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Abstract
Machining processes are largely reliant on manual intervention and non-value-added processes, such as post-process inspec-
tion, to achieve end-product conformance. However, the ever-increasing demand for high manufacturing productivity com-
bined with low costs and high product quality requires online monitoring systems to provide real-time insights into the 
cutting process and minimize the volume of non-value-added processes. Most of the published work on machining process 
monitoring focuses on intrusive measurement equipment, such as dynamometers, to predict the dimensional quality of 
machined parts, preventing industrial exploitation due to practical limitations. The main focus of this work is to address 
this issue by developing a new product health monitoring method for machining processes using non-intrusive and low-cost 
instrumentation and data acquisition (DAQ) hardware. The sensing setup in this work includes an acoustic emission (AE) 
sensor and two accelerometers in the work holding. The proposed monitoring system is applied to milling experiments using 
Gaussian process regression (GPR) for probabilistic nonlinear in-process product condition monitoring. Validation results 
show the effectiveness of the GPR model to provide accurate probabilistic predictions of product health metric deviations with 
reasonable uncertainty estimates considering the large variability of the data. In addition, a Bayesian inference methodology 
is derived to dynamically incorporate subsequent information from on-machine probing (OMP) with a comparator method, 
improving the accuracy and robustness of the proposed solution. Specifically, it is demonstrated that a precision-weighted 
combination of prior information from the posterior predictive distribution for a future observation and new metrological 
information from on-machine comparator measurement (OMCM) can clearly improve posterior inferences about the end 
product condition.

Keywords  Bayesian inference · Gaussian process regression · Intelligent manufacturing · Machining process monitoring · 
On-machine comparator measurement

1  Introduction

Subtractive machining processes, such as turning, milling, 
drilling, and grinding, are highly complex manufacturing 
processes characterized by nonlinear dynamics involving 
many parameters and uncertainty sources. Therefore, the 
geometric deviation of machined parts from the design spec-
ifications is affected by a large range of interrelated influ-
encing factors, which are difficult to estimate [1]. Such pro-
cesses are generally planned by highly skilled manufacturing 

engineers and machinists based on their knowledge and pre-
vious experience, theoretical modelling of the process, and 
specialized machining simulation software to achieve parts 
with precise dimensions and desired surface finish. However, 
many failure modes with high scrap levels are still observed 
in a production setting due to a variety of causes and errors 
typified by nonlinearities and time-varying characteristics. 
Under these circumstances, knowledge about the machining 
process is usually incomplete and prediction models must 
be able to cope with substantial uncertainty. The task of 
controlling such systems is a considerable challenge in many 
applications [2, 3].

Machining processes are typically followed by inspection 
processes, such as coordinate measuring machine (CMM) 
inspection, to measure the machined parts and decide con-
formance or non-conformance to specifications [4]. CMMs 
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are one of the most important dimensional metrology equip-
ment for manufacturing quality control due to their accuracy 
and flexibility in measuring complex parts with a wide range 
of part and feature characteristics using different sensor tech-
nologies [5]. However, they are often a bottleneck to pro-
duction, particularly conventional CMMs that require stable 
temperature-controlled conditions to perform consistently 
[6]. With advances in sensing and computing technologies, 
the manufacturing industry is entering a new era, known as 
Industry 4.0, which is characterized by emerging technolo-
gies, such as cyber-physical systems (CPSs), the internet of 
things (IoT), artificial intelligence (AI), and cloud comput-
ing [7]. Real-time process and product quality monitoring 
using data-driven modelling techniques constitutes a key 
part of the concept of Industry 4.0 to minimize non-value-
adding processes, production bottlenecks, re-work, scrap, 
and cost [8]. Such methods typically rely on digital signal 
processing and statistical machine learning modelling for 
fault detection and diagnosis [9]. To achieve this, various 
sensing techniques have been applied over the years in the 
area of machining process monitoring [10]. Nevertheless, 
the overwhelming majority of machining process monitoring 
methods, particularly for product health prediction, relies on 
high-cost and intrusive instrumentation, such as dynamom-
eters, which prevents industrial deployment. Therefore, 
considerable effort has been devoted to developing more 
practical and flexible monitoring methods for machining 
processes, suitable for a range of applications with different 
machining process setups and machine tool access limita-
tions [11].

