0.189 for NMF). Both topic distribu-
tion methods reduced overfitting compared to the baseline model, as
evidenced by decreased training-testing performance gaps.

Table 6 compares the standard Random Forest model with LDA
and NMF-enhanced versions, showing improved accuracy and F1-scores
across several vulnerabilities. Table 7 details performance by vul-
nerability type. The NMF model significantly improved detection of

14

“unchecked-transfer” vulnerabilities (F1l-score: 0.781 vs. 0.677 base-
line), while LDA showed moderate improvement (F1l-score: 0.730).
Topic modelling enhanced detection rates for complex vulnerabilities
while maintaining performance on well-detected cases. Both “reen-
trancy” types showed improvements, confirming that our semantic
clustering capture the code constructs, as formulated in our qualitative
analysis: reentrancy-eth increased from 0.945 (RF) to 0.957 (LDA) and
0.961 (NMF), while ““reentrancy-no-eth” improved from 0.761 (RF) to
0.780 (LDA) and 0.798 (NMF). However, rare vulnerabilities like “suici-
dal” and “msg-value-loop” remained undetected across all models. Some
vulnerabilities showed mixed results: “arbitrary-send-erc20” decreased
from 0.725 (RF) to 0.605 (LDA) and 0.622 (NMF), while “unprotected-
upgrade” improved with LDA (F1-score: 1.000) but declined with NMF
(0.500). The “weak-prng” vulnerability showed slight decreases (0.639
RF, 0.585 LDA, 0.634 NMF). Despite theoretical expectations that
timestamp and randomness-related semantic patterns would aid detec-
tion, these terms appear frequently across many contract types, creating
semantic noise rather than discriminative signals. This demonstrates
that semantic ubiquity can reduce topic modelling effectiveness even
when conceptual correlations exist.

These results indicate that smart contract security requires a com-
bined approach. Topic modelling proves effective for vulnerabilities
like “reentrancy” and ‘“‘unchecked-transfer”, while traditional meth-
ods better detect others like “arbitrary-send-erc20”. In practice, teams
should balance improved detection rates with results interpretabil-
ity, potentially combining machine learning detection with targeted
manual reviews. However, the results also reveal that our approach
struggles with rare vulnerabilities lacking sufficient training exam-
ples or those requiring dynamic analysis for detection. The observed
train-test performance gaps primarily reflect the inherent challenges
of learning from extreme class imbalance rather than conventional
overfitting. Our dataset contains 33 vulnerability types with highly
skewed distributions, creating a fundamental data scarcity problem
where powerful algorithms can memorise specific patterns of rare
classes during training but struggle to generalise the same patterns to
unseen data. We implemented several mitigation strategies including
balanced class weighting, constrained hyperparameters, and strati-
fied cross-validation. However, the performance gap persists because
regularisation cannot create information that does not exist in the
training data. The stratified cross-validation results provide the most
reliable performance indicators, as they average across multiple train-
test partitions, with our bootstrap validation confirming result stability
within the statistical constraints imposed by data availability.
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Answer to RQ3: The integration of topic distributions derived
from LDA and NMF as additional features in our dataset
showed modest improvements in multi-label classifier per-
formance for vulnerability detection. The Random Forest
classifier, trained with NMF-based topic distributions, im-
proved the score for all metrics. The methodology showed
particular efficacy in enhancing the detection of common vul-
nerabilities but demonstrated limited improvement for rare
vulnerability types. These insights suggest that topic distri-
butions can contribute to more robust vulnerability detection
models, though the overall improvement may not be uniform
across all aspects of the classification task, considering the
possible noise introduced by topics distribution on vulnera-
bilities that heavily rely on metrics, and the highly skewed
distributions of the 33 vulnerabilities encompassed within our
dataset.

8. Threats to validity

Our study faces several validity threats, which we address through
mitigation strategies.

