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A B S T R A C T

Data-driven modelling utilising machine learning (ML) techniques offers a powerful alternative to first-principles 
simulations of chemical processes. In this work, artificial neural networks and random forests were developed as 
surrogate models, trained on data from a first-principles model of sorption-enhanced steam methane reforming 
with chemical-looping combustion. These ML-based surrogates were integrated with global sensitivity analysis 
(GSA) approaches to identify key process drivers and evaluate the comparative performance of different GSA 
methods in chemical process modelling. The surrogate models achieved an approximately 99 % reduction in 
computational time compared to first-principles simulations, while maintaining predictive accuracy. Sensitivity 
analysis demonstrated that the CaO/natural gas (CaO/NG) ratio is a dominant parameter, strongly influencing 
carbon capture efficiency and hydrogen production performance (cold-gas efficiency and H2 purity). In-situ CO2 
removal from the reformer was shown to shift equilibrium towards higher hydrogen yields while simultaneously 
enabling CO2 capture. Ratios of CaO/NG ≥ 1.00 ensured high capture efficiency, while improvements in cold-gas 
efficiency were observed from ratios ≥0.5. Among GSA methods, the Sobol approach delivered high computa
tional efficiency (0.5 s) with first- and second-order sensitivities, whereas Shapley additive explanations provided 
greater interpretability but at significantly higher computational cost (384 s).

Nomenclature

Air reactor AR
Artificial neural networks ANN
Calcium looping CaL
Calcium oxide/natural gas CaO/NG
Carbon capture and storage CCS
design of experiment DoE
Explainable artificial intelligence ExAI
Feedforward backpropagation neural network FBNN
Fuel reactor FR
Full factorial design FFD
Global sensitivity analysis GSA
Local sensitivity analysis LSA
Machine learning ML
million tonnes mT
Natural gas NG
Physics-informed neural network PINN
Pressure-swing adsorption PSA
Principal component analysis PCA
Random forest RF
Sensitivity analysis SA

(continued on next column)

(continued )

Shapley additive explanation SHAP
Sorption-enhanced steam methane reforming SE-SMR
Sorption-enhanced steam methane reforming with chemical-looping 

combustion
SE-SMR- 
CLC

Steam methane reforming SMR
Steam methane reforming with carbon capture SMR-CC
Steam/Natural gas S/NG

1. Introduction

1.1. Research background

The development of low-carbon technologies is key to ensuring net 
zero is reached by 2050 so that the most devasting effects of climate 
change are mitigated [1]. Hydrogen has been identified as an energy 
carrier capable of decarbonising a variety of industries such as energy 
[2], transportation [3] and heat for industrial processes [4]. Although 
the end use of hydrogen is low-carbon, the production of hydrogen 
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currently produces large amounts of CO2. Currently, over 900 million 
tonnes (Mt) of CO2 is produced as a result of hydrogen production [5]. In 
2022, 95 Mt of hydrogen was produced [5]; however, the majority of 
that comes from natural gas reforming (i.e. grey hydrogen), coal gasi
fication (i.e. black hydrogen) and as a by-product from refineries and the 
petrochemical industry [5]. Natural-gas reforming with carbon capture 
and storage (CCS) (i.e. blue hydrogen) and electrolysis (i.e. green 
hydrogen) accounted for ~0.7 % of hydrogen produced in 2022 [5]. The 
distribution between grey, blue and green hydrogen is expected to 
change drastically by the middle of this century as shown in Fig. 1.

There will be a projected increase of low-carbon hydrogen produc
tion by 2030 with 10 Mt of hydrogen being produced via blue hydrogen 
production routes [5]. Conventionally, blue hydrogen is produced 
through steam methane reforming (SMR) with carbon capture (CC) 
technologies (SMR-CC) such as amine scrubbing, as shown in Fig. 2a. 
Although SMR-CC can capture CO2 from the process, it has a significant 
energy penalty and increased cost of hydrogen as a result. Prior works 
have investigated the intensification of this process by integrating other 
capture technologies that are able to capture the CO2 at a lower energy 
penalty. Sorption-enhanced steam methane reforming (SE-SMR) in
tegrates calcium-looping (CaL) technology with the reformer, as shown 
in Fig. 2b. Utilising a high-temperature sorbent, such as CaO, allows for 
in-situ CO2 capture as H2 is being produced within the reactor. This 
process allows for a reduced capital expenditure and produces more 
hydrogen as a result of Le Chatelier’s principle [8]. The reactions for this 
are shown in R1-4. In SE-SMR, the heat required for the calciner is often 
supplied via a burner/combustor. CO2 generated due to combustion can 
be captured via conventional carbon capture technologies such as amine 
scrubbing. This however, results in high energy demand due to amine 
regeneration and the associated process units. Recent advancements 
have utilised chemical-looping combustion (CLC) to provide the heat for 
the calciner as shown in Fig. 2c. The benefit of this approach is that the 
combustion products theoretically comprise only CO2 and H2O, signif
icantly reducing the energy penalty of separating out the CO2 [9]. The 
reactions utilising iron-oxide with reducing agents is shown in R5-8. 

CH4(g) +H2O(g) ↔ CO(g) + 3H2(g) ΔH298K = 206.2 kJ.mol− 1 R1 

CO(g) +H2O(g) ↔ CO2(g) + H2(g) ΔH298K = − 41.2 kJ.mol− 1 R2 

CH4(g) +2H2O(g) ↔ CO2(g) + 4H2(g) ΔH298K = 165.2 kJ.mol− 1 R3 

CaO(s) +CO2(g) ↔ CaCO3(s) ΔH298K = − 178.8 kJ.mol − 1 R4 

CH4 +12Fe2O3 ↔ 8Fe3O4 + CO2 + 2H2O ΔHO
298 = 126.38 kJ mol− 1 R5 

H2 +3Fe2O3 ↔ 2Fe3O4 + H2O ΔHO
298 = 16.10 kJ mol− 1 R6 

CO+ 3Fe2O3 ↔ 2Fe3O4 + CO2 ΔHO
298 = − 25.10 kJ mol− 1 R7 

4Fe3O4 +O2 ↔ 6Fe2O3 ΔHo
298 = − 534.54 kJ mol− 1 R8 

Detailed first-principle process modelling and simulation of these 
blue hydrogen production processes provides a method to analyse these 
technologies that is economical and reliable [10]. First-principle 
modelling is built on fundamental ‘ab-initio’ physio-chemical phenom
ena such as mass and heat transfer [10]. The use of expert software such 
as GPROMS and ASPEN allows for processes to be modelled and simu
lated via a first-principle approach [11]. A first-principle approach 
provides an accurate and robust method in which the behaviour of 
processes in steady-state or dynamic mode can be modelled accurately 
across a vast range of operating parameters. However, the use of 
ab-initio methods can be time-consuming especially when assessing 
secondary impacts of the process, e.g. economic or environmental im
pacts [11].

Machine learning (ML) has provided an alternative method of 
modelling processes in chemical engineering. For example, artificial 
neural network (ANN) and random forest (RF) can be trained on data 
that come from literature (experimental or first-principle modelling) or 
industry (a hydrogen production plant) [11]. Once this surrogate model 
is trained, the model can then be employed to predict outputs for a range 
of input values. This approach has been shown to be able to model 
processes quickly and accurately although the accuracy does is reduced 
when predicting outputs outside the range of the training data [12]. The 
use of ML to develop surrogate models is referred to as a black-box 
approach or data-driven [10]. Development of an interpretable, 
data-driven approach that can predict key performance indicators at 
increased speed is crucial for the chemical engineering discipline. It 
provides a method to determine how the reactants impact the products; 
this could potentially be used to make informed decisions in changing 
certain process parameters to ensure a high purity value product in 
real-time [13].

