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Abstract. Accurate prediction of a machines Remaining Useful Life (RUL) underpins modern, cost-
effective predictive-maintenance programmes. This paper proposes a two-stage hybrid pipeline that couples
sequence learning with tree-based residual modelling. In stage 1, 50-cycle windows of NASA C-MAPSS
sensor data (FDOO1 and FD004 subsets) are processed by a bi-layer Long Short-Term Memory (LSTM)
network equipped with an attention mechanism; attention weights highlight degradation-relevant time steps
and yield a compact, interpretable context vector. In stage 2, this vector is concatenated with four statistical
descriptors (mean, standard deviation, minimum, maximum) of each window and passed to an extreme
gradient-boosted decision-tree regressor (XGBoost) tuned via grid search. Identical preprocessing and early-
stopping schedules are applied to a baseline LSTM for fair comparison. The attention-LSTM—-XGBoost
model lowers Mean Absolute Error (MAE) by 9.8 % on FD0O1 and 7.4 % on the more challenging FD004,
and reduces Root Mean Squared Error (RMSE) by 8.1 % and 5.6 %, respectively, relative to the baseline.
Gains on FD004 demonstrate robustness to multiple fault modes and six operating regimes. By combining
temporal attention with gradient-boosted residual fitting, the proposed architecture delivers state-of-the-art
accuracy while retaining feature-level interpretability, an asset for safety-critical maintenance planning.

1 Introduction e Coefficient of Determination (R?): the
proportion of the variance in the true RUL that
is explained by the model. Values closer to 1
indicate better goodness-of-fit, while negative
values imply the predictor performs worse than
a horizontal mean-line baseline.

1.1 Evaluation Metrics

To provide an interpretable, scale-independent
comparison between models, four standard regression

metrics were calculated for every experiment:
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y; = ground-truth RUL for sample i, Where y = 52?21 ¥; is the mean of the true

RUL values.

e  Mean Absolute Error (MAE): the average of

the absolute differences between the predicted

and the true RUL in cycles. MAE is linear in

the error and therefore reflects typical
prediction accuracy.

1.2 Developments in predictive maintenance:
models, methods, and applications

Predictive maintenance (PdM) is essential in acrospace
systems where failures incur high safety and financial
risks. The transition from reactive or preventive
strategies to condition-based, data-driven maintenance
enables improved reliability and reduced downtime.
Central to this shift is the estimation of RUL, which
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¢ Root Mean Square Error (RMSE): the
square-root of the mean squared error.
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Because the errors are squared before averaging, RMSE
penalises larger deviations more heavily than MAE and
is often used in safety-critical prognostics where large
under- or over-predictions are costlier.

empowers timely and cost-efficient maintenance
planning.

Recent frameworks have explored hybrid and data-
driven approaches to enhance prognostic accuracy.

1.3 Traditional Machine Learning Models in
Industrial Predictive Maintenance

Traditional ML models such as linear regression,
logistic regression, Random Forests (RF), and SVM
have played foundational roles in PAM due to their low
computational complexity, interpretability, and ease of
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deployment [1]. These models have been widely applied
in aircraft systems, semiconductor fabrication, and
industrial machinery, often yielding fast and explainable
results.

In aerospace applications, Maulana et al. proposed
an explainable PAM framework using logistic regression
and an Unscented Kalman Filter (UKF), achieving
RMSE improvements of 34.5-55.6% over previous
methods on the NASA C-MAPSS dataset [2].

Ensemble tree-based methods, especially Random
Forests, have shown resilience to noise and high-
dimensional data, while providing interpretable feature
importance rankings. RF models are often used for
initial benchmarking or in hybrid pipelines to rank
features before deep learning stages [2].

Traditional —models also  support hybrid
architectures. For instance, Asif et al. used regression-
based preprocessing techniques such as moving median
filters to refine input sequences prior to deep learning,
highlighting the complementary role of classical ML in
improving feature quality [3].

