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Abstract
Solidity is the predominant programming language for blockchain-
based smart contracts, and its characteristics pose significant chal-
lenges for code analysis and maintenance. Traditional software
analysis approaches, while effective for conventional programming
languages, often fail to address Solidity-specific features such as gas
optimization and security constraints. This paper introduces micro-
patterns - recurring, small-scale design structures that capture key
behavioral and structural peculiarities specific to a language - for
Solidity language and demonstrates their value in understanding
smart contract development practices. We identified 18 distinct
micro-patterns organized in five categories (Security, Functional,
Optimization, Interaction, and Feedback), detailing their charac-
teristics to enable automated detection. To validate this proposal,
we analyzed a dataset of 23258 smart contracts from five popular
blockchains (Ethereum, Polygon, Arbitrum, Fantom and Optimism).
Our analysis reveals widespread adoption of micro-patterns, with
99% of contracts implementing at least one pattern and an average
of 2.76 patterns per contract. The Storage Saver pattern showed the
highest adoption (84.62% mean coverage), while security patterns
demonstrated platform-specific adoption rates. Statistical analy-
sis revealed significant platform-specific differences in adoption,
particularly in Borrower, Implementer, and Storage Saver patterns.
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1 Introduction
Solidity is a statically-typed, object-oriented programming lan-
guage designed for implementing smart contracts on blockchain
platforms. Since its release in 2015, Solidity has become the pri-
mary language for blockchain development [1], supporting plat-
forms such as Ethereum, Polygon, Arbitrum, Fantom, andOptimism,
which are object of our study. Its distinct features [7], including gas
optimization [17], strict state management, and security constraints,
introduce significant challenges for code analysis and quality assess-
ment [33]. Traditional software metrics [13], though effective for
general-purpose programming languages, are often inadequate for
evaluating Solidity’s unique properties, such as gas consumption,
state variable organization, and access control mechanisms [8, 10].

Micro-patterns, defined as small and recognizable programming
constructs that reflect intentional design decisions, were first in-
troduced by Gil and Maman for Java [15]. In their study, Gil and
Maman demonstrated that 75% of the classes in a Java systemmatch
at least one micro-pattern from their defined catalog. Unlike con-
ventional software metrics, micro-patterns offer structured insights
into code quality and evolution by capturing common structural
and behavioral elements. Building on this concept, we propose a
novel framework for identifying and analyzing micro-patterns in
Solidity code. We introduce a catalog of Solidity-specific micro-
patterns that encapsulate its distinct programming characteristics.
This work is the first systematic effort to apply micro-patterns
to Solidity, providing a structured approach to evaluating smart
contract. In detail, we address the following research questions:

(RQ1) What micro-patterns can be identified in Solidity
code, and how can they be systematically detected?Wedefine a
catalog of recurringmicro-patterns in Solidity language and develop
a framework for their automated detection.

(RQ2) To what extent are micro-patterns adopted in smart
contract development? We analyze the prevalence of micro-
patterns in a large dataset of smart contracts to understand their
role in development practices.

(RQ3) How do micro-pattern frequencies vary across dif-
ferent blockchain platforms?We examine how micro-pattern
adoption differs across platforms, highlighting variations and com-
monalities in development strategies.

(RQ4) Which relationships exist between different micro-
patterns, and how are they spread? Through correlation and
exclusivity analysis, we investigate how micro-patterns co-occur
and interact in Solidity development.
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Our contributions are as follows. First, we introduce a catalog
of 18 micro-patterns grouped into five categories: security, func-
tional, optimization, interaction, and feedback. Each micro-pattern
is formally defined to enable automated detection and to reflect
critical aspects of Solidity development. Second, we develop amicro-
pattern detection framework with 93% success rate across different
Solidity versions. Our framework enables large-scale analysis of
contracts on any Solidity-compatible blockchain and generates
comprehensive metrics including pattern frequency, coverage rates,
and cross-pattern correlation measures. Third, we conduct an em-
pirical study of over 23258 smart contracts from the five most
popular blockchains. Our frequency analysis shows that 99% of
contracts exhibit at least one micro-pattern, with an average of
2.76 micro-patterns per contract. The correlation analysis reveals
that micro-patterns represent independent design choices, with
predominantly weak relationships (𝜙 < 0.15) between pattern pairs.
We also perform a cross-platform comparison identifying signif-
icant variations in pattern adoption, particularly in optimization
and security, reflecting platform-specific development practices
and constraints. All materials presented in this paper, including the
micro-pattern detection framework, datasets, and analysis scripts,
are fully replicable and verifiable in our replication package link.

The remainder of this paper is organized as follows. Section 2
reviews related work on micro-patterns and smart contract anal-
ysis. Section 3 introduces our catalog of 18 micro-patterns and
identification method, while Section 4 describes our framework for
automated detection. Section 5 covers data collection and prepara-
tion, followed by Section 6 with the empirical evaluation. Section 7
discusses threats to validity and Section 8 concludes the paper.

2 Related Work
Research on micro-patterns has evolved from their initial definition
for Java to applications in code quality analysis. We survey these
developments alongside existing approaches to smart contract anal-
ysis to contextualize the current understanding of code structures
in both traditional and blockchain environments.

Evolution of Micro-Pattern Analysis. Micro-patterns are ad-
vanced through several key developments in detection and classifi-
cation methods. Arcelli et al. [19] redefined micro-patterns in terms
of number of methods (NOM) and number of attributes (NOA) of a
class. The relationship between micro-patterns and programming
practices [6], and code quality emerged as another important re-
search direction. Kim et al. [16] examined micro-pattern evolution
across software versions, identifying specific evolution types asso-
ciated with increased defect rates. Building on this work, Destefanis
et al. [9] analyzed multiple Eclipse releases and found that classes
not matching any micro-pattern showed higher fault rates than
those exhibiting patterns. These findings about pattern presence
shaped our method for evaluating Solidity code quality.

Micro-Patterns for Quality and Security Assessment. The
application of micro-patterns has extended into security analysis,
with researchers demonstrating their value for vulnerability detec-
tion. Sultana et al. [26, 27] identified correlations between certain
patterns and security vulnerabilities in Apache Tomcat, showing

how pattern analysis could enhance traditional vulnerability predic-
tion methods that relied solely on software metrics. This security-
focused application aligns with our work, as smart contracts face
security challenges that can benefit from pattern-based analysis.
Codabux et al. [4] further demonstrated the value of combining pat-
tern analysis with other techniques by investigating relationships
between traceable patterns and code smells. Their work indicated
that certain patterns may signal design issues, a finding that influ-
enced our identification of problematic patterns in smart contracts.
While these studies show the utility of micro-patterns in code analy-
sis, their findings stem from object-oriented programming concepts
specific to traditional software environments.

