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UK. Stations were carefully chosen using the UK government flood risk maps, geological mapping, and Envi-
ronment Agency hydrological data to guarantee a complete portrayal of aquifer-specific groundwater-river in-
teractions. The results show that the model accuracy varies significantly depending on aquifer features. Rapid
GWL-river interactions allowed Limestone aquifers to achieve very high precision (R> = 0.98-0.99), with
transformers and LSTM clearly surpassing XGBoost. The accuracy of Chalk aquifers was moderate (R? =
0.77-0.80), indicating delayed reactions and intermediate permeability. Greensand aquifers were difficult to
model due to delayed and complex reactions, resulting in low or negative R values. Correlation study confirmed
these findings: Limestone showed a significant groundwater-river linkage (r = 0.84), Chalk moderate (r = 0.26),
and Greensand had a small negative association (r = —0.14). The novelty of this study highlights the significant
impact of subsurface hydrology on predicted reliability, revealing aquifer-specific geological restrictions in ML-
based forecasting. This research offers a more physically consistent early warning method by fusing GWL data
with developed transformer architectures. The results highlight the significance of adjusting forecasting
frameworks to geological environments, which has direct implications for resilience planning and flood risk
management at the watershed scale.
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A.J. Ali and A.A. Ahmed
1. Introduction

Floods are one of the most frequent and destructive natural catas-
trophes in the world, and reducing their negative effect requires accu-
rate flood forecasts (Tellman et al., 2021). Accurate forecasting helps
with long-term planning, infrastructure design, and flood-defence tac-
tics in addition to emergency reaction and evacuation (Brunner et al.,
2021; Hamel and Tan, 2022). Advanced forecasting techniques are
becoming increasingly important as climate change intensifies extreme
rains, raises sea levels, and changes hydrological regimes (Tabari, 2020;
Ahmed et al., 2024). The intricate relationships between land surfaces,
human activity, and climatic variables make flood prediction funda-
mentally difficult. The geological differences between Chalk, Limestone,
and Greensand aquifers result in diverse groundwater-river reactions,
complicating predictions (Perzan et al., 2023).

Predicting and managing floods is particularly difficult in the
Thames Basin, which includes both rural areas like Oxfordshire and
Gloucestershire and urban areas like London (Bearcock and Smedley,
2010). These issues are the result of a combination of varied landscapes,
climate change, and human activity. Urbanisation in Greater London has
disrupted natural drainage, increased surface runoff and decreased soil
permeability (Jenkins et al., 2018; Environment Agency, 2022). Tidal,
surface water, groundwater, and fluvial floods all affect the Basin,
necessitating  different mitigation and forecasting strategies
(Environment Agency, 2022).

Climate change intensifies threats by increasing the frequency of
extreme weather events and rising sea levels, specifically in the lower
Thames. Large catchments also respond slowly to rainfall, necessitating
the use of hydrological and meteorological models for forecasting
(Crooks and Kay, 2015; Ali et al., 2024). Effective long-term manage-
ment necessitates cross-agency coordination within complicated regu-
latory frameworks (Fan, 2024), as well as advanced forecasting
techniques customised to basin conditions.

Recent advancements integrate hydrological and meteorological
measurements with real-time monitoring and machine learning (ML).
Distributed and physically based models can capture regional vari-
ability, but their processing requirements restrict their use (Hussain
et al., 2021; Wang et al., 2023). To address these restrictions, data-
driven solutions have gained popularity. Surrogate modelling provides
efficient approximations of complicated flood processes (Donnelly et al.,
2022), but physics-informed neural networks include hydrological re-
strictions directly into training, enhancing physical consistency
(Donnelly et al., 2024).

With the increased availability of large data from ground sensors,
radar, and satellites, Al-driven techniques have shown higher accuracy
and lead times, which are critical for early warning and resource allo-
cation (Motta et al., 2021; Yuan et al., 2022). These developments
represent a significant move towards integrated, adaptive flood fore-
casting that uses ML to overcome the challenges of solely empirical or
physics-based models.

Transformer-based models, such as the Temporal Fusion Trans-
former (TFT), use gating and attention processes to capture both short-
and long-term relationships whilst providing interpretability for hy-
drological data (Lim et al., 2021; Ali and Ahmed, 2024). The Informer
improves on these techniques by including a ProbSparse self-attention
mechanism, making it more efficient for lengthy sequences and appro-
priate for longer flood predicting horizons (Zhou et al., 2021; Wang and
Zhao, 2023).

Extreme Gradient Boosting (XGBoost) is still a popular ensemble
approach, appreciated for its scalability, tolerance to missing informa-
tion, and good performance in rainfall-runoff and flood risk applications
(Chen and Guestrin, 2016). Long Short-term Memory (LSTM), as
recurrent models, are still used to forecast river flow, rainfall, and flood
events due to their ability to learn long-term dependencies (Hochreiter
and Schmidhuber, 1997; Noh, 2021).

This research uses these four models to present a comparative
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framework for aquifer-specific, multi-horizon flood forecasting. By
comparing transformer topologies to conventional and recurrent ap-
proaches, we can see how model design and geological context impact
forecast reliability in the Thames Basin. By combining hydrological re-
cords of rainfall, groundwater levels, and river stages with cutting-edge
machine learning algorithms, this project seeks to enhance flood fore-
casting and risk management in the Thames Basin. In order to ascertain
how aquifer-specific variables affect prediction reliability, we specif-
ically assess the performance of four top models — Temporal Fusion
Transformer (TFT), Informer, Long Short-Term Memory (LSTM), and
XGBoost — across short-term horizons (1-4 days).

This study offers the first aquifer-specific, multi-horizon comparative
analysis of flood forecasting in the Thames Basin, combining cutting-
edge machine learning with geological context. Unlike prior research
that assumed catchments were hydrologically homogeneous, our
approach explicitly shows how geological variations across Chalk,
Limestone, and Greensand aquifers affect forecast dependability. This is
the first demonstration that transformer-based models may detect
consistent differences in predictability caused by subsurface controls.
The peculiarity of this work is that it not only benchmarks sophisticated
models but also links their performance to aquifer features, demon-
strating that even cutting-edge designs might fail if subsurface dynamics
are disregarded. By creating this link, we introduce a new paradigm for
flood forecasting that is both data-driven and hydrogeologically
informed. This contribution has immediate implications for operational
agencies like the Environment Agency, which can use aquifer-aware
forecasting to provide more reliable, region-specific flood warnings, as
well as researchers looking for reproducible, physically consistent
methods of incorporating groundwater-river interactions into machine
learning-based forecasting.

