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Abstract

We derive a stochastic expansion of the error variance-covariance matrix estimator
for the linear regression model under Gaussian AR(1) errors. The higher order accu-
racy terms of the refined formula are not directly derived from formal Edgeworth-type
expansions but instead, the paper adopts Magadalinos’ (1992) stochastic order of w
which is a convenient device to obtain the equivalent relation between the stochastic
expansion and the asymptotic approximation of corresponding distribution functions.
A Monte Carlo experiment compares tests based on the new estimator with others in
the literature and shows that the new tests perform well.
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totic approximations; autocorrelation robust inference
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1 Introduction

When linear hypotheses are to be tested in the linear regression model with autocorrelated
disturbances, the OLS estimators of the regression parameters need to be standardized by

appropriate standard errors, which perform well only in very large samples. In this note
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we propose estimators of the error variance which perform well in small samples, in OLS-
estimated, single-equation econometric specifications with Gaussian AR(1) disturbances and
no lagged dependent regressors.! These corrections aim at improving the finite sample prop-
erties of the ¢ and F’ tests.

If the researcher can soundly hypothesize on the true autocorrelation scheme, the use of
GLS estimators and of the conventional ¢ and F' testing procedures, provides a solution, under
the implicit assumption that the number of observations is large enough to permit the normal
and chi-square approximations, respectively, to the true distributions of the corresponding
test statistics. However, since, in finite samples, the standard ¢ and F’ tests remain oversized,
refined asymptotic techniques have been proposed to correct the finite-sample size of these
tests. Thus, Rothenberg (1984) suggested the use of Edgeworth expansions in terms of the
chi-square and normal distributions to derive general formulae of corrected critical values for
the Wald (or F') and t statistics, respectively. Edgeworth expansions have been previously
used in dealing with autocorrelation but only in models with no explanatory variables, see
Giraitis and Phillips (2012) and Velasco and Robinson (2001). Alternatively, for the linear
regression model with first-order autocorrelated disturbances, Magdalinos and Symeonides
(1995) suggested the use of degrees-of-freedom-adjusted Cornish-Fisher corrected ¢t and F
statistics, rather than the Edgeworth corrections of the critical values.

This paper considers an alternative approach; given that the autocorrelation process is of
the AR(1) type, we develop a refined-asymptotics, second order, autocorrelation-consistent
estimator of the true variance matrix of the OLS parameter estimator. We suggest the use of
a second order asymptotic approximation to the true disturbance variance matrix in order to
derive a better, more accurate, finite-sample estimate of the OLS-estimator variance matrix.
The higher order accuracy terms of the refined formula are not directly derived from formal

Edgeworth-type expansions, which are challenging but instead, the paper adopts Magdalinos’

!The recent paper by Muller (2014) renewed interest in manipulating specific autocorrelation schemes in
regression hypothesis testing. In that paper, the errors were assumed to be Gaussian AR(1); an assumption
frequently encountered in the literature.



(1992) stochastic order of w which can be regarded as a convenient device to obtain the
equivalent relation between the stochastic expansion and the asymptotic approximation of
corresponding distribution functions.? By using this estimate, we can calculate ¢ and F
test statistics with better finite-sample distributional properties. We prefer to use OLS over
feasible GLS in small samples because the latter is biased. The new estimator can be seen as
a refined parametric estimator of Den Haan and Levin (1994) when the errors are Gaussian
AR(1) errors.

In an extensive Monte Carlo experiment, we show that the new estimator leads to tests
with correct size and good power when serial correlation is strong. The experiment further
compares the performance of some standard and some newly proposed estimators in terms of
size and power of t-tests, including those proposed by Rothenberg (1984), Andrews (1991),
Newey and West (1994), Kiefer, Vogelsang and Bunzel (2000), Goncalves and Vogelsang
(2011) and Muller (2014). Because there is no uniformly most powerful test in our problem,
it is unavoidable that different tests will perform better at various subsets of the parameter
space. We find that the t-tests based on the new error variance estimator have good prop-
erties in many cases; for relatively strong autocorrelation they offer better size control and
more power.

The paper is organized as follows. Section 2 provides some preliminary notations and
the assumptions needed in our expansions. Section 3 develops the first-order asymptotic
approximation of the true error variance matrix and gives the analytic first-order estimation
of the OLS-estimator variance matrix. A Monte Carlo evaluation of the suggested size
corrections is reported in Section 3. Section 4 concludes. The Appendix collects all proofs.
Lemmas needed in the proofs are included in the Supplementary Material.