Smart Contract Analysis Techniques. Current smart contract
analysis research has focused primarily on static analysis of code
structure and dynamic analysis of runtime properties. Ghaleb et
al. [14] evaluated six static analysis tools through systematic bug
injection, revealing limitations in detecting known vulnerability
patterns. Their work demonstrates gaps in current tools, but fo-
cuses on vulnerability detection rather than identifying intentional
design decisions in smart contract development practices. Static
analysis tools employ various approaches. SmartCheck uses pat-
tern matching through XPath expressions [28], while Slither [12]
exploits AST analysis to discover a predefined set of vulnerabilities.
Instead, other solutions such as Mythril [11] and Manticore apply
symbolic execution [21] to reproduce smart contract execution and
found possible issues. As highlighted by Vidal et al. [31], while
these tools can detect predefined vulnerabilities, they struggle with
more complex scenarios that involve multiple contracts.

Research has extensively explored formal verification for smart
contracts, with formal methods being particularly effective despite
limited adoption [22, 24, 29]. The focus has been primarily on func-
tionality verification, with fewer works addressing security specifi-
cally. While these works provide correctness guarantees, they do
not address the identification of common programming patterns
that could guide better development practices. As noted by Atzei
et al. [2], there remains a gap between theoretical security prop-
erties and practical development patterns. Traditional software
metrics have been adapted for smart contract evaluation, but of-
ten fail to capture blockchain concerns like gas optimization and
state management [30]. Recent studies identify authorization and
authentication as major security risks in Ethereum smart contracts,
especially those with external dependencies [3]. Destefanis et al.’s
work [9] on detecting problematic patterns through metrics sug-
gests approaches that could be modified for smart contracts.

Research Gap and Our Contributions. The existing literature
demonstrates both the value of micro-pattern analysis in tradi-
tional software and the need for specialized evaluation techniques
for smart contracts. Current approaches apply patterns that do
not translate well to blockchain environments, or analyze smart
contracts without systematic pattern recognition. Some studies
examine contract design aspects in isolation, missing the broader
context of how patterns interact. We build upon Gil and Maman’s
[15] approach to micro-pattern definition while addressing the dis-
tinct characteristics of Solidity programming. Unlike previous adap-
tations of object-oriented metrics, our approach targets Solidity-
specific concerns such as gas costs optimization and security.

https://figshare.com/s/19597346b31f7f78901a
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Table 1: Solidity Micro-Patterns Catalog

Category Name Description Entity Types

Security

Ownable An entity that maintains an owner’s address and restricts access to specific functions using modifiers. Contract
Stoppable An entity with a toggable state, so it can be paused, resumed, or permanently stopped if necessary. Contract
Pull Payment A payment model where recipients withdraw funds themselves instead of receiving from the contract. Contract
Reentrancy Guard A modifier that prevents reentrancy attacks by ensuring state updates occur before any external calls. Contract

Functional

Payable An entity that includes fallback() and receive() functions to enable the receipt of funds. Contract
Borrower An entity that utilizes external libraries to perform predefined operations on specific data types. Contract
Implementer An entity that implements all functions inherited from interfaces or abstract contracts. Contract
Modifier Usage An entity that leverages reusable modifiers to enforce common conditions across multiple functions. Contract, Library

Optimization
Storage Saver An entity that minimizes storage costs by efficiently arrange state variables into fewest storage slots. Contract
Reader An entity where all functions are defined as view, ensuring they do not modify the contract state. Contract, Interface, Library
Operator An entity where all functions are defined as pure, so they do not read or modify any state variable. Contract, Interface, Library

Interaction
Provider An entity where all functions are external so that only external deployed contracts can invoke them. Contract, Interface, Library
Supporter An entity where all functions are internal so that only the contract and its inheritors can use them. Contract, Interface, Library
Delegator An entity that delegates operations by invoking functions in another deployed contract. Contract, Library

Feedback

Named Return An entity where return values are explicitly assigned names in the function definition. Contract, Interface, Library
Returnless An entity that does not return any values from its functions. Contract, Interface, Library
Emitter An entity where every function execution emits at least one event. Contract, Library
Muted An entity where no events are emitted during the execution of its functions. Contract, Library

3 Micro-Pattern Analysis
This section presents our method for identifying and categorizing
micro-patterns in Solidity, addressing RQ1’s focus on recognizable
development micro-patterns. We begin by describing the identifica-
tion process, followed by an organized catalog based on functional
roles in Solidity development. Finally, we introduce our framework
for automated detection.

3.1 Micro-Pattern Identification Process
Our method for identifying micro-patterns in Solidity builds upon
Gil and Maman’s [15] systematic process while adapting it for
blockchain-specific development practices1. First, we analyzed how
Gil and Maman’s Java micro-patterns could be translated to Solid-
ity’s domain. We examined each micro-pattern in their catalog and
evaluated whether it could meaningfully capture Solidity develop-
ment practices. This revealed that while some micro-patterns (like
Implementor) could transfer directly, blockchain’s characteristics
required new patterns.

Second, we conducted an iterative pattern discovery process:
(1) We examined Solidity’s distinctive features (e.g., modifiers,

view/pure functions, event emissions) and considered mean-
ingful restrictions on their usage;

(2) For each potential micro-pattern, we analyzed its impact in
addressing specific concerns like “what are the implications
of state variable arrangements on gas costs?”;

(3) We implemented initial micro-pattern definitions for apply-
ing them to public contract repositories and evaluate their
behaviours;

(4) Through manual code inspection of matched contracts, we
refined definitions, merged similar micro-patterns, and dis-
carded those that did not capture design decisions;

(5) When automatic pattern detection revealed clusters of simi-
lar but not identical implementations, we analyzed whether
these represented meaningful variants requiring pattern re-
finement.

1https://docs.soliditylang.org/en/latest/style-guide.html

Finally, we validated all candidate micro-patterns against three
key criteria defined in the following:

Design Intent. A micro-pattern must capture a meaningful ar-
chitectural or functional aspect in Solidity development design
practices. For instance, the Storage Saver micro-pattern (Table 1)
reflects an optimization strategy where developers arrange state
variables to minimize storage slots, reducing gas costs. This dis-
tinguishes meaningful micro-patterns from arbitrary structures.
For example, a contract that increments a counter or uses simple
conditionals may create recognizable patterns, but these do not
represent deliberate design decisions.