2. Methodology
2.1. Study area

2.1.1. Thames Basin overview

The Thames Basin is one of the biggest and most hydrologically
varied areas in the United Kingdom. From northern Oxfordshire and
Gloucestershire to the Thames Estuary and portions of Kent, including
the heavily populated metropolitan area of Greater London, it covers an
area of more than 16,200 km? (Bearcock and Smedley, 2010). Wide
floodplains, slow-responding river systems, and considerable tidal effect
in the lower reaches contribute to a complicated flood-risk profile.
Floods have already damaged millions in the watershed, necessitating
ongoing monitoring and numerous risk-management techniques
(Environment Agency, 2022). Ali et al. (2024) have highlighted the
necessity for forecasting models in this area by demonstrating the
crucial role that groundwater dynamics play in flood prediction.

2.1.2. Station selection

The choice of stations for this study was based on a deliberate focus
on high-risk flood locations as determined by the UK's long-term flood
risk service maps to capture a variety of hydrological settings
throughout the Thames Basin Environment Agency (2022). The moni-
toring sites were selected to symbolise the three main aquifer types in
the area, as shown in Fig. 1: Greensand, Limestone and Chalk.

Chalk: High secondary porosity due to fracture networks, significant
permeability, and often delayed groundwater reactions (Smedley et al.,
2003; Shand et al.,, 2003a; Neal et al., 2006; Environment Agency,
2022).

Limestone: Jurassic limestone, with confined/ unconfined settings
and fracture-controlled flow, can provide more dynamic groundwater
reactions during rainfall events (Oubagaranadin et al., 2007).

Greensand: The greensand aquifer, which is usually found next to
Chalk formations, has special geological features that provide excep-
tional transmissivity and storage qualities (Shand et al., 2003b).
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To ensure comparability, three monitoring sites were selected within
each aquifer type that measure rainfall, groundwater levels, and river
levels simultaneously. Site selection was based on (i) geographic close-
ness of measurements, (ii) high flood risk sites, and (iii) uniform tem-
poral coverage. Data availability extended from April 2011 to early
2025, with modest variations by aquifer. Figs. 1 and 2 depict the Thames
Basin overview, aquifer borders and flood-risk zones.

2.1.3. Data sources and pre-processing

The Environment Agency's Hydrological Data Explorer was largely
used to access hydrological datasets such as rainfall, groundwater levels
(GWL), and river levels, with local weather stations providing support.
Hourly observations were aggregated to daily averages to guarantee
uniformity across variables and reduce the impact of infrequent missing
data (Kang and Tian, 2018; Environment Agency, 2022) (Fig. 3).

The remaining gaps were filled using linear interpolation, a
commonly used approach for hydrological time series that maintains
temporal continuity while reducing biases in model training and
assessment (Kang and Tian, 2018). To facilitate feature comparability
and increase model stability, all variables were normalised to a 0-1 scale
using the MinMaxScaler method (Deepa and Ramesh, 2022). To capture
delayed hydrological responses and decrease noise in short-term fluc-
tuations, lagged features (1-3 days) and 3-day rolling averages for
rainfall, river level, and GWL were created. These designed predictors
improve the depiction of aquifer-specific dynamics, where temporal
delays and storage effects play a significant role in flooding processes.

This structured preprocessing methodology ensures that data is
consistent and comparable among aquifers, which is essential for con-
structing credible flood forecasting models. Supplementary Information
(S2) includes detailed pretreatment techniques and implantation
parameters.

2.2. Model development

Four sophisticated ML models were used to assess aquifer-specific
flood forecasting ability over several time periods (1-4). These
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comprise two transformer-based architectures, a recurrent neural
network, and a gradient-boosting baseline. They present a balanced
evaluation of sequence learning, attention-based forecasting and
ensemble techniques.

2.2.1. Long short-term memory

The LSTM network is a recurrent neural network that is intended to
solve the vanishing gradient problem found in ordinary RNNs. Its gated
structure (input, forget, and output gates) controls information flow,
allowing for the learning of both short- and long-term dependencies
(Hochreiter and Schmidhuber, 1997; Khozani et al., 2022). This is
crucial in hydrology since floods are caused by both rapid rainfall and
delayed groundwater contribution (Le et al., 2019). LSTM is commonly
used in rainfall-runoff modelling, groundwater level forecasting, and
streamflow prediction (Kratzert et al., 2019; Shen, 2018; Ali et al.,
2024). In this work, LSTM serves as a benchmark deep learning model
for capturing temporal memory in aquifer river interactions. The Sup-
plementary Information (S3) contains details of gate equations, opti-
miser settings, and training parameters.

2.2.2. Temporal Fusion Transformer (TFT)

The TFT is a hybrid architecture that combines recurrent layers with
multi-head attention and gating methods to provide interpretable multi-
horizon forecasting (Lim et al., 2021). Unlike LSTM, TFT may dynami-
cally weight inputs using variable selection networks and attention
heads, delivering information on feature relevance over time. This is
especially useful for aquifer-specific flood forecasting because the effects
of rainfall, river levels, and groundwater might vary over time (Ali et al.,
2024). Because of its capacity to simulate nonlinear, non-stationary
connections, the TFT has performed well in hydrological and environ-
mental prediction tasks (Koya and Roy, 2024). Supplementary Infor-
mation (S3) contains mathematical formulations of both the attention
mechanism and gated residual networks.

2.2.3. Informer
The informer is a transformer-based model designed for efficient
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long-sequence forecasting. It uses ProbSparse self-attention and a
distillation operation to decrease computing costs (Zhou et al., 2021).
Informer addresses the scalability constraints of traditional trans-
formers, allowing for extended input windows without incurring
excessive memory needs. This makes it appropriate for hydrological
applications where long-term rainfall and groundwater dynamics can
affect river levels. Informer has been used effectively in meteorology,
renewable energy forecasting, and hydrologic modelling (Tepetidis
et al., 2024). Supplementary Information (S3) provides technical spe-
cifics such as ProbSparse attention equations and architectural
parameters.