In terms of monitoring system objectives, many research 
efforts have been directed towards the application of 
machine learning modelling algorithms to predicting tool 
wear [12, 13], chatter [14, 15], and surface roughness [16, 
17]. By contrast, much less attention has been paid to map 
machining process features to dimensional metrology char-
acteristics [18]. This paper presents a multi-sensor machin-
ing process monitoring method for product health prediction 
based on probabilistic machine learning using Gaussian pro-
cess regression (GPR). Unlike previous approaches, how-
ever, the present works rely on a non-intrusive and low-cost 
instrumentation and data acquisition (DAQ) solution that 
is flexible in configuration and can be extended with plug-
and-play simplicity with further measurement modules for 
different applications with mixed sensor types and sampling 
rates. The proposed method is tested on a milling case study 
where it is required to estimate the machined part quality 
for a specific dimensional quality characteristic (diameter 
deviation) with acoustic emission (AE) and vibrations sen-
sors installed in the work holding. The novelty of the paper 
lies in the sensing and DAQ setup for dimensional prod-
uct health monitoring in milling operations and a Bayesian 
statistical inference methodology for improving posterior 

product health parameter estimates using new metrologi-
cal information from on-machine comparator measurement 
(OMCM). Bayesian methods allow the information gained 
in one experiment to be taken into account completely in the 
analysis of another related experiment.

In summary, the main contributions of the paper include 
the following:

•	 The development of an intelligent, probabilistic product 
health monitoring method based on GPR for machining 
processes using non-intrusive instrumentation.

•	 The use of the machine tool as a comparative coordi-
nate measuring system (CMS) is proven to be effective 
in improving product health metric deviation estimates 
from probabilistic machine learning via Bayesian infer-
ence unlike absolute/traditional on-machine measure-
ments (OMMs).

•	 Posterior distributions are obtained as a precision-
weighted average of the prior and likelihood obtained by 
probabilistic machine learning and OMCM, respectively.

The remainder of the article is organized as follows: 
Sect. 2 presents related work on machining process moni-
toring for a range of scopes. Sections 3 and 4 provide the 
necessary background on Bayesian inference methodology 
and GPR. Section 5 presents the experimental work. Sec-
tion 6 discusses the modelling results obtained by the pro-
posed Bayesian product health monitoring method. Section 7 
draws conclusions and provides suggestions for future work.

2 � Literature review

In traditional manufacturing, the geometric information of 
the required workpiece features is typically evaluated using 
post-process inspection approaches, such as CMM inspec-
tion. CMMs are flexible and accurate measuring instru-
ments, and they can deliver improved process productivity 
and reduced scrap. However, CMM inspection often acts as 
a bottleneck in the manufacturing process and as an end-
of-line process does not intrinsically add any value to the 
manufactured parts, while increasing production time and 
cost [18]. Computer numerically controlled (CNC) machine 
tools can also be used as CMSs by exchanging the cutting 
tool for a machine tool probe. On-machine probing (OMP) 
is a major in-process inspection approach that can be used 
to reduce variation sources inherent to machining, such as 
effects of tool wear on the workpiece and temperature vari-
ation, enabling in-process feedback, and provide confidence 
in the stability of the machining process. The main disad-
vantage however is that the inspection of machined parts 
using OMP is sensitive only to errors that are not common 
to both the machining process and the inspection process as 
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the same machine is used for both processes. Hence, with 
OMP, errors, such as machine tool geometry errors, thermal 
distortions, and errors in thermal corrections applied to the 
machine tool, cannot be detected [5, 19].

In the high-value manufacturing (HVM) sector, increas-
ingly manufacturers are investing in digital technologies 
emerging from Industry 4.0 to increase efficiency and 
productivity in order to stay competitive. A major goal of 
Industry 4.0 is to reduce redundant processing by devel-
oping intelligent process monitoring and control systems 
with dynamic learning features. Indeed, the research area 
of manufacturing informatics for autonomous process fault 
and defect detection embedded within the production cycle 
is currently developing at an unprecedented rate. Manufac-
turing informatics is largely aimed at developing new meth-
ods that provide effective feedback to the production loop 
and enhance manufacturing intelligence and autonomy using 
emerging technologies, such as AI, big data, and dynamic 
data-driven algorithms. Therefore, real-time process and 
product health monitoring and control systems for machin-
ing operations are crucial in developing processes that yield 
more precise parts more rapidly with lower manufacturing 
costs. However, this is highly challenging owing to the com-
plexity of machining processes and the high volumes of data 
which are being generated by different measurement equip-
ment and processes.

Over the years, several methods have been proposed to 
monitor machining processes using a range of sensors, such 
as current/power, dynamometers, accelerometers, AE, and 
microphones, for a range of monitoring scopes [20]. In this 
context, Marinescu and Axinte [21] demonstrated the effec-
tiveness of AE signals in monitoring process malfunctions, 
such as tool defects and workpiece surface anomalies, in 
milling operations. Wang et al. [22] used a low-cost smart 
cutting tool to measure cutting forces during machining and 
adapt the feed rate. Bernini et al. [23] presented a robust 
unsupervised strategy for milling tool wear monitoring 
under variable process parameters and lubrication conditions 
using cutting force signals. McLeay et al. [24] developed 
and validated an unsupervised machine learning method to 
observe changing machining process conditions over time in 
order to detect faulty process conditions, such as worn tools 
and changes to depth of cut, using non-intrusive sensing. 
Moore et al. [25] used two tri-axial accelerometers, mounted 
on the spindle column and bed of the machine tool, respec-
tively, and a power transducer, to assess the machine tool 
and process condition by applying various machine learning 
techniques. Plaza et al. [26] examined different signal feature 
extraction methods to optimize surface finish monitoring 
using a tri-axial accelerometer mounted on the tip of the 
tool holder behind the insert. Kovac et al. [27] applied fuzzy 
logic and regression analysis for modelling surface rough-
ness in dry face milling operations using cutting parameters 