Internal validity. We minimised feature selection bias by em-
ploying Adaptive LASSO, which improves feature consistency in high-
dimensional datasets. To reduce model selection bias, we evaluated
multiple classifiers representing different modelling paradigms; this
design choice is introduced in the contributions section and discussed
here for completeness.

External validity. While our dataset is substantial (74,225 con-
tracts), it may not capture all possible vulnerability types or con-
tract design patterns. To reduce over-representation of specific coding
practices, we drew contracts from diverse sources (SmartBugs Cu-
rated, Smart Sanctuary, Smart Corpus). Nonetheless, results may not
generalise to all deployment contexts.

Construct validity. Our reliance on Slither for vulnerability de-
tection introduces several methodological constraints. Static analysis
tools operate on source code without contract execution, limiting de-
tection of runtime-dependent vulnerabilities. Comparative benchmark-
ing (Durieux et al., 2020) demonstrates that Slither’s detection accu-
racy varies substantially across vulnerability categories, with strong
performance for reentrancy detection (88% on annotated vulnerable
contracts) but poor performance for arithmetic vulnerabilities (0% de-
tection). Precise false positive and false negative rates for Slither across
our 33 vulnerability types remain unquantified in existing literature,
representing a limitation in our ground truth validation. Alternative
tools such as Mythril, Securify, and Oyente offer complementary detec-
tion capabilities. Durieux et al. (2020) found that combining multiple
tools detected 42% of known vulnerabilities compared to 17% for
Slither alone, suggesting that our Slither-only labelling may underrep-
resent certain vulnerability types whilst potentially overrepresenting
others. Cross-validation with alternative tools on a sample of contracts
could strengthen label confidence but was beyond this study’s scope
due to tool version incompatibility and computational constraints.
Our filtering strategy affects dataset composition. By retaining only
medium and high-severity vulnerabilities, we excluded low-severity
issues representing code quality concerns rather than exploitable vul-
nerabilities. Whilst this aligns with security auditing priorities, it in-
troduces selection bias: our models cannot identify low-severity issues
that might become exploitable through contract interactions or specific
deployment contexts. The severity classifications themselves reflect
Slither’s assessment framework, which may not align with all real-
world exploitation scenarios. A subset of our dataset includes manually
verified labels (SmartBugs Curated), providing partial validation of
Slither’s classifications for common vulnerability patterns. However,
the majority of our 74,225 contracts rely solely on Slither’s automated
classification. Topic modelling applies a bag-of-words assumption to
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source code, which does not fully capture program structure. Despite
this limitation, our empirical results show measurable improvements,
suggesting that topics capture meaningful patterns even within this
constraint.

Adversarial risk. In practice, attackers may attempt to evade de-
tection through obfuscation or proxy patterns. Solidity’s use of fixed
keywords limits such attacks, but shadowing remains a potential risk
for metric and topic-based detection. Nevertheless, more sophisticated
altering techniques, such as using proxy patterns or indirect func-
tion calls, could circumvent both metric-based and topic-based detec-
tion. These approaches might manipulate structural metrics by dis-
tributing functionality across multiple contracts or alter semantic pat-
terns through indirection layers that shadow vulnerability-related code
constructs from static analysis.

Model bias and representativeness. We acknowledge that model
bias due to over-representation of certain contract types or coding
styles in our training data could affect performance on contracts with
different architectural patterns. This bias could manifest in reduced
detection accuracy for contracts employing novel design patterns, alter-
native development frameworks, or domain-specific implementations
that deviate from mainstream coding conventions. Such representa-
tional limitations underscore the importance of continuous dataset
expansion and validation across diverse contract architectures to ensure
robust generalisation of our vulnerability detection approach.

