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The Boundary Element Method (BEM) is a powerful method for simulating scattering of 

acoustic waves which has many advantages, particularly when the problem concerns an ob-

ject in an unbounded medium. Its applications are however limited in practice because 

standard schemes have a computational cost which grows extremely quickly as size and fre-

quency is increased. Fundamentally this occurs because the number of degrees of freedom 𝑁 

required to discretise the boundary with elements that are small with respect to wavelength 

increases with frequency, scaling 𝑂(𝑓2) in 3D or 𝑂(𝑓) in 2D. BEM produces dense matrices 

relating these elements, resulting in 𝑂(𝑁2) computation and storage costs, so 𝑂(𝑓4) in 3D 

or 𝑂(𝑓2) in 2D. Accelerated BEM algorithms such as the Fast Multipole Method can reduce 

this dependency on 𝑁 to 𝑂(𝑁) for small 𝑓 and 𝑂(𝑁 log 𝑁) for larger 𝑓, but the trend of in-

creasing cost with frequency due to the scaling of 𝑁 with 𝑓 remains. An alternative strategy 

toward remedying this is to design discretisation schemes which do not require more degrees 

of freedom at higher frequencies. This is the approach adopted by the so called ‘High fre-

quency BEM’ (HF-BEM) algorithms, such as Partition-of-Unity BEM (PU-BEM) and Hy-

brid Numerical Asymptotic BEM (HNA-BEM). These typically represent the pressure on the 

boundary using basis functions which are products of suitably chosen oscillatory functions, 

multiplied with standard piecewise-polynomial interpolators defined on a coarse, frequency-

independent mesh. Such approaches have been shown to achieve significant savings, for ex-

ample reducing the number of degrees of freedom required to 𝑂(log 𝑓) for polygonal obsta-

cles in 2D. This paper will give an overview of these methods and will demonstrate a new 

HNA-BEM algorithm for the modelling of rectangular plates in 3D. 

 

1. Introduction 

In numerical schemes for solving wave scattering problems it is commonplace to approximate 

the solution on the surface of the obstacle as a weighted sum of basis functions which are chosen to 
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be piecewise polynomials. This approach is effective and widely applied, however suffers from the 

restriction that the number of degrees of freedom required to represent the oscillating solution must 

grow at least linearly in each direction as frequency increases in order to maintain accuracy. Thus a 

standard Boundary Element Method (BEM) for a 3D scattering problem, reduced to an integral 

equation on the 2D surface bounding the scattering domain, would require at least quadratic growth 

in the number of degrees of freedom with frequency. Various schemes exist for solving the resulting 

system of simultaneous equations; however the computation and storage costs of these must at least 

grow with this trend. 

To mitigate this, there has been much recent interest in the development of ‘high-frequency’ 

BEM algorithms. These attempt to give improved performance at high frequencies by choosing 

basis functions which have the oscillatory behaviour similar to that which the solution is expected 

to possess; a common choice is plane waves with the same wavelength as the acoustic waves in the 

medium, multiplied by standard piecewise polynomial functions defined on a coarse mesh which is 

independent of frequency. The intention here is that the plane waves will efficiently represent the 

(often largely predictable) oscillation in the surface quantities, leaving the polynomial functions to 

interpolate the envelope of these oscillations, a quantity which should be slowly varying with re-

spect to wavelength. The question then becomes how to choose the number of these plane waves 

and the directions in which they propagate, and two dominant strategies exist for this. 

A straightforward strategy would be to choose the plane wave directions to be uniformly spaced 

in angle; this is what is adopted in the Partition-of-Unity BEM
1
 (PU-BEM). The result of this is an 

algorithm which can be readily applied and which can achieve engineering accuracy of around 1% 

error with 2-3 degrees of freedom per wavelength, a significant saving compared the 8-10 degrees 

of freedom per wavelength required to achieve this accuracy with standard piecewise polynomial 

based schemes. However this is only a fixed saving and the cost with respect to frequency still 

scales the same as standard BEM. 

An alternative strategy is to choose the plane wave directions to match leading-order behaviour 

known to be dominant in the high frequency (asymptotic) solution. This is the approach used in the 

Hybrid-Numerical-Asymptotic BEM
2
 (HNA-BEM), so called because the asymptotic behaviour has 

been incorporated into the numerical approximation space (i.e. the set of basis functions), thus the 

algorithm is a hybrid of these two approaches. This has been proven to be extremely efficient for 

obstacle geometries where the asymptotic behaviour is known, and can break the dependency of 𝑁 

on 𝑓 ; for example convex polygonal obstacles may be accurately modelled in 2D using only 

𝑂(log 𝑓) degrees of freedom
3
, a significant saving compared to the 𝑂(𝑓) requirement by standard 

methods. To date however, the requirement that the asymptotic behaviour is well understood has 

restricted these ideas mostly to 2D scattering problems (one notable exception being Ref. 4 where 

the problem of scattering by smooth convex 3D obstacles was considered). 