and tool wear. Huang [28] proposed a neural-fuzzy infer-
ence system for surface roughness prediction in end milling 
operations using process parameters and cutting force sig-
nals. Vasconcelos et al. [29] demonstrated the importance of 
training machine learning models with both controllable fac-
tors and noise variables, such as tool wear, by applying vari-
ous learning algorithms, including support vector machines, 
decision trees, and random forest, for surface roughness pre-
diction in milling operations. Decision trees are interpretable 
machine learning models, but they are prone to overfitting. 
A solution for nonlinear interpretable input-output map-
pings has been reported in [30] for areal surface metrology 
informatics using fuzzy-based machine learning modelling 
with a ridge penalty term to avoid overfitting of the training 
model. Furthermore, deep learning algorithms have been 
applied with great success to machining monitoring tasks 
[31–34]. Deep learning is a type of machine learning that 
can achieve state-of-the-art accuracy and flexibility, assum-
ing that large amounts of labelled data and significant com-
puting power are provided. Most deep learning methods 
are based on artificial neural network (ANN) architectures 
and stochastic gradient descent optimization [35]. Carbone 
et al. [36] presented a deep learning approach for machined 
surface classification tasks using a limited training dataset 
of optimal and undesired cutting conditions. Wu et al. [37] 
presented a physics-informed deep learning method for mod-
elling surface roughness in milling operations using cutting 
force data, machining parameters, tool type, and workpiece 
properties.

In the context of nonlinear nonparametric solutions, GPR 
models have been used in several manufacturing applications, 
such as milling [38], turning [13], multistage manufacturing 
[39], robotic machining [40], additive manufacturing [41], 
and semiconductor manufacturing [42], due to their modelling 
flexibility and inherent capability to provide predictions with 
estimates of uncertainty. Gaussian processes (GPs) require a 
suitable covariance kernel function parametrized by a set of 
hyperparameters to estimate posterior distributions over the 
function of interest from the training samples [43, 44]. The 
hyperparameters can be estimated from the data, or they can 
be fixed. Kong et al. [13] applied GPR for tool wear prediction 
in turning using cutting force signals and machining parame-
ters. Lu et al. employed GPR for surface roughness prediction 
in milling using cutting parameters. Song et al. [45] developed 
a multi-kernel GP autoregressive regression model based on a 
two-step feature-integration approach to predict both surface 
roughness and tool wear in milling using cutting force and 
vibration signals. Qiang et al. [46] applied GPR for tool wear 
prediction in milling using the net cutting power consumption. 
Zhao et al. [47] used multi-output GPs and spherical mapping 
to model 3D surfaces and monitor the geometrical deviations 
of surfaces. Although GPR models can handle covariates 
of arbitrary dimension, an important step to consider when 
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building a model is selecting the covariates that are related to 
the response variable because this can reduce the complexity 
of the model and improve its generalization performance. A 
common method for variable selection in GPR with certain 
covariance functions is the automatic relevance determina-
tion (ARD), but penalized techniques are more flexible and 
efficient [44].

To summarize, accurately predicting the dimensional end 
product quality during manufacturing has substantial benefits 
in terms of productivity, quality, and cost. However, most of 
the published work focused on the prediction of tool condi-
tion/wear and surface metrology parameters, such as surface 
roughness, using intrusive measurement equipment, and only 
a few studies have previously applied non-intrusive sensing for 
machining process monitoring. With the growing demands of 
developing practical machining process monitoring systems, 
this paper presents a non-intrusive monitoring method for 
machining processes using GPR for dimensional end product 
quality estimation with uncertainty information and a Bayesian 
statistical inference methodology for providing improved prod-
uct health parameter estimates given new information from 
OMCM. Previous studies [39, 48] focused on combining new 
metrological information from OMP with posterior predictive 
distributions from probabilistic machine learning have not con-
sidered the intrusive nature of sensing used and the influence 
of systematic effects associated with OMP.