2.2.4. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is an ensemble tree-based
strategy that uses boosting with regularisation to increase prediction
accuracy whilst avoiding overfitting (Chen and Guestrin, 2016). It has
become the standard baseline for hydrological modelling due to its
resilience, speed, and capacity to manage missing variables (Gaffoor
et al., 2022). Whilst lacking the sequential modelling capabilities of
neural networks, XGBoost excels on organised tabular data and serves as
a baseline for assessing the additional value of deep learning ap-
proaches. In this work, XGBoost acts as a non-neural comparator,
allowing us to determine if complicated sequence models significantly
outperform ensemble baselines. Supplementary Information (S3)
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provides a summary of hyperparameters and implementation settings.
2.3. Training, validation and testing (holdout method)

In this study, a strict holdout validation methodology, created spe-
cifically for evaluating predicting accuracy under practical operating
situations, was used (Cerqueira et al., 2020). Using the holdout
approach, the dataset is divided into discrete subsets for testing, vali-
dation and training. About 85 % of the dataset was used for model
training and validation, with the remaining 15 % acting as a holdout test
set. The dataset was divided chronologically into two major sections. For
time series forecasting tasks, this chronological splitting technique is
crucial because it keeps data from leaking, maintains the temporal
integrity of forecasts, and ensures the model assessment takes perfor-
mance on completely unknown future data into account (Weytjens and
De Weerdt, 2021).

Data was further randomly separated inside the first training vali-
dation segment, with 85 % of the subset going towards model training
and the remaining 15 % going towards validation. Model general-
isability was improved by explicitly optimising model hyperparameters,
using early stopping conditions, and avoiding overfitting using a vali-
dation subset.

During training, the holdout testing subset (final 15 %) was
completely isolated and not given exposure to the models. An objective
assessment of each model's prediction capacity was given via perfor-
mance evaluation on the last subgroup, which is essential for deter-
mining practical applicability, especially when dealing with different
hydrological circumstances and forecasting horizons (1-5 days).

Using the holdout method has a number of benefits over other
strategies, such as k-fold cross-validation. In particular, non-stationary
hydrological data, where temporal dynamics and sequential de-
pendencies are crucial and better suited for a holdout validation strategy
(Chandel and Ghosh, 2021). It produced more accurate and rationally
meaningful performance estimates by preventing any data leakage
through rigorous chronological separation. Thus, the holdout method
increases confidence in the model's ability to generalise to new data,
which makes it ideal for Thames Basin flood forecasting scenarios.

2.4. Performance metrics

For popular statistical measures — the Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination (Rz),
and symmetric Mean Absolute percentage error (SMAPE) — were chosen
to thoroughly emulate the prediction performance of the models utilised
in this research. Together, these measures offer distinct insight into the
performance of the model, allowing for a thorough assessment from
several angles (Chicco et al., 2021; Li et al., 2025).

1 m
MAE = m Z |X; — Yi|; (best value = 0, worst value = + )
i=1

The extent of prediction mistakes was assessed using the Root Mean
Squared Error (RMSE), which assigns more weight to bigger disparities.
This is especially important when it comes to flood prediction, since
major mistakes in estimating peak river levels can greatly impact
emergency response plans and readiness. The Mean Absolute Error
(MAE), which averages the absolute discrepancies between projected
and observed river levels, was also used as a supplementary indicator to
provide an intuitive grasp of model accuracy. MAE is simpler to grasp in
practical situations since it handles all mistakes equally, unlike RMSE. It
can be represented as follows:

m
RMSE = /% (X — Y1)?; (best value = 0, worst value = + )
-1

To calculate the percentage of observed variability that the models
could account for, the coefficient of determination (R» was also
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included. For accurate flood forecasts, R? shows how well each model
reflects the general patterns and temporal dynamics of river behaviour.
It can be calculated as follows:

m
> (Xi—Yi)?

RP=1- 'Tnl ; (best value = + 1, worst value = — )
> (Y -1)?

Additionally, prediction accuracy was assessed as a relative error
measure using the Symmetric Mean Absolute Percentage Error
(SMAPE). SMAPE has the benefit of being scale-independent, which
allows for efficient comparisons of model performance across various
river levels, rainfall intensities, and groundwater conditions. It also
equally accounts for under- and over-predictions. In hydrological fore-
casting studies, where measurement scales might differ greatly between
stations or hydrological conditions, this feature is advantageous.

> ; (best value

Together, these criteria provide a thorough and impartial framework
for evaluation, enabling in-depth analyses of each model's forecasting
accuracy, robustness, and dependability over a range of hydrological
circumstances and forecasting horizons.

2 X ‘yprep 7ytrue
SMAPE = 100 x mean| ———

[Yerue| + |Yprep

= 0%, worst value = 100%

3. Results
3.1. Model performance

Model performance was assessed using RMSE, MAE, R?, and SMAPE
metrics for three aquifer types (Chalk, Limestone, and Greensand) and
various predicting horizons (1-4 days) (Tables 1, 2, and 3). At shorter
timeframes (1-2 days), all models performed comparably well for the
Chalk aquifer (Station 1), with only slight variations in RMSE and MAE
values (~0.02-0.04). At a 1-day horizon, LSTM performed somewhat
better than the other models (R*> = 0.80, SMAPE = 5.74 %), with
Informer (R2 = 0.79, SMAPE = 6.05 %) and TFT (R2 = 0.77, SMAPE =
6.44 %) following closely behind. The performance of XGBoost was
somewhat worse (R? = 0.72). All models performed worse over longer
horizons (3-4 days) (R? between 0.48 and 0.61), although TFT's per-
formance remained more stable, as evidenced by lower SMAPE values
than Informer and XGBoost.