Here, we describe a HNA-BEM algorithm for the problem of scattering by a planar rectangular 

screen in 3D. The equivalent 2D problem was studied in Ref. 5, where a complete numerical analy-

sis proved that accuracy could be maintained with 𝑁 growing as 𝑂(log 𝑓) and numerical results 

suggested that accuracy could be maintained with no growth in 𝑁 at all. Due to the added complexi-

ty induced by multiple redirections from the edges and corners of the screen in 3D, the extension of 

these ideas to 3D is highly nontrivial. We are though able to demonstrate, via numerical results, that 

by incorporating some of the oscillatory behaviour away from the edges of the screen into our ap-

proximation space, we can achieve reasonable accuracy for a range of frequencies using only a 

small number of degrees of freedom, this number crucially independent of frequency. 

2. Problem Statement 

We consider the 3D problem of scattering of the time harmonic incident plane wave 𝑃𝑖(𝐱)  =
𝑒i𝑘𝐱∙𝐝𝑖, where 𝑘 = 2𝜋𝑓 𝑐⁄  >  0 is the wavenumber,  𝐱 is a point in 3D Cartesian space and 𝐝𝑖 is a 
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unit direction vector, by a sound soft planar screen. This is denoted by Γ and is chosen to lie in the 

𝑧 = 0 plane with normal vector 𝐧̂ = 𝐳̂ and to be square, with all sides of length 2𝜋 meters. 

The boundary value problem (BVP) we wish to solve is: given the incident pressure field 𝑃𝑖(𝐱), 

determine the total pressure field 𝑃𝑡(𝐱) such that ∇2𝑃𝑡(𝐱) + 𝑘2𝑃𝑡(𝐱) = 0 for 𝐱 ∉ Γ and 𝑃𝑡(𝐱) = 0 

for 𝐱 ∈ Γ, and that the scattered pressure 𝑃𝑠 = 𝑃𝑡 − 𝑃𝑖 satisfies the Sommerfeld radiation condition. 

The solution 𝑃𝑡(𝐱) may be expressed as a boundary integral over Γ: 

(1) 𝑃𝑡(𝐱) = 𝑃𝑖(𝐱) − ∬ 𝐺(𝐱, 𝐲)𝜙(𝐲)𝑑𝐲

𝑆

. 

Here 𝐺(𝐱, 𝐲) = 𝑒i𝑘𝑅 4𝜋𝑅⁄ , where 𝑅 = |𝐱 − 𝐲| , is the free-space Green’s function. It can be 

shown that the unknown surface quantity 𝜙(𝐲) corresponds physically to the jump in the surface 

normal derivative of 𝑃𝑡 (i.e. in 𝜕𝑃𝑡 𝜕𝑛⁄ = 𝐧̂ ∙ ∇𝑃𝑡) from one side of the screen to the other. Taking 𝐱 

to lie on the screen and using the boundary condition 𝑃𝑡(𝐱) = 0 for 𝐱 ∈ Γ allows 𝜙(𝐲) to be found 

by solving the boundary integral equation (see e.g. Ref. 2 Section 7.6): 

(2) 𝑃𝑖(𝐱) = 𝒮𝑘{𝜙}(𝐱) = ∬ 𝐺(𝐱, 𝐲)𝜙(𝐲)𝑑𝐲

𝑆

,    𝐱 ∈ Γ. 

2.1 Equivalence with an aperture in a rigid screen 

We acknowledge that the BVP we have chosen to solve is one without a clear physical manifes-

tation in acoustics; a thin plate which is rigid is a common occurrence but a thin obstacle with a 

pressure-release boundary condition is not. We have chosen to initially address this problem primar-

ily because it allows more flexible choices of discretisation scheme compared to the rigid plate, 

where the requirement for 𝐶1,𝛼 continuity in the solution
6
 (arising from the use of a hyper-singular 

integral operator) places additional restrictions on the basis functions. 

We would however like to emphasise that the chosen problem is equivalent to a problem which 

is realisable in acoustics following Babinet’s principle. This is the problem of an aperture in an infi-

nite rigid planar screen (sometimes called a ‘breakwater’ problem); it is analysed in detail in Ref. 5. 