3 � Bayesian inference in dimensional 
metrology

Let Y be a measurand (e.g. diameter) regarded as a continuous 
random variable with probability density function (PDF) g(�) , 
where � ∈ ℝ is a possible value of Y  , g(�) ≥ 0 ∀ � and 
∫

�∈ℝ
g(�)d� = 1 . The cumulative distribution function (CDF) 

of Y , G(�) = P(Y ≤ �) , gives the probability that the random 
variable Y is no greater than � , with G(−∞) = 0 and G(∞) = 1 , 
and it can be expressed in terms of the PDF as 
G(�) = ∫ �

−∞
g(t)dt , ∀ � , where t denotes the variable of inte-

gration. If g(�) = dG(�)∕d� is the PDF of Y , then the probabil-
ity of � lying in an interval 

[
�a, �b

]
 , with 𝜂a < 𝜂b , is 

P
(
�a ≤ Y ≤ �b

)
= ∫ �b

�a
g(�)d� = G

(
�b
)
− G(�a) . Two impor-

tant summary statistics of probability distributions are the 
mean or expectation, which is a measure of location of Y , and 
the standard deviation (positive square root of the variance), 
which is a measure of dispersion and referred to as the stand-
ard uncertainty u(y) associated with the expectation or an esti-
mate y of Y  in the guide to the expression of uncertainty in 
measurement (GUM) [49]. The expectation of Y  with PDF 
g(�) is defined as �(Y) = y = ∫ �g(�)d� and the variance as 
� (Y) = �2 = ∫ (� − y)2g(�)d� . Note that if Y has a Gaussian 

(normal) distribution, Y ∼ N
(
�, �2

)
 , then �(Y) = � and 

� (Y) = �2 . A coverage interval for the random variable Y can 
be determined from the CDF G(�) . In the field of conformity 
assessment with unimodal and symmetric PDFs, a widely used 
coverage interval of the form 

[
y − U, y + U

]
 , where U = Ku(y) 

is the expanded uncertainty and K is the coverage factor cho-
sen to achieve a desired coverage probability or level of confi-
dence associated with this interval, is known as uncertainty 
interval [50].

In Bayesian statistical inference, the parameters to be 
estimated are treated as random variables rather than fixed 
constants as in frequentist statistical inference. In a Bayesian 
formulation, knowledge about the measurand Y before a meas-
urement experiment is encoded in a prior PDF p(�|I) , where 
I denotes the prior information. Once a measurement experi-
ment has yielded a particular realization �e , Bayes’ theorem 
can be applied to obtain the posterior distribution of Y:

where p
(
�e|�, I

)
 is the likelihood function considered 

as a function of an assumed value � since a realization �e 
exists and C−1 = p

(
�e|I

)
= ∫ p(�|I)p(�e|�, I

)
d� such that 

∫ p
(
�|�e, I

)
d� = C ∫ p(�|I)p(�e|�, I

)
d� = 1 . Hence, Bayes’ 

theorem may be expressed in the form:

which omits the constant of proportionality, and essentially 
states that the posterior PDF is proportional to the prior PDF 
times the likelihood function [51]. The form of likelihood 
function, p

(
�e|�, I

)
 , typically depends on knowledge of the 

measurement process. Bayes’ theorem allows us to combine 
information from different sources into the posterior PDF, 
p
(
�|�e, I

)
 , which represents all the information about the 

unknown characteristic parameters taking into account the 
measurement data and the prior information. In conform-
ity assessment, summary information about the posterior 
PDF is usually required, particularly the mean and standard 
deviation of the posterior. Informative prior distributions 
are used to express the available prior knowledge. If prior 
knowledge is not available, then a so-called noninformative 
prior distribution is used. If the prior distribution is normal 
and the likelihood function can be approximated by a normal 
distribution, then the posterior is also a normal distribution. 
Let �e ∼ N

(
�, �2

e

)
 with �2

e
 known. If � ∼ N

(
�0, �

2
0

)
 is the 

prior distribution for � , then the posterior of � is a normal 
density with mean �1 and variance �2

1
:

(1)p
(
�|�e, I

)
=

p
(
�, �e|I

)

p
(
�e|I

) = Cp(�|I)p(�e|�, I
)
,

(2)p
(
�|�e, I

)
∝ p(�|I)p(�e|�, I

)
,

(3)�1 =
�0�

−2
0

+ �e�
−2
e

�−2
0

+ �−2
e

, �2
1
=
(
�−2
0

+ �−2
e

)−1
.



1933The International Journal of Advanced Manufacturing Technology (2025) 137:1929–1942	

4 � Gaussian process regression

GPs are a flexible class of non-parametric kernel-based proba-
bilistic machine learning models that have been applied exten-
sively to regression problems [43]. Consider a training dataset 
D =

{(
�i, hi

)|i = 1,… ,m
}
 , drawn from

where �i ∈ ℝ
n is a vector of predictors, f  is an unknown 

function, hi ∈ ℝ is a scalar response (target), and �i is a 
Gaussian measurement noise with zero mean and variance 
�2
�
 , �i ∼ N(0, �2

�
) . GP modelling is a Bayesian non-paramet-

ric approach that defines a GP, parametrized in terms of a 
mean function, �(�) = �(f (�)) , and a covariance function 
(kernel), k

(
�, �

�)
= cov

(
f (�), f

(
�

�)) , as a prior distribution 
for f (�):

It is common to assume that the prior mean function is zero 
if there is no prior information about the mean function of the 
GP. The covariance function, k

