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Abstract

Re�ned asymptotic methods are used to produce degrees-of-freedom-

adjusted Edgeworth and Cornish-Fisher size corrections of the t and F

testing procedures for the parameters of a S.U.R. model with serially

correlated errors. The corrected tests follow the Student-t and F distri-

butions, respectively, with an approximation error of order O(τ3), where

τ = 1/
√
T and T is the number of time observations. Monte Carlo sim-

ulations provide evidence that the size corrections suggested hereby have

better �nite sample properties, compared to the asymptotic testing pro-

cedures (either standard or Edgeworth corrected), which do not adjust for

the degrees of freedom.
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1 Introduction

The use of re�ned asymptotic techniques can considerably improve the �nite-

sample performance of testing procedures in applied econometric research (see,

e.g., Ullah (2004), for a survey). These techniques involve the use of Edge-

worth expansions which e�ectively provide higher-order asymptotic approxima-

tions of the �nite-sample distributions of well known econometric test statistics

(see Magdalinos and Symeonides (1995), Magee (1985), Rothenberg (1984b),

Symeonides et al. (2007), inter alia). In �nite samples, there are considerable

discrepancies between the actual (sample) and nominal size of many standard

testing procedures, employed in econometric literature. These discrepancies are

found to be very severe, especially for the generalized linear regression model

with a non-scalar covariance matrix of the error terms estimated by the feasible

generalized least squares (FGLS), or maximum likelihood (see, e.g., Kiviet and

Phillips (1996), Ullah (2004)).

Despite the substantial amount of work on re�ned asymptotic bias expan-

sions of alternative estimators for the linear regression model or simultane-

ous equations systems (see, e.g., Iglesias and Phillips (2010, 2012), Kiviet and

Phillips (1996), Kiviet et al. (1995), Phillips (2000, 2007), inter alia), there are

only a few papers applying these methods to conventional tests, like the F and

t. Rothenberg (1984b, 1988) used Edgeworth expansions in terms of the chi-

square and normal distributions to derive general formulas of corrected critical

values of the Wald (or F ) and t tests, respectively.

In this paper, we derive size corrections of the t and F tests for the system

of Seemingly Unrelated Regression (S.U.R.) equations with �rst-order autore-

gressive error terms, introduced by Parks (1967). The fact that these tests are

over-sized in �nite samples can be attributed to two sources: (i) the non-zero

cross-correlations of the error terms of the S.U.R. equations, and (ii) the speci�c

dynamic structure of these error terms, i.e., the existence of serial correlation

(with possibly distinct autocorrelation coe�cients) in the S.U.R. equations.

Since the Edgeworth expansions are not well-de�ned distribution functions

and they may assign negative `probabilities' to the tails of the approximated dis-

tributions, the paper suggests using the Cornish-Fisher expansion of the tests
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rather than the Edgeworth expansion of their distribution functions (see Cor-

nish and Fisher (1937), Fisher and Cornish (1960), Hill and Davis (1968), Mag-

dalinos (1985), Ogasawara (2012), inter alia). The above suggested corrections

are asymptotically equivalent, but there are arguments�both theoretical and

practical�in favor of the Cornish-Fisher correction: First, the Cornish-Fisher

corrected test statistics are theoretically superior because they are proper ran-

dom variables and their distributions have well-behaved tails; second, since they

do not require the calculation of new critical values, they can be readily imple-

mented in applied research based on the publicly available tables of standard

distributions.

The paper proposes the use of degrees-of-freedom-adjusted Edgeworth cor-

rected critical values and Cornish-Fisher corrected statistics of the t and F tests

when the S.U.R. model with serially correlated errors is estimated using the

Parks' estimator (see Parks (1967)). These corrections follow the Student-t and

F distributions, respectively, with an approximation error of order O(τ3), where

τ = 1/
√
T and T is the number of time observations of the sample. The use of

degree-of-freedom-adjusted forms of the above tests lead to approximations that

are `locally exact' (see Magdalinos (1985)), which means that the approximate

distributions reduce to the exact ones, when the model is su�ciently simpli�ed.

These approximations are found to improve the small-sample performance of

the tests (see Magdalinos and Symeonides (1995), Symeonides et al. (2007)).

To our knowledge, this is the �rst attempt in the literature to develop analytic

size corrected testing procedures for the S.U.R. model with serially correlated

errors.

The analytic size corrections suggested by the paper take into account the

magnitude of the various nuisance parameters, as well as the way in which

they in�uence the elements of the disturbance covariance matrix. They can

be implemented separately to correct for the non-zero cross-correlations of the

error terms, or their serial correlation e�ects, or the combination of the above.

The paper is organized as follows. Section 2 provides some preliminary no-

tations. Section 3 presents the S.U.R. model and the assumptions needed in

our expansions. Analytic formulas for the locally exact Edgeworth and Cornish-

Fisher second-order size corrections of the t and F test statistics are derived
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in Section 4. Section 5 conducts out a Monte Carlo simulation evaluating the

performance of the suggested corrected tests. Finally, Section 6 concludes the

paper. Proofs of the results of the paper are given in the Appendix.

2 Preliminary notation

Throughout the paper, we use the tr, vec, ⊗, and matrix di�erentiation notation

as de�ned in Dhrymes (1978, pages 518�540), and for any two indexes i and

j, we denote Kronecker's delta as δij . Moreover, any (n × m) matrix L with

elements lij is denoted as

L = [(lij)i=1, ..., n; j=1, ..., m],

with obvious modi�cations for vectors and square matrices. If lij are (ni ×mj)

matrices, then L is the (
∑
ni×

∑
mj) partitioned matrix with sub-matrices lij .

The following matrices:

PX = X(X ′X)−1X ′, PX = I − PX = I −X(X ′X)−1X ′

denote the orthogonal projectors into the spaces spanned by the columns of the

matrix X and its orthogonal complement, respectively. Finally, for any stochas-

tic quantity (scalar, vector, or matrix) we use the symbol E(·) to denote the

expectation operator.

3 The model

Consider a S.U.R. system of M contemporaneously correlated regression equa-

tions of the form

yµ = Xµβµ + uµ (µ = 1, . . . , M), (1)

where yµ are (T ×1) vectors of observations on the dependent variables, Xµ are

(T ×nµ) matrices of observations on sets of nµ non-stochastic regressors, βµ are

(nµ×1) vectors of parameters to be estimated and uµ are (T×1) vectors of non-

observable serially correlated stochastic error terms of the µ-th equation, de�ned

as utµ (t = 1, . . . , T ). These terms are generated by the following stationary

�rst-order autoregressive (AR(1)) process:

utµ = ρµu(t−1)µ + εtµ, −1 < ρµ < 1 (t = 1, . . . , T ; µ = 1, . . . , M), (2)
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where εtµ are normally distributed innovations (see Turkington (2000)). For

any two indexes µ, µ′ = 1, . . . , M , we have E(εtµ) = 0, for all t. Moreover, for

t 6= 1 or t′ 6= 1, the covariance between two innovations εtµ and εt′µ′ is given as

E(εtµεt′µ′) = δtt′σµµ′ . For t = t′ = 1 and µ, µ′ = 1, . . . , M , E(εtµεt′µ′) becomes

E(ε1µε1µ′) = σµµ′(1− ρ2µ)1/2(1− ρ2µ′)1/2/(1− ρµρµ′) (3)

(see Parks (1967, pages 507�508)). In addition to assumption ρµ ∈ (−1, 1),

stationarity of AR(1) processes (2) implies the following relationships on the

initial conditions of the error terms of the S.U.R. equations:

u1µ = (1− ρ2µ)−1/2ε1µ (t = 1; µ = 1, . . . , M). (4)

These relationships imply that, for all t = 1, . . . , T and µ, µ′ = 1, . . . , M , the

error terms utµ satisfy the following conditions:

E(utµ) = 0, E(u2tµ) = σµµ/(1− ρ2µ), E(utµutµ′) = σµµ′/(1− ρµρµ′). (5)

Let n =
∑M
µ=1 nµ, and de�ne the (MT × 1) vectors y and u, the (n × 1)

vector β and the (MT × n) block diagonal matrix X as follows:

y = [(yµ)µ=1, ..., M ], u = [(uµ)µ=1, ..., M ],

β = [(βµ)µ=1, ..., M ], (6)

X = [(δµµ′Xµ)µ,µ′=1, ..., M ].

Then, the system of equations (1) can be written in a matrix form as follows:
y1

y2
...

yM

 =


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XM




β1

β2
...

βM

+


u1

u2
...

uM

 , (7)

or more compactly as

y = Xβ + u. (8)

To derive size corrected signi�cance tests for the elements of the vector β, the

above representations of the S.U.R. system will be written in an autocorrelation-

free form, after applying appropriate transformations on y, X and u. Following
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Parks (1967), de�ne the (T × T ) matrices Pµ and Rµµ
′
as follows:

Pµ =



(1− ρ2µ)−
1
2 0 0 · · · 0

(1− ρ2µ)−
1
2 ρµ 1 0 · · · 0

(1− ρ2µ)−
1
2 ρ2µ ρµ 1 · · · 0

...
...

...
. . .

...

(1− ρ2µ)−
1
2 ρT−1µ ρT−2µ ρT−3µ · · · 1


, Rµµ

′
= P−1′µ P−1µ′ , (9)

and the following (MT ×MT ) block diagonal matrix

P = [(δµµ′Pµ)µ,µ′=1, ..., M ]. (10)

Then, (2) implies that the (T × 1) random vectors uµ can be written as

uµ = Pµεµ (µ = 1, . . . , M), (11)

where εµ are (T × 1) random vectors with non-autocorrelated elements εtµ, i.e.,

εµ = [(εtµ)t=1, ..., T ; µ=1, ..., M ]. (12)

As in (11), consider the (T ×1) vectors yµ∗ and (T ×nµ) matrices Xµ∗, with

non-autocorrelated elements, satisfying the following relations:

yµ∗ = P−1µ yµ, Xµ∗ = P−1µ Xµ, (13)

and de�ne the (MT × 1) vector y∗ and (MT × n) block diagonal matrix X∗ as

follows:

y∗ = [(yµ∗)µ=1, ..., M ], X∗ = [(δµµ′Xµ∗)µ,µ′=1, ..., M ]. (14)

Then, pre-multiplying the µ-th equation of (7) by P−1µ , we can derive the fol-

lowing S.U.R. model with non-autocorrelated error terms:
y1∗

y2∗
...

yM∗

 =


X1∗ 0 · · · 0

0 X2∗ · · · 0
...

...
. . .

...

0 0 · · · XM∗




β1

β2
...

βM

+


ε1

ε2
...

εM

 (15)

(see Zellner (1962, 1963), Zellner and Huang (1962), Zellner and Theil (1962)).

In more compact form, this model can be written as

y∗ = X∗β + ε, (16)
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where y∗ = P−1y, X∗ = P−1X and ε = P−1u. The above representation of

the S.U.R. system implies that the (MT × 1) error vector u in (8) is normally

distributed with mean and variance-covariance matrix given as follows:

E(u) = 0, E(uu′) = Ω−1 = PE(εε′)P ′ = P (Σ⊗ IT )P ′, (17)

where

Σ = [(σµµ′)µ,µ′=1, ..., M ]. (18)

The last relationship implies that

Ω = P ′−1(Σ−1 ⊗ IT )P−1 (19)

is a function of the ((M + M2) × 1) parameter vector γ = (%′, ς ′)′, where % =

(ρ1, . . . , ρM )′ is the (M × 1) vector of autocorrelation coe�cients in (2) and

the (M2 × 1) vector ς = vec(Σ−1) ∈ £ = RM2 − 0, where 0 is the subspace of

RM2

in which Σ is not positive de�nite. After de�ning the composite index

(µµ′) = µ+M(µ′ − 1) ((µµ′) = 1, . . . , M2), (20)

for any two indexes µ, µ′ = 1, . . . , M , it can be easily seen that the (µµ′)-th

element of vector ς, denoted as ς(µµ′), is actually the (µ, µ′)-th element of matrix

Σ−1, denoted as σµµ
′
.

The system of equations (16) (or (15)) can be seen as the vectorization

outcome of the following form of the S.U.R. model of M equations:

Y∗ = ZB + E, (21)

where Y∗ and E are (T ×M) random matrices de�ned as

y∗ = vec(Y∗), ε = vec(E), (22)

respectively, where the rows of matrix E are NM (0,Σ) random vectors and B

is a (K ×M) matrix whose columns, denoted as bµ, are de�ned as

bµ = Ψµβµ (µ = 1, . . . , M), (23)

where Ψµ are (K × nµ) known sub-matrices of the (MK × n) block diagonal

matrix

Ψ = [(δµµ′Ψµ)µ,µ′=1, ..., M ]. (24)
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Finally, Z is a (T ×K) matrix with non-autocorrelated columns, de�ned by

the following relationship:

X∗ = [(δµµ′Xµ∗)µ,µ′=1, ..., M ] = [(δµµ′ZΨµ)µ,µ′=1, ..., M ]

= [(δµµ′Z)µ,µ′=1, ..., M ][(δµµ′Ψµ)µ,µ′=1, ..., M ]

= (IM ⊗ Z)Ψ. (25)

The above representation of the S.U.R. model, given by (21), will facilitate the

expansions needed in our derivations of the size corrected tests suggested in the

paper.

