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ABSTRACT

Data-driven modelling utilising machine learning (ML) techniques offers a powerful alternative to first-principles
simulations of chemical processes. In this work, artificial neural networks and random forests were developed as
surrogate models, trained on data from a first-principles model of sorption-enhanced steam methane reforming
with chemical-looping combustion. These ML-based surrogates were integrated with global sensitivity analysis
(GSA) approaches to identify key process drivers and evaluate the comparative performance of different GSA
methods in chemical process modelling. The surrogate models achieved an approximately 99 % reduction in
computational time compared to first-principles simulations, while maintaining predictive accuracy. Sensitivity
analysis demonstrated that the CaO/natural gas (CaO/NG) ratio is a dominant parameter, strongly influencing
carbon capture efficiency and hydrogen production performance (cold-gas efficiency and Hy purity). In-situ CO2
removal from the reformer was shown to shift equilibrium towards higher hydrogen yields while simultaneously
enabling CO; capture. Ratios of CaO/NG > 1.00 ensured high capture efficiency, while improvements in cold-gas
efficiency were observed from ratios >0.5. Among GSA methods, the Sobol approach delivered high computa-
tional efficiency (0.5 s) with first- and second-order sensitivities, whereas Shapley additive explanations provided
greater interpretability but at significantly higher computational cost (384 s).
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Artificial neural networks
Calcium looping

Calcium oxide/natural gas
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design of experiment
Explainable artificial intelligence
Feedforward backpropagation neural network
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Shapley additive explanation SHAP
AR Sorption-enhanced steam methane reforming SE-SMR
ANN Sorption-enhanced steam methane reforming with chemical-looping SE-SMR-
CaL combustion CLC
CaO/NG Steam methane reforming SMR
CCS Steam methane reforming with carbon capture SMR-CC
DoE Steam/Natural gas S/NG
ExAI
FBNN
FR
FFD
GSA 1. Introduction
LSA
ML
mT 1.1. Research background
NG
PINN The development of low-carbon technologies is key to ensuring net
PSA zero is reached by 2050 so that the most devasting effects of climate
LEA change are mitigated [1]. Hydrogen has been identified as an energy

SA carrier capable of decarbonising a variety of industries such as energy
[2], transportation [3] and heat for industrial processes [4]. Although
the end use of hydrogen is low-carbon, the production of hydrogen
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currently produces large amounts of CO,. Currently, over 900 million
tonnes (Mt) of CO» is produced as a result of hydrogen production [5]. In
2022, 95 Mt of hydrogen was produced [5]; however, the majority of
that comes from natural gas reforming (i.e. grey hydrogen), coal gasi-
fication (i.e. black hydrogen) and as a by-product from refineries and the
petrochemical industry [5]. Natural-gas reforming with carbon capture
and storage (CCS) (i.e. blue hydrogen) and electrolysis (i.e. green
hydrogen) accounted for ~0.7 % of hydrogen produced in 2022 [5]. The
distribution between grey, blue and green hydrogen is expected to
change drastically by the middle of this century as shown in Fig. 1.
There will be a projected increase of low-carbon hydrogen produc-
tion by 2030 with 10 Mt of hydrogen being produced via blue hydrogen
production routes [5]. Conventionally, blue hydrogen is produced
through steam methane reforming (SMR) with carbon capture (CC)
technologies (SMR-CC) such as amine scrubbing, as shown in Fig. 2a.
Although SMR-CC can capture CO5 from the process, it has a significant
energy penalty and increased cost of hydrogen as a result. Prior works
have investigated the intensification of this process by integrating other
capture technologies that are able to capture the CO, at a lower energy
penalty. Sorption-enhanced steam methane reforming (SE-SMR) in-
tegrates calcium-looping (CaL) technology with the reformer, as shown
in Fig. 2b. Utilising a high-temperature sorbent, such as CaO, allows for
in-situ COy capture as Hj is being produced within the reactor. This
process allows for a reduced capital expenditure and produces more
hydrogen as a result of Le Chatelier’s principle [8]. The reactions for this
are shown in R1-4. In SE-SMR, the heat required for the calciner is often
supplied via a burner/combustor. CO5 generated due to combustion can
be captured via conventional carbon capture technologies such as amine
scrubbing. This however, results in high energy demand due to amine
regeneration and the associated process units. Recent advancements
have utilised chemical-looping combustion (CLC) to provide the heat for
the calciner as shown in Fig. 2c. The benefit of this approach is that the
combustion products theoretically comprise only CO, and H30, signif-
icantly reducing the energy penalty of separating out the CO, [9]. The
reactions utilising iron-oxide with reducing agents is shown in R5-8.

CHy() +HsOp < COfq + 3Hag) AHogex = 206.2 kJ.mol ™" R1
COq) +HaOp <> COyq) + Hagg) AHaogq = —41.2 kJ.mol ™" R2
CHy(g) +2H,0(g) > COqg) + 4Ha (g AHzogq = 165.2 kJ.mol R3
CaOg;) + COy) <> CaCOg5) AHggsx = —178.8 kJ.mol — 1 R4

CH, + 12Fe,0; < 8Fe;0, 4 CO, + 2H,0 AHY,, = 126.38 kJ mol ™' RS
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H, + 3Fe;0; <> 2Fe;0, + H,0 AHS, = 16.10 kJ mol ™! R6
CO + 3Fe,03 > 2Fe;0, + CO5 AHY, = —25.10 kJ mol ™ R7
4Fe;04 + 0, < 6Fey05 AHYo, = —534.54 kJ mol ™! RS

Detailed first-principle process modelling and simulation of these
blue hydrogen production processes provides a method to analyse these
technologies that is economical and reliable [10]. First-principle
modelling is built on fundamental ‘ab-initio’ physio-chemical phenom-
ena such as mass and heat transfer [10]. The use of expert software such
as GPROMS and ASPEN allows for processes to be modelled and simu-
lated via a first-principle approach [11]. A first-principle approach
provides an accurate and robust method in which the behaviour of
processes in steady-state or dynamic mode can be modelled accurately
across a vast range of operating parameters. However, the use of
ab-initio methods can be time-consuming especially when assessing
secondary impacts of the process, e.g. economic or environmental im-
pacts [11].

Machine learning (ML) has provided an alternative method of
modelling processes in chemical engineering. For example, artificial
neural network (ANN) and random forest (RF) can be trained on data
that come from literature (experimental or first-principle modelling) or
industry (a hydrogen production plant) [11]. Once this surrogate model
is trained, the model can then be employed to predict outputs for a range
of input values. This approach has been shown to be able to model
processes quickly and accurately although the accuracy does is reduced
when predicting outputs outside the range of the training data [12]. The
use of ML to develop surrogate models is referred to as a black-box
approach or data-driven [10]. Development of an interpretable,
data-driven approach that can predict key performance indicators at
increased speed is crucial for the chemical engineering discipline. It
provides a method to determine how the reactants impact the products;
this could potentially be used to make informed decisions in changing
certain process parameters to ensure a high purity value product in
real-time [13].

