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Abstract
Object detection at coal transportation railway crossings is crucial for accident prevention and traffic efficiency improvement.
However, the application of existing methods on resource-constrained devices has seldom been considered. To address these
challenges, in this paper,we propose a lightweight railway crossing object detection algorithmbased on theTransformer frame-
work, referred to as Light-Weight DEtection TRansformer (LW-DETR). In this algorithm, the Paddle Paddle-Lightweight
CPU Convolutional Network (PP-LCNet) is employed as the backbone network, where standard convolution is combined
with depthwise separable convolution for multi-scale feature extraction. Furthermore, the cross-scale feature fusion module
is optimized to reduce redundant calculations and enhance feature fusion efficiency. Moreover, the Scylla-Intersection over
Union loss function is introduced to comprehensively evaluate bounding box similarity, thereby improving object detection
accuracy. Ablation experiments conducted on a modified Pascal Visual Object Classes (Pascal VOC) dataset demonstrate
that LW-DETR, while maintaining acceptable detection accuracy, achieves a 135.3% increase in frames per second, a 71.7%
reduction in parameters, and a 73.7% decrease in computational load, leading to effective lightweight performance. Com-
parative experiments with other popular object detection algorithms further confirm that LW-DETR significantly enhances
detection speed while maintaining high accuracy, considerably reducing model size and validating the effectiveness of these
improvements.

Keywords Railway crossing · Object detection · Transformer framework · Lightweight algorithm · Deep learning · Real-time
monitoring

Introduction

Railway transportation plays a crucial role in coal transport
within local railway networks due to its high capacity, low
risk, and cost-effectiveness. As critical junctions where rail-
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ways and roads intersect, railway crossings are essential for
ensuring the smooth and safe operation of both railway and
road traffic near coal transport lines [17]. Due to their unique
geographical locations and functions, railway crossings are
susceptible to traffic accidents in the absence of effec-
tive monitoring methods. Traditional monitoring approaches
have typically relied on human observation, which is labor-
intensive, time-consuming, and may increase the risk of
accidents [55]. Therefore, the effective monitoring of rail-
way crossings is essential for accident prevention, traffic
efficiency improvement, and overall traffic safety assurance.

In recent years, object detection technology has been rec-
ognized as a critical component in video surveillance systems
[24, 30]. Consequently, its integration into unattended rail-
way crossings has been of significant practical importance,
particularly for coal mine railway crossings. Compared to
conventional methods, the application of object detection
technology in railway crossings requires a higher level of
intelligence and real-time performance to promptly iden-
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tify vehicles and pedestrians, thereby reducing the risk of
accidents and ensuring traffic safety [55]. These advanced
methods contribute significantly to traffic management opti-
mization, transportation efficiency enhancement, and traffic
congestion alleviation, thereby playing a pivotal role in the
intelligent development of transportation systems [30].

Despite its essential role in safety monitoring, the study of
object detection algorithms continues to be confronted with
significant challenges. Complex environments, influenced by
factors such as variations in lighting and weather, impose
stringent demands on the robustness and stability of these
algorithms to ensure accurate performance under diverse
and challenging conditions [55]. Concurrently, substantial
challenges remain regarding real-time performance and effi-
ciency, requiring improvements in processing speed while
maintaining high accuracy to meet real-time monitoring
requirements. However, existing object detection algorithms
often consist of a substantial number of parameters, making
their deployment on embedded devices impractical. Fur-
thermore, although many algorithms exhibit commendable
performance in controlled testing environments, issues such
as low frames per second (FPS) frequently arise in practical
applications, thereby significantly limiting their effectiveness
in real-time monitoring scenarios [17].

In response to the aforementioned challenges, in this
paper, we propose a lightweight railway crossing object
detection algorithm based on the Transformer framework,
referred to as Light-Weight DEtection TRansformer (LW-
DETR). The algorithm incorporates a series of modifications
to the feature extraction network, the feature fusion net-
work, and the loss function of LW-DETR. Many existing
Transformer-based methods, like DETR [2], are charac-
terized by high model complexity and a large number of
parameters. To reduce the required number of parameters
and model complexity, LW-DETR adopts streamlined and
efficient feature extraction and fusion strategies within its
architecture. Evaluations are conducted on the augmented
Pascal Visual Object Classes (Pascal VOC) dataset, Pascal
VOC07+12, by integrating the Pascal VOC 2007 and 2012
datasets.

