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Abstract. Human action recognition is a task that utilizes algorithms to recognize human actions from videos.
Transformer-based algorithms have attracted growing attention in recent years. However, transformer networks
often suffer from slow convergence and require large amounts of training data, due to their inability to prioritize
information from neighboring pixels. To address these issues, we propose a novel network architecture that
combines a depthwise separable convolution layer with transformer modules. The proposed network has been
evaluated on the medium-sized benchmark dataset UCF101 and the results have demonstrated that the proposed
model converges quickly during training and achieves competitive performance compared with SOTA pure
transformer network, while reducing approximately 7.4 million parameters.

1 Introduction

Human action recognition (HAR)[1] remains a significant
challenge in computer vision and serves as a foundational
task in video understanding. It has a wide range of appli-
cations, including video surveillance systems and sports
action analysis. HAR algorithms have been widely ex-
plored in last decades using various backbone networks
such as convolution neural networks[2], Long-Short Term
Memory network[3] and Transformer networks [4]. Main-
stream methods fall into two main categories: convolu-
tional networks and transformer-based networks. Most re-
cently, transformer-based networks have become increas-
ingly popular for human action recognition [5]. In particu-
lar, the Vision Transformer(ViT) was the first visual trans-
former model applied to computer vision tasks, achiev-
ing state-of-the-art performance on large-scale benchmark
datasets. Specifically, the ViT network linearly encodes
image patches and computes the correlations between the
patches so as to focus on the most relevant areas of the im-
age. However, due to the self-attention mechanism, ViT
lacks the inductive bias of locality, which results in slower
convergence and a requirement for large amounts of train-
ing data [6].

Some research studies such as Video Swin Trans-
former [7] have adopted convolutional concepts to utilize
a window-based transformer mechanism to compute the
self-attention within windows, limiting the self-attention
computing in small range of area. To show the importance
of locality induct bias, research [8] analyzing the differ-
ence of cognitive field between CNN and self-attention
in lower and higher layers. the research reveal that lo-
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cal information aggregation at lower layers are impor-
tant to ViT networks, the research also demonstrates that
self-attention plays a crucial role in visual transformer
throughout analyzing the internal representation structure
of ViT and CNN networks, which enables early aggre-
gation of global information. Residual connection in vi-
sual transformer strongly propagate features from lower
to higher layers. In the last few years, comprehensive
research[9, 10] has proved the importance of locality in-
ductive bias in computer vision task.

To improve the local spatial and temporal feature ex-
traction, we proposed a new architecture of transformer-
based network by using depthwise separable convolution
layer for patch embeddings instead of linear layer, which
learn the neighbor feature preferentially and without the
significant increase of the number of parameters. We
also build a novel self-attention mechanism that contains
depthwise separable network to generate query, key and
value tokens of patches, and the position embedding is
provided by convolution layers. We hypothesise that the
convolution layer can provide high spatial and temporal
position structure in Query, Key and Value vectors due to
sliding kernel in convolution layer, thus the position em-
bedding is not required in the standard self-attention mech-
anism. In order to reduce the computational cost, we use
the depthwise convolution layer[11] in all modules rather
standard convolution layers to reduce the parameters of the
model.

2 Related work
2.1 Human action recognition

Human Action Recognition is to extract appearance and
temporal features from short and untrimmed videos, and
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recognize human actions based on the spatial and temporal
features[1, 12]. Traditional methods[13, 14] rely on hand-
crafted features to learn human shapes and movements.
Research[15] proposed an action recognition method by
using contour points of human silhouettes to represents
the body shape. With the progress on deep learning
methods[16], convolution networks[17, 18] and trans-
former networks[6] are developed to extract deep spatial
features such as color ,body shape and semantic informa-
tion, and temporal features of action motions.