Multiple approaches can be used to develop an interpretable data- 
driven approach. One such method is by the integration of sensitivity 
analysis (SA) and design of experiment (DoE) methods into ML models 
in order to assess input parameters and their effect on the output. SA 
methods aim to measure uncertainty in the output based on the change 
in the input [14], it can be applied to ML surrogate models in order to 
provide interpretability to these models [14]. SA methods can be 
divided into two types: local sensitivity analysis (LSA) and global 
sensitivity analysis (GSA). Local-sensitivity analysis (LSA) looks at local 
variation within a local point, hence it is often applied to a single 

Fig. 1. Current and projected global hydrogen production (Data extracted from Refs. [6,7]).
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prediction and a single input. Consequently, it is inadequate to explore 
large design spaces [15]. However, GSA assesses the variation of all 
inputs onto the variability of model outputs. This provides an overall 
analysis of the importance of each feature and provides a way to explain 
a model in its entirety [15]. SA can be implemented via four distinct 
methods: variance-based methods, derivative-based methods, 
density-based methods and model-based methods. Section 2 provides an 
in-depth description of each approach used in the study.

1.2. Literature review

ML has already been employed in the surrogate modelling of blue 
hydrogen production processes. Comprehensive reviews of prior works 
can be found in the literature [11,16]. Nkulikiyinka et al (2020) [17] 
developed soft-sensors for the reformer and calciner utilising both ANNs 
and RF. The surrogate models developed were able to predict the output 
of both reactors with high accuracy, with average R2 values of 0.98–1 for 
both RF and ANN. They utilised the feature importance for RF and a 
principal component analysis (PCA) for ANNs to determine the impact of 

Fig. 2. Fig. 2a) Block-flow diagram of SMR with potential CO2 capture points. Fig. 2b) SE-SMR block-flow diagram. Fig. 2c) SE-SMR-CLC block-flow diagram.
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the inputs on the outputs. Vo et al (2022) [18] developed a ML-based 
optimisation for the SE-SMR process. They utilised a Pearson correla
tion coefficient to assess the impact of input variables on the outputs, 
where the optimisation approach was able to produce hydrogen at 
low-cost ($1.70 per kg of H2) whilst maintaining a high CO2 capture rate 
(90.3 %). The use of screening approaches such as PCA is useful as it 
allows to discriminate influential inputs from non-influential ones. 
Careful consideration must be taken when employing this approach 
since this method mainly aims to reduce the dimensions of the input 
space by transforming and combining the inputs into a new set of var
iables that aims to capture the largest variance [19]. This transformation 
means that the relative contribution of the original dataset to the outputs 
is lost and requires further steps to analyse this feature’s importance.

Zhao et al (2021) developed a surrogate model for water gasification 
of biomass for hydrogen production. They compared different ML ap
proaches to determine the best approach in predicting hydrogen yield 
[20]. Evaluation of the model variables via feature importance and 
partial dependence analysis, determined that a high oxygen content in 
biomass leads to maximum hydrogen reaction efficiency and exergy 
efficiency. Recent work by Huang et al (2025) developed a ML model of a 
diesel autothermal reforming process by varying certain operating pa
rameters. In this work, a H2 purity of 68.79 % was achieved [21]. The 
authors used the Shapley Additive Explanation (SHAP) tool to provide 
insight into how the operating parameters influence each output [21]. 
Within these works, the focus is often on the optimisation speed or the 
accuracy of the model. There is much less effort made on investigating 
data quantity required to enable the development of an accurate robust 
interpretable model. This work, therefore, also aims to evaluate what is 
required from datasets within the investigated area in order to develop 
an interpretable computational efficient approach to ML-based 
modelling.

1.3. Objectives and paper motivation

Developing explainable artificial intelligence (ExAI) has become of 
increasing importance, especially within science and engineering, where 
the model must be subject to the underlying physical laws. Within data- 

driven modelling, machine learning-based surrogate models, incorpo
rating global sensitivity analysis (GSA), can provide context to the 
predictions made by the surrogate model. Incorporating GSA into ML 
surrogate models has recently been exercised. Stein et al. (2022) looked 
at assessing different GSA approaches. They determined that Morris 
approach was extremely robust, performing well in large dimensions 
[15]. Lucay (2022) implemented a surrogate model combined with GSA 
approach in a case study of mineral processing [22]. They found that by 
implementing the surrogate model with GSA, they were able to signifi
cantly increase the speed at which they were able to predict the outputs, 
while still quantifying the influence of the inputs on each output [22]. 
Zhao et al. (2021) implemented active learning and sensitivity analysis 
with the ML surrogate model to improve the computational efficiency of 
a non-linear system a chemical process system [23]. Here, active 
learning allowed for the model to be further generalised, and the sur
rogate model developed based on the sensitivity analysis, significantly 
improved the computational efficiency whilst maintaining high accu
racy. Objectives and paper motivation.

The literature review highlights how ML has currently been used 
within the modelling of blue hydrogen production, serving as soft sen
sors to predict reactor outputs and used as a surrogate model to opti
mising blue-hydrogen production in regard to cost and CO2 capture rate. 
However, in existing literature, ML is often employed to accelerate 
optimisation rather than improve interpretability. In process engineer
ing, achieving both computational efficiency and interpretability is 
crucial when integrating GSA as demonstrated by Zhao et al (2021) [23]. 
The aim of this work is to integrate different GSA and LSA approaches 
with ML surrogate models, trained on first-principle data (SE-SMR-CLC 
process model), to assess how these approaches provide interpretability 
to the model without impacting computational efficiency and recom
mend strategies that ensure both interpretability and computational 
efficiency. By providing a comparison among the approaches, the aim is 
to highlight what GSA method is most appropriate to select for a specific 
purpose dependant on the dataset and the expected outcomes (justifi
cation of the surrogate model and computational efficiency). 

Fig. 3. Simple block-flow diagram of sorption-enhanced steam methane reforming process with chemical-looping combustion, highlighting the inputs that were 
manipulated in this work.

Table 1 
Breakdown of components and mol fraction within the 
natural gas.

Natural gas components mol (%)

CH4 92.50
N2 3.00
C2H6 3.00
C3H8 0.50
C4H10 0.310
CO2 0.78

Table 2 
Input parameters and values at which they were varied.

Reformer 
Temperature 
(◦C)

S/NG 
Ratio 
(mol)

Pressure 
Reformer 
(bara)

Temperature 
Calciner (◦C)

CaO/NG 
ratio 
(mol)

1 400 2 5 900 0.25
2 450 2.5 10 950 0.5
3 500 3 15 1000 0.75
4 550 3.5 20 1050 1.00
5 600 4 25 1100 1.25
6 650 4.5 30 1150 1.50
7 700 5 35 1200 1.75
8 750 5.5 40 1250 2.00
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Furthermore, this study highlights how the amount of data provided is 
key to ensure robust, accurate ML models, and to development of 
interpretable ML model for application within science and engineering 
fields.

The paper is structured as follows. In Section 2, the methodology is 
discussed, detailing the data generation process, including the variables 
selected for both the inputs and outputs, the theory behind each ML 
method, as well as a description of the GSA approaches used in the study. 
Section 3 discusses the results associated with the training and testing of 
each model, highlighting the validity of the models when predicting an 
output. Within section 3, we comprehensively assess the different GSA 
approaches when applied to the models; we compare the feature 
importance indices for each approach and the respective computational 
efficiency in assessing the features importance, as well as discussing 
which approaches are best for a specific purpose. Finally, within section 
4 we discuss the limitations of this approach and provide recommen
dations on future research.

2. Methodology

To develop a surrogate model and apply GSA techniques to deter
mine the effect of each model input on the output, the following steps 
were followed: 

1. Design of experiments using a full factorial design (FFD);
2. Collection of data from the process model in ASPEN Plus;
3. Training and testing ML surrogate models (artificial neural network 

and random forest);
4. Integration of GSA techniques with the surrogate model;
5. Comparison of GSA approaches with regard to interpretability, 

robustness and computational efficiency.