The main contributions of this paper can be highlighted
as follows.

1. The Paddle Paddle-Lightweight CPU Convolutional Net-
work (PP-LCNet) is employed to replace the High-
Performance GPU Network (HGNet), enabling multi-
scale feature extraction through standard convolution
(Conv), depthwise separable convolution (DSConv), and
squeeze-and-excitation (SE) modules. As a result, the
model’s complexity and computational costs are success-
fully reduced.

2. The cross-scale feature fusion module in Real-Time
DEtection TRansformer (RT-DETR) is optimized to

address issues related to insufficient fine-grained infor-
mation capture, high computational costs, and inadequate
feature utilization. Consequently, the expressive capabil-
ities and inference speed of the model are enhanced.

3. The Scylla-Intersection over Union (SIoU) metric, incor-
porating angular loss, distance loss, shape loss, and Inter-
section over Union (IoU) loss, is introduced to optimize
the representation of bounding box positional relation-
ships and regression outcomes.

4. The performance of LW-DETR is extensively evalu-
ated on the reconfigured Pascal VOC07+12 benchmark,
demonstrating state-of-the-art results acrossmultiplemet-
rics in comparison with several other algorithms.

The remainder of this paper is organized as follows.
Section Related work provides a comprehensive review
of existing research on lightweight network architectures
and their corresponding optimization strategies, with key
advancements and remaining challenges highlighted. Sec-
tionDevelopment of LW-DETRpresents the technical details
of the proposed LW-DETR framework, including its novel
architectural components and optimization mechanisms. In
Section Experimental results, an in-depth evaluation of the
proposed method is conducted through extensive experi-
ments, followed by a detailed analysis and discussion of the
results. Finally, SectionConclusion summarizes the key find-
ings of this study and outlines potential directions for future
research.

Related work

Lightweight networks

In recent years, deep neural networks have attracted atten-
tion due to their remarkable performance [4, 22, 42, 43].
The development of ResNet has effectively addressed the
vanishing gradient problem in deep networks, allowing for
further deepening of network architectures [14]. However,
as network depth increases, model complexity and hard-
ware demands escalate, prompting accelerated research into
lightweight networks.

In [15], MobileNetV1 has been developed by Google,
utilizing depthwise separable convolutions (DSConv) to
reduce model parameters and computational load. In [29],
MobileNetV2 has been introduced by incorporating inverted
residuals and linear bottlenecks, thereby improving network
accuracy despite a slight increase in parameters. In [16],
MobileNetV3 has been further enhanced through the integra-
tion of attention mechanisms and neural architecture search
(NAS), optimizing the network structure and boosting perfor-
mance. In [25], ShuffleNetV2 has been proposed by Megvii
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Technology, optimizing memory access costs to improve
detection speed.

In [35], EfficientNet has been presented by Google,
emphasizing the balance among network depth, width, and
resolution to enhance accuracy. In [36], EfficientNetV2 has
been released to address the long training time and slow infer-
ence speed of EfficientNet. In [12] and [13], C-GhostNet and
G-GhostNet have been proposed by Huawei’s Noah’s Ark
Lab, optimizing performance for CPU and GPU devices,
reducing feature redundancy, and enhancing lightweight
model efficiency. In [23], MicroNet has been introduced by
Microsoft through employing micro-decomposition convo-
lutions and dynamic activation functions to maintain high
accuracy in lightweight models. In [37], MobileOne has
been launched by Apple, decoupling training and inference
frameworks through linear branches and new parameters,
thereby reducing inference time. In [3], FasterNet has been
proposed by the Hong Kong University of Science and Tech-
nology, analyzing the relationships among frames per second
(FPS), floating point operations (FLOPs), and floating point
operations per second (FLOPS), and introducing partial con-
volution to reduce computational redundancy.