3.1 Assumptions

To carry out our expansions, it would be theoretically convenient to introduce

a re-parameterization of the error covariance matrix of model (8) as follows:

y = Xβ + σu, σ > 0, u ∼ NMT (0,Ω−1), (26)

assuming that parameter σ2 can be estimated separately from the rest terms of

the covariance matrix Ω−1 of vector u.1

For the derivation of our size corrected tests, we need to make a number of

assumptions on the elements of matrix Ω, which is the inverse of the variance-

covariance matrix of the error vector u. To this end, we denote as Ωi, Ωij ,

etc., the (MT ×MT ) matrices of �rst-, second- and higher-order derivatives,

respectively, of the elements of matrix Ω with respect to the elements of the

((M + M2) × 1) vector of nuisance parameters γ = (%′, ς ′)′. For any estimator

of γ, de�ne the ((1 +M +M2)× 1) vector δ, with elements

δ0 =
σ̂2 − 1

τ
, δρµ =

ρ̂µ − ρµ
τ

, δς(µµ′) =
ς̂(µµ′) − ς(µµ′)

τ
, (27)

where µ = 1, . . . , M, (µµ′) = 1, . . . , M2 and τ = 1/
√
T is the `asymptotic

1The nuisance parameters σ and γ can be simultaneously identi�ed under the restriction

σ = 1, which implies that the estimate of matrix Σ, denoted as Σ̂, is accurate, up to a

multiplicative factor. This is not true in samples with small time dimension. A convenient

method to estimate σ is through the following feasible generalized least squares (GL) estimator

σ̂GL =
[
(y −Xβ̂)′

(
P̂ ′−1
GL (Σ̂−1

GL ⊗ IT )P̂−1
GL

)
(y −Xβ̂)/(MT − n)

]1/2
,

where β̂ is the feasible GL estimator based on any consistent estimators of Σ−1 and P−1.
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scale' of our second-order stochastic expansions. Then, our size corrected tests

can be derived based on the following assumption.

Assumption 1:

(i) The elements of matrices Ω and Ω−1 are bounded for all T , all vectors %

with elements ρµ ∈ (−1, 1), and all vectors ς ∈ £. Moreover, the following

matrices:

A = X ′ΩX/T, F = X ′X/T, Γ = Z ′Z/T (28)

converge to non-singular limits, as T →∞.

(ii) Up to the fourth order, the partial derivatives of the elements of Ω with

respect to the elements of % and ς, are bounded for all T , all vectors % with

elements in the interval (−1, 1), and all vectors ς ∈ £.

(iii) The estimators %̂ and ς̂ are even functions of u, and they are functionally

unrelated to the parameter vector β. As a result, they can be written as

functions of X, Z, and u only.

(iv) The vector of nuisance parameters δ admits a stochastic expansion of the

form

δ =
[
δ0, [(δρµ)µ=1, ..., M ]′, [(δς(µµ′))(µµ′)=1, ..., M2 ]′

]′
= d1 + τd2 + ω(τ2), (29)

where the order of magnitude ω(·), de�ned in the Appendix, has the same

operational properties as order O(·). Moreover, the expectations

E(d1d
′
1), E(

√
Td1 + d2) (30)

exist and have �nite limits, as T →∞.

The �rst two conditions of Assumption 1 imply that the following matrices:

Ai = X ′ΩiX/T, Aij = X ′ΩijX/T, A∗ij = X ′ΩiΩ
−1ΩjX/T (31)

are bounded. Thus, according to Magdalinos (1992), the Taylor series expansion

of β constitutes a stochastic expansion. Since the vectors of nuisance parameters

% and ς are functionally unrelated to β, condition (iii) of Assumption 1 is sat-

is�ed for a wide class of estimators %̂ and ς̂, including the maximum likelihood
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estimators and the simple or iterative estimators based on the regression resid-

uals (see Breusch (1980), Rothenberg (1984a)). Note that we need not assume

that estimators %̂ and ς̂ are asymptotically e�cient.

Further, conditions (i)�(iv) of Assumption 1 should be satis�ed by all the

estimators of vectors % and ς, considered in the paper. The estimators of the el-

ements of vector %, i.e., ρµ (µ = 1, ...,M) include the following: the least squares

(LS), Durbin-Watson (DW), generalized least squares (GL), Prais-Winsten (PW)

and maximum likelihood (ML).2 The elements of vector ς = vec(Σ−1) can be

estimated by

ς̂ = vec
[
(Y∗ − ZB̂)′(Y∗ − ZB̂)/T

]−1
, (32)

where B̂ is any consistent estimator of the matrix of parameters B of regression

model (21). Consistent estimators of B include the unrestricted and restricted

least squares (denoted as UL and RL, respectively), the simple and iterative

generalized least squares (denoted as GL and IG, respectively) and the maximum

likelihood (ML) estimators.3

To present the expansions suggested in the paper, expectations E(d1d
′
1) and

2The closed forms of these estimators of ρµ, for all µ, are given as follows:

(i) LS:

ρ̃µ =
∑T

t=2
ũtµũ(t−1)µ

/∑T

t=1
ũ2tµ,

where ũtµ are the LS residuals of regression model (1).

(ii) DW:

ρ̂
(DW )
µ = 1− (DW/2),

where the DW is the Durbin-Watson statistic.

(iii) GL:

ρ̂µ =
∑T

t=2
ûtµû(t−1)µ

/∑T

t=1
û2tµ,

where ûtµ denote the GL estimates of utµ, based on the autocorrelation-correction of

regression model (1), for all µ, using any asymptotically e�cient estimator of ρµ.

(iv) PW: This estimator of ρµ, denoted as ρ̂
(PW )
µ , together with the PW estimator of β, de-

noted as β̂
(PW )
µ , minimize the sum of squared GL residuals (Prais and Winsten (1954)).

(v) ML: This estimator, denoted as ρ̂
(ML)
µ , satis�es a cubic equation with coe�cients de�ned

in terms of the ML residuals (Beach and MacKinnon (1978)).

3The closed forms of these estimators of B are given as follows:

(i) UL:

B̂(UL) = (Z′Z)−1Z′Y∗.
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E(
√
Td1 + d2) will be de�ned as follows:

lim
T→∞

E(d1d
′
1) =


λ0 λ′% λ′ς

λ% Λ% Λ′%ς

λς Λ%ς Λς

 and lim
T→∞

E(
√
Td1 + d2) =


κ0

κ%

κς

 , (33)

respectively, where λ0 and κ0 are scalars, λ% and κ% are (M ×1) vectors, λς and

κς are (M2 × 1) vectors, Λ% is a (M ×M) matrix, Λς is a (M2 ×M2) matrix

and Λ%ς is a (M2 ×M) matrix. The following partitions of the above matrix

and vector will be of use in the paper:λ0 λ′

λ Λ

 and

κ0
κ

 , (34)

where

Λ =

Λ% Λ′%ς

Λ%ς Λς

 , λ =

λ%
λς

 and κ =

κ%
κς

 , (35)

where Λ is a ((M +M2)× (M +M2)) matrix, and λ and κ are ((M +M2)× 1)

vectors. The elements of the vectors and matrices in (33), (34) and (35) can be

interpreted as `measures' of the accuracy of the expansions of estimators σ̂2, ρ̂µ

and ς̂(µµ′) around the true values of the corresponding parameters.

4 Size corrected test statistics

In this section, we derive size corrected t, Wald and F test statistics, as well as

the second-order approximations of their distributions based on the conditions

of Assumption 1. The versions of the test statistics which adjust for the degrees

(ii) RL:

vec(B̂(RL)) = Ψ(X′∗X∗)
−1X′∗y∗.

(iii) GL:

vec(B̂(GL)) = Ψ
[
X′∗(Σ̂

−1
I ⊗ IT )X∗

]−1
X′∗(Σ̂

−1
I ⊗ IT )y∗,

where Σ̂−1
I is the UL or RL estimator of Σ.

(iv) IG: This estimator, denoted as B̂(IG), is computed by iterative implementation of the

GL estimator.

(v) ML: This estimator, denoted as B̂(ML), can be computed by iterating the GL estimation

process up to convergence (Dhrymes (1971)).
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of freedom, namely the Student-t and F , are locally exact. That is, if the vector

of parameters γ = (%′, ς ′)′ is known to belong to a ball of radius ϑ, then the

approximate distributions of these test statistics become exact, as ϑ→ 0.

The analytic size corrections developed in this section can provide size cor-

rections to either the non-zero cross-correlations of the error terms or their

serial correlation e�ects. The part of the size corrections corresponding to the

serial correlation e�ects constitutes a extension of the results in Magdalinos and

Symeonides (1995) to the multiple equation framework. On the other hand, the

part of the size corrections due to the non-zero cross-correlations constitutes a

completely genuine contribution to the literature, which can be readily imple-

mented to correct the size of the t and F tests in the standard Zellner's S.U.R.

model (see Zellner (1962)) alone.

4.1 The t test

Let the elements of the (n × 1) vector e and scalar e0 be known quantities.

Testing any null hypothesis of the form

H0 : e′β = e0 (36)

against its one-sided alternatives, can be based upon the following t statistic:

t = (e′β − e0)/
[
σ̂2e′(X ′Ω̂X)−1e

]1/2
, (37)

which is adjusted for the degrees of freedom of the Student-t distribution.

For the derivation of the suggested asymptotic expansions, we de�ne the

((M +M2)× 1) vector l and the ((M +M2)× (M +M2)) matrix L as follows:

l =
[

[(lρµ)µ=1, ..., M ]′, [(lς(µµ′))(µµ′)=1, ..., M2 ]′
]′
, (38)

L =


[(lρµρµ′ )µ,µ′=1,...,M ;] [(lρµς(νν′)) µ=1, ..., M ;

(νν′)=1,...,M2

]

[(lς(νν′)ρµ)(νν′)=1, ..., M2;
µ=1, ..., M

] [(lς(µµ′)ς(νν′))(µµ′)=1, ..., M2;

(νν′)=1, ..., M2

]

 , (39)

where the elements of vector l and matrix L are de�ned below:

lρµ = h′GAρµGh, lς(µµ′) = h′GAς(µµ′)Gh,

lρµρµ′ = h′GCρµρµ′Gh, lρµς(νν′) = h′GCρµς(νν′)Gh, (40)

lς(νν′)ρµ = h′GCς(νν′)ρµGh, lς(µµ′)ς(νν′) = h′GCς(µµ′)ς(νν′)Gh,
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where G = A−1 = (X ′ΩX/T )−1 is a (n×n) matrix, h = e/(e′Ge)1/2 is a (n×1)

vector and

Cρµρµ′ = A∗ρµρµ′ − 2AρµGAρµ′ +Aρµρµ′/2,

Cρµς(νν′) = A∗ρµς(νν′)
− 2AρµGAς(νν′) +Aρµς(νν′)/2, (41)

Cς(µµ′)ς(νν′) = A∗ς(µµ′)ς(νν′)
− 2Aς(µµ′)GAς(νν′) +Aς(µµ′)ς(νν′)/2,

with obvious modi�cations for Cς(νν′)ρµ .

The next two theorems give alternative Edgeworth approximations of the

distribution function of the t statistic, given in (37), in terms of the normal and

Student-t distributions, respectively.

Theorem 1. The distribution function of the t statistic (37), under the null

hypothesis (36), admits the Edgeworth expansion

Pr{t ≤ x} = I(x)− τ2

2

[(
p1 + 1

2

)
+
(
p2 + 1

2

)
x2
]
xi(x) +O(τ3), (42)

where I(·) and i(·) are the standard normal distribution and density functions,

respectively, and scalars p1 and p2 can be calculated as follows:

p1 = tr(ΛL) +
l′Λl

4
+ l′(κ+

λ

2
)−κ0 +

λ0 − 2

4
, p2 =

l′Λl − 2l′λ+ λ0 − 2

4
. (43)

Analytic formulas for the computation of scalars λ0, κ0, and the elements of λ,

κ, Λ, l and L are given in the Technical Appendix (see Lemmas A.15 and A.17).

Instead of using the Edgeworth expansion (42), we can approximate the

distribution function of the t statistic in terms of the Student-t distribution as

follows:

Theorem 2. The distribution function of the t statistic (37), under the null

hypothesis (36), admits the Edgeworth expansion

Pr{t ≤ x} = IMT−n(x)− τ2

2

[
p1 + p2x

2
]
xiMT−n(x) +O(τ3), (44)

where IMT−n(·) and iMT−n(·) are the Student-t distribution and density func-

tions, respectively, with MT − n degrees of freedom, and scalars p1 and p2 are

de�ned in (43).