(
�, �

′) , depends on the inputs 
� and �′ and the choice of the kernel function with hyperpa-
rameters � , which can be estimated from the data, D = {�,h} , 
where � =

(
�1,… , �m

)T
∈ ℝ

m×n denotes the matrix of pre-
dictors and h =

(
h1,… , hm

)T
∈ ℝ

m×1 the corresponding 
response vector. The conditional distribution of h given f  and 
�2
�
 is multivariate Gaussian, h|f , �2

�
∼ Nm

(
h|f , �2

�
�
)
 , where � 

i s  t h e  m × m  i d e n t i t y  m a t r i x  a n d 
f =

(
f
(
�1

)
,… , f

(
�m

))T
∈ ℝ

m×1 , is the vector of latent vari-
ables with fi = f

(
�i

)
 . The vector of latent function values f  

has a multivariate Gaussian distribution, f |�,� ∼ Nm(f |�,�) , 
where � is the m-dimensional mean vector of all zeros and 
� =

[
k(�i, �j)

]
∀i,j

 is the m × m covariance matrix evaluated at 
all pairs of the m training points, 

{
k(�i, �j)|i, j = 1,… ,m

}
 , 

using a particular form of covariance function with hyperpa-
rameters � . The most widely used covariance function is the 
squared exponential (SE):

where �f  (scaling parameter) and l (characteristic length-
scale) are hyperparameters, which control the magnitude and 
the smoothness of the function, respectively, and |||�i − �j

|||
2

 is 
the squared Euclidean distance between the predictor vari-
ables �i and �j . Since the likelihood, p

(
h|f , �2

�

)
 , and the 

prior, p(f |�,�) , are both multivariate Gaussian, the poste-
rior distribution of the vector of latent function values f  is 
also multivariate Gaussian:

(4)hi = f
(
�i

)
+ �i,

(5)f (�) ∼ GP
(
�(�), k

(
�, �

�))
.

(6)kSE
�
�i, �j��

�
= �2

f
exp

⎡⎢⎢⎢⎣
−

����i − �j
���
2

2l2

⎤⎥⎥⎥⎦
,

Thus, the GP posterior at a test input �∗ is Gaussian, 
f∗|�,h,�, �2

�
, �∗ ∼ N

(
f ∗, �

2
∗

)
 with posterior predictive mean 

and variance:

and

respectively, where 𝐤
∗
=
[
k(𝐱∗, 𝐱i)

]T
∀i

 is the m × 1 vector of 
covariances between the test point �∗ and the m training 
points, 

{
k(�∗, �i)|i = 1,… ,m

}
 . Hence, the predictive distri-

bution of h∗ is Gaussian with mean �
(
f∗
)
= �

(
h∗
)
 and vari-

a n c e  �̂2
∗
= �

(
h∗
)
= �

(
f∗
)
+ �2

�
 .  G i v e n  t h a t 

h ∼ Nm

(
�,� + �2

�
�
)
 , the hyperparameters � and noise vari-

ance �2
�
 of the GP model can be estimated by maximizing 

the marginal likelihood p(h|�) as a function of � and �2
�
 , i.e., 

�̂, �̂2
�
= argmax

�,�2
�

log p
(
h|�,�, �2

�

)
 . The log marginal likeli-

hood is given by

5 � Experimental approach and setup

A major obstacle in product quality monitoring research for 
machining processes is the lack of a non-intrusive and low-
cost multi-sensor system that is straightforward to install, 
configure, and extend with further measurement modules for 
different industrial manufacturing applications. An EMCO 
MAXXMILL 350 vertical milling centre was used in the 
experimental trials for machining holes under dry conditions 
with process variability added through different feed rates 
and spindle speeds. In particular, a full factorial design was 
performed with two factors (feed rate and spindle speed) 
at three levels each (400, 420, and 440 mm/min, and 1592, 
1672, and 1752 rev/min, respectively). The workpiece mate-
rial used throughout the tests was EN3B engineering steel 
due to its low cost and use in a variety of applications, such 
as machinery parts. An indexable milling cutter with three 
interchangeable inserts having two helical cutting edges 
(APKT 1003PDTR-76 IC328) suitable for many applications 
on steel and stainless steel and interrupted cuts and milling 
under unstable conditions was employed for the experiment. 
The inserts were replaced (or rotated to another cutting edge) 
at irregular intervals to add further variability in the data and 
represent industrial cutting conditions. In total, 486 holes 

(7)
f |�,h,�, �2

�
∼ Nm

(
�
(
� + �2

�
�
)−1

h, �2
�
�
(
� + �2

�
�
)−1)

.