Mechanical Recognizability. Amicro-pattern must be express-
ible as a condition that can be verified through static analysis [15].
For example, verifying whether all state-modifying functions imple-
ment a reentrancy guard can be achieved by analyzing the presence
of specific modifiers and function calls in the code. We formal-
ized each micro-pattern using first-order logic (FOL) specifications,
defining precise conditions on contract components, methods, and
modifiers (see Appendix A: Table 4). This formal definition ensures
automatic and unambiguous detection.

Empirical Validation. A micro-pattern must be observable in
deployed smart contracts across multiple blockchain platforms. We
validated each micro-pattern’s adoption through analysis of con-
tracts, ensuring that it represents a recurring development practice
rather than an isolated case. This empirical validation distinguishes
meaningful micro-patterns implemented with a specific scope from
coincidental code structures.

Following these guidelines, our method balances automated de-
tection with the need to capture meaningful design choices. The
combination of mechanical recognizability, design intent, and em-
pirical evidence ensures that the identified micro-patterns represent
genuine development practices addressing challenges in Solidity
smart contracts. Patterns that were infrequent, highly contract-
specific, or not mechanically detectable were excluded.

https://docs.soliditylang.org/en/latest/style-guide.html
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Figure 1: Micro-Pattern Detection Framework

3.2 Micro-Patterns Catalog
After following the identification process, we defined 18 micro-
patterns reported in Table 1. While additional ones may exist, this
catalog contains the most frequent and practically relevant ones
based on our criteria. The categorization reflects primary concerns
in smart contract development, including security, gas costs opti-
mization, and cross-contract interactions.

Security Patterns. The immutable nature of deployed smart
contracts requires built-in security measures. Following Gil and
Maman’s observation that micro-patterns can capture language-
specific features, these structures reflect different approaches to
address unique security requirements of smart contracts compared
to traditional software. For example, the Ownable micro-pattern
implements single-owner authorization, restricting functions ex-
ecution. Instead, Pull Payment and Reentrancy Guard implement
protection mechanisms that, once deployed, cannot be modified.

Functional Patterns. Similar to how Java micro-patterns cap-
ture core operational features, this category encompasses key smart
contract behaviors. These include micro-patterns such as Pull Pay-
ment that enables smart contracts to receive funds and modularity
mechanisms such as Borrower and Implementer. They demonstrate
how to leverage Solidity features to create maintainable and exten-
sible contracts.

Optimization Patterns. The gas-cost model of the Ethereum
Virtual Machine creates unique optimization requirements. These
micro-patterns focus on improving resource efficiency through
techniques like the Storage Saver for minimizing storage costs. This
category has no direct parallel in traditional micro-patterns, reflect-
ing blockchain-specific concerns.

Interaction Patterns. Smart contracts rarely operate in isola-
tion. Interaction micro-patterns govern contract communication
and functionality delegation. Unlike object-oriented micro-patterns
that focus on class relationships, these structures define standard
approaches for inter-contract communication in the decentralized
blockchain ecosystem.

Feedback Patterns. The final category addresses how smart
contracts communicate state changes and execution results. Through
event emission and return values, these micro-patterns define how
smart contracts interact with external systems. This category re-
flects the need for observable behavior in decentralized applications.

The organization into these categories emerges from both the
intrinsic properties of the Solidity language and the practical re-
quirements of smart contract development.

(RQ1) What micro-patterns can be identified in Solidity
code, and how can they be systematically detected? Through
analysis of Solidity features and development practices, we
identified 18 micro-patterns across five categories. Each micro-
pattern represents a recognizable and reproducible develop-
ment practice. The catalog provides the foundation for under-
standing and implementing common smart contract functional-
ities, with micro-patterns applicable across different blockchain
platforms and contract types.

4 Micro-Pattern Detection Framework
We implemented a Python-based framework, whose workflow is de-
picted in Figure 1, to analyze Solidity files and detect micro-patterns
in the code. It supports both single-file contracts and those orga-
nized across multiple sources, manages compiler version resolution
for different Solidity compiler versions, and handles dependency
management by resolving import paths and ensuring the availabil-
ity of required dependencies.

The detection process begins by scanning the input paths to iden-
tify all Solidity files and their associated dependencies, as shown
in Figure 1 (step 1). Once the files are identified, the tool analyzes
them to extract the latest compatible Solidity compiler versions
required for each contract, resolving the versions based on pragma
directives. To optimize the compilation process, the tool orders the
files by compiler version, reducing unnecessary compiler switches
and improving efficiency.

After determining the compilation order, the process continues as
presented in Figure 1 (step 2), where the framework uses the Slither
library2 [12] to compile each smart contract and extract the Abstract
Syntax Tree (AST). The framework implements our formal First-
order-logic (FOL) specifications through AST traversal operations.
Each pattern detection algorithm systematically checks AST nodes
according to the conditions defined in our FOL specifications. The
implementation’s correctness is validated through testing against
known pattern examples.

With the AST representation of the code, the framework tra-
verses the structure to identify occurrences of predefined micro-
patterns in each entity, which may include contracts, abstract con-
tracts, interfaces, and libraries. The detection process not only ana-
lyzes individual entities but also considers inheritance hierarchies,

2Slither library: https://github.com/crytic/slither/

https://github.com/crytic/slither/
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Figure 2: Data Collection Method

modifiers, and external dependencies to ensure accurate results.
Dependencies such as imported contracts and external libraries
are automatically resolved and analyzed alongside the provided
contracts, ensuring that all necessary components are available for
micro-pattern detection.

For each analyzed entity, the tool collects and outputs detailed
information as in Figure 1 (step 3), including the contract’s name,
file path, compiler version, type (i.e., contract, abstract contract,
interface, or library), and whether each micro-pattern is present.
The results are then exported in the user-specified format, enabling
further analysis of micro-pattern prevalence and distribution across
the analyzed smart contracts.

Our framework achieved a 93% success rate in processing 23258
out of 25000 verified smart contracts. The unsuccessful cases were
primarily due to dependency resolution issues and import path
remapping problems in the downloaded smart contract sources,
rather than limitations in the pattern detection logic itself. Overall,
this framework ensures accurate and efficient detection of micro-
patterns while adapting to the diverse structures and requirements
of Solidity projects.

