MATEC Web of Conferences 413, 05004 (2025)
MAIQS 2025

https://doi.org/10.1051/mateccont/202541305004

LSTM based SCC detection using ultrasonic testing based data

Sumit Kumar ", Channa Nageswaran?, and Qingping Yang'

'Department of Mechanical and Aerospace Engineering, Brunel University of London, Uxbridge UB8 3PH, UK

2TWI Ltd, Granta Park, Great Abington, Cambridge CB21 6AL, UK

Abstract. Recent trends in the field of structural integrity highlight the integration of Artificial Intelligence
(AI) with related domains such as Structural Health Monitoring (SHM), Non-Destructive Evaluation (NDE),
and the assessment of Stress Corrosion Cracking (SCC). Al plays a pivotal role in developing intelligent
solutions to complex challenges, particularly in the detection and characterization of SCC. While several
techniques are available, this paper focuses on the Ultrasonic Testing (UT) based Non-Destructive Testing
(NDT) method integrated with Artificial Intelligence (AI), making it a robust Industry 4.0 solution. Deep
learning, a subset of Artificial Intelligence and Machine Learning, is already considered as a key technology
in Industry 4.0 solutions. This paper discusses the detection of SCC in steel using UT based data and deep
learning. The trained neural network model will be used for the detection of SCC in the steel.

1 Introduction

Structural Health Monitoring (SHM) is vital for
maintaining and enhancing structural integrity by
enabling real-time or periodic assessment of a
structure’s conditions [1]. It integrates various sensing
technologies and data analysis methods to evaluate
performance and detect potential damage or anomalies.
SHM addresses a wide range of defects, broadly
categorized into material, manufacturing, construction,
service-induced, environmental, operational, design,
maintenance, and welding-related issues [1]. For the
purpose of this analysis, the focus is specifically on
service-induced and environmental defects, which
encompass corrosion, fatigue cracks, wear and abrasion,
weathering, erosion, and stress corrosion cracking
(SCC) [2, 3], among others.

The ongoing analysis and research place specific
emphasis on SCC, a form of degradation that occurs due
to the combined effect of static tensile stress, a corrosive
environment, and a susceptible material [4]. This unique
interplay of factors makes SCC a critical subject within
structural integrity and materials science. SCC is
particularly unsafe because it can develop and propagate
rapidly, often without visible warning, ultimately
leading to catastrophic structural failure. As such, the
timely detection and mitigation of SCC are essential for
ensuring the safety and reliability of engineering
structures and their components.

There are various methods for detecting Stress
Corrosion Cracking (SCC), which can be broadly
classified into two categories: destructive testing and
non-destructive testing (NDT) [5]. Ultrasonic testing
(UT) is one of the important NDT methods which uses
high-frequency sound waves to inspect materials and
detect defects without causing damage. UT is a type of
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volumetric inspection, meaning it can reveal flaws
within the material, not just on the surface.

1.1 UT method and the concept for defect
detection

UT is one of the most used non-destructive evaluation
(NDE) method for the detection of SCC. It uses the
concept of sound wave reflection and interaction with
material discontinuities. Sound energy is transmitted
into the material as waves, which travel through it.
When these waves encounter a discontinuity, such as a
crack, a portion of the energy is reflected back from the
defect [6]. This reflected wave is then converted into an
electrical signal by the transducer and displayed on a
screen. The graph shows the crack pulse, initial echo,
back surface echo etc., as shown in Figure 1 with its
details to be explained in later part of this paper.
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Figure 1: UT based detection method
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1.2 Role of deep learning in the detection of
SCC

Deep learning is a significant branch of Al, which is
helping in shifting the industry processes towards
Industry 4.0. The deep learning capabilities enable the
data-driven approaches, holistic insights and heightened
efficiency. Here, the deep learning uses the same UT
based data that already has the information about the
SCC in the steel plates. It will enhance the efficiency as
well as the sophistication of the detection process.