Lightweight object detection algorithms

On resource-constrained mobile devices and embedded sys-
tems, conventional object detection algorithms frequently
fail to meet real-time detection requirements due to exces-
sive computational and memory demands. To address this
limitation, significant research efforts have been dedicated
to the development of lightweight object detection algo-
rithms capable of delivering both accuracy and efficiency
under hardware constraints. For example, a YOLOv8-based
detector has been proposed in [21] for concealed object
identification using active millimeter wave images. In the
YOLOv8-based detector, a new backbone, the attention
mechanism and the depth-wise convolutions are employed,
and redundant branches are removed to detect concealed
objects. In [34], an arbitrary-oriented detector has been intro-
duced for remote sensing images by integratingDCNDarknet
with deformable convolution and rotation detection, which
significantly improves the ship detection performance in
complex backgrounds. In [45], the YOLO model for effi-
cient pedestrian detection (YOLO-EPD) has been developed
by featuring a selective content-aware downsampling mod-
ule, a crowded multi-head attention module, and knowledge
distillation, which enhances pedestrian detection in dense
scenes while maintaining real-time efficiency. In [40], the
lightweight small object detection algorithm (LSOD-YOLO)
has been presented, which employs a lightweight cross-layer
output reconstruction module, spatial pyramid pooling layer,
C2f-N module, and a lightweight Dysample upsampler to
tackle the detection problem in complex scenarios.

It should be pointed out that most of the aforementioned
optimizations incorporate depthwise separable convolution
(DSConv), which, despite reducing model parameters and
computational load on GPU devices, cannot efficiently
enhance detection speed due to frequent memory accesses.
Consequently, achieving an optimal balance between detec-
tion accuracy and speed on embedded devices remains a
significant challenge.

Development of LW-DETR

Modified backbone of LW-DETR

RT-DETR is a real-time object detectionmethod based on the
Transformer architecture [52]. Although its backbone net-
work, HGNet, has demonstrated outstanding performance
across various standard datasets, significant challenges are
encountered when detecting small and dense targets. More-
over, the high model complexity and computational costs
of HGNet severely restrict the applicability of RT-DETR in
resource-constrained environments.

To address the identified challenges, PP-LCNet is employed
in this study as a replacement for HGNet [5]. PP-LCNet
integrates standard convolutions (Conv) with depthwise sep-
arable convolutions (DSConv), enabling effectivemulti-scale
feature extraction and demonstrating superior performance
in detecting small and dense targets. The structures of PP-
LCNet and DSConv are illustrated in Table 1 and Fig. 1,
respectively. Specifically, PP-LCNet progressively reduces
the feature map size through downsampling, facilitating the
extraction of target information at different levels of gran-
ularity across multiple scales. The use of DSConv not only
minimizes the number of parameters but also expands the
model’s receptive field, thereby enhancing the ability to cap-
ture complicated details.

Next, the SE attention module [18] is integrated into the
last twoDSConv layers of PP-LCNet. As illustrated in Fig. 2,
the SE module adaptively recalibrates channel-wise feature
responses, thereby enhancing the model’s ability to empha-
size salient features. This integration strengthens the model’s
capacity to distinguish subtle differences between dense
objects and the background. By incorporating these struc-
tural designs and modules, PP-LCNet effectively overcomes
the limitations of HGNet on the revised Pascal VOC07+12
dataset, significantly advancing object detection technology.

Remark 1 PP-LCNet has significantly reduced model com-
plexity and computational demands through an optimized
network architecture and the strategic integration of key
modules. When small and dense targets are detected, fea-
ture information is effectively utilized by PP-LCNet to
enhance object detection efficiency. The lightweight nature
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Table 1 Structure of the
PP-LCNet

Input Operator Output channels SE Stride

640 × 640 × 3 Conv2d 3 × 3 8 – 2

320 × 320 × 8 DSConv 3 × 3 16 – 1

320 × 320 × 16 DSConv 3 × 3 32 – 2

160 × 160 × 32 DSConv 3 × 3 32 – 1

160 × 160 × 32 DSConv 3 × 3 64 – 2

80 × 80 × 64 DSConv 3 × 3 64 – 1

80 × 80 × 64 DSConv 3 × 3 128 – 2

40 × 40 × 128 DSConv 5 × 5 128 – 1

40 × 40 × 128 DSConv 5 × 5 128 – 1

40 × 40 × 128 DSConv 5 × 5 128 – 1

40 × 40 × 128 DSConv 5 × 5 128 – 1

40 × 40 × 128 DSConv 5 × 5 128 – 1

40 × 40 × 128 DSConv 5 × 5 256 � 2

20 × 20 × 256 DSConv 5 × 5 256 � 1

Fig. 1 Structure of the DSConv

Fig. 2 Structure of the SE
attention module
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of its network structure substantially minimizes computa-
tional resource requirements, allowing PP-LCNet to operate
efficiently in resource-constrained environments, including
embedded systems and mobile devices.