However, these models are generally limited in
capturing long-term temporal dependencies inherent in
RUL prediction. They require manual feature
engineering, such as lag creation or rolling averages,
reducing adaptability to complex operating conditions.
In contrast, deep learning models, provide end-to-end
learning from raw sequences and are better suited for
generalization across variable regimes.

1.4 Deep Learning Architectures for RUL
Prediction

The advent of high-frequency, multi-sensor time-series
data in industrial systems has propelled the adoption of
DL models for RUL prediction. Unlike traditional
machine learning methods, DL models can
automatically learn temporal and spatial patterns
directly from raw sensor inputs, eliminating the need for
manual feature engineering.

LSTM networks, a class of recurrent neural
networks, are particularly effective for time-series data
due to their ability to capture long-term dependencies
and sequential degradation trends in sensor readings.
Studies by Asif et al. and Wu et al. have demonstrated
that LSTM-based models outperform traditional
approaches by leveraging these time-dependent
relationships to provide more accurate RUL forecasts

[3104].

Convolutional Neural Networks (CNNs), renowned
for detecting local patterns, have been adapted for
predictive maintenance by treating time-series data as
structured arrays. In RUL prediction, CNNs extract
spatial features such as gradients and local changes from
raw sensor data, capturing short-term degradation
signals that may not be easily detected through statistical

features alone. This enables them to isolate meaningful
events and improve early warning capabilities [5][6].

Building upon these architectures, hybrid models
have been developed to leverage the strengths of
multiple DL approaches. Al-Dulaimi et al. implemented
a hybrid LSTM—-CNN model for RUL prediction in
turbofan engines. Their Hybrid Deep Neural Network
(HDNN) architecture outperformed traditional and
standalone DL models, particularly in complex
prognostic scenarios involving nonlinear degradation
and variable operational conditions. The study
highlights the advantage of combining temporal
sequence modelling (via LSTM) with local feature
extraction (via CNN), making it highly suitable for
intricate engine health monitoring tasks [7].

Further enhancing robustness under noisy signal
conditions, Al-Dulaimi et al. developed a CNN-
Bidirectional LSTM (BLSTM) model. The integration
of BLSTMs allowed the model to capture dependencies
in both forward and backward temporal directions,
enhancing generalization and resilience to input
variability. This architecture, referred to as NBLSTM,
was particularly effective in maintaining predictive
stability in the presence of real-world sensor noise
common in aircraft operations [7].

In the realm of battery health monitoring, Zraibi et
al. proposed a CNN-LSTM-DNN hybrid model for
lithium-ion battery RUL estimation. Their model
demonstrated superior performance compared to
standalone methods, particularly in environments with
nonlinear electrochemical degradation. The inclusion of
a Deep Neural Network (DNN) module facilitated high-
dimensional representation learning, further improving
accuracy and convergence across test samples [6].

Advancing the field further, Mo et al. integrated a
Multi-Head CNN-LSTM architecture with real-time
error analysis to refine RUL estimates. Their model
emphasizes post-prediction evaluation, adjusting
confidence levels dynamically based on observed
prediction errors, thereby enhancing reliability in
maintenance decision-making in large datasets [8].

Moreover, Amin and Kumar introduced a hybrid
model combining LSTM, RNN, and CNN architectures,
utilizing genetic algorithms for hyperparameter tuning.
This approach showcased the growing integration of
evolutionary strategies to optimize DL architectures,
leading to improved predictive performance in complex
prognostic scenarios [9].

1.5 NASA CMAPSS Dataset and Previous
Studies

The C-MAPSS dataset is one of the most widely used
benchmarks for data-driven RUL prediction. Developed
by NASA’s Prognostics Centre of Excellence, it
simulates the degradation of aircraft turbofan engines
under varying operational conditions and fault modes
using a physics-based model. The dataset comprises
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four sub-datasets (FD0O0O1 to FD004), each representing
distinct combinations of operational settings and fault
modes, with multivariate sensor measurements collected
over time for multiple engines until failure. These
measurements include temperature, pressure, engine
speed, fuel flow, and other system-level readings across
21 sensor channels [9][2].