2.2 3D convolution network

Convolution neural networks[2, 16, 18] has achieved great
success on video action recognition. In particular, the
SlowFast[16] network is a network consisting of slow
and fast pathways to extract spatial and temporal fea-
ture respectively via 3D convolution modules[17]. This
kind of design enhances the power of motion analysis
and achieved superb performance on video-based action
recognition. 3D Convolution Network[2] is a fully convo-
lutional network with small kernel sizes to naturally ex-
tract spatiotemporal features. The Inflated 3D[18] is a
network with inflated 3D convolution network, which ex-
tends 2D kernel to 3D kernel. The design of I3D ker-
nel allows reusing pretrained 2D models weights on Im-
ageNet dataset, to alleviate the random initialization prob-
lem. The Depthwise Separable Network[19] is designed
to extract the image features with significantly drops the
number of parameters, the network applies single filter per
channel and output the same number of channels as in-
put, followed a pointwise convolution to output the desired
channels. However, convolutional networks are limited in
their ability to capture global spatial features across en-
tire video frames and long-range temporal dependencies
within videos.

2.3 Vision transformer network

Vision Transformer[6] is a transformer network for im-
age classification and has gained competitive performance
when evaluated on large datasets such as ImageNet-
22K][20]. Vision Transformers divide the original image
into several non-overlapping patches, which are then lin-
early embedded into fixed-length tokens. These tokens are
subsequently processed by the Multi-Head Self-Attention
(MHSA) mechanism [21]. and positional embeddings are
further added to provide position information for each to-
ken, in order to learn the global feature representation and
build corelation between each patches. The Video Swin
Transformer [4, 7] introduces a novel architecture to en-
hance local feature analysis. Its shifted window atten-
tion mechanism enables the extraction of both spatial and
temporal features within local windows. ConvFormer[10]
proposes a network that integrates convolution and trans-
former to learn local and global features for image seg-
mentation. In [22], a combination of convolution and
transformer network is designed to enhance the local fea-
ture for video understanding.

3 Visual transformer with depthwise
separable convolution projections

3.1 Overall architecture

The overall framework of the proposed Visual Trans-
former with Depthwise Separable Convolution Projections
(VT-DSCP) is shown in Fig 1. Short and trimmed video
inputs are first converted into feature maps using depth-
wise separable convolution layer. Then, a Depthwise Sep-
arable Convolution (DSC) layer is used to generate the
query, key, and value representations for computing the
spatiotemporal attention regions in the video. The reso-
lution of the feature maps are then progressively reduced
by a hierarchical architecture composed of several novel
transformer blocks, so as to learn deeper and stronger rep-
resentations for action recognition. The downsampling in
the transformer blocks is performed using a depthwise sep-
arable convolution layer as well. The final video feature
map is converted to 1D feature, and classified via a fully
connected network. The detailed information of each com-
ponent is explained in the following sections.

3.2 Feature embedding

Given a short and trimmed video input with the shape of
V € R¥>P*HxW RandomHorizontalFlip[23] and Normal-
ization are utilized to pre-process the input video. The
preprocessed data is embedded by a DSC layer to gener-
ate the feature map of video F € ROP*H*W" The DSC
layer employs both spatial and temporal convolution. The
spatial convolution layer uses a kernel size of 1 X K X K,
focusing solely on the spatial dimensions. Then,followed
by a depthwise convolution layer with a kernel size of
K x 1 x 1, which learns only the temporal dependencies
in the videos. Finally, the spatial and temporal features are
combined through addition to form the video representa-
tion. The architecture of DSC layer is illustrated in Fig 2

3.3 Depthwise separable enhanced transformer

The novel transformer enhanced by depthwise separable
convolution is shown in the Fig 3, which utilizes spa-
tial convolution and temporal convolution to generate to-
kens for self-attention. Compared with linear embed-
ding, a convolutional layer scans features from top-left to
bottom-right while inherently capturing positional infor-
mation through its structure. Moreover, the temporal con-
volution layer sequentially extracts the temporal informa-
tion frame by frame.