Precise fusionmodule of LW-DETR

In PP-LCNet, DSConv significantly reduces the number of
model parameters and computational load; however, it does
not proportionally increase inference speed. This limitation
arises because inference speed is influenced not only by the
model’s FLOPsbut also by its FLOPS.AlthoughDSConvhas
been highly effective in reducing FLOPs, frequent memory
accesses result in lower FLOPS, thereby limiting improve-
ments in inference speed. Furthermore, the cross-scale fea-
ture fusionmodule ofRT-DETRexhibits several deficiencies.
Specifically, the Reparameterized Block (RepBlock) [39]
within this module fails to effectively capture fine-grained
details, leading to suboptimal performance when detecting
small and dense targets. This limitation adversely impacts
feature extraction capabilities and ultimately compromises
detection accuracy. Moreover, the repetitive structure of the
RepBlock increases computational costs, making it less suit-
able for resource-constrained environments. Moreover, the
simple element-wise addition method used by the RepBlock
cannot fully leverage feature information, resulting in inad-
equate feature fusion and restricting the model’s expressive
power. These issues undoubtedly hinder the performance of
RT-DETR in object detection tasks.

To address the limitations with the cross-scale feature
fusion module, a precise fusion module (PFM) is proposed
to enhance both precision and inference speed by overcom-
ing the shortcomings of the existing fusion process. The PFM
integrates a diverse set of operations, including standard con-
volution, partial convolution, pointwise convolution, residual
connections, and element-wise addition, to effectively refine
and extract intricate information from the input features. The
architecture of the proposed precise fusion module is illus-
trated in Fig. 3.

The introduction of Partial Convolution (PConv), as illus-
trated in Fig. 4, represents a critical component of the PFM
workflow. The PConv acts upon an input feature tensor with
the dimension of H × W × C , where H , W , and C repre-
sent the height, width, and channel number, respectively. The
core mechanism of PConv is to divide the C input channels
into two subsetsCp andCid .Here, a standard spatial convolu-
tion is applied to theCp-channel subset, typically yielding an
output featuremap also containingCp channels. The remain-
ing Cid channels, defined as Cid = C − Cp, are processed
via an identity mapping. Finally, the resulting features from
the Cp channels (with the dimension of H × W × Cp) are
concatenated along the channel with the features from the
Cid channels (with the dimension of H × W × Cid ). In this

Fig. 3 Structure of the precise fusion module

Fig. 4 Structure of PConv in the precise fusion module

case, the number of channel in the final output feature map
is C . Leveraging the operational principle of its overall pro-
cess, PConv within the PFM workflow selectively processes
significant regions of the feature map to preserve essential
information while suppressing non-essential parts and noise.
The PConv is subsequently employed to refine the input fea-
tures, thereby improving feature extraction capabilities. The
PConv mechanism not only optimizes convolution opera-
tions and feature extraction but also, in our PFM framework,
effectively avoids vanishing and exploding gradients.

The final workflow of the proposed PFM can be summa-
rized as follows. The input features are initially processed
through two separate branches. In one branch, partial con-
volution is applied to target critical areas of the feature map,

123



  480 Page 6 of 13 Complex & Intelligent Systems           (2025) 11:480 

retaining key information while filtering out irrelevant parts
and noise. The features processed by partial convolution are
then concatenated along the channel dimension with those
from the other branch, which undergoes a 1×1 convolu-
tion. This concatenation significantly enhances the network’s
recognition performance and feature representation capabil-
ities.

Remark 2 The proposed PFM significantly enhances feature
extraction by integrating partial convolution and pointwise
convolution. A substantial reduction in computational cost
and model complexity is achieved through hierarchical
adjustments and the elimination of redundant calculations,
enabling more effective handling of inference demands for
small and dense targets, particularly in resource-constrained
environments. Furthermore, efficient element-wise addition
and concatenation operations are utilized to improve the
fusion of features extracted from different pathways. As
a result, superior feature integration is achieved, further
enhancing object detection accuracy.

Loss function of LW-DETR

The loss function of the traditional RT-DETR model com-
prises three distinct components: classification loss, regres-
sion loss, and bounding box loss. The classification loss is
implemented using the VariFocal Loss (VFL) [48], which
effectively addresses class imbalance. The regression loss is
computed using the L1 loss [51], selected for its robustness to
outliers. The bounding box loss is based on the Generalized
Intersection over Union (GIoU) loss [28], which enhances
the accuracy of bounding box predictions.