All models showed remarkable forecast accuracy in the Limestone
aquifer (Station 2), with extremely low RMSE (0.02-0.04) and MAE

Table 1
Station 1.
Aquifer Type Horizon Metrics Models
TFT LSTM Informer XGBoost

RMSE 0.03 0.03 0.03 0.03

1 MAE 0.02 0.02 0.02 0.02

R? 0.77 0.80 0.79 0.72

SMAP 6.44 5.74 6.05 6.73

RMSE 0.04 0.03 0.04 0.04

9 MAE 0.03 0.02 0.03 0.03

R? 0.66  0.72 0.70 0.69

SMAP 8.16 6.60 6.89 7.18

Chalk RMSE 0.04 0.04 0.04 0.04
3 MAE 0.03 0.03 0.04 0.03

R? 0.61  0.60 0.52 0.54

SMAP 8.53 8.78 9.93 9.23

RMSE 0.04 0.04 0.05 0.05

4 MAE 0.03 0.03 0.04 0.03

R? 0.62 0.62 0.48 0.48

SMAP 7.46 8.19 10.32 10.08
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Table 2
Station 2.
Aquifer Type Horizon Metrics Models
TFT LSTM Informer XGBoost
RMSE 0.02 0.02 0.02 0.02
1 MAE 0.01 0.01 0.01 0.01
R? 0.99 0.99 0.99 0.99
SMAP 1.64 1.82 1.53 1.56
RMSE 0.03 0.03 0.03 0.03
9 MAE 0.02 0.01 0.0.02 0.01
R? 0.97 0.98 0.98 0.98
Limestone SMAP 2.83 2.38 2.57 2.05
RMSE 0.03 0.03 0.04 0.03
3 MAE 0.02 0.02 0.03 0.02
R? 0.97 0.97 0.95 0.97
SMAP 2.74 2.80 5.33 2.72
RMSE 0.04 0.04 0.05 0.04
4 MAE 0.02 0.02 0.03 0.02
R? 0.95  0.96 0.94 0.95
SMAP 3.54 3.38 4.24 3.33
Table 3
Station 3.
Aquifer Type Horizon Metrics Models
TFT LSTM Informer XGBoost
RMSE 0.06 0.06 0.06 0.06
1 MAE 0.06 0.04 0.04 0.04
R? 015  0.19 0.19 0.10
SMAP 6.02 5.60 5.86 6.09
RMSE 0.06 0.07 0.08 0.06
9 MAE 0.04 0.04 0.06 0.04
R? 0.06  0.02 -0.33 0.11
Greensand SMAP 6.55 6.63 8.57 6.06
RMSE 0.07 0.07 0.04 0.07
3 MAE 0.04 0.03 0.05 0.04
R? 0.00 0.05 —0.09 0.05
SMAP 6.91 6.29 7.04 6.20
RMSE 0.07 0.07 0.07 0.07
4 MAE 0.05 0.04 0.04 0.04
R? -0.17  0.00 -0.03 0.02
SMAP 7.30 6.52 6.83 6.33

(0.01-0.02) values across all horizons. High R? values (>0.94) demon-
strated superior model-to-model prediction ability. With significantly
lower SMAPE values (1.53-1.64 % at 1-day horizon), TFT and Informer
performed marginally better than other models at shorter horizons,
indicating a good model capability to reflect the distinct and responsive
temporal hydrological processes typical of limestone aquifers.

In contrast to the Chalk and Limestone aquifers, all models showed
poorer forecasting ability for the Greensand aquifer (Station 3). Partic-
ularly at horizons longer than two days, the RMSE and MAE were
significantly higher (RMSE: 0.06-0.07, MAE: 0.04-0.07) with low or
negative R? values. TFT showed negative R? values (—0.17) at the 4-day
horizon, suggesting a significant decline in predictive power. The
complexity and delayed hydrological response of the Greensand aquifer
are demonstrated by the difficulties faced by Informer, LSTM, and
XGBoost, which cast doubt on model predictions over longer time ho-
rizons (Shand et al., 2003b). All things considered, the performance
study showed distinct model and aquifer-specific variations. The ability
of transformer-based models (TFT and Informer) to capture temporal
relationships is demonstrated by their higher performance, especially in
sensitive aquifer settings like Limestone. The worst performance of all
models in Greensand aquifers, however, points to the necessity of
further modifying modelling techniques to better account for the slower
and less responsive hydrological interactions that are characteristic of
these geological environments. These comparison results show that,
especially over longer time horizons, transformer-based models are
consistently more resilient than ensemble techniques. When long-term
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dependencies were needed for delayed aquifer responses, XGBoost
performed poorly, but LSTM demonstrated lasting utility as a sequential
baseline. This demonstrates that rather than being presumed to be
generally transferable, model design needs to be adapted to hydrological
settings.

The comparison findings show distinct variations among aquifer
types and between model designs. XGBoost was regularly outperformed
by TFT and Informer, especially in areas with quick groundwater-river
reactions. In the Limestone aquifer, for instance, TFT obtained R?
values of 0.98 as opposed to 0.93 for XGBoost, highlighting the impor-
tance of attention processes in identifying transient hydrological cor-
relations. Additionally, LSTM performed well, confirming its proven
dependability for sequential hydrological data. However, XGBoost per-
formed poorly in situations when long-term dependencies were neces-
sary due to delayed aquifer responses, underscoring the limitations of
tree-based methods in this regard.

3.2. Agquifer-specific performance

Model performance in Chalk, Limestone, and Greensand aquifers was
compared, revealing significant variation that was mostly driven by the
hydrogeological characteristics and groundwater-river interactions
particular to each aquifer type. Even over longer forecasting horizons,
the limestone aquifer (station 2) showed the highest overall model
performance out of the three aquifer types, with RMSE values consis-
tently as low as 0.02 and usually high R? values (~0.95-0.99) across all
models (Table 2). Notably, this aquifer's historical data spanned the
longest time of the three other stations, from April 2011 to January
2025. The prolonged time series most likely contributed significantly to
model performance by providing adequate historical variability, such as
several seasonal cycles and hydrologic extremes. These consistently
correct predictions imply that limestone aquifers have quick and distinct
groundwater-river interaction, which makes it possible for models,
especially TFT and informer, to efficiently learn different temporal
patterns (Oberhelman et al., 2024). Generally speaking, limestone
aquifers exhibit very high permeability and quick groundwater
recharge, which causes quick and noticeable changes in river levels after
rainfall events (Neumann et al., 2003). This clarity in response makes
accurate forecasts easier, due to hydrological processes that are pre-
dictable and simple to represent within the temporal framework of
transformer-based models.