Specifically, we adopt the depthwise separable convo-
lution layer to tokenize the input feature F € REP™>H>W’
by tripling the channel, and to split the feature into query,
key and value tokens. Then we follow the idea of [6] that
divides the feature map into non-overlapping patches with
a patch size of P. Therefore, the query, key and values
are f,, = R»N*XC respectively, where N is the number of
patches (N = Z x H?' X %) and L is the size of window

P
(L = PxPxP). We also adopt the multi-head self-attention
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Figure 1. Framework of depthwise separable convolution involved transformer.

Figure 2. The figure on the left illustrates a standard 3D convolu-
tion network. The figures on the right depict a depthwise separa-
ble network, where convolution filter first learns spatial features,
followed by a depthwise convolution that focuses on temporal
dependency learning.
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Figure 3. Paradigm of Depthwise Separable Convolution Pro-
jection enhanced Transformer.

[

to enrich the representation of visual features. As the con-
volution layer provides positional information, additional
position embedding is not required in the novel DSC based
module.

The multi-head attention mechanism computes atten-
tion scores between query and key tokens and captures
correlations among all the patches. These scores weight
the value tokens to highlight the most important patches.
A Layer Normalization followed by a residual addition
then normalizes the embedded features. Next, a Feed-
Forward Network (FFN), again followed by Layer Nor-
malization and a residual connection, further processes the
spatiotemporal features and improves model generaliza-
tion. Whereas convolution extracts spatial and temporal
features within its kernel’s receptive field, which priori-
tizes local neighbors of feature. Multi-head self-attention
models associations across all patches, enhancing the net-
work’s understanding of global visual and temporal con-
text. Our model adopts a hierarchical architecture that
downsamples both spatial and temporal dimensions using
a depthwise-separable convolution layer.

3.4 Classifier

The novel network uses a feed-forward classifier compris-
ing two fully connected layers with a ReL.U activation be-
tween them. A softmax function then produces the class-
probability distribution. To evaluate the model perfor-
mance, we conducted experiments on the public UCF101
benchmark dataset.

4 Experiments

To evaluate the effectiveness of the new transformer net-
work VT-DSCP, experiments have been conducted on
UCF101[24], which is a medium-size video dataset. We
adopt data augmentation methods including Normaliza-
tion, Scale (224 x 224) in the spatial dimension. We also
use the RandomCenterCrop method in temporal dimen-
sion to randomly obtain 32 frames per clip, thus the input
size is [3 X 32 x 224 x 224]. We use the AdamW[25] as
the optimizer with a learning rate of le-4. le-5 is set as
weight decay, and CosineAnnealingLR in PyTorch as the
learn rate scheduler. The training epoch is 20. The kernel
size of spatial and temporal convolution are (1, 3,3) and
(3,1, 1), respectively. We split the total dataset into 75%
for training and 25% for test. The experiments ran on 2
GPUs by using the DistributedDataParallel method.

Tophi Top1

Figure 4. Training comparison of VI-DSCP and Video Swin
Transformer on UCF-101.

4.1 Results

As shown in Fig 4, in the training stage, VI-DSCP con-
verged much faster than Video Swin transformer. Com-
pared with other CNN-based approaches, our network
achieved higher accuracy on the UCF101 dataset, by tak-
ing advantages of the attention mechanism to capture over-
all spatial content on the spatial dimension. However, the
accuracy of VI-DSCP is lower than the video swin trans-
former network which has no convolution layers. The rea-
son may be the small size of our model. The total number
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Table 1. Difference between VI-DSCP and Swin transformer baseline.

model projection position encoding  parameter
VT-DSCP Depthwise separable CNN no 20.8M
Video Swin Transformer-Tiny linear yes 28.2M

Table 2. Performance Comparison of Various methods on

UCF101.
Model UCF101(Accuracy)
C3D 82.3
TSN 84.5
13D 88.8
TSN 91.7
Video Swin Transformer 93.1
Our 92.3

of parameters of VI-DSCP is 20.8M, 7.4M parameters are
reduced compared to Video Swin transformer with similar
architectures, the architecture difference is shown in Table
1. The performance comparison between various models
is shown in Table 2. Compared with other CNN based
approaches, our network has fewer parameters and better
performance, which inherits the advantage of the convolu-
tion network and transformer network.