A word on notation. For any matrix X with 7' rows, Py = X(X'X)"'X’ and Mx =
Ir—Px = Iy — X (X'X)~'X’. Further, for any stochastic quantity (scalar, vector, or matrix)

the symbols F(-) and var(-) denote the expectation and variance operators, respectively, and

2This approach was also used by Symeonides et al. (2016) in deriving tests for SUR models.



the stochastic order w(-), defined in the Appendix, has the same operational properties as
order O(-). Finally, for any sample size T', the “asymptotic scale” of our expansions is

denoted as 7 = 1//T.

2 Model and Assumptions

Consider the single-equation econometric specification
y=XpB+ou, (1)

where y is the T x 1 vector of observations on the dependent variable, X is the T x k
matrix of observations on a set of £ non-stochastic regressors, (3 is a k x 1 vector of unknown
structural parameters, and ou is the T' x 1 vector of non-observable stochastic disturbances
with variance-covariance matrix 0?Q). The elements of the stochastic vector u are assumed
to be generated by a stationary first-order autoregressive (AR(1)) stochastic process, u; =
pui1 + e, (t=1,...,T)where 0 < |p| <1, uy~ N(0,1/(1 —p?)), and ¢; are independent
normal variables with variance o (0 > 0). The random vector u is distributed as N (0, )
with, Q = R/(1 — p?), where R = [(p"1), 1. 7]

Let p be a consistent estimator of p. For any function f = f(p), we write f = f(p).
The ordinary least squares (LS) estimators of 3 and o2 are 3,4 = (X'X) 1 X"y, and 6% ¢ =
(y — XBLS)’(Q - XBLS)/(T — k).

In this paper we provide a novel, refined estimator of (2. To derive the first-order ap-
proximation of matrix €, we start by finding the first-order approximation of Q~!, based
on a number of assumptions concerning its elements. To this end, we denote as Q;l the
T x T matrix of first-order derivatives of the elements of matrix Q! with respect to the

autocorrelation coefficient p. For any estimator p, we define the scalar §, = %(i) — p),which

3The restrictive assumptions of AR (1) and Gaussian errors can be relaxed. Deriving the necessary estima-
tors for this case however, is computationally burdensome. The extension to AR(p) errors is straightforward
and the extension to non-Gaussian distributions can be done along the lines of Phillips (1980).



can be interpreted as a “measure” of the sampling error of p.
Following Magdalinos (1992, page 3444), let the open interval J = (0,1) be a set of
indexes. For any collection of stochastic quantities (scalars, vectors, or matrices) Y; (7 € J),

we write Y, = w(7?), if for any given n > 0, there exists a 0 < € < co such that
Pr[|Y./7']| > (—In7)] =0o(7"), as 7—0, (2)

where the || - || is the Euclidean norm. Further, if (2) is valid for any n > 0, we write
Y, = 7(00). To justify the use of order w(-), notice that if two stochastic quantities differ
by a quantity of order w(7?), then, under general conditions, the distribution function of
the first provides an asymptotic approximation to the distribution function of the second,
with an error of order O(+). Also, notice that orders w(-) and O(-) have similar operational
properties.

The first-order approximation of matrix {2 can be estimated when the following assump-
tions hold:

(i) The elements of Q and Q! are bounded for all 7" and all —1 < p < 1, and matrices

1 1 1
Ag = =X'QX, Ag1=—-XO'X, F=-X'X
Q T 5 0-1 T ) T ) (3)

converge to non-singular limits, as 7" — oo.

(ii) Up to the fourth order, the partial derivatives of the elements of Q! with respect to
p are bounded for all 7" and all —1 < p < 1.

(iii) The estimator p is an even function of w, and it is functionally unrelated to the
parameter vector (3, i.e., it can be written as a function of X and ou only.

(iv) The nuisance parameter J, admits a stochastic expansion of the form 6, = d;, +

7dy, + w(7?),and the expectation F(vTdy, + ds,) exists and has finite limit, as 7' — oo.