Building upon this foundation, our work introduces mod-
ifications only to the bounding box loss. The original model
employed the GIoU loss for this part. Specifically, the GIoU
loss is defined by

GIoU = IoU − C − (A∪B)

C
(1)

where A represents the predicted box, B denotes the ground
truth box, and C is the minimum bounding box enclosing
both the predicted and ground truth boxes, as illustrated in
Fig. 5. However, our study has identified certain limitations
of the GIoU loss function, particularly in cases where two
predicted boxes are entirely overlapped, as depicted in Fig. 6.

To address the limitations ofGIoU, SIoU [10] is employed
as a replacement. SIoU integrates four loss components:
angle loss, distance loss, shape loss, and intersection-
over-union loss. By comprehensively incorporating these
components, SIoU provides a more thorough evaluation of
the similarity between bounding boxes, thereby improving
the representation of spatial relationships and enhancing

Fig. 5 Illustration of GIoU

Fig. 6 Limitation of GIoU

regression results, and this ultimately leads to improved per-
formance of the object detection model.

The SIoU loss function is defined as

SIoU = 1 − IoU + � + �

2
, (2)

where � represents the distance loss between the ground
truth and predicted box; and � denotes the shape loss. The
IoU loss is expressed as

IoU = Bgt ⋂B

Bgt
⋃

B
, (3)

where Bgt and B correspond to the areas of the ground truth
and predicted boxes, as illustrated in Fig. 7. The distance loss
� is given by

� =
∑

k=x,y

(1 − e−γρk ), (4)

where ρx = (
Bgt
cx−Bcx
Cw

), ρy = (
Bgt
cy−Bcy
Ch

); (Bgt
cx , B

gt
cy ) and

(Bcx , Bcy) are the center coordinates of the ground truth and
predicted boxes, respectively; Cw and Ch (which are shown
in Fig. 7) are the width and height of the minimum bounding
rectangle for the ground truth and predicted boxes, respec-
tively; and γ is an intensity factor.
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Fig. 7 Distance loss of SIoU

The shape loss � is defined as

� =
∑

k=w,h

(1 − e−ωk )θ , (5)

whereωw = |wgt−w|
max(wgt ,w)

,ωh = |hgt−h|
max(hgt ,h)

;wgt and hgt are the
width and height of the ground truth box, respectively;w and
h are the width and height of the predicted box, respectively;
and θ is a hyperparameter controlling the intensity of the
shape loss.

Remark 3 It is worth noting that SIoU enhances the simi-
larity measurement between bounding boxes by integrating
shape features, allowing for a more precise description of
their spatial relationships. As a result, a more comprehensive
similarity assessment is facilitated, providing more accurate
metrics, particularly for shape features and relative positions.
This improvement leads to enhanced localization accuracy
of target objects and further strengthens the performance of
object detection algorithms.

Experimental results

Dataset description

The dataset employed in this study is derived from the Pascal
VOC 07+12 benchmark, which encompasses diverse images
across 20 object categories. To tailor the dataset for rail-
way crossing safety analysis, focusing on the most relevant
objects, a specific modification procedure is implemented.
Initially, images and labels corresponding to five categories
(i.e., person, car, bus, motorbike, and bicycle) are extracted.
Subsequently, motorbike and bicycle classes are merged into
one class, i.e., the motorcycle. Such consolidation aims to
enhance robustness of the detector against potential misclas-

sification between motorbike and bicycle (which are visually
similar classes).

The resultant dataset comprises four object classes per-
tinent to railway crossing scenarios: person, car, bus, and
motorcycle.Despite originating fromageneral visual dataset,
the tailored subset (motorcycle) provides substantial visual
diversity for the modified dataset, including variations in
appearance, illumination, viewpoint, and occlusion. Such
diversity is crucial for training detectors capable of robust
performance within complex real-world railway crossing
environments. For experimental purposes, the modified
dataset is partitioned into the training and validation sets
with an 8:2 ratio, yielding 21,671 training and 5417 vali-
dation images.

Experimental environment

The experimental environment is configured as detailed in
Table 2. The operating system is Windows 10 Professional,
with an AMD Ryzen 7 5700X 8-Core Processor running at
3.4 GHz and an NVIDIA GeForce RTX 3060 12G GPU.
The integrated development environment is set up using
Anaconda and configured with Python 3.8.18, utilizing the
PaddlePaddle 2.6 deep learning framework. Additionally, the
CUDA 11.8 computing platform and the cuDNN 8.9.4 neu-
ral network library are employed for acceleration. Themodel
uses theAdamWoptimizerwith aweight decay coefficient of
0.0001, processes input images at a resolution of 640×640,
and operates with a batch size of 8. The initial learning rate
is set to 0.001, and after each epoch, it decreases by a factor
of 0.94 over a total of 100 epochs.