4.2 Ablation study

In order to validate the effectiveness of depthwise separa-
ble embedding for visual transformer, the comparison is
shown in the Table 3. Linear embedding was tested and
achieved a result 86.5%, with slower convergence during
the training stage. Moreover, we replaced linear embed-
ding with standard CNN layer to generate the query, key
and values. The result achieved 91.9% on the UCF101
dataset with faster convergence. However, the parameters
used by this model are much more than our model.

Table 3. Performance comparison of various embedding
methods on the UCF101 dataset.

Embedding Accuracy
Linear 86.5
Standard CNN 91.9

Depthwise separable CNN 923

5 Conclusion

In this work, we propose a new transformer network for
video based action recognition with depthwise separable
convolution layers. In particular, depthwise separable con-
volution layers with small sized kernels are used to project
tokens for the self-attention mechanism. The experiments
have demonstrated that the position encoding can be safely
removed from the transformer network. In addition, the
convolution layer introduces linear invariances in visual
representations while preserving strong location informa-
tion. The proposed VI-DSCP model has achieved compet-
itive performance with fewer parameters, when compared

with other networks. In the future, we will evaluate our
model’s performance on various HAR benchmark datasets
to assess its generalization ability. Additionally, we will
compare the model with state-of-the-art transformer net-
works to demonstrate the effectiveness.

This work is supported by the Zhongyuan University of
Technology-Brunel University London (ZUT-BUL) Joint Doc-
toral Training Programme. This work is funded by the

ZUT/BRUNEL scholarship.

References

1 R. Poppe, A Survey on Vision-Based Human Ac-
tion Recognition, Image and Vision Computing, 28,
976-990 (2010). https://doi.org/10.1016/j.imavis.2009.
11.014

2 D. Tran, L. Bourdev, R. Fergus, L. Torresani, and
M. Paluri, Learning Spatiotemporal Features With 3D
Convolutional Networks, in Proceedings of the IEEE
International Conference on Computer Vision (ICCV),
(2015). https://doi.org/10.1109/ICCV.2015.510

3 M. Majd and R. Safabakhsh, Correlational Convolu-
tional LSTM for Human Action Recognition, Neu-
rocomputing, 396, 224-229 (2020). https://doi.org/10.
1016/j.neucom.2018.10.095

4 Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin,
and H. Hu, Video Swin Transformer, in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3202-3211 (2022).
https://doi.org/10.1109/CVPR52688.2022.00320

5 S. Khan, M. Naseer, M. Hayat, S. Zamir, F. Khan,
and M. Shah, Transformers in Vision: A Survey, ACM
Computing Surveys (CSUR), 54, 1-41 (2022). https:
//doi.org/10.1145/3505244

6 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani, M.
Minderer, G. Heigold, S. Gelly, and J. Uszkoreit, An
Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale, arXiv preprint arXiv:2010.11929
(2020).

7 Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang,
S. Lin, and B. Guo, Swin Transformer: Hierarchical
Vision Transformer Using Shifted Windows, in Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 10012-10022 (2021).
https://doi.org/10.1109/ICCV48922.2021.00986

8 M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang,
and A. Dosovitskiy, Do Vision Transformers See Like
Convolutional Neural Networks?, Advances in Neu-
ral Information Processing Systems, 34, 12116-12128
(2021).

