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Abstract

Machining processes are largely reliant on manual intervention and non-value-added processes, such as post-process inspec-
tion, to achieve end-product conformance. However, the ever-increasing demand for high manufacturing productivity com-
bined with low costs and high product quality requires online monitoring systems to provide real-time insights into the
cutting process and minimize the volume of non-value-added processes. Most of the published work on machining process
monitoring focuses on intrusive measurement equipment, such as dynamometers, to predict the dimensional quality of
machined parts, preventing industrial exploitation due to practical limitations. The main focus of this work is to address
this issue by developing a new product health monitoring method for machining processes using non-intrusive and low-cost
instrumentation and data acquisition (DAQ) hardware. The sensing setup in this work includes an acoustic emission (AE)
sensor and two accelerometers in the work holding. The proposed monitoring system is applied to milling experiments using
Gaussian process regression (GPR) for probabilistic nonlinear in-process product condition monitoring. Validation results
show the effectiveness of the GPR model to provide accurate probabilistic predictions of product health metric deviations with
reasonable uncertainty estimates considering the large variability of the data. In addition, a Bayesian inference methodology
is derived to dynamically incorporate subsequent information from on-machine probing (OMP) with a comparator method,
improving the accuracy and robustness of the proposed solution. Specifically, it is demonstrated that a precision-weighted
combination of prior information from the posterior predictive distribution for a future observation and new metrological
information from on-machine comparator measurement (OMCM) can clearly improve posterior inferences about the end
product condition.

Keywords Bayesian inference - Gaussian process regression - Intelligent manufacturing - Machining process monitoring -
On-machine comparator measurement

1 Introduction engineers and machinists based on their knowledge and pre-

vious experience, theoretical modelling of the process, and

Subtractive machining processes, such as turning, milling,
drilling, and grinding, are highly complex manufacturing
processes characterized by nonlinear dynamics involving
many parameters and uncertainty sources. Therefore, the
geometric deviation of machined parts from the design spec-
ifications is affected by a large range of interrelated influ-
encing factors, which are difficult to estimate [1]. Such pro-
cesses are generally planned by highly skilled manufacturing
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specialized machining simulation software to achieve parts
with precise dimensions and desired surface finish. However,
many failure modes with high scrap levels are still observed
in a production setting due to a variety of causes and errors
typified by nonlinearities and time-varying characteristics.
Under these circumstances, knowledge about the machining
process is usually incomplete and prediction models must
be able to cope with substantial uncertainty. The task of
controlling such systems is a considerable challenge in many
applications [2, 3].

Machining processes are typically followed by inspection
processes, such as coordinate measuring machine (CMM)
inspection, to measure the machined parts and decide con-
formance or non-conformance to specifications [4]. CMMs
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are one of the most important dimensional metrology equip-
ment for manufacturing quality control due to their accuracy
and flexibility in measuring complex parts with a wide range
of part and feature characteristics using different sensor tech-
nologies [5]. However, they are often a bottleneck to pro-
duction, particularly conventional CMMs that require stable
temperature-controlled conditions to perform consistently
[6]. With advances in sensing and computing technologies,
the manufacturing industry is entering a new era, known as
Industry 4.0, which is characterized by emerging technolo-
gies, such as cyber-physical systems (CPSs), the internet of
things (IoT), artificial intelligence (Al), and cloud comput-
ing [7]. Real-time process and product quality monitoring
using data-driven modelling techniques constitutes a key
part of the concept of Industry 4.0 to minimize non-value-
adding processes, production bottlenecks, re-work, scrap,
and cost [8]. Such methods typically rely on digital signal
processing and statistical machine learning modelling for
fault detection and diagnosis [9]. To achieve this, various
sensing techniques have been applied over the years in the
area of machining process monitoring [10]. Nevertheless,
the overwhelming majority of machining process monitoring
methods, particularly for product health prediction, relies on
high-cost and intrusive instrumentation, such as dynamom-
eters, which prevents industrial deployment. Therefore,
considerable effort has been devoted to developing more
practical and flexible monitoring methods for machining
processes, suitable for a range of applications with different
machining process setups and machine tool access limita-
tions [11].

