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Abstract. The magnetic gradient tensor measurement system (MGTMS) is critical for detecting and 
localizing ferromagnetic targets. However, its localization accuracy is closely linked to measurement 
precision, which is often compromised by sensor misalignment errors. To mitigate these errors, this study 
proposes a practical calibration method using a standard magnetic source, achieving effective misalignment 
correction with minimal system alteration. The proposed method is validated through both simulations and 
localization experiments. Simulation results indicate that the root mean square error (RMSE) of the 
calibrated tensor values is reduced by three orders of magnitude compared to the uncalibrated state. 
Experimental results further demonstrate that the average localization error decreases from 0.040 m to 0.019 
m after calibration, corresponding to a 52.5% improvement in positioning accuracy. These results highlight 
the potential of improving the accuracy of MGTMS-based target localization in practical applications.  

1 Introduction 
Magnetic anomaly detection has received 

widespread attention due to its effectiveness in locating 
small magnetic targets in both underground and 
underwater environments[1]-[3]. Many existing 
localization algorithms，such as Scalar Triangulation 
and Ranging (STAR)[4], Nara method[5], Normalized 
Source Strength (NSM)[6] and the New Two-Point 
Tensor (NTPT) approach[7], rely heavily on magnetic 
gradient tensor (MGT) information. However, the 
localization accuracy of these methods is significantly 
affected by array misalignment errors in the magnetic 
gradient tensor measurement system (MGTMS)[8][9]. 

To enhance localization precision, various error 
correction methods have been proposed. For instance, Y. 
Mu et al. utilized magnetic gradient tensor invariants 
under non-uniform background fields to correct 
misalignment errors[10]. C. Chi et al. introduced a total 
least squares (TLS)-based calibration method tailored to 
MGTMS error sources[11]. X. Zhang et al. further 
developed a two-stage approach combining TLS 
ellipsoid truncation with differential evolution (DE) 
optimization to sequentially correct sensor-intrinsic and 
alignment-related errors[9]. Additionally, C. Li et al. 
proposed a tensor error compensation strategy based on 
the damped Levenberg–Marquardt (DA_LM) 
algorithm[12]. Most of these methods estimate 
misalignment errors by rotating the MGTMS and 
measuring tensor values at multiple orientations, 
assuming that the theoretical gradient tensor should 
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vanish in a magnetically quiet environment. However, 
due to the typically large size of  

MGTMS platforms, physical rotation is often 
impractical. Moreover, during the rotation process, 
sensor positions may shift due to cable tension, thereby 
introducing additional errors and compromising the 
accuracy of misalignment angle estimation. 

Therefore, this study presents a novel non-contact 
calibration method that involves placing the MGTMS in 
an environment with minimal external magnetic 
interference and recording tensor measurements of the 
standard magnetic source at multiple positions. Through 
analytical derivation of theoretical tensor values at 
distinct locations followed by Particle Swarm 
Optimization (PSO)-based residual minimization 
between measured and theoretical tensors, the 
misalignment error is precisely determined. The 
proposed method obviates system movement by 
substituting the pose adjustment of the MGTMS with 
directional changes of the standard magnetic source, 
thus transforming the estimation of calibration 
parameters as a process based on multiple source 
positions. Consequently, the quadratic errors induced by 
system motion are effectively mitigated. 

2 Modeling of Rotation Misalignment 
Error and Magnetic Gradient Tensor 
Correction 

When the distance between the standard magnetic 
source and the observation point exceeds 2.5 times the 
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size of the standard magnetic source itself, the standard 
magnetic source can be effectively modeled as a 
magnetic dipole[13]. In this study, the standard magnetic 
source is treated as a magnetic dipole and can be 
expressed as:  
 𝑩𝑩 = 𝜇𝜇0

4𝜋𝜋
3(𝑴𝑴⋅𝒓𝒓)𝒓𝒓−𝑴𝑴𝑅𝑅2

𝑅𝑅5  (1) 
where B represents the magnitude of the magnetic 

dipole field, μ0 denotes the vacuum permeability, and 
M=[mx, my, mz]T represents the three components of the 
magnetic moment of the dipole. The vector r=[x, y, z]T 
indicates the relative position vector from the magnetic 
sensor to the magnetic dipole, while R is the magnitude 
of r. 

 
(a) Cross shaped magnetometer array. (b) Schematic diagram 

of coordinate system conversion for sensor misalignment 
error. 

Fig. 1. Cross shaped MGTMS schematic diagram. 

As illustrated in Fig. 1(a), the cross-shaped MGTMS 
consists of four triaxial magnetic sensors (S1-S4) 
arranged in an orthogonal baseline configuration with a 
defined baseline length L in a three-dimensional 
Cartesian coordinate system. Due to technological 
limitations during assembly, the system is susceptible to 
both displacement and rotational misalignment errors. 
While displacement errors can be effectively reduced 
through high-precision manufacturing, rotational 
misalignment remains more difficult to eliminate. 

For each sensor Si (i=1,2,3,4), the measured 
magnetic field vector is denoted as Bi=[Bix, Biy, Biz]T, 
representing the three orthogonal components of the  
magnetic field along the x-, y-, and z-axes, respectively. 