9 D. Cui, C. Xin, L. Wu, and X. Wang, ConvTrans-
former Attention Network for Temporal Action Detec-



MATEC Web of Conferences 413, 06003 (2025)
MAIQS 2025

https://doi.org/10.1051/matecconf/202541306003

tion, Knowledge-Based Systems, 300, 112264 (2024).
https://doi.org/10.1016/j.knosys.2024.112264

10 P. Gu, Y. Zhang, C. Wang, and D. Chen, ConvFormer:
Combining CNN and Transformer for Medical Im-
age Segmentation, arXiv preprint arXiv:2211.08564
(2022).

11 F. Chollet, Xception: Deep Learning with Depth-
wise Separable Convolutions, arXiv preprint
arXiv:1610.02357 (2017).

12 H.-B. Zhang, Y.-X. Zhang, B. Zhong, Q. Lei, L.
Yang, J.-X. Du, and D.-S. Chen, A Comprehensive Sur-
vey of Vision-Based Human Action Recognition Meth-
ods, Sensors, 19, 1005 (2019). https://doi.org/10.3390/
s19051005

13 H. Shabani, D. Clausi, and J. Zelek, Towards a Ro-
bust Spatio-Temporal Interest Point Detection for Hu-
man Action Recognition, in Proceedings of the Inter-
national Conference on Image Processing (ICIP), pp.
237-243 (2009).

14 A. F. Bobick and J. W. Davis, The Recognition of
Human Movement Using Temporal Templates, IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 23, 257-267 (2001). https://doi.org/10.1109/34.
910878

15 A. Chaaraoui, P. Climent-Pérez, and F. Florez-
Revuelta, Silhouette-Based Human Action Recognition
Using Sequences of Key Poses, Pattern Recognition
Letters, 34, 1799-1807 (2013). https://doi.org/10.1016/
j-patrec.2013.01.021

16 C. Feichtenhofer, H. Fan, J. Malik, and K. He, Slow-
Fast Networks for Video Recognition, in Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 6202-6211 (2019). https://
doi.org/10.1109/ICCV.2019.00630

17 K. He, X. Zhang, S. Ren, and J. Sun, Deep Resid-
ual Learning for Image Recognition, in Proceedings

of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 770-778 (2016). https:
//doi.org/10.1109/CVPR.2016.90

18 J. Carreira and A. Zisserman, Quo Vadis, Action
Recognition? A New Model and the Kinetics Dataset,
in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6299-
6308 (2017). https://doi.org/10.1109/CVPR.2017.502

19 M. Sandler, A. Howard, M. Zhu, A. Zhmoginov,
and L.-C. Chen, MobileNetV2: Inverted Residuals
and Linear Bottlenecks, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 4510-4520 (2018). https://doi.org/10.
1109/CVPR.2018.00474

20 A. Krizhevsky, I. Sutskever, and G. Hinton, Ima-
geNet Classification with Deep Convolutional Neural
Networks, Communications of the ACM, 60, 84-90
(2017). https://doi.org/10.1145/3065386

21 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.
Jones, A. Gomez, L. Kaiser, and I. Polosukhin, Atten-
tion is All You Need, Advances in Neural Information
Processing Systems, 30 (2017).

22 C. Zhang, ConvFormer: Tracking by Fusing
Convolution and Transformer Features, IEEE Ac-
cess, 11, 74855-74864 (2023). https://doi.org/10.1109/
ACCESS.2023.3293592

23 T. Kumar, R. Brennan, A. Mileo, and M. Bendechache,
Image Data Augmentation Approaches: A Compre-
hensive Survey and Future Directions, IEEE Access,
(2024).

24 K. Soomro, A. RoshanZamir, and M. Shah, UCF101:
A Dataset of 101 Human Actions Classes From Videos
in the Wild, arXiv preprint arXiv:1212.0402 (2012).

25 1. Loshchilov and F. Hutter, Decoupled Weight De-
cay Regularization, arXiv preprint arXiv:1711.05101
(2017).