In terms of monitoring system objectives, many research
efforts have been directed towards the application of
machine learning modelling algorithms to predicting tool
wear [12, 13], chatter [14, 15], and surface roughness [16,
17]. By contrast, much less attention has been paid to map
machining process features to dimensional metrology char-
acteristics [18]. This paper presents a multi-sensor machin-
ing process monitoring method for product health prediction
based on probabilistic machine learning using Gaussian pro-
cess regression (GPR). Unlike previous approaches, how-
ever, the present works rely on a non-intrusive and low-cost
instrumentation and data acquisition (DAQ) solution that
is flexible in configuration and can be extended with plug-
and-play simplicity with further measurement modules for
different applications with mixed sensor types and sampling
rates. The proposed method is tested on a milling case study
where it is required to estimate the machined part quality
for a specific dimensional quality characteristic (diameter
deviation) with acoustic emission (AE) and vibrations sen-
sors installed in the work holding. The novelty of the paper
lies in the sensing and DAQ setup for dimensional prod-
uct health monitoring in milling operations and a Bayesian
statistical inference methodology for improving posterior
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product health parameter estimates using new metrologi-
cal information from on-machine comparator measurement
(OMCM). Bayesian methods allow the information gained
in one experiment to be taken into account completely in the
analysis of another related experiment.

In summary, the main contributions of the paper include
the following:

e The development of an intelligent, probabilistic product
health monitoring method based on GPR for machining
processes using non-intrusive instrumentation.

e The use of the machine tool as a comparative coordi-
nate measuring system (CMS) is proven to be effective
in improving product health metric deviation estimates
from probabilistic machine learning via Bayesian infer-
ence unlike absolute/traditional on-machine measure-
ments (OMMs).

e Posterior distributions are obtained as a precision-
weighted average of the prior and likelihood obtained by
probabilistic machine learning and OMCM, respectively.

The remainder of the article is organized as follows:
Sect. 2 presents related work on machining process moni-
toring for a range of scopes. Sections 3 and 4 provide the
necessary background on Bayesian inference methodology
and GPR. Section 5 presents the experimental work. Sec-
tion 6 discusses the modelling results obtained by the pro-
posed Bayesian product health monitoring method. Section 7
draws conclusions and provides suggestions for future work.

2 Literature review

In traditional manufacturing, the geometric information of
the required workpiece features is typically evaluated using
post-process inspection approaches, such as CMM inspec-
tion. CMMs are flexible and accurate measuring instru-
ments, and they can deliver improved process productivity
and reduced scrap. However, CMM inspection often acts as
a bottleneck in the manufacturing process and as an end-
of-line process does not intrinsically add any value to the
manufactured parts, while increasing production time and
cost [18]. Computer numerically controlled (CNC) machine
tools can also be used as CMSs by exchanging the cutting
tool for a machine tool probe. On-machine probing (OMP)
is a major in-process inspection approach that can be used
to reduce variation sources inherent to machining, such as
effects of tool wear on the workpiece and temperature vari-
ation, enabling in-process feedback, and provide confidence
in the stability of the machining process. The main disad-
vantage however is that the inspection of machined parts
using OMP is sensitive only to errors that are not common
to both the machining process and the inspection process as
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the same machine is used for both processes. Hence, with
OMP, errors, such as machine tool geometry errors, thermal
distortions, and errors in thermal corrections applied to the
machine tool, cannot be detected [5, 19].

In the high-value manufacturing (HVM) sector, increas-
ingly manufacturers are investing in digital technologies
emerging from Industry 4.0 to increase efficiency and
productivity in order to stay competitive. A major goal of
Industry 4.0 is to reduce redundant processing by devel-
oping intelligent process monitoring and control systems
with dynamic learning features. Indeed, the research area
of manufacturing informatics for autonomous process fault
and defect detection embedded within the production cycle
is currently developing at an unprecedented rate. Manufac-
turing informatics is largely aimed at developing new meth-
ods that provide effective feedback to the production loop
and enhance manufacturing intelligence and autonomy using
emerging technologies, such as Al, big data, and dynamic
data-driven algorithms. Therefore, real-time process and
product health monitoring and control systems for machin-
ing operations are crucial in developing processes that yield
more precise parts more rapidly with lower manufacturing
costs. However, this is highly challenging owing to the com-
plexity of machining processes and the high volumes of data
which are being generated by different measurement equip-
ment and processes.