(8)f ∗ = �
(
f∗
)
= 𝐤

T
∗

(
𝐊 + �2

�
𝐈
)−1

h,

(9)�2
∗
= �

(
f∗
)
= k

(
𝐱∗, 𝐱∗

)
− 𝐤

T
∗

(
𝐊 + �2

�
𝐈
)−1

𝐤
∗,

(10)
log p

(
h|�,�, �2�

)
= −

1

2
hT

(
� + �2� �

)−1
h −

1

2
log

|||� + �2� �
||| −

m

2
log(2�).
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were milled using three replicates of the experimental design 
(27 parts with 18 holes each from both sides of the work-
piece). The study in this paper utilized 22 parts (396 holes) 
from this experimental design.

The monitoring system for product health prediction 
included a number of different sensors: a passive piezoelec-
tric AE sensor (Vallen Systeme VS150-K3) with a frequency 
range (Fpeak) of 100–450 kHz (150 kHz), a triaxial accel-
erometer (PCB 604B31) with a frequency range (± 3 dB) of 
0.5–5000 Hz, a uniaxial accelerometer (PCB 352A60) with 
a frequency range (± 3 dB) of 5–60,000 Hz, and a micro-
phone system (PCB 378C01), which was excluded for this 
study. The experimental data were obtained using a National 
Instruments USB Compact DAQ Chassis (NI cDAQ-9174) 
with different voltage input modules, including the NI-9223 
and the NI-9775. Regarding the sensor signal conditioners, 
a PCB 482C05 4-channel signal conditioner was employed 
for both accelerometers and an AEP5 pre-amplifier with a 
DCPL2 decoupling box for the AE sensor. In this study, all 
sensor signals were measured simultaneously at 500 kHz 
during milling, allowing frequency content up to 250 kHz 
to be observed. The NI LabVIEW SignalExpress software 
was used for acquiring the AE and vibration signals, which 
provides both the original signals and the corresponding 
decimated data at different levels though M-fold decima-
tion preceded with lowpass finite impulse response (FIR) 
filtering to prevent aliasing from occurring due to the lower 
sampling frequencies. All the sensors were installed in the 
machine vise using magnetic holders.

After machining, OMP was performed using the Ren-
ishaw OMP 40-2 optical inspection probe system whose 
measurement repeatability is 1 μm 2σ. The measuring cycles 
were produced using the Renishaw Inspection Plus software 
for machining centres for Siemens Controllers. The measur-
and of interest in this study is the diameter of the machined 
holes. Four contact points were selected to be taken for each 
milled hole. For post-process inspection, a Mitutoyo CMM, 
equipped with MCOSMOS software, was used in laboratory 

conditions to measure the milled holes. The probe system 
used was the Renishaw SP25M, which can function either as 
a scanning probe or as a touch-trigger probe. In this study, 
the probe was used in touch-trigger probing mode where 
four discrete points were taken for each milled hole meas-
ured as such a sample size of probing points is sufficient for 
this geometric feature and it is practical for a production set-
ting. In total, 396 diameter measurements were determined 
from each inspection approach, but both approaches were 
also repeated under different conditions on a set of test parts 
for the experimental assessment of uncertainty. In addition, 
an additional part to be used as a master part for comparator 
measurements was produced and measured by both inspec-
tion approaches. The whole experiment was carried out at 
the University of Portsmouth. The experimental setup can 
be seen in Fig. 1.

6 � Probabilistic product health monitoring 
using non‑intrusive sensing and OMCM

The datasets utilized in this study include the first level of 
decimated machining process monitoring data, the in-pro-
cess inspection data, and the post-process inspection data. 
MATLAB was used for all computations, including signal 
segmentation, feature generation, machine learning, and 
Bayesian inference. Segmentation was applied to the deci-
mated signals in order to remove the non-cutting condition 
data. After signal segmentation, the following time-domain 
features were computed: the mean, standard deviation, root 
mean square (RMS), kurtosis, skewness, shape factor, peak 
value, clearance factor, crest factor, impulse factor, signal-
to-noise ratio (SNR), and signal-to-noise-and-distortion 
ratio (SINAD). The extracted process features were used 
as inputs to the GPR model, along with the correspond-
ing cutting parameters. The predictors were standardized 
using their corresponding means and standard deviations. 
Figure 2 shows an example of AE data for selected pairs 

Fig. 1   Experimental work
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of features using bivariate histograms. The CMM product 
health metric deviations, he = hm − ỹ , were used as output 
data, where hm is the CMM measured value and ỹ = 35mm 
is the nominal diameter value. Figure 3 shows the normal 
probability plot of the output data, indicating that the data 
are normally distributed with non-substantive deviation 
from normality given the high variability of the data in this 

study. CMM inspection experiments were carried out under 
repeatability and reproducibility conditions to evaluate the 
uncertainty associated with CMM measurement.