2.1. Process configuration, simulation and data generation

The data was collected based on a process model previously devel
oped in our earlier work using ASPEN Plus (V 12.1) [24]. The process 
simulated is a steady-state thermodynamic model of a 
sorption-enhanced steam methane reforming process with 
chemical-looping combustion (SE-SMR-CLC). The Peng-Robinson Bos
ton-Mathias property package was used to simulate the process [25]. 
The model was developed and validated in our previous work [24]. 
Fig. 3 shows a block-flow diagram of the process. The reformer, calciner, 
air-reactor (AR) and fuel reactor (FR) were modelled using the RGIBBS 
block in Aspen. In this process, natural gas (NG) is compressed (5–40 
bara) and heated (400–750 ◦C). Liquid H2O is pressurised (5–40 bara) 

and then heated (400–750 ◦C), before being mixed with natural gas and 
introduced into the reformer, where they also come in contact with fresh 
CaO. Here R1-4 take place. The solid and syngas are separated after 
which the CaCO3 is returned to the calciner, where the reverse of R4 
takes place. The regenerated CaO is recycled back into the reformer with 
the CO2 stream leaving the calciner to be then compressed and stored. 
The natural gas (NG) composition used in this work is shown in Table 1.

The syngas enters a condenser where it is cooled, and the H2O is 
condensed out. The syngas then enters a pressure-swing adsorption 
system (PSA) that assumes an H2 recovery of 90 %. The hydrogen then 
leaves the column to be compressed and stored. The PSA off-gas is 
recycled and mixed with NG and is heated before entering the fuel 
reactor (FR), where R5-7 take place. The reduced iron oxide is recycled 
to be used in the air reactor (AR) where an air stream is heated and 
enters the FR. Here, R8 takes places with the oxidised iron oxide 
transported to the FR. The oxygen depleted air is cooled and leaves the 
system. The CO2 from the calciner and the gas stream from the fuel 
reactor are mixed and the mixture is subsequently cooled. After this, the 
liquid H2O is condensed out so that a high-purity stream of CO2 is 
generated.

The data collected from the model focuses on the hydrogen pro
duction system. The other key units within the process (i.e. PSA and CLC 
systems) remain constant. Five inputs (reformer temperature, steam/NG 
ratio (S/NG), pressure of reformer, temperature calciner and CaO/NG 

Fig. 4. ANN structure and visualisation of the calculation of a model output.

Table 3 
Initial hyperparameters values selected for neural network developed in this 
study. Hyperparameters in bold are varied.

Hyperparameters Hyperparameter description Initial 
Value

Hidden layers Number of layers between the input and 
output layers

1–3

Neurons in hidden layer Number of neurons within the hidden 
layer

50–150

Activation Function Compute the weighted sums of inputs 
and biases, decides whether a neuron is 
activated or not.

ReLU

Learning Rate Step size at each epoch when 
minimizing loss.

0.001

Training/Validation/ 
Test Data Split (%)

The split of the data into the training, 
validation and test set.

60/20/20

Batch Size Number of training examples in one pass 
through the neural network.

32

Epochs Number of passes the training set is run 
through the neural network.

50–100

Gradient Descent 
Method

Updates the weights and biases so that 
loss is minimised.

Adam

Loss Function Used for regression-based outputs, 
calculates the loss between the predicted 
and actual results.

Mean 
squared 
error
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ratio) were varied across eight levels with a full-factorial design (FFD). 
An FFD was selected to enable capturing a comprehensive picture of all 
possible combinations of the investigated variable in this work. Overall, 
32,069 simulation runs were required to complete the design space, the 
simulation was run on 11th Gen Intel® Core™ I7-11700 @ 2.50 GHZ 
with eight cores and four threads. The time taken to collect all data 
points was 8,136 s. These inputs were selected as the operating pa
rameters because these factors often play a role in the performance of 
the blue hydrogen production plant. Table 2 shows the manipulated 
variables together with their corresponding values, tested in this work. 
These input parameters were selected as they have shown to signifi
cantly affect the performance of the investigated process i.e. hydrogen 
production and CO2 capture. These independent (adjustable) variables 
have been shown to impact both the hydrogen production and the CO2 
capture efficiency, hence their inclusion within this model ([26,27]).

Five factors were considered as the output (i.e. Key Performance 
Indicator - KPI) (H2 purity, CH4 conversion, cold gas efficiency, CO2 
capture efficiency and CO2 purity). The formulae used to calculate these 
outputs (KPIs) are shown below, through Eqs. (1)–(5).  

CH4 Conversion (%)=
nCH4 in − nCH4 ref

nCH4 in
× 100 Eq. 2 

Cold gas efficiency (%)=
mH2out × LHVH2

mNG total × LHVNG
× 100 Eq. 3 

CO2 capture efficiency (%)=
mCO2 ref ,cap

mNG in
× 100 Eq. 4 

Where nx ref denotes the molar flowrate of a component leaving the 
reformer, nCH4 in is the molar flow rate of CH4 entering the reformer and 
nCH4 ref is the molar flow rate of CH4 leaving the reformer. mH2out is the 
mass flow rate of hydrogen leaving the system, with LHVH2 being the 
lower heating value of H2 (120 MJ/kg). mNG total is the total mass flow 
rate of natural gas entering the system and LHVNG is the lower heating 
value of natural gas (47.10 MJ/kg). mCO2 ref ,cap is the mass of CO2 
captured in the reformer, with mNG in being the mass flow rate of natural 
gas entering the reformer. nxcap is the molar flow rate of a component 
leaving the system through the captured CO2 stream.

All KPIs were individually calculated for each simulation run. The 
simulation was run under the assumptions of: steady state operation, no 
temperature gradient in the reactors and negligible pressure drop. These 
assumptions were made to enhance the model-complexity with mini
mum impact on the results. Once the data was collected, the data was 
normalised to ensure a quick convergence rate when training the sur
rogate models. The first-principle modelling results are provided in the 
supplementary information. Outliers were determined through an 

isolation forest as it is a high-dimension dataset and so the isolation 
forest is highly effective for detecting anomalies without assuming a 
specific data distribution [28]. Isolation forest was implemented 
through the scikit-learn package in which the contamination was set to 
0.05. Once the outliers were detected, a sample was analysed to char
acterise these outliers, and if values were physical impossibilities (e.g. 
CO2 capture efficiency >1.00), they were removed from the dataset 
[29].

Fig. 5. Neural network structure used to develop the surrogate model in this study.

H2 Purity (%)=
nH2ref

nH2 ref + nN2 ref + nCH4ref + nCO ref + nCO2 ref + nC2H6ref + nC3H8ref + nC4H10ref
× 100 Eq. 1 

CO2 Purity (%)=
nCO2cap

nCO2 cap + nCH4 cap + nCO cap + nH2 cap+nH2Ocap + nN2 cap + nC2H6cap + nC3H8cap + nC4H10cap
× 100 Eq. 5 
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2.2. Machine learning surrogate model development

Developing the ML surrogate models was done in python v3.6.1 in 
the Jupyter notebook environment using TensorFlow package [30] for 
the artificial neural network (ANN) and Scikit-learn [29] for the random 
forest (RF). The following sections describe the working principle for 
ANNs and RFs as well as the hyperparameters selected for each surrogate 
model.

2.2.1. Artificial neural network
ANNs is a machine learning method that connects inputs and outputs 

via a series of interconnected nodes and layers [31]. They are extremely 
flexible and able to solve complex problems that are non-linear in nature 

[32]. The structure of a neural network consists of an input layer, hidden 
layers (can be multiple hidden layers) and an output layer, as shown in 
Fig. 4. ANN is based on the principle of information processing in bio
logical systems [31]. The data is passed through each layer, and an 
output value is produced. The nodes within each layer are known as 
neurons. The basic structure of a neuron is shown in Fig. 4. To calculate 
the output of a neuron, Eq. (6) is used. 