Multiple approaches can be used to develop an interpretable data-
driven approach. One such method is by the integration of sensitivity
analysis (SA) and design of experiment (DoE) methods into ML models
in order to assess input parameters and their effect on the output. SA
methods aim to measure uncertainty in the output based on the change
in the input [14], it can be applied to ML surrogate models in order to
provide interpretability to these models [14]. SA methods can be
divided into two types: local sensitivity analysis (LSA) and global
sensitivity analysis (GSA). Local-sensitivity analysis (LSA) looks at local
variation within a local point, hence it is often applied to a single

D
o
o

)

o
o
o

400
300

200

LN

Hydrogen Produced (Mt

Hydrogen Production 2021 Hydrogen Production 2030 Hydrogen Production 2050
Current and Projected Hydrogen Production Routes

o Grey Hydrogen

Blue Hydrogen

Green Hydrogen

Fig. 1. Current and projected global hydrogen production (Data extracted from Refs. [6,7]).
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Fig. 2. Fig. 2a) Block-flow diagram of SMR with potential CO, capture points. Fig. 2b) SE-SMR block-flow diagram. Fig. 2¢) SE-SMR-CLC block-flow diagram.

prediction and a single input. Consequently, it is inadequate to explore
large design spaces [15]. However, GSA assesses the variation of all
inputs onto the variability of model outputs. This provides an overall
analysis of the importance of each feature and provides a way to explain
a model in its entirety [15]. SA can be implemented via four distinct
methods: variance-based methods, derivative-based methods,
density-based methods and model-based methods. Section 2 provides an
in-depth description of each approach used in the study.

1.2. Literature review

ML has already been employed in the surrogate modelling of blue
hydrogen production processes. Comprehensive reviews of prior works
can be found in the literature [11,16]. Nkulikiyinka et al (2020) [17]
developed soft-sensors for the reformer and calciner utilising both ANNs
and RF. The surrogate models developed were able to predict the output
of both reactors with high accuracy, with average R? values of 0.98-1 for
both RF and ANN. They utilised the feature importance for RF and a
principal component analysis (PCA) for ANNs to determine the impact of
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Fig. 3. Simple block-flow diagram of sorption-enhanced steam methane reforming process with chemical-looping combustion, highlighting the inputs that were

manipulated in this work.

the inputs on the outputs. Vo et al (2022) [18] developed a ML-based
optimisation for the SE-SMR process. They utilised a Pearson correla-
tion coefficient to assess the impact of input variables on the outputs,
where the optimisation approach was able to produce hydrogen at
low-cost ($1.70 per kg of Hy) whilst maintaining a high CO; capture rate
(90.3 %). The use of screening approaches such as PCA is useful as it
allows to discriminate influential inputs from non-influential ones.
Careful consideration must be taken when employing this approach
since this method mainly aims to reduce the dimensions of the input
space by transforming and combining the inputs into a new set of var-
iables that aims to capture the largest variance [19]. This transformation
means that the relative contribution of the original dataset to the outputs
is lost and requires further steps to analyse this feature’s importance.

Zhao et al (2021) developed a surrogate model for water gasification
of biomass for hydrogen production. They compared different ML ap-
proaches to determine the best approach in predicting hydrogen yield
[20]. Evaluation of the model variables via feature importance and
partial dependence analysis, determined that a high oxygen content in
biomass leads to maximum hydrogen reaction efficiency and exergy
efficiency. Recent work by Huang et al (2025) developed a ML model of a
diesel autothermal reforming process by varying certain operating pa-
rameters. In this work, a Hy purity of 68.79 % was achieved [21]. The
authors used the Shapley Additive Explanation (SHAP) tool to provide
insight into how the operating parameters influence each output [21].
Within these works, the focus is often on the optimisation speed or the
accuracy of the model. There is much less effort made on investigating
data quantity required to enable the development of an accurate robust
interpretable model. This work, therefore, also aims to evaluate what is
required from datasets within the investigated area in order to develop
an interpretable computational efficient approach to ML-based
modelling.

1.3. Objectives and paper motivation

Developing explainable artificial intelligence (ExAI) has become of
increasing importance, especially within science and engineering, where
the model must be subject to the underlying physical laws. Within data-

Table 1
Breakdown of components and mol fraction within the
natural gas.

Natural gas components mol (%)
CH,4 92.50
Ny 3.00
C,Hg 3.00
Cs3Hg 0.50
C4Hyo 0.310

CO; 0.78

driven modelling, machine learning-based surrogate models, incorpo-
rating global sensitivity analysis (GSA), can provide context to the
predictions made by the surrogate model. Incorporating GSA into ML
surrogate models has recently been exercised. Stein et al. (2022) looked
at assessing different GSA approaches. They determined that Morris
approach was extremely robust, performing well in large dimensions
[15]. Lucay (2022) implemented a surrogate model combined with GSA
approach in a case study of mineral processing [22]. They found that by
implementing the surrogate model with GSA, they were able to signifi-
cantly increase the speed at which they were able to predict the outputs,
while still quantifying the influence of the inputs on each output [22].
Zhao et al. (2021) implemented active learning and sensitivity analysis
with the ML surrogate model to improve the computational efficiency of
a non-linear system a chemical process system [23]. Here, active
learning allowed for the model to be further generalised, and the sur-
rogate model developed based on the sensitivity analysis, significantly
improved the computational efficiency whilst maintaining high accu-
racy. Objectives and paper motivation.

The literature review highlights how ML has currently been used
within the modelling of blue hydrogen production, serving as soft sen-
sors to predict reactor outputs and used as a surrogate model to opti-
mising blue-hydrogen production in regard to cost and CO capture rate.
However, in existing literature, ML is often employed to accelerate
optimisation rather than improve interpretability. In process engineer-
ing, achieving both computational efficiency and interpretability is
crucial when integrating GSA as demonstrated by Zhao et al (2021) [23].
The aim of this work is to integrate different GSA and LSA approaches
with ML surrogate models, trained on first-principle data (SE-SMR-CLC
process model), to assess how these approaches provide interpretability
to the model without impacting computational efficiency and recom-
mend strategies that ensure both interpretability and computational
efficiency. By providing a comparison among the approaches, the aim is
to highlight what GSA method is most appropriate to select for a specific
purpose dependant on the dataset and the expected outcomes (justifi-
cation of the surrogate model and computational efficiency).

Table 2
Input parameters and values at which they were varied.
Reformer S/NG Pressure Temperature CaO/NG
Temperature Ratio Reformer Calciner (°C) ratio
“Q) (mol) (bara) (mol)
1 400 2 5 900 0.25
2 450 2.5 10 950 0.5
3 500 3 15 1000 0.75
4 550 35 20 1050 1.00
5 600 4 25 1100 1.25
6 650 4.5 30 1150 1.50
7 700 5 35 1200 1.75
8 750 5.5 40 1250 2.00
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Fig. 4. ANN structure and visualisation of the calculation of a model output.

Furthermore, this study highlights how the amount of data provided is
key to ensure robust, accurate ML models, and to development of
interpretable ML model for application within science and engineering
fields.

The paper is structured as follows. In Section 2, the methodology is
discussed, detailing the data generation process, including the variables
selected for both the inputs and outputs, the theory behind each ML
method, as well as a description of the GSA approaches used in the study.
Section 3 discusses the results associated with the training and testing of
each model, highlighting the validity of the models when predicting an
output. Within section 3, we comprehensively assess the different GSA
approaches when applied to the models; we compare the feature
importance indices for each approach and the respective computational
efficiency in assessing the features importance, as well as discussing
which approaches are best for a specific purpose. Finally, within section
4 we discuss the limitations of this approach and provide recommen-
dations on future research.