Over the years, several methods have been proposed to
monitor machining processes using a range of sensors, such
as current/power, dynamometers, accelerometers, AE, and
microphones, for a range of monitoring scopes [20]. In this
context, Marinescu and Axinte [21] demonstrated the effec-
tiveness of AE signals in monitoring process malfunctions,
such as tool defects and workpiece surface anomalies, in
milling operations. Wang et al. [22] used a low-cost smart
cutting tool to measure cutting forces during machining and
adapt the feed rate. Bernini et al. [23] presented a robust
unsupervised strategy for milling tool wear monitoring
under variable process parameters and lubrication conditions
using cutting force signals. McLeay et al. [24] developed
and validated an unsupervised machine learning method to
observe changing machining process conditions over time in
order to detect faulty process conditions, such as worn tools
and changes to depth of cut, using non-intrusive sensing.
Moore et al. [25] used two tri-axial accelerometers, mounted
on the spindle column and bed of the machine tool, respec-
tively, and a power transducer, to assess the machine tool
and process condition by applying various machine learning
techniques. Plaza et al. [26] examined different signal feature
extraction methods to optimize surface finish monitoring
using a tri-axial accelerometer mounted on the tip of the
tool holder behind the insert. Kovac et al. [27] applied fuzzy
logic and regression analysis for modelling surface rough-
ness in dry face milling operations using cutting parameters

and tool wear. Huang [28] proposed a neural-fuzzy infer-
ence system for surface roughness prediction in end milling
operations using process parameters and cutting force sig-
nals. Vasconcelos et al. [29] demonstrated the importance of
training machine learning models with both controllable fac-
tors and noise variables, such as tool wear, by applying vari-
ous learning algorithms, including support vector machines,
decision trees, and random forest, for surface roughness pre-
diction in milling operations. Decision trees are interpretable
machine learning models, but they are prone to overfitting.
A solution for nonlinear interpretable input-output map-
pings has been reported in [30] for areal surface metrology
informatics using fuzzy-based machine learning modelling
with a ridge penalty term to avoid overfitting of the training
model. Furthermore, deep learning algorithms have been
applied with great success to machining monitoring tasks
[31-34]. Deep learning is a type of machine learning that
can achieve state-of-the-art accuracy and flexibility, assum-
ing that large amounts of labelled data and significant com-
puting power are provided. Most deep learning methods
are based on artificial neural network (ANN) architectures
and stochastic gradient descent optimization [35]. Carbone
et al. [36] presented a deep learning approach for machined
surface classification tasks using a limited training dataset
of optimal and undesired cutting conditions. Wu et al. [37]
presented a physics-informed deep learning method for mod-
elling surface roughness in milling operations using cutting
force data, machining parameters, tool type, and workpiece
properties.

In the context of nonlinear nonparametric solutions, GPR
models have been used in several manufacturing applications,
such as milling [38], turning [13], multistage manufacturing
[39], robotic machining [40], additive manufacturing [41],
and semiconductor manufacturing [42], due to their modelling
flexibility and inherent capability to provide predictions with
estimates of uncertainty. Gaussian processes (GPs) require a
suitable covariance kernel function parametrized by a set of
hyperparameters to estimate posterior distributions over the
function of interest from the training samples [43, 44]. The
hyperparameters can be estimated from the data, or they can
be fixed. Kong et al. [13] applied GPR for tool wear prediction
in turning using cutting force signals and machining parame-
ters. Lu et al. employed GPR for surface roughness prediction
in milling using cutting parameters. Song et al. [45] developed
a multi-kernel GP autoregressive regression model based on a
two-step feature-integration approach to predict both surface
roughness and tool wear in milling using cutting force and
vibration signals. Qiang et al. [46] applied GPR for tool wear
prediction in milling using the net cutting power consumption.
Zhao et al. [47] used multi-output GPs and spherical mapping
to model 3D surfaces and monitor the geometrical deviations
of surfaces. Although GPR models can handle covariates
of arbitrary dimension, an important step to consider when
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building a model is selecting the covariates that are related to
the response variable because this can reduce the complexity
of the model and improve its generalization performance. A
common method for variable selection in GPR with certain
covariance functions is the automatic relevance determina-
tion (ARD), but penalized techniques are more flexible and
efficient [44].

To summarize, accurately predicting the dimensional end
product quality during manufacturing has substantial benefits
in terms of productivity, quality, and cost. However, most of
the published work focused on the prediction of tool condi-
tion/wear and surface metrology parameters, such as surface
roughness, using intrusive measurement equipment, and only
a few studies have previously applied non-intrusive sensing for
machining process monitoring. With the growing demands of
developing practical machining process monitoring systems,
this paper presents a non-intrusive monitoring method for
machining processes using GPR for dimensional end product
quality estimation with uncertainty information and a Bayesian
statistical inference methodology for providing improved prod-
uct health parameter estimates given new information from
OMCM. Previous studies [39, 48] focused on combining new
metrological information from OMP with posterior predictive
distributions from probabilistic machine learning have not con-
sidered the intrusive nature of sensing used and the influence
of systematic effects associated with OMP.