Each engine unit in the dataset starts in a healthy
condition and is simulated until it reaches a point of
failure. Each row in the dataset corresponds to a single
operational cycle, which represents one complete run of
the engine, typically associated with a flight mission’s
cruise phase [10]. These cycles reflect the chronological
evolution of engine health, where faults are injected in a
progressive and nonlinear manner. Faults are modelled
using gradual reductions in component efficiency and
flow capacity, specifically affecting the high-pressure
compressor (HPC), fan, and high-pressure turbine
(HPT) components [11]. Sensor noise and
environmental variability are included to simulate
realistic engine behaviour, making the dataset more
suitable for real-world model development.

RUL is not explicitly included in the dataset but is
derived. For each engine in the training set, RUL is
calculated as the number of cycles remaining before the
engine reaches failure. For example, if an engine fails at
cycle 200, then its RUL at cycle 150 is 50. In contrast,
the test set contains only partial trajectories for each
engine, truncated before failure. The ground-truth RUL
values for these test instances are provided separately,
simulating a real-world scenario in which a model must
estimate the remaining life of in-service equipment from
current observations [10].

The C-MAPSS dataset includes four sub-datasets:

* FDOO1 features a single operating condition and a
single fault mode (HPC degradation). It is often used for
baseline model development due to its simplicity.

» FDO002 includes six operating conditions with one
fault mode, requiring models to generalize across
varying regimes.

» FDO0O3 presents one operating condition but two
fault modes (HPC and fan), testing the model’s ability
to distinguish between different degradation types.

* FD004 is the most complex, with six operating
conditions and two fault modes, combining the
challenges of environmental variation and fault-type
diversity [10].

The dataset was originally created for the PHM’08
Data Challenge, where it was used to evaluate
prognostic algorithms under controlled yet realistic
degradation scenarios [11]. The simulation model
behind C-MAPSS integrates nonlinear damage
progression equations and thermodynamic principles to
generate accurate degradation trajectories. The
modelling also incorporates a system health index,
which progressively declines until it reaches a failure

threshold, at which point the engine is considered non-
functional [11].

Numerous studies have leveraged the C-MAPSS
dataset to develop and benchmark machine learning and
deep learning models for RUL prediction. Techniques
have ranged from traditional approaches such as
Random Forests and Gradient Boosting [24] to deep
learning architectures including LSTMs, CNNs, and
hybrid CNN-LSTM models [3][13]. Alomari et al. used
all four sub-datasets and applied a combination of
ensemble learning techniques (including Random
Forest, XGBoost, and Natural Gradient Boosting)
alongside feature selection methods such as Genetic
Algorithms and Recursive Feature Elimination. Their
model achieved RMSE scores of 11.8, 23.0, 14.6, and
22.3 on FD001-FDO004 respectively [12].

Asif et al. applied LSTM networks with
preprocessing  via  correlation  analysis  and
dimensionality reduction, finding improved RUL
prediction over traditional baselines [3]. Thakkar and
Chaoui used Deep Layer RNNs and conducted thorough
preprocessing and feature selection, achieving RMSE
between 0.159% and 0.203%, outperforming MLPs,
NARX networks, and CFNNs on the FD0O1 subset [13].
Across these studies, sensors such as T50 (low-pressure
turbine temperature), Ps30 (high-pressure compressor
pressure), Nf/Nc (shaft speeds), and flow indicators
(W31, W32) were commonly found to be predictive,
though optimal sensor subsets varied based on the
modelling technique and feature selection strategy [12].

Despite these advancements, several gaps remain.
Many studies either focus exclusively on deep learning
without comparing simpler baselines or apply models
without a standardized preprocessing pipeline, making
cross-study comparisons difficult. Additionally, there is
no consensus on the most informative sensor subset or
the ideal model for handling multi-condition, multi-fault
data such as FD004. This study addresses these gaps by
systematically evaluating multiple model types under
consistent preprocessing and training conditions to
identify which methods yield the most reliable and
interpretable RUL predictions.