2. Methodology

To develop a surrogate model and apply GSA techniques to deter-
mine the effect of each model input on the output, the following steps
were followed:

1. Design of experiments using a full factorial design (FFD);

2. Collection of data from the process model in ASPEN Plus;

3. Training and testing ML surrogate models (artificial neural network
and random forest);

4. Integration of GSA techniques with the surrogate model;

5. Comparison of GSA approaches with regard to interpretability,
robustness and computational efficiency.

2.1. Process configuration, simulation and data generation

The data was collected based on a process model previously devel-
oped in our earlier work using ASPEN Plus (V 12.1) [24]. The process
simulated is a steady-state thermodynamic model of a
sorption-enhanced steam methane reforming process with
chemical-looping combustion (SE-SMR-CLC). The Peng-Robinson Bos-
ton-Mathias property package was used to simulate the process [25].
The model was developed and validated in our previous work [24].
Fig. 3 shows a block-flow diagram of the process. The reformer, calciner,
air-reactor (AR) and fuel reactor (FR) were modelled using the RGIBBS
block in Aspen. In this process, natural gas (NG) is compressed (5-40
bara) and heated (400-750 °C). Liquid H»O is pressurised (5-40 bara)

and then heated (400-750 °C), before being mixed with natural gas and
introduced into the reformer, where they also come in contact with fresh
CaO. Here R1-4 take place. The solid and syngas are separated after
which the CaCOs is returned to the calciner, where the reverse of R4
takes place. The regenerated CaO is recycled back into the reformer with
the CO, stream leaving the calciner to be then compressed and stored.
The natural gas (NG) composition used in this work is shown in Table 1.

The syngas enters a condenser where it is cooled, and the HyO is
condensed out. The syngas then enters a pressure-swing adsorption
system (PSA) that assumes an Hj recovery of 90 %. The hydrogen then
leaves the column to be compressed and stored. The PSA off-gas is
recycled and mixed with NG and is heated before entering the fuel
reactor (FR), where R5-7 take place. The reduced iron oxide is recycled
to be used in the air reactor (AR) where an air stream is heated and
enters the FR. Here, R8 takes places with the oxidised iron oxide
transported to the FR. The oxygen depleted air is cooled and leaves the
system. The CO2 from the calciner and the gas stream from the fuel
reactor are mixed and the mixture is subsequently cooled. After this, the
liquid H,0 is condensed out so that a high-purity stream of CO, is
generated.

The data collected from the model focuses on the hydrogen pro-
duction system. The other key units within the process (i.e. PSA and CLC
systems) remain constant. Five inputs (reformer temperature, steam/NG
ratio (S/NG), pressure of reformer, temperature calciner and CaO/NG

Table 3
Initial hyperparameters values selected for neural network developed in this
study. Hyperparameters in bold are varied.

Hyperparameters Hyperparameter description Initial
Value
Hidden layers Number of layers between the inputand  1-3

output layers

Neurons in hidden layer =~ Number of neurons within the hidden 50-150
layer
Activation Function Compute the weighted sums of inputs ReLU

and biases, decides whether a neuron is
activated or not.

Step size at each epoch when 0.001
minimizing loss.

Learning Rate

Training/Validation/ The split of the data into the training, 60/20/20
Test Data Split (%) validation and test set.
Batch Size Number of training examples in one pass 32
through the neural network.
Epochs Number of passes the training set isrun ~ 50-100

through the neural network.
Updates the weights and biases so that Adam
loss is minimised.

Gradient Descent
Method

Loss Function Used for regression-based outputs, Mean
calculates the loss between the predicted ~ squared
and actual results. error
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ratio) were varied across eight levels with a full-factorial design (FFD).
An FFD was selected to enable capturing a comprehensive picture of all
possible combinations of the investigated variable in this work. Overall,
32,069 simulation runs were required to complete the design space, the
simulation was run on 11™ Gen Intel® Core™ 17-11700 @ 2.50 GHZ
with eight cores and four threads. The time taken to collect all data
points was 8,136 s. These inputs were selected as the operating pa-
rameters because these factors often play a role in the performance of
the blue hydrogen production plant. Table 2 shows the manipulated
variables together with their corresponding values, tested in this work.
These input parameters were selected as they have shown to signifi-
cantly affect the performance of the investigated process i.e. hydrogen
production and CO, capture. These independent (adjustable) variables
have been shown to impact both the hydrogen production and the COy
capture efficiency, hence their inclusion within this model ([26,27]).

Five factors were considered as the output (i.e. Key Performance
Indicator - KPI) (Hy purity, CH4 conversion, cold gas efficiency, CO5
capture efficiency and CO purity). The formulae used to calculate these
outputs (KPIs) are shown below, through Egs. (1)-(5).

NH,ref

International Journal of Hydrogen Energy 190 (2025) 152153

Where n, s denotes the molar flowrate of a component leaving the
reformer, ncy, in is the molar flow rate of CH,4 entering the reformer and
Tcp, ref is the molar flow rate of CHy leaving the reformer. my, oy is the
mass flow rate of hydrogen leaving the system, with LHVy, being the
lower heating value of Hy (120 MJ/kg). myg o is the total mass flow
rate of natural gas entering the system and LHVjyg is the lower heating
value of natural gas (47.10 MJ/Kkg). Mco, refcqp is the mass of CO3
captured in the reformer, with myg i, being the mass flow rate of natural
gas entering the reformer. nyq is the molar flow rate of a component
leaving the system through the captured CO; stream.

All KPIs were individually calculated for each simulation run. The
simulation was run under the assumptions of: steady state operation, no
temperature gradient in the reactors and negligible pressure drop. These
assumptions were made to enhance the model-complexity with mini-
mum impact on the results. Once the data was collected, the data was
normalised to ensure a quick convergence rate when training the sur-
rogate models. The first-principle modelling results are provided in the
supplementary information. Outliers were determined through an

x 100

H, Purity (%) =

nH2 ref + nN2 ref + nCHuef + Nco ref + nC02 ref + nCZHsref + nC3H3ref + nC4H10ref

CH, Conversion (%) e in e g 90 Eq. 2
NcH, in
. . M, our X LHVH
Cold gas efficiency (%) =——"————* x 100 Eq. 3
gas eff Y (%) MNG toral X LHVnG q
CO, capture efficiency (%) _Meorgaw 109 Eq. 4

MNG in

Nco, cap

Eq. 1

isolation forest as it is a high-dimension dataset and so the isolation
forest is highly effective for detecting anomalies without assuming a
specific data distribution [28]. Isolation forest was implemented
through the scikit-learn package in which the contamination was set to
0.05. Once the outliers were detected, a sample was analysed to char-
acterise these outliers, and if values were physical impossibilities (e.g.
CO; capture efficiency >1.00), they were removed from the dataset
[29].

CO, Purity (%) =

nCOg cap + nCH4 cap + Nco cap + nH2 cap+nHZOcap + nNz cap + nCZH(,cup + nC3H8cap + nC4Hmcap

A
)
A5

5

x 100 Eq. 5

Cold gas efficiency (%)

CO, capture efficiency (%)

CO, purity (%)

Fig. 5. Neural network structure used to develop the surrogate model in this study.
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Table 4
Values at which selected hyperaparameters were varied for ANN.
Lower Middle Upper
Number of neurons 50 100 150
Number of epochs 50 75 100
Number of hidden layers 1 2 3

2.2. Machine learning surrogate model development

Developing the ML surrogate models was done in python v3.6.1 in
the Jupyter notebook environment using TensorFlow package [30] for
the artificial neural network (ANN) and Scikit-learn [29] for the random
forest (RF). The following sections describe the working principle for
ANN s and RFs as well as the hyperparameters selected for each surrogate
model.