Due to rotational misalignment errors, the coordinate 
systems of each sensor deviate from the reference 
coordinate system. This deviation results in an 
inaccurate projection of the measured magnetic field 
components, ultimately causing the tensor matrix 
computed from differential calculations to diverge from 
the true values. Therefore, it is essential to establish the 
quantitative relationship between the actual coordinate 
system and the reference coordinate system to correct 
these misalignment errors. As illustrated in Figure 1(b), 
the conversion between the standard sensor coordinate 
system (O-X0Y0Z0) and the actual sensor coordinate 
system (O-X3Y3Z3) can be described by three sequential 
rotations: first, a rotation of the roll angle α around the 
X0 axis; second, a rotation of the pitch angle β around 
the newly generated Y1 axis; and third, a rotation of the 
yaw angle γ around the newly generated Z2 axis. The 
corresponding transformation matrix for the coordinate 
system is: 
 𝑹𝑹 = 𝑹𝑹𝛾𝛾𝑹𝑹𝛽𝛽𝑹𝑹𝛼𝛼 

= [
𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 −𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 0
𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 0

0 0 1
] [
𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 0 −𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽

0 1 0
𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽

] [
1 0 0
0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 −𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼
0 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼

]

  (2) 

According to Equation (2), the magnetic field in a 
misaligned orthogonal coordinate system can be 
transformed. The transformation relationship can be 
expressed as follows: 
 𝑩𝑩𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = 𝑹𝑹𝑩𝑩𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (3) 

where Bmeas represents the actual magnetic field 
value, while Bideal denotes the ideal value. Write the 
expression for Bideal according to Equation (3) as follows: 
 𝑩𝑩𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝑺𝑺𝑩𝑩𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 (4) 

where 𝑺𝑺 = 𝑹𝑹−1.  
The measurement point of the cross-shaped 

MGTMS is defined as the geometric center O of the 
sensor array. According to Maxwell’s equations, the 
divergence and curl of the magnetic field vector B are 
equal to zero in a passive, static magnetic field. These 
constraints imply that the magnetic gradient tensor 
matrix G, defined as the spatial derivative of B, is 
symmetric and traceless. As a result, only five 
independent components of G are required to fully 
characterize the tensor. Based on the cross-shaped array 
configuration, the magnetic gradient tensor can be 
approximated using central differences of the measured 
magnetic field components, as follows: 

 𝑮𝑮 = [
𝐺𝐺𝑥𝑥𝑥𝑥 𝐺𝐺𝑥𝑥𝑥𝑥 𝐺𝐺𝑥𝑥𝑥𝑥
𝐺𝐺𝑦𝑦𝑦𝑦 𝐺𝐺𝑦𝑦𝑦𝑦 𝐺𝐺𝑦𝑦𝑦𝑦
𝐺𝐺𝑧𝑧𝑧𝑧 𝐺𝐺𝑧𝑧𝑧𝑧 𝐺𝐺𝑧𝑧𝑧𝑧

] 

 = 1
𝐿𝐿 [
𝐵𝐵1𝑥𝑥 − 𝐵𝐵3𝑥𝑥 𝐵𝐵1𝑦𝑦 − 𝐵𝐵3𝑦𝑦 𝐵𝐵4𝑥𝑥 − 𝐵𝐵2𝑥𝑥
𝐵𝐵1𝑦𝑦 − 𝐵𝐵3𝑦𝑦 −(𝐵𝐵1𝑥𝑥 − 𝐵𝐵3𝑥𝑥) − (𝐵𝐵4𝑧𝑧 − 𝐵𝐵2𝑧𝑧) 𝐵𝐵4𝑦𝑦 − 𝐵𝐵2𝑦𝑦
𝐵𝐵1𝑧𝑧 − 𝐵𝐵3𝑧𝑧 𝐵𝐵4𝑦𝑦 − 𝐵𝐵2𝑦𝑦 𝐵𝐵4𝑧𝑧 − 𝐵𝐵2𝑧𝑧

]

  (5) 
where Bij (i=1,2,3,4; j=x, y, z) represents the j 

component of the magnetic field value measured by 
sensor Si. Based on the formulas presented above, we 
can derive the influence of the rotation of the sensor 
coordinate system on differential magnetic field 
measurements: 
 Δ𝑩𝑩𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐 = 𝑩𝑩𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑩𝑩𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑺𝑺𝑖𝑖𝑩𝑩𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑺𝑺𝑗𝑗𝑩𝑩𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (6) 
Δ𝑩𝑩𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐  (i, j=1,2,3,4) represents the differential 
magnetic field value between Si and Sj after calibration. 
𝑩𝑩𝑖𝑖(𝑗𝑗)
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  denotes the ideal magnetic field value of Si(j). 

