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Abstract. The global localisation of spatial points is a critical step in tasks such as object tracking, motion 
analysis and pose measurement. This paper addresses the critical issue of global localisation when spatial 
points are scattered and cannot be contained within the same field of view. It proposes a local visual global 
localisation method based on an out-of-view reference through spatial point association. By constructing a 
local measurement and localisation model using parallel binocular vision and a spatial coordinate 
transformation model that associates local regions with the global reference, the global localisation of spatial 
points inside and outside the field of view is achieved. Experimental results demonstrate that the localisation 
accuracy of spatial points is less than 0.1 mm in terms of distance measurement. This method is useful for 
cooperative multi-camera localization and multi-point measurement in large 3D spaces.

1 Introduction
In applications such as motion analysis, object tracking 
and size measurement, the extraction and localisation of 
spatial points is essential [1-2]. Spatial point localisation 
can be categorised into two distinct types: local and 
global. The focal point of this discourse pertains to the 
concept of global localisation in the context of out-of-
view references. 

A variety of methodologies are employed by 
disparate research domains to address this issue. In the 
domain of measurement, conventional methodologies 
employed for non-common field-of-view imaging 
scenarios encompass the utilisation of scene stitching to 
extend the visual field, and the employment of robotic 
arms to facilitate camera manipulation. For instance, 
grating projection combined with robotic arms or image 
stitching from multiple views has been employed [3-4]. 
The former utilises the pose parameters of the motion 
mechanisms to calculate the spatial points, while the 
latter achieves localisation by stitching images from 
different viewpoints or from multiple views. However, 
grating projection is not suitable for sharp elements or 
metal surface glare and is especially insensitive to small, 
sharp elements such as vertices and corners. The process 
of moving imaging measurement is inherently space-
consuming, rendering it ill-suited for applications 
characterised by elevated spatial volume requirements. 
Moreover, it is important to note that the utilisation of 
these methodologies is not feasible in real time, as their 
operation entails the implementation of time-sharing 
measurements. 

In the field of surveying, spatial coordinate 
transformation methods are employed to unify two 
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distinct coordinate systems, with a focus on the 
transformation between systems that possess the same 
unit scale. The objective of this unification is to achieve 
localisation in a consistent manner. The objective of this 
study is to enhance conversion accuracy by optimising 
pose parameters based on public point cloud overlap. 
The following methods are typically used for coordinate 
transformation: the Bursa model, the Rodrigues matrix, 
the quaternion method, singular value decomposition 
(SVD) and the least squares method [5-7]. The 
establishment of mappings between coordinate systems 
[8] by these methods enables the localisation of points
that are out of view. It is evident that methodologies
such as Gauss–Newton and Levenberg–Marquardt
utilise non-linear optimisation in order to ascertain the
optimal pose transformation matrix.

The focal point of this paper is the localisation of 
points within the camera's field of view, and the 
subsequent association of these points with out-of-view 
global references. The primary challenges can be 
categorised as follows: firstly, local spatial points are 
visible but the global reference is not; secondly, space is 
limited, which prevents the use of mechanical guides; 
and thirdly, the spatial distance between local and global 
reference points must be calculated. The proposed 
methodology is a global localisation technique that 
utilises local parallel binocular stereo vision. 
Experiments have been designed to verify the method's 
effectiveness. 

2 Problem Description
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The entity object in this study is shown in Fig. 1, and 
based on the graphical resolution, the corresponding 
topology structure is generated as shown at the top of 
Fig 1. Dashed lines represent axes and denote invisible 
virtual elements, serving as localization references. The 
key information comprises spatial points 1 and 2, and 
central line reference element 3. 

The distances between points 1 and line 3, points 2 
and line 3, and between points 1 and 2 are critical 
geometric parameters. It is evident that spatial points 1 
and line 3 are not amenable to contact measurement. The 
substantial span of these structures exceeds the direct 
field of view of optical systems, thereby rendering 
visual direct measurement unfeasible. The existing 
equipment is incapable of meeting the simultaneous 
requirements for real-time and high-precision 
localization. Consequently, the development of a rapid, 
precise and indirect global visual localization method is 
imperative. 