1.6 Challenges in Applying Al to Engineering
Prognostics

Implementing Artificial Intelligence (AI) in PdM for
engineering systems entails navigating several
challenges that span data quality, model development,
interpretability, deployment, and benchmarking. These
challenges are particularly pronounced when employing
DL architectures such as LSTM networks and CNNs on
complex datasets like NASA's C-MAPSS.

1.6.1 Data Quality and Preprocessing

Industrial sensor data often suffer from issues like noise,
missing values, and high dimensionality, complicating
effective model training. Traditional ML approaches
typically require extensive preprocessing and expert-
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driven feature selection to mitigate these issues.
However, handcrafted features may not generalize well
across different machines or fault modes [2].

1.6.2 Model Selection and Optimization

Selecting and optimizing Al models for PdM is
inherently complex. There is no universally optimal
model, as performance is contingent upon dataset
characteristics,  fault types, and  operational
environments [ 14].

1.6.3 Model Interpretability and Trust

In safety-critical engineering domains, model
transparency is paramount for fostering trust and
facilitating human oversight. However, the complexity
of DL models often renders them "black boxes,"
impeding interpretability. This opacity poses significant
barriers to deployment in environments where
understanding model decisions is crucial. Explainable
Al (XAI) techniques, such as feature attribution
methods and interpretable surrogate models, are
increasingly employed to enhance transparency and
support decision-making [15].

2 Methodology

2.1 Deep Learning Model: Long Short-Term
Memory Network (LSTM)

To model temporal degradation patterns in turbofan
engine health, a two-layer LSTM network was
employed. LSTMs are a specialized form of RNNs
designed to address vanishing and exploding gradient
challenges by incorporating gated memory units, which
are well-suited for learning long-term dependencies
within time-series data, making them ideal for RUL
prediction using the NASA C-MAPSS dataset.

2.1.1 Theoretical Foundations

LSTM networks employ gated memory cells to retain
long-term  dependencies and mitigate vanishing
gradients. Each cell updates its state using:

I,

X

Fig. 1. LSTM memory cell [16]

2.1.2 Cell Computation and Gating Mechanisms

At each timestep #, the LSTM unit processes the input
vector x; € R™ and the previous hidden state h,_, €
R".  The following operations are performed
sequentially:

fe = o(Wexe + Rehe_y + bf) (4)
ir = oc(W;x, + Rihe_1 + b)) %)
or = o(W,x; + Rohe_q + by) (6)
C, = tanh(W,x, + R.he_y + b) (7
C, = i®C,_, +i,QC, ®)
h; = 0,®tanhC, ©)
Where:

e f;, i, and o, respectively represent forget,
input, and output gate activations respectively.

e (. C, denotes the cell state and candidate cell
state respectively.

e oisthe element-wise sigmoid activation, tanh
is the hyperbolic tangent function, and &
indicates element-wise multiplication.

e  Weight matrices W,, R, € R”™" and biases
b, € R" are optimized during training.

The gating mechanisms enable controlled information
flow: the forget gate regulates retention of past memory,
the input gate and candidate state determine
contributions of new data, and the output gate governs
information passed forward as the hidden state h,.

2.1.3 Data Preparation and Input Features

The model uses sliding windows of 50 timesteps as
input sequences. Each timestep includes seven selected
features, setting 1, setting 2, TS50, Ps30, Nf, Nc, and
W31, chosen based on their correlation strength with
degradation behaviour, as identified in prior studies. All
features were scaled to the [0,1] range via Min—Max
normalization.