5 Data Collection
To empirically validate the micro-pattern catalog and address our re-
search questions, we follow the method in Figure 2 to collect a large
dataset of verified smart contracts, including both metadata and
source code. Verified smart contracts are those whose source code
is available and validated in blockchain explorers3 - web platforms
that index and display blockchain transaction data. Our detection
framework, described in Section 4, requires this source code to ac-
curately identify micro-pattern occurrences through static analysis.
This dataset supports our empirical evaluation of micro-pattern
adoption (RQ2), distribution across different blockchain platforms
(RQ3), and relationships between micro-patterns (RQ4).

5.1 Metadata Extraction
We extracted all transaction receipts, from the genesis block up
to 31st December 2024, from five blockchain networks: Ethereum,
Polygon, Arbitrum, Fantom, and Optimism. These networks were

3Verified smart contracts list: https://etherscan.io/contractsVerified

selected based on their representation of deployed contracts and
availability in Google BigQuery Web3 public datasets4.

As in Figure 2 (step 1), we retrieved contract metadata from
transaction receipts with non-null contract_address fields on
BigQuery database, indicating successful deployment of a smart
contract. For each smart contract, we collect the following infor-
mation: contract address, creator address, block timestamp, block
number, and transaction hash. Contract and creator addresses al-
low tracking contract origins and ownership micro-patterns. Block
number and timestamp, instead, provide temporal context for micro-
pattern evolution analysis. Finally, transaction hash serves as a
unique identifier and enable verification of deployment details.

Table 2: Blockchain Entities Statistics

Blockchain Smart Entities
Contracts Contract Abstract C. Interface Library Total

Ethereum 4.855 10.097 10.159 20.092 10.712 51.060
Polygon 4.900 11.666 16.664 23.341 12.092 63.763
Arbitrum 4.415 34.935 24.113 46.382 25.328 130.758
Fantom 4.871 11.154 12.437 30.657 14.256 68.504
Optimism 4.217 7.708 10.039 18.732 11.243 47.722

Total 23.258 75.560 73.412 139.204 73.631 361.807

5.2 Source Code Retrieval
From the extracted metadata, we collected an adequate number
of verified smart contracts per platform, obtaining their source
code through blockchain explorers (Etherscan, Polygonscan, Ar-
biscan, Ftmscan, and Optimistic)5 as shown in Figure 2 (step 2).
The sample size must provide statistical power for analyzing micro-
pattern prevalence (RQ2), cross-blockchain comparisons (RQ3), and
correlation analysis (RQ4).

To determine the minimum required sample size of our dataset,
we conducted a statistical power analysis for chi-square tests used
in comparing micro-pattern distributions across platforms. With
five blockchains, our analysis involves ten pairwise comparisons
( 5(5−1)2 = 10), necessitating a Bonferroni-corrected significance
level of 𝛼 = 0.005 (0.05/10) [32]. Power analysis indicated that de-
tecting small effect sizes (𝑤 = 0.1) requires aminimumof 1332 smart
4Google Web3 Datasets: https://cloud.google.com/application/web3/discover/
5Explorer URLs: https://etherscan.io/, https://polygonscan.com/, https://arbiscan.io/,
https://ftmscan.com/, https://optimistic.etherscan.io/
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𝐸 = { 𝑒 | entity 𝑒 ∈ Dataset

∧ type(𝑒) ∈ {contract, library, interface}}

𝑀𝑃 = {𝑚𝑝 | 𝑚𝑝 is one of the defined micro-patterns}

ValidTypes(𝑚𝑝) ⊆ {contract, interface, library}

𝑀 (𝑚𝑝, 𝑒) =
{
1, if type(𝑒) ∈ ValidTypes(𝑚𝑝) and 𝑒 satisfies𝑚𝑝,

0, otherwise.

Frequency(𝑚𝑝) =
∑︁

𝑒 ∈ 𝐸 (𝑚𝑝 )
𝑀 (𝑚𝑝, 𝑒)

Coverage(𝑚𝑝) = Frequency(𝑚𝑝)
|𝐸 (𝑚𝑝) |

Prevalence(𝑚𝑝) = Frequency(𝑚𝑝)∑
𝑚𝑝′∈𝑀𝑃 Frequency(𝑚𝑝′)

Figure 3: Analysis framework. Left: E captures entities (contracts, interfaces, libraries) from these projects,MP definesmicro-patterns,ValidTypes
maps patterns to applicable entity types, andM is the matching function. Right: Core metrics measure pattern occurrence (Frequency), adoption
rate among eligible entities (Coverage), and relative dominance (Prevalence).

contracts per blockchain. We chose to collect at least 4000 smart
contracts for each blockchain to enhance the statistical validity of
our analysis in several ways. First, this larger sample size enables
detection of effects smaller than𝑤 = 0.1, allowing identification of
subtle variations in micro-pattern adoption across platforms. Sec-
ond, when examining relationships among 18 micro-patterns (RQ4),
the increased sample size reduces variance in correlation estimates,
particularly for weak associations. Finally, given the heterogeneous
nature of smart contract deployment across blockchain platforms,
having at least 4000 smart contracts per platform provides more
reliable coverage of diverse implementation patterns.

As detailed in Table 2, our dataset encompasses both standalone
smart contracts and decentralized applications (DApps). Standalone
smart contracts implement specific functionalities such as token
management or voting systems, while DApps comprise multiple
interconnected smart contracts with complex state management
requirements. This architectural diversity strengthens our analysis
of micro-pattern relationships (RQ4) and design decisions (RQ2).
Moreover, the dataset includes smart contracts implemented with
different Solidity versions across the five blockchain platforms,
ranging from compiler version 0.4.x to 0.8.x. We organized these
in blockchain-specific SQL databases to facilitate efficient micro-
pattern detection and cross-chain analysis for RQ3, enabling both
granular and comparative studies of micro-pattern adoption.

5.3 Dataset Preparation
After retrieving the smart contracts’ source code, we processed and
organized the files to preserve their dependency relationships, as
illustrated in Figure 2 (step 3). This preparation phase addressed
three key challenges in Solidity compilation: version compatibility,
dependency resolution, and multi-file project organization. We
processed each smart contract differently based on its source code
structure. For single-file smart contracts, we maintain their original
structure while verifying version compatibility. On the other hand,
we implement a systematic dependency resolution mechanism for
multi-file smart contracts that reconstructs the project hierarchy.
This process analyzes Solidity import statements and remaps paths
to maintain the smart contract’s intended structure, handling both
direct dependencies and custom library paths.

