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Abstract. The magnetic gradient tensor measurement system (MGTMS) is critical for detecting and
localizing ferromagnetic targets. However, its localization accuracy is closely linked to measurement
precision, which is often compromised by sensor misalignment errors. To mitigate these errors, this study
proposes a practical calibration method using a standard magnetic source, achieving effective misalignment
correction with minimal system alteration. The proposed method is validated through both simulations and
localization experiments. Simulation results indicate that the root mean square error (RMSE) of the
calibrated tensor values is reduced by three orders of magnitude compared to the uncalibrated state.
Experimental results further demonstrate that the average localization error decreases from 0.040 m to 0.019
m after calibration, corresponding to a 52.5% improvement in positioning accuracy. These results highlight
the potential of improving the accuracy of MGTMS-based target localization in practical applications.

1 Introduction

Magnetic anomaly detection has received
widespread attention due to its effectiveness in locating
small magnetic targets in both underground and
underwater  environments!''3l,  Many  existing
localization algorithms, such as Scalar Triangulation
and Ranging (STAR)®), Nara method?!, Normalized
Source Strength (NSM)®! and the New Two-Point
Tensor (NTPT) approach!”, rely heavily on magnetic
gradient tensor (MGT) information. However, the
localization accuracy of these methods is significantly
affected by array misalignment errors in the magnetic
gradient tensor measurement system (MGTMS)®IP],

To enhance localization precision, various error

correction methods have been proposed. For instance, Y.

Mu et al. utilized magnetic gradient tensor invariants
under non-uniform background fields to correct
misalignment errors!!?). C. Chi et al. introduced a total
least squares (TLS)-based calibration method tailored to
MGTMS error sources!''l. X. Zhang et al. further
developed a two-stage approach combining TLS
ellipsoid truncation with differential evolution (DE)
optimization to sequentially correct sensor-intrinsic and
alignment-related errors®. Additionally, C. Li et al.
proposed a tensor error compensation strategy based on
the damped Levenberg—Marquardt (DA LM)
algorithm!?. Most of these methods estimate
misalignment errors by rotating the MGTMS and
measuring tensor values at multiple orientations,
assuming that the theoretical gradient tensor should
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vanish in a magnetically quiet environment. However,
due to the typically large size of

MGTMS platforms, physical rotation is often
impractical. Moreover, during the rotation process,
sensor positions may shift due to cable tension, thereby
introducing additional errors and compromising the
accuracy of misalignment angle estimation.

Therefore, this study presents a novel non-contact
calibration method that involves placing the MGTMS in
an environment with minimal external magnetic
interference and recording tensor measurements of the
standard magnetic source at multiple positions. Through
analytical derivation of theoretical tensor values at
distinct locations followed by Particle Swarm
Optimization (PSO)-based residual minimization
between measured and theoretical tensors, the
misalignment error is precisely determined. The
proposed method obviates system movement by
substituting the pose adjustment of the MGTMS with
directional changes of the standard magnetic source,
thus transforming the estimation of calibration
parameters as a process based on multiple source
positions. Consequently, the quadratic errors induced by
system motion are effectively mitigated.

2 Modeling of Rotation Misalignment
Error and Magnetic Gradient Tensor
Correction

When the distance between the standard magnetic
source and the observation point exceeds 2.5 times the
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size of the standard magnetic source itself, the standard
magnetic source can be effectively modeled as a
magnetic dipole!'?!. In this study, the standard magnetic
source is treated as a magnetic dipole and can be

expressed as:

_ Ho 3(M-r)r-MR?
- ﬁ RS (1)

where B represents the magnitude of the magnetic
dipole field, xy denotes the vacuum permeability, and
M=[m,, m,, m-]" represents the three components of the
magnetic moment of the dipole. The vector r=/x, y, zJ
indicates the relative position vector from the magnetic
sensor to the magnetic dipole, while R is the magnitude
of r.

(a) Cross shaped magnetometer array. (b) Schematic diagram
of coordinate system conversion for sensor misalignment
error.

Fig. 1. Cross shaped MGTMS schematic diagram.

As illustrated in Fig. 1(a), the cross-shaped MGTMS
consists of four triaxial magnetic sensors (S1-S4)
arranged in an orthogonal baseline configuration with a
defined baseline length L in a three-dimensional
Cartesian coordinate system. Due to technological
limitations during assembly, the system is susceptible to
both displacement and rotational misalignment errors.
While displacement errors can be effectively reduced
through high-precision manufacturing, rotational
misalignment remains more difficult to eliminate.