Theorem 1 implies that we can calculate the Edgeworth corrected α% critical

value of the t statistic (37) as

n∗α = nα +
τ2

2

[(
p1 + 1

2

)
+
(
p2 + 1

2

)
n2α
]
nα, (45)
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based on the α% signi�cant point of the standard normal distribution, denoted

as nα. Similarly, based on Theorem 2, we can calculate the Edgeworth corrected

α% critical value of the t statistic (37) as

t∗α = tα +
τ2

2

[
p1 + p2t

2
α

]
tα, (46)

using the α% signi�cant point of the Student-t distribution, denoted as tα.

The Edgeworth approximation employed by Theorems 1 and 2 to obtain the

size corrected critical values n∗α and t∗α is not a proper distribution function, as it

may assign negative `probabilities' in the tails of the approximate distribution.

To overcome this problem, we can use a Cornish-Fisher expansion. This corrects

the test statistics of interest, instead of their critical values. The Cornish-Fisher

expansion is simply the inversion of the Edgeworth correction of the critical

values and, thus, it is expected to have very similar properties around the mean

of the approximate distribution. However, at the tails of this distribution, which

are important for inference, the properties of the Cornish-Fisher expansion are

di�erent. In fact, the Cornish-Fisher size corrected statistics constitute random

variables with well-behaved tails, and thus they do not assign negative `proba-

bilities' at the tails of their distributions.

The Cornish-Fisher corrected t statistic for testing null hypothesis (36) is

given in the following theorem.

Theorem 3. The Cornish-Fisher size corrected t statistic

t∗ = t− τ2

2

[
p1 + p2t

2
]
t (47)

is distributed, under the null hypothesis (36), as a Student-t random variable

with MT − n degrees of freedom, with an approximation error of order O(τ3).

The Cornish-Fisher size corrected t statistic t∗, given by equation (47), can

be readily used, in practice, to test null hypothesis (36) against its one-sided

alternatives. This can be done by using the standard tables of the Student-t

distribution with MT − n degrees of freedom.
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4.2 The Wald and F tests

Let H be a (m× n) matrix of rank m with known elements and h0 be a known

(m× 1) vector. Testing any null hypothesis of the form

H0 : Hβ = h0 (48)

against all possible alternatives, can be based upon the Wald statistic

w = (Hβ̂ − h0)′
[
H(X ′Ω̂X)−1H ′

]−1
(Hβ̂ − h0)/σ̂2, (49)

or the familiar F statistic

F = (Hβ̂ − h0)′
[
H(X ′Ω̂X)−1H ′

]−1
(Hβ̂ − h0)/mσ̂2, (50)

which is adjusted for the degrees of freedom of the F distribution.

For the derivation of the suggested asymptotic expansions, we de�ne the

(n× n) matrix

Q = H ′(HGH ′)−1H, (51)

and we partition the (n× n) matrices G = A−1 = (X ′ΩX/T )−1 and Ξ = GQG

and the (n× 1) vector h as follows:

G = [(Gij)i,j=1, ..., M ], Ξ = [(Ξij)i,j=1, ..., M ], h = [(hi)i=1, ..., M ], (52)

whereGij and Ξij are the (i, j)-th (ni×nj) sub-matrices ofG and Ξ, respectively,

and hi = ei/(e
′Ge)1/2 is the i-th (ni × 1) sub-vector of h, where ei is the

corresponding i-th (ni × 1) sub-vector of the (n× 1) vector e.

Next, de�ne the ((M +M2)× 1) vector c, and the ((M +M2)× (M +M2))

matrices C and D∗ as follows:

c =
[

[(cρµ)µ=1, ..., M ]′, [(cς(µµ′))(µµ′)=1, ..., M2 ]′
]′
, (53)

C =


[(cρµρµ′ )µ,µ′=1, ..., M ] [(cρµς(νν′)) µ=1, ..., M ;

(νν′)=1, ..., M2

]

[(cς(νν′)ρµ)(νν′)=1, ..., M2;
µ=1, ..., M

] [(cς(µµ′)ς(νν′))(µµ′)=1, ..., M2;

(νν′)=1, ..., M2

]

 (54)

and

D∗ =


[(dρµρµ′ )µ,µ′=1, ..., M ] [(dρµς(νν′)) µ=1, ..., M ;

(νν′)=1, ..., M2

]

[(dς(νν′)ρµ)(νν′)=1, ..., M2;
µ=1, ..., M

] [(dς(µµ′)ς(νν′))(µµ′)=1, ..., M2;

(νν′)=1, ..., M2

]

 , (55)
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where the elements of vector c and matrices C and D∗ are de�ned as follows:

cρµ = tr(AρµΞ), cρµρµ′ = tr(Cρµρµ′ Ξ),

cρµς(νν′) = tr(Cρµς(νν′)Ξ),

cς(µµ′) = tr(Aς(µµ′)Ξ), cς(µµ′)ς(νν′) = tr(Cς(µµ′)ς(νν′)Ξ), (56)

dρµρµ′ = tr(D∗ρµρµ′ Ξ), dς(µµ′)ς(νν′) = tr(D∗ς(µµ′)ς(νν′)Ξ),

dρµς(νν′) = tr(D∗ρµς(νν′)Ξ),

where

D∗ρµρµ′ =
AρµΞAρµ′

2
, D∗ρµς(νν′) =

AρµΞAς(νν′)

2
,

(57)

D∗ς(µµ′)ς(νν′) =
Aς(µµ′)ΞAς(νν′)

2
,

with obvious modi�cations for cς(νν′)ρµ , dς(νν′)ρµ and D∗ς(νν′)ρµ .

The next two theorems give Edgeworth approximations of the distribution

functions of the Wald (w) and F statistics, given by (49) and (50), respectively.

Theorem 4. The distribution function of the Wald statistic (49), under the

null hypothesis (48), admits the Edgeworth expansion

Pr{w ≤ x} = Fm(x)− τ2 [ξ1 + (ξ2/(m+ 2))x]
x

m
fm(x) +O(τ3), (58)

where Fm(·) and fm(·) are the chi-square distribution and density functions,

respectively, and scalars ξ1 and ξ2 can be calculated as follows:

ξ1 = tr[Λ(C +D∗)]− c′Λc/4 + c′κ+m[c′λ/2− κ0 − (m− 2)λ0/4],

(59)

ξ2 = tr(ΛD∗) + [c′Λc− (m+ 2)(2c′λ−mλ0)]/4.

Analytic formulas for the computation of scalars λ0 and κ0, and the elements

of λ, κ, Λ, c, C and D∗ are given in the Technical Appendix (see Lemmas A.16

and A.17).

Instead of using the Wald statistic (49) and the Edgeworth expansion of

its distribution, given in (58), we can use the F statistic, given by (50), and

approximate its distribution function in terms of the F distribution as follows:
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Theorem 5. The distribution function of the F statistic (50), under null hy-

pothesis (48), admits the Edgeworth expansion

Pr{F ≤ x} = FmMT−n(x)− τ2 [q1 + q2x]xfmMT−n(x) +O(τ3), (60)

where FmMT−n(·) and fmMT−n(·) are the F distribution and density functions,

respectively, with m and MT − n degrees of freedom, and scalars q1 and q2 can

be calculated as follows:

q1 = ξ1/m+ (m− 2)/2, q2 = ξ2/(m+ 2)−m/2, (61)

where scalars ξ1 and ξ2 are de�ned in (59).

Theorem 4 implies that the Edgeworth corrected α% critical value of the

Wald statistic (49) is given as

χ∗α = χα + τ2
[
ξ1
m

+
ξ2

m(m+ 2)
χα

]
χα, (62)

based on the α% signi�cant point of the chi-square distribution, denoted as χα.

Theorem 5 enables us to calculate the Edgeworth corrected α% critical value of

F statistic (50) as

F ∗α = Fα + τ2 [q1 + q2Fα]Fα, (63)

based on the α% signi�cant point of the F distribution, denoted as Fα.

The Cornish-Fisher size corrected F statistic for testing null hypothesis (48)

is given in the next theorem.

Theorem 6. The Cornish-Fisher size corrected F statistic

F∗ = F − τ2 [q1 + q2F ]F (64)

is distributed, under null hypothesis (48), as an F random variable with m and

MT − n degrees of freedom, with an approximation error of order O(τ3).

Unlike the Edgeworth approximation, the Cornish-Fisher corrected F statis-

tic, denoted as F∗ in equation (64), is a proper random variable and it does not

assign negative `probabilities' in the tails of its distribution. Thus, the Cornish-

Fisher corrected F statistic can be be readily implemented, in applied research,

to test null hypothesis (48). This can be done by using the standard tables of

the F distribution, with m and MT − n degrees of freedom.
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5 Monte-Carlo simulations

In this section, we evaluate the small-sample performance of the size corrected

tests suggested in the previous section, compared to their corresponding stan-

dard (�rst-order asymptotic approximation) versions. To this end, we rely on a

Monte Carlo simulation based on 5000 iterations and we consider small-smaples

of T = 15, 20, 40 observations.

In our simulation, we consider the S.U.R. model of M = 2 seemingly unre-

lated equations (see, e.g., Zellner (1962)), i.e.,

yt,1 = β0,1 + β1,1xt1,1 + β2,1xt2,1 + ut,1

yt,2 = β0,2 + β1,2xt1,2 + β2,2xt2,2 + ut,2
(t = 1, . . . , T ), (65)

where the error terms, ut,1 and ut,2, are contemporaneously correlated with

covariance σ12. Both of these error terms follow AR(1) process (2), with normally

distributed innovations (see Turkington (2000)). The autoregressive coe�cients

of this process ρ1 and ρ2 are assumed to be equal, i.e., ρ1 = ρ2 = ρ = ±0.5,

±0.8. To ensure stationarity of error terms ut,1 and ut,2, conditions (3) are

satis�ed. For t = 0, these conditions require that

y0,1 ∼ N (0, σ11/(1− ρ21))

y0,2 ∼ N (0, σ22/(1− ρ22))
and E(y0,1y0,2) = σ12

(1− ρ21)1/2(1− ρ22)1/2

1− ρ1ρ2
.

In our analysis, we assume σ11 = σ22 = 1 and we are focused on investigating

the consequences of the di�erent sign and magnitude of covariances σ12 on our

tests, for the following cases: σ12 = ±0.5, ±0.75, ±0.9. Since σ11 = σ22 = 1, σ12

is the correlation coe�cient between ut,1 and ut,2.

According to (15) (or (16)), the above S.U.R. model can be written in terms

of the following transformed equations, with non-autocorrelated errors:

y1∗ = X1∗β1 + ε1; y2∗ = X2∗β2 + ε2,

where y1∗ and y2∗ are (TX1) vectors of observations on the dependent variables,

with Pµyµ∗ = yµ, for µ = 1, 2, where Pµ is de�ned by (9), X1∗ and X2∗ are

(T × 3) matrices of regressors, with PµXµ∗ = Xµ and β1 = (β0,1, β1,1, β2,1)′,

β2 = (β0,2, β1,2, β2,2)′ are (3× 1) vectors of parameters, including the constant.

In terms of the S.U.R. representation (21), the above equations can be written
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as

Y∗ = ZB + E,

where Y∗ is a (T × 2) matrix of observations on vectors y1∗ and y2∗, E is a

(T × 2) matrix whose rows are vectors of normally distributed innovations with

variance-covariance Σ = [(σµµ′)µ,µ′=1,2], B is a (3× 2)-dimension matrix whose

columns, β1 and β2, are vectors of parameters, and Z is a (T × 6) matrix whose

columns are vectors of possibly collinear variables de�ned as

zt1 ≡ zt6 ≡ (1− ρ2)1/2 (t = 1),

zt1 ≡ zt6 ≡ (1− ρ) (t = 2, 3, ..., T ),

ztj = α1/2ζt1 + (1− α)1/2ζtj (j = 2, 3, 4, 5),

where ζtj (j = 2, 3, 4, 5) are N (0, 1) random variables and α stands for the

common correlation coe�cient between any two non-constant columns of Z

(see also McDonald and Galarneau (1975)). This captures the same degree of

multicollinearity between regressors xt1,µ and xt2,µ of S.U.R. model (65). In our

simulation, we consider the following two values of the collinearity coe�cient:

α = 0.5, 0.9. According to (25), sub-matrices X1∗ and X2∗ (collected in matrix

X∗) can be obtained from Z by assuming that sub-matrices Ψ1 and Ψ2, of the

block diagonal matrix Ψ are given as follows:

Ψ1 =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


; Ψ2 =



0 0 0

0 0 0

0 0 0

0 1 0

0 0 1

1 0 0


.

In all iterations of our simulation, the two equations of S.U.R. model (65)

were estimated by LS. The residuals of these equations were used to compute

the LS estimates of autoregressive coe�cients ρ1 and ρ2, denoted as ρ̃1 and ρ̃2.