Additionally, 𝑺𝑺𝑖𝑖(𝑗𝑗) = (𝑹𝑹𝛾𝛾𝑖𝑖(𝑗𝑗)𝑹𝑹𝛽𝛽𝑖𝑖(𝑗𝑗)𝑹𝑹𝛼𝛼𝑖𝑖(𝑗𝑗))
−1

 signifies the 
inverse of the coordinate system transformation matrix 
of Si(j), where αi(j)，βi(j) and γi(j) represent the roll angle, 
pitch angle, and yaw angle of Si(j), respectively. 
Furthermore, 𝑩𝑩𝑖𝑖(𝑗𝑗)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  indicates the measured magnetic 
field value of Si(j). Given that G is symmetric and 
traceless, i.e. 𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 = 𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 , 𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 = 𝐺𝐺𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐 , and 𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 = 𝐺𝐺𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐 , 
we can derive the expression for the corrected magnetic 
gradient tensor matrix as follows: 

 𝑮𝑮𝒄𝒄𝒄𝒄 = [
𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐
𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐
𝐺𝐺𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐 𝐺𝐺𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐 𝐺𝐺𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐

] 

 = 1
𝐿𝐿 [

(Δ𝑩𝑩13
𝑐𝑐𝑐𝑐)𝑥𝑥 (Δ𝑩𝑩13

𝑐𝑐𝑐𝑐)𝑦𝑦 (Δ𝑩𝑩13
𝑐𝑐𝑐𝑐)𝑧𝑧

(Δ𝑩𝑩13
𝑐𝑐𝑐𝑐)𝑦𝑦 −(Δ𝑩𝑩13

𝑐𝑐𝑐𝑐)𝑥𝑥 − (Δ𝑩𝑩42
𝑐𝑐𝑐𝑐 )𝑧𝑧 (Δ𝑩𝑩42

𝑐𝑐𝑐𝑐 )𝑦𝑦
(Δ𝑩𝑩13

𝑐𝑐𝑐𝑐)𝑧𝑧 (Δ𝑩𝑩42
𝑐𝑐𝑐𝑐 )𝑦𝑦 (Δ𝑩𝑩42

𝑐𝑐𝑐𝑐 )𝑧𝑧
] (7) 

where Gcr represents the corrected tensor value.  
When the corrected magnetic gradient tensor value 

approaches the ideal tensor value asymptotically, the 
corresponding parameter is the one we seek. Therefore, 
the objective function is defined as follows: 

 

 

 𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚 1
𝑛𝑛
∑  [(𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 − 𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖 )2𝑛𝑛
𝑖𝑖=1 + (𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 − 𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖 )2 + (𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 −

          𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖 )
2 + (𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 − 𝐺𝐺𝑦𝑦𝑦𝑦𝑖𝑖 )

2
+ (𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 − 𝐺𝐺𝑦𝑦𝑦𝑦𝑖𝑖 )2] (8) 

where n represents the number of measurement 
positions, Gideal denotes the ideal tensor value, which can 
be calculated using formulas (1) and (5). 

3 PSO-based correction method 
According to the theoretical derivation presented in 

Section 2, the calibration method for MGTMS can be 
formulated as a nonlinear optimization problem. To 
ensure real-time and accurate calibration, the chosen 
algorithm should be straightforward and practical, while 
also demonstrating high accuracy and convergence. 
Consequently, this study selects the PSO algorithm. The 
algorithm primarily involves initializing the particle 
swarm, evaluating fitness values, updating individual 
best positions, updating population best positions, 
adjusting particle velocity and position, iterating the 
process, and ultimately outputting the optimal 
solution[14]. 

When initializing the particle swarm, set the 
population size n to 1000 and the particle dimension to 
12. Specifically, the i-th particle contains position 
information xi=[α1, α2, α3, α4, β1, β2, β3, β4, γ1, γ2, γ3, γ4], 
where α, β, and γ respectively represent the roll angle, 
pitch angle, and rotation angle corresponding to the four 
sensors, respectively, for i=1, 2, 3... 1000. The position 
range is set to [-1,1], and the speed range is set to [-0.1, 
0.1]. The maximum number of iterations is T=1000, 
with learning factors c1=c2=1.5, and an initial inertia 
weight of ω=1.0, which is updated according to ω=ω -
1/T. The particle positions and velocities are randomly 
initialized within the specified ranges. 

The objective function value of the particles is 
calculated using Equation (8). A smaller objective 
function value indicates better performance. Pi=(pi1, 
pi2, ..., pi12) is the historical optimal position of the i-th 
particle. The individual optimal position is updated 
using the following equation: 

 𝑝𝑝𝑖𝑖(𝑡𝑡 + 1) = { 𝑝𝑝𝑖𝑖(𝑡𝑡), 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥𝑖𝑖(𝑡𝑡 + 1)) ≥ 𝑓𝑓(𝑝𝑝𝑖𝑖(𝑡𝑡))
𝑥𝑥𝑖𝑖(𝑡𝑡 + 1)), 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥𝑖𝑖(𝑡𝑡 + 1)) < 𝑓𝑓(𝑝𝑝𝑖𝑖(𝑡𝑡))  (9) 

In Equation (9), t represents the number of iterations. 
The global optimal position g(t) is defined as the best 
position among the states currently experienced by all 
particles in the population. 
 𝑔𝑔(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑓𝑓(𝑝𝑝1(𝑡𝑡)), 𝑓𝑓(𝑝𝑝2(𝑡𝑡)), …，𝑓𝑓(𝑝𝑝𝑛𝑛(𝑡𝑡))} (10) 

The velocity and position of the particles according 
to the following equation: 
 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝜔𝜔 ⋅ 𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝑐𝑐1 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ (𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑡𝑡)) 
                                  +𝑐𝑐2 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ (𝑔𝑔𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑡𝑡)) (11) 
 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) (12) 

In Equations (11) and (12), rand represents a 
uniform random number within the range of [0,1]. The 
iterations is repeated T times, with g returned at the end 
of the iteration to obtain the misalignment error angle. 