2 Related work

Kaseko et al. (1993) [7] worked on single images which
may contain multiple defects but the defective regions
in an image are generally demarcated by rectangular
bounding boxes, which do not trace the defect
boundaries accurately and therefore are not very useful
for defect quantification. Abdel-Qader et al. (2006) [8]
demonstrated the use of principal component analysis
for crack identification on concrete bridge deck images.
Shi et al. (2016) [9] developed an ensemble learning
technique using random forest based on decision trees
and it was later put to use by the research community for
automatic image-based crack classification. Unlike the
traditional ML-based models, convolutional neural
network (CNN)-based DL methods can automatically
learn the damage-sensitive features in the input data and
are, in general, more accurate. One of the first few
studies in this direction can be attributed to Zhang et al.
(2016) [10], who proposed a novel CNN architecture
called ConvNet for identifying crack patches in road
inspection images. They demonstrated that CNN-based
models can outperform support vector machine (SVM)
and Boosting-based classifiers [11]. This approach was
later extended to crack identification on concrete
surfaces by Cha et al. (2017) [12]. Liu et al. (2019)
[13] resorted to a SVM to identify cracks in tunnel
inspection images. An initial crack map was first
obtained by using intensity and gradient-based
thresholding strategy. Chen et al. (2017) [14] proposed
a Naive Bayes-based multi-view data fusion scheme
which was incorporated into a CNN-based crack
classification framework enabling accurate and robust
inspection of nuclear power plant components. The
research by Gopalakrishnan et al. invoked the idea of
transfer learning to address this issue of limited training
data [15]. It has been observed that the features extracted
by the early convolutional layers are largely class-
agnostic. So, the authors used a CNN pre-trained on the
large ImageNet dataset [16] to initialize the parameters
of a CNN for identifying crack patches on hot-mix
asphalt and port land cement concrete pavement surface
images leading to accurate predictions.

One of the prominent examples by Ren et al. (2015)
of modelling approach is Faster RCNN [17]), where an
input image is first processed by a series of
convolutional layers. The feature map generated by the
last convolutional layer is sent to a region proposal
network to produce a number of interest regions. The
interest regions are finally classified, and the
corresponding bounding boxes are refined using a CNN

module [18], explained by Cha et al
(2018); demonstrated the efficiency of this approach
through the detection of a variety of defects such as
concrete crack, steel corrosion, bolt corrosion, and steel
delamination in building and bridge structures.

The analysis of related work shows that there is no
noteworthy work done on UT based data using Al
algorithms and their prime focus is images but the
proposed research has scope to work on raw data as well
advance deep learning algorithms e.g. RNN (Recurrent
Neural Network).

3 Equipment and experimental setup

This section elaborates on the equipment utilized and the
experimental setup employed for data acquisition.

3.1 Inducing SCCs in the lab environment

To collect the UT data of SCCs, we had to induce the
SCCs in steel plates in the lab environment. The lab
environment is to mimic the real-world conditions based
on temperature, chemical reaction and pressure that
leads to SCC, as shown in Figure 2.
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Figure 2: SCC test rig

3.2LTPA

The instrument used to collect the data is a MicroPulse
LTPA, which is an advanced ultrasonic testing (UT)
equipment designed for the inspection of materials. It is
used to collect data to detect internal defects such as
cracks, porosity, or corrosion. It works with
conventional single element transducers (as used in this
paper) and with phased array transducers.

3.3 UT Transducer

An UT transducer was an immersion type that is a
specialized UT probe used in NDT applications. This
type of probe is designed to transmit and receive
ultrasonic waves without requiring direct physical
contact with the test surface. It enables precise, non-
invasive inspection.
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3.4 Servostep controller

A servostep motor controller is an integrated system
with hardware and software that can control the
movements of axes of an immersion tank. The water
tank has axes that can move the UT probe left, right,
upward and downward. The vertical axis holds the
transducer in the water tank, as shown in Figure 3.

The water works as couplant which allows ultrasonic
rays to cross the medium.

3.5 Experimental setup

The transducer was fixed onto the vertical axis in water
tank and connected to the LTPA. On the other side, the
servostep controller is connected to the water tank to
control the movement of the transducer.

Both LTPA and servostep controller are connected to a
computer system which is used to control the LTPA and
servostep controller (Figure 3). The LTPA sends data to
computer system in the form of text file.

Copyright TWI Ltd

Figure 3: Experimental setup

4 Data acquisition & graphical analysis

The transducer captures the UT data from the plates for
every millimetre from the marked area on the steel plate.
The experimental arrangement will capture a text file
with numerical data for each millimetre. There are 7150
text files for each plate. Each file has 3500 entries,
which depends on the configuration of LTPA. Figure 4
presents an example scan contained in the text file.