Then, the transformed variables y∗1,µ and x∗tj,µ, for j = 0, 1, 2 (where `0' stands

for the constant), are calculated as follows:

y∗1,µ = (1− ρ̃2µ)1/2y1,µ

y∗t,µ = yt,µ − ρ̃µy(t−1),µ

x∗1j,µ = (1− ρ̃2µ)1/2x1j,µ

x∗tj,µ = xtj,µ − ρ̃µx(t−1)j,µ

(t = 1),

(t 6= 1).
(66)
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These variables were then used to compute the feasible GL estimates of βj,µ

(j = 0, 1, 2; µ = 1, 2), denoted as β̂j,µ. The columns of matrix Z were obtained

as z1 = x∗0,1, z2 = x∗1,1, z3 = x∗2,1, z6 = x∗0,2, z4 = x∗1,2, z5 = x∗2,2, while

the unrestricted estimates of matrix B were based on the GL estimates β̂j,µ.

The unrestricted estimates of the inverse covariance matrix Σ−1 were estimated

based on (32) and the feasible GL estimate σ̂GL which is calculated by using

the following formula:

σ̂GL =
[
(y −Xβ̂)′

(
P̂ ′−1I (Σ̂−1I ⊗ IT )P̂−1I

)
(y −Xβ̂)/(MT − n)

]1/2
,

where I denotes any consistent estimators of matrices Σ−1 and P−1 (see Ap-

pendix), used to obtain a feasible GL estimator of β.

The results of these simulations are presented in Tables 1a, 1b and 2. The

actual sizes of our size corrected tests of the following null hypothesis:

H0 : β2,1 = 0, (67)

against its one-sided alternatives, are reported in Tables 1a and 1b. In partic-

ular, Table 1a presents results against alternative HA : β2,1 > 0, while Table

1b against HA : β2,1 < 0. The table presents the actual sizes (i.e., the rejection

probabilities) at the 5� signi�cance level of the following: the standard normal

and Student-t tests (denoted as z and t, respectively), their �nite-sample size

corrected versions based on the Edgeworth corrected critical values of the stan-

dard normal and Student-t distributions (denoted as E-z and E-t, respectively)

and the Cornish-Fisher �nite-sample size corrected Student-t test (denoted as

CF-t). Note that we do not examine the performance of the above t tests for

the null hypothesis (67) against its two-sided alternatives, since this is a special

case of the F test examined in Table 2.

Table 2 presents the actual sizes of our size corrected tests of the following

joint null hypothesis on the slope coe�cients of S.U.R. model (65), across its

two equations:

H0 : β1,1 = β2,1 = β1,2 = β2,2 = 0. (68)

This is done against the alternative hypothesis that at least one of these coe�-

cients are di�erent from zero, i.e., at least one βj,µ 6= 0 (j = 1, 2; µ = 1, 2). The

table presents the actual sizes at the 5� signi�cance level of the following: the
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standard Wald (chi-square) and F tests (denoted as χ2 and F , respectively),

their �nite-sample size corrected versions based on the Edgeworth corrected

critical values of the chi-square and F distributions (denoted by E-χ2 and E-F,

respectively) and the Cornish-Fisher �nite-sample size corrected F test (denoted

as CF-F ).

Turning now into the discussion of the results in this simulation, Tables 1a

and 1b clearly indicate that the size corrected tests have better size performance

in all reported sample sizes (T = 15, 20, 40), compared to the standard versions

of these tests, based on �rst-order approximations. This is true for both the

Edgeworth and Cornish-Fisher size corrections, and across all di�erent values

of ρ, σ12 and α examined.

Between the above di�erent categories of size corrected tests, our results

indicate that the CF-t test outperforms the E-z and E-t ones. This is true for

almost all cases of α and σ12 considered, if ρ takes large values, i.e., ρ = ±0.8.

The same is true for small samples (T = 15 or 20) and ρ = ±0.5.

Regarding the chi-square and F tests, the results of Table 2 indicate that, in

most of the cases examined, the size corrected versions of these tests, i.e., E-χ2,

E-F and CF-F, perform better in small samples, compared to their standard

versions. Between the Edgeworth and Cornish-Fisher size corrected versions of

these tests (i.e., E-F (or E-χ2) and CF-F ), the latter is found to perform better

than the former for all sample sizes considered, and across all values of ρ, σ12

and α examined. Notice that, for relatively large samples (T = 40), the E-χ2

test outperforms the degrees-of-freedom-adjusted E-F test. This suggests that,

for the model considered in our simulation, samples of 40 observations seem

to be large enough to induce the reduction of the magnitude of the degrees-of-

freedom-adjusted Edgeworth size corrections.

Summing up, this �rst set of simulations clearly indicate that the �nite-

sample size corrected tests E-χ2, E-F and CF-F can considerably improve the

performance of the standard (uncorrected) tests in small samples. This happens

even for very high levels of autocorrelation and/or cross-correlation between the

error terms of the equations of the S.U.R. model. Another interesting conclusion

that can be drawn from the results of this exercise is that the adjusted for the

degrees of freedom versions of the tests perform better than their unadjusted
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ones in most of the cases considered in our simulation. Note that this is also

true for the standard (uncorrected) versions of the tests.
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Table 1a: H0 : β2,1 = 0 against HA : β2,1 > 0 (Nominal size: 5�)

Actual sizes (�)
Test: z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 14.6 10.2 13.8 10.4 8.0 11.8 8.0 11.0 8.4 7.4 11.9 8.5 11.1 8.9 8.1 14.9 11.0 13.9 11.2 9.9
-0.90 20 12.4 8.6 11.8 8.8 7.3 9.7 6.7 9.1 6.9 6.6 10.5 7.5 9.6 7.7 7.5 12.9 9.5 12.4 9.9 8.8

40 9.0 7.2 8.7 7.3 7.0 6.9 5.3 6.6 5.4 5.3 7.4 5.9 7.3 6.1 6.0 9.8 7.7 9.5 7.9 7.5
15 14.6 10.1 13.9 10.3 7.9 11.1 7.7 10.3 8.0 7.3 11.7 8.2 10.9 8.6 7.9 14.5 10.5 13.5 10.7 9.6

-0.75 20 12.5 9.0 11.9 9.2 7.6 9.0 6.3 8.3 6.5 6.1 10.2 7.6 9.7 7.9 7.5 13.4 9.8 12.7 10.1 9.2
40 8.1 6.0 7.9 6.2 5.8 7.1 5.7 6.9 5.9 5.8 7.4 5.9 7.2 6.0 5.9 9.1 7.2 8.9 7.4 7.0
15 14.8 10.2 14.0 10.4 7.7 10.4 7.4 9.7 7.6 7.0 11.4 8.1 10.6 8.5 7.9 14.2 10.6 13.5 10.8 9.6

-0.50 20 12.4 7.8 11.8 9.0 7.3 9.0 6.6 8.4 6.8 6.6 9.4 6.9 9.0 7.2 6.8 12.9 9.5 12.3 9.7 8.6
40 8.5 6.5 8.3 6.7 6.4 7.0 5.4 6.8 5.6 5.5 7.4 6.1 7.2 6.2 6.1 9.2 7.1 9.0 7.3 7.1
15 14.0 9.7 13.2 9.9 7.7 10.5 7.2 9.8 7.4 6.9 11.5 8.1 10.6 8.5 7.9 14.9 10.7 14.0 11.1 9.9

0.50 20 11.9 8.1 11.4 8.3 6.8 8.7 6.4 8.3 6.6 6.3 10.3 7.7 9.7 8.0 7.5 13.3 10.2 12.8 10.3 9.3
40 8.1 6.3 7.9 6.4 6.2 6.8 5.4 6.5 5.5 5.4 7.1 5.7 6.9 5.9 5.7 9.0 6.9 8.8 7.0 6.8
15 14.7 10.2 14.0 10.4 8.0 11.5 8.0 10.5 8.2 7.5 12.2 8.5 11.3 8.9 8.3 13.8 10.3 13.1 10.5 9.3

0.75 20 12.2 8.8 11.6 8.9 7.4 9.3 6.7 8.8 6.9 6.5 10.2 7.3 9.6 7.7 7.3 12.5 9.4 11.9 9.6 8.6
40 8.8 6.8 8.6 6.9 6.5 7.2 5.9 7.0 6.1 6.0 7.5 5.9 7.2 6.1 6.0 9.2 7.0 8.9 7.2 6.8
15 13.8 9.7 13.0 9.8 7.5 11.2 7.7 10.3 8.0 7.3 12.2 8.7 11.6 9.0 8.4 15.0 11.0 14.1 11.2 10.1

0.90 20 12.9 9.0 12.4 9.2 7.7 9.4 6.6 8.7 6.8 6.3 10.0 7.3 9.4 7.5 7.2 12.9 9.5 12.3 9.8 8.8
40 9.1 6.9 8.7 7.1 6.7 7.0 5.4 6.8 5.6 5.4 7.2 5.7 7.0 5.8 5.7 9.4 7.3 9.2 7.5 7.2

0.9

15 14.6 10.4 13.8 10.5 7.7 11.2 7.7 10.4 7.9 7.3 11.8 8.5 11.0 8.7 8.2 14.5 10.9 13.8 11.1 9.8
-0.90 20 12.7 9.3 12.2 9.5 7.8 9.8 6.8 9.2 7.1 6.7 10.4 7.6 9.9 7.8 7.5 13.2 10.0 12.8 10.2 9.3

40 9.2 7.2 9.0 7.4 7.1 7.4 6.0 7.2 6.2 6.0 7.3 5.9 7.1 6.0 6.0 9.9 7.9 9.7 8.0 7.7
15 14.5 9.8 13.5 10.0 7.8 10.7 7.3 9.8 7.5 6.9 11.7 8.4 10.9 8.7 8.1 14.9 11.0 13.9 11.3 10.1

-0.75 20 11.9 8.3 11.4 8.5 7.0 9.9 7.2 9.4 7.4 7.0 9.7 6.9 9.1 7.2 6.8 13.0 9.9 12.5 10.1 9.0
40 8.5 6.5 8.3 6.7 6.4 6.7 5.2 6.4 5.3 5.2 7.5 5.9 7.3 6.1 6.0 9.7 7.8 9.4 7.9 7.7
15 14.2 9.6 13.3 9.8 7.3 10.8 7.4 9.9 7.6 7.1 11.7 8.3 10.8 8.6 8.2 14.5 10.9 13.6 11.1 9.7

-0.50 20 11.5 8.0 11.0 8.2 6.8 9.3 6.8 8.8 7.1 6.7 10.2 7.4 9.6 7.7 7.2 12.6 9.7 11.9 9.9 9.0
40 9.0 7.0 8.8 7.2 6.8 7.1 5.8 6.9 5.9 5.8 7.3 5.7 6.9 5.9 5.7 8.9 6.8 8.7 7.0 6.7
15 14.6 10.3 13.8 10.4 7.9 10.6 7.5 9.8 7.7 7.1 11.9 8.3 11.0 8.6 8.0 14.9 11.2 14.2 11.4 10.1

0.50 20 12.7 8.8 12.1 9.0 7.7 9.1 6.4 8.6 6.7 6.4 9.8 7.0 9.2 7.3 6.9 12.8 9.3 12.2 9.5 8.5
40 8.5 6.5 8.3 6.7 6.3 6.9 5.4 6.7 5.6 5.4 7.3 5.8 7.1 5.9 5.9 9.3 7.0 9.1 7.1 6.8
15 14.0 9.6 13.2 9.7 7.3 10.7 7.3 9.9 7.5 6.9 11.6 8.0 10.6 8.3 7.8 14.1 10.3 13.3 10.5 9.5

0.75 20 12.2 8.8 11.7 9.0 7.4 9.3 6.5 8.7 6.8 6.4 9.8 7.0 9.2 7.4 6.9 12.8 9.7 12.3 9.9 8.9
40 8.5 6.3 8.2 6.5 6.2 7.2 5.8 7.0 6.0 5.9 7.7 5.9 7.4 6.1 6.0 9.2 7.0 8.9 7.1 6.9
15 14.3 10.0 13.5 10.2 7.8 11.1 7.8 10.2 8.0 7.3 12.3 8.7 11.5 9.1 8.3 15.3 11.3 14.3 11.5 10.1

0.90 20 13.0 9.1 12.4 9.3 7.7 9.1 6.8 8.7 7.0 6.6 9.9 7.2 9.4 7.4 7.0 12.8 9.3 12.2 9.4 8.5
40 8.8 6.9 8.6 7.0 6.8 7.1 5.5 6.8 5.7 5.6 7.2 5.6 6.9 5.8 5.7 9.6 7.6 9.4 7.7 7.4

2
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Table 1b: H0 : β2,1 = 0 against HA : β2,1 < 0 (Nominal size: 5�)

Actual sizes (�)
Test: z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 15.0 10.5 14.1 10.6 8.2 11.2 7.7 10.3 8.0 7.2 12.0 8.5 11.1 8.8 8.2 14.7 10.9 13.9 11.1 9.9
-0.90 20 12.5 8.8 11.8 9.0 7.3 10.1 7.3 9.6 7.5 7.0 10.0 7.3 9.5 7.7 7.3 13.2 9.6 12.5 9.9 8.9