At this stage, the angle of the misalignment error that 
needs to be determined has been obtained. According to 
Equations (2) to (4), the rotation matrix S can be 
formulated, which can be utilized to correct the data 
output from the MGTMS. 

4 Simulation 

 
Fig. 2. Closed motion trajectory of standard magnetic source. 

To evaluate the robustness of the proposed method, 
a closed-loop trajectory simulation model based on 
magnetic dipole theory was developed, as shown in 
Figure 2. In this model, a magnetic dipole traverses a 
circular path with a radius of 0.5 m, and its magnetic 
moment vector is defined as M = (1200, -3160,1980) 
A·m². The cross-shaped sensor array has a baseline 
length of 0.5 m. Sixteen sampling points are uniformly 
distributed along the trajectory, and the theoretical 
values of the magnetic gradient tensor (MGT) are 
computed for all sampling points. The misalignment 
error parameters introduced into the simulation are 
listed in Table 1, covering roll (α), pitch (β), and yaw (γ) 
angles for each of the four triaxial sensors. These 
angular errors are integrated into the simulation using 
Equation (3), and the corresponding measured MGT 
values are obtained through Equation (7), reflecting the 
influence of  misalignment. 

Table 1. Misalignment error of magnetometer. 

 
The actual measured magnetic field value is 

calculated using Equation (3), accounting for 
misalignment error. Subsequently, the actual measured 
tensor value is determined from Equation (7). 

The PSO algorithm was implemented to compensate 
for the misalignment errors. The experimental results 
are illustrated in Figure 3. 

 
Fig. 3. Comparison of Tensor Values Before and After 

Correction. 
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size of the standard magnetic source itself, the standard 
magnetic source can be effectively modeled as a 
magnetic dipole[13]. In this study, the standard magnetic 
source is treated as a magnetic dipole and can be 
expressed as:  
 𝑩𝑩 = 𝜇𝜇0

4𝜋𝜋
3(𝑴𝑴⋅𝒓𝒓)𝒓𝒓−𝑴𝑴𝑅𝑅2

𝑅𝑅5  (1) 
where B represents the magnitude of the magnetic 

dipole field, μ0 denotes the vacuum permeability, and 
M=[mx, my, mz]T represents the three components of the 
magnetic moment of the dipole. The vector r=[x, y, z]T 
indicates the relative position vector from the magnetic 
sensor to the magnetic dipole, while R is the magnitude 
of r. 

 
(a) Cross shaped magnetometer array. (b) Schematic diagram 

of coordinate system conversion for sensor misalignment 
error. 

Fig. 1. Cross shaped MGTMS schematic diagram. 

As illustrated in Fig. 1(a), the cross-shaped MGTMS 
consists of four triaxial magnetic sensors (S1-S4) 
arranged in an orthogonal baseline configuration with a 
defined baseline length L in a three-dimensional 
Cartesian coordinate system. Due to technological 
limitations during assembly, the system is susceptible to 
both displacement and rotational misalignment errors. 
While displacement errors can be effectively reduced 
through high-precision manufacturing, rotational 
misalignment remains more difficult to eliminate. 

For each sensor Si (i=1,2,3,4), the measured 
magnetic field vector is denoted as Bi=[Bix, Biy, Biz]T, 
representing the three orthogonal components of the  
magnetic field along the x-, y-, and z-axes, respectively. 

Due to rotational misalignment errors, the coordinate 
systems of each sensor deviate from the reference 
coordinate system. This deviation results in an 
inaccurate projection of the measured magnetic field 
components, ultimately causing the tensor matrix 
computed from differential calculations to diverge from 
the true values. Therefore, it is essential to establish the 
quantitative relationship between the actual coordinate 
system and the reference coordinate system to correct 
these misalignment errors. As illustrated in Figure 1(b), 
the conversion between the standard sensor coordinate 
system (O-X0Y0Z0) and the actual sensor coordinate 
system (O-X3Y3Z3) can be described by three sequential 
rotations: first, a rotation of the roll angle α around the 
X0 axis; second, a rotation of the pitch angle β around 
the newly generated Y1 axis; and third, a rotation of the 
yaw angle γ around the newly generated Z2 axis. The 
corresponding transformation matrix for the coordinate 
system is: 
 𝑹𝑹 = 𝑹𝑹𝛾𝛾𝑹𝑹𝛽𝛽𝑹𝑹𝛼𝛼 

= [
𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 −𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 0
𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 0

0 0 1
] [
𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 0 −𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽

0 1 0
𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽

] [
1 0 0
0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 −𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼
0 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼

]

  (2) 