2.2.1. Artificial neural network

ANNs is a machine learning method that connects inputs and outputs
via a series of interconnected nodes and layers [31]. They are extremely
flexible and able to solve complex problems that are non-linear in nature

A 4
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[32]. The structure of a neural network consists of an input layer, hidden
layers (can be multiple hidden layers) and an output layer, as shown in
Fig. 4. ANN is based on the principle of information processing in bio-
logical systems [31]. The data is passed through each layer, and an
output value is produced. The nodes within each layer are known as
neurons. The basic structure of a neuron is shown in Fig. 4. To calculate
the output of a neuron, Eq. (6) is used.

j’—a(inwier), Eq. 6

i=1

where Xx; is an input, w; is a weight, b is the bias, a is the activation
function and y is the vector of the model output. Once all the data is
passed through (known as an epoch) the loss is calculated (mean
squared error), which is the difference between the actual output values
and the predicted values predicted by the surrogate model. Back-
propagation is then used in which the chain rule is used to calculate the
rate at which loss changes in response to any change to a specific weight
(or bias) in the network [33]. Once this partial derivative is calculated,
the gradient descent is utilised which is where the weights are updated
to ensure the loss function is minimised [33]. This process is repeated

training data

Begin training on

A 4

training data

»| Forward passof

Data normalisation

Loss calculated

Y v
Data split
Training 60%/
Validation 20%/ Backward pass
Test 20%
\ 4 v

Dataset preparation
(convert to PyTorch
Tensor)

Optimisation step

v v

Neural network
hyperparameters
selected

Validation set

No

Evaluation on test |
set

Fig. 6. Flowchart for learning procedure of ANN.
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Fig. 7. Structure of initial random forest surrogate model.

Table 5

Initial hyperparameters for the RF surrogate model.
Hyperparameters Values
Number of estimators 50-150
Max depth 10, 50, None
Training/Test split 60/40
Leaf nodes None
Minimum samples split 2

Table 6
Values at which selected hyperaparameters were varied for RF.
Lower Middle Upper
Number of Trees 50 100 150
Max Depth 10 50 None

until the loss is minimised.

In this study, a feedforward with backpropagation neural network
(FBNN) was selected and developed in python version 3.6.1 using the
TensorFlow package [30]. An FBNN was selected due to its ease of use,
especially when calculating the backpropagation. Also, since the data is
not time sequential, a recurrent neural network is not needed. The initial
hyperparameters values selected are shown in Table 3, with Fig. 5
showing the structure of the ANN used. The accuracy of the surrogate
model was determined by calculating the R? and the mean squared error
(MSE), calculated by Eq. (7), respectively.

n
~\2
RZ_1_Sum squared regression _ ;(y. yi) Eq. 7
~ " total sum of squares = & _2) ’
f 5q 21 i *)’i)z
=
1< 2
MSE=_3 (yi - J) Eq. 8
i=1

where Y; is the predicted output, y; is the actual (synthetic) data, y; is the
mean of all values and n is the number of samples. The following
hyperparameters were varied through an FFD from the values in Table 4
(number of neurons, number of epochs and number of layers). These
parameters were selected as they play a key role in the computational
efficiency and the accuracy of the deployed model [34]. This was done

to assess the trade-off between average accuracy (R%, MSE) and training
time per epoch. The training and validation sets were used for all the
models whilst the test set was used on the selected optimised model.
Fig. 6 shows the flowchart detailing how the ANN learns from the
dataset.

2.2.2. Random forest

RF is an ensemble-learning approach in which multiple decision
trees are “bagged” together to predict an output [35]. Ensemble learning
has been shown to have high predictive capability in comparison to
other ML approaches and can be used for both regression and classifi-
cation tasks [11]. Ensemble learning methods combine multiple ma-
chine learning methods and aggregate them together to find the average
result. RF combines the bagging method with feature randomness to
create an uncorrelated mixture of decision trees [36]. Initially devel-
oped by Brieman [36], each tree utilises a random part of the input
dataset to calculate a random part of the features in each partition, as
shown in Eq. (9) [35]. This randomness produces variability between
the trees, which reduces the risk and improves the overall prediction
[35]. Splits within trees are selected based on the minimisation of the
MSE. The tree will then grow until the stopping conditions are met. The
output of the whole RF is calculated by Eq. (10).

M
R 1
V= E Cm-1(x € Ry), where ¢, = —— E Vi Eq. 9
m=1 ‘Rm‘ieRm
1.3
vt T Eq. 10

Where R, is the region within the data y;. yrr is the predicted output of
the random forest, and B is the bootstrap samples of the dataset. Y is the
predicted output of the decision tree. The structure of the initial RF
surrogate model is shown in Fig. 7 and the initial hyperparameters are
summarised in Table 5.

The following hyperparameters were varied via an FFD from the
values in Table 6 (number of trees and max tree depth). This was done to
assess the trade-off between average accuracy (R%, MSE) and training
time per epoch. Both parameters were selected as for the RF, both are
influential hyperparameters that determine the computational effi-
ciency and the accuracy of the deployed ML model [37]. Fig. 8 provides
a flowchart detailing how the RF learns from the dataset.



W.G. Davies et al.

International Journal of Hydrogen Energy 190 (2025) 152153

Process data

!

No

Create leaf node

Select best split
from random
feature subset

Create left/right

Data split: Training
60%, Test 40%

Initialise andom
forestr

No

child nodes

Add Tree to Forest |«

Make prediciton

Create bootstrap
sample random
selection with
replacement

!

Selecte random
feaure subset

each tree
Average prediciton
across all trees

Evaluate model
performance

Fig. 8. Flowchart for training and testing of random forest.

2.3. Global sensitivity analysis techniques

Once the ML surrogate models were trained and tested to ensure high
accuracy, they were subsequently used to generate sample data to
enable GSA. The GSA was conducted using the SAlib package in Python
v3.6.1 [38]. The exception to that was Shapley which was conducted
using the SHAP package [39]. The following sections describe how each
GSA approach used in this study, calculates the sensitivity indices for

each input, or a combination of inputs. For each approach, initially a
sample of 1024 datapoints was used before the sampling was varied to
determine the robustness of each approach (described in Tection 2.4.).

2.3.1. Variance-based methods

Variance-based methods assume that variance is enough to describe
the output uncertainty [40]. They calculate a sensitivity of the input
variables via an ANOVA-like decomposition of the function [41]
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Table 7
Hyperparameters of selected best-performing ANN model.
Hyperparameter Number of Neurons Number of hidden layers Epochs
Value 50 2 100
Table 8

International Journal of Hydrogen Energy 190 (2025) 152153

Where y, is the model outputs evaluated using samples from matrix A.
¥» the model outputs evaluated using samples from matrix B. y¢, is the
model outputs evaluated using samples from matrix C;. From this, the
total variance (V) can be calculated via Eq. (14).

Comparison of the best-performing ANN model with average result of all developed models across R%, MSE and training time.

Training R (%)  Training MSE ~ Validation R? (%)  Validation MSE  Training time all epochs (seconds) ~ Training time per epoch (seconds)
Optimal model 99.99 0.0002 99.97 0.0001 164.36 1.64
Average across all models ~ 99.70 0.000167 99.66 0.000185 139.62 1.87

(Sobol), or through a Fourier transformation (Fourier Amplitude
Sensitivity Test).

2.3.1.1. Sobol. The Sobol approach decomposes the variance of the
output of a model into fractions that are attributed to an input variable
via an ANOVA-like decomposition [42]. The Sobol approach can be used
to calculate first-order sensitivity (a single input effect on the variance of
the output), second-order sensitivities (a combination of multiple inputs
effects on the variance) and total-order Sobol index (measures the
overall contribution of an input including both direct (main) and
interaction effects). In order to calculate the Sobol indices from model
(f(X)) and inputs (X = (Xi, X2, ..., Xk)). Two independent sampling
matrices A and B are generated of size N x k, with N being the sample
size and k being the number of input variables. For each of the inputs, a
third matrix is generated, known as Cj, which is a hybrid matrix where
columns are from matrix A with the i-th column being from matrix B.
From this the model, outputs are computed as shown in Eq. (11)-(13).

Ya=f(A) Eq. 11
Y =f(B) Eq. 12
Yo, =f(Ci) Eq. 13
Table 9

R? of best-performing ANN model across training, validation and test set.