Ablation experiments

To evaluate the impact of the proposed enhancements on
the network model’s performance, a series of ablation stud-
ies have been performed on the modified Pascal VOC07+12
dataset. To ensure consistent and fair comparisons, all net-
works are trained and validated under identical hardware
conditions. The results of these ablation studies are sum-
marized in Table 3. In the table, ‘Baseline’ corresponds to
RT-DETR; ‘LC’ denotes the incorporation of the lightweight
backbone network PP-LCNet; ‘PFM’ represents the replace-
ment of the fusion module with the precise fusion module;
and ‘SIoU’ indicates the adoption of the SIoU-optimized loss
function.

It can be seen in Table 3 that using PP-LCNet as the
backbone network leads to a decrease in mAP@0.5:0.95
from 61.2% to 58% and mAP@0.5 from 79.3% to 76.6%,
while the FPS of our model increases from 37.4 to 88.0.
As a lightweight network, our model achieves a signifi-
cant decrease in both the parameter count by 68.8% and
the computational load (FLOPs) by 69.2%. After replacing
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Table 2 Experimental
environment

Name Configuration

Operating System Windows 10 Professional

CPU AMD Ryzen 7 5700X 8-Core Processor 3.40 GHz

GPU NVIDIA GeForce RTX 3060 12G

Deep Learning Frameworks Paddle 2.6.0

Integrated Development Environment Python 3.8.18, CUDA 11.8, CUDNN 8.9.4

Table 3 Results of the ablation study

Method mAP@0.5:0.95 (%) mAP@0.5 (%) FPS Params (M) FLOPs (G)

Baseline 61.2 79.3 37.4 19.3 60.4

Baseline + LC 58.0 76.6 79.6 6.02 18.6

Baseline + PFM 58.9 77.9 47.1 19.13 53.2

Baseline + SIoU 61.4 79.5 37.4 19.3 60.4

Baseline + LC + PFM 57.8 76.4 88.0 5.47 15.9

Baseline + LC + PFM + SIoU 58.2 77.0 88.0 5.47 15.9

the fusion module with C3-Faster, a slight degradation in
detection accuracy is observed, but the model becomes more
efficient, achieving faster detection speeds and better utiliza-
tion of computational resources. As a result, mAP@0.5:0.95
and mAP@0.5 of our model decrease by only 0.2%, while
the FPS of our model increases by 9.6%, with reductions
in both model parameters and computational load. Finally,
by replacing GIoU with the SIoU loss function, our model
demonstrates accelerated convergence during training and
improved robustness, achieving mAP@0.5:0.95 of 58.2%
and mAP@0.5 of 77%. Compared to the RT-DETR (Base-
line) algorithm, mAP@0.5:0.95 and mAP@0.5 of our model
decrease by 6.3% and 6.6%, respectively. Although the pro-
posed LW-DETR results in a slight degradation in detection
accuracy, our model achieves a 135.3% increase in FPS, a
71.7% decrease in model parameters, and a 73.7% reduc-
tion in computational load, which enables real-time detection
on mobile and embedded devices. We can conclude that
the developed lightweight algorithm achieves higher detec-
tion accuracy, faster detection speeds, and smaller model
sizes comparing with the baseline, which demonstrates the
superiority of our model for efficient pedestrian and vehicle
detection on mobile and embedded devices.

Comparison experiments

Comparison of loss functions

The performance of various IoU loss functions in the LW-
DETR model is evaluated, including the original GIoU [28],
Distance Intersection over Union (DIoU) [53], Complete
Intersection over Union (CIoU) [54], Efficient Intersection
over Union (EIoU) [50], Multi-Point Distance Intersection

over Union (MPDIoU) [31], and SIoU [10]. The experi-
ments are performed on the modified Pascal VOC07+12
dataset, with evaluation metrics including mAP@.5:.95 and
mAP@.5. The testing results for each loss function on the
modified Pascal VOC07+12 dataset are presented in Table 4.