2.1.4 Network Architecture

1stLSTM 2nd | STM Output
Dropout Dropout

Input size=(50,7) Units=128 Rate=0.3 Units=64 Rate=0.3

Fig. 2. LSTM architecture

Implemented using TensorFlow and Keras, the
architecture comprises:

1. LSTM layer with 128 units
(return_sequences=True)
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2. Dropout layer (rate=0.3)

3. Second LSTM layer with 64 units

4. Dropout layer (rate=0.3)

5. Dense output layer with linear activation,
yielding continuous RUL estimates

2.1.5 Training Objective and Optimization

The objective of the LSTM model is to minimize the
error between the predicted RUL J; and the true RUL
vy, over a dataset of N samples. This is achieved by
minimizing a loss function £, which in this study is the
Huber loss, chosen for its robustness to outliers and
stability in training:

Lo <o
sa  iflal<

Ls(a) = wherea=y, -3,  (10)

Slal —56 otherwise

The learning objective is to minimize the mean loss over
the dataset:

N
1 A
min— > £,0,~3) (an
i=1

where 0 represents the set of learnable parameters in the
network (i.e., weights and biases of the LSTM and dense
layers).

To optimize the weights, the Adam optimizer is
employed. Adam is an adaptive moment estimation
algorithm that adjusts the learning rate based on the first
and second moments of the gradients:

A~

t
Toove 2

0<0—n-

where:
e 1 is the learning rate (set to 0.0007),
e M, and ¥, are the bias-corrected first and
second moment estimates,
e ¢ isasmall constant to avoid division by zero.

A grid search was conducted across different
learning rates (0.0003, 0.0005, 0.0007) and LSTM
configurations (128—64, 100—50 units) using a
validation split of 20%. Early stopping was
implemented to terminate training after 10 consecutive
epochs with no improvement in validation loss, thereby
reducing the risk of overfitting.

2.2 Attention based LSTM-XGBoost Hybrid
Models

To improve the prediction accuracy and interpretability
of RUL estimation, we developed a hybrid deep learning
model that combines an attention-based LSTM
architecture with a downstream XGBoost regressor.
This framework enables temporal pattern learning
through LSTM layers while leveraging the power of
gradient-boosted decision trees for final regression.

2.2.1 Attention based LSTM+XGBoost Architecture

The model begins with two stacked LSTM layers
configured to return sequences, allowing temporal
attention to be applied across all time steps. The
attention mechanism is implemented as a trainable soft
alignment layer, where attention weights o are
computed via:

e, = tanh(W x, + by) 13)
a, = softmax(e,) (14)

Where x; is the hidden state output from LSTM at
timestep ¢, and W,, b, are trainable attention parameters.

The context vector ¢ € R? is then derived by a weighted
sum of the sequence:
Xaug = [C; M(x)r O-(x)r min(x) ’ max (x)] (15)

This context vector is passed through a ReLU-
activated dense layer and a final linear output layer to
generate initial RUL estimates.

2.2.3 Hyperparameter Optimization

Model architecture and training parameters were
optimized using Keras Tuner with a random search
strategy over 15 trials. The search space included:
e LSTM layer widths: [64, 128, 256] (first layer),
[32, 64, 128] (second layer)
e  Dropout rates: [0.2, 0.3, 0.4]
e Dense layer units: [32, 64, 128]
e  Optimizers: Adam, RMSprop
e Loss functions: Mean Squared Error, Huber
loss
A validation split of 20% was used. Early stopping
(patience = 12) and learning rate reduction (patience =
5, factor = 0.5) were applied to stabilize convergence.

2.2.4 Feature Extraction and Fusion with
XGBoost

To decouple representation learning from final
regression, the best attention-LSTM model was
converted to a feature extractor. The penultimate dense
layer outputs were retained, and four statistical
descriptors, mean, standard deviation, minimum, and
maximum, were concatenated along the feature axis.
The final feature vector X4, € R4 thys comprised
both learned and statistical summaries:

a, = softmax(e;) (16)
2.2.5 XGBoost Tuning and Training

XGBoost hyperparameters were optimized using a grid
search across:

e  Number of estimators: [100, 200]

e Max depth: [3, 4, 5]

e Learning rate: [0.01, 0.05, 0.1]
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e  Subsample ratios: [0.8, 1.0]

e  Column sampling ratios: [0.8, 1.0]
Cross-validation (k=3) was used to identify the model
with the lowest validation MAE. The best estimator was
then retrained on the full training set and saved for
inference.