40 8.8 6.9 8.6 7.0 6.5 7.5 5.9 7.3 6.0 6.0 7.2 5.8 7.1 6.0 5.9 9.1 7.1 8.8 7.2 6.8
15 14.4 10.0 13.5 10.1 8.1 11.2 7.9 10.4 8.1 7.4 11.7 8.1 10.9 8.5 7.9 14.7 10.7 13.8 11.0 9.8

-0.75 20 12.9 9.4 12.2 9.5 8.1 9.3 6.6 8.7 6.8 6.4 9.6 6.8 9.0 7.1 6.7 12.7 9.4 12.1 9.6 8.8
40 8.7 6.8 8.4 6.9 6.7 7.3 6.0 7.1 6.1 6.1 7.6 5.9 7.3 6.2 6.0 8.9 7.1 8.7 7.2 6.9
15 14.5 10.2 13.7 10.3 7.6 10.7 7.4 10.0 7.7 7.2 11.7 8.1 10.8 8.4 7.8 14.6 10.9 13.7 11.1 9.9

-0.50 20 12.3 8.7 11.7 8.9 7.3 9.5 6.7 8.8 7.0 6.6 9.7 7.1 9.1 7.3 7.0 13.1 9.7 12.5 10.1 9.0
40 7.9 6.1 7.5 6.2 5.9 7.1 5.9 6.8 6.0 5.9 6.8 5.5 6.6 5.7 5.5 9.0 7.0 8.8 7.2 6.9
15 13.8 9.9 12.9 10.1 7.6 10.9 7.3 10.1 7.6 6.9 11.4 8.2 10.5 8.5 7.9 14.8 11.0 14.0 11.2 10.1

0.50 20 12.1 8.3 11.5 8.5 6.8 9.1 6.2 8.5 6.4 6.1 9.8 7.1 9.1 7.4 7.0 13.0 9.6 12.4 9.8 8.8
40 8.6 6.4 8.4 6.6 6.4 7.2 5.7 6.9 5.9 5.8 7.6 5.8 7.4 6.0 5.9 9.9 7.6 9.6 7.7 7.3
15 14.5 10.0 13.6 10.2 7.8 11.4 7.8 10.5 8.0 7.3 11.6 8.5 10.9 8.8 8.2 14.2 10.6 13.4 10.9 9.7

0.75 20 12.9 8.9 12.2 9.2 7.8 9.8 7.1 9.2 7.4 7.0 9.8 6.9 9.2 7.2 6.9 12.8 9.2 12.2 9.4 8.5
40 8.9 6.6 8.5 6.8 6.5 7.0 5.5 6.8 5.6 5.6 7.2 5.8 7.0 6.0 5.9 9.4 7.3 9.1 7.4 7.1
15 14.1 10.1 13.2 10.2 8.2 11.2 7.9 10.4 8.1 7.4 11.9 8.2 11.0 8.5 7.8 14.6 10.7 13.8 11.0 9.7

0.90 20 12.3 8.6 11.7 8.7 7.3 9.6 6.8 9.1 7.0 6.7 9.8 7.2 9.3 7.4 7.1 13.5 10.0 12.8 10.3 9.4
40 8.0 6.3 7.8 6.5 6.1 6.9 5.5 6.8 5.7 5.6 7.2 5.8 7.0 6.0 5.9 9.6 7.7 9.3 7.9 7.5

0.9

15 14.4 10.0 13.7 10.1 7.7 11.6 8.2 10.9 8.5 7.6 12.0 8.5 11.3 8.8 8.2 15.4 11.2 14.5 11.5 10.3
-0.90 20 12.4 8.9 11.8 9.1 7.5 9.3 6.5 8.7 6.7 6.4 9.9 7.2 9.2 7.4 6.9 13.0 9.8 12.3 10.1 8.9

40 8.7 6.1 8.5 6.8 6.4 7.1 5.6 6.8 5.8 5.7 7.3 5.8 7.1 6.0 5.9 9.7 7.7 9.4 7.8 7.6
15 14.5 10.4 13.8 10.5 8.2 11.0 7.6 10.2 7.9 7.4 11.7 8.4 11.0 8.7 8.1 14.7 10.6 13.9 10.9 9.4

-0.75 20 12.3 8.7 11.7 8.9 7.4 9.3 6.7 8.8 7.0 6.6 9.9 7.3 9.2 7.6 7.3 12.5 9.2 12.1 9.5 8.5
40 8.7 6.5 8.5 6.7 6.3 6.9 5.6 6.7 5.8 5.7 7.0 5.6 6.8 5.8 5.7 9.1 7.1 8.7 7.2 7.0
15 14.7 9.8 13.5 10.0 7.7 10.6 7.3 9.8 7.6 7.0 11.6 8.2 10.8 8.5 7.9 14.3 10.6 13.4 10.8 9.4

-0.50 20 11.7 8.1 11.2 8.4 6.7 9.5 6.8 9.0 7.1 6.6 10.2 7.5 9.6 7.9 7.3 12.5 9.0 12.0 9.3 8.4
40 8.9 6.8 8.7 7.0 6.6 6.9 5.6 6.7 5.7 5.6 6.7 5.4 6.4 5.6 5.5 9.0 6.9 8.7 7.1 6.8
15 14.0 9.6 13.1 9.7 7.6 10.2 7.0 9.5 7.2 6.6 11.2 8.0 10.5 8.3 7.7 14.0 10.5 13.3 10.7 9.5

0.50 20 11.5 8.2 11.0 8.3 7.0 9.6 6.9 9.0 7.3 6.8 9.9 7.3 9.4 7.6 7.2 12.5 9.2 12.0 9.5 8.7
40 8.5 6.3 8.1 6.5 6.2 7.2 5.7 6.9 5.9 5.8 7.4 5.7 7.1 6.0 5.9 8.9 6.8 8.7 7.0 6.7
15 14.2 9.9 13.3 10.0 7.6 11.4 7.9 10.6 8.2 7.3 12.0 8.6 11.2 8.8 8.3 14.5 10.7 13.7 10.9 9.8

0.75 20 12.0 8.6 11.4 8.8 7.1 9.3 6.9 8.7 7.1 6.8 9.5 6.9 9.0 7.2 6.7 12.8 9.6 12.2 9.8 9.0
40 8.4 6.4 8.2 6.6 6.3 7.3 5.8 7.1 6.0 5.9 10.0 5.7 6.8 5.8 5.7 9.2 7.3 9.0 7.5 7.1
15 15.3 10.5 14.4 10.6 8.2 11.3 7.9 10.4 8.2 7.6 11.2 7.8 10.4 8.1 7.5 15.3 11.5 14.5 11.7 10.3

0.90 20 13.0 9.2 12.4 9.3 7.7 9.4 6.7 8.7 7.0 6.5 10.6 8.0 10.1 8.3 7.8 13.2 9.9 12.5 10.2 9.2
40 9.1 7.0 8.8 7.2 6.9 7.1 5.6 6.8 5.8 5.6 7.1 5.9 7.0 6.1 6.0 10.3 7.9 10.1 8.1 7.7
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Table 2: H0 : β1,1 = β2,1 = β1,2 = β2,2 = 0 (Nominal size: 5�)

Actual sizes (�)

Test: χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 46.1 31.4 40.2 27.9 4.7 30.5 18.2 24.7 16.5 9.8 33.3 20.7 26.7 19.3 14.0 47.6 33.8 41.4 31.6 16.1
-0.90 20 38.2 25.0 33.6 23.6 6.4 22.7 13.2 18.6 12.9 9.6 26.1 15.6 21.6 15.2 11.9 39.9 27.6 35.6 26.5 15.3

40 20.5 13.3 18.7 13.5 10.7 12.6 7.6 11.1 8.2 7.4 12.9 8.0 11.3 8.4 7.7 23.0 15.4 21.2 15.6 13.1
15 45.8 31.5 39.9 28.4 5.8 28.4 16.6 22.4 15.4 10.9 33.2 21.4 27.1 20.2 15.9 47.0 33.7 40.8 31.6 18.2

-0.75 20 36.7 24.2 32.3 22.6 7.9 22.4 12.9 18.3 12.8 10.2 25.4 15.9 21.3 15.6 13.0 38.9 26.6 34.5 25.7 16.0
40 20.2 12.8 18.2 13.0 10.2 12.4 7.6 10.9 8.0 7.4 13.2 8.4 11.7 8.8 8.0 22.6 15.1 20.7 15.4 13.0
15 46.2 31.6 39.7 28.3 7.3 28.9 17.6 23.2 16.5 12.4 33.0 21.0 26.7 20.1 16.6 46.9 33.6 40.8 31.4 19.3

-0.50 20 36.0 23.1 31.6 21.7 8.9 21.1 12.1 17.1 12.1 10.0 23.1 14.2 19.1 14.2 12.2 39.2 27.4 34.8 26.5 16.7
40 17.6 11.4 16.2 11.7 9.7 11.9 7.5 10.4 7.9 7.5 12.8 8.1 11.2 8.5 7.8 21.3 14.0 19.4 14.4 12.2
15 45.8 31.1 39.8 28.1 7.6 29.2 17.5 23.3 16.4 12.4 32.6 20.6 26.3 19.6 16.2 47.4 33.7 41.2 31.5 19.3

0.50 20 35.9 23.4 31.5 21.9 8.7 21.2 12.5 17.6 12.4 10.4 24.4 14.6 20.0 14.5 12.2 39.2 26.9 34.5 26.0 17.1
40 18.3 11.4 16.4 11.6 9.4 12.1 7.6 10.7 8.1 7.6 13.2 8.1 11.5 8.5 8.0 21.8 14.2 19.8 14.4 12.1
15 45.5 31.1 39.4 28.1 6.2 30.3 18.5 24.1 17.2 11.6 33.9 21.8 27.8 20.6 16.2 48.5 34.7 42.3 32.5 18.3

0.75 20 36.9 24.0 32.3 22.7 8.2 22.6 13.5 18.5 13.3 10.7 24.9 15.4 20.6 15.2 12.4 40.5 28.1 36.2 27.1 17.0
40 19.2 12.6 17.5 12.8 10.2 12.9 7.9 11.4 8.4 7.7 13.3 8.2 11.8 8.8 8.0 21.9 14.5 20.0 14.8 12.1
15 46.1 31.7 40.1 28.2 4.9 29.9 18.0 24.2 16.4 9.7 35.0 22.2 28.9 20.7 14.9 47.4 33.7 41.5 31.3 15.6

0.90 20 37.8 24.5 33.3 23.0 7.2 23.1 13.2 18.9 12.9 9.6 25.0 15.5 20.7 15.2 12.2 40.7 28.0 36.2 26.7 15.4
40 20.6 13.5 18.9 13.7 10.8 12.2 7.4 10.7 7.9 7.2 13.2 7.8 11.4 8.4 7.4 23.6 15.7 21.9 16.0 13.1

0.9

15 46.23 32.0 40.1 28.9 5.4 29.8 18.2 23.8 17.0 11.2 34.4 22.4 28.3 21.2 16.6 48.2 34.7 42.1 32.2 17.7
-0.90 20 38.2 25.3 33.8 23.8 7.3 22.9 13.4 19.1 13.3 10.7 26.1 15.9 21.8 15.8 13.2 40.7 28.1 36.1 26.9 16.4

40 20.6 13.7 19.0 14.0 11.3 12.2 7.8 10.8 8.2 7.8 14.2 9.2 12.7 9.8 9.0 22.9 15.7 20.9 16.0 13.0
15 45.7 32.0 39.8 29.0 6.8 29.1 17.4 22.8 16.4 11.7 33.4 21.0 26.9 19.9 16.1 47.5 34.4 41.2 32.2 18.3

-0.75 20 36.9 24.9 32.8 23.5 8.6 21.2 11.9 17.2 11.8 9.7 24.6 15.1 20.5 15.2 12.9 39.8 27.5 35.4 26.6 16.0
40 18.8 11.8 17.1 12.1 9.7 12.3 7.6 10.5 8.0 7.5 13.0 8.2 11.4 8.6 7.9 22.7 15.7 21.0 15.9 13.6
15 44.5 30.4 38.3 27.6 7.4 27.7 16.1 21.8 15.2 11.7 32.4 21.0 26.5 20.2 16.9 47.2 33.6 40.5 31.5 19.0

-0.50 20 36.1 23.5 31.5 22.2 8.5 20.7 12.0 16.8 11.9 9.8 24.1 14.9 20.5 14.9 12.7 39.4 27.0 34.8 26.3 16.6
40 18.1 11.4 16.3 11.7 9.4 11.6 7.3 10.1 7.7 7.3 12.3 7.8 10.9 8.2 7.8 21.3 13.9 19.4 14.2 11.9
15 44.9 30.7 38.6 27.3 7.1 28.1 17.0 21.9 16.0 12.3 32.2 20.7 26.3 20.0 16.8 47.3 33.8 40.8 32.1 19.1