On the other hand, the greensand aquifer (station 3) showed
noticeably worse predictive ability in all models, with considerably
lower or negative R? values and higher RMSE and MAE values, espe-
cially at longer forecasting horizons (3—4 days). Despite a large historical
dataset (April 2011 to April 2024) equivalent in duration to the Lime-
stone aquifer, the Greensand aquifers have slower groundwater circu-
lation and longer groundwater storage. Since this aquifer has a large
storage capacity and delayed groundwater reaction, the poor perfor-
mance suggests significant uncertainty and low prediction ability. These
traits result in diffuse, delayed groundwater-river interactions, which
makes it more difficult for models to predict changes in river level
effectively, particularly when they depend mostly on short-term input
features. These findings support a crucial finding: to improve predictive
accuracy in hydrologically complex aquifers, standard temporal
modelling techniques — even sophisticated ones like TFT and Informer —
may need considerable modifications or extra data (like longer historical
groundwater series or soil moisture data).

The chalk aquifer (station 1) performed at the middle levels. The
historical data ranged from April 2011 to January 2024, offering a large
dataset, slightly shorter than that of the Limestone aquifer. Models
performed well for shorter predicting horizons (1-2 days) (R%
0.77-0.80). However, predicted accuracy fell considerably for time
horizons longer than 2 days. Because of their high permeability, chalk
aquifers often have reasonably fast groundwater-river interactions,
although these interactions can be nuanced and complicated over time
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(MacDonald and Allen, 2001; Ali et al., 2024). The intermediate dataset
length, whilst substantial, may not completely reflect all complexities or
long-term trends found in chalk aquifers, particularly under changing
climatic conditions or major hydrological events, resulting in lower
forecasting accuracy at longer time horizons.

The aquifer-specific research revealed important insights into flood
predictions. First, the duration of historical datasets has a considerable
impact on model accuracy, particularly for aquifers with distinct
groundwater-river interactions (Limestones). Second, for aquifers with
slow or diffuse groundwater reactions (Greensand), more historical data
alone may not be enough; instead, specialised modelling techniques or
hybrid approaches may be required. Finally, even aquifers with typically
responsive groundwater dynamics, such as Chalk, may require longer or
more extensive datasets to adequately capture complicated temporal
patterns that influence long-term forecasting accuracy. This research
significantly supports aquifer-specific forecasting methodologies,
emphasising the importance of explicitly considering both hydrological
qualities and dataset characteristics in future model development and
flood risk management approaches.

These results complement the larger body of research on ML in flood
forecasting, but they also go beyond it. Physical realism has been
enhanced by recent developments, including surrogate modelling
(Donnelly et al., 2022) and physics-informed neural networks (Donnelly
et al., 2024). However, the majority of these studies concentrate on
hydrological processes at the surface and hardly ever take aquifer-
specific responses into account. Our findings show that predicting
capability is highly influenced by the geological environment in addi-
tion to algorithmic design. Even the most sophisticated models can
become useless if delayed subsurface processes are ignored, as evi-
degced by the extremely low performance seen in the Greensand aquifer
(R <0).

Chalk Informer Model-Actual vs Predicted (1 Day Holdout Set)

Chalk XGBoost Model-Actual vs Predicted (1 Day Holdout Set)

TS

Chalk Informer Model-Actual vs Predicted (2 Day Holdout Set)

Chalk XGBoost Model-Actual vs Predicted (2 Day Holdout Set)
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3.3. Actual vs predicted

Fig. 4 supplies the visual comparison between the actual and pre-
dicted river levels for the chalk aquifer at forecasting horizons of 1 and 2
days using the Informer, LSTM, TFT and XGBoost models. These charts
show the effects of longer prediction horizons and offer comprehensive
insights into the forecasting capabilities and shortcomings of each
model. At a 1-day horizon, numerical metrics in the (R?=0.79 and 0.80,
respectively) showed that both the Informer and LSTM models per-
formed marginally better at the 1-day horizon, properly capturing river
level oscillations and closely matching actual peaks and troughs. Minor
but significant discrepancies in recording severe flow events were
evident in the informer and LSTM models, which performed marginally
better at the 1-day horizon, properly capturing river-level oscillations
and closely matching actual peaks and troughs. Minor but significant
discrepancies in recording severe flow events were evident in the in-
former's occasional modest overestimations during mild peaks and
LSTM's slight underestimations of certain greater peaks.

The TFT model produced visually solid predictions that closely
mirrored real river-level patterns with few variations, although quanti-
tatively lagging behind LSTM and Informer (R? = 0.77). Although it is
not numerically more accurate than LSTM or Informer, its performance
at this horizon highlights its capacity to model short-term oscillations
adequately. The XGBoost model, on the other hand, performed notice-
ably worse at the 1-day horizon, especially during peak-flow occasions,
where it consistently and obviously underestimated. Despite the
computational benefits, a significant drawback of simpler, tree-based
approaches for short-term flood forecasting was their inability to cap-
ture short-term river-level peaks reliably.

At 2-day predicting horizons, all models showed decreased accuracy
compared to the shorter horizons, indicating growing uncertainty. In
terms of quantitative performance, the LSTM model performed best

Chalk TFT Model — Actual vs Predicted (1 Day Holdout Set)

Chalk LSTM Model-Actual vs Predicted (1 Day Holdout Set)
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Fig. 4. Horizons 1 and 2 in the Chalk aquifer.
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overall (R? = 0.72), closely followed by Informer (R? = 0.70). Both
models successfully captured significant temporal patterns, but they
revealed more deviations, especially during higher peak flows. At this
longer horizon, the informer's propensity for modest overestimations
becomes more noticeable.

In comparison to LSTM and Informer, the TFT model demonstrated
somewhat lower quantitative accuracy at the 2-day horizon (R? = 0.66).
Visually, TFT was still able to follow the overall temporal pattern suc-
cessfully, but small deviations from actual values became more
apparent, underscoring the difficulties that come with large predicting
intervals. Compared to its 1-day performance, the XGBoost model
showed somewhat better stability over the 2-day horizon; nonetheless,
significant underestimations during peak events persisted. This dem-
onstrates the continued inability of the more straightforward ensemble
technique to capture intricate temporal dynamics that are essential to
precise flood prediction.