3 Results

This section presents the performance evaluation of both
the baseline LSTM model and the proposed attention-
based LSTM—-XGBoost hybrid model on the FD0O0O1 and
FDO004 subsets of the NASA C-MAPSS dataset.

3.1 FD001 Results

On the simpler FDOO1 subset, which features a single
operating condition and a single fault mode, the
attention-based LSTM—-XGBoost model outperformed
the baseline LSTM across all metrics:

Model MAE RMSE | R?
(cycles) | (cycles)

LSTM 11.67 15.48 86.12%

Attn- 10.53 14.22 88.92%

LSTM+XGBoost

Table. 1. Model Performance Metrics on FD001 Subset

The hybrid model yielded a relative improvement of
approximately 9.8% in MAE, 8.1% in RMSE, and
2.17% in R?

True vs Predicted RUL (FDOO1)

— True RUL
Predicted RUL (Attn: LSTM&XGE st)

RUL (Cycles)

[ 20 %0 60 80 100
Test Engine Index

Fig. 3. True vs Predicted RUL Attn-LSTM+XGBoost FD001

3.2 FD004 Results

FDO004, characterized by multiple fault modes and six
operating conditions, presented a greater modelling
challenge. While absolute errors increased for both
models, the hybrid architecture still offered improved
performance:

Model MAE RMSE | R?
(cycles) | (cycles)

LSTM 23.37 31.65 66.30%

Attn- 21.64 29.88 69.96%

LSTM+XGBoost

Table. 2. Model Performance Metrics on FD004 Subset

The proposed model reduced MAE by 7.4%, RMSE by
5.6%, and improved R? by 3.66%.

True vs Predicted RUL (FD004)

— True RUL
—— Predicted RUL (Attn-LSTM + XGBoost)

RUL (Cycles)

. } f w{ wn\

| U Il
13 % %0 50 200 2%

Fig. 4. True vs Predicted RUL Attn-LSTM+XGBoost FD004

4 Discussion

The hybrid attention-based LSTM-XGBoost model
shows significant improvements over the baseline
LSTM for RUL prediction on NASA’s C-MAPSS
engine data.

4.1 Performance on FD001

The hybrid model achieved MAE =10.53 cycles and
RMSE =14.22 cycles, outperforming the baseline
LSTM (MAE =11.67, RMSE = 15.48). This represents
reductions of approximately 9.8% in MAE and 8.1% in
RMSE. Notably, prior studies such as Zhao et al. (2023)
achieved an RMSE of 14cycles using a 1D-conv—
LSTM hybrid [16]. The current hybrid model thus
demonstrates superior performance in extracting and
leveraging critical temporal features through attention
mechanisms.

4.2 Performance on FD004

On the more complex FD004 subset, with six operating
regimes and two fault modes, the hybrid model still
outperformed the baseline, achieving
MAE =21.64 cycles and RMSE =29.88 cycles
compared to the LSTM’s MAE=23.37 and
RMSE =31.65. This translates to approximately 7.4%
and 5.6% improvements, respectively. For comparison,
Deng & Zhou (2024) reported RMSE = 16.64 cycles for
CNN-LSTM—Attention on FD004 [17]. Although the
hybrid’s error is higher, the inclusion of XGBoost and
broader data variability justifies its robust performance.

4.3 Role of Attention Mechanism

The attention layer substantially improves model
performance by weighting temporally significant
features, addressing sequence-uniformity issues in
standard LSTM models. Mo et al. (2020) showed similar
gains on FD004 (RMSE = 16.8 cycles) using attention-
based LSTM architectures [8]. The consistency between
our results and these studies confirms the value of
temporal attention in RUL estimation.

4.4 Fusion with
Regression

XGBoost for Robust

Incorporating statistical descriptors and leveraging
XGBoost for final regression notably enhanced
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