A detailed analysis of Table 4 reveals that the perfor-
mance differences among the loss functions are minimal
for the mAP@0.5 metric but significant for mAP@0.5:0.95.
Notably, SIoU achieves the highest mAP@0.5:0.95, demon-
strating its superiority at finer precision scales. Although
DIoU leads in mAP@0.5, it falls short compared to SIoU
in the more comprehensive mAP@0.5:0.95 metric for object
detection tasks. CIoU and EIoU exhibit identical perfor-
mance in mAP@0.5:0.95, which is significantly lower than
the other four loss functions. As a recently proposed loss
function in 2023, MPDIoU performs exceptionally well;
however, it trails SIoU by 0.1% in both mAP@0.5:0.95
andmAP@0.5. In conclusion, comparative experiments con-
firm SIoU’s outstanding performance on the modified Pascal
VOC07+12 dataset.

Table 4 Comparison of loss functions

Method mAP@0.5:0.95 (%) mAP@0.5 (%)

GIoU 57.8 76.4

DIoU 57.4 77.3

CIoU 56.9 77.1

EIoU 56.9 76.9

MPDIoU 58.1 76.9

SIoU 58.2 77.0
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Comparison with different object detection algorithms

To validate the superiority of the LW-DETR algorithm, the
same dataset is used for comparison with several other algo-
rithms under identical hardware conditions. The compared
algorithms include RT-DETR (Baseline) [52], YOLOv5s
[19], YOLOv6n [20], YOLOv7-tiny [38], YOLOX-tiny [11],
and LW-DETR (Ours). The comparative results of detection
performance are summarized in Table 5.

On the modified Pascal VOC07+12 dataset, the per-
formance of various algorithms is evaluated using the
mAP@0.5:0.95 and mAP@0.5 metrics. Compared to the
Baseline, the LW-DETR algorithm achieves a remarkable
135.3% improvement in FPS, along with a 71.7% reduction
in model parameters and a 73.7% decrease in computational
load, despite a 6.3% and 6.6% decline in mAP, thereby
achieving lightweight performance. YOLOv5s demonstrates
slightly higher detection accuracy than YOLOv6n and
YOLOv7-tiny, but its adopted strategies adversely affect
its detection speed, making it less suitable for mobile and
embedded devices. YOLOv6n exhibits lower detection accu-
racy than most algorithms, although it has the smallest
model size and offers better detection speed. YOLOv7-tiny,
a compact version of YOLOv7, shows a slightly lower mAP
than the Baseline and slower detection speeds. YOLOX-tiny
achieves a relatively highmAP in this experiment, but its per-
formance is suboptimal due to the dataset’s incompatibility
with its anchor-free detector and label assignment strategies.
A comprehensive analysis of the comparative experiments, as
presented in Table 5, indicates that the proposed LW-DETR
algorithm delivers superior overall performance.

The algorithm’s detection capabilities are demonstrated
on images from three distinct scenarios: long-range visibil-
ity, foggy conditions, and occlusion.All selected images have
a resolution of 192×108 pixels. The specific detection results
are illustrated in Figs. 8, 9 and 10, where YOLOv7-tiny and
YOLOX-tiny are abbreviated as YOLOV7t and YOLOXt,
respectively, for simplicity. The final comparative experi-
ments confirm the significant advantages of the proposed
LW-DETR algorithm in terms of detection accuracy, speed,
and model efficiency.

LW-DETR for object detection at railway crossings

To validate the effectiveness of the proposed LW-DETR in
detecting targets at railway crossings, images of railway
crossings under both sufficient and insufficient lighting con-
ditions are selected for evaluation. The detection results,
as illustrated in Figs. 11 and 12, demonstrate that the pro-
posed LW-DETR outperforms other algorithms in detecting
persons and vehicles at railway crossings. Compared to
other algorithms, LW-DETR shows exceptional performance
in real-time capability and detection accuracy, effectively
addressing challenges related to lighting variations and target
occlusions. Therefore, LW-DETR can be considered a more
reliable and effective solution for detecting persons and vehi-
cles at railway crossings.

From the discussion above, it is concluded thatLW-DETR,
a Transformer-based lightweight object detection algorithm,
achieves an effective balance between high frame rates and
accuracy in railway crossing object detection through a series
of lightweight schemes. In future work, a key challenge is
reducing accuracy degradationwhilemaintaining high frame
rates. Specific challenges include:

• To enhance accuracy while preserving FPS, further opti-
mization of the feature extraction network could be
pursued. Although PP-LCNet has demonstrated effec-
tiveness as a lightweight backbone network, future
research could explore more advanced feature extrac-
tion techniques. For example, integrating more efficient
attention mechanisms could improve feature representa-
tionwhile maintaining a low computational load, thereby
boosting detection accuracy.