The first two assumptions imply that matrix
1 ! -1
TX QQ, QX (4)

is bounded. Moreover, since the autocorrelation coefficient is functionally unrelated to the
regression parameters, assumption (iii) is satisfied for a wide class of estimators of p, which
includes the maximum likelihood estimator and the simple or iterative estimators based on
the regression residuals (see Breusch (1980)). Note that we do not need to assume that the
estimator p is asymptotically efficient. Moreover, assumptions (i)—(iv) are satisfied by all the
estimators of p, considered in the paper, which are the least squares (LS), Durbin-Watson
(DW), generalized least squares (GL), Prais-Winsten (PW) and maximum likelihood (ML)
estimators.?

Finally, for any estimator p;, indexed by I={LS, DW,6 GLS, PW, ML}, we define the
scalar f-@f, = limp_, E(ﬁ d1,+ds,), which can be interpreted as a “measure” of the accuracy

of the expansion of estimator p; around its true value.

3 Main results

In this section, we present the main theorems which provide the asymptotic expansions of

Q and O, as well as the first-order approximations the variance of the LS estimator 3 LS

4The closed forms of these estimators of p are given as follows:

(i) LS: prg = (Zthl ﬂf)_l (Zthz ﬁtﬁt,l) ,where @; are the LS residuals of regression model (1).
(i) DW: ppy = 1 — (DW/2),where the DW is the Durbin-Watson statistic. (iii) GLS: pg; =
(ZtT:l 12?) (2322 ﬁtﬂt_1> , where 1; denote the GLS estimates of u;, based on the autocorrelation-correction

of regression model (1), using any asymptotically efficient estimator of p. (iv) PW: This estimator of p, de-
noted as ppyy, together with the PW estimator of 3, denoted as B pw, minimize the sum of squared GLS
residuals (see Prais and Winsten (1954)). (v) ML: This estimator, denoted as p,,;, satisfies a cubic equation
with coefficients defined in terms of the ML residuals (see Beach and MacKinnon (1978)).



3.1 Asymptotic expansions of Q! and O

In this section, we derive the first-order approximation of matrix {2 based on the following

asymptotic expansions of matrices Q! and Q:

Theorem 1 Any consistent estimator Q01 of matriz Q' admits a stochastic expansion of

the form Q! = Q7L+ 7Q 18, + w(T?).

Theorem 2 Any consistent estimator Q of matriz 0 admits a stochastic expansion of the

form Q = Q — 70105, + w(7?).

Define the scalars ¢; = tr(Ag-1 F'TF 1) +(1—p?)tr(F'T), and ¢y = (1—p?)tr(FGq-1),
where Gg-1 = A;', and I' = (X'RX)/T are k x k matrices. The first-order approximation

of matrix €2 is derived in the next theorem.

Theorem 3 According to the estimator p; used, the first-order approximation of matrix 2

can be written as

Q=0+ TQQ;IQ,%{, + w(1?), (5)

where kLS — — (k+3)p+ (c1—2k) DW _ /{55+1, KS‘L . LS_(l—P2)C2+(C1—(1—P2)k‘)

p 2p » Fop p 2p 2p

ML _ .GL
and £,"" = K, + p.

In the above expression, Q= I%/(l —p9), R= [(ﬁ'}fﬂ)t,t/:lmT], and Q;l =2p;Ir — D —
2p;A, with A a T x T matrix with 1 in (1, 1)-st nd (7, T)-th positions and 0’s elsewhere.
Also, D is the T' x T band matrix whose (¢,#')-th element is equal to 1 if |t — ¢/| = 1 and
0 otherwise and I is the T' x T identity matrix. In the above expressions, Q) and R are
functions of p; and thus depend on I but we suppress this dependence to avoid burdensome

notation.



3.2 Example: First order approximation of var(B s)

Let S = UCLT(B Ls) be the variance matrix of the least squares estimator of 5. Since the
disturbances in model (1) are AR(1)-autocorrelated, the true variance matrix of the estimator
Brgis S = o(X'X) ' X'QX(X'X) ! We suggest employing the first-order approximation
of Q given by (5). This will give the following first-order approximation of matrix S, derived

in the next theorem.

Proposition 4 For all p;, the first-order approximation of matriz S can be written as S =

S+ 7'5’,)/@'; + w(7?),where
S, =67 5(X'X)7IX'Q0TOX (X' X) (6)

Note that matrix S, is bounded. This is straightforward, since (3), (4), and (6) imply

that

o s (XIX\T(XO00X XX\ ok, (X000XN
A T T T T T - ()

A

i.e., S, is a function of bounded matrices.