 
Fig.1. Schematic of physical structure diagram 

3 Local Visual Global Localization 
Method Based on Out-of-View 
Reference of Spatial Point Association 
The method under scrutiny here is one which targets the 
deviation of points 1 and 2 in the Z-axis depth direction, 
as well as their global spatial relationship. The 
prerequisite for implementation is the acquisition of 
complete positioning information for spatial points 1 
and 2. The subsequent section will focus on the 
globalisation method of spatial points. 

3.1 Measurement Principle 

The system design layout is illustrated in Fig 2. The 
visual model employs a perspective imaging model. Due 
to spatial limitations, the two cameras are arranged in an 
upper-lower configuration, with close proximity to 
minimise the baseline distance. The field of view of the 
two cameras is limited to the local area in which the 
target point is located, thereby ensuring high 
measurement accuracy in the local small area. The 
measurement principle is predicated on the utilisation of 
parallel binocular vision in order to locate and measure 
target points in the local region. A transformation matrix 
is then established between the target points within the 
field of view and the reference points outside the field 
of view. The transformation matrix is utilised to 
establish the association between spatial points both 

within and without the field of view, in addition to 
performing geometric measurements. 

 
Fig.2. Layout of local optical-axis parallel binocular vision 
system 

3.2 Target Point Localization in Local Region 

Let  𝑃𝑃 𝑤𝑤  be the control point in the public area world 
coordinate system. If it appears within the overlapping 
area of the two cameras' fields of view, then the 
corresponding matching point U(u,v) can be found in 
the image of the upper camera. The transformation 
relationship vector between 𝑃𝑃 𝑤𝑤 and 𝑃𝑃up is expressed as: 

𝑃𝑃𝑢𝑢𝑢𝑢 = 𝑅𝑅 × 𝑃𝑃 𝑤𝑤 + 𝑇𝑇    (1) 

In Formula (1), 𝑃𝑃up represents the coordinates in the 
upper camera coordinate system, and 𝑃𝑃 𝑤𝑤 represents the 
control point coordinates in the world coordinate system. 
The expression represents a linear space transformation 
with reversible properties, where R and T describe the 
pose relationship between the camera coordinate system 
and the primary coordinate system. Rotation directions 
are defined by right-handed rotations around the X, Y, 
and Z axes, and the rotation matrix R can be expressed 
as in Formula (2); T is the translation vector: 
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Similarly, a similar equation applies to the lower 
camera. The pose between two coordinate systems 
includes 12 parameters: 

[ 𝑄𝑄w~𝑄𝑄𝑢𝑢𝑢𝑢: (𝛼𝛼𝑢𝑢𝑢𝑢1, 𝛽𝛽𝑢𝑢𝑢𝑢1, 𝛾𝛾𝑢𝑢𝑢𝑢1, 𝑡𝑡𝑢𝑢𝑢𝑢1, 𝑡𝑡𝑢𝑢𝑢𝑢2, 𝑡𝑡𝑢𝑢𝑢𝑢3)
  𝑄𝑄w~𝑄𝑄𝑑𝑑𝑑𝑑: (𝛼𝛼𝑑𝑑𝑑𝑑2, 𝛽𝛽𝑑𝑑𝑑𝑑2, 𝛾𝛾𝑑𝑑𝑑𝑑2, 𝑡𝑡𝑑𝑑𝑑𝑑1, 𝑡𝑡𝑑𝑑𝑑𝑑2, 𝑡𝑡𝑑𝑑𝑑𝑑3)       (3) 