When compared to more straightforward tree-based techniques like
XGBoost, transformer-based models (Informer LSTM, and TFT) consis-
tently showed greater predictive capacity. Although TFT maintained its
visual reliability across horizons despite somewhat lower quantitative
measures, LSTM and Informer demonstrated superior numerical accu-
racy at shorter horizons. The obvious decrease in prediction accuracy
with longer forecast horizons highlights the need for models that can
effectively manage uncertainty in flood forecasting situations.

The TFT model had the best overall accuracy at the 3-day horizon,
with an R? value of 0.61. The LSTM model had a strong predictive
performance (R? = 0.60). Both models correctly reproduced the
fundamental river-level variations and temporal patterns, while minor
differences, notably in reliably anticipating peak magnitudes and
timing, grew when compared to shorter forecasting periods. The
Informer model's accuracy decreased (R2 = 0.52), resulting in

Chalk Informer Model-Actual vs Predicted (3 Day Holdout Set)
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Chalk XGBoost Model-Actual vs Predicted (3 Day Holdout Set)

Chalk Informer Model-Actual vs Predicted (4 Day Holdout Set)
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overestimations during peak river-level occurrences. The XGBoost
model struggled to accurately capture complicated hydrological pro-
cesses over long time periods (R? = 0.54), frequently underestimating
peaks (Fig. 5).

At the 4-day horizon, the TFT and LSTM models had the best pre-
diction accuracy, with R? values of 0.62. While both models showed
greater departures from real river levels than shorter periods, they
nonetheless accurately reflected broad hydrological trends. Specifically,
LSTM performed admirably, while variations at peak flow magnitudes
were more noticeable. TFT produced similarly accurate overall fore-
casts, but with significantly higher fluctuation in peak and trough
magnitudes than shorter horizons. Informer and XGBoost saw consid-
erable performance declines at the 4-day horizon, with R? values of 0.48.
Informer routinely overestimated river peaks, whilst XGBoost constantly
showed instability and significant underestimations, highlighting their
shortcomings in modelling long-term temporal dynamics.

Overall, examining model performance over horizons ranging from
1-day to 4-day predictions demonstrates a steady and progressive
decrease in prediction accuracy as forecast intervals get longer.
Transformer-based models (Informer and TFT) and the LSTM out-
performed XGBoost in terms of sustaining performance levels over time.
Nonetheless, the overall fall in accuracy highlights the complexities of
long-term hydrological forecasting. Thus, for operational flood fore-
casting in Chalk aquifer contexts, TFT and LSTM models are particularly
recommended due to their demonstrated robustness over longer time
horizons, with potential accuracy gains achievable through improved
modelling strategies or the incorporation of additional hydrological
data.

Fig. 6 assesses and compares the performance of the Informer, LSTM,
TFT and XGBoost models for the Greensand aquifer at 1- and 2-day
forecasting horizons, using both quantitative measures and visual

Chalk TFT Model — Actual vs Predicted (3 Day Holdout Set)
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Fig. 5. Horizons 3 and 4 in the Chalk aquifer.
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Greensand Informer Model-Actual vs Predicted (1 Day Holdout Set)
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Fig. 6. Horizons 1 and 2 in the Greensand aquifer.

forecasts. All models had low R values at the 1-day horizons as shown in
Table 3, ranging from 0.10 (XGBoost) to 0.19 (LSTM and Informer),
indicating inadequate forecasting accuracy. This is seen graphically by
the notable variations in peak and trough prediction across all models in
Fig. 6. Even though there were significant errors in peak magnitudes, the
LSTM and Informer models outperformed TFT and XGBoost in terms of
timing some river-level fluctuations. Significant limits were shown by
the TFT model (R?> = 0.15), which consistently underestimated peaks
and was unable to describe abrupt changes adequately. The least accu-
rate model (R? = 10), XGBoost, continuously underestimated peak river
levels, demonstrating its incapacity to manage the more intricate
groundwater-river interactions seen in the Greensand aquifer. Due to the
complicated and slow groundwater reaction that results in less pre-
dictable surface water interactions, aquifers such as greensand are
challenging to simulate for river dynamics (Shand et al., 2003b), as seen
by their comparatively poor performance measures.

For the majority of models, predicted accuracy further decreased at
the 2-day forecasting horizons. Despite maintaining a very low overall
accuracy, the LSTM remained somewhat steady and achieved the
greatest R? value (0.06). In terms of catching peak flows, LSTM forecasts
show consistent but marginally higher errors as seen in Fig. 6. The TFT
model struggled with peak and trough prediction, which maintained
poor accuracy (R? = 0.06). Due to significant peak misalignment, severe
prediction errors, and consistent overestimation or underestimation, the
Informer's accuracy significantly decreases (R? = -0.33). Significant
challenges in modelling temporal dynamics at this horizon are high-
lighted by the negative R? values, which show performance below a
simple average forecast. With its continued severe peak underestimation
and minimal predictive improvement, XGBoost continued to perform
quite poorly (R? = 0.06).

Overall, compared to the Chalk aquifer, the Greensand aquifer re-
sults at the 1-day and 2-day horizons clearly show significant modelling
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challenges. This is primarily because of the unique hydrological char-
acteristics of greensand, which include complex surface-subsurface in-
teractions and slower groundwater responses. Peak forecasts were
significantly difficult for all models, indicating that more complex
modelling techniques or more data sources are needed to capture
groundwater-river interactions in detail. Out of all the models that were
examined, the LSTM had somewhat higher, but restricted, accuracy
across these short horizons. Informer came in second at the 1-day ho-
rizon. Due to inherent aquifer-specific complexity, transformer-based
models did not significantly outperform simpler models in this case,
despite their potential advantage in capturing complicated temporal
dynamics. Future model improvements could be on using models that
are especially tailored to the particular groundwater dynamics of
greensand-type aquifer or on integrating more comprehensive hydro-
logical data.

Fig. 7 shows the capacity of the models to estimate Greensand
aquifer river levels during extended prediction intervals of three and
four days. Due to its large storage capacity and delayed river-
groundwater interactions, which become more noticeable over longer
horizons, the Greensand system poses unique hydrological issues.
Although it was still low, the LSTM model had the greatest R? value
(0.05) at the 3-day horizon, suggesting only limited explanatory ability.
However, with a negative R? (—0.09), the Informer model did not
perform well, indicating that it was unable to acquire meaningful tem-
poral characteristics under the growing uncertainty that comes with
longer forecasts in this aquifer. TFT likewise had trouble, providing no
discernible improvement over the basic baseline (R2 = 0.00).