For each sensor Si (i=1,2,3,4), the measured
magnetic field vector is denoted as Bi=/Bx, By, B:],
representing the three orthogonal components of the
magnetic field along the x-, y-, and z-axes, respectively.

Due to rotational misalignment errors, the coordinate
systems of each sensor deviate from the reference
coordinate system. This deviation results in an
inaccurate projection of the measured magnetic field
components, ultimately causing the tensor matrix
computed from differential calculations to diverge from
the true values. Therefore, it is essential to establish the
quantitative relationship between the actual coordinate
system and the reference coordinate system to correct
these misalignment errors. As illustrated in Figure 1(b),
the conversion between the standard sensor coordinate
system (O-XoY0Zo) and the actual sensor coordinate
system (O-X3Y3Z3) can be described by three sequential
rotations: first, a rotation of the roll angle a around the
X axis; second, a rotation of the pitch angle f around
the newly generated Y axis; and third, a rotation of the
yaw angle y around the newly generated Z, axis. The
corresponding transformation matrix for the coordinate
system is:

R =R,RsR,

cosy —siny O0][cosf 0 —sinf][1 0 0

= [siny cosy 0” 0 1 0 ”O cosa —sina]
0 0 1lsing 0 cosf 110 sina cosa

@

According to Equation (2), the magnetic field in a
misaligned orthogonal coordinate system can be
transformed. The transformation relationship can be
expressed as follows:

Bineas = RBigear (3)
where B.c.s represents the actual magnetic field
value, while Bz denotes the ideal value. Write the
expression for Bjs. according to Equation (3) as follows:
Bidgeat = SBmeas 4)

where § = R™1.

The measurement point of the cross-shaped
MGTMS is defined as the geometric center O of the
sensor array. According to Maxwell’s equations, the
divergence and curl of the magnetic field vector B are
equal to zero in a passive, static magnetic field. These
constraints imply that the magnetic gradient tensor
matrix G, defined as the spatial derivative of B, is
symmetric and traceless. As a result, only five
independent components of G are required to fully
characterize the tensor. Based on the cross-shaped array
configuration, the magnetic gradient tensor can be
approximated using central differences of the measured
magnetic field components, as follows:

Gy ny Gyy

G=|Gyx Gy Gy

Gy Gzy Gy,
le - BSx Bly - B3y B4x - BZx

1
= T Bly - BSy _(le - B3x) - (B4z - BZZ) B4y - BZy
Blz - B3Z B4y - BZy B4z - BZZ
(O

where Bj (i=1,2,3,4, j=x, y, z) represents the j
component of the magnetic field value measured by
sensor ;. Based on the formulas presented above, we
can derive the influence of the rotation of the sensor
coordinate system on differential magnetic field
measurements:

ABL(:}“ — B%deal _ B]z:deal — SiBgneas _ SjB]‘(neas (6)

Aijr (i, j=1,2,3,4) represents the differential
magnetic field value between Si and Sj after calibration.
B;i‘(if)‘“ denotes the ideal magnetic field value of Si()).

-1
Additionally, ;) = (Ryi(j)RBi(j)Rai(j)) signifies the
inverse of the coordinate system transformation matrix
of Si(y), where o), fi) and yi;) represent the roll angle,
pitch angle, and yaw angle of Si(j), respectively.

Furthermore, Bj{jy* indicates the measured magnetic

field value of Si(j). Given that G' is symmetric and
traceless, i.e. Gyy = Gyy, Gy; = Ggx, and Gy} = Ggy,
we can derive the expression for the corrected magnetic
gradient tensor matrix as follows:
GCT GCT’ GCT’
xx xy Xz
Gor = GSC’JTC GJ%/ GJgg

cr cr cr
sz Gzy Gzz

(ABT3)x (ABT3)y (ABf%),
1
= I (A g)y _(AB%’ x (ABELTZ z (A ig)y (7)
(ABf3), (ABZ)y (AB%),

where G, represents the corrected tensor value.

When the corrected magnetic gradient tensor value
approaches the ideal tensor value asymptotically, the
corresponding parameter is the one we seek. Therefore,
the objective function is defined as follows:
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where n represents the number of measurement
positions, Gjz.« denotes the ideal tensor value, which can
be calculated using formulas (1) and (5).