In Formula (3), (𝛼𝛼𝑢𝑢𝑢𝑢1, 𝛽𝛽𝑢𝑢𝑢𝑢1, 𝛾𝛾𝑢𝑢𝑢𝑢1, 𝑡𝑡𝑢𝑢𝑢𝑢1, 𝑡𝑡𝑢𝑢𝑢𝑢2, 𝑡𝑡𝑢𝑢𝑢𝑢3) re
present s t he pose o f t he upper  camera,  and 
(𝛼𝛼𝑑𝑑𝑑𝑑2, 𝛽𝛽𝑑𝑑𝑑𝑑2, 𝛾𝛾𝑑𝑑𝑑𝑑2, 𝑡𝑡𝑑𝑑𝑑𝑑1, 𝑡𝑡𝑑𝑑𝑑𝑑2, 𝑡𝑡𝑑𝑑𝑑𝑑3) represents the pose
 of the lower camera. Since the stereo vision structure i
s fixed, there is a deterministic pose relationship betwe
en the two cameras. This pose relationship can be calcu
lated using the stereo vision spatial control point mappi
ng relationship, expressed as: 

[ 𝑅𝑅c = 𝑅𝑅𝑟𝑟𝑅𝑅𝑙𝑙
𝑇𝑇

𝑇𝑇𝑐𝑐 = 𝑇𝑇𝑟𝑟 − 𝑅𝑅c𝑇𝑇𝑙𝑙
                               (4) 

In Formula (4), 𝑅𝑅c is the rotation matrix between the 
two cameras, and 𝑇𝑇𝑐𝑐  is the translation vector between 

the two cameras, which can be calibrated separately 
using Zhang's calibration method. Therefore, by solving 
the camera pose above, the pose between the world 
coordinate system and the camera coordinate system can 
be obtained, and the local positioning information of the 
spatial target point can be calculated. 

3.3 Global Association Localization of Out-of-
View Reference Points 

Establishing a rigid body transformation relationship 
between two coordinate systems through public point 
clouds is a key issue in establishing global associations 
between spatial points. Among the many solution 
methods, the SVD method directly obtains the global 
optimal solution through covariance matrix 
decomposition, which has obvious theoretical 
advantages. In contrast, the quaternion method is fast 
and avoids singularity, but requires additional 
processing of the translation component. The Kabsch 
algorithm, as a special case of SVD, is only applicable 
to rigid body transformation scenarios; while the ICP 
algorithm is insensitive to initial values and can handle 
partially overlapping point clouds, it risks getting stuck 
in local optima and has a high computational cost. 

Based on the local region target point measurement 
and positioning, given the point set P{p_i} in the local 
coordinate system and the corresponding point set 
Q{q_i} (i=1,...,n) in the reference coordinate system, 
solve for the optimal rotation matrix R and translation 
vector T according to Formula (5) to minimise the 
objective function: 


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This paper uses SVD to solve R and T. Construct 
matrix H between local and reference systems: 
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coordinates centred on the centre of mass in the local 
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Perform singular value decomposition on H: 

=  TH U S V                                 (7) 

From Formula (6) and (7), after calculating the 
maximum value of ∑ 𝑦𝑦𝑖𝑖

𝑇𝑇𝐑𝐑𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1 , we can obtain the 

optimal rotation matrix R as: 

= TR VU                                      (8) 

Finally, substitute the value of R into formula (9) to 
calculate the translation vector T: 

pRqT −=                                  (9) 

The obtained R and T form the transformation 
matrix from local to global coordinates. Once a target 
point’s coordinate is measured in the local system, it can 
be associated with the reference point using this 
transformation to compute their relative spatial position. 

4 Experimental Verification 

4.1 Experimental Apparatus Construction 

By simulating the visual system layout parameters 
below, we can obtain the image factors affecting pose 
transformation accuracy. This allows us to derive 
principles for selecting the number of control points, 
focal length, and effective distance, which serve as the 
basis for system layout design. 