3 Bayesian inference in dimensional
metrology

Let Y be a measurand (e.g. diameter) regarded as a continuous
random variable with probability density function (PDF) g(#),
where 7 € R is a possible value of Y, g(n) >0 V 5 and
/ neR g(m)dn = 1. The cumulative distribution function (CDF)
of Y, G(n) = P(Y < 1), gives the probability that the random
variable Y is no greater than #, with G(—o0) = 0 and G(c0) = 1,
and it can be expressed in terms of the PDF as
Gn) = f im g(dt, ¥ n, where t denotes the variable of inte-
gration. If g(n) = dG(n)/dn is the PDF of Y, then the probabil-
ity of # lying in an interval [na, ;1,,], with 5, <, is
P(n, <Y <n,) = [} gmdn = G(n,) - G(n,). Two impor-
tant summary statistics of probability distributions are the
mean or expectation, which is a measure of location of Y, and
the standard deviation (positive square root of the variance),
which is a measure of dispersion and referred to as the stand-
ard uncertainty u(y) associated with the expectation or an esti-
mate y of Y in the guide to the expression of uncertainty in
measurement (GUM) [49]. The expectation of Y with PDF
g(n)is defined asE(Y) =y = / ng(n)dn and the variance as
V(Y) = 6? = [ (n—y)*g(n)dn. Note that if ¥ has a Gaussian

@ Springer

(normal) distribution, Y ~ N(,u, 62), then E(Y) = 4 and
V(Y) = 62. A coverage interval for the random variable Y can
be determined from the CDF G(#). In the field of conformity
assessment with unimodal and symmetric PDFs, a widely used
coverage interval of the form [y -U,y+ U], where U = Ku(y)
is the expanded uncertainty and K is the coverage factor cho-
sen to achieve a desired coverage probability or level of confi-
dence associated with this interval, is known as uncertainty
interval [50].

In Bayesian statistical inference, the parameters to be
estimated are treated as random variables rather than fixed
constants as in frequentist statistical inference. In a Bayesian
formulation, knowledge about the measurand Y before a meas-
urement experiment is encoded in a prior PDF p(#|I), where
I denotes the prior information. Once a measurement experi-
ment has yielded a particular realization #,, Bayes’ theorem
can be applied to obtain the posterior distribution of Y:

p(n.mI)
p(nell)

p(nlne.1) =

= CpnlDp(nln. 1), M

where p(n,|n,1) is the likelihood function considered
as a function of an assumed value # since a realization 7,
exists and C™! = p(n,|I) = [ p(n|Dp(n.|n.1)dn such that
J p(nln..1)dn = C [ p(n|Dp(n.ln.1)dn = 1. Hence, Bayes’
theorem may be expressed in the form:

p(nln.I) « p(|Dp(neln. 1), )

which omits the constant of proportionality, and essentially
states that the posterior PDF is proportional to the prior PDF
times the likelihood function [51]. The form of likelihood
function, p(ne|17, 1 ) typically depends on knowledge of the
measurement process. Bayes’ theorem allows us to combine
information from different sources into the posterior PDF,
p(nin.I), which represents all the information about the
unknown characteristic parameters taking into account the
measurement data and the prior information. In conform-
ity assessment, summary information about the posterior
PDF is usually required, particularly the mean and standard
deviation of the posterior. Informative prior distributions
are used to express the available prior knowledge. If prior
knowledge is not available, then a so-called noninformative
prior distribution is used. If the prior distribution is normal
and the likelihood function can be approximated by a normal
distribution, then the posterior is also a normal distribution.
Let 1, ~ N(n,02) with 62 known. If # ~ N(u,67) is the
prior distribution for #, then the posterior of # is a normal
density with mean #; and variance 6]21

m=—t— o= (5 +07%) ®
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4 Gaussian process regression

GPs are a flexible class of non-parametric kernel-based proba-
bilistic machine learning models that have been applied exten-
sively to regression problems [43]. Consider a training dataset
D = {( X;, l) li=1,... m} drawn from

h, =f(x;) + € )

where x; € R" is a vector of predictors, f is an unknown
function, #; € R is a scalar response (target), and ¢; is a
Gaussian measurement noise with zero mean and variance
0' ,€; ~ N(O, (72) GP modelling is a Bayesian non-paramet-
ric approach that defines a GP, parametrized in terms of a
mean function, y(x) = E(f(x)), and a covariance function
(kernel), k(x,x ) = cov(f(x),f(x)), as a prior distribution
for f(x):

fx) ~ GP(w(x).k(x,x)). )