ŷ = a

(
∑n

i=1
xiwi + b

)

, Eq. 6 

where xi is an input, wi is a weight, b is the bias, a is the activation 
function and ŷ is the vector of the model output. Once all the data is 
passed through (known as an epoch) the loss is calculated (mean 
squared error), which is the difference between the actual output values 
and the predicted values predicted by the surrogate model. Back
propagation is then used in which the chain rule is used to calculate the 
rate at which loss changes in response to any change to a specific weight 
(or bias) in the network [33]. Once this partial derivative is calculated, 
the gradient descent is utilised which is where the weights are updated 
to ensure the loss function is minimised [33]. This process is repeated 

Table 4 
Values at which selected hyperaparameters were varied for ANN.

Lower Middle Upper

Number of neurons 50 100 150
Number of epochs 50 75 100
Number of hidden layers 1 2 3

Fig. 6. Flowchart for learning procedure of ANN.
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until the loss is minimised.
In this study, a feedforward with backpropagation neural network 

(FBNN) was selected and developed in python version 3.6.1 using the 
TensorFlow package [30]. An FBNN was selected due to its ease of use, 
especially when calculating the backpropagation. Also, since the data is 
not time sequential, a recurrent neural network is not needed. The initial 
hyperparameters values selected are shown in Table 3, with Fig. 5
showing the structure of the ANN used. The accuracy of the surrogate 
model was determined by calculating the R2 and the mean squared error 
(MSE), calculated by Eq. (7), respectively. 

R2 =1 −
sum squared regression

total sum of squares
=1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − yi)

2
, Eq. 7 

MSE=
1
n
∑n

i=1
(yi − ŷi)

2 Eq. 8 

where ŷi is the predicted output, yi is the actual (synthetic) data, yi is the 
mean of all values and n is the number of samples. The following 
hyperparameters were varied through an FFD from the values in Table 4
(number of neurons, number of epochs and number of layers). These 
parameters were selected as they play a key role in the computational 
efficiency and the accuracy of the deployed model [34]. This was done 

to assess the trade-off between average accuracy (R2, MSE) and training 
time per epoch. The training and validation sets were used for all the 
models whilst the test set was used on the selected optimised model. 
Fig. 6 shows the flowchart detailing how the ANN learns from the 
dataset.

2.2.2. Random forest
RF is an ensemble-learning approach in which multiple decision 

trees are “bagged” together to predict an output [35]. Ensemble learning 
has been shown to have high predictive capability in comparison to 
other ML approaches and can be used for both regression and classifi
cation tasks [11]. Ensemble learning methods combine multiple ma
chine learning methods and aggregate them together to find the average 
result. RF combines the bagging method with feature randomness to 
create an uncorrelated mixture of decision trees [36]. Initially devel
oped by Brieman [36], each tree utilises a random part of the input 
dataset to calculate a random part of the features in each partition, as 
shown in Eq. (9) [35]. This randomness produces variability between 
the trees, which reduces the risk and improves the overall prediction 
[35]. Splits within trees are selected based on the minimisation of the 
MSE. The tree will then grow until the stopping conditions are met. The 
output of the whole RF is calculated by Eq. (10). 

ŷdt =
∑M

m=1
cm.l(x∈Rm),where cm =

1
|Rm|

∑

i∈Rm

yi Eq. 9 

ŷRF =
1
B
∑B

b=1
ŷdt Eq. 10 

Where Rm is the region within the data yi. ŷRF is the predicted output of 
the random forest, and B is the bootstrap samples of the dataset. ̂ydt is the 
predicted output of the decision tree. The structure of the initial RF 
surrogate model is shown in Fig. 7 and the initial hyperparameters are 
summarised in Table 5.

The following hyperparameters were varied via an FFD from the 
values in Table 6 (number of trees and max tree depth). This was done to 
assess the trade-off between average accuracy (R2, MSE) and training 
time per epoch. Both parameters were selected as for the RF, both are 
influential hyperparameters that determine the computational effi
ciency and the accuracy of the deployed ML model [37]. Fig. 8 provides 
a flowchart detailing how the RF learns from the dataset.

Fig. 7. Structure of initial random forest surrogate model.

Table 5 
Initial hyperparameters for the RF surrogate model.

Hyperparameters Values

Number of estimators 50–150
Max depth 10, 50, None
Training/Test split 60/40
Leaf nodes None
Minimum samples split 2

Table 6 
Values at which selected hyperaparameters were varied for RF.

Lower Middle Upper

Number of Trees 50 100 150
Max Depth 10 50 None
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2.3. Global sensitivity analysis techniques

Once the ML surrogate models were trained and tested to ensure high 
accuracy, they were subsequently used to generate sample data to 
enable GSA. The GSA was conducted using the SAlib package in Python 
v3.6.1 [38]. The exception to that was Shapley which was conducted 
using the SHAP package [39]. The following sections describe how each 
GSA approach used in this study, calculates the sensitivity indices for 

each input, or a combination of inputs. For each approach, initially a 
sample of 1024 datapoints was used before the sampling was varied to 
determine the robustness of each approach (described in Tection 2.4.).

2.3.1. Variance-based methods
Variance-based methods assume that variance is enough to describe 

the output uncertainty [40]. They calculate a sensitivity of the input 
variables via an ANOVA-like decomposition of the function [41] 

Fig. 8. Flowchart for training and testing of random forest.
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(Sobol), or through a Fourier transformation (Fourier Amplitude 
Sensitivity Test).

2.3.1.1. Sobol. The Sobol approach decomposes the variance of the 
output of a model into fractions that are attributed to an input variable 
via an ANOVA-like decomposition [42]. The Sobol approach can be used 
to calculate first-order sensitivity (a single input effect on the variance of 
the output), second-order sensitivities (a combination of multiple inputs 
effects on the variance) and total-order Sobol index (measures the 
overall contribution of an input including both direct (main) and 
interaction effects). In order to calculate the Sobol indices from model 
(f(X)) and inputs (X = (X1, X2, …, Xk)). Two independent sampling 
matrices A and B are generated of size N× k, with N being the sample 
size and k being the number of input variables. For each of the inputs, a 
third matrix is generated, known as Ci, which is a hybrid matrix where 
columns are from matrix A with the i-th column being from matrix B. 
From this the model, outputs are computed as shown in Eq. (11)–(13). 

yA = f(A) Eq. 11 

yb = f(B) Eq. 12 

yCi = f(Ci) Eq. 13 

Where yA is the model outputs evaluated using samples from matrix A. 
yb the model outputs evaluated using samples from matrix B. yCi is the 
model outputs evaluated using samples from matrix Ci. From this, the 
total variance (V) can be calculated via Eq. (14). 

V =
1
N
∑N

j=1
y(j)2

A −

(
1
N
∑N

j=1
y(j)

A

)2

Eq. 14 

Where y(j)A is the j-th output from yA and 
(

1
N
∑N

j=1 y(j)A

)2 
is the square of 

the mean output, which is done to centre the variance. To calculate the 
first-order effect (Vi) of an input Xi, Eq. (15) is used. In order to calculate 
the Sobol first-order index (Si) of an input, Eq. (16) is used. 

Vi =
1
N
∑N

j=1
y(j)

A y(j)
Ci
−

(
1
N
∑N

j=1
y(j)

A

)2

Eq. 15 

Si =
Vi

V
Eq. 16 

Where y(j)Ci 
is the j-th output of matrix Ci, to then calculate the total order 

Sobol index, the variance (V− i) contributed by all inputs except input Xi 
is calculated by Eq. (17). The total order Sobol index of Xi (STi ) is 
calculated by Eq. (18). 

Table 7 
Hyperparameters of selected best-performing ANN model.

Hyperparameter Number of Neurons Number of hidden layers Epochs

Value 50 2 100

Table 8 
Comparison of the best-performing ANN model with average result of all developed models across R2, MSE and training time.

Training R2 (%) Training MSE Validation R2 (%) Validation MSE Training time all epochs (seconds) Training time per epoch (seconds)

Optimal model 99.99 0.0002 99.97 0.0001 164.36 1.64
Average across all models 99.70 0.000167 99.66 0.000185 139.62 1.87

Table 9 
R2 of best-performing ANN model across training, validation and test set.