  
(a)               (b)                (c)               (d) 

  
(e)                (f)               (g)                (h) 

  
(i)                 (j)               (k)                 (l) 

Fig. 3 Analysis of influencing factors of pose accuracy 

 
Fig.4. Experimental setup 

2

MATEC Web of Conferences 413, 01001 (2025)	 https://doi.org/10.1051/matecconf/202541301001
MAIQS 2025



The entity object in this study is shown in Fig. 1, and 
based on the graphical resolution, the corresponding 
topology structure is generated as shown at the top of 
Fig 1. Dashed lines represent axes and denote invisible 
virtual elements, serving as localization references. The 
key information comprises spatial points 1 and 2, and 
central line reference element 3. 

The distances between points 1 and line 3, points 2 
and line 3, and between points 1 and 2 are critical 
geometric parameters. It is evident that spatial points 1 
and line 3 are not amenable to contact measurement. The 
substantial span of these structures exceeds the direct 
field of view of optical systems, thereby rendering 
visual direct measurement unfeasible. The existing 
equipment is incapable of meeting the simultaneous 
requirements for real-time and high-precision 
localization. Consequently, the development of a rapid, 
precise and indirect global visual localization method is 
imperative. 

 
Fig.1. Schematic of physical structure diagram 

3 Local Visual Global Localization 
Method Based on Out-of-View 
Reference of Spatial Point Association 
The method under scrutiny here is one which targets the 
deviation of points 1 and 2 in the Z-axis depth direction, 
as well as their global spatial relationship. The 
prerequisite for implementation is the acquisition of 
complete positioning information for spatial points 1 
and 2. The subsequent section will focus on the 
globalisation method of spatial points. 

3.1 Measurement Principle 

The system design layout is illustrated in Fig 2. The 
visual model employs a perspective imaging model. Due 
to spatial limitations, the two cameras are arranged in an 
upper-lower configuration, with close proximity to 
minimise the baseline distance. The field of view of the 
two cameras is limited to the local area in which the 
target point is located, thereby ensuring high 
measurement accuracy in the local small area. The 
measurement principle is predicated on the utilisation of 
parallel binocular vision in order to locate and measure 
target points in the local region. A transformation matrix 
is then established between the target points within the 
field of view and the reference points outside the field 
of view. The transformation matrix is utilised to 
establish the association between spatial points both 

within and without the field of view, in addition to 
performing geometric measurements. 

 
Fig.2. Layout of local optical-axis parallel binocular vision 
system 

3.2 Target Point Localization in Local Region 

Let  𝑃𝑃 𝑤𝑤  be the control point in the public area world 
coordinate system. If it appears within the overlapping 
area of the two cameras' fields of view, then the 
corresponding matching point U(u,v) can be found in 
the image of the upper camera. The transformation 
relationship vector between 𝑃𝑃 𝑤𝑤 and 𝑃𝑃up is expressed as: 

𝑃𝑃𝑢𝑢𝑢𝑢 = 𝑅𝑅 × 𝑃𝑃 𝑤𝑤 + 𝑇𝑇    (1) 

In Formula (1), 𝑃𝑃up represents the coordinates in the 
upper camera coordinate system, and 𝑃𝑃 𝑤𝑤 represents the 
control point coordinates in the world coordinate system. 
The expression represents a linear space transformation 
with reversible properties, where R and T describe the 
pose relationship between the camera coordinate system 
and the primary coordinate system. Rotation directions 
are defined by right-handed rotations around the X, Y, 
and Z axes, and the rotation matrix R can be expressed 
as in Formula (2); T is the translation vector: 
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Similarly, a similar equation applies to the lower 
camera. The pose between two coordinate systems 
includes 12 parameters: 