4 Simulation

In this section, we examine the small sample performance of the proposed refined estimator
in a t-test framework like the one presented in Section 3.2 (henceforth denoted by BC from
"bias corrected"), by conducting a Monte Carlo study. We choose to compare methods
using t-testing because of the attention it has received from the literature (see e.g. Muller
(2014)). We compare our new procedure with extant ones from the literature, including
those proposed by Rothenberg (1984) (denoted by R), Andrews (1991) (A), Newey and
West (1994) (NW), Den Haan and Levin (1994) (VARHAC), Kiefer, Vogelsang and Bunzel



(2000) (KVB), the naive bootstrap of Goncalves and Vogelsang (2011) (GV) and Muller
(2014) (MUL). For completeness we have also included the t-statistic based on the OLS
estimator. We denote t-tests based on the above estimators as tg¢o, tyur, tr, etc.

All experiments are conducted based on 5000 iterations and consider sample sizes of
T = {15,30,60} observations, respectively. The data generating process is given as y; =
BoTor+ 171+ PyTa+uy, where uy = puy_q+e; and where p = {0.6,0.7,0.8,0.9}, ¢, ~ N(0, 1),
y1 ~ N(0,(1—p*) 1) and 3, = B, = B, = 1. For the regressors, we assume that x¢; = 1, and
zj = at?Cy, + (1 — a)'/2¢,,, for j = 1,2, where (j, follow an AR(1) model with parameter p
and N(0,1) errors. Finally, a = {0.5} determines the correlation between regressors ;.”

The hypothesis of interest tested in our simulation exercise is Hy: [, = 1 against its
one sided alternative Hy: ; > 1. In the simulations the alternative is set to 5 = 1.2. The
method of Andrews (1991) is implemented by assuming an AR(1) model and using both the
quadratic spectral kernel (A-QS) and the Bartlett kernel (A-B). For the ¢y test, we choose
the value 0.757'/3 and the Bartlett kernel. We use the Sj, version of Muller’s (2014) test,
as we found that this version is almost equally powerful to versions Sp4 and Sss and is not
size distorted for small samples, as the latter. For the bootstrap procedures we draw 499
bootstrap samples and we employ blocks of length 3 for samples with 15 observations, and
blocks of length 5 for the other cases.

Table 1 presents the size of t-tests. Overall performance deteriorates as persistence
increases. The tyw, tr, ta_p, ta_gs and tgy tests are oversized everywhere in the table.
The ¢y and tiyp perform better. For 7= {15,30} and p = {0.6,0.7,0.8} the new tp¢
tests have overall the best size. When T" = 60 tests based on ty srmac have a smaller size.
From the rest of the tests ¢,/ has size very close to the nominal. For p = 0.9 it surpasses
tgc and ty argac. Table 2 presents the size-adjusted power of the t-tests. The most powerful
test is tg which is based on the asymptotically efficient feasible GLS. The tests that had good

size properties are also the least powerful. For T'= {15,30} and p = {0.6,0.7,0.8} the new

5Note that in our simulation exercise we have also tried different values of a like a = {0.1, 0.9}, but these
do not change the results. These results are available upon request.



tgc tests have more power than t;; 1, sometimes almost twice as much. The ty argac tests
have more power than the ¢tz ones.

To evaluate the robustness of our method we provide, in the supplementary material,
the results of two other experiments, in which the errors are AR(2) and ARMA(1,1). We
find that the tpc is robust to such departures from the AR(1) case. These results show
that our methodology is useful for applied work and warrant the extension to AR(p) and

non-Gaussian errors. This is left for future work.

5 Appendix

In this appendix, we provide the proofs of the theorems presented in the main text. These proofs
rely on a number of lemmas, which are proved in the Supplementary material.

The following proofs are based on the expansion of Q1 around Q! and the asymptotic ex-
pansion of the scalar d,, defined by 6, = X(p — p).

Proof of Theorem 1: Using Corollary 2 of Magdalinos (1992) and the definition of J,, we

can write Q1 = Q71 + %(ﬁ —p) +w(7?)