By analysing multiple text files, it can be observed that
on the X-axis, initial spike in the graph from 0 to 2000
is common in all the text files, therefore this part of the
data can be eliminated. The second spike is for the front
surface and third spike is for the back surface. Since the
SCCs are on the back surface, only the part from 2000
to 2500 is relevant to use.
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Index
Figure 4: Graphical representation of data from one
position

5 Proposed idea

The proposed approach involves acquiring UT data and
leveraging Al techniques particularly deep learning for
effective classification. Specifically, the focus is on
using deep learning architectures that have the capacity
to automatically extract meaningful features from raw
UT signals and perform accurate classification without
the need for handcrafted feature engineering. The
current objective centres on the detection of cracks, with
an emphasis on identifying SCC in steel plates. The goal
is to determine whether a given steel plate shows signs
of SCC using the collected UT data.

To achieve this, an RNN with Long Short-Term
Memory (LSTM) units will be implemented. This
architecture is well-suited for analysing sequential data,
such as UT signal patterns, by capturing both short- and
long-term dependencies in the time series. Once trained
on labelled datasets, the RNN-LSTM model will be
employed to classify new steel plate samples, indicating
the presence or absence of SCC.

6 RNN-LSTM

We initially began our experiments using an RNN to
model the sequential UT data. However, we
encountered the vanishing gradient problem — a
common limitation in traditional RNNs — which
severely hindered the model’s ability to learn long-range
dependencies. As a result, the network failed to
converge effectively during training, leading to
suboptimal performance.

To overcome this challenge, we transitioned to an
LSTM architecture [19]. LSTM networks are
specifically designed to address the vanishing gradient
issue by incorporating memory cells and gating
mechanisms, which help preserve and regulate
information across longer sequences. This change
significantly improved the learning stability and
prediction accuracy. The model was better to capture the
underlying temporal patterns in the UT data, which is
crucial for tasks like crack detection and structural
integrity assessment.
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7 Results

The results are as follows when the LSTM model was
applied on UT based data for classification. The LSTM
model demonstrated excellent performance throughout
training, validation, and testing stages. Over training
epochs, both the training and wvalidation accuracy
(Figure 5) exhibited a steady and consistent
improvement, culminating in final values of 0.9904 and
0.9942, respectively.

Model Accuracy (Train vs Validation)
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Figure 5: Model accuracy

The minimal gap of 0.0037 between training and
validation accuracy indicates strong generalization with
negligible overfitting.

Overfitting Monitor
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Figure 6: Overfitting monitor

This observation is further supported by the overfitting
monitor as shown in Figure 6, which shows that the
accuracy difference remained consistently below the 5%
caution threshold throughout the training process. The
normalized loss trend closely mirrors the accuracy
curve, indicating that as the model's confidence
increased, the error reduced  significantly.

The learning rate schedule followed a step decay
approach, progressively decreasing from an initial rate
of 1073 to a final rate of 3.13x1073, as shown in Figure 7.
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Figure 7: Learning rate schedule

This strategy allowed the model to converge smoothly,
especially in the later epochs. Using an independent test
set, the model achieved a test accuracy of 0.9946,
reaffirming its ability to generalize to unseen data.
Notably, the model retained this performance after being
reloaded from saved weights, demonstrating its stability
and reproducibility.

=== DETAILED CLASSIFICATICN EREPORT ===
precision recahl fl-score support
No Crack 0.9937 0.9956 0.55948 4280
Crack 0.9956 0.9937 0.55948 4280
ACCUracy 0.5%4¢ 8580
macro avg 0.55%4¢ 0.55%4¢ 0.%%4¢ 8580
welghted avg 0.5%46 0.5%46 0.55948 8580

Figure 8: Classification report

A detailed classification report further validated the
model’s effectiveness. For the binary classification task
distinguishing between "Crack" and "No Crack," the
precision, recall, and F1-score for both classes were all
0.9946, indicating balanced and high-quality predictions
(Figure 8). These metrics are visually summarized in a
bar chart, where all values exceed the 0.9 threshold,
falling in the "excellent" performance range. Overall,
the results confirm that the LSTM model is highly
reliable and effective for crack detection, exhibiting
both high accuracy and robust generalization with
minimal overfitting.

8 Conclusion and future work

In this paper, an LSTM-based model was developed and
tuned for the crack detection in steel plates, reaching
good performance across all training and evaluation
metrics. The model demonstrated a high degree of
accuracy, with a final test accuracy of 0.9946 and
consistency between training, validation, and testing
phases. The training process showed stable convergence
with minimal overfitting, helped by a well-designed
learning rate schedule. The precision, recall, and F1-
scores for both classes were nearly identical, reflecting
the model’s robustness and ability to generalize
effectively. These results confirm the suitability of
LSTM architectures for SCCs detection, especially
when combined with appropriate training strategies and
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