[ 𝑄𝑄w~𝑄𝑄𝑢𝑢𝑢𝑢: (𝛼𝛼𝑢𝑢𝑢𝑢1, 𝛽𝛽𝑢𝑢𝑢𝑢1, 𝛾𝛾𝑢𝑢𝑢𝑢1, 𝑡𝑡𝑢𝑢𝑢𝑢1, 𝑡𝑡𝑢𝑢𝑢𝑢2, 𝑡𝑡𝑢𝑢𝑢𝑢3)
  𝑄𝑄w~𝑄𝑄𝑑𝑑𝑑𝑑: (𝛼𝛼𝑑𝑑𝑑𝑑2, 𝛽𝛽𝑑𝑑𝑑𝑑2, 𝛾𝛾𝑑𝑑𝑑𝑑2, 𝑡𝑡𝑑𝑑𝑑𝑑1, 𝑡𝑡𝑑𝑑𝑑𝑑2, 𝑡𝑡𝑑𝑑𝑑𝑑3)       (3) 

In Formula (3), (𝛼𝛼𝑢𝑢𝑢𝑢1, 𝛽𝛽𝑢𝑢𝑢𝑢1, 𝛾𝛾𝑢𝑢𝑢𝑢1, 𝑡𝑡𝑢𝑢𝑢𝑢1, 𝑡𝑡𝑢𝑢𝑢𝑢2, 𝑡𝑡𝑢𝑢𝑢𝑢3) re
present s t he pose o f t he upper  camera,  and 
(𝛼𝛼𝑑𝑑𝑑𝑑2, 𝛽𝛽𝑑𝑑𝑑𝑑2, 𝛾𝛾𝑑𝑑𝑑𝑑2, 𝑡𝑡𝑑𝑑𝑑𝑑1, 𝑡𝑡𝑑𝑑𝑑𝑑2, 𝑡𝑡𝑑𝑑𝑑𝑑3) represents the pose
 of the lower camera. Since the stereo vision structure i
s fixed, there is a deterministic pose relationship betwe
en the two cameras. This pose relationship can be calcu
lated using the stereo vision spatial control point mappi
ng relationship, expressed as: 

[ 𝑅𝑅c = 𝑅𝑅𝑟𝑟𝑅𝑅𝑙𝑙
𝑇𝑇

𝑇𝑇𝑐𝑐 = 𝑇𝑇𝑟𝑟 − 𝑅𝑅c𝑇𝑇𝑙𝑙
                               (4) 

In Formula (4), 𝑅𝑅c is the rotation matrix between the 
two cameras, and 𝑇𝑇𝑐𝑐  is the translation vector between 

the two cameras, which can be calibrated separately 
using Zhang's calibration method. Therefore, by solving 
the camera pose above, the pose between the world 
coordinate system and the camera coordinate system can 
be obtained, and the local positioning information of the 
spatial target point can be calculated. 

3.3 Global Association Localization of Out-of-
View Reference Points 

Establishing a rigid body transformation relationship 
between two coordinate systems through public point 
clouds is a key issue in establishing global associations 
between spatial points. Among the many solution 
methods, the SVD method directly obtains the global 
optimal solution through covariance matrix 
decomposition, which has obvious theoretical 
advantages. In contrast, the quaternion method is fast 
and avoids singularity, but requires additional 
processing of the translation component. The Kabsch 
algorithm, as a special case of SVD, is only applicable 
to rigid body transformation scenarios; while the ICP 
algorithm is insensitive to initial values and can handle 
partially overlapping point clouds, it risks getting stuck 
in local optima and has a high computational cost. 

Based on the local region target point measurement 
and positioning, given the point set P{p_i} in the local 
coordinate system and the corresponding point set 
Q{q_i} (i=1,...,n) in the reference coordinate system, 
solve for the optimal rotation matrix R and translation 
vector T according to Formula (5) to minimise the 
objective function: 


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This paper uses SVD to solve R and T. Construct 
matrix H between local and reference systems: 
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In Formula (6),  𝑀𝑀𝑖𝑖
´ ´ and 𝑃𝑃𝑖𝑖

´  represent the world 
coordinates centred on the centre of mass in the local 
coordinate system and reference coordinate system, 
respectively. 