According to Equation (2), the magnetic field in a 
misaligned orthogonal coordinate system can be 
transformed. The transformation relationship can be 
expressed as follows: 
 𝑩𝑩𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = 𝑹𝑹𝑩𝑩𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (3) 

where Bmeas represents the actual magnetic field 
value, while Bideal denotes the ideal value. Write the 
expression for Bideal according to Equation (3) as follows: 
 𝑩𝑩𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝑺𝑺𝑩𝑩𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 (4) 

where 𝑺𝑺 = 𝑹𝑹−1.  
The measurement point of the cross-shaped 

MGTMS is defined as the geometric center O of the 
sensor array. According to Maxwell’s equations, the 
divergence and curl of the magnetic field vector B are 
equal to zero in a passive, static magnetic field. These 
constraints imply that the magnetic gradient tensor 
matrix G, defined as the spatial derivative of B, is 
symmetric and traceless. As a result, only five 
independent components of G are required to fully 
characterize the tensor. Based on the cross-shaped array 
configuration, the magnetic gradient tensor can be 
approximated using central differences of the measured 
magnetic field components, as follows: 

 𝑮𝑮 = [
𝐺𝐺𝑥𝑥𝑥𝑥 𝐺𝐺𝑥𝑥𝑥𝑥 𝐺𝐺𝑥𝑥𝑥𝑥
𝐺𝐺𝑦𝑦𝑦𝑦 𝐺𝐺𝑦𝑦𝑦𝑦 𝐺𝐺𝑦𝑦𝑦𝑦
𝐺𝐺𝑧𝑧𝑧𝑧 𝐺𝐺𝑧𝑧𝑧𝑧 𝐺𝐺𝑧𝑧𝑧𝑧

] 

 = 1
𝐿𝐿 [
𝐵𝐵1𝑥𝑥 − 𝐵𝐵3𝑥𝑥 𝐵𝐵1𝑦𝑦 − 𝐵𝐵3𝑦𝑦 𝐵𝐵4𝑥𝑥 − 𝐵𝐵2𝑥𝑥
𝐵𝐵1𝑦𝑦 − 𝐵𝐵3𝑦𝑦 −(𝐵𝐵1𝑥𝑥 − 𝐵𝐵3𝑥𝑥) − (𝐵𝐵4𝑧𝑧 − 𝐵𝐵2𝑧𝑧) 𝐵𝐵4𝑦𝑦 − 𝐵𝐵2𝑦𝑦
𝐵𝐵1𝑧𝑧 − 𝐵𝐵3𝑧𝑧 𝐵𝐵4𝑦𝑦 − 𝐵𝐵2𝑦𝑦 𝐵𝐵4𝑧𝑧 − 𝐵𝐵2𝑧𝑧

]

  (5) 
where Bij (i=1,2,3,4; j=x, y, z) represents the j 

component of the magnetic field value measured by 
sensor Si. Based on the formulas presented above, we 
can derive the influence of the rotation of the sensor 
coordinate system on differential magnetic field 
measurements: 
 Δ𝑩𝑩𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐 = 𝑩𝑩𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑩𝑩𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑺𝑺𝑖𝑖𝑩𝑩𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑺𝑺𝑗𝑗𝑩𝑩𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (6) 
Δ𝑩𝑩𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐  (i, j=1,2,3,4) represents the differential 
magnetic field value between Si and Sj after calibration. 
𝑩𝑩𝑖𝑖(𝑗𝑗)
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  denotes the ideal magnetic field value of Si(j). 

Additionally, 𝑺𝑺𝑖𝑖(𝑗𝑗) = (𝑹𝑹𝛾𝛾𝑖𝑖(𝑗𝑗)𝑹𝑹𝛽𝛽𝑖𝑖(𝑗𝑗)𝑹𝑹𝛼𝛼𝑖𝑖(𝑗𝑗))
−1

 signifies the 
inverse of the coordinate system transformation matrix 
of Si(j), where αi(j)，βi(j) and γi(j) represent the roll angle, 
pitch angle, and yaw angle of Si(j), respectively. 
Furthermore, 𝑩𝑩𝑖𝑖(𝑗𝑗)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  indicates the measured magnetic 
field value of Si(j). Given that G is symmetric and 
traceless, i.e. 𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 = 𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 , 𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 = 𝐺𝐺𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐 , and 𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 = 𝐺𝐺𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐 , 
we can derive the expression for the corrected magnetic 
gradient tensor matrix as follows: 

 𝑮𝑮𝒄𝒄𝒄𝒄 = [
𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐
𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐
𝐺𝐺𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐 𝐺𝐺𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐 𝐺𝐺𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐

] 