• Feature fusion plays a critical role in enhancing object
detection accuracy.While the current precise fusionmod-
ule has improved the computational efficiency of feature
fusion, future research could focus on more advanced
feature fusion strategies to further enhance detection
capabilities, particularly for small objects in complex
environments. Additionally, the design of the loss func-
tion is crucial for detection accuracy. Although the SIoU
loss function has shown promise in improving accuracy,

Table 5 Comparision results Method mAP@0.5:0.95 (%) mAP@0.5 (%) FPS Params (M) FLOPs (G)

Baseline 61.2 79.3 37.4 19.3 60.4

YOLOv5s 54.9 78.2 88.5 7.07 16.5

YOLOv6n 52.8 75.9 116.2 4.24 11.9

YOLOv7-tiny 53.7 79.3 83.8 6.02 13.2

YOLOX-tiny 51.3 78.5 77.3 5.05 15.1

LW-DETR 58.2 77.0 88.0 5.47 15.9
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Fig. 8 Detection results in
foggy scenes

Fig. 9 Detection results in
long-range scenes

Fig. 10 Detection results in
occlusion scenes

combining it with other loss functions could better guide
the model in learning subtle object features, especially
for objects against diverse backgrounds.

• Attention should also be directed toward deploying mod-
els on resource-constrained devices.By leveragingmodel
pruning and distillation techniques, LW-DETRcould fur-
ther reduce computational demands on low-performance
devices, thereby enhancing the user experience in prac-
tical applications, such as real-time monitoring.

Conclusion

In this paper, a transformer-based lightweight object detec-
tion algorithm, LW-DETR, has been proposed to address
accuracy and efficiency challenges in railway crossing object
detection, thereby mitigating the inefficiencies and missed
detections associated with traditional manual monitoring
methods. First, LW-DETR integrates the lightweight back-
bone network PP-LCNet, along with standard convolution,
depthwise separable convolution, and an SE attention mod-
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Fig. 11 Detection results in
light scenes

Fig. 12 Detection results in
low-light scenes

ule, to enhance feature extraction capabilities. This enables
efficient detection of small and dense objects. Second, fea-
ture fusion is optimized through a precise fusion module,
reducing computational costs while significantly improv-
ing the model’s expressive capability and inference speed.
Finally, to overcome the limitations of the traditional GIoU
loss function, LW-DETR introduces the SIoU loss function
to comprehensively evaluate bounding box similarity, further
enhancing overall performance.

To further validate the effectiveness of the proposed LW-
DETR, a series of ablation experiments have been conducted
on the modified Pascal VOC07+12 dataset. The experiments
systematically assess the independent contributions of each
technique to the model’s performance. The effectiveness
of these improvements is demonstrated through the step-
wise introduction of different enhancement modules and a
quantitative analysis of multiple key performance metrics.
Additionally, comparative experiments with other main-
stream object detection algorithms have been performed,
evaluating detection results in scenarios such as long-range
visibility, fog, and occlusion. These comparisons highlight
the significant advantages of LW-DETR in terms of detec-
tion accuracy, speed, and model compactness.

It is concluded that LW-DETR provides an efficient and
accurate object detection solution through its novel net-
work architecture design and optimization strategies, thereby
advancing the development of intelligent monitoring tech-
nology for railway crossings. This algorithm is particularly
well-suited for real-time detection applications on mobile
and embedded devices, offering broad application prospects
and practical value.

In the future research, we aim to focus on four core
research topics to advance railway crossing object detec-
tion technologies: (1) constructing a dedicated dataset (that
encompasses various weather conditions and complex back-
grounds) with multimodal data (such as visible light and
infrared objects) to enhance the model’s environmental
adaptability [27, 44, 47]; (2) designing physics-informed
models that integrate sensor noise modeling with robustness-
enhancement strategies to ensure stable detection perfor-
mance under adverse weather conditions [8, 24, 26, 33, 43];
(3) developing a multi-source information fusion framework
for signal processing, combined with state estimation tech-
niques to enable real-time monitoring of system operation
and anomaly detection [1, 7, 9, 32, 41, 49]; and (4) applying
grid search or other optimization algorithms to effectively
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automate the parameter tuning process and reduce manual
intervention [6, 46].
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