Semantic noise from topic modelling. Our approach faces inher-
ent limitations arising from semantic noise in topic modelling appli-
cations to source code. Both LDA and NMF techniques assume bag-
of-words representations that may be fundamentally misaligned with
program semantics, where token sequences are governed by syntax
rather than semantic patterns. LDA’s probabilistic assumption that
documents represent mixtures of topics may not adequately capture
the deterministic nature of code structures, while NMF’s non-negative
matrix factorisation approach, though effective at identifying distinct
patterns, can struggle with the hierarchical and syntactic relationships
inherent in programming languages. Our empirical results demonstrate
that while NMF-derived features provided greater performance im-
provements than LDA across most metrics, both approaches showed dif-
ferential benefits across vulnerability types. The varying effectiveness
suggests that the semantic representations extracted by these models
may sometimes introduce confounding signals rather than meaning-
ful abstractions, particularly for vulnerabilities that depend primarily
on structural properties rather than lexical patterns captured through
bag-of-words assumptions.

Limitations with rare vulnerabilities. Our approach fails for sev-
eral rare but potentially critical vulnerabilities. Vulnerabilities with
fewer than 50 training examples (suicidal: O F1-score, msg-value-loop:
0 Fl-score, unchecked-send: F1-score 0.2) show near-zero detection
rates across all configurations, including topic-enhanced models. This
represents a fundamental limitation of supervised learning approaches
when confronted with extreme class imbalance rather than a hyperpa-
rameter tuning issue. The inherent data scarcity problem means that
no amount of regularisation can create information that does not exist
in the training data. Whilst class weighting and balanced sampling
partially address common vulnerabilities, they cannot overcome the
statistical challenge of learning reliable decision boundaries from fewer
than 50 positive examples distributed across 10 cross-validation folds.
This limitation affects the external validity of our findings, as the
model cannot generalise to rare vulnerability patterns not adequately
represented in training data.

Conclusion validity. We mitigated class imbalance with SMOTE
(binary classification) and class weighting (multi-label classification).
We also used multiple performance metrics and bootstrap validation
to test stability and robustness. Results were consistent across these
checks, supporting the reliability of our findings.
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9. Future work

Our study establishes a foundation for combining software met-
rics with topic modelling in smart contract vulnerability detection,
revealing several directions for future research.

Cross-platform evaluation and generalisability. While our
methodology demonstrates effectiveness within the Ethereum ecosys-
tem, validation across alternative blockchain platforms represents a
critical research direction. Future work should evaluate the approach
on other smart contract based platforms such as Solana, Cardano, and
Hyperledger platforms, addressing the challenges of platform-specific
programming languages and tooling ecosystems. Such cross-platform
studies would provide empirical evidence about the transferability
of our metrics-topic modelling framework and clarify performance
variations across different blockchain environments.

Advanced representation learning. The limitations observed with
traditional topic modelling suggest potential benefits from more sophis-
ticated semantic analysis techniques. Transformer-based approaches
such as CodeBERT and GraphCodeBERT offer promising alternatives
that could capture both structural and semantic properties of code in a
more integrated manner. These models may address some of the noise
issues we identified with LDA and NMF while providing more nuanced
understanding of code semantics within syntactic constraints.

Rare Vulnerability Detection Our findings reveal fundamental
challenges in detecting rare vulnerability classes using traditional su-
pervised learning approaches. Several critical vulnerabilities (suicidal,
msg-value-loop, mapping-deletion) showed zero detection rates despite
various mitigation strategies. Future research should explore alter-
native paradigms specifically designed for extreme class imbalance
scenarios.

Focal loss and cost-sensitive learning. Focal loss (Lin et al., 2017)
addresses class imbalance by down-weighting well-classified examples
and focusing learning on hard cases. Unlike standard cross-entropy with
class weights, focal loss dynamically adjusts the loss contribution based
on prediction confidence, potentially improving rare vulnerability de-
tection. Implementation would require extending our Random Forest
classifier to support custom loss functions or adopting gradient boosting
frameworks that natively support focal loss.

Few-shot learning approaches. Few-shot learning techniques, par-
ticularly prototypical networks and matching networks, are designed to
learn from limited examples by leveraging meta-learning across related
tasks. Applied to vulnerability detection, this could involve training on
common vulnerability types and adapting to rare ones through metric
learning. Siamese networks could learn similarity metrics between
code representations, enabling classification of rare vulnerabilities by
comparing them to learned prototypes rather than requiring extensive
training examples.