Based on this, we created a structured dataset for each of the
selected blockchain. We stored the processed smart contracts in
separate directories, each containing a complete and self-contained
project. The directory structure that preserves the relationships
between smart contract components while resolving potential con-
flicts in import paths and library references. This organization
ensures that when the Abstract Syntax Tree (AST) is generated for
micro-pattern detection (Section 4), all inheritance hierarchies and
external dependencies are properly resolved for the analysis. The
complete dataset, including all processed smart contracts and their
source code, is available in our replication package link.

6 Empirical Evaluation
This section presents the empirical evaluation of micro-patterns in
Solidity language, analyzing pattern adoption rates (RQ2), cross-
platform variations (RQ3), and pattern relationships (RQ4) across
smart contracts in our dataset. This evaluation demonstrates the
prevalence of identified micro-patterns in real-world smart con-
tract development, quantifies relationships between different micro-
patterns, and reveals how developers adopt them across different
blockchain platforms. Through systematic analysis of our dataset,
we examine both the individual characteristics of eachmicro-pattern
and their collective impact on smart contract development.

6.1 Pattern Adoption Analysis (RQ2)
In the first part of the evaluation, we examined the extent of micro-
pattern adoption in smart contract development.We analyzed statis-
tical metrics to understand the frequency and distribution of micro-
patterns in Solidity smart contracts. Figure 3 formalizes our analysis
framework: the set E captures all code entities across our dataset,
where each entity (of type contract, interface, or library) may
implement one or more micro-patterns, with pattern eligibility
defined by ValidTypes; the matching function M returns a binary
value indicating whether an eligible entity implements a specific
micro-pattern (1) or not (0).

We evaluated micro-pattern adoption using three complemen-
tary metrics. Frequency counts the absolute number of entities
matching a pattern. Coverage normalizes this count by the number

https://figshare.com/s/19597346b31f7f78901a
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Table 3: Metrics forMicro-Patterns across Blockchains with Coverage Statistics. For each blockchain, blue-shaded cells indicatemicro-patterns

with the highest adoption rates, while azure-shaded cells micro-patterns with the lowest adoption.

Category Micro-Pattern Ethereum Polygon Arbitrum Fantom Optimism Total Cov. Stats (%)
Freq. Cov. (%) Prev. (%) Freq. Cov. (%) Prev. (%) Freq. Cov. (%) Prev. (%) Freq. Cov. (%) Prev. (%) Freq. Cov. (%) Prev. (%) Mean±𝜎 Median

Security

Ownable 269 1.33 0.20 743 2.62 0.41 446 0.76 0.11 947 4.01 0.53 98 0.55 0.07 1.85±1.30 1.33
Stoppable 448 2.21 0.33 1328 2.25 0.34 1328 2.25 0.26 368 1.56 0.21 436 2.46 0.33 2.15±0.31 2.25
Pull Payment 61 0.30 0.04 32 0.11 0.02 47 0.08 0.01 21 0.09 0.01 32 0.18 0.02 0.15±0.08 0.11
Reentrancy Guard 39 0.19 0.03 29 0.10 0.02 119 0.20 0.03 101 0.43 0.06 8 0.05 0.01 0.19±0.13 0.19

Functional

Payable 1040 5.13 0.76 2452 8.66 1.37 2153 3.65 0.55 3112 13.19 1.75 2448 13.79 1.86 8.88±4.10 8.66
Borrower 7961 39.30 5.80 11818 41.72 6.60 37018 62.69 9.43 8225 34.86 4.62 8418 47.43 6.40 45.20±9.64 41.72
Implementer 7942 39.21 5.79 12233 43.18 6.83 35219 59.64 8.97 10363 43.93 5.83 8111 45.70 6.17 46.33±6.98 43.93
Modifier Usage 10417 33.64 7.60 14211 35.16 7.94 31114 36.88 7.93 10194 26.93 5.73 7879 27.18 5.99 31.96±4.13 33.64

Optimization
Storage Saver 16301 80.47 11.89 25969 91.67 14.50 42195 71.46 10.75 21854 92.64 12.29 15413 86.85 11.72 84.62±7.87 86.85
Reader 6857 13.43 5.00 9956 15.61 5.56 13473 10.30 3.43 8782 12.82 4.94 6391 13.39 4.86 13.11±1.70 13.39
Operator 4743 9.29 3.46 4551 7.14 2.54 9184 7.02 2.34 4066 5.94 2.29 3945 8.27 3.00 7.53±1.15 7.14

Interaction
Provider 18422 36.08 13.43 20386 31.97 11.38 44519 34.05 11.34 26128 38.14 14.69 16830 35.27 12.80 35.10±2.06 35.27
Supporter 11123 21.78 8.11 11480 18.00 6.41 22751 17.40 5.80 12606 18.40 7.09 8843 18.53 6.72 18.82±1.53 18.40
Delegator 13188 42.59 9.62 18789 46.48 10.49 49541 58.71 12.62 17794 47.02 10.01 14163 48.85 10.77 48.73±5.39 47.02

Feedback

Named Return 16225 31.78 11.83 17754 27.84 9.91 46541 35.59 11.86 23896 34.88 13.44 15780 33.07 12.00 32.63±2.75 33.07
Returnless 4850 9.50 3.54 7357 11.54 4.11 12611 9.64 3.21 7574 11.06 4.26 5598 11.73 4.26 10.69±0.94 11.06
Emitter 191 0.62 0.14 121 0.30 0.07 287 0.34 0.07 150 0.40 0.08 139 0.48 0.11 0.43±0.11 0.40
Muted 17075 55.14 12.45 20486 50.68 11.44 44036 52.19 11.22 21661 57.23 12.18 16965 58.52 12.90 54.75±2.95 55.14

Total Coverage (%) 99.98 99.99 99.99 100.00 99.98 99.99±0.01

of eligible entities, revealing the percentage of potential imple-
mentations that adopt the pattern. Prevalence contextualizes each
pattern’s adoption by showing its frequency relative to all pattern
occurrences, indicating its relative importance in the ecosystem.

Table 3 presents the adoptionmetrics across fivemajor blockchain
platforms. Our analysis revealed widespread adoption of micro-
patterns in smart contract development, with projects implement-
ing an average of 2.76 patterns (median: 2.00,𝜎 : 1.43). The consistent
adoption across platforms (means ranging from 2.60 to 3) suggests
these patterns represent fundamental development practices. The
Storage Saver pattern showed the highest coverage at 84.62% (𝜎 :
7.87%). Its prevalence rates (10.75-14.50%) align with what we would
expect given the average number of patterns per contract, suggest-
ing it is a fundamental pattern that is consistently implemented
alongside other patterns rather than being used in isolation.