0.50 20 35.4 23.4 31.0 22.2 8.9 20.7 11.9 16.8 11.8 9.9 23.8 14.5 19.6 14.5 12.3 38.6 26.5 34.4 25.5 15.9
40 18.4 11.8 16.8 12.1 9.7 11.9 7.5 10.4 8.1 7.5 12.3 7.9 10.7 8.4 7.8 21.3 14.1 19.3 14.3 12.2
15 46.4 32.2 40.3 29.0 6.4 29.2 17.4 22.9 16.3 11.5 33.1 20.7 26.6 19.6 15.9 48.8 35.2 42.5 33.0 18.7

0.75 20 37.2 24.8 32.8 23.4 8.7 22.0 12.8 17.7 12.7 10.5 25.2 15.4 21.0 15.4 13.0 39.1 27.4 34.7 26.7 16.5
40 19.4 12.8 17.9 13.2 10.6 12.0 7.4 10.4 7.9 7.4 13.1 8.1 11.5 8.6 8.0 22.3 15.0 20.5 15.3 12.8
15 46.8 31.9 40.2 28.5 4.9 30.4 18.3 24.5 17.1 11.6 34.4 21.8 28.0 20.6 15.7 49.0 35.1 42.8 32.8 16.9

0.90 20 38.8 25.8 34.3 24.2 7.9 22.6 13.3 18.7 13.1 10.3 26.2 16.3 22.0 16.0 13.1 41.0 27.9 36.5 27.1 15.8
40 20.5 13.4 18.5 13.8 11.0 12.9 8.3 11.4 8.8 8.1 13.1 8.3 11.6 8.8 8.0 22.3 15.4 20.7 15.6 13.0
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In all the simulations considered so far, the errors εtµ were drawn from the

standard normal distribution. The assumption of normally distributed errors

can be found in many theoretical papers (see, e.g., Turkington (2000)). However,

it would be very interesting to investigate what happens when the εtµ's are

drawn either from a Student-t distribution with various degrees of freedom, or

from an asymmetric distribution. To this end, we present the results of the

relevant simulations for a collinearity coe�cient α = 0.5.

Table 3 reports the actual sizes of the compared tests of the null hypothesis

H0 : β2,1 = 0 against the one-sided alternative H0 : β2,1 > 0 for Student-t

distributed errors. The two halves of the table correspond to εtµ drawn from

the Student-t distribution with 2 and 15 degrees of freedom, respectively. These

Student-t distributions measure the e�ect of the thick distribution-tails on the

performance of the suggested size corrections. Notice that the Student-t dis-

tribution with 15 degrees of freedom is exactly in the middle of the distance

between the Cauchy distribution and the normal distribution (i.e., the Student-

t distribution with 30 degrees of freedom). The results in Table 3 are very

similar to the results in Table 1a for α = 0.5, and, therefore, we can conclude

that the thick-distribution-tails departure from the normally distributed errors

does not deteriorate the performance of the size corrected tests.

Table 4 reports the actual sizes of the compared tests of the null hypothesis

H0 : β2,1 = 0 against the one-sided alternative H0 : β2,1 > 0 for chi-square dis-

tributed errors. The two halves of the table correspond to εtµ equal to χ2
(1) − 1

and χ2
(3)−3, respectively, where χ2

(1) and χ
2
(3) are pseudo-random numbers from

chi-square distribution with 1 and 3 degree of freedom, respectively. These chi-

square distributions measure the e�ect of the skewness of distribution on the

performance of the suggested size corrections. Notice that, since the expected

value of a chi-square distribution equals its degrees of freedom (d.o.f.), the sub-

traction of the d.o.f. ensures that the errors εtµ = χ2
(d.o.f.) − d.o.f. have zero

mean. The results in Table 4 are again close to the results in Table 1a for

α = 0.5, and enable us to conclude that the distribution-skewness departure

from the normally distributed errors does not deteriorate the performance of

the suggested size corrections.

Finally, we would like to assess the performance of the size corrected tests
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when we test some more complicated hypotheses. In doing so, we present the

results of two simulation experiments for a collinearity coe�cient α = 0.5 and

normal errors just like in the �rst set of simulations.

Table 5a reports the actual sizes of the examined t tests of the null hypothesis

H0 : β1,1 + β2,1 = 0 against the one-sided alternative H0 : β1,1 + β2,1 > 0. The

results in Table 5a are almost identical to the results in Table 1a for α = 0.5

and normal errors just like in the �rst set of simulations. This means that

the relative performance of the size corrected t tests does not depend on how

complicated the null hypothesis is.

Table 5b reports the actual sizes of the examined F tests of the joint null

hypothesis H0 : β1,1 + β2,1 = 0 and β1,2 + β2,2 = 0 against the alternative

HA : H0 is false. Table 5b is qualitatively similar to Table 2 but has smaller

sizes both for the uncorrected and the corrected statistics. This comes from the

new hypothesis that we test which is more complicated but comprises by two

restrictions rather than the initial 4. Overall the intuition of Table 5a applies

here as well: complicated hypotheses do not change the properties of the tests.

However the number of hypotheses does.
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Table 3: H0 : β2,1 = 0 against HA : β2,1 > 0 (Nominal size: 5�)

Actual sizes (�)
Test: z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

εtµ are pseudo-random numbers from Student-t distribution with 2 degrees of freedom

0.5

15 15.5 11.0 14.6 11.1 8.5 11.0 7.9 10.3 8.1 7.2 11.8 8.3 11.2 8.5 8.0 14.7 10.6 13.8 10.7 9.3
-0.90 20 12.1 9.1 11.7 9.2 7.5 9.7 7.0 9.2 7.1 6.5 10.2 7.6 9.7 7.9 7.5 12.6 9.0 11.8 9.3 8.4

40 8.8 6.6 8.5 6.8 6.4 7.5 6.0 7.3 6.1 6.1 7.7 6.0 7.5 6.1 6.0 10.0 8.0 9.8 8.2 7.7
15 13.9 10.1 13.3 10.1 7.6 11.4 7.4 10.6 7.7 7.1 12.2 8.5 11.4 8.9 8.2 14.8 10.9 13.8 11.0 9.7

-0.75 20 12.3 8.5 11.8 8.7 7.3 9.5 6.9 9.0 7.2 6.8 10.1 7.4 9.6 7.8 7.3 12.9 9.7 12.4 9.8 9.0
40 9.0 6.7 8.6 6.9 6.6 6.5 5.2 6.4 5.3 5.3 7.1 6.0 7.0 6.1 6.0 9.2 7.7 9.1 7.8 7.4
15 13.5 9.6 12.6 9.9 7.6 11.5 8.0 10.8 8.4 7.7 12.0 8.5 11.2 8.7 8.3 14.8 10.5 14.0 10.7 9.4

-0.50 20 12.2 8.8 11.6 9.0 7.5 9.3 6.6 8.8 7.0 6.7 10.0 7.5 9.6 7.8 7.4 13.3 9.7 12.6 10.0 9.0
40 8.5 6.4 8.3 6.5 6.2 7.8 6.2 7.6 6.4 6.3 7.4 5.9 7.2 6.1 6.0 9.0 7.0 8.8 7.3 6.9
15 15.2 10.7 14.3 11.0 8.3 11.5 8.1 10.8 8.4 7.6 11.5 8.6 10.8 8.7 8.2 15.4 11.5 14.8 11.8 10.2

0.50 20 12.2 8.6 11.5 8.7 7.1 9.5 6.7 8.8 6.9 6.6 9.3 7.1 8.8 7.3 7.0 12.9 9.5 12.3 9.8 9.0
40 8.7 6.3 8.4 6.5 6.1 7.1 5.7 6.8 6.0 5.8 7.3 5.9 7.0 6.1 5.9 9.1 7.3 8.8 7.4 7.2
15 14.4 10.1 13.7 10.2 8.0 11.2 7.6 10.1 7.8 7.1 11.8 8.0 10.7 8.3 7.6 15.3 11.5 14.3 11.8 10.3

0.75 20 12.6 9.4 12.1 9.5 7.8 8.3 5.9 7.9 6.1 5.7 10.4 7.7 9.9 8.0 7.6 12.7 9.5 12.0 9.8 8.8
40 8.9 6.9 8.6 7.0 6.6 7.0 5.4 6.7 5.7 5.5 7.6 6.1 7.4 6.2 6.1 9.4 7.4 9.2 7.6 7.1
15 14.5 10.1 13.6 10.2 8.0 10.9 7.7 10.2 7.9 7.2 12.0 9.1 11.3 9.5 8.7 14.8 10.9 14.2 11.0 9.7

0.90 20 11.9 8.6 11.4 8.7 7.1 10.5 7.2 10.0 7.6 7.1 10.2 7.4 9.5 7.5 7.2 13.1 10.0 12.6 10.0 9.4
40 8.9 6.9 8.6 7.1 6.8 7.0 5.6 6.7 5.7 5.6 7.5 6.2 7.3 6.4 6.2 10.0 8.0 9.7 8.1 7.9

εtµ are pseudo-random numbers from Student-t distribution with 15 degrees of freedom

0.5

15 14.6 9.8 13.6 10.0 7.6 11.5 7.7 10.9 8.1 7.2 12.0 8.6 11.2 8.9 8.3 15.1 10.9 14.1 11.1 9.8
-0.90 20 12.4 8.6 11.9 8.8 7.3 9.6 6.6 9.0 6.8 6.5 10.4 7.6 9.8 7.8 7.3 13.1 10.1 12.6 10.4 9.5

40 9.3 7.2 9.1 7.4 7.2 6.7 5.2 6.4 5.5 5.3 7.8 6.0 7.5 6.2 6.1 10.1 8.2 9.8 8.4 8.0
15 14.6 10.2 13.8 10.3 8.0 11.2 7.5 10.2 7.9 6.9 11.8 8.7 10.9 9.0 8.5 14.7 10.9 13.8 11.1 10.1

-0.75 20 12.5 8.8 12.0 9.0 7.4 9.5 6.6 8.8 6.8 6.5 9.5 6.7 9.0 7.0 6.5 13.4 10.6 12.9 10.7 9.8
40 8.9 6.7 8.6 6.9 6.5 7.1 5.6 6.8 5.7 5.7 7.4 6.0 7.3 6.1 6.0 8.6 6.6 8.5 6.8 6.5
15 14.2 9.4 13.3 9.5 7.4 10.6 7.3 9.7 7.5 6.7 11.2 7.6 10.2 8.0 7.4 14.2 10.4 13.4 10.7 9.3

-0.50 20 11.0 8.1 10.5 8.3 7.1 9.3 6.6 8.6 6.8 6.4 10.4 7.7 10.1 8.1 7.6 12.9 9.7 12.2 9.8 8.9
40 8.5 6.6 8.4 6.7 6.4 6.9 5.6 6.7 5.8 5.7 7.1 5.7 6.9 5.9 5.7 8.6 7.0 8.4 7.1 6.8
15 13.9 9.6 13.0 9.6 7.2 11.1 7.3 10.1 7.6 7.1 11.9 8.0 11.2 8.5 7.7 14.9 11.3 14.1 11.5 10.4

0.50 20 12.4 8.9 11.8 9.2 7.6 8.6 6.0 8.2 6.4 5.9 9.5 7.0 9.1 7.3 7.0 13.5 9.9 13.0 10.2 9.3
40 8.5 6.4 8.3 6.6 6.3 7.3 5.6 7.0 5.9 5.8 6.9 5.2 6.6 5.4 5.3 9.0 7.0 8.8 7.1 6.8
15 15.2 10.7 14.4 10.8 8.2 11.1 8.1 10.4 8.4 7.6 11.8 8.4 11.0 8.8 8.1 15.5 11.6 14.7 11.9 10.5

0.75 20 12.4 9.1 12.0 9.3 7.8 10.3 7.1 9.7 7.5 7.0 9.5 7.0 8.9 7.2 6.9 12.9 9.6 12.4 9.8 9.2
40 8.8 6.5 8.6 6.6 6.4 7.2 5.7 6.9 5.9 5.8 7.8 6.4 7.6 6.5 6.4 9.1 7.1 8.8 7.4 6.9
15 14.1 10.0 13.4 10.3 7.8 11.7 7.9 10.9 8.2 7.4 11.9 8.6 11.3 9.0 8.3 14.5 10.5 13.6 10.8 9.5

0.90 20 12.9 8.8 12.3 9.0 7.5 9.9 7.1 9.6 7.3 7.0 10.3 7.3 9.7 7.5 7.0 12.8 9.4 12.3 9.6 8.5
40 9.9 7.3 9.5 7.4 7.0 7.3 5.7 6.9 5.8 5.7 6.8 5.2 6.5 5.4 5.3 9.1 7.0 8.9 7.2 6.9
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Table 4: H0 : β2,1 = 0 against HA : β2,1 > 0 (Nominal size: 5�)

Actual sizes (�)
Test: z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

εtµ = χ2
(1)
− 1, where χ2

(1)
are pseudo-random numbers from chi-square distribution with 1 degree of freedom