Anomaly detection frameworks. Reframing rare vulnerability de-
tection as an anomaly detection problem offers a complementary ap-
proach. One-class SVM, isolation forests, or autoencoder-based methods
could model the distribution of secure code, flagging deviations as
potentially vulnerable. This approach shifts from learning vulnerabil-
ity patterns (which requires many examples) to learning normality
patterns (which can leverage the abundance of non-vulnerable code).
Hybrid systems combining supervised classification for common vulner-
abilities with anomaly detection for rare cases represent a promising
research direction.

Synthetic data augmentation. Program transformation techniques
could generate synthetic vulnerable contracts by systematically intro-
ducing known vulnerability patterns into secure code. Whilst requiring
careful validation to avoid introducing artifacts, this approach could
provide additional training examples for underrepresented vulnerabil-
ity classes. Combining this with adversarial training might improve
model robustness.

Integration with Deep Learning Approaches Whilst computa-
tional constraints precluded direct comparison with transformer-based
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models such as CodeBERT or GraphCodeBERT in this study, future
work should investigate hybrid architectures combining our inter-
pretable metric-based approach with deep learning semantic represen-
tations. Such integration could address complementary weaknesses:
transformer models capture fine-grained semantic patterns but lack
architectural context, whilst our metrics provide structural indica-
tors but may miss subtle implementation details. Potential integra-
tion strategies include: (1) using CodeBERT embeddings as additional
features alongside metrics and topic distributions, (2) employing at-
tention mechanisms to weight metric importance based on learned
code representations, or (3) developing multi-task learning frame-
works where structural metrics guide transformer attention towards
security-relevant code regions. These approaches would require careful
evaluation on representative dataset subsets to balance computational
feasibility with methodological rigour.

Complete baseline comparisons. While computational constraints
limited our comparison scope, future work should evaluate our ap-
proach against state of the art deep learning models for smart contract
vulnerability detection. Such comparisons should include graph neural
networks, sequence models, and ensemble methods, potentially using
representative dataset subsets to balance computational feasibility with
methodological rigour.

Enhanced future engineering. The interaction between structural
metrics and semantic features warrants further investigation. Future
studies could explore class-aware gating mechanisms, cost-sensitive
training approaches, and alternative code representation techniques
that better capture vulnerability-inducing patterns while minimising
semantic noise.

Vulnerability specific feature engineering. Future research could
explore ablation studies to isolate individual metric contributions and
quantify their isolated predictive power across different vulnerability
classes. This empirical validation could inform the development of
vulnerability-specific models that optimise feature sets for particular
security issues. Reentrancy vulnerabilities might benefit from models
emphasising coupling and function call metrics, while access con-
trol issues could prioritise modifier-related features. Such specialised
approaches could potentially improve detection accuracy compared
to general-purpose classification while providing clearer insights into
the structural patterns that predispose contracts to specific exposure
types. Moreover, investigating class-aware feature selection techniques
could help identify optimal metric combinations for rare vulnerability
detection, addressing current limitations in handling underrepresented
vulnerability classes through targeted feature engineering strategies.

Cross-Platform Evaluation and Generalisability Whilst our
methodology demonstrates effectiveness within the Ethereum ecosys-
tem, validation across alternative blockchain platforms represents an
important research direction. Future work should evaluate the ap-
proach on other smart contract platforms such as Solana (Rust-based),
Cardano (Plutus/Haskell), and Hyperledger Fabric (Go/Java), address-
ing the challenges of platform-specific programming languages and
tooling ecosystems. Each platform presents distinct characteristics:
Solana’s architecture differs fundamentally from Ethereum’s, Cardano
employs functional programming paradigms, and Hyperledger targets
permissioned networks with different security assumptions. Adapting
our metrics-topic modelling framework would require platform-specific
metric extractors, vulnerability taxonomies aligned with each plat-
form’s attack surface, and validation that topic modelling effectively
captures semantic patterns in non-Solidity languages.