Approximately 28% (5 out of 18) of our identified micro-patterns
achieved wide adoption (>40% coverage), distributed across func-
tional (Borrower : 45.20%, Implementer : 46.33%), optimization (Stor-
age Saver: 84.62%), interaction (Delegator: 48.73%), and feedback
(Muted: 54.75%) categories. Security-focused patterns showed lower
but consistent adoption rates, with Reentrancy Guard (mean: 0.19%,
𝜎 : 0.13%) and Pull Payment (mean: 0.15%, 𝜎 : 0.08%) being selectively
implemented. These stable rates across platforms indicated deliber-
ate pattern selection for specific security requirements rather than
oversight. The varying adoption rates, from nearly universal opti-
mization patterns to selective security patterns, demonstrated that
our catalog successfully captured both foundational and specialized
development practices in the Solidity ecosystem.

While our method considers pattern frequency as one indicator
of meaningful development practices, we acknowledge that high
adoption rates do not necessarily indicate best practices. For in-
stance, the Muted pattern’s high coverage (54.75%) might reflect
insufficient logging practices rather than optimal design choices.
Similarly, some infrequent patterns might represent important se-
curity practices that are underutilized. Therefore, our identification
process focuses on capturing recurring structural choices in smart

contract development, whether beneficial or potentially problem-
atic, to provide a foundation for future research on pattern impact
and quality outcomes.

(RQ2) To what extent are micro-patterns adopted in smart
contract development? Our identified micro-patterns are
widely adopted, with projects implementing an average of 2.76
patterns (median: 2.00, 𝜎 : 1.43). We found that 28% of them
achieve high adoption rates (>40% coverage), distributed across
Functional, Optimization, Interaction, and Feedback categories,
while others serve more specialized purposes. This distribution
suggests these micro-patterns effectively capture both founda-
tional and specialized smart contract development practices.

6.2 Pattern Distribution Analysis (RQ3)
To understand how blockchain environments influence design ap-
proaches, we analyzed micro-pattern distribution across platforms
using both descriptive statistics and inferential analysis. With 4000+
smart contracts per blockchain platform (see Table 2), we examined
pattern adoption variations across platforms and then employed
non-parametric statistical tests to validate observed differences. We
used non-parametric tests [23] because our data consisted of binary
observations (presence/absence of micro-patterns) and not follow
normal distribution assumptions required for parametric tests.

The descriptive analysis in Table 3 revealed distinct platform-
specific adoption trends. Security micro-patterns showed notably
different adoption rates, with Ethereum exhibiting higher cover-
age of security-focused patterns. For instance, Reentrancy Guard
showed higher coverage on Ethereum (0.19%) compared to Opti-
mism (0.05%), while Pull Payment patterns had higher coverage on
Ethereum (0.30%) than other platforms (mean: 0.11%). This aligned
with Ethereum’s role as the primary platform for high-value DeFi
applications. Optimization micro-patterns demonstrated different
trends: the Storage Saver pattern achieved notably higher coverage
on Polygon (91.67%) and Fantom (92.64%) compared to Arbitrum
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(a) High correlation pairs (𝜙 > 0.50)

Pattern Pair 𝜙

Modifier Usage - Muted 0.58
Operator - Supporter 0.52

(b) Low correlation pairs (𝜙 < 0.15)

Pattern Pair 𝜙

Named Return - Ownable 0.01
Supporter - Emitter 0.03
Implementer - Emitter 0.04

(c) Mutual Exclusivity and Inclusivity by design

Mutually Exclusive Inclusive (Unidirectional)

Reader⇔ Operator Ownable⇒Modifier Usage
Emitter⇔ Muted Stoppable⇒Modifier Usage

Provider⇔ Supporter
Multi Return ⇔ Returnless
Named Return⇔ Returnless

Figure 4: Pattern relationships analysis showing: (a) highly correlated pattern pairs, (b) low correlation pattern pairs (excluding zero correlations),
and (c) patterns that are mutually exclusive or inclusive by design.

(71.46%), suggesting different prioritization of optimization prac-
tices across platforms.

To identify meaningful differences in micro-pattern adoption be-
tween blockchains, we employed chi-square tests of independence
with Bonferroni correction (𝛼 = 0.05/10 = 0.005) for multiple com-
parisons. We complemented this with Cramer’s V (𝑤 ) threshold
(≥0.10) to focus on practically significant differences rather than
just statistical significance [18].

The statistical analysis revealed that the most substantial differ-
ences appeared in five key patterns: Payable, Borrower, Delegator,
Implementer, and Storage Saver. Storage Saver showed significant
differences across all platform pairs (𝑝 < 0.001), similar to Bor-
rower. Delegator pattern showed more nuanced distributions, with
one non-significant platform pair (Fantom vs. Polygon, 𝜒2 = 2.21,
𝑝 = 0.137). While our descriptive statistics suggested variations in
security patterns like Reentrancy Guard, these differences did not
meet our effect size threshold.

The variations in Storage Saver patterns could reflect different
gas cost structures across platforms, while the distinct Borrower
usage patterns on Arbitrum (𝜒2 > 1000, 𝑝 < 0.001) might indicate
platform-specific development practices. However, these hypothe-
ses require further investigation.

(RQ3) How do micro-pattern frequencies vary across differ-
ent blockchain platforms? While descriptive statistics sug-
gest variations across many micro-patterns, statistical analysis
identifies significant platform-specific differences primarily in
Payable, Borrower, Delegator, Implementer, and Storage Saver
micro-patterns. This demonstrates our micro-pattern catalog’s
ability to detect meaningful variations in development practices,
though determining the underlying causes requires further re-
search.

6.3 Pattern Relationship Analysis (RQ4)
The relationships between micro-patterns reveal whether our cata-
log captures distinct design aspects or overlapping concepts. For
each entity 𝑒 and micro-pattern𝑚𝑝 , the micro-pattern matching
produces a binary outcome𝑀 (𝑚𝑝, 𝑒) representing micro-pattern
presence/absence (see Figure 3). We analyzed these relationships
across our dataset of verified smart contracts through correlation
metrics that quantify micro-pattern co-occurrences.