0.5

15 14.8 9.7 13.8 9.9 7.6 12.4 8.8 11.6 9.0 8.0 11.9 8.3 11.0 8.7 8.0 14.6 10.7 13.7 10.9 9.7
-0.90 20 13.1 9.3 12.3 9.5 7.9 9.2 6.7 8.5 6.8 6.6 9.8 7.2 9.3 7.5 7.1 13.3 10.1 12.6 10.3 9.3

40 8.4 6.5 8.2 6.6 6.3 7.1 5.8 7.0 5.9 5.8 7.5 5.9 7.2 6.0 5.9 9.6 7.6 9.2 7.8 7.5
15 14.7 10.5 13.9 10.6 8.3 11.2 8.0 10.4 8.3 7.6 12.5 8.8 11.5 9.2 8.5 15.0 11.1 14.1 11.4 9.9

-0.75 20 12.8 9.2 12.3 9.5 7.7 10.1 7.1 9.7 7.5 7.0 9.2 6.8 8.7 7.0 6.6 13.1 9.6 12.5 9.9 8.8
40 9.5 7.2 9.2 7.4 7.1 7.0 5.7 6.8 5.8 5.7 7.3 5.5 7.0 5.7 5.5 8.9 7.0 8.6 7.1 6.9
15 15.4 11.0 14.6 11.1 8.8 10.5 7.6 9.5 7.7 7.2 11.3 7.7 10.4 7.9 7.5 15.3 11.5 14.5 11.8 10.5

-0.50 20 11.8 8.4 11.2 8.5 7.1 9.2 6.8 8.8 7.0 6.6 9.9 7.1 9.4 7.5 7.0 13.4 10.0 13.0 10.2 9.2
40 9.2 7.1 8.9 7.3 7.0 7.4 6.1 7.1 6.2 6.1 7.1 5.7 6.9 5.9 5.7 8.8 7.0 8.6 7.2 6.9
15 14.1 9.7 13.2 9.9 7.4 11.0 7.7 10.4 7.9 7.3 11.6 8.3 10.8 8.6 8.0 14.8 10.8 13.9 11.0 10.1

0.50 20 13.1 9.4 12.5 9.5 7.7 9.1 6.7 8.6 6.9 6.6 9.4 6.9 8.8 7.2 6.8 13.1 9.8 12.5 10.0 9.1
40 8.7 6.5 8.6 6.6 6.4 6.5 4.9 6.3 5.2 5.0 6.9 5.5 6.7 5.6 5.6 9.3 7.0 9.2 7.2 6.7
15 15.0 10.6 14.1 10.7 8.2 10.7 7.1 10.0 7.3 6.5 11.7 8.1 10.8 8.4 7.8 14.3 10.9 13.5 11.1 9.9

0.75 20 13.0 9.4 12.3 9.4 7.7 9.3 6.6 8.8 6.9 6.7 9.8 7.1 9.4 7.3 7.0 13.3 9.8 12.7 10.1 9.1
40 8.8 6.4 8.4 6.6 6.3 7.0 5.5 6.7 5.6 5.5 7.1 5.8 6.9 6.0 5.9 9.3 7.2 9.2 7.4 7.0
15 14.5 10.2 13.6 10.4 7.8 11.2 7.6 10.1 8.0 7.1 12.2 8.2 11.3 8.4 7.7 15.2 11.0 14.4 11.2 10.0

0.90 20 12.8 9.1 12.2 9.3 7.7 10.1 7.2 9.4 7.3 7.0 10.3 7.1 9.7 7.3 7.0 13.5 9.7 12.9 9.9 9.0
40 9.1 7.3 8.9 7.6 7.2 7.1 5.6 6.9 5.7 5.6 7.0 5.7 6.8 5.8 5.7 9.1 7.3 8.8 7.5 7.2

εtµ = χ2
(3)
− 3, where χ2

(3)
are pseudo-random numbers from chi-square distribution with 3 degrees of freedom

0.5

15 14.1 10.0 13.5 10.2 8.1 11.8 8.3 11.1 8.6 7.7 12.0 8.7 11.1 9.0 8.4 15.4 11.1 14.5 11.4 9.9
-0.90 20 12.4 9.1 11.8 9.3 7.7 9.1 6.5 8.6 6.7 6.4 10.8 7.9 10.2 8.1 7.6 13.2 10.1 12.9 10.5 9.2

40 9.2 6.9 8.9 7.1 6.8 7.6 5.7 7.3 5.9 5.8 7.2 5.6 6.9 5.8 5.6 9.4 7.4 9.2 7.4 7.2
15 14.3 10.1 13.8 10.3 7.8 10.8 7.9 10.0 8.2 7.5 12.2 8.7 11.2 9.0 8.3 14.3 10.0 13.4 10.3 9.1

-0.75 20 12.1 8.4 11.5 8.6 6.9 9.6 6.9 9.1 7.2 6.7 10.5 7.5 9.9 7.9 7.5 13.2 9.9 12.6 10.2 9.2
40 8.8 6.6 8.5 6.8 6.4 7.4 5.7 7.1 5.8 5.8 7.7 6.2 7.4 6.3 6.2 9.4 7.4 9.1 7.5 7.2
15 13.5 9.8 12.8 9.8 7.3 10.5 7.4 9.7 7.6 7.0 12.3 9.0 11.4 9.2 8.9 15.1 10.9 14.1 11.2 10.1

-0.50 20 12.0 8.5 11.5 8.6 7.2 8.9 6.5 8.4 6.7 6.5 9.6 6.9 9.0 7.1 6.9 13.5 10.0 12.8 10.1 9.2
40 7.7 5.8 7.5 6.0 5.6 7.0 5.9 6.8 6.0 5.9 7.2 5.8 6.9 5.9 5.8 9.2 7.2 8.9 7.3 7.1
15 13.9 9.1 13.0 9.2 6.9 11.4 7.7 10.6 8.0 7.4 11.7 8.4 11.0 8.7 8.1 14.6 10.6 13.9 10.8 9.6

0.50 20 12.0 8.0 11.4 8.2 6.9 9.1 6.5 8.5 6.8 6.4 10.1 7.3 9.5 7.5 7.3 12.4 8.8 11.8 9.0 8.2
40 8.0 6.2 7.7 6.4 6.0 7.3 5.8 7.1 6.0 5.8 7.1 5.7 6.9 5.9 5.7 9.2 7.1 9.0 7.3 6.9
15 15.0 10.2 14.2 10.5 8.1 10.7 7.8 10.0 8.0 7.4 12.1 8.8 11.4 9.2 8.6 14.5 10.5 13.6 10.7 9.6

0.75 20 11.9 7.9 11.2 8.2 6.7 9.5 6.3 8.9 6.7 6.3 10.4 7.2 9.5 7.5 7.1 12.4 9.0 11.8 9.4 8.4
40 9.0 6.8 8.6 7.0 6.6 7.0 5.7 6.8 5.9 5.7 7.5 5.9 7.3 6.2 6.1 9.6 7.5 9.2 7.6 7.3
15 14.2 10.2 13.2 10.3 8.1 11.7 8.1 10.9 8.4 7.7 12.4 8.7 11.3 9.0 8.3 15.3 11.0 14.5 11.3 10.0

0.90 20 12.5 8.9 11.8 9.1 7.5 9.0 6.3 8.5 6.6 6.2 9.7 6.9 9.3 7.2 6.7 13.5 10.4 13.0 10.6 9.4
40 8.5 6.1 8.3 6.3 6.0 7.4 6.2 7.2 6.3 6.2 8.0 6.5 7.8 6.7 6.6 9.3 7.5 9.1 7.6 7.1
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Table 5a: H0 : β1,1 + β2,1 = 0 against HA : β1,1 + β2,1 > 0 (Nominal size: 5�)

Actual sizes (�)
Test: z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 14.0 9.7 13.3 9.9 7.5 11.3 7.8 10.4 8.0 7.1 12.1 8.6 11.2 8.9 8.4 14.4 10.6 13.7 10.8 9.6
-0.90 20 12.3 8.2 11.6 8.4 6.7 10.1 7.3 9.5 7.6 7.0 9.6 7.0 9.1 7.3 6.9 12.3 9.0 11.8 9.3 8.2

40 9.3 6.9 8.9 7.1 6.8 7.6 6.0 7.3 6.2 6.0 7.3 6.0 7.1 6.1 6.0 9.0 7.1 8.9 7.2 6.9
15 14.4 10.1 13.7 10.3 7.6 11.4 7.8 10.4 7.9 7.2 11.8 8.5 11.0 8.7 7.9 14.7 10.8 14.0 10.9 9.9

-0.75 20 12.4 8.7 11.7 8.9 7.1 8.5 6.3 8.0 6.6 6.2 10.4 7.2 9.7 7.5 7.0 12.9 9.4 12.4 9.7 8.5
40 8.8 6.7 8.5 6.8 6.4 7.4 5.8 7.1 6.0 5.8 7.1 5.9 6.9 6.0 5.9 8.9 7.0 8.7 7.3 6.9
15 13.5 9.2 13.0 9.3 7.1 11.4 8.2 10.7 8.5 7.8 11.0 7.9 10.3 8.1 7.6 14.4 10.3 13.6 10.5 9.5

-0.50 20 12.6 8.7 12.0 8.7 7.2 9.5 6.4 8.6 6.7 6.3 10.2 7.6 9.6 7.9 7.3 13.0 9.5 12.4 9.7 8.7
40 8.4 6.4 8.1 6.5 6.4 6.8 5.0 6.5 5.3 5.1 7.2 5.7 7.0 5.9 5.7 9.8 7.5 9.5 7.7 7.4
15 13.8 9.8 13.1 9.9 7.1 10.4 6.8 9.6 7.1 6.4 11.9 8.1 10.8 8.3 7.9 14.5 10.4 13.5 10.7 9.6

0.50 20 12.6 8.7 12.2 8.8 7.1 9.0 6.2 8.4 6.6 6.1 10.2 7.1 9.6 7.4 7.1 12.9 9.8 12.3 10.1 9.2
40 8.9 6.6 8.6 6.8 6.3 7.1 5.7 6.9 5.7 5.7 7.7 6.1 7.5 6.2 6.1 9.3 7.1 9.0 7.4 6.8
15 15.0 10.5 14.2 10.8 8.2 11.3 8.0 10.6 8.3 7.6 12.1 9.0 11.4 9.2 8.5 15.6 11.3 14.9 11.5 10.0

0.75 20 12.4 8.7 12.0 8.9 7.7 9.0 6.3 8.5 6.5 6.1 9.4 6.8 8.8 7.0 6.7 13.0 9.4 12.5 9.7 8.4
40 8.1 6.1 7.8 6.2 5.9 6.9 5.4 6.7 5.4 5.4 7.6 6.1 7.5 6.2 6.1 9.4 7.4 9.0 7.5 7.2
15 13.8 9.7 13.0 9.8 7.2 10.1 7.1 9.5 7.3 6.6 12.5 8.6 11.5 9.0 8.4 14.9 10.8 13.9 11.0 10.0

0.90 20 12.5 8.9 12.1 9.0 7.2 10.4 7.5 9.8 7.9 7.3 10.1 7.3 9.5 7.6 7.1 12.9 9.6 12.3 9.8 8.9
40 8.7 6.6 8.3 6.7 6.2 7.7 5.9 7.3 6.1 6.1 7.3 5.9 7.1 6.1 6.0 9.1 7.0 9.0 7.2 6.9

3
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Table 5b: H0 : β1,1 + β2,1 = 0 and β1,2 + β2,2 = 0 against HA : H0 is false (Nominal size: 5�)

Actual sizes (�)

Test: χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 30.6 20.6 27.1 19.4 7.6 22.1 14.0 18.7 13.9 9.5 23.3 15.3 19.9 15.1 11.7 33.3 22.1 29.1 21.5 14.6
-0.90 20 25.5 16.5 23.3 16.1 8.0 16.5 10.1 14.4 10.1 8.1 18.3 11.8 16.1 12.0 10.0 27.1 18.3 24.5 18.3 13.0

40 14.9 10.2 14.2 10.5 8.8 9.8 6.5 8.9 6.8 6.4 10.2 6.9 9.4 7.2 6.7 16.1 11.1 15.2 11.4 9.9
15 30.2 19.7 26.8 18.9 8.4 20.3 11.8 17.1 11.8 9.1 23.3 14.9 20.2 14.7 12.1 32.5 21.4 28.5 21.1 14.6

-0.75 20 25.4 17.0 23.0 16.8 9.4 15.3 9.0 13.1 9.3 7.7 17.6 10.9 15.2 11.1 9.2 27.3 18.5 24.8 18.6 13.2
40 14.2 9.8 13.3 10.0 8.5 9.7 6.8 9.1 7.1 6.7 10.5 7.4 9.7 7.8 7.4 15.7 10.9 14.8 11.2 9.4
15 31.7 20.3 27.6 19.2 8.2 20.6 12.6 17.6 12.3 10.0 22.9 14.9 19.7 14.7 12.2 33.0 23.1 29.3 22.7 16.3