Optimised Model Training Set Validation Set Test Set

R2 99.99 99.97 99.94

Fig. 9. Average R2 Plots for each output from the ANN for the training set.

Table 10 
Optimised hyperparameters of selected RF model.

Hyperparameter Number of Tress Max Tree Depth

Value 100 None
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V− i =
1
N
∑N

j=1
y(j)

B y(j)
Ci
−

(
1
N
∑N

j=1
y(j)

A

)2

Eq. 17 

STi =1 −
V− i

V
Eq. 18 

Where y(j)B is the j-th output value from yb. The second order effects (Sij) 
are calculated via Eq. (19). 

Sij =
Vij

V
− Si − Sj Eq. 19 

Where Sij is the second order Sobol index of input variables Xi and Xj and 
Vij is the variance due to the interaction between Xi and Xj.

2.3.1.2. Random-balance design Fourier amplitude sensitivity test.

Random-balance design - Fourier amplitude sensitivity test (RBD-FAST) 
is another variance-based approach. Here, sensitivity values calculated 
are independent from the sampling scheme. A Fourier transformation is 
then used to decompose the variance of the model into partial variances 
[43]. To determine sensitivities indices for a model with k input factors 
(X1,X2,…,Xk) and N sample points, each input factor is sampled using a 
random permutation. This ensures that each input is uniformly distrib
uted whilst maintaining orthogonality. The model is then run to obtain 
outputs (Eq. 20

yj = f
(

x(j)
1 , x(j)

2 ,…, x(j)
k

)
, j= 1,2,…,N Eq. 20 

Where yj is the output of a model. A Fourier transform is applied to 
compute the Fourier coefficient as shown in Eq. (21). 

Y(i)
m =

1
N
∑N

j=1
y(i)

j e− i
2πmj

N ,m = 0, 1,…,N − 1 Eq. 21 

Where Y(i)
M is the m-th Fourier coefficient for an input factor, repre

senting the amplitude and phase at frequency m. The power spectrum at 
frequency m is determined by Eq. (22). 

A(i)
m =

⃒
⃒Y(i)

m

⃒
⃒2 Eq. 22 

From this, the total variance (V) of an output is determined via Eq. 
(23). The sensitivity of an input (Xi) is then calculated via Eq. (24). 

V =2
∑

N/2 − 1

m=1
A(i)

m Eq. 23 

Si =
2
∑M

p=1A(i)
pωi

V
Eq. 24 

Where ωi is the characteristic frequency for Xi, and M is the number of 
harmonics considered.

Fig. 10. Average R2 plots for each output from the RF for the training set.

Table 11 
RF optimal model R2, MAE and training time.

Training 
R2

Training 
MSE

Test 
R2

Test MSE Time taken for 
training to 
complete 
(seconds)

Best 
performing 
model

99.99 0.0021 99.92 0.0025 4.38

Average 
across 
training

99.71 0.004144 99.63 0.004585 3.84

Table 12 
R2 of optimised RF model across training and test set.

Training Test

R2 (%) 99.99 99.92
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Fig. 11. Total-order sensitivities for each inputs influence on each output. a) ANN. b) RF.
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Fig. 11. (continued).
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Fig. 12. a) ANN second order Sobol sensitivities. b) RF Sobol second order sensitivities.

W.G. Davies et al.                                                                                                                                                                                                                              International Journal of Hydrogen Energy 190 (2025) 152153 

14 



Fig. 12. (continued).
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Fig. 13. a) Sobol first-order sensitivity for ANN across a varied sample size. b) Sobol first order sensitivity for RF across a varied sample size.
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Fig. 13. (continued).
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Fig. 14. Sensitivity of an input to each output for both models calculated by the RBD-FAST approach.
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Fig. 15. a) ANN robustness plots for RBD-FAST. b) RF Robustness plots for RBD-FAST.
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Fig. 15. (continued).
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Fig. 16. μ*
i vs σi plots calculated by the Morris approach a) ANN b) RF.
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Fig. 16. (continued).
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Fig. 17. Robustness for the Morris approach. a) ANN. b) RF.
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Fig. 17. (continued).
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2.3.2. Morris method
The Morris method [44], is a GSA approach. It is based on the 

concept of elementary effects (EEi) which is calculated by Eq. (25). The 
distribution of the elementary effect is then obtained by sampling a 
point from the design space [45]. 

EEi =
[f(x1,….., xi ± Δ,…, xk) − f(x1,…, xi,…, xk) ]

Δ
Eq. 25 

Where f is the model output, xi is the input parameter and Δ is the step 
size. The first sensitivity measure calculated by the Morris approach is 
the mean of absolute elementary effects μ*

i which is an estimate of the 
mean of the distribution of EEi, calculated via Eq. (26) [45]. 

μ*
i =

1
r
∑r

j=1

⃒
⃒
⃒EE(j)

i

⃒
⃒
⃒ Eq. 26 

Where EE(j)
i is the elementary effect of parameter i in the j-th trajectory, 

with r being the total number of trajectories. The other sensitivity 
measure calculated by the Morris approach is the standard deviation of 
elementary effects (σi) - an estimate calculated via Eq. (27) [45]. 

σi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
r − 1

∑r

j=1

(
EE(j)

i − μi

)2
√
√
√
√ Eq. 27 

Where μi is the mean of EEi (non-absolute).

Fig. 18. First-order sensitivities calculated by the Delta approach for both ANN and RF.
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2.3.3. Delta
The Delta approach determines sensitivities that are independent of 

the sampling method used [46]. The main aim is to assess the influence 
of the entire input on the entire output without a reference to a partic
ular moment within the output [46]. To calculate this sensitivity, Eq. 
(28) is used. 

δi =
1
2

∫

fXi (x)
[ ∫ ⃒

⃒
⃒fY(y) − fY|Xi=x(y)

⃒
⃒
⃒dy
]

dx Eq. 28 

Where fXi (x) is the marginal probability density of the input factor, and 
Xi, fY(y) is the cumulative probability density function of the model 
output y. fY|Xi=x(y) is the conditional density of Y given one of the pa
rameters is a fixed value.

2.3.4. Model-based methods
These approaches all require an existing ML model in order to 

generate outputs to determine the impact of certain inputs on the 
outputs.

2.3.4.1. Shapley additive explanations. Shapley additive explanation 
(SHAP) utilises a game theory approach to explain the output of any ML- 
based model. It does this by using fair allocation results from coopera
tive game theory to allocate credit to a model output among its input 
features [39]. Shapley values are often used for an LSA. GSA can be 
performed using the SHAP approach by averaging the Shapley value 
over all instances of the dataset the model was trained on [39]. To 
calculate a Shapley value Eq. (29) is used. 

g
(
zi)=ϕ0 +

∑M

j=1
ϕjźj Eq. 29 

Where g is the explanation model ź ’ is the coalition vector/Shapley 
value, M is the maximum coalition size ϕj is the feature attribution.

2.3.4.2. Features importance of random forest. The RF ML approach al
lows for the direct calculation of the feature’s importance without 
further integration with GSA approaches; it does this by utilising a 
function known as feature importance. The importance of this feature is 
the mean of the trees within the random forest, calculated as the 
decreasing out-of-bag (OOB) error of a tree when the values of the 
variable are randomly permuted in the OOB samples. For regression 
problems, the OOB error is measured by the mean squared error [35] 
(Eq. (30)). 

Î
(
XJ)=

1
ntree

∑ntree

k=1
(yi − μ)2 Eq. 30 

Where Î
(
XJ) is the feature importance of feature XJ, and ntree is the 

number of trees. μ is the mean.

2.3.5. Assessment of global sensitivity analysis approaches
The following approaches were assessed on the parameters of 

interpretability, robustness, and computational efficiency. The inter
pretability was determined by assessing how much information can be 
extracted from each approach, concerning the impact of each input on 
each output. Robustness was assessed by varying the sample size from 27 

to 213. This was done to determine the robustness of the GSA approach 
when dealing with a small range of samples. The computational effi
ciency was calculated by determining the time taken for the GSA to 
calculate the importance of the features across the sample from 27 to 213. 
The cell was executed on an Intel Core i5-7300U CPU at 2.60 GHz with 
two cores and four threads.