V71z”: g2 _ (1 Eq. 14
_Nj—1YA N q.

2
Where yg) is the j-th output from y, and (% Ejlil yg)) is the square of
the mean output, which is done to centre the variance. To calculate the
first-order effect (V;) of an input Xj, Eq. (15) is used. In order to calculate
the Sobol first-order index (S;) of an input, Eq. (16) is used.

L=y (1N~ ’
Vi=— YaYe — <_ .VA>

Eq. 15

V.
S; :71 Eq. 16
Where y(C’) is the j-th output of matrix C;, to then calculate the total order
Sobol index, the variance (V_;) contributed by all inputs except input X;
is calculated by Eq. (17). The total order Sobol index of X; (St,) is
calculated by Eq. (18).

Table 10
Optimised hyperparameters of selected RF model.

Optimised Model Training Set Validation Set Test Set Hyperparameter Number of Tress Max Tree Depth
R2 99.99 99.97 99.94 Value 100 None
CH4 conversion (R? = 0.999) H2 Purity (R? = 0.999) CO2 Purity (R? = 0.998)
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Fig. 9. Average R? Plots for each output from the ANN for the training set.
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Table 11
RF optimal model R%, MAE and training time.

Training Training Test Test MSE  Time taken for
R? MSE R? training to
complete
(seconds)

Best 99.99 0.0021 99.92 0.0025 4.38

performing

model
Average 99.71 0.004144 99.63 0.004585 3.84

across

training
Table 12
R? of optimised RF model across training and test set.

Training Test
R? (%) 99.99 99.92
1&E oo (13 4\
L= 2BV - | 2 Eq. 17
j=1 j=1
V.
Sr,=1—— Eq. 18

T v q

Where yg) is the j-th output value from y;. The second order effects (Sy)
are calculated via Eq. (19).

Vi
Si=——S -5

Eq. 19
v q

Where Sj; is the second order Sobol index of input variables Xi and Xj and
Vjj is the variance due to the interaction between Xi and Xj.

2.3.1.2. Random-balance design Fourier amplitude sensitivity test.

CH4 conversion (R? = 0.999)

H2 Purity (R? = 1.000)
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Random-balance design - Fourier amplitude sensitivity test (RBD-FAST)
is another variance-based approach. Here, sensitivity values calculated
are independent from the sampling scheme. A Fourier transformation is
then used to decompose the variance of the model into partial variances
[43]. To determine sensitivities indices for a model with k input factors
(X7,Xa,...,Xx) and N sample points, each input factor is sampled using a
random permutation. This ensures that each input is uniformly distrib-
uted whilst maintaining orthogonality. The model is then run to obtain
outputs (Eq. 20
}g:f(xg),xg),...,x,({)>,j:1,2,...,N Eq. 20
Where y; is the output of a model. A Fourier transform is applied to
compute the Fourier coefficient as shown in Eq. (21).

LN-1 Eq. 21

Where YI(J? is the m-th Fourier coefficient for an input factor, repre-

senting the amplitude and phase at frequency m. The power spectrum at
frequency m is determined by Eq. (22).

AY =|y9)? Eq. 22

From this, the total variance (V) of an output is determined via Eq.
(23). The sensitivity of an input (Xi) is then calculated via Eq. (24).

Njg 1
v=2 > A Eq. 23
m=1
25°M AL
1:72"; boi Eq. 24

Where ; is the characteristic frequency for Xi, and M is the number of
harmonics considered.
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Fig. 10. Average R? plots for each output from the RF for the training set.
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Fig. 13. a) Sobol first-order sensitivity for ANN across a varied sample size. b) Sobol first order sensitivity for RF across a varied sample size.
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Fig. 18. First-order sensitivities calculated by the Delta approach for both ANN and RF.

2.3.2. Morris method

The Morris method [44], is a GSA approach. It is based on the
concept of elementary effects (EE;) which is calculated by Eq. (25). The
distribution of the elementary effect is then obtained by sampling a
point from the design space [45].

:[f(xl, ..... X E A LX) — f(%n, e Xy e Xk) ]
A

Eq. 25

Where f is the model output, x; is the input parameter and A is the step
size. The first sensitivity measure calculated by the Morris approach is
the mean of absolute elementary effects y; which is an estimate of the
mean of the distribution of EE;, calculated via Eq. (26) [45].

25

NS R
W= > |EE? Eq. 26
=

Where EE?) is the elementary effect of parameter i in the j-th trajectory,
with r being the total number of trajectories. The other sensitivity
measure calculated by the Morris approach is the standard deviation of
elementary effects (o;) - an estimate calculated via Eq. (27) [45].

=ICEn]

0; = Eq 27

Where y; is the mean of EE; (non-absolute).
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2.3.3. Delta

The Delta approach determines sensitivities that are independent of
the sampling method used [46]. The main aim is to assess the influence
of the entire input on the entire output without a reference to a partic-
ular moment within the output [46]. To calculate this sensitivity, Eq.
(28) is used.

o=y [ 5000 | [ v ~fonr ) iy Eq. 28

Where fx, (x) is the marginal probability density of the input factor, and
Xi, fy(y) is the cumulative probability density function of the model
output y. fyjxi—x(y) is the conditional density of Y given one of the pa-
rameters is a fixed value.

2.3.4. Model-based methods

These approaches all require an existing ML model in order to
generate outputs to determine the impact of certain inputs on the
outputs.

2.3.4.1. Shapley additive explanations. Shapley additive explanation
(SHAP) utilises a game theory approach to explain the output of any ML-
based model. It does this by using fair allocation results from coopera-
tive game theory to allocate credit to a model output among its input
features [39]. Shapley values are often used for an LSA. GSA can be
performed using the SHAP approach by averaging the Shapley value
over all instances of the dataset the model was trained on [39]. To
calculate a Shapley value Eq. (29) is used.

M
g(zi) =¢o + Z ¢jz} Eq. 29
=1

Where g is the explanation model 2" is the coalition vector/Shapley
value, M is the maximum coalition size ¢; is the feature attribution.
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2.3.4.2. Features importance of random forest. The RF ML approach al-
lows for the direct calculation of the feature’s importance without
further integration with GSA approaches; it does this by utilising a
function known as feature importance. The importance of this feature is
the mean of the trees within the random forest, calculated as the
decreasing out-of-bag (OOB) error of a tree when the values of the
variable are randomly permuted in the OOB samples. For regression
problems, the OOB error is measured by the mean squared error [35]
(Eq. (30)).

1 ntree
k=1

I(x7)

= iree i —n)? Eq. 30

Where T(XJ) is the feature importance of feature X’, and ntree is the
number of trees. y is the mean.

2.3.5. Assessment of global sensitivity analysis approaches

The following approaches were assessed on the parameters of
interpretability, robustness, and computational efficiency. The inter-
pretability was determined by assessing how much information can be
extracted from each approach, concerning the impact of each input on
each output. Robustness was assessed by varying the sample size from 27
to 213, This was done to determine the robustness of the GSA approach
when dealing with a small range of samples. The computational effi-
ciency was calculated by determining the time taken for the GSA to
calculate the importance of the features across the sample from 27 to 213,
The cell was executed on an Intel Core i5-7300U CPU at 2.60 GHz with
two cores and four threads.

3. Results and discussions
3.1. Machine learning surrogate model development
3.1.1. Neural network training and testing of the surrogate model

During the training of the ANN surrogate model, the hyper-
parameters were varied throughout the training. Table 7 presents the
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hyperparameter values for the best-performing model, specifically in
terms of time taken per epoch and accuracy. Table 8 presents the
optimal model results in terms of accuracy and time taken per epoch, as
well as the average result obtained across different models studied.