 = 1
𝐿𝐿 [

(Δ𝑩𝑩13
𝑐𝑐𝑐𝑐)𝑥𝑥 (Δ𝑩𝑩13

𝑐𝑐𝑐𝑐)𝑦𝑦 (Δ𝑩𝑩13
𝑐𝑐𝑐𝑐)𝑧𝑧

(Δ𝑩𝑩13
𝑐𝑐𝑐𝑐)𝑦𝑦 −(Δ𝑩𝑩13

𝑐𝑐𝑐𝑐)𝑥𝑥 − (Δ𝑩𝑩42
𝑐𝑐𝑐𝑐 )𝑧𝑧 (Δ𝑩𝑩42

𝑐𝑐𝑐𝑐 )𝑦𝑦
(Δ𝑩𝑩13

𝑐𝑐𝑐𝑐)𝑧𝑧 (Δ𝑩𝑩42
𝑐𝑐𝑐𝑐 )𝑦𝑦 (Δ𝑩𝑩42

𝑐𝑐𝑐𝑐 )𝑧𝑧
] (7) 

where Gcr represents the corrected tensor value.  
When the corrected magnetic gradient tensor value 

approaches the ideal tensor value asymptotically, the 
corresponding parameter is the one we seek. Therefore, 
the objective function is defined as follows: 

 

 

 𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚 1
𝑛𝑛
∑  [(𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 − 𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖 )2𝑛𝑛
𝑖𝑖=1 + (𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 − 𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖 )2 + (𝐺𝐺𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐 −

          𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖 )
2 + (𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 − 𝐺𝐺𝑦𝑦𝑦𝑦𝑖𝑖 )

2
+ (𝐺𝐺𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 − 𝐺𝐺𝑦𝑦𝑦𝑦𝑖𝑖 )2] (8) 

where n represents the number of measurement 
positions, Gideal denotes the ideal tensor value, which can 
be calculated using formulas (1) and (5). 

3 PSO-based correction method 
According to the theoretical derivation presented in 

Section 2, the calibration method for MGTMS can be 
formulated as a nonlinear optimization problem. To 
ensure real-time and accurate calibration, the chosen 
algorithm should be straightforward and practical, while 
also demonstrating high accuracy and convergence. 
Consequently, this study selects the PSO algorithm. The 
algorithm primarily involves initializing the particle 
swarm, evaluating fitness values, updating individual 
best positions, updating population best positions, 
adjusting particle velocity and position, iterating the 
process, and ultimately outputting the optimal 
solution[14]. 

When initializing the particle swarm, set the 
population size n to 1000 and the particle dimension to 
12. Specifically, the i-th particle contains position 
information xi=[α1, α2, α3, α4, β1, β2, β3, β4, γ1, γ2, γ3, γ4], 
where α, β, and γ respectively represent the roll angle, 
pitch angle, and rotation angle corresponding to the four 
sensors, respectively, for i=1, 2, 3... 1000. The position 
range is set to [-1,1], and the speed range is set to [-0.1, 
0.1]. The maximum number of iterations is T=1000, 
with learning factors c1=c2=1.5, and an initial inertia 
weight of ω=1.0, which is updated according to ω=ω -
1/T. The particle positions and velocities are randomly 
initialized within the specified ranges. 

The objective function value of the particles is 
calculated using Equation (8). A smaller objective 
function value indicates better performance. Pi=(pi1, 
pi2, ..., pi12) is the historical optimal position of the i-th 
particle. The individual optimal position is updated 
using the following equation: 

 𝑝𝑝𝑖𝑖(𝑡𝑡 + 1) = { 𝑝𝑝𝑖𝑖(𝑡𝑡), 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥𝑖𝑖(𝑡𝑡 + 1)) ≥ 𝑓𝑓(𝑝𝑝𝑖𝑖(𝑡𝑡))
𝑥𝑥𝑖𝑖(𝑡𝑡 + 1)), 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥𝑖𝑖(𝑡𝑡 + 1)) < 𝑓𝑓(𝑝𝑝𝑖𝑖(𝑡𝑡))  (9) 

In Equation (9), t represents the number of iterations. 
The global optimal position g(t) is defined as the best 
position among the states currently experienced by all 
particles in the population. 
 𝑔𝑔(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑓𝑓(𝑝𝑝1(𝑡𝑡)), 𝑓𝑓(𝑝𝑝2(𝑡𝑡)), …，𝑓𝑓(𝑝𝑝𝑛𝑛(𝑡𝑡))} (10) 

The velocity and position of the particles according 
to the following equation: 
 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝜔𝜔 ⋅ 𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝑐𝑐1 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ (𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑡𝑡)) 
                                  +𝑐𝑐2 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ (𝑔𝑔𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑡𝑡)) (11) 
 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) (12) 

In Equations (11) and (12), rand represents a 
uniform random number within the range of [0,1]. The 
iterations is repeated T times, with g returned at the end 
of the iteration to obtain the misalignment error angle. 

At this stage, the angle of the misalignment error that 
needs to be determined has been obtained. According to 
Equations (2) to (4), the rotation matrix S can be 
formulated, which can be utilized to correct the data 
output from the MGTMS. 

4 Simulation 

 
Fig. 2. Closed motion trajectory of standard magnetic source. 