3. Results and discussions

3.1. Machine learning surrogate model development

3.1.1. Neural network training and testing of the surrogate model
During the training of the ANN surrogate model, the hyper

parameters were varied throughout the training. Table 7 presents the 

Fig. 19. Features importance for each input across the outputs from the RF model.
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hyperparameter values for the best-performing model, specifically in 
terms of time taken per epoch and accuracy. Table 8 presents the 
optimal model results in terms of accuracy and time taken per epoch, as 
well as the average result obtained across different models studied.

As shown in Table 8, across the training and validation sets for the 

optimal model, there is high accuracy while maintaining good compu
tational speed. The best performance model demonstrated high perfor
mance in both training and validation, exhibiting a low drop-off in the 
R2 value, which highlights its robustness even when dealing with unseen 
data, suggesting that it does not overfit. Further evaluation metrics to 
compare the models are shown in the supplementary information. The 
best performing model although shows better performance than the 
average across all models, it is not statistically significant. Regardless, 
this was taken forward to evaluate on the test set. The best-performing 
model was then tested on the test set to ensure the model’s robustness 
and accuracy when dealing with unseen data as shown in Table 9, which 
displays the R2 values across the training, validation, and test datasets. 
As shown in Table 9, the test R2 value remains high at 99.94 %, which 
highlights the model’s generalisability in predicting outputs outside of 
the training set. For all outputs, the R2 was calculated and plotted 
(Fig. 9). As shown in Fig. 9, across all 5 outputs, R2 is high with no 
significant deviations.

3.1.2. Random forest validation of the surrogate model
The optimised hyperparameters in the RF surrogate model are shown 

in Table 10, together with the results of the accuracy and speed sum
marised in Table 11. These results show a slightly higher R2 but lower 
MAE across the training and validation sets. The time taken for the 
training to be completed was significantly shorter because the training 
data went through the RF once. However, when comparing the training 
per epoch, the neural network is seen to be quicker. The training time 
helps to understand the training process; however, when deployed, the 
surrogate model is often used to predict single outputs and is unlikely to 
be used to predict as many samples as are provided within the training 
set. Further analysis of the computational efficiency is provided in sec
tion 3.3.

The RF and ANN show a similar R2 across the training and validation 
sets. The optimised RF model based on the hyperparameters, shown in 
Table 10, was then evaluated on the test data set to ensure the models’ 
robustness and accuracy when dealing with unseen data. Table 12 shows 
the R2 of the test set. As shown in Table 12, the test R2 is still high at 
99.92 %, highlighting the model generalisability. As shown in Tables 9 
and 12, the RF approach has a lower R2 value than the ANN across the 
test set. This, combined with the increased speed of the ANN, comparing 
the training time of RF and ANN per Epoch, shows the ANN to have 
superior performance, although the RF is still highly accurate and can 
predict outputs at a high speed. Overall, for both approaches, the ac
curacy is high and the prediction is relatively quick, allowing for a large 
number of outputs to be generated during the training process. This is 
partially linked to the large volume of data collected (>30,000 data 
points). This ensures that the model is robust enough so that when it is 
tested on unseen data the surrogate model is highly accurate, leading to 
only a slight drop off with respect to the R2. For all outputs, the R2 was 
calculated and plotted (Fig. 10). As shown in Fig. 10, across all 5 out
puts, R2 is high with no significant deviations.

3.2. Global sensitivity analysis evaluation of each approach

3.2.1. Sobol approach
For the Sobol approach with an initial sample size of 1,024, the first- 

order sensitivities (Fig. 11) show good agreement between both the ANN 
and RF, achieving similar total order sensitivities across each output. As 
shown in Fig. 11, the first-order sensitivities show that the CaO/NG ratio 
significantly influences all the outputs, particularly influencing the pu
rities of CO2 and H2 as well as the carbon capture efficiency. This is 
because of the role of CaO within the reformer, which is the removal of 
CO2 through R4. This improves the purity of hydrogen, subsequently 
enhancing the production efficiency of hydrogen by shifting R3 to the 
right, which is confirmed by considering the impact the CaO/NG ratio 
on the system. The reformer temperature and pressure have small 
contribution to the outputs of the system with the calciner temperature 

Fig. 20. Beeswarm plots for each output using the SHAP approach.
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having little to no impact on the outputs. Through the Sobol approach, 
the second order sensitivities are calculated to assess interaction effects 
between parameters, these are shown in Fig. 12a–b.

As seen in Fig. 12a–b, there is interaction between different inputs. 
For example, there is a significant interaction between the reformer 
temperature and the CaO/NG ratio regarding the CO2 purity. The Sobol 
approach provides both first- and second-order interaction effects. 
Although this provides a valuable method to assess input parameters, it 
still does not explain how an input impacts an output, only that inter
action occurs between an input and an output; for example, the CaO/NG 
and reformer temperature show interactions that impact the CO2 purity; 
however, there is no assessment of the value of these inputs and its 
impact on the output.

The sample size was varied for both models to assess the variation of 
the Sobol indices, that is calculated based on the sample size 
(Fig. 13a–b). Variation of the sample size shows that a lower sample size 
results in deviations in the calculated first-order sensitivity compared to 
the results from larger sample sizes, which maintain relatively consistent 
results once a sample size of 1,024 is reached. The smaller sample sizes 
do show an improved speed in calculating the Sobol first-order sensi
tivities. It is, however, important to ensure that the ranking of the input 
features in order of importance is not significantly altered. As shown in 
Fig. 13a, the operating parameters: reformer temperature and pressure, 
when at lower sample sizes are shown to switch in the order of impor
tance on the CH4 conversion KPI. However, both factors have no sig
nificant impact on the CH4 conversion, and therefore, they are not 
considered significant factors. Overall, the Sobol approach provides a 
valuable method for assessing the input’s first- and second-order sensi
tivities on each output; however, further analysis is required to deter
mine how a value impacts the output.

3.2.2. RBD-FAST approach
Similarly to the Sobol approach, RBD-FAST approach assesses the 

contribution of an input to an output by the variance. As shown in 
Fig. 14, the sensitivity values for each input’s impact on each output are 
displayed across both models. Fig. 14 shows a similar result to the first- 
order sensitivities calculated by the Sobol approach, highlighting the 
key influence of the CaO/NG across each output. The S/NG ratio also 
plays a key role in the CH4 conversion, H2 purity, and cold gas effi
ciencies. The robustness of the RBD-FAST was also assessed (Fig. 15a–b). 
Across both models, the RBD-FAST approach exhibits a similar sensi
tivity index for each input’s impact on the output across all sampling 
sizes, thereby highlighting the robustness of this approach. However, the 
RBD-FAST approach, unlike the Sobol approach, does not provide a 
breakdown of the second-order sensitivities. Hence, there is only an 
understanding that interaction effects occur through the total order 
sensitivities, but not how these inputs interact with one another. This 
means it is helpful for an initial assessment of the system; however, 
further analysis of the system is required to gain an understanding of 
interaction and non-linear effects.

3.2.3. Morris approach
Morris approach provides two key outputs when assessing the model, 

which indicate the importance of a model input and its impact on pre
dicting an output. The other output from the Morris method is the 
variance, which provides insight into how a parameter’s effect varies 
over time. A high value indicates that the parameter’s effect varies 
significantly, suggesting that the output is non-linear, or there is an 
interaction between them. Fig. 16a–b shows the μ*

i vs σi across both the 
ANN (Fig. 16a) and the RF (Fig. 16b). As shown in Fig. 16a–b, the CaO/ 
NG ratio is highly influential, suggesting that there are non-linear 

Fig. 21. SHAP dependence plot for the CaO/NG ratio and reformer temperature.

Fig. 22. Local sensitivity analysis of the ANN using the SHAP approach.
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impacts on the outputs or the presence of interaction between the other 
parameters.