As shown in Table 8, across the training and validation sets for the
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optimal model, there is high accuracy while maintaining good compu-
tational speed. The best performance model demonstrated high perfor-
mance in both training and validation, exhibiting a low drop-off in the
R? value, which highlights its robustness even when dealing with unseen
data, suggesting that it does not overfit. Further evaluation metrics to
compare the models are shown in the supplementary information. The
best performing model although shows better performance than the
average across all models, it is not statistically significant. Regardless,
this was taken forward to evaluate on the test set. The best-performing
model was then tested on the test set to ensure the model’s robustness
and accuracy when dealing with unseen data as shown in Table 9, which
displays the R? values across the training, validation, and test datasets.
As shown in Table 9, the test R? value remains high at 99.94 %, which
highlights the model’s generalisability in predicting outputs outside of
the training set. For all outputs, the R? was calculated and plotted
(Fig. 9). As shown in Fig. 9, across all 5 outputs, R? is high with no
significant deviations.

3.1.2. Random forest validation of the surrogate model

The optimised hyperparameters in the RF surrogate model are shown
in Table 10, together with the results of the accuracy and speed sum-
marised in Table 11. These results show a slightly higher R? but lower
MAE across the training and validation sets. The time taken for the
training to be completed was significantly shorter because the training
data went through the RF once. However, when comparing the training
per epoch, the neural network is seen to be quicker. The training time
helps to understand the training process; however, when deployed, the
surrogate model is often used to predict single outputs and is unlikely to
be used to predict as many samples as are provided within the training
set. Further analysis of the computational efficiency is provided in sec-
tion 3.3.

The RF and ANN show a similar R? across the training and validation
sets. The optimised RF model based on the hyperparameters, shown in
Table 10, was then evaluated on the test data set to ensure the models’
robustness and accuracy when dealing with unseen data. Table 12 shows
the R? of the test set. As shown in Table 12, the test R? is still high at
99.92 %, highlighting the model generalisability. As shown in Tables 9
and 12, the RF approach has a lower R? value than the ANN across the
test set. This, combined with the increased speed of the ANN, comparing
the training time of RF and ANN per Epoch, shows the ANN to have
superior performance, although the RF is still highly accurate and can
predict outputs at a high speed. Overall, for both approaches, the ac-
curacy is high and the prediction is relatively quick, allowing for a large
number of outputs to be generated during the training process. This is
partially linked to the large volume of data collected (>30,000 data
points). This ensures that the model is robust enough so that when it is
tested on unseen data the surrogate model is highly accurate, leading to
only a slight drop off with respect to the R For all outputs, the R? was
calculated and plotted (Fig. 10). As shown in Fig. 10, across all 5 out-
puts, R? is high with no significant deviations.

3.2. Global sensitivity analysis evaluation of each approach

3.2.1. Sobol approach

For the Sobol approach with an initial sample size of 1,024, the first-
order sensitivities (Fig. 11) show good agreement between both the ANN
and RF, achieving similar total order sensitivities across each output. As
shown in Fig. 11, the first-order sensitivities show that the CaO/NG ratio
significantly influences all the outputs, particularly influencing the pu-
rities of CO5 and Hj as well as the carbon capture efficiency. This is
because of the role of CaO within the reformer, which is the removal of
CO, through R4. This improves the purity of hydrogen, subsequently
enhancing the production efficiency of hydrogen by shifting R3 to the
right, which is confirmed by considering the impact the CaO/NG ratio
on the system. The reformer temperature and pressure have small
contribution to the outputs of the system with the calciner temperature
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having little to no impact on the outputs. Through the Sobol approach,
the second order sensitivities are calculated to assess interaction effects
between parameters, these are shown in Fig. 12a-b.

As seen in Fig. 12a-b, there is interaction between different inputs.
For example, there is a significant interaction between the reformer
temperature and the CaO/NG ratio regarding the CO5 purity. The Sobol
approach provides both first- and second-order interaction effects.
Although this provides a valuable method to assess input parameters, it
still does not explain how an input impacts an output, only that inter-
action occurs between an input and an output; for example, the CaO/NG
and reformer temperature show interactions that impact the CO5 purity;
however, there is no assessment of the value of these inputs and its
impact on the output.

The sample size was varied for both models to assess the variation of
the Sobol indices, that is calculated based on the sample size
(Fig. 13a-b). Variation of the sample size shows that a lower sample size
results in deviations in the calculated first-order sensitivity compared to
the results from larger sample sizes, which maintain relatively consistent
results once a sample size of 1,024 is reached. The smaller sample sizes
do show an improved speed in calculating the Sobol first-order sensi-
tivities. It is, however, important to ensure that the ranking of the input
features in order of importance is not significantly altered. As shown in
Fig. 13a, the operating parameters: reformer temperature and pressure,
when at lower sample sizes are shown to switch in the order of impor-
tance on the CHy4 conversion KPI. However, both factors have no sig-
nificant impact on the CH4 conversion, and therefore, they are not
considered significant factors. Overall, the Sobol approach provides a
valuable method for assessing the input’s first- and second-order sensi-
tivities on each output; however, further analysis is required to deter-
mine how a value impacts the output.
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3.2.2. RBD-FAST approach

Similarly to the Sobol approach, RBD-FAST approach assesses the
contribution of an input to an output by the variance. As shown in
Fig. 14, the sensitivity values for each input’s impact on each output are
displayed across both models. Fig. 14 shows a similar result to the first-
order sensitivities calculated by the Sobol approach, highlighting the
key influence of the CaO/NG across each output. The S/NG ratio also
plays a key role in the CH4 conversion, Hy purity, and cold gas effi-
ciencies. The robustness of the RBD-FAST was also assessed (Fig. 15a-b).
Across both models, the RBD-FAST approach exhibits a similar sensi-
tivity index for each input’s impact on the output across all sampling
sizes, thereby highlighting the robustness of this approach. However, the
RBD-FAST approach, unlike the Sobol approach, does not provide a
breakdown of the second-order sensitivities. Hence, there is only an
understanding that interaction effects occur through the total order
sensitivities, but not how these inputs interact with one another. This
means it is helpful for an initial assessment of the system; however,
further analysis of the system is required to gain an understanding of
interaction and non-linear effects.

3.2.3. Morris approach

Morris approach provides two key outputs when assessing the model,
which indicate the importance of a model input and its impact on pre-
dicting an output. The other output from the Morris method is the
variance, which provides insight into how a parameter’s effect varies
over time. A high value indicates that the parameter’s effect varies
significantly, suggesting that the output is non-linear, or there is an
interaction between them. Fig. 16a-b shows the y; vs o; across both the
ANN (Fig. 16a) and the RF (Fig. 16b). As shown in Fig. 16a-b, the CaO/
NG ratio is highly influential, suggesting that there are non-linear
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ANN Surrogate Model Ranking of CaO/Natur Temperature Steam/Nat Temperature
Inputs Ermesauss algas Reformer ural gas Calciner
H, Purity Sobol 4 S
H Purity RBD-FAST 4 5
H; Purity Delta 4 5
H, Purity Morris 4 5
CH,4 Conversion Sobol 4 5
CH,4Conversion RBD-FAST 4 5
CH4Conversion Delta 4 5
CH,4 Conversion Morris 4 5
Cold gas efficiency Sobol 4 5
Cold gas efficiency RBD-FAST 4 5
Cold gas efficiency Delta 4 5
Cold gas efficiency Morris 4 5
CO; capture efficiency Sobol 4 5
CO; capture efficiency RBD-FAST 4 5
CO; capture efficiency Delta 4 5
CO; Capture Rate Morris 4 5
CO; Purity Sobol 4 5
CO; Purity RBD-FAST 4 5
CO,Purity Delta 4 5
CO2 Purity Morris 4 5

Fig. 23. Ranking of first-order sensitivity across each approach. a) ANN. b) RF.

impacts on the outputs or the presence of interaction between the other
parameters.