All of the models were unable to precisely match the real river-level
peaks and troughs, which were evident in Fig. 7. With an R? of 0.05,
XGBoost equalled LSTM despite having a simpler structure and exhibi-
ted somewhat more consistent trend-following behaviour. SMAPE
values (<6) were elevated in all models, nevertheless, suggesting that
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Greensand Informer Model-Actual vs Predicted (3 Day Holdout Set)
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Fig. 7. Horizons 2 and 3 in the Greensand aquifer.

relative error increased with flow conditions. Interpretability was
negatively impacted by frequent noise and peak misplacement, which
were specifically introduced by Informer.

By a 4-day horizon, all model performance further declined, with a
very negative R2 value of —0.17; the TFT model proved unable to cap-
ture even the most fundamental river-level patterns in Greensand over a
long period of time. During critical peak moments, the Informer model
(R? =-0.03) displayed chaotic predictions that deviated from the actual
flow profiles, continuing its dismal performance. In accordance with its
continual reduction over time, LSTM's R? fell to 0.00. Its utility was
restricted at this range by its inability to mimic fluctuations and ex-
tremes, even if its visual output still roughly mirrored the overall di-
rection of river level as seen in Fig. 7. XGBoost's usefulness for practical
flood forecasting was diminished since it continued to underestimate
peak and over-smooth the signal, whilst being comparatively more
stable (R? = 0.07). The SMAPE increased to 6.3-7.3 for all models,
suggesting significant distortion in the predictions. This was verified
visually, since there were significant discrepancies between the lines
that were seen and those that were projected during times of hydro-
logical activity.

The Greensand aquifer's 3-day and 4-day forecasting horizons
demonstrated that this setting offers the most predictive difficulty
among the three aquifer types. Regardless of architecture, the models
did not generalise successfully. Greensand's groundwater movement is
slow and diffuse, which probably reduces the accuracy of surface-level
indicators like rainfall or river levels (Shand et al., 2003b). In contrast
to transformer-based models (TFT and Informer), which seem to need
deeper temporal signals than greensand systems can provide within the
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observed characteristics, LSTM and XGBoost were comparatively more
consistent and stable, despite their overall poor performance. Specif-
ically, Informer was extremely sensitive to horizon extension, displaying
unpredictable or overfitting results after one day. To enhance perfor-
mance in slower aquifer systems like greensand, our results emphasise
the need for aquifer-specific model selection and maybe the incorpora-
tion of extra variables (such as soil moisture, baseflow indices, or
groundwater recession rate).

In the Limestone aquifer, all models demonstrated consistently high
prediction performance, especially at the 1-day and 2-day timeframes.
Because of its sensitive and well-drained characteristics, which provide a
more distinct link between hydrological inputs (such as rainfall and
groundwater levels) and river level output, this aquifer type demon-
strated the best accuracy across all stations.

All models performed almost perfectly at the 1-day horizon with R
values of 0.099, as shown in Table 2 for each model. This suggests a
system with a limited horizon that is quite predictable. Compared to
other models, the Informer model was the most accurate, as seen by its
lowest SMAPE (1.53). With SMAPE ratings of 1.64 and 1.56, respec-
tively, TFT and XGBoost were in close pursuit, whilst LSTM lagged
somewhat (SMAPE = 1.82), but it was still achieving very good results.
All models closely followed the real peak and trough of the river level,
with very little variance, based on the visual charts. Excellent fit and
little lag were shown by the Informer and XGBoost models' very seamless
alignment with the observed data. TFT likewise matched the river dy-
namics nicely, although at strong peaks, it responded a little more
rounded, perhaps because of its multi-head attention smoothing func-
tion. LSTM demonstrated slight delays in capturing certain peak
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occurrences, despite their perceived similarity.

Even though there were minor accuracy declines, all models
continue to perform well at the 2-day forecast horizon, as shown in
Fig. 8. Despite the increased uncertainty of making a prediction two days
in advance, R? values stayed high, ranging from 0.97 to 0.98, indicating
robust model generalisation. With the lowest SMAPE of 2.38 and an R?
of 0.98, LSTM dominated the field and demonstrated exceptional con-
sistency in monitoring river-level variations. Additionally, XGBoost
demonstrated its ability to capture structured patterns in high-quality,
well-behaved datasets such as this one by performing well (R? = 0.98,
SMAPE = 2.05).

When compared to its 1-day horizon output, Informer showed a
slightly higher propensity to overpredict high peaks, but it still produced
solid predictions with RZ = 0.89 and SMAPE = 2.57. TFT reported a high
SMAPE (2.83), indicating a somewhat increased sensitivity to shifting
dynamics over longer periods, even if it was still operating well (R? =
0.97). These measurements are supported by the plots, which continue
to demonstrate extremely tight alignment between LSTM and XGBoost
and real values, particularly around increasing limbs of hydrographs.
Although TFT and Informer maintained solid timing, they may have
overestimated some low-flow sectors because of their deeper temporal
designs' reliance on lag patterns.

At 1- and 2-day timeframes, the limestone aquifer demonstrated
remarkable predictability with all four models operating at or close to
ideal levels. Even basic models like XGBoost performed well because of
the close correlation between input characteristics and river levels,
which was probably caused by the aquifer's moderate permeability and
steady hydrological behaviour (Thakkar and Lohiya, 2022).

Fig. 9 assesses the performance of the Informer, TFT, LSTM, and
XGBoost models for the Limestone aquifer across extended forecasting
horizons of 3 and 4 days. This aquifer provides ideal circumstances for
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precise long-term forecasting due to its quick and direct groundwater-
surface water interactions (Oubagaranadin et al., 2007). All four
models showed consistently good predicted accuracy at the 3-day ho-
rizon. With an R? of 0.97, both the TFT and LSTM models were in the
lead and had a very high capacity for explanation. Especially when it
comes to capturing critical hydrological peaks, their low SMAPE values
(2.74 and 2.80, respectively) demonstrate precise alignment with actual
river-level changes. With very slight variations at peak flows, the figures
demonstrate how TFT and LSTM closely reflect the observed river
patterns.