It is common to assume that the prior mean function is zero
if there is no prior information about the mean function of the
GP. The covariance function, k(x, x/), depends on the inputs
x and x and the choice of the kernel function with hyperpa-
rameters 6, which can be estimated from the data, D = {X, h},
where X = (xl, ,xm)T € R’”X” denotes the matrix of pre-
dictors and k= (hy, ..., hm) € R”™! the corresponding
response vector. The conditional distribution of & given f and
o2 is multivariate Gaussian, h|f, 6> ~ N,, (k|f, 6>I), where I
is the mxm identity matrix and
f=(f(x)),.. f(xm))T € R™ ! is the vector of latent vari-
ables with f; = f(x;). The vector of latent function values f
has a multivariate Gaussian distribution, f|X, 8 ~ N, (f]0, K),
where 0 is the m-dimensional mean vector of all zeros and

= [k(xl, X )] vij .is the m X m covariance matrix evaluated at
all pairs of the m training points, {k(x,, x)li,j=1,. m},
using a particular form of covariance function with hyperpa-
rameters 0. The most widely used covariance function is the
squared exponential (SE):
2
=

kg (x;-%;10) = afz.exp 5| (6)

where o, (scaling parameter) and / (characteristic length-
scale) are hyperparameters, which control the magnitude %nd

the smoothness of the function, respectively, and |xi - xj| is

the squared Euclidean distance between the predictor vari-
ables x; and x;. Since the likelihood, p(hlf.c?), and the
prior, p(f|1X, 0), are both multivariate Gaussian, the poste-
rior distribution of the vector of latent function values f is
also multivariate Gaussian:

SIXo1,0.07 ~ N,,(K(K+021) " b, o?K(K +21) ).
(N
Thus, the GP posterior at a test input x, is Gaussian,
11X, h, 0, 0' X, ~ N<f c )Wlth posterior predictive mean

and variance:

f.=E(f,) =K' (K+06°T) 'k, ®)
and
o2 =V(f.) = k(x,.x,) -k (K+ 1)k, )

respectively, where k,, = [k(x*, xi)] vi is the m X 1 vector of
covariances between the test point x, and the m training
points, {k(xx, x)i=1,. m} Hence, the predictive distri-
bution of 4, is Gaussian w1th mean E (fx) =E (h*) and vari-
ance 83=V(h*)=V(f*)+a§ Given that
h~ Nm (0, K+ 0'521), the hyperparameters 6 and noise vari-
ance a of the GP model can be estimated by maximizing
the marginal likelihood p(k|X) as a function of 6 and 0' ie.,

0,6 0' = argmax log p(th 0,0 ) The log marginal llkeh—

hood is given by

log p(hIX, 0,0%) = =" (K + 621) "' — Zlog|K + 621| - Zlog(2n),

10)

5 Experimental approach and setup

A major obstacle in product quality monitoring research for
machining processes is the lack of a non-intrusive and low-
cost multi-sensor system that is straightforward to install,
configure, and extend with further measurement modules for
different industrial manufacturing applications. An EMCO
MAXXMILL 350 vertical milling centre was used in the
experimental trials for machining holes under dry conditions
with process variability added through different feed rates
and spindle speeds. In particular, a full factorial design was
performed with two factors (feed rate and spindle speed)
at three levels each (400, 420, and 440 mm/min, and 1592,
1672, and 1752 rev/min, respectively). The workpiece mate-
rial used throughout the tests was EN3B engineering steel
due to its low cost and use in a variety of applications, such
as machinery parts. An indexable milling cutter with three
interchangeable inserts having two helical cutting edges
(APKT 1003PDTR-76 IC328) suitable for many applications
on steel and stainless steel and interrupted cuts and milling
under unstable conditions was employed for the experiment.
The inserts were replaced (or rotated to another cutting edge)
at irregular intervals to add further variability in the data and
represent industrial cutting conditions. In total, 486 holes
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were milled using three replicates of the experimental design
(27 parts with 18 holes each from both sides of the work-
piece). The study in this paper utilized 22 parts (396 holes)
from this experimental design.