- 1(p—p) - -
=0+t . +w(t?) = Q1+ 70,10, + w(r?). (8)
Proof of Theorem 2: Re-write the expansion of matrix Qfl, given by Theorem 1, as follows:
Q' =0+ 707", where Q! = Q16, +w(r). 9)

Using Magdalinos’ (1992) Corollary 1, we can derive {2 = Q1+ TQ;I]fl = Q—-700'0+w(r?)
Using (9), the last relationship implies
Q=0- QU6 + w(T)]Q + w(t?) = Q — 700100, 4+ w(7?) (10)

Proof of Theorem 3: Based on the results of Theorem 2 and the results of lemmas which

10



appear in the supplementary material, we can see that, for all estimators considered (i.e., py,
indexed by [ = {LS, DW,GL, PW,ML}), we can write () = Q+ TQQ;lflég + w(7?),where the

sampling errors 5,1, =VT(p ;—p) admit the stochastic expansion, for all /:

1_2 /Qfl 1_2 1_2 / /Qfl
5£S _ _( g% 2 U’_T( 5 p) |:u/MXQQ—1MXu_ ( P >'le/-,uu 2 U’:| +W(T2)
2(1 — p*
A F L= 2 42y 4+ w(?)

2
1
oG = PV =585 — (1 p) [u’MXQQIPXEQlu + iu’QlEPXQQIPXEQlu] +w(tt)

6/10\“ = §§L +7p [(1 — p2)(uf +ud) — 1] + +w(7'2).

Taking expectations and collecting terms of order O(1) of the above relationships, we can complete

the proof of the theorem.
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Table 1: Size of t-tests

T tors tr ta-p ta-q@s tnw tav tkve tumur tvarHAC UBC
p=0.6 15 0.114 0.078 0.382 0.192 0.183 0.109 0.085 0.065 0.117 0.052
30 0.128 0.068 0.341 0.163 0.148 0.118 0.068 0.055 0.056 0.042
60 0.130 0.060 0.249 0.117 0.187 0.070 0.057 0.057 0.035 0.044
p=0.7 15 0.133 0.092 0.391 0.205 0.200 0.111 0.096 0.071 0.122 0.062
30 0.148 0.075 0.341 0.179 0.157 0.117 0.071 0.066 0.067 0.042
60 0.160 0.062 0.263 0.145 0.195 0.069 0.061 0.061 0.037 0.043
p=0.8 15 0.151 0.094 0.395 0.231 0.216 0.101 0.100 0.076 0.133 0.070
30 0.196 0.086 0.360 0.215 0.199 0.107 0.091 0.068 0.082 0.062
60 0.210 0.071 0.280 0.162 0.221 0.095 0.079 0.064 0.049 0.052
p=09 15 0.169 0.103 0.410 0.256 0.231 0.118 0.109 0.073 0.152 0.089
30 0.229 0.099 0.376 0.251 0.224 0.125 0.106 0.065 0.097 0.086
60 0.268 0.103 0.310 0.224 0.254 0.131 0.117 0.061 0.075 0.076

Table 2: Size-adjusted power of t-tests

T tors 1tr ta-p ta—gs tnw tav tkve tumur tvAarHAC tBC
p=0.6 15 0.173 0.170 0.246 0.203 0.198 0.145 0.170 0.070 0.169 0.110
30 0.227 0.234 0.284 0.242 0.233 0.220 0.212 0.098 0.193 0.123
60 0.338 0.368 0.374 0.315 0.351 0.349 0.303 0.124 0.219 0.169
p=0.7 15 0.179 0.154 0.233 0.207 0.201 0.132 0.178 0.058 0.163 0.106
30 0.238 0.229 0.279 0.240 0.238 0.231 0.222 0.078 0.169 0.122
60 0.317 0.367 0.345 0.283 0.325 0.333 0.299 0.109 0.186 0.150
p=0.8 15 0.168 0.175 0.219 0.197 0.183 0.142 0.163 0.064 0.175 0.115
30 0.204 0.242 0.238 0.217 0.206 0.212 0.208 0.078 0.182 0.120
60 0.284 0.366 0.294 0.279 0.287 0.317 0.281 0.097 0.176 0.140
p=0.9 15 0.177 0.172 0.209 0.188 0.183 0.151 0.164 0.062 0.154 0.119
30 0.205 0.242 0.203 0.199 0.203 0.219 0.218 0.070 0.165 0.132
60 0.230 0.342 0.248 0.222 0.220 0.251 0.230 0.077 0.155 0.135
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