Such cross-platform studies would provide empirical evidence about
the transferability of combining structural metrics with semantic anal-
ysis for vulnerability detection, clarifying whether performance varia-
tions reflect fundamental differences in programming paradigms, plat-
form architectures, or developer practices across blockchain ecosys-
tems.

These research directions reflect the multifaceted nature of smart
contract security challenges, where no single approach provides com-
plete coverage across all vulnerability types and deployment contexts.
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The immutable nature of smart contracts increases the consequences
of security failures, making robust vulnerability detection systems es-
sential for blockchain ecosystem stability. While our study demon-
strates the value of combining structural and semantic analysis, sig-
nificant gaps remain in detecting rare vulnerabilities and ensuring
cross-platform applicability.

10. Conclusions
10.1. Practical implementation considerations

The deployment of our vulnerability detection methodology in real-
world development environments involves several practical considera-
tions that warrant discussion:

Computational requirements: Our approach combines static anal-
ysis with topic modelling, both of which present manageable compu-
tational demands for typical smart contract auditing scenarios. Static
analysis using tools like Slither operates efficiently on individual con-
tracts, while topic modelling represents a one-time training overhead
that can be amortised across multiple auditing sessions. For typical
decentralised applications (dApps) projects involving hundreds of con-
tracts, computational costs remain within practical bounds for most
development teams.

Integration challenges: The primary barriers to adoption relate
to dependency management rather than computational constraints.
Smart contract analysis requires access to all external dependencies
and library imports, which may not always be available in devel-
opment environments. Version compatibility presents another chal-
lenge, as emerging Solidity versions may introduce incompatibilities
with existing analysis tools or require model retraining to handle new
vulnerability patterns.

Adoption barriers: The primary barriers to adoption relate to
dependency management rather than computational constraints. Smart
contract analysis requires access to all external dependencies and li-
brary imports, which may not always be available in development envi-
ronments. Version compatibility presents another challenge, as emerg-
ing Solidity versions may introduce incompatibilities with existing
analysis tools or require model retraining to handle new vulnerability
patterns.

Workflow integration: The methodology can be integrated into
continuous integration pipelines as an automated pre-screening step,
flagging contracts that warrant manual security review. Development
teams should balance automated detection capabilities with expert
audit processes, using our approach to prioritise security attention
rather than replace human analysis.

10.2. Conclusion

Our study demonstrates that combining software metrics with topic
modelling can provide measurable improvements for smart contract
vulnerability detection, while revealing important limitations of current
approaches. Metrics like Cyclomatic Complexity, Nesting Depth, and
Function Calls emerge as significant vulnerability predictors, and our
Random Forest classifier achieved strong performance for common
vulnerability types in both binary and multi-label classification tasks.
The integration of topic modelling, particularly through Non-Negative
Matrix Factorisation, enhanced classification performance for certain
vulnerability classes, improving F1-scores from 0.839 to 0.881.

However, our results also highlight significant challenges in vul-
nerability detection. The approach struggles with rare vulnerabilities
that lack sufficient training examples, with several exposure patterns
(e.g., suicidal, msg-value-loop) showing zero detection rates across
all models. The inherent class imbalance in vulnerability datasets
creates fundamental data scarcity problems that cannot be resolved
through regularisation alone. Topic modelling provides differential
benefits across vulnerability types, suggesting that semantic features
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complement structural metrics for some vulnerabilities while offering
limited value for others.

The significant gaps identified in our study point to multiple critical
research directions, including the need for specialised approaches to
rare vulnerability detection, cross-platform validation, and integration
with more sophisticated code representation techniques. Future work
should also focus on exploring advanced topic modelling techniques to
minimise semantic noise, and exploring techniques such as anomaly
detection, class-aware gating mechanism, and cost-sensitive training
approaches.
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