Furthermore, it is interesting to note that regarding CH4 conversion 
and Cold gas efficiency, the Morris approach shows that the S/NG ratio 
has a higher μ*

i than the CaO/NG ratio, suggesting that the S/NG has a 
greater influence on these outputs (and not the CaO/NG). This differs 
from the variance-based approaches (Sobol and RBD-FAST) which sug
gests the opposite based on the calculated first-order sensitivities shown 
in Figs. 11 and 14 for the Sobol and RBD-FAST approaches respectively. 
This variation in the ranking of feature importance across different GSA 
approaches is important to consider, as incorrect statements about the 
influence of input factors can potentially be made based on this analysis. 
Although Morris approach, through the σi, accounts for both non-linear 
and interaction effects between different inputs, it is unable to differ
entiate between the two, indicating the limitation of this approach. Even 
though it helps to screen variables and initial assessments, a more 
detailed analysis (e.g. Sobol) is required to quantify the second-order 
sensitivities.

Based on the variability of the feature’s importance, the robustness of 
this approach is extremely important to assess the impact of sample size 
on μ*

i . This is illustrated in Fig. 17a–b for the ANN (Fig. 17a) and RF 
(Fig. 17b). Variation is seen across both models as the sample size is 
varied. This is more pronounced for smaller sample sizes. This can 
suggest that the ranking of the features may vary across different sample 
sizes.

3.2.4. Delta approach
The delta approach reveals deviations in the importance of features 

compared to other approaches, as illustrated in Fig. 18. The steam-to- 
natural gas ratio has the most significant impact on CH4 conversion 
and cold-gas efficiency. In contrast, Sobol and RBD-FAST suggest that 
the CaO-to-NG ratio has the most significant impact. These deviations 
are dependent on various factors and will be discussed in greater detail 
in Section 3.3.

3.2.5. Random forest feature importance
The use of features importance within the RF model provides a useful 

initial evaluation of RF inputs and the associated impact on the output. 
As shown in Fig. 19, the importance is not too dissimilar from the other 
approaches, indicating that CaO/NG has a greater impact on all the 
outputs within this process. However, similar to RBD-FAST and Delta, it 
only provides first-order effects. Like Morris, it is a valuable screening 
tool, but beyond that, it is unable to extract further information from the 
system.

3.2.6. SHAP approach
The SHAP approach provides a comprehensive method to assessing 

the inputs’ features and the impacts on the outputs. As shown in Fig. 20, 
the Beeswarm plot not only shows the impact of an input (the range of 
each input) on the output but also how the value of an input (the colour 
of each point) affects the output. As illustrated in Fig. 20, the CaO/NG 

Fig. 23. Ranking of first-order sensitivity across each approach. a) ANN. b) RF.
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ratio has the greatest impact on each of the output. Specifically, when 
the CaO/NG is lower, the output value is significantly reduced. Whereas 
at higher CaO/NG ratios, other factors also play a role in the output 
value. The SHAP approach provides an increased understanding of the 
system through this added dimension of the value of the input and the 
impact on the output; however, this comes with an increased compu
tational cost; using a sample size of 500, the time taken to calculate the 
SHAP values was 384 s, which is significantly higher than the other 
approaches discussed in this work.

The SHAP analysis provides further insights into the ANN model 
through the SHAP dependence plots. Based on the previous analysis 
using the Sobol and Morris methods, there are interaction effects be
tween inputs throughout the process. As shown in Fig. 12a, there is 
second-order interactions effects between the reformer temperature and 
the CaO/NG ratio that influence CO2 purity, utilising the SHAP depen
dence plots, allows for further evaluation of these interaction effects as 
demonstrated in Fig. 21. As shown in Fig. 21, at lower CaO/NG ratios, 

the reformer temperature has a significant impact on the SHAP value. 
Increasing the reformer temperature significantly increases the SHAP 
value at lower CaO/NG ratios; however, as the CaO/NG ratio increases, 
this effect levels off, and varying the reformer temperature has a mini
mal impact on the SHAP value. Although at higher CaO/NG ratios, 
reducing the reformer temperature does increase the SHAP value of the 
CaO/NG, this effect is not significant, as it has a far greater impact at 
lower CaO/NG ratios. This is due to R4 being an exothermic reaction; 
once there is enough CaO to remove the CO2 from the system, lower 
temperatures are preferred.

For local sensitivity analysis, the SHAP approach provides a break
down of how a value of the input contributes to a specific output 
(Fig. 22). Fig. 22 provides a breakdown of each input contribution to the 
value, showing that the temperature of the reformer and the CaO/CH4 
ratio have a significant positive influence. The SHAP approach can 
provide a comprehensive assessment of the ML model by determining 
the SHAP value. It can determine how an input impacts the output 

Fig. 23. (continued).
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within this ML model development. This approach can provide a valu
able means for predictive maintenance by quantifying the impact of 
each input on the output value. The key drawback of this approach for 
calculating SHAP values is its computational intensity, especially with 
large datasets, as calculating the SHAP value is computationally slow.

3.3. Comparative assessment of the global-sensitivity analysis approaches

The rankings of each input parameter, indicating their importance in 
calculating the output, are shown in Fig. 23a–b for both the ANN and RF 
models, respectively. The variance-based methods demonstrate a similar 
importance of each feature across all outputs. In contrast, the Morris and 
Delta approaches exhibit some variation between specific outputs, 
typically when the impacts of each input are of comparable values. This 
variation depends on several factors; for example, the Sobol approach is 
a variance-based method, whereas the Morris method is derivative- 
based. These methods will effectively ascertain different aspects of 
sensitivity, potentially leading to different rankings. Furthermore, the 
sampling method used in a high-dimensional space may influence the 
rankings of these approaches. The Morris approach employs a 
trajectory-based sampling method, which may lead to under-sampling in 
high-dimensional spaces [45].

As shown in Figs. 13, 15 and 17 varying the sample size reveals 
variation in the calculated sensitivity index. However, with a sample 
size of more than 1,024 across all approaches, the sensitivity value re
mains consistent. The sample size is a crucial factor to consider when 
determining the time required to calculate the sensitivity index. The 

sample size used to calculate the sensitivity index was varied from 27 to 
213, and the time required for the sensitivity index to execute was 
evaluated for both surrogate models. Fig. 24 shows the results for both 
the ANN and RF. As shown in Fig. 24, it appears that Delta is compu
tationally extremely slow for both approaches; however, when com
bined with RF, it becomes especially sluggish. Across both surrogate 
models, the Morris approach is relatively rapid across all sample sizes, 
with the Sobol also demonstrating good computational efficiency across 
all sample sizes. For the Sobol and Morris methods with RF and ANN, 
there is little difference between the two, with the ANN being slightly 
faster. This is most likely because the optimised ANN has 50 neurons. In 
contrast, the optimised RF has 100 trees with no maximum tree depth, 
which explains why across these sample sizes, the execution speed of the 
model was slightly slower for the RF approach. Both the Sobol and 
Morris approaches exhibit excellent computational speed. When Sobol is 
applied with a large sample size (>1,024), the robustness for the first- 
order sensitivities remains consistent.

Overall, this is a clear indication that the SHAP approach provides 
increased interpretability, showcasing not only whether an input has a 
significant impact on the output value but also how the value of an input 
affects the output, providing a comprehensive assessment of the surro
gate model regarding how an input influences the output. This comes at 
the cost of speed, taking a considerable amount of time to fully execute. 
Reducing the sample size can improve speed; however, ensuring that the 
developed surrogate model maintains high accuracy is essential to 
guarantee that the SHAP values are reliable. Further methods can be 
implemented to improve the efficiency. For example, recent work by 

Fig. 24. Time taken for the GSA approaches to calculate sensitivity indices for a) ANN model with Sobol, RBD-FAST and Morris. b) RF model with Sobol, RBD-FAST 
and Morris. c) ANN model with Delta. d) RF model with delta.
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Ranjbaran et al. (2025) combined K-means clustering with the SHAP 
approach which reduced the computational time to execute from 400 s 
to 0.29 s [47]. This approach can provide interpretability whilst 
ensuring it is still computationally efficient. To ensure computational 
speed while still providing interpretability, the Sobol and Morris ap
proaches are capable of calculating both first- and second-order effects 
(although the Morris cannot differentiate between second-order and 
non-linear interactions). While the RBD-FAST method is computation
ally efficient, it cannot extend beyond first-order effects, and the Delta 
approach is also slow and does not progress past first-order effects. 
Consequently, the combined robustness is not particularly strong. Often, 
within the literature, feature importance from the RF package is used 
due to its simplicity and ease in determining the importance of each 
feature for each output. Although it offers a straightforward method, 
similar to the Delta approach, it is unable to surpass first-order effects.

