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Abstract. Recent trends in the field of structural integrity highlight the integration of Artificial Intelligence 
(AI) with related domains such as Structural Health Monitoring (SHM), Non-Destructive Evaluation (NDE), 
and the assessment of Stress Corrosion Cracking (SCC). AI plays a pivotal role in developing intelligent 
solutions to complex challenges, particularly in the detection and characterization of SCC. While several 
techniques are available, this paper focuses on the Ultrasonic Testing (UT) based Non-Destructive Testing 
(NDT) method integrated with Artificial Intelligence (AI), making it a robust Industry 4.0 solution. Deep 
learning, a subset of Artificial Intelligence and Machine Learning, is already considered as a key technology 
in Industry 4.0 solutions. This paper discusses the detection of SCC in steel using UT based data and deep 
learning. The trained neural network model will be used for the detection of SCC in the steel.

1 Introduction
Structural Health Monitoring (SHM) is vital for 
maintaining and enhancing structural integrity by 
enabling real-time or periodic assessment of a 
structure’s conditions [1]. It integrates various sensing 
technologies and data analysis methods to evaluate 
performance and detect potential damage or anomalies. 
SHM addresses a wide range of defects, broadly 
categorized into material, manufacturing, construction, 
service-induced, environmental, operational, design, 
maintenance, and welding-related issues [1]. For the 
purpose of this analysis, the focus is specifically on 
service-induced and environmental defects, which 
encompass corrosion, fatigue cracks, wear and abrasion, 
weathering, erosion, and stress corrosion cracking 
(SCC) [2, 3], among others. 

The ongoing analysis and research place specific 
emphasis on SCC, a form of degradation that occurs due 
to the combined effect of static tensile stress, a corrosive 
environment, and a susceptible material [4]. This unique 
interplay of factors makes SCC a critical subject within 
structural integrity and materials science. SCC is 
particularly unsafe because it can develop and propagate 
rapidly, often without visible warning, ultimately 
leading to catastrophic structural failure. As such, the 
timely detection and mitigation of SCC are essential for 
ensuring the safety and reliability of engineering 
structures and their components.  

There are various methods for detecting Stress 
Corrosion Cracking (SCC), which can be broadly 
classified into two categories: destructive testing and 
non-destructive testing (NDT) [5]. Ultrasonic testing 
(UT) is one of the important NDT methods which uses 
high-frequency sound waves to inspect materials and 
detect defects without causing damage. UT is a type of 
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volumetric inspection, meaning it can reveal flaws 
within the material, not just on the surface. 

1.1 UT method and the concept for defect 
detection

UT is one of the most used non-destructive evaluation 
(NDE) method for the detection of SCC. It uses the 
concept of sound wave reflection and interaction with 
material discontinuities. Sound energy is transmitted 
into the material as waves, which travel through it. 
When these waves encounter a discontinuity, such as a 
crack, a portion of the energy is reflected back from the 
defect [6]. This reflected wave is then converted into an 
electrical signal by the transducer and displayed on a 
screen. The graph shows the crack pulse, initial echo, 
back surface echo etc., as shown in Figure 1 with its 
details to be explained in later part of this paper. 

Figure 1: UT based detection method 
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1.2 Role of deep learning in the detection of 
SCC 

Deep learning is a significant branch of AI, which is 
helping in shifting the industry processes towards 
Industry 4.0. The deep learning capabilities enable the 
data-driven approaches, holistic insights and heightened 
efficiency. Here, the deep learning uses the same UT 
based data that already has the information about the 
SCC in the steel plates. It will enhance the efficiency as 
well as the sophistication of the detection process. 