The monitoring system for product health prediction
included a number of different sensors: a passive piezoelec-
tric AE sensor (Vallen Systeme VS150-K3) with a frequency
range (Fpeak) of 100-450 kHz (150 kHz), a triaxial accel-
erometer (PCB 604B31) with a frequency range (+ 3 dB) of
0.5-5000 Hz, a uniaxial accelerometer (PCB 352A60) with
a frequency range (+3 dB) of 5-60,000 Hz, and a micro-
phone system (PCB 378CO01), which was excluded for this
study. The experimental data were obtained using a National
Instruments USB Compact DAQ Chassis (NI cDAQ-9174)
with different voltage input modules, including the NI-9223
and the NI-9775. Regarding the sensor signal conditioners,
a PCB 482C05 4-channel signal conditioner was employed
for both accelerometers and an AEPS pre-amplifier with a
DCPL2 decoupling box for the AE sensor. In this study, all
sensor signals were measured simultaneously at 500 kHz
during milling, allowing frequency content up to 250 kHz
to be observed. The NI LabVIEW SignalExpress software
was used for acquiring the AE and vibration signals, which
provides both the original signals and the corresponding
decimated data at different levels though M-fold decima-
tion preceded with lowpass finite impulse response (FIR)
filtering to prevent aliasing from occurring due to the lower
sampling frequencies. All the sensors were installed in the
machine vise using magnetic holders.

After machining, OMP was performed using the Ren-
ishaw OMP 40-2 optical inspection probe system whose
measurement repeatability is 1 pm 2. The measuring cycles
were produced using the Renishaw Inspection Plus software
for machining centres for Siemens Controllers. The measur-
and of interest in this study is the diameter of the machined
holes. Four contact points were selected to be taken for each
milled hole. For post-process inspection, a Mitutoyo CMM,
equipped with MCOSMOS software, was used in laboratory

Fig. 1 Experimental work

AE sensor

Uniaxial
accelerometer

Machining

conditions to measure the milled holes. The probe system
used was the Renishaw SP25M, which can function either as
a scanning probe or as a touch-trigger probe. In this study,
the probe was used in touch-trigger probing mode where
four discrete points were taken for each milled hole meas-
ured as such a sample size of probing points is sufficient for
this geometric feature and it is practical for a production set-
ting. In total, 396 diameter measurements were determined
from each inspection approach, but both approaches were
also repeated under different conditions on a set of test parts
for the experimental assessment of uncertainty. In addition,
an additional part to be used as a master part for comparator
measurements was produced and measured by both inspec-
tion approaches. The whole experiment was carried out at
the University of Portsmouth. The experimental setup can
be seen in Fig. 1.

6 Probabilistic product health monitoring
using non-intrusive sensing and OMCM

The datasets utilized in this study include the first level of
decimated machining process monitoring data, the in-pro-
cess inspection data, and the post-process inspection data.
MATLAB was used for all computations, including signal
segmentation, feature generation, machine learning, and
Bayesian inference. Segmentation was applied to the deci-
mated signals in order to remove the non-cutting condition
data. After signal segmentation, the following time-domain
features were computed: the mean, standard deviation, root
mean square (RMS), kurtosis, skewness, shape factor, peak
value, clearance factor, crest factor, impulse factor, signal-
to-noise ratio (SNR), and signal-to-noise-and-distortion
ratio (SINAD). The extracted process features were used
as inputs to the GPR model, along with the correspond-
ing cutting parameters. The predictors were standardized
using their corresponding means and standard deviations.
Figure 2 shows an example of AE data for selected pairs

CMM

Triaxial accelerometer
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Fig.2 Bivariate histogram plots
of selected time-domain AE
features

FoN
(=]

Frequency
N
o

AE SINAD

Frequency

AE Peak Value

Fig. 3 Normal probability plot
of the CMM measured devia-
tions
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of features using bivariate histograms. The CMM product
health metric deviations, i, = h,, — ¥, were used as output
data, where &, is the CMM measured value and y = 35mm
is the nominal diameter value. Figure 3 shows the normal
probability plot of the output data, indicating that the data
are normally distributed with non-substantive deviation
from normality given the high variability of the data in this

0.1 0.15 0.2 0.25 0.3

CMM Diameter Deviations (mm)

study. CMM inspection experiments were carried out under
repeatability and reproducibility conditions to evaluate the
uncertainty associated with CMM measurement.