Furthermore, it is interesting to note that regarding CH4 conversion
and Cold gas efficiency, the Morris approach shows that the S/NG ratio
has a higher 4 than the CaO/NG ratio, suggesting that the S/NG has a
greater influence on these outputs (and not the CaO/NG). This differs
from the variance-based approaches (Sobol and RBD-FAST) which sug-
gests the opposite based on the calculated first-order sensitivities shown
in Figs. 11 and 14 for the Sobol and RBD-FAST approaches respectively.
This variation in the ranking of feature importance across different GSA
approaches is important to consider, as incorrect statements about the
influence of input factors can potentially be made based on this analysis.
Although Morris approach, through the 6;, accounts for both non-linear
and interaction effects between different inputs, it is unable to differ-
entiate between the two, indicating the limitation of this approach. Even
though it helps to screen variables and initial assessments, a more
detailed analysis (e.g. Sobol) is required to quantify the second-order
sensitivities.

Based on the variability of the feature’s importance, the robustness of
this approach is extremely important to assess the impact of sample size
on y;. This is illustrated in Fig. 17a-b for the ANN (Fig. 17a) and RF
(Fig. 17b). Variation is seen across both models as the sample size is
varied. This is more pronounced for smaller sample sizes. This can
suggest that the ranking of the features may vary across different sample
sizes.
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3.2.4. Delta approach

The delta approach reveals deviations in the importance of features
compared to other approaches, as illustrated in Fig. 18. The steam-to-
natural gas ratio has the most significant impact on CH4 conversion
and cold-gas efficiency. In contrast, Sobol and RBD-FAST suggest that
the CaO-to-NG ratio has the most significant impact. These deviations
are dependent on various factors and will be discussed in greater detail
in Section 3.3.

3.2.5. Random forest feature importance

The use of features importance within the RF model provides a useful
initial evaluation of RF inputs and the associated impact on the output.
As shown in Fig. 19, the importance is not too dissimilar from the other
approaches, indicating that CaO/NG has a greater impact on all the
outputs within this process. However, similar to RBD-FAST and Delta, it
only provides first-order effects. Like Morris, it is a valuable screening
tool, but beyond that, it is unable to extract further information from the
system.

3.2.6. SHAP approach

The SHAP approach provides a comprehensive method to assessing
the inputs’ features and the impacts on the outputs. As shown in Fig. 20,
the Beeswarm plot not only shows the impact of an input (the range of
each input) on the output but also how the value of an input (the colour
of each point) affects the output. As illustrated in Fig. 20, the CaO/NG
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Fig. 23. (continued).

ratio has the greatest impact on each of the output. Specifically, when
the CaO/NG is lower, the output value is significantly reduced. Whereas
at higher CaO/NG ratios, other factors also play a role in the output
value. The SHAP approach provides an increased understanding of the
system through this added dimension of the value of the input and the
impact on the output; however, this comes with an increased compu-
tational cost; using a sample size of 500, the time taken to calculate the
SHAP values was 384 s, which is significantly higher than the other
approaches discussed in this work.

The SHAP analysis provides further insights into the ANN model
through the SHAP dependence plots. Based on the previous analysis
using the Sobol and Morris methods, there are interaction effects be-
tween inputs throughout the process. As shown in Fig. 12a, there is
second-order interactions effects between the reformer temperature and
the CaO/NG ratio that influence CO; purity, utilising the SHAP depen-
dence plots, allows for further evaluation of these interaction effects as
demonstrated in Fig. 21. As shown in Fig. 21, at lower CaO/NG ratios,
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the reformer temperature has a significant impact on the SHAP value.
Increasing the reformer temperature significantly increases the SHAP
value at lower CaO/NG ratios; however, as the CaO/NG ratio increases,
this effect levels off, and varying the reformer temperature has a mini-
mal impact on the SHAP value. Although at higher CaO/NG ratios,
reducing the reformer temperature does increase the SHAP value of the
CaO/NG, this effect is not significant, as it has a far greater impact at
lower CaO/NG ratios. This is due to R4 being an exothermic reaction;
once there is enough CaO to remove the CO; from the system, lower
temperatures are preferred.

For local sensitivity analysis, the SHAP approach provides a break-
down of how a value of the input contributes to a specific output
(Fig. 22). Fig. 22 provides a breakdown of each input contribution to the
value, showing that the temperature of the reformer and the CaO/CHy4
ratio have a significant positive influence. The SHAP approach can
provide a comprehensive assessment of the ML model by determining
the SHAP value. It can determine how an input impacts the output
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within this ML model development. This approach can provide a valu-
able means for predictive maintenance by quantifying the impact of
each input on the output value. The key drawback of this approach for
calculating SHAP values is its computational intensity, especially with
large datasets, as calculating the SHAP value is computationally slow.

3.3. Comparative assessment of the global-sensitivity analysis approaches

The rankings of each input parameter, indicating their importance in
calculating the output, are shown in Fig. 23a-b for both the ANN and RF
models, respectively. The variance-based methods demonstrate a similar
importance of each feature across all outputs. In contrast, the Morris and
Delta approaches exhibit some variation between specific outputs,
typically when the impacts of each input are of comparable values. This
variation depends on several factors; for example, the Sobol approach is
a variance-based method, whereas the Morris method is derivative-
based. These methods will effectively ascertain different aspects of
sensitivity, potentially leading to different rankings. Furthermore, the
sampling method used in a high-dimensional space may influence the
rankings of these approaches. The Morris approach employs a
trajectory-based sampling method, which may lead to under-sampling in
high-dimensional spaces [45].

As shown in Figs. 13, 15 and 17 varying the sample size reveals
variation in the calculated sensitivity index. However, with a sample
size of more than 1,024 across all approaches, the sensitivity value re-
mains consistent. The sample size is a crucial factor to consider when
determining the time required to calculate the sensitivity index. The
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sample size used to calculate the sensitivity index was varied from 27 to
213, and the time required for the sensitivity index to execute was
evaluated for both surrogate models. Fig. 24 shows the results for both
the ANN and RF. As shown in Fig. 24, it appears that Delta is compu-
tationally extremely slow for both approaches; however, when com-
bined with RF, it becomes especially sluggish. Across both surrogate
models, the Morris approach is relatively rapid across all sample sizes,
with the Sobol also demonstrating good computational efficiency across
all sample sizes. For the Sobol and Morris methods with RF and ANN,
there is little difference between the two, with the ANN being slightly
faster. This is most likely because the optimised ANN has 50 neurons. In
contrast, the optimised RF has 100 trees with no maximum tree depth,
which explains why across these sample sizes, the execution speed of the
model was slightly slower for the RF approach. Both the Sobol and
Morris approaches exhibit excellent computational speed. When Sobol is
applied with a large sample size (>1,024), the robustness for the first-
order sensitivities remains consistent.

Overall, this is a clear indication that the SHAP approach provides
increased interpretability, showcasing not only whether an input has a
significant impact on the output value but also how the value of an input
affects the output, providing a comprehensive assessment of the surro-
gate model regarding how an input influences the output. This comes at
the cost of speed, taking a considerable amount of time to fully execute.
Reducing the sample size can improve speed; however, ensuring that the
developed surrogate model maintains high accuracy is essential to
guarantee that the SHAP values are reliable. Further methods can be
implemented to improve the efficiency. For example, recent work by
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Fig. 25. Univariate analysis of CaO/NG ratio on each KPIL.