3 PSO-based correction method

According to the theoretical derivation presented in
Section 2, the calibration method for MGTMS can be
formulated as a nonlinear optimization problem. To
ensure real-time and accurate calibration, the chosen
algorithm should be straightforward and practical, while
also demonstrating high accuracy and convergence.
Consequently, this study selects the PSO algorithm. The
algorithm primarily involves initializing the particle
swarm, evaluating fitness values, updating individual
best positions, updating population best positions,
adjusting particle velocity and position, iterating the
process, and ultimately outputting the optimal
solution*].

When initializing the particle swarm, set the
population size n to 1000 and the particle dimension to
12. Specifically, the i-th particle contains position
information x;=[a;, a2, as, o4, B1, B2, B3, Pa, V1, Y2, V3, V4],
where a, f, and y respectively represent the roll angle,
pitch angle, and rotation angle corresponding to the four
sensors, respectively, for i=1, 2, 3... 1000. The position
range is set to [-1,1], and the speed range is set to [-0.1,
0.1]. The maximum number of iterations is 7=17000,
with learning factors ¢;=c»>=1.5, and an initial inertia
weight of w=1.0, which is updated according to w=w -
1/T. The particle positions and velocities are randomly
initialized within the specified ranges.

The objective function value of the particles is
calculated using Equation (8). A smaller objective
function value indicates better performance. Pi=(pis,
pi2, ..., pirz) s the historical optimal position of the i-th
particle. The individual optimal position is updated
using the following equation:

Pt +1) = { P®,if [+ D) = f(p®) g
xi(t+ 1), if flxi(t+ 1)) < f(pi(D)

In Equation (9), # represents the number of iterations.
The global optimal position g(?) is defined as the best
position among the states currently experienced by all
particles in the population.

9@ = min {f(p:(0), f(p2(®), ... f(Pa(O)} (10)

The velocity and position of the particles according
to the following equation:

vi(t+1) =w- v;(6) + ¢, - rand - (p; — x;(t))
+c, -rand - (g; — x; (1)) (11)
it +1) =x0)+v;(t+1) (12)

In Equations (11) and (12), rand represents a
uniform random number within the range of [0,1]. The
iterations is repeated 7 times, with g returned at the end
of the iteration to obtain the misalignment error angle.

At this stage, the angle of the misalignment error that
needs to be determined has been obtained. According to
Equations (2) to (4), the rotation matrix S can be
formulated, which can be utilized to correct the data
output from the MGTMS.

4 Simulation

Fig. 2. Closed motion trajectory of standard magnetic source.

To evaluate the robustness of the proposed method,
a closed-loop trajectory simulation model based on
magnetic dipole theory was developed, as shown in
Figure 2. In this model, a magnetic dipole traverses a
circular path with a radius of 0.5 m, and its magnetic
moment vector is defined as M = (1200, -3160,1980)
A-m? The cross-shaped sensor array has a baseline
length of 0.5 m. Sixteen sampling points are uniformly
distributed along the trajectory, and the theoretical
values of the magnetic gradient tensor (MGT) are
computed for all sampling points. The misalignment
error parameters introduced into the simulation are
listed in Table 1, covering roll (a), pitch (), and yaw (y)
angles for each of the four triaxial sensors. These
angular errors are integrated into the simulation using
Equation (3), and the corresponding measured MGT
values are obtained through Equation (7), reflecting the
influence of misalignment.

Table 1. Misalignment error of magnetometer.

S1 s2 s3 S4

wrad 0448  -0227 0.634  -0.556

p/rad  0.229 0.159 -0.361  -0.635

_yfrad _ -0.132  0.554  0.336  0.632
The actual measured magnetic field value is
calculated using Equation (3), accounting for
misalignment error. Subsequently, the actual measured

tensor value is determined from Equation (7).
The PSO algorithm was implemented to compensate
for the misalignment errors. The experimental results

are illustrated in Figure 3.
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Fig. 3. Comparison of Tensor Values Before and After
Correction.
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To correct the misalignment errors, a PSO algorithm
was implemented. The calibration results are presented
in Figure 3, which compares tensor values before and
after calibration. After applying the PSO-based
calibration framework, the root mean square error
(RMSE) of each MGT component was significantly
reduced by nearly three orders of magnitude
demonstrating the method’s effectiveness. The error
reduction metrics are summarized as follows: Gxx
decreased from 540,904.089 nT/m to 262.277 nT/m;
Gxy  decreased from  464,905.139nT/m  to
153.131 nT/m; Gxz was reduced from
545,828.167nT/m to 302.564 nT/m; Gzy decreased
from 617,190.071 nT/m to 176.920nT/m; and Gzz
declined from 834,086.836 nT/m to 290.465 nT/m.
These results demonstrate the method's efficacy in
suppressing sensor misalignment errors and improving
MGT measurement accuracy.