The dataset was randomly split into a training set, con-
taining 90% of the dataset, and a reserved test set contain-
ing the remaining 10%. Automatic relevance determination
(ARD) was used to select an optimal subset of covariates
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from the model. This typically improves the model’s per-
formance and reduces its complexity. The ARD-SE kernel
is defined by

Xy — X))

kagp-se (X X;10) = UfzeXP l—% Z ([dl—zﬂi)] , (11)

d=1 d
where 6 = (af, Liy.oo,s ln)T. The hyperparameter [, is a char-
acteristic length-scale, which controls the smoothness of
the function in the direction of the d -th predictor variable.
Therefore, the hyperparameters /,, ..., [, can determine the
relevance of the corresponding input variables to the output
variable. A major limitation of using GPs for large datasets
is that the computational complexity grows at rate O(m?)
due to the inversion of the m X m covariance matrix. Sev-
eral approaches, such as sparse approximations [52-54] and
local-expert models [55-57], have been proposed to alleviate
their computational cost. However, in the present case study,
the available dataset is small enough for an exact implemen-
tation without being computationally expensive.

A GPR model using the ARD-SE kernel, which selects
an optimal subset of covariates, X; = (X;, ... ,x,-n)T, was
used for mapping the process conditions to the CMM prod-
uct health metric deviations. The performance measure
utilized to evaluate the proposed GPR model was the root
mean squared error (RMSE) because it is easy to interpret.
The performance of the model in predicting the diameter
deviations is shown in Figs. 4 and 5 for the training and
test sets, respectively. As can be noted from the measured
vs predicted plots, the model does not overfit on the train-
ing set (Fig. 4) and is able to generalize well to unseen
data (Fig. 5). Figures 6 and 7 show the CMM measured
diameter deviations, the predicted diameter deviations,
and the 95% prediction intervals, where it can be seen
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Fig.5 GPR model performance on the test set

that the developed GPR model yields accurate prediction
results with reasonable uncertainty intervals given the large
variability of the data. Figure 8 shows the histogram of
residuals from both training and testing. In addition, the
generalization performance of the GPR model was evalu-
ated using k-fold cross-validation. In particular, a fivefold
cross-validation approach was employed, partitioning
the dataset into five randomly chosen subsets (folds) of
roughly equal size, to iteratively train and test the GPR
model. One fold containing 20% of the dataset was used
to test the GPR model trained using the remaining folds
containing 80% of the dataset. This process was repeated
5 times so that each fold was used as the test set once. The
weighted average RMSEs were 0.023mm and 0.028mm for
training and testing, respectively. Figures 9 and 10 show
the measured vs predicted plots for the training and test
sets, respectively, for a randomly chosen fold. However, the
proposed probabilistic product health monitoring method
can benefit from subsequent information, such as OMP
measurements, particularly for GPR prediction results with
large uncertainty intervals. In other words, when the GPR
model cannot be confident in its predictions, OMP can be
performed to improve the prediction results in terms of
accuracy and level of uncertainty via Bayesian statistical
inference. In this study, both sources of information can be
well represented with normal densities. Thus, the posterior
distribution of product health metric deviation estimates
given in-process monitoring and in-process inspection data
can be represented as a compromise between the predicted
response from the GPR model and the observed OMP value
or maximum likelihood estimate, which is simply the sam-
ple mean, for multiple OMP observations on the same fea-
ture of the part. Hence, the resulting posterior for diameter
deviation estimates will also be a normal density, with a
mean equal to a precision-weighted average of the GPR
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Fig.6 GPR model prediction 0.35
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fixed, a conjugate prior distribution for # is the normal. If

Letn, = n,, — be the difference between the OMP meas- 5 ~ N( o, 073) is the prior distribution for 5, where u =1,
urement, #,,,, and the nominal diameter value, y. Assuming
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Fig.8 Histogram of residuals
with a normal density fit

45

40

35

Frequency
N
(6]

N
o

-0.05 0
Residuals from Training (mm)

04F ‘

— RMSE = 23.06 um

£ R

Eost v .

[72]

S o 508

T02f ]

2 % - 2K

[0) [ ]

(@]

S04 ]

(0]

5 , v/

2

% 0r A o 1
0 0.1 0.2 0.3 0.4

Predicted Deviations (mm)

Fig.9 GPR model performance on the training set for a randomly
chosen fold from fivefold cross-validation

and 62 = 62, then the posterior for #, p(nln.,1), where I
includes the known variance 03, is a normal density with mean
n = e +w(yy — n)w = 0,2 /(65% + 6.2) € (0,1),and vari-
ance 62 = (0,2 + 0‘2)_1 However, notice that the resultin