To evaluate the robustness of the proposed method, 
a closed-loop trajectory simulation model based on 
magnetic dipole theory was developed, as shown in 
Figure 2. In this model, a magnetic dipole traverses a 
circular path with a radius of 0.5 m, and its magnetic 
moment vector is defined as M = (1200, -3160,1980) 
A·m². The cross-shaped sensor array has a baseline 
length of 0.5 m. Sixteen sampling points are uniformly 
distributed along the trajectory, and the theoretical 
values of the magnetic gradient tensor (MGT) are 
computed for all sampling points. The misalignment 
error parameters introduced into the simulation are 
listed in Table 1, covering roll (α), pitch (β), and yaw (γ) 
angles for each of the four triaxial sensors. These 
angular errors are integrated into the simulation using 
Equation (3), and the corresponding measured MGT 
values are obtained through Equation (7), reflecting the 
influence of  misalignment. 

Table 1. Misalignment error of magnetometer. 

 
The actual measured magnetic field value is 

calculated using Equation (3), accounting for 
misalignment error. Subsequently, the actual measured 
tensor value is determined from Equation (7). 

The PSO algorithm was implemented to compensate 
for the misalignment errors. The experimental results 
are illustrated in Figure 3. 

 
Fig. 3. Comparison of Tensor Values Before and After 

Correction. 

3

MATEC Web of Conferences 413, 01009 (2025)	 https://doi.org/10.1051/matecconf/202541301009
MAIQS 2025



 

 

To correct the misalignment errors, a PSO algorithm 
was implemented. The calibration results are presented 
in Figure 3, which compares tensor values before and 
after calibration. After applying the PSO-based 
calibration framework, the root mean square error 
(RMSE) of each MGT component was significantly 
reduced by nearly three orders of magnitude 
demonstrating the method’s effectiveness. The error 
reduction metrics are summarized as follows: Gxx 
decreased from 540,904.089 nT/m to 262.277 nT/m; 
Gxy decreased from 464,905.139 nT/m to 
153.131 nT/m; Gxz was reduced from 
545,828.167 nT/m to 302.564 nT/m; Gzy decreased 
from 617,190.071 nT/m to 176.920 nT/m; and Gzz 
declined from 834,086.836 nT/m to 290.465 nT/m. 
These results demonstrate the method's efficacy in 
suppressing sensor misalignment errors and improving 
MGT measurement accuracy.  

5 Experiment 

 
Fig. 4. MGTMS and magnetic source motion trajectory 

diagram. 
To further verify the practical efficacy of the 

proposed correction method, a magnetic source 
localization experiment was performed using a cross-
shaped magnetic gradient tensor (MGT) measurement 
system and a certified reference source. A neodymium–
iron–boron permanent magnet, calibrated by the Beijing 
Institute of Microelectronics Technology and 
possessing a magnetic moment of (0, -1590.29, 0) A·m², 
was employed as the standard magnetic source. As 
shown in Figure 4, the sensor array was positioned 0.7 m 
above the ground, and a circular trajectory with a radius 
of 0.5 m was marked on the ground, centered at the 
array’s geometric center. Eight sampling points were 
taken at 45° intervals along the trajectory, and magnetic 
gradient tensor values were measured at each location. 

The NTPT localization algorithm was used to 
estimate the position of the magnetic source based on 
the measured tensor values. Three types of localization 
results were computed for comparison: positions 
derived from the ideal theoretical tensor, from the 
uncorrected measured tensor, and from the corrected 
tensor using the proposed method. Figure 5 shows the 
localization trajectories obtained from different sources 
of tensor data. As illustrated, the localization results 
using the corrected tensor data closely align with the 
ideal trajectory, in contrast to the more dispersed 
estimates derived from uncorrected measurements. 
Table 2 presents the corresponding numerical values. A 
quantitative comparison reveals that, prior to calibration, 
the maximum positioning errors along the x-, y-, and z-
axes were 0.098 m, 0.048 m, and 0.163 m, respectively. 
After calibration, these errors decreased to 0.041 m, 

0.027 m, and 0.097 m. The average localization error 
was reduced from 0.040 m to 0.019 m, achieving an 
improvement of approximately 52.5%. 

 
(a) x-z plane. 

 
(b) y-axis. 

Fig. 5. Localization results on the trajectory of magnetic 
source motion. 

Table 2. Localization results on the trajectory of magnetic 
source motion. 

 
These experimental results are consistent with the 

simulation findings and demonstrate that the proposed 
PSO-based calibration method simultaneously 
addresses correcting tensor distortion and improving the 
accuracy of MGT-based target localization under 
practical conditions. 

6 Conclusion 
This paper proposes a computationally efficient  

correction method for correcting misalignment errors in 
MGTMS. By employing a standard magnetic source 
with a known magnetic moment and utilizing a PSO 
algorithm, the proposed approach eliminates the need 
for physically rotating the sensor array, thereby avoiding 
additional errors caused by structural disturbances or 
cable tension. Instead, calibration is achieved by 

 

 

repositioning the magnetic source and comparing the 
measured and theoretical tensor values at multiple 
locations. Simulation results demonstrate that the 
proposed method reduces the RMSE of the tensor 
components by nearly three orders of magnitude, 
indicating a significant error reduction in MGT 
estimation accuracy. Further experimental validation 
confirms the practical applicability of the method: the 
average localization error of the magnetic source 
decreased from 0.040 m to 0.019 m after calibration, 
yielding a 52.5% improvement. These consistent 
improvements across both simulated and real-world 
settings demonstrate that the proposed calibration 
strategy effectively enhances the spatial resolution and 
localization accuracy of MGTMS. 