Ranjbaran et al. (2025) combined K-means clustering with the SHAP
approach which reduced the computational time to execute from 400 s
to 0.29 s [47]. This approach can provide interpretability whilst
ensuring it is still computationally efficient. To ensure computational
speed while still providing interpretability, the Sobol and Morris ap-
proaches are capable of calculating both first- and second-order effects
(although the Morris cannot differentiate between second-order and
non-linear interactions). While the RBD-FAST method is computation-
ally efficient, it cannot extend beyond first-order effects, and the Delta
approach is also slow and does not progress past first-order effects.
Consequently, the combined robustness is not particularly strong. Often,
within the literature, feature importance from the RF package is used
due to its simplicity and ease in determining the importance of each
feature for each output. Although it offers a straightforward method,
similar to the Delta approach, it is unable to surpass first-order effects.

Ensuring a large sample size (>1,024) guarantees that the sensitivity
values will not vary significantly, with both the RBD-FAST and Morris
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approaches demonstrating excellent consistency in the sensitivity index
value. The Morris approach calculates the p* and ¢ indices at signifi-
cantly faster speeds than the other approaches. The Sobol approach,
similar to the Morris approach, can also compute these values swiftly at
large sample sizes. The SHAP approach enhances interpretability by
illustrating how each input value affects the output. This approach is
beneficial for local-sensitivity analysis, as shown in Fig. 22 through the
force-plot which for individual output values, it is able to determine how
each input contributes to predicting the output. This can be particularly
useful when assessing outliers to establish how the inputs affect the
output and which factors within those inputs lead to the output value.
This application is highly relevant in research areas such as predictive
maintenance [48].

As shown across each approach the CaO/NG ratio influences each of
the KPIs significantly by removing the CO, in-situ it provides two key
advantages: the removal of COy ensuring higher CCE and CO» purity,
and removing CO2 means that the reforming reaction shifts to the right
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to produce more hydrogen improving the CH4 conversion, cold-gas ef-
ficiency and Hy purity. higher CaO/NG ratios ensures a higher CCE as
well as CGE and Hj purity, as it is such a significant influence across all
KPIs a univariate analysis was done to assess each output metric indi-
vidually which is shown in Fig. 25.Fig. 25 further highlights what the
SHAP analysis shows extremely low values of the CaO/NG ratio (<0.5)
significantly lowers the performance of the process across all KPIs above
this ratio the performance of these KPIs is improved although the vari-
ation within these values still shows that other factors within the process
such as the S/C and unit operators operating parameters such as tem-
perature and pressure of the reformer play a role within ensuring the
KPIs are optimised. To ensure a CCE above 75 % a CaO/NG ratio of 1.00
is required but again other factors play a role to maintain that high CCE
otherwise it can be significantly reduced.

4. Challenges and limitations

Using RF and ANN as a preliminary step for global sensitivity anal-
ysis can be effective, provided it is done with careful attention to model
validation, interpretability, and integration with traditional GSA
methods. In this work, a comprehensive assessment of various GSA ap-
proaches has been carried out. Although significant progress has been
made in developing a thorough evaluation of these GSA methods and
integration with ML techniques, key challenges persist in this area of
research, particularly regarding the enhanced interpretability of surro-
gate ML models for blue hydrogen production. Further work must be
undertaken on the entire system, such as the CLC system and PSA, to
examine how these systems impact the KPIs described. This, in turn,
increases the complexity of surrogate modelling, which may affect both
the computational efficiency and the accuracy of the model.

The expansion of the dataset to include variations in the feed-gas
composition and activity of the catalyst is key to further assess these
parameters and their influence on the output, e.g. by incorporating ki-
netic data such as catalyst activity and its impact on the KPIs within this
work. In this work, we have highlighted how developing a surrogate ML
model can enhance the speed of the modelling. Future work should focus
on the introduction of additional operating parameters such as feed gas
composition and kinetic parameters, in order to paint a more compre-
hensive picture of the process.

Limitation of this current work is that this data-driven model is
trained on first-principle datasets, which is based on a steady state
thermodynamic process model; it does not include kinetic parameters or
dynamic-specific elements. This absence of additional parameters in the
process means that when developing a data-driven approach, trained on
a first-principle model, the full complexity of the system is not captured.
The recent advancement of neural network architectures, such as
transformers, allows for dynamic processes to be modelled with great
accuracy and has proven effective for optimisation in dynamic pro-
cesses, including adsorption-based processes such as PSA for Hj purifi-
cation ([49-51]). If this approach would to be extended for such
dynamic scenarios (e.g. reduction in performance of the CaO over
multiple cycles), further operational parameter must be included to
assess how the behaviour of the system shapes over time.

The development of neural network architecture has led to the cre-
ation of physics-informed neural networks (PINNs) for modelling unit
operations and processes in environments with low data availability,
with increasing popularity ([52,53]). Integrating with PINNs using GSA
approaches would help in understanding the key input factors driving
this process, potentially reducing the dimensions of the data-driven
model output while still capturing the key factors that drive the process.

The enhanced use of SHAP can be an important tool in science and
engineering. It provides increased knowledge of the surrogate model
system by offering a comprehensive toolkit capable of assessing the
model, determining how an input value impacts the output, as well as
examining interaction factors through the SHAP dependence plot and
individual inputs via the LSA function. However, in this work, this has
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solely been employed to evaluate feature impacts since the SHAP-based
approach can break down how an input value affects the output. Once
the SHAP values are calculated, they could be integrated with optimi-
sation methods to guide the solver towards solutions. Although the
computational efficiency of the SHAP approach is a key concern,
incorporating the SHAP approach with efficient sampling methods has
shown to improve the computational efficiency. Further investigation
into the effects of sampling and its impact on accuracy is necessary to
determine the applicability of the SHAP approach and its suitability for
applications within process control, predictive maintenance, and real-
time optimisation.

5. Conclusions

In this work, various GSA and LSA approaches were integrated with
ML surrogate models trained on data collected from a first-principle SE-
SMR-CLC process model. The development of surrogate ML models for
predicting key performance indicators in the SE-SMR-CLC process
demonstrates that, with a large number of data points, both the ANN and
RF can exhibit high predictive accuracy - even within the test set. This
highlights the model’s generalisability. A comparison of different GSA
approaches reveals that the CaO/NG ratio has the most significant
impact on the key performance indicators (i.e. CH4 conversion, CCE,
CGE, CO; purity and Hj purity), emphasising that this intensification
method not only provides a means to capture CO5 but also enhances the
performance of the hydrogen production system. This impact is due to
the removal of CO5 in-situ within the reformer; this shifts the thermo-
dynamic equilibrium so that more hydrogen is produced whilst simul-
taneously capturing CO2 from the system. This combined approach
harnesses the benefits of both ML and classical sensitivity analysis, of-
fering a robust foundation for understanding and enhancing complex
systems such as blue hydrogen production. Integrating GSA with ML
provides interpretability to surrogate models developed through ML
techniques, such as ANN and RF. Depending on the GSA approach, they
can ascertain a range of impacts on the system, including both first-order
and second-order effects. In particular, the Sobol approach can compute
both first- and second-order effects with a large sample size in less than
1 s. The SHAP approach to assessing feature importance provides a
method that enables not only the determination of whether an input
affects an output, but also the value of an input and its influence on the
output.

Future work will further expand implement this approach on systems
with greater complexity (kinetic and dynamic considerations), as well as
implementing strategies to improve the computational efficiency of the
SHAP approach. This work has shown that the integration of surrogate
models with GSA in the modelling of chemical processes can enhance
computational efficiency, provided that the appropriate GSA approach
is selected. As more data is generated, effectively utilising this to
improve the modelling and development of low-carbon processes is
crucial to accelerating the development and deployment speed of these
processes, enabling a net-zero future.
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