The relationship between micro-patterns is quantified using a
correlationmatrix𝐶 of size |𝑃 |×|𝑃 |, where each element𝐶 (𝑚𝑝𝑖 ,𝑚𝑝 𝑗 )

represents the Phi coefficient (𝜙) between micro-patterns𝑚𝑝𝑖 and
𝑚𝑝 𝑗 . We selected 𝜙 as it specifically measures correlation between
binary variables:

𝜙 (𝑚𝑝𝑖 ,𝑚𝑝 𝑗 ) =
𝑛11𝑛00 − 𝑛10𝑛01√

𝑛1·𝑛0·𝑛 ·1𝑛 ·0

where 𝑛𝑖 𝑗 represents the count of smart contracts with micro-
patterns 𝑖 and 𝑗 present (1) or absent (0). Based on established
guidelines for binary correlation interpretation [5], we considered
𝜙 > 0.50 as moderately strong correlation (explaining over 25%
of shared variance) and 𝜙 < 0.15 as weak correlation (less than
2% shared variance). No patterns exhibited strong correlations
(𝜙 > 0.635, explaining over 40% shared variance).

Our analysis revealed predominantly weak correlations between
micro-patterns, as reported in Figure 4. Across all platforms, only
one pair consistently showed moderately strong correlations (𝜙 >

0.50): Modifier Usage–Muted (𝜙 ≈ 0.54–0.60). Meanwhile, Operator
–Supporter (𝜙 ≈ 0.50–0.54) attained moderately strong correla-
tions only on Ethereum, Polygon, and Optimism. The vast majority
of micro-pattern pairs (between 116 to 122 pairs across different
chains) showed weak correlations (𝜙 < 0.15).

This independence stems from both intentional design decisions
and Solidity’s language constraints. For example, Reader-Operator
micro-patterns are mutually exclusive by design, since they rely on
Solidity’s view and pure function types respectively, while Stop-
pable and Ownable necessarily include Modifier Usage, as they im-
plement their functionality using modifiers. This relationship is
unidirectional inclusive, which means even if these micro-patterns
require modifiers, the presence of Modifier Usage does not imply
either Stoppable or Ownable, as modifiers can be used for other
purposes in Solidity smart contracts.

To assess relationship stability across platforms, we used Man-
tel tests [20] to compare co-occurrence structures of micro-patterns
on different blockchains. These tests yielded low, statistically non-
significant correlations (𝑟 = 0.014–0.145, 𝑝 > 0.05), indicating
that how patterns co-occur in one blockchain does not strongly
align with how they co-occur elsewhere. Additionally, we com-
puted Spearman correlations [25] (see Figure 5) by flattening each
chain’s pattern-usage profile into a vector and measuring simi-
larity across platforms; those values also remained relatively low
(𝑟 ≈ 0.18–0.28). Together, these findings support our conclusion
that micro-pattern co-occurrences remain effectively independent
across different blockchains.
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Figure 5: Cross-Chain Pattern similarity

The findings suggested two key insights for smart contract de-
velopment. First, the widespread weak correlations (𝜙 < 0.15 for
>115 micro-pattern pairs per platform) indicated that most micro-
patterns represent independent design choices that can be flexibly
combined according to specific contract requirements. Second, the
few moderate correlations we observed (𝜙 > 0.50) likely reflected
inherent relationships in contract design, such as when certain func-
tionality naturally requires specific implementation micro-patterns.
This independence across our catalog suggested we identified dis-
tinct, non-overlapping aspects of smart contract design.

(RQ4) Which relationships exist between different micro-
patterns, and how are they spread? Our analysis showed
that most micro-pattern pairs (>115 per platform) were weakly
correlated (𝜙 < 0.15), with only a few micro-patterns showing
moderate correlations (𝜙 > 0.50). This widespread indepen-
dence, consistent across all blockchain platforms, suggests our
catalog captured distinct, non-overlapping aspects of smart
contract design.

7 Threats to Validity
Internal Validity. Our micro-pattern detection framework achieved
a 93% success rate in processing 25000 verified smart contracts,
with failures primarily stemming from dependency resolution and
import remapping issues. While successfully processed contracts
demonstrate reliable micro-pattern detection, we acknowledge that
the dependency-related failures could have influenced our analysis.

Our focus on publicly verifiable contracts may underrepresent
certain patterns, particularly security-focused ones like Reentrancy
Guard, as security-critical contracts often remain private or use al-
ternative verification platforms. Futurework should analyze security-
audited contracts from professional sources and audit firms to better
understand pattern adoption in high-security contexts.

The framework’s core functionality relies on AST parsing and
correct dependency resolution, making it sensitive to project struc-
ture and compiler versions. To address version compatibility chal-
lenges, we implemented a version resolution system that manages
multiple Solidity compiler versions. Nevertheless, version-specific
language features may affect detection reliability. Initial validation
shows promising accuracy across common language features and
compiler versions, though future work could expand this validation
to cover the full range of Solidity’s evolving capabilities.

External Validity. Our dataset spans five public blockchains, rang-
ing from 4,217 (Optimism) to 4,900 (Polygon) smart contracts per
chain. This selection was based on their transaction volume, provid-
ing representation of mainstream development practices. However,
our focus on EVM-compatible chains may limit generalizability
to other blockchain architectures. Additionally, findings may not
generalize to private/permissioned chains which operate under
different security and performance constraints.

Our analysis of the most recent contracts per chain means find-
ings may be influenced by contemporary market conditions, trend-
ing DeFi protocols, and popular contract templates. This recent
snapshot may not fully represent historical development practices
or capture the diversity of contract types across platform lifetimes.

8 Conclusion
This paper introduced the first catalog of 18 micro-patterns for So-
lidity code, formally defined across five categories: Security, Func-
tional, Optimization, Interaction, and Feedback. Through our auto-
mated detection framework, we analyzed 23258 verified smart con-
tracts deployed across five major blockchain platforms (Ethereum,
Polygon, Arbitrum, Fantom, and Optimism). Our analysis revealed
that 99% of contracts exhibited at least one micro-pattern, with an
average of 2.76 micro-patterns per contract.

Our findings demonstrated that micro-patterns captured mean-
ingful development practices in Solidity. The Storage Saver pat-
tern had the highest adoption with a mean coverage of 84.62%,
while security patterns like Reentrancy Guard and Pull Payment
showed more selective implementation, indicating deliberate selec-
tion based on specific contract requirements. The statistical analysis
revealed significant platform-specific differences, particularly in
Borrower, Implementer, and Storage Saver patterns, suggesting that
blockchain characteristics may influence development strategies.