However, the current study focuses on addresses 
array-level misalignment errors. The inherent sensor-
level errors such as scale factor deviations and axis non-
orthogonality are not considered in the current 
calibration framework. Future research is proposed to 
develop an integrated framework by incorporating joint 
correction of both array-level and sensor-intrinsic errors 
to achieve comprehensive calibration and further 
improve the robustness and accuracy of MGT 
measurements in complex environments. 
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To correct the misalignment errors, a PSO algorithm 
was implemented. The calibration results are presented 
in Figure 3, which compares tensor values before and 
after calibration. After applying the PSO-based 
calibration framework, the root mean square error 
(RMSE) of each MGT component was significantly 
reduced by nearly three orders of magnitude 
demonstrating the method’s effectiveness. The error 
reduction metrics are summarized as follows: Gxx 
decreased from 540,904.089 nT/m to 262.277 nT/m; 
Gxy decreased from 464,905.139 nT/m to 
153.131 nT/m; Gxz was reduced from 
545,828.167 nT/m to 302.564 nT/m; Gzy decreased 
from 617,190.071 nT/m to 176.920 nT/m; and Gzz 
declined from 834,086.836 nT/m to 290.465 nT/m. 
These results demonstrate the method's efficacy in 
suppressing sensor misalignment errors and improving 
MGT measurement accuracy.  

5 Experiment 

 
Fig. 4. MGTMS and magnetic source motion trajectory 

diagram. 
To further verify the practical efficacy of the 

proposed correction method, a magnetic source 
localization experiment was performed using a cross-
shaped magnetic gradient tensor (MGT) measurement 
system and a certified reference source. A neodymium–
iron–boron permanent magnet, calibrated by the Beijing 
Institute of Microelectronics Technology and 
possessing a magnetic moment of (0, -1590.29, 0) A·m², 
was employed as the standard magnetic source. As 
shown in Figure 4, the sensor array was positioned 0.7 m 
above the ground, and a circular trajectory with a radius 
of 0.5 m was marked on the ground, centered at the 
array’s geometric center. Eight sampling points were 
taken at 45° intervals along the trajectory, and magnetic 
gradient tensor values were measured at each location. 

The NTPT localization algorithm was used to 
estimate the position of the magnetic source based on 
the measured tensor values. Three types of localization 
results were computed for comparison: positions 
derived from the ideal theoretical tensor, from the 
uncorrected measured tensor, and from the corrected 
tensor using the proposed method. Figure 5 shows the 
localization trajectories obtained from different sources 
of tensor data. As illustrated, the localization results 
using the corrected tensor data closely align with the 
ideal trajectory, in contrast to the more dispersed 
estimates derived from uncorrected measurements. 
Table 2 presents the corresponding numerical values. A 
quantitative comparison reveals that, prior to calibration, 
the maximum positioning errors along the x-, y-, and z-
axes were 0.098 m, 0.048 m, and 0.163 m, respectively. 
After calibration, these errors decreased to 0.041 m, 

0.027 m, and 0.097 m. The average localization error 
was reduced from 0.040 m to 0.019 m, achieving an 
improvement of approximately 52.5%. 

 
(a) x-z plane. 

 
(b) y-axis. 

Fig. 5. Localization results on the trajectory of magnetic 
source motion. 

Table 2. Localization results on the trajectory of magnetic 
source motion. 

 
These experimental results are consistent with the 

simulation findings and demonstrate that the proposed 
PSO-based calibration method simultaneously 
addresses correcting tensor distortion and improving the 
accuracy of MGT-based target localization under 
practical conditions. 

6 Conclusion 
This paper proposes a computationally efficient  

correction method for correcting misalignment errors in 
MGTMS. By employing a standard magnetic source 
with a known magnetic moment and utilizing a PSO 
algorithm, the proposed approach eliminates the need 
for physically rotating the sensor array, thereby avoiding 
additional errors caused by structural disturbances or 
cable tension. Instead, calibration is achieved by 

 

 

repositioning the magnetic source and comparing the 
measured and theoretical tensor values at multiple 
locations. Simulation results demonstrate that the 
proposed method reduces the RMSE of the tensor 
components by nearly three orders of magnitude, 
indicating a significant error reduction in MGT 
estimation accuracy. Further experimental validation 
confirms the practical applicability of the method: the 
average localization error of the magnetic source 
decreased from 0.040 m to 0.019 m after calibration, 
yielding a 52.5% improvement. These consistent 
improvements across both simulated and real-world 
settings demonstrate that the proposed calibration 
strategy effectively enhances the spatial resolution and 
localization accuracy of MGTMS. 

However, the current study focuses on addresses 
array-level misalignment errors. The inherent sensor-
level errors such as scale factor deviations and axis non-
orthogonality are not considered in the current 
calibration framework. Future research is proposed to 
develop an integrated framework by incorporating joint 
correction of both array-level and sensor-intrinsic errors 
to achieve comprehensive calibration and further 
improve the robustness and accuracy of MGT 
measurements in complex environments. 
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