2 Related work  
Kaseko et al. (1993) [7] worked on single images which 
may contain multiple defects but the defective regions 
in an image are generally demarcated by rectangular 
bounding boxes, which do not trace the defect 
boundaries accurately and therefore are not very useful 
for defect quantification. Abdel-Qader et al. (2006) [8] 
demonstrated the use of principal component analysis 
for crack identification on concrete bridge deck images. 
Shi et al. (2016) [9] developed an ensemble learning 
technique using random forest based on decision trees 
and it was later put to use by the research community for 
automatic image-based crack classification. Unlike the 
traditional ML-based models, convolutional neural 
network (CNN)-based DL methods can automatically 
learn the damage-sensitive features in the input data and 
are, in general, more accurate. One of the first few 
studies in this direction can be attributed to Zhang et al. 
(2016) [10], who proposed a novel CNN architecture 
called ConvNet for identifying crack patches in road 
inspection images. They demonstrated that CNN-based 
models can outperform support vector machine (SVM) 
and Boosting-based classifiers [11]. This approach was 
later extended to crack identification on concrete 
surfaces by Cha et al. (2017) [12]. Liu et al. (2019) 
[13] resorted to a SVM to identify cracks in tunnel 
inspection images. An initial crack map was first 
obtained by using intensity and gradient-based 
thresholding strategy. Chen et al. (2017) [14] proposed 
a Naive Bayes-based multi-view data fusion scheme 
which was incorporated into a CNN-based crack 
classification framework enabling accurate and robust 
inspection of nuclear power plant components. The 
research by Gopalakrishnan et al. invoked the idea of 
transfer learning to address this issue of limited training 
data [15]. It has been observed that the features extracted 
by the early convolutional layers are largely class-
agnostic. So, the authors used a CNN pre-trained on the 
large ImageNet dataset [16] to initialize the parameters 
of a CNN for identifying crack patches on hot-mix 
asphalt and port land cement concrete pavement surface 
images leading to accurate predictions.
     One of the prominent examples by Ren et al. (2015) 
of modelling approach is Faster RCNN [17]), where an 
input image is first processed by a series of 
convolutional layers. The feature map generated by the 
last convolutional layer is sent to a region proposal 
network to produce a number of interest regions. The 
interest regions are finally classified, and the 
corresponding bounding boxes are refined using a CNN 

module [18], explained by Cha et al. 
(2018); demonstrated the efficiency of this approach 
through the detection of a variety of defects such as 
concrete crack, steel corrosion, bolt corrosion, and steel 
delamination in building and bridge structures.  

The analysis of related work shows that there is no 
noteworthy work done on UT based data using AI 
algorithms and their prime focus is images but the 
proposed research has scope to work on raw data as well 
advance deep learning algorithms e.g. RNN (Recurrent 
Neural Network).   

3 Equipment and experimental setup 

This section elaborates on the equipment utilized and the 
experimental setup employed for data acquisition. 

3.1 Inducing SCCs in the lab environment 

To collect the UT data of SCCs, we had to induce the 
SCCs in steel plates in the lab environment. The lab 
environment is to mimic the real-world conditions based 
on temperature, chemical reaction and pressure that 
leads to SCC, as shown in Figure 2.  

 

 
 

Figure 2: SCC test rig 

3.2 LTPA 

The instrument used to collect the data is a MicroPulse 
LTPA, which is an advanced ultrasonic testing (UT) 
equipment designed for the inspection of materials. It is 
used to collect data to detect internal defects such as 
cracks, porosity, or corrosion. It works with 
conventional single element transducers (as used in this 
paper) and with phased array transducers. 

3.3 UT Transducer 

An UT transducer was an immersion type that is a 
specialized UT probe used in NDT applications. This 
type of probe is designed to transmit and receive 
ultrasonic waves without requiring direct physical 
contact with the test surface. It enables precise, non-
invasive inspection. 

3.4 Servostep controller 

A servostep motor controller is an integrated system 
with hardware and software that can control the 
movements of axes of an immersion tank. The water 
tank has axes that can move the UT probe left, right, 
upward and downward. The vertical axis holds the 
transducer in the water tank, as shown in Figure 3. 

The water works as couplant which allows ultrasonic 
rays to cross the medium. 

3.5 Experimental setup 

The transducer was fixed onto the vertical axis in water 
tank and connected to the LTPA. On the other side, the 
servostep controller is connected to the water tank to 
control the movement of the transducer. 

Both LTPA and servostep controller are connected to a 
computer system which is used to control the LTPA and 
servostep controller (Figure 3). The LTPA sends data to 
computer system in the form of text file. 

 

 
 

Figure 3: Experimental setup 

4 Data acquisition & graphical analysis 
The transducer captures the UT data from the plates for 
every millimetre from the marked area on the steel plate. 
The experimental arrangement will capture a text file 
with numerical data for each millimetre. There are 7150 
text files for each plate. Each file has 3500 entries, 
which depends on the configuration of LTPA. Figure 4 
presents an example scan contained in the text file. 

 
By analysing multiple text files, it can be observed that 
on the X-axis, initial spike in the graph from 0 to 2000 
is common in all the text files, therefore this part of the 
data can be eliminated. The second spike is for the front 
surface and third spike is for the back surface. Since the 
SCCs are on the back surface, only the part from 2000 
to 2500 is relevant to use. 

 

 
Figure 4: Graphical representation of data from one 

position 
 

5 Proposed idea  
The proposed approach involves acquiring UT data and 
leveraging AI techniques particularly deep learning for 
effective classification. Specifically, the focus is on 
using deep learning architectures that have the capacity 
to automatically extract meaningful features from raw 
UT signals and perform accurate classification without 
the need for handcrafted feature engineering. The 
current objective centres on the detection of cracks, with 
an emphasis on identifying SCC in steel plates. The goal 
is to determine whether a given steel plate shows signs 
of SCC using the collected UT data. 