Two equivalent cases are depicted in Fig. 1 (note these are shown for illustrative purposes and are 

actually computed using the 2D screen algorithm described in Ref. 5, not the algorithm described 

herein). Specifically, if 𝑃𝑟 is the reflection of 𝑃𝑖 in the infinite rigid planar screen (without the aper-

ture), then the total pressure 𝑃𝑡
′ in the aperture problem in Fig. 1b is 𝑃𝑡

′ = 𝑃𝑖 + 𝑃𝑟 − 𝑃𝑠 for 𝐱 above 

the screen, and 𝑃𝑡
′ = −𝑃𝑠 for 𝐱 below the screen. Hence the results for the equivalent aperture prob-

lem may be easily calculated by an additional step with a cost which is independent of frequency. 

 

 

Figure 1: Total pressure 𝑷𝒕, with 𝒌 = 𝟏𝟎 and 𝐝𝒊 as indicated, for the equivalent problems of:  

a) a sound soft screen; b) an aperture in an infinite rigid screen. 

a) b) 

𝐝𝑖  𝐝𝑖  
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3. HNA-BEM scheme 

3.1 Approximation Space 

The key idea of our approach is to construct a bespoke approximation space with which to nu-

merically solve Eq. 2. In particular we wish to incorporate into it the known high frequency asymp-

totic behaviour of the solution. Specifically, we express 𝜙(𝐲) for 𝐲 ∈ Γ as: 

(3) 𝜙(𝐲) = 𝜙𝐾𝐴(𝐲) + 𝜓(𝐲). 

Here 𝜙𝐾𝐴(𝐲) = −2 sign(𝐧̂ ∙ 𝐝𝑖) 𝜕𝑃𝑖 𝜕𝑛⁄ (𝐲)  is the Kirchhoff approximation to the jump in 

𝜕𝑃𝑡 𝜕𝑛⁄  across the screen (i.e. the value 𝜑 would take if the screen filled the entire plane 𝑧 = 0). 

This has been deliberately separated since it gives the complete solution as 𝑘 → ∞. It follows that 

the residual quantity 𝜓(𝐲) will become less significant as 𝑘 increases, and it is this that we will ap-

proximate numerically. 

It is well known that the jump in 𝜕𝑃𝑡 𝜕𝑛⁄  across a sound-soft screen contains a 1 √𝑑⁄  singularity, 

where 𝑑 is the shortest distance from a point on the screen to a point on its edge. An efficient (non 

HNA-BEM) integral equation method for scattering by screens has recently been proposed
7
 which 

builds this behaviour into its boundary integral operators, however we will address the edge singu-

larities by using a graded mesh of standard piecewise polynomial elements to approximate 𝜓(𝐲) 

within one tenth of a wavelength of the edge of the screen. Despite a standard approximation 

scheme being used here, the number of degrees of freedom it contains scales just 𝑂(𝑓) since the 

width of this mesh (perpendicular to the edge) is inversely proportional to frequency. 

Away from the edges of the screen we approximate 𝜓(𝐲) by a weighted sum of oscillatory func-

tions multiplied by piecewise polynomial functions 𝑉𝑛(𝐲), which are defined on a coarse mesh of 

nine elements which are large with respect to wavelength (see Fig. 2). As discussed in section 1, we 

will choose our oscillatory functions to be plane waves propagating in predefined directions speci-

fied by unit vectors 𝐝𝑚. The entire statement for 𝜓 is as follows, where 𝜓𝑁 is the numerical approx-

imation to 𝜓 and 𝑤𝑚,𝑛 are the unknown scalar weights: 

(4) 𝜓(𝐲) ≈ 𝜓𝑁(𝐲) = ∑ 𝑒i𝑘𝐲∙𝐝𝑚 ∑ 𝑤𝑚,𝑛𝑉𝑛(𝐲)

𝑁

𝑛=1

𝑀

𝑚=1

. 

 

 

Figure 2: Discretisation scheme on the screen, showing the incident wave direction (𝐝𝒊), the leading 

order diffraction directions on the screen (𝐝𝟏, 𝐝𝟐, 𝐝𝟑, 𝐝𝟒), the graded mesh of standard elements 

around the rim of the plate and the coarse mesh of hybrid elements in the middle 

Leading edge 

Back edge 𝐝𝑖  

𝐝𝑖  𝐝𝑖  

𝐝𝑖  

𝐝1 

𝐝2 

𝐝3 

𝐝4 
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The goal is to choose set of direction vectors 𝐝𝑚 in such a way that the envelope which the 

piecewise polynomial functions 𝑉𝑛 are required to interpolate is (relatively) non-oscillatory. For the 