Ensuring a large sample size (>1,024) guarantees that the sensitivity 
values will not vary significantly, with both the RBD-FAST and Morris 

approaches demonstrating excellent consistency in the sensitivity index 
value. The Morris approach calculates the μ* and σ indices at signifi
cantly faster speeds than the other approaches. The Sobol approach, 
similar to the Morris approach, can also compute these values swiftly at 
large sample sizes. The SHAP approach enhances interpretability by 
illustrating how each input value affects the output. This approach is 
beneficial for local-sensitivity analysis, as shown in Fig. 22 through the 
force-plot which for individual output values, it is able to determine how 
each input contributes to predicting the output. This can be particularly 
useful when assessing outliers to establish how the inputs affect the 
output and which factors within those inputs lead to the output value. 
This application is highly relevant in research areas such as predictive 
maintenance [48].

As shown across each approach the CaO/NG ratio influences each of 
the KPIs significantly by removing the CO2 in-situ it provides two key 
advantages: the removal of CO2 ensuring higher CCE and CO2 purity, 
and removing CO2 means that the reforming reaction shifts to the right 

Fig. 25. Univariate analysis of CaO/NG ratio on each KPI.
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to produce more hydrogen improving the CH4 conversion, cold-gas ef
ficiency and H2 purity. higher CaO/NG ratios ensures a higher CCE as 
well as CGE and H2 purity, as it is such a significant influence across all 
KPIs a univariate analysis was done to assess each output metric indi
vidually which is shown in Fig. 25.Fig. 25 further highlights what the 
SHAP analysis shows extremely low values of the CaO/NG ratio (<0.5) 
significantly lowers the performance of the process across all KPIs above 
this ratio the performance of these KPIs is improved although the vari
ation within these values still shows that other factors within the process 
such as the S/C and unit operators operating parameters such as tem
perature and pressure of the reformer play a role within ensuring the 
KPIs are optimised. To ensure a CCE above 75 % a CaO/NG ratio of 1.00 
is required but again other factors play a role to maintain that high CCE 
otherwise it can be significantly reduced.

4. Challenges and limitations

Using RF and ANN as a preliminary step for global sensitivity anal
ysis can be effective, provided it is done with careful attention to model 
validation, interpretability, and integration with traditional GSA 
methods. In this work, a comprehensive assessment of various GSA ap
proaches has been carried out. Although significant progress has been 
made in developing a thorough evaluation of these GSA methods and 
integration with ML techniques, key challenges persist in this area of 
research, particularly regarding the enhanced interpretability of surro
gate ML models for blue hydrogen production. Further work must be 
undertaken on the entire system, such as the CLC system and PSA, to 
examine how these systems impact the KPIs described. This, in turn, 
increases the complexity of surrogate modelling, which may affect both 
the computational efficiency and the accuracy of the model.

The expansion of the dataset to include variations in the feed-gas 
composition and activity of the catalyst is key to further assess these 
parameters and their influence on the output, e.g. by incorporating ki
netic data such as catalyst activity and its impact on the KPIs within this 
work. In this work, we have highlighted how developing a surrogate ML 
model can enhance the speed of the modelling. Future work should focus 
on the introduction of additional operating parameters such as feed gas 
composition and kinetic parameters, in order to paint a more compre
hensive picture of the process.

Limitation of this current work is that this data-driven model is 
trained on first-principle datasets, which is based on a steady state 
thermodynamic process model; it does not include kinetic parameters or 
dynamic-specific elements. This absence of additional parameters in the 
process means that when developing a data-driven approach, trained on 
a first-principle model, the full complexity of the system is not captured. 
The recent advancement of neural network architectures, such as 
transformers, allows for dynamic processes to be modelled with great 
accuracy and has proven effective for optimisation in dynamic pro
cesses, including adsorption-based processes such as PSA for H2 purifi
cation ([49–51]). If this approach would to be extended for such 
dynamic scenarios (e.g. reduction in performance of the CaO over 
multiple cycles), further operational parameter must be included to 
assess how the behaviour of the system shapes over time.

The development of neural network architecture has led to the cre
ation of physics-informed neural networks (PINNs) for modelling unit 
operations and processes in environments with low data availability, 
with increasing popularity ([52,53]). Integrating with PINNs using GSA 
approaches would help in understanding the key input factors driving 
this process, potentially reducing the dimensions of the data-driven 
model output while still capturing the key factors that drive the process.

The enhanced use of SHAP can be an important tool in science and 
engineering. It provides increased knowledge of the surrogate model 
system by offering a comprehensive toolkit capable of assessing the 
model, determining how an input value impacts the output, as well as 
examining interaction factors through the SHAP dependence plot and 
individual inputs via the LSA function. However, in this work, this has 

solely been employed to evaluate feature impacts since the SHAP-based 
approach can break down how an input value affects the output. Once 
the SHAP values are calculated, they could be integrated with optimi
sation methods to guide the solver towards solutions. Although the 
computational efficiency of the SHAP approach is a key concern, 
incorporating the SHAP approach with efficient sampling methods has 
shown to improve the computational efficiency. Further investigation 
into the effects of sampling and its impact on accuracy is necessary to 
determine the applicability of the SHAP approach and its suitability for 
applications within process control, predictive maintenance, and real- 
time optimisation.

5. Conclusions

In this work, various GSA and LSA approaches were integrated with 
ML surrogate models trained on data collected from a first-principle SE- 
SMR-CLC process model. The development of surrogate ML models for 
predicting key performance indicators in the SE-SMR-CLC process 
demonstrates that, with a large number of data points, both the ANN and 
RF can exhibit high predictive accuracy - even within the test set. This 
highlights the model’s generalisability. A comparison of different GSA 
approaches reveals that the CaO/NG ratio has the most significant 
impact on the key performance indicators (i.e. CH4 conversion, CCE, 
CGE, CO2 purity and H2 purity), emphasising that this intensification 
method not only provides a means to capture CO2 but also enhances the 
performance of the hydrogen production system. This impact is due to 
the removal of CO2 in-situ within the reformer; this shifts the thermo
dynamic equilibrium so that more hydrogen is produced whilst simul
taneously capturing CO2 from the system. This combined approach 
harnesses the benefits of both ML and classical sensitivity analysis, of
fering a robust foundation for understanding and enhancing complex 
systems such as blue hydrogen production. Integrating GSA with ML 
provides interpretability to surrogate models developed through ML 
techniques, such as ANN and RF. Depending on the GSA approach, they 
can ascertain a range of impacts on the system, including both first-order 
and second-order effects. In particular, the Sobol approach can compute 
both first- and second-order effects with a large sample size in less than 
1 s. The SHAP approach to assessing feature importance provides a 
method that enables not only the determination of whether an input 
affects an output, but also the value of an input and its influence on the 
output.

Future work will further expand implement this approach on systems 
with greater complexity (kinetic and dynamic considerations), as well as 
implementing strategies to improve the computational efficiency of the 
SHAP approach. This work has shown that the integration of surrogate 
models with GSA in the modelling of chemical processes can enhance 
computational efficiency, provided that the appropriate GSA approach 
is selected. As more data is generated, effectively utilising this to 
improve the modelling and development of low-carbon processes is 
crucial to accelerating the development and deployment speed of these 
processes, enabling a net-zero future.
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