The predominantly weak correlations between micro-patterns
(𝜙 < 0.15 for over 115 micro-pattern pairs) suggested our catalog
captured distinct aspects of smart contract design. This indepen-
dence across our catalog indicated we identified non-overlapping
design aspects in smart contract implementations.

The integration of micro-pattern analysis into the development
process can bridge the gap between traditional software metrics
and Solidity’s unique requirements. The formal definitions and au-
tomated detection framework established in this work will provide
a foundation for investigating how micro-patterns influence devel-
opment practices, supporting future research in automated quality
assurance for blockchain systems.
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Table 4: Solidity Micro-Patterns Formalized in First-Order Logic

Pattern Formal Definition (FOL)

Security

Ownable ∃ 𝑣 ∈ stateVars (𝐶 ), ∃𝑚 ∈ modifiers (𝐶 ), ∃ 𝑓 ∈ functions (𝐶 ) :
(
type (𝑣) = address ∧ isPublic (𝑣)

)
∧ checksVar (𝑚, 𝑣) ∧ uses (𝑓 ,𝑚)

Stoppable ∃ 𝑣 ∈ stateVars (𝐶 ), ∃𝑚 ∈ modifiers (𝐶 ), ∃ 𝑓 ∈ functions (𝐶 ) :
(
type (𝑣) = bool ∧ isPauseFlag (𝑣)

)
∧ checksVar (𝑚, 𝑣) ∧ toggles (𝑓 , 𝑣)

Pull Payment ∃,𝑚 ∈ stateVars (𝐶 ), ∃, 𝑓 ∈ functions (𝐶 ) :
(
type (𝑚) = mapping(address ⇒ uint)

)
∧ checksMapping (𝑚) ∧ transfersToSender (𝑓 )

Reentrancy
Guard

∃, 𝑣 ∈ stateVars (𝐶 ), ∃,𝑚 ∈ modifiers (𝐶 ), ∃, 𝑓 ∈ functions (𝐶 ) :
(
checksVar (𝑚, 𝑣) ⇒ setVar (𝑚, 𝑣) ⇒ execute (𝑓 ) ⇒ setVar (𝑚, 𝑣)

)
Functional

Payable ∃ 𝑓𝑖 , 𝑓𝑗 ∈ functions (𝐶 ) :
(
(name (𝑓𝑖 ) = "fallback") ∧ (name (𝑓𝑗 ) = "receive")

)
Borrower ∃ 𝑙 ∈ imports (𝐶 ), ∃ 𝑓 ∈ functions (𝐶 ) :

(
isLibrary (𝑙 ) ∧ uses (𝑓 , 𝑙 )

)
Implementer ∀, 𝑓 ∈ functions (𝐶 ) : ∃, 𝑖 ∈ inherited (𝐶 ) :

(
implements (𝑓 , 𝑖 )

)
Modifier Usage ∃𝑚 ∈ modifiers (𝐶 ), ∃ 𝑓 ∈ functions (𝐶 ) : uses (𝑓 ,𝑚)

Optimization

Storage Saver ∀ 𝑣 ∈ stateVars (𝐶 ) : ¬wasteSpace (𝑣)
Reader ∀ 𝑓 ∈ functions (𝐶 ) : isView (𝑓 )
Operator ∀ 𝑓 ∈ functions (𝐶 ) : isPure (𝑓 )

Interaction

Provider ∀ 𝑓 ∈ functions (𝐶 ) : isExternal (𝑓 )
Supporter ∀ 𝑓 ∈ functions (𝐶 ) : isInternal (𝑓 )
Delegator ∃ 𝑐 ∈ stateVars (𝐶 ), ∃ 𝑓 ∈ functions (𝐶 ) :

(
isContract (type (𝑐 ) ) ∧ delegatesTo(𝑓 , 𝑐 )

)
Feedback

Named Return ∀ 𝑓 ∈ functions (𝐶 ) : hasNamedReturns (𝑓 )
Returnless ∀ 𝑓 ∈ functions (𝐶 ) : returnCount (𝑓 ) = 0
Emitter ∀ 𝑓 ∈ functions (𝐶 ) : hasEvent (𝑓 )
Muted ∀ 𝑓 ∈ functions (𝐶 ) : ¬ hasEvent (𝑓 )

Contract Accessors

stateVars (𝐶 ) Returns the set of state variables in𝐶 .
functions (𝐶 ) Returns the set of functions in𝐶 .
modifiers (𝐶 ) Returns the set of custom modifiers in𝐶 .
enums (𝐶 ) Returns the set of enums declared in contract𝐶 .
imports (𝐶 ) Returns the set of libraries or external contracts

imported by𝐶 .
storageSlots (𝐶 ) Returns the set of storage slots used by𝐶 .

Checks and Delegation

toggles (𝑓 , 𝑣) True if 𝑓 toggles (switches) a bool variable 𝑣.
delegatesTo(𝑓 , 𝑐 ) True if 𝑓 delegates calls to contract 𝑐 .
checksVar (𝑚, 𝑣) True if modifier𝑚 checks the value of variable 𝑣.
checksMapping (𝑚, 𝑣) True if modifier𝑚 checks mapping variable 𝑣 for

permissions.
checksLock (𝑚, 𝑣) True if modifier𝑚 checks a reentrancy lock vari-

able 𝑣.

Function/Variable Properties

isPure (𝑓 ) True if 𝑓 is declared pure.
hasExternalCall (𝑓 ) True if 𝑓 performs an external call.
isView (𝑓 ) True if function 𝑓 is declared view (read-only).
returnCount (𝑓 ) Number of return values in 𝑓 .
hasNamedReturns (𝑓 ) 𝑓 has named returns.
overridesAbstract (𝑓 ) 𝑓 overrides an abstract method.
type (𝑣) Returns the type of variable 𝑣.

Boolean Flags/Storage

wasteSpace (𝑣) True if 𝑣 can be placed in a previously non-full slot.
size (𝑠 ) Byte size of storage slot 𝑠 .
isLibrary (𝑙 ) True if 𝑙 is a Solidity library.
isPauseFlag (𝑣) True if 𝑣 is a boolean flag for a paused/stopped state.
isLock (𝑣) True if 𝑣 is used as a reentrancy lock.
transfersEther (𝑓 ) True if function 𝑓 transfers Ether.
hasEvent (𝑓 ) True if function 𝑓 emits an event.

A more exhaustive set of definitions is provided in our replication package, including visibility checks, event-related properties, and additional internal predicates.

Figure 6: Representative Subset of Auxiliary Functions and Predicates
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