equivalent 2D problem (see Ref. 7) it is sufficient to take 𝑀 = 2, in which the two corresponding 

envelope functions are provably non-oscillatory (i.e. all of the oscillations are captured completely 

by two phase functions). For the 3D problem this is not the case, since the waves directed by the 

edges and corners of the screen are re-reflected infinitely often by the other edges and corners of the 

screen, taking a different direction of travel after each redirection. However, it turns out that with a 

judicious choice of 𝐝𝑚 in Eq. 4 we can represent 𝜓(𝐲) to a reasonable degree of accuracy (away 

from the edges of the screen where the solution is singular) using only a small value of 𝑁. Specifi-

cally, we choose 𝑀 = 4, and 𝐝𝑚 to be the directions of the first-order diffracted rays predicted by 

the Geometrical Theory of Diffraction (see Ref. 5 section 7.6 for details, also depicted graphically 

in Fig. 2 herein), with one such wave associated with each of the four edges of the screen. Numeri-

cal results in section 7.6 of Ref. 5 (in which a number of candidate phase functions were used in a 

“best fit" approximation to a reference result for 𝜙) suggest that this choice offers a good balance 

between accuracy and efficiency. 

3.2 Galerkin Scheme 

We use a Galerkin approach to compute a discrete version of Eq. 2. This requires additional nu-

merical integration but is more appropriate for oscillatory basis functions since they have no inher-

ent zeroes at which to place collocation points. Defining 𝑏𝑚,𝑛(𝐲) = 𝑒i𝑘𝐲∙𝐝𝑚𝑉𝑛(𝐲), we seek to find 

the weights 𝑤𝑚,𝑛 such that the following holds for all 𝑚′ from 1 to 𝑀 and all 𝑛′ from 1 to 𝑁: 

(4) 〈𝒮𝑘{𝜓𝑁}, 𝑏𝑚′,𝑛′〉Γ = 〈𝑃𝑖 − 𝒮𝑘{𝜙𝐾𝐴}, 𝑏𝑚′,𝑛′〉Γ 

Here the angled brackets denote an 𝐿2 inner product computed over Γ. Use of this leads to our 

piecewise polynomial functions being chosen to be tensor products of scaled Legendre polynomials 

in 𝑥 and 𝑦, since these are orthogonal with respect to this norm. 

4. Numerical Results 

We now present numerical results for the solution of Eq. 4 with 𝐝𝑖 = (1 √2⁄ , 0, 1 √2⁄ ). We in-

vestigate this using piecewise polynomials with maximum order 𝑝 = 0, 1, 2, giving 1, 4, 9 polyno-

mials respectively on each coarse element, and four plane wave directions. For 𝑝 = 0 we have 4 

degrees of freedom per coarse element, rising to 16 degrees of freedom per coarse element for 

𝑝 =  1 and 36 degrees of freedom per coarse element for 𝑝 =  2. With nine coarse elements alto-

gether, we then have, for 𝑝 = 0, 1, 2, respectively 36, 144, and 324 total degrees of freedom on the 

central part of the screen (i.e. the whole screen except for the band within a tenth of a wavelength of 

the edge), and we keep these values unchanged for the different values of 𝑘 tested. Note that this 

central part of the screen covers 𝑘 − 0.2 wavelengths in each direction, so a standard scheme re-

quiring, say, 10 degrees of freedom per wavelength, might require of the order of 100(𝑘 − 0.2)2 

degrees of freedom on this region in order to represent the solution to “engineering accuracy”. In 

Fig. 3 we plot on a logarithmic scale the relative 𝐿2 error in 𝜑 on this central section, versus 𝑘, for 

𝑝 = 0, 1, 2, demonstrating that we can achieve a reasonable level of accuracy using this approach 

with a very small number of degrees of freedom compared to standard methods.  
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Figure 3: Convergence results for 𝝓 compared to a reference result 𝝓ref.  

Vertical axis is the 𝑳𝟐 norm of the error 𝝓 − 𝝓ref normalised by the 𝑳𝟐 norm of 𝝓ref. 

 

5. Conclusions 

A Hybrid-Numerical-Asymptotic Boundary Element Method scheme has been presented for the 

problem of computing acoustic scattering from a sound soft screen. This utilised a coarse mesh of 

hybrid elements in the middle of the screen, with a number of degrees of freedom which is inde-

pendent of frequency, and a narrow graded mesh around the edge of the screen, for which the num-

ber of degrees of freedom scales linearly with frequency. Error on the centre section was seen to be 

reasonably small and fairly independent of frequency, despite using a very small number of degrees 

of freedom compared to standard methods. 
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