1 0 e : ’ g
posterior may lead to improved or reduced product health
parameter estimates depending on whether OMP provides new
accurate information or not. This is illustrated in Fig. 11 where

the resulting posterior distribution is shifted away from the
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Fig. 10 GPR model performance on the test set for a randomly cho-
sen fold from fivefold cross-validation

target (CMM) distribution. OMP can be used with a compara-
tor method to correct for the systematic effects associated with
OMM, because major sources of error present during machin-
ing are also present during automated probing. To achieve this,
first, a master part, nominally of the same design, is calibrated
with a Mitutoyo CMM in stable temperature-controlled con-
ditions according to the technical requirements of the appli-
cation. The calibrated master part is then measured on the
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Fig. 13 Bayesian inference for T T
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machine tool with OMP based on the same measurement strat-
egy, and the uncertainties for both measurement procedures are
calculated experimentally. The difference between the meas-
ured and calibrated values of the master part, or the difference
between the average of the measured values of the master part
and the average of the calibrated values of the master part, in
the case of repeated measurements, is added as a correction to
the OMP observed value of each test part. The systematic error
isc = ny — h.,. wheren, and h,; denote the OMP measured
value and the CMM calibrated value of the master part, respec-
tively. When OMP measurement results are corrected by the
amount of systematic effects, i.e., ’7;; =, — ¢, as with CMSs
operating in comparator mode, such as automated compara-
tor gauges, the combined uncertainty associated with OMCM
should consider the uncertainty parameter obtained by the cali-
bration of the master part, the uncertainty associated with the
systematic error evaluated using repeated measurements on
the calibrated master part under varying conditions, the uncer-
tainty of the measurement procedure on the test part, and the
uncertainty due to material and manufacturing variations [58].
This means that comparator measurement requires subsequent
measurements on the calibrated master part at regular time
intervals in order to derive an accurate correction value, but
a nonlinear probabilistic mapping from in-process inspection
conditions to post-process inspection can be found to reduce
the volume of additional measurements and receive new cali-
bration information. For modelling purposes, the posterior pre-
dictive distribution for a future observation from the model is

@ Springer
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treated as the prior, and the new metrological information from
OMCM, n = r/j;‘ —79, is treated as the likelihood in the same
way as conventional OMP, 7.. As can be seen from the results
of Fig. 12 (same part as before) and Fig. 13 (different part),
marrying the prior information from the posterior predictive
distribution with the new information from OMCM data leads
to improved posterior inferences about the end product condi-
tion. When the prior information from the posterior predictive
distribution for a future observation and the new information
from OMCM are in great conflict, then, the target (CMM) and
posterior distributions are markedly different from one another,
and new calibration information is required to correct for the
influence of systematic effects associated with OMP.

7 Conclusions

Despite remarkable research efforts and progress in the
development and validation of real-time machining process
monitoring systems for various scenarios, their industrial
realization is still hampered by several obstacles. A major
obstacle to their industrial implementation is the prohibitive
cost and intrusive nature of sensors typically used for moni-
toring machining processes. Although previous studies have
presented methods for product quality monitoring, reducing
the volume of post-process inspections, the vast majority of
applications reported on the use of cutting force, spindle,
and tool vibration measurements. Whilst such measurement
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signals are particularly useful to infer the process condition
and detect non-conforming products, the applicability of
this instrumentation in a production scenario is limited. To
ensure that the manufacturing industry can adopt a sensor-
based monitoring solution for product health prediction, the
instrumentation must be non-intrusive to the process.

This paper has presented a new product health monitor-
ing method for machining processes using non-intrusive
and low-cost instrumentation and data acquisition (DAQ)
hardware, which can be extended with different measure-
ment modules. A Gaussian process regression (GPR) model
was developed to provide product health metric deviation
estimates with uncertainty information using coordinate
measuring machine (CMM) and in-process monitoring
data, including acoustic emission (AE) and vibration. Also,
Bayesian statistical inference was applied to dynamically
incorporate new information from on-machine comparator
measurement (OMCM) and increase the generalization per-
formance and robustness of the system, providing improved
product health parameter estimates during manufacturing.
However, the proposed product health monitoring method
has also some limitations. Gaussian processes (GPs) have
cubic complexity of training, which is prohibitive for large
datasets. Thus, one needs approximation schemes to reduce
this complexity for modelling problems with large datasets.
For variable selection, automatic relevance determination
(ARD) was used to remove irrelevant input variables from
the model, but penalized regression techniques may be more
efficient on variable selection. Therefore, future work will
focus on developing a penalized GPR approach for product
quality monitoring in machining processes and also look to
apply the proposed monitoring method to multi-operation
machining processes in the presence of coolant for complex
parts with different critical features.
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