5 Experiment

] —
Cross shaped magnetic gradicn|
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Fig. 4. MGTMS and magnetic source motion trajectory

diagram.

To further verify the practical efficacy of the
proposed correction method, a magnetic source
localization experiment was performed using a cross-
shaped magnetic gradient tensor (MGT) measurement
system and a certified reference source. A neodymium—
iron—boron permanent magnet, calibrated by the Beijing
Institute  of Microelectronics  Technology and
possessing a magnetic moment of (0, -1590.29, 0) A-m?,
was employed as the standard magnetic source. As
shown in Figure 4, the sensor array was positioned 0.7 m
above the ground, and a circular trajectory with a radius
of 0.5m was marked on the ground, centered at the
array’s geometric center. Eight sampling points were
taken at 45° intervals along the trajectory, and magnetic
gradient tensor values were measured at each location.

The NTPT localization algorithm was used to
estimate the position of the magnetic source based on
the measured tensor values. Three types of localization
results were computed for comparison: positions
derived from the ideal theoretical tensor, from the
uncorrected measured tensor, and from the corrected
tensor using the proposed method. Figure 5 shows the
localization trajectories obtained from different sources
of tensor data. As illustrated, the localization results
using the corrected tensor data closely align with the
ideal trajectory, in contrast to the more dispersed
estimates derived from uncorrected measurements.
Table 2 presents the corresponding numerical values. A
quantitative comparison reveals that, prior to calibration,
the maximum positioning errors along the x-, y-, and z-
axes were 0.098 m, 0.048 m, and 0.163 m, respectively.
After calibration, these errors decreased to 0.041 m,

Circular
(rajeciory

0.027m, and 0.097 m. The average localization error
was reduced from 0.040 m to 0.019 m, achieving an

improvement of approximately 52.5%.
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Fig. 5. Localization results on the trajectory of magnetic
source motion.

Table 2. Localization results on the trajectory of magnetic
source motion.

(-0.354,0.733,-0.465)
(0,0.733,-0.611)
(0.465,0.733.-0.354)

(-0.345,0.748,-0.388)
(0.005,0.776,-0.650)
(0.401.0.758.-0.342)

(-0.349,0.736,-0.416)
(0.005,0.745,-0.627)
(0.436,0.726,-0.346)

Ideal position Measurement position Correction_position
1 (0.611,0.733,0) (0.513,0.685,-0.010) (0.58,0.716,-0.008)
2 (0.354,0.733,0.465) (0.307,0.764,0.302) (0.322,0.741,0.368)
3 (0,0.733,0611) (-0.007,0.706,0.524) (-0.005,0.706,0.587)
4 (-0.465,0.733,0.354) (-0.472,0.703,0.349) (-0.458,0.715,0.350)
5 (-0.611,0.733,0) (-0.539,0.774,-0.003) (-0.570,0.733,-0.002)
6
7
8

These experimental results are consistent with the
simulation findings and demonstrate that the proposed
PSO-based  calibration method  simultaneously
addresses correcting tensor distortion and improving the
accuracy of MGT-based target localization under
practical conditions.

6 Conclusion

This paper proposes a computationally efficient
correction method for correcting misalignment errors in
MGTMS. By employing a standard magnetic source
with a known magnetic moment and utilizing a PSO
algorithm, the proposed approach eliminates the need
for physically rotating the sensor array, thereby avoiding
additional errors caused by structural disturbances or
cable tension. Instead, calibration is achieved by
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repositioning the magnetic source and comparing the
measured and theoretical tensor values at multiple
locations. Simulation results demonstrate that the
proposed method reduces the RMSE of the tensor
components by nearly three orders of magnitude,
indicating a significant error reduction in MGT
estimation accuracy. Further experimental validation
confirms the practical applicability of the method: the
average localization error of the magnetic source
decreased from 0.040m to 0.019 m after calibration,
yielding a 52.5% improvement. These consistent
improvements across both simulated and real-world
settings demonstrate that the proposed calibration
strategy effectively enhances the spatial resolution and
localization accuracy of MGTMS.

However, the current study focuses on addresses
array-level misalignment errors. The inherent sensor-
level errors such as scale factor deviations and axis non-
orthogonality are not considered in the current
calibration framework. Future research is proposed to
develop an integrated framework by incorporating joint
correction of both array-level and sensor-intrinsic errors
to achieve comprehensive calibration and further
improve the robustness and accuracy of MGT
measurements in complex environments.
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