 
To achieve this, an RNN with Long Short-Term 

Memory (LSTM) units will be implemented. This 
architecture is well-suited for analysing sequential data, 
such as UT signal patterns, by capturing both short- and 
long-term dependencies in the time series. Once trained 
on labelled datasets, the RNN-LSTM model will be 
employed to classify new steel plate samples, indicating 
the presence or absence of SCC. 

6 RNN-LSTM 
We initially began our experiments using an RNN to 
model the sequential UT data. However, we 
encountered the vanishing gradient problem — a 
common limitation in traditional RNNs — which 
severely hindered the model’s ability to learn long-range 
dependencies. As a result, the network failed to 
converge effectively during training, leading to 
suboptimal performance. 
 
To overcome this challenge, we transitioned to an 
LSTM architecture [19]. LSTM networks are 
specifically designed to address the vanishing gradient 
issue by incorporating memory cells and gating 
mechanisms, which help preserve and regulate 
information across longer sequences. This change 
significantly improved the learning stability and 
prediction accuracy. The model was better to capture the 
underlying temporal patterns in the UT data, which is 
crucial for tasks like crack detection and structural 
integrity assessment. 
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7 Results 

The results are as follows when the LSTM model was 
applied on UT based data for classification. The LSTM 
model demonstrated excellent performance throughout 
training, validation, and testing stages. Over training 
epochs, both the training and validation accuracy 
(Figure 5) exhibited a steady and consistent 
improvement, culminating in final values of 0.9904 and 
0.9942, respectively.  

 

Figure 5: Model accuracy 

The minimal gap of 0.0037 between training and 
validation accuracy indicates strong generalization with 
negligible overfitting.  

 

Figure 6: Overfitting monitor 

This observation is further supported by the overfitting 
monitor as shown in Figure 6, which shows that the 
accuracy difference remained consistently below the 5% 
caution threshold throughout the training process. The 
normalized loss trend closely mirrors the accuracy 
curve, indicating that as the model's confidence 
increased, the error reduced significantly. 
     The learning rate schedule followed a step decay 
approach, progressively decreasing from an initial rate 
of 10-3 to a final rate of 3.13×10-5, as shown in Figure 7.  

 

Figure 7: Learning rate schedule 

This strategy allowed the model to converge smoothly, 
especially in the later epochs. Using an independent test 
set, the model achieved a test accuracy of 0.9946, 
reaffirming its ability to generalize to unseen data. 
Notably, the model retained this performance after being 
reloaded from saved weights, demonstrating its stability 
and reproducibility. 

 

Figure 8: Classification report 

A detailed classification report further validated the 
model’s effectiveness. For the binary classification task 
distinguishing between "Crack" and "No Crack," the 
precision, recall, and F1-score for both classes were all 
0.9946, indicating balanced and high-quality predictions 
(Figure 8). These metrics are visually summarized in a 
bar chart, where all values exceed the 0.9 threshold, 
falling in the "excellent" performance range. Overall, 
the results confirm that the LSTM model is highly 
reliable and effective for crack detection, exhibiting 
both high accuracy and robust generalization with 
minimal overfitting. 

8 Conclusion and future work 

In this paper, an LSTM-based model was developed and 
tuned for the crack detection in steel plates, reaching 
good performance across all training and evaluation 
metrics. The model demonstrated a high degree of 
accuracy, with a final test accuracy of 0.9946 and 
consistency between training, validation, and testing 
phases. The training process showed stable convergence 
with minimal overfitting, helped by a well-designed 
learning rate schedule. The precision, recall, and F1-
scores for both classes were nearly identical, reflecting 
the model’s robustness and ability to generalize 
effectively. These results confirm the suitability of 
LSTM architectures for SCCs detection, especially 
when combined with appropriate training strategies and 

monitoring. 
      While the current model performs well, there are 
several directions for future work. First, incorporating 
transformer-based modules could potentially enhance 
the model's ability to focus on subtle crack features. 
Furthermore, unsupervised learning could reduce the 
labelling burden and make the model more efficient. 
These enhancements will further strengthen the 
practicality and scalability of deep learning approaches 
in automated structural health monitoring applications. 
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LSTM architectures for SCCs detection, especially 
when combined with appropriate training strategies and 

monitoring. 
      While the current model performs well, there are 
several directions for future work. First, incorporating 
transformer-based modules could potentially enhance 
the model's ability to focus on subtle crack features. 
Furthermore, unsupervised learning could reduce the 
labelling burden and make the model more efficient. 
These enhancements will further strengthen the 
practicality and scalability of deep learning approaches 
in automated structural health monitoring applications. 
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