Perform singular value decomposition on H: 

=  TH U S V                                 (7) 

From Formula (6) and (7), after calculating the 
maximum value of ∑ 𝑦𝑦𝑖𝑖

𝑇𝑇𝐑𝐑𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1 , we can obtain the 

optimal rotation matrix R as: 

= TR VU                                      (8) 

Finally, substitute the value of R into formula (9) to 
calculate the translation vector T: 

pRqT −=                                  (9) 

The obtained R and T form the transformation 
matrix from local to global coordinates. Once a target 
point’s coordinate is measured in the local system, it can 
be associated with the reference point using this 
transformation to compute their relative spatial position. 

4 Experimental Verification 

4.1 Experimental Apparatus Construction 

By simulating the visual system layout parameters 
below, we can obtain the image factors affecting pose 
transformation accuracy. This allows us to derive 
principles for selecting the number of control points, 
focal length, and effective distance, which serve as the 
basis for system layout design. 

  
(a)               (b)                (c)               (d) 

  
(e)                (f)               (g)                (h) 

  
(i)                 (j)               (k)                 (l) 

Fig. 3 Analysis of influencing factors of pose accuracy 

 
Fig.4. Experimental setup 
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Fig.5. Common point cloud construction 

The experimental setup designed based on the 
simulation results is shown in Fig 4. The construction of 
the common control points is shown in Fig 5. The 
camera used is a Basler scA1600-14gm industrial 
camera, which provides the pixel coordinates of the 
centroid and the spatial three-dimensional coordinates 
of the target common points. The establishment of the 
reference points outside the field of view is performed 
on a ROMER articulated measuring machine. By 
measuring the control points and processing the data, 
their three-dimensional coordinates in the reference 
coordinate system are obtained. 

4.2 Experimental Results 

As shown in Fig 5, based on the three-dimensional 
coordinates of the target common points in the camera 
coordinate system and the three-dimensional 
coordinates in the reference coordinate system, the 
transformation matrix between the two coordinate 
systems can be calculated using these common 
coordinate point coordinate data. The calculation results 
are shown in Table 1 (displayed to 4 decimal places): 

Table 1. Rotation Matrix 

-0.9472 -0.1538 -0.2810 
-0.2734 0.8451 0.4592 
-0.1669 -0.5118 0.8426 

Table 2 Cross-field Length Measurement Results (mm) 

-93.4623 
44.8897 

-312.5442 
 
Using this transformation matrix for cross-field 

geometric measurement (size > 300mm), results are in 
Table 3: 

Table 3. Cross-field length measurement results (unit: mm) 

No. Measured Size Actual Size Relative Error 
1 308.4134 308.3500 0.0634 
2 311.3809 311.3778 0.0031 
3 305.5944 305.6009 -0.0065 
4 308.6417 308.5791 0.0626 
5 311.5774 311.5354 0.0420 

6 305.8562 305.8546 0.0016 
7 308.7785 308.7487 0.0298 
8 303.1281 303.1010 0.0271 
9 306.0527 305.9858 0.0669 
10 308.9711 308.8964 0.0746 

 
As shown by the results, the relative error of the 

measurement method proposed in this paper is less than 
0.1 mm. Preliminary experimental results indicate that 
even when the measured dimensions are completely 
outside the camera's field of view, the method proposed 
in this paper can still meet the requirements for high 
measurement accuracy. 

5 Conclusion 
To address the problem of global positioning of spatial 
points across fields of view, this paper investigates a 
local visual global positioning method that associates 
spatial points with out-of-field reference points. By 
analysing the characteristics of the target object, a 
parallel binocular visual local positioning model is 
constructed. using singular value decomposition to 
establish coordinate transformation relationships, 
thereby unifying the coordinate systems of local target 
points and global reference points. Preliminary results 
indicate that the method can achieve high measurement 
and positioning accuracy requirements, and the 
computational process involves matrix operations at the 
millisecond level, making it possible to perform rapid, 
precise, non-contact measurements of global geometric 
parameters for larger-sized workpieces. 
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