-0.50 20 23.7 14.8 21.1 14.5 8.2 15.3 9.0 13.0 9.2 7.8 16.5 9.8 14.1 10.2 8.8 26.9 18.1 24.3 18.1 13.8
40 13.0 8.7 11.9 8.9 7.5 10.2 6.9 9.4 7.3 6.9 10.5 7.1 9.8 7.5 7.0 16.2 11.3 15.4 11.6 10.1
15 30.4 19.2 26.4 18.4 7.9 19.4 11.8 16.1 11.5 9.3 23.3 15.1 19.9 14.9 12.7 31.6 21.7 27.6 21.3 15.3

0.50 20 24.6 15.8 22.1 15.5 8.9 15.2 9.4 13.3 9.7 8.3 18.0 10.1 15.7 11.2 9.7 26.1 17.8 24.0 17.9 13.1
40 13.1 9.2 12.4 9.4 8.4 9.3 6.1 8.3 6.4 6.0 10.6 7.3 9.9 7.7 7.2 15.6 10.6 14.8 11.0 9.4
15 31.8 20.8 27.8 19.9 9.0 21.1 12.8 18.0 12.5 9.0 24.1 15.3 20.7 15.3 12.4 32.3 22.2 28.7 21.8 15.7

0.75 20 25.1 16.1 23.0 15.9 9.0 15.9 9.6 13.4 9.9 8.2 18.1 10.9 15.4 11.2 9.6 27.0 18.2 24.3 18.4 13.2
40 13.5 8.7 12.5 9.0 7.6 9.4 6.4 8.7 6.7 6.2 10.6 7.1 9.7 7.5 7.0 16.3 11.1 15.0 11.5 9.8
15 31.4 20.9 27.7 19.8 8.1 21.2 13.2 17.9 12.9 8.7 23.3 14.7 19.9 14.4 11.2 32.8 22.3 29.3 21.9 15.0

0.90 20 26.0 16.4 23.3 16.2 7.9 16.2 9.0 14.0 9.1 7.4 18.6 11.3 16.1 11.6 9.7 26.5 17.3 23.6 17.3 12.5
40 14.6 9.9 13.6 10.1 8.7 10.2 6.6 9.4 7.0 6.5 10.7 7.4 10.0 7.8 7.2 16.4 11.3 15.4 11.6 10.4

3
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6 Conclusions

In this paper, we have employed Edgeworth expansions of the standard nor-

mal (or Student-t) and chi-square (or F ) distributions to derive second-order

size corrected testing procedures for the coe�cient of the S.U.R. model with

�rst-order autocorrelated errors. These procedures include (i) the Edgeworth

corrected critical values of the well-known Wald (or F ) and t tests and (ii)

the Cornish-Fisher corrected F and t test statistics. Since the standard F and

t tests are adjusted for the degrees of freedom, they are locally exact, which

means that their approximate distributions become exact when the model is

su�ciently simpli�ed.

The Edgeworth and Cornish-Fisher expansions, employed by the paper, are

equivalent to each other, since the latter constitutes an inversion of the former.

However, in practice, the use of the Cornish-Fisher corrected test statistics is

recommended, since they are proper random variables with well-behaved dis-

tribution tails. The Edgeworth approximation, on the other hand, may assign

negative `probabilities' in the tails of the approximate distributions. Further-

more, the Cornish-Fisher size corrected tests can be easily implemented, in

practice, using the standard tables of the Student-t and the F distributions.

To evaluate the small-sample performance of the suggested tests, we have

conducted a series of Monte Carlo simulations. The results of these simulations

indicate that the size corrected t and F tests lead to substantial size improve-

ments upon their standard versions, which assume �rst-order asymptotic ap-

proximations. This is true even for very small samples of 15 or 20 observations.

Between the Edgeworth and Cornish-Fisher categories of the size corrected tests

suggested in the paper, the second category is found to perform better than the

�rst for almost all cases of serial and cross-equation correlation of the error

terms of the S.U.R. model examined. This result is also robust across di�erent

degrees of multicollinearity between the explanatory variables of the model con-

sidered. In particular, both the t and F Cornish-Fisher size corrected tests are

found to outperform their Edgeworth size corrected counterparts even when the

degree of serial correlation of the error terms is very high. This is true even for

a close-to-unity degree of correlation across the S.U.R equations.
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Finally, the paper shows that the relative performance of the suggested size

corrected t and F tests is not a�ected by two distinct departures from the

normality of the errors, i.e. if the errors are distributed either with thick tails (as

in the case of the Student-t distribution), or asymmetrically. Finally, the relative

performance of the examined size corrections remains the same no matter how

complicated the speci�c form of the null hypothesis is.

Appendix

In this appendix, we provide proofs of the main results of the paper. To prove these

results, we rely on a number of lemmas, which are presented with their proofs in a

Technical Appendix, available at the ... . This appendix is structured as follows: First,

we introduce the stochastic order ω(·), which measures the approximation error of the

asymptotic expansions given in the paper. Then, using the lemmas in the Technical

Appendix, we provide the proofs of the theorems.

The order ω(·)

Following Magdalinos (1992, page 344), let I be a given set of indexes which, without

loss of generality, can be considered to belong to the open interval (0, 1). For any

collection of real-valued stochastic quantities (scalars, vectors, or matrices) Yτ (τ ∈ I),

we write Yτ = ω(τ i), if for any given n > 0, there exists a 0 < ε <∞ such that

Pr
[
‖Yτ/τ i‖ > (− ln τ)ε

]
= o(τn), (A.1)

as τ → 0, where the ‖ · ‖ is the Euclidean norm. If (A.1) is valid for any n > 0, we

write Yτ = ω(∞). The use of this order of magnitude is motivated by the fact that,

if two stochastic quantities di�er by a quantity of order ω(τ i), then, under general

conditions, the distribution function of the one provides an asymptotic approximation

of the distribution function of the other, with an error of order O(τ i). Furthermore,

orders ω(·) and O(·) have similar operational properties (Magdalinos (1992)).

Asymptotic expansions of size corrected tests: Proofs of

theorems

Given the lemmas in the Technical Appendix, next we derive the proofs of the theo-

rems presented in the main text. These are based on known expansions of standard
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normal and chi-square distributed tests. We derive new expansions of the degrees-

of-freedom-adjusted versions of these tests, by inverting their characteristic functions.

These degrees-of-freedom-adjusted approximations of distribution functions are proved

to be locally exact.

Proof of Theorems 1 and 2. Approximation (42) of Theorem 1 can be proved fol-

lowing the steps of the proof in Rothenberg (1988). The quantities in (40) can be

obtained by expanding the corresponding quantities given by Rothenberg and retain-

ing the �rst term in each of these expansions. The approximation (44) of Theorem

2 follows from the approximation (42) and the following asymptotic approximations

of the Student-t distribution and density functions, which are given in terms of the

standard normal distribution and density functions, respectively (see Fisher (1925)):

IT−n(x) = I(x)− (τ2/4)(1 + x2)xi(x) +O(τ4),

(A.2)

iT−n(x) = i(x) +O(τ2).

Note that approximation (44) of Theorem 2 is locally exact. This can be easily

seen as follows: If parameter vector γ = (%′, ς ′)′ is known to belong to a ball of radius

ϑ, then, as ϑ→ 0, γ becomes a �xed known vector. By using (27), (29), (33) and (35)

we can prove that

Λ = 0, λ = κ = 0, λ0 = 2, κ0 = 0. (A.3)

Then, the analytic formulas of p1 and p2, given in (43), become

p1 = p2 = 0. (A.4)

This result implies that, with an error of order O(τ3), approximation (44) becomes

the Student-t distribution function with MT − n degrees of freedom.

Proof of Theorem 3. We begin the proof by noticing that, under null hypothesis

(36), the t statistic, given by (37), admits a stochastic expansion of the form

t = t0 + τt1 + τ2t2 + ω(τ3), (A.5)

where the �rst term in the expansion is given as

t0 = e′b/(e′Ge)1/2 = h′b, where b = GX ′Ωu/
√
T .

The result given by equation (A.5) implies that the Cornish-Fisher corrected statistic

t∗, given by (47), admits a stochastic expansion of the form

t∗ = t0 + τt1 + τ2(t2 − t3) + ω(τ3), (A.6)

34



where

t3 = (p1 + p2t
2
0)t0/2.

Let s be an imaginary number, and ψ(s) and φ(s) denote the characteristic func-

tions of the t statistic, given by (37), and a standard normal random variable, respec-

tively. Using (A.6) and the relationships:

E[exp(st0)t0] = sφ(s) and E[exp(st0)t30] = (3s+ s3)φ(s),

we can show that the characteristic function of the Cornish-Fisher corrected statistic

t∗, denoted as ψ∗(s), can be approximated as follows:

ψ∗(s) = ψ(s)− τ2s E[exp(st0)t3] +O(τ3)

= ψ(s)− τ2

2
s [p1s+ p2(3s+ s3)]φ(s) +O(τ3).

Dividing ψ∗(s) by −s, applying the inverse Fourier transform, and using Theorem 2,

we can show that

Pr {t∗ ≤ x} = Pr {t ≤ x}+
τ2

2
(p1 + p2x

2)xiT−n(x) +O(τ3)

= IT−n(x)− τ2

2
(p1 + p2x

2)xiT−n(x)

+
τ2

2
(p1 + p2x

2)xiT−n(x) +O(τ3)

= IT−n(x) +O(τ3). (A.7)

The last result means that the Cornish-Fisher corrected statistic t∗ is distributed as a

Student-t random variable with MT − n degrees of freedom.

Proof of Theorems 4 and 5. Approximation (58) of Theorem 4 can be proved fol-

lowing the steps of the proof in Rothenberg (1984b). The quantities in (56) can be

obtained by expanding the corresponding quantities given by Rothenberg and retain-

ing the �rst term in each of these expansions. Approximation (60) of Theorem 5 follows

from approximation (58) and the following asymptotic approximations of the F distri-

bution and density functions, which are given in terms of the chi-square distribution

and density functions, respectively:

FmT−n(x) = Fm(mx) + (τ2/2)(m− 2−mx)mxfm(mx) +O(τ4),

(A.8)

fmT−n(x) = mfm(mx) +O(τ2).
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Note that approximation (60) of Theorem 5 can be easily seen to be locally exact.

By using (A.3), (59), and (61), we can show that

ξ1 = −m(m− 2)/2 and ξ2 = m(m+ 2)/2 (A.9)

⇒ q1 = q2 = 0. (A.10)

This result means that, with an error of order O(τ3), approximation (60) becomes the

F distribution function with m and MT − n degrees of freedom.

Proof of Theorem 6. To begin the proof, we �rst notice that, under null hypothesis

(48), the F statistic, given by (50), admits a stochastic expansion of the form

F = F0 + τF1 + τ2F2 + ω(τ3), (A.11)

where the �rst term in the expansion is

F0 = b′Qb/m, b = GX ′Ωu/
√
T .

Equation (A.11) implies that the Cornish-Fisher corrected statistic F∗, given by (64),

admits a stochastic expansion of the form

F∗ = F0 + τF1 + τ2(F2 − F3) + ω(τ3), (A.12)

where

F3 = (q1 + q2F0)F0.

Let s be an imaginary number, and ψ(s) and φ(s) now denote the characteristic

functions of the F statistic, given by (50), and a chi-square random variable with m

degrees of freedom, respectively. Using (A.12) and the following relationships:

E[exp(sF0)F0] = φm+2(s/m) and E[exp(sF0)F 2
0 ] =

m+ 2

m
φm+4(s/m),

we can show that the characteristic function of the Cornish-Fisher corrected statistic

F∗, denoted as ψ∗(s), can be approximated as follows:

ψ∗(s) = ψ(s)− τ2s E[exp(sF0)F3] +O(τ3)

= ψ(s)− τ2s [q1φm+2(s/m) + q2
m+ 2

m
φm+4(s/m)] +O(τ3). (A.13)

For the chi-square density fm(x), the following results can be shown:

(mx)fm(mx) = mfm+2(mx) and (mx)2fm(mx) = m(m+ 2)fm+4(mx). (A.14)
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Dividing (A.13) by −s, applying the inverse Fourier transform, and using Theorem 5

and the results of equations (A.8) and (A.14), we can show that

Pr {F∗ ≤ x} = Pr {F ≤ x}+ τ2[(q1mfm+2(mx) + q2
m+ 2

m
mfm+4(mx)] +O(τ3)

= Pr {F ≤ x}+ τ2[(q1mxfm(mx) + q2mx
2fm(mx)] +O(τ3)

= Pr {F ≤ x}+ τ2(q1 + q2x)mxfm(mx) +O(τ3)

= FmT−n(x)− τ2(q1 + q2x)xfmT−n(x)

+τ2(q1 + q2x)xfmT−n(x) +O(τ3)

= FmT−n(x) +O(τ3). (A.15)

The last result implies that the Cornish-Fisher corrected statistic F∗ is distributed as

an F random variable with m and MT − n degrees of freedom.
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