The dataset was randomly split into a training set, con-
taining 90% of the dataset, and a reserved test set contain-
ing the remaining 10%. Automatic relevance determination 
(ARD) was used to select an optimal subset of covariates 

Fig. 2   Bivariate histogram plots 
of selected time-domain AE 
features

Fig. 3   Normal probability plot 
of the CMM measured devia-
tions
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from the model. This typically improves the model’s per-
formance and reduces its complexity. The ARD-SE kernel 
is defined by

where � =
(
�f , l1,… , ln

)T . The hyperparameter ld is a char-
acteristic length-scale, which controls the smoothness of 
the function in the direction of the d -th predictor variable. 
Therefore, the hyperparameters l1,… , ln can determine the 
relevance of the corresponding input variables to the output 
variable. A major limitation of using GPs for large datasets 
is that the computational complexity grows at rate O

(
m3

)
 

due to the inversion of the m × m covariance matrix. Sev-
eral approaches, such as sparse approximations [52–54] and 
local-expert models [55–57], have been proposed to alleviate 
their computational cost. However, in the present case study, 
the available dataset is small enough for an exact implemen-
tation without being computationally expensive.

A GPR model using the ARD-SE kernel, which selects 
an optimal subset of covariates, �i =

(
xi1,… , xin

)T , was 
used for mapping the process conditions to the CMM prod-
uct health metric deviations. The performance measure 
utilized to evaluate the proposed GPR model was the root 
mean squared error (RMSE) because it is easy to interpret. 
The performance of the model in predicting the diameter 
deviations is shown in Figs. 4 and 5 for the training and 
test sets, respectively. As can be noted from the measured 
vs predicted plots, the model does not overfit on the train-
ing set (Fig. 4) and is able to generalize well to unseen 
data (Fig. 5). Figures 6 and 7 show the CMM measured 
diameter deviations, the predicted diameter deviations, 
and the 95% prediction intervals, where it can be seen 

(11)kARD−SE
(
�i, �j|�

)
= �2

f
exp

[
−
1

2

n∑
d=1

(
xid − xjd

)2
l2
d

]
,

that the developed GPR model yields accurate prediction 
results with reasonable uncertainty intervals given the large 
variability of the data. Figure 8 shows the histogram of 
residuals from both training and testing. In addition, the 
generalization performance of the GPR model was evalu-
ated using k-fold cross-validation. In particular, a fivefold 
cross-validation approach was employed, partitioning 
the dataset into five randomly chosen subsets (folds) of 
roughly equal size, to iteratively train and test the GPR 
model. One fold containing 20% of the dataset was used 
to test the GPR model trained using the remaining folds 
containing 80% of the dataset. This process was repeated 
5 times so that each fold was used as the test set once. The 
weighted average RMSEs were 0.023mm and 0.028mm for 
training and testing, respectively. Figures 9 and 10 show 
the measured vs predicted plots for the training and test 
sets, respectively, for a randomly chosen fold. However, the 
proposed probabilistic product health monitoring method 
can benefit from subsequent information, such as OMP 
measurements, particularly for GPR prediction results with 
large uncertainty intervals. In other words, when the GPR 
model cannot be confident in its predictions, OMP can be 
performed to improve the prediction results in terms of 
accuracy and level of uncertainty via Bayesian statistical 
inference. In this study, both sources of information can be 
well represented with normal densities. Thus, the posterior 
distribution of product health metric deviation estimates 
given in-process monitoring and in-process inspection data 
can be represented as a compromise between the predicted 
response from the GPR model and the observed OMP value 
or maximum likelihood estimate, which is simply the sam-
ple mean, for multiple OMP observations on the same fea-
ture of the part. Hence, the resulting posterior for diameter 
deviation estimates will also be a normal density, with a 
mean equal to a precision-weighted average of the GPR Fig. 4   GPR model performance on the training set

Fig. 5   GPR model performance on the test set
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posterior predictive mean and the corresponding observed 
OMP value or sample mean.

Let �e = �m − ỹ be the difference between the OMP meas-
urement, �m , and the nominal diameter value, ỹ . Assuming 

a normal likelihood for OMP data, �e ∼ N
(
�, �2

e

)
 with �2

e
 

fixed, a conjugate prior distribution for � is the normal. If 
� ∼ N

(
�0, �

2
0

)
 is the prior distribution for � , where �0 = f ∗ 

Fig. 6   GPR model prediction 
results on the training set

Fig. 7   GPR model prediction 
results on the test set
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and �2
0
= �̂2

∗
 , then the posterior for � , p

(
�|�e, I

)
 , where I 

includes the known variance �2
e
 , is a normal density with mean 

�1 = �e + w(�0 − �e) , w = �−2
0
∕(�−2

0
+ �−2

e
) ∈ (0,1) , and vari-

ance �2
1
=
(
�−2
0

+ �−2
e

)−1 . However, notice that the resulting 
posterior may lead to improved or reduced product health 
parameter estimates depending on whether OMP provides new 
accurate information or not. This is illustrated in Fig. 11 where 
the resulting posterior distribution is shifted away from the 

target (CMM) distribution. OMP can be used with a compara-
tor method to correct for the systematic effects associated with 
OMM, because major sources of error present during machin-
ing are also present during automated probing. To achieve this, 
first, a master part, nominally of the same design, is calibrated 
with a Mitutoyo CMM in stable temperature-controlled con-
ditions according to the technical requirements of the appli-
cation. The calibrated master part is then measured on the 

Fig. 8   Histogram of residuals 
with a normal density fit

Fig. 9   GPR model performance on the training set for a randomly 
chosen fold from fivefold cross-validation

Fig. 10   GPR model performance on the test set for a randomly cho-
sen fold from fivefold cross-validation
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Fig. 11   Bayesian inference for 
end product condition with 
OMM

Fig. 12   Bayesian inference for 
end product condition with 
OMCM (same part)
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machine tool with OMP based on the same measurement strat-
egy, and the uncertainties for both measurement procedures are 
calculated experimentally. The difference between the meas-
ured and calibrated values of the master part, or the difference 
between the average of the measured values of the master part 
and the average of the calibrated values of the master part, in 
the case of repeated measurements, is added as a correction to 
the OMP observed value of each test part. The systematic error 
is c = �cal − hcal , where �cal and hcal denote the OMP measured 
value and the CMM calibrated value of the master part, respec-
tively. When OMP measurement results are corrected by the 
amount of systematic effects, i.e., �∗

m
= �m − c , as with CMSs 

operating in comparator mode, such as automated compara-
tor gauges, the combined uncertainty associated with OMCM 
should consider the uncertainty parameter obtained by the cali-
bration of the master part, the uncertainty associated with the 
systematic error evaluated using repeated measurements on 
the calibrated master part under varying conditions, the uncer-
tainty of the measurement procedure on the test part, and the 
uncertainty due to material and manufacturing variations [58]. 
This means that comparator measurement requires subsequent 
measurements on the calibrated master part at regular time 
intervals in order to derive an accurate correction value, but 
a nonlinear probabilistic mapping from in-process inspection 
conditions to post-process inspection can be found to reduce 
the volume of additional measurements and receive new cali-
bration information. For modelling purposes, the posterior pre-
dictive distribution for a future observation from the model is 

treated as the prior, and the new metrological information from 
OMCM, �∗

e
= �∗

m
− ỹ , is treated as the likelihood in the same 

way as conventional OMP, �e . As can be seen from the results 
of Fig. 12 (same part as before) and Fig. 13 (different part), 
marrying the prior information from the posterior predictive 
distribution with the new information from OMCM data leads 
to improved posterior inferences about the end product condi-
tion. When the prior information from the posterior predictive 
distribution for a future observation and the new information 
from OMCM are in great conflict, then, the target (CMM) and 
posterior distributions are markedly different from one another, 
and new calibration information is required to correct for the 
influence of systematic effects associated with OMP.

7 � Conclusions

Despite remarkable research efforts and progress in the 
development and validation of real-time machining process 
monitoring systems for various scenarios, their industrial 
realization is still hampered by several obstacles. A major 
obstacle to their industrial implementation is the prohibitive 
cost and intrusive nature of sensors typically used for moni-
toring machining processes. Although previous studies have 
presented methods for product quality monitoring, reducing 
the volume of post-process inspections, the vast majority of 
applications reported on the use of cutting force, spindle, 
and tool vibration measurements. Whilst such measurement 

Fig. 13   Bayesian inference for 
end product condition with 
OMCM (different part)
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signals are particularly useful to infer the process condition 
and detect non-conforming products, the applicability of 
this instrumentation in a production scenario is limited. To 
ensure that the manufacturing industry can adopt a sensor-
based monitoring solution for product health prediction, the 
instrumentation must be non-intrusive to the process.

This paper has presented a new product health monitor-
ing method for machining processes using non-intrusive 
and low-cost instrumentation and data acquisition (DAQ) 
hardware, which can be extended with different measure-
ment modules. A Gaussian process regression (GPR) model 
was developed to provide product health metric deviation 
estimates with uncertainty information using coordinate 
measuring machine (CMM) and in-process monitoring 
data, including acoustic emission (AE) and vibration. Also, 
Bayesian statistical inference was applied to dynamically 
incorporate new information from on-machine comparator 
measurement (OMCM) and increase the generalization per-
formance and robustness of the system, providing improved 
product health parameter estimates during manufacturing. 
However, the proposed product health monitoring method 
has also some limitations. Gaussian processes (GPs) have 
cubic complexity of training, which is prohibitive for large 
datasets. Thus, one needs approximation schemes to reduce 
this complexity for modelling problems with large datasets. 
For variable selection, automatic relevance determination 
(ARD) was used to remove irrelevant input variables from 
the model, but penalized regression techniques may be more 
efficient on variable selection. Therefore, future work will 
focus on developing a penalized GPR approach for product 
quality monitoring in machining processes and also look to 
apply the proposed monitoring method to multi-operation 
machining processes in the presence of coolant for complex 
parts with different critical features.
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