Equally well, XGBoost generated predictions that closely matched
the observed values (R?> = 0.97). Although it occasionally under-
estimated peak magnitudes, its more straightforward structure was
adequate in the Limestone environment and successfully captured peak
dynamics. At this horizon, the informer model's accuracy was somewhat
lower (R? = 0.95), and its SMAPE significantly increased to 5.33, sug-
gesting more relative mistakes. Despite having adequate timeless for
detecting river-level changes, informer visually exaggerated peak mag-
nitudes, especially around significant hydrological events, indicating
sensitivity to prolonged horizons.

Overall predictive quality remained quite good, although model
accuracy started to exhibit mild reductions at the 4-day horizon. TFT,
LSTM, and XGBoost all exhibited robust performance (R? = 0.96), sug-
gesting reliable forecasts despite longer lead periods. Even across
extended forecasting horizons, LSTM consistently shows its capacity to
capture complex temporal dynamics by achieving the lowest SMAPE
(3,38). Even whilst TFT was still quite accurate (SMAPE = 3.54), it
showed more flattering peaks and troughs, which indicated that it was
challenging to capture abrupt changes over a long period of time
adequately.

In constant hydrological circumstances, such as those seen in
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Fig. 8. Horizons 1 and 2 in the Limestone aquifer.
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Limestone Informer Model-Actual vs Predicted (3 Day Holdout Set)
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Limestone TFT Model — Actual vs Predicted (3 Day Holdout Set)

Legend
s T

Limestone LSTM Model-Actual vs Predicted (3 Day Holdout Set)

(WA

/ s

N

Al

e

o ) P

Limestone TFT Model — Actual vs Predicted (4 Day Holdout Set)

y \ ok Ry
L. !

o

Limestone LSTM Model-Actual vs Predicted (4 Day Holdout Set)

Legend

W, Lo\

\. N Y
™,
L T ’\.~_~

\

—

Fig. 9. Horizons 3 and 4 in the Limestone aquifer.

limestone aquifers, XGBoost demonstrated exceptional efficacy by
maintaining competitive performance (SMAPE 3.33). Its forecasts
showed little latency and accurately captured notable peaks and
troughs, nearly matching real river levels. On the other hand, the
Informer model showed a more significant decline in performance (R? =
94, SMAPE 4.24 %), which was especially noticeable in over-
estimations during high flow and significant departures during low flow.
Informer's decreased accuracy shows the model's susceptibility to cu-
mulative prediction mistakes over this extended horizon.

Overall, because of its hydrological features that encourage quick
groundwater river interactions, the limestone aquifer enabled
outstanding model performance even at longer horizons. The TFT and
LSTM models performed better in managing more prediction uncer-
tainty over longer time horizons. In highly predictable aquifer systems,
complicated models may not necessarily deliver considerable gains, as
demonstrated by XGBoost, which offered a simpler but equally reliable
option. Informer showed decreased stability as forecasting intervals
grew, although it was robust at shorter horizons. This suggests that it
should not be used for longer-term operational forecasting unless it is
better calibrated or backed by additional data sources.

This study's integration of aquifer-specific characteristics into a
comparative ML framework represents a significant methodological
advancement. Our method specifically takes into account groundwater-
river interactions across several aquifers, in contrast to previous flood
forecasting studies that frequently consider catchments as homogenous
entities. This is the first proof that ML performance in flood forecasting is
consistently aquifer-dependent that we are aware of. Therefore, this
methodology goes beyond algorithmic benchmarking to show how
forecast reliability is governed by geological variability.
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3.4. Aquifer-specific interactions

The heat map in Fig. 10 outlines the essential requirement for
aquifer-specific approaches to flood prediction modelling, which shows
different groundwater-river interactions and rainfall effects within the
three aquifer types: limestone, chalk, and greensand.

The Limestone aquifer showed a strong positive correlation (r =
0.84) between groundwater and river levels, due to its karstic nature,
which is marked by high permeability and quick groundwater transfer
(Ali et al., 2024). These circumstances allow for rapid groundwater
recharge and release, which has a major effect on river levels nearly
immediately after groundwater variations. Rainfall showed a poor as-
sociation (r = 0.067), suggesting that groundwater dynamics, rather
than direct rainfall-runoff reactions, are the primary cause of river level
fluctuation. This explains why models, particularly transformer-based
models (TFT and Informer) and LSTM, which effectively take advan-
tage of the strong groundwater-river link to predict river dynamics,
consistently have higher prediction accuracy.

The Chalk aquifer has a moderate correlation (r = 0.26) between
groundwater and river levels. Compared to limestone, this mild associ-
ation suggests that groundwater contributions to river flow are less
immediate or strong, but still significant. Rainfall showed an even less
correlation (r = 0.12) with river levels, indicating that other hydrolog-
ical processes, such as storage capacity and delayed reactions within the
aquifer, may complicate groundwater dynamics, even though it is
relatively influential. Over the course of the forecasting horizons, these
dynamics led to moderately varied model results. Due to their ability to
capture subtle interactions over extended time periods, transformer-
based models and LSTM continued to perform better than more
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Correlation Matrix of Hydrological Features in Limestone aquifer
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Fig. 10. Heat map of all aquifers.

straightforward models like XGBoost.

Moreover, in the Limestone aquifer, a weak negative association (r =
—0.14) between river levels and groundwater in the Greensand aquifer.
This negative association points to more intricate hydrological processes
that may involve substantial groundwater storage and delayed release,
which might mitigate or even reverse immediate river-level changes.
Rainfall and river levels showed a weak connection (r = 0.032), high-
lighting the rainfall's limited direct impact and making flood forecasting
in the Greensand aquifer even more challenging. Significant difficulties
in effectively modelling flood dynamics are highlighted by the intricacy
and indirect interactions in Greensand environments, which resulted in
noticeably reduced forecast accuracy across all models and horizons.

These results highlight the need to modify flood prediction tech-
niques to account for particular aquifer properties. Since groundwater-
river interactions occur quickly in limestone aquifers, developed
models that appropriately take advantage of these robust linkages are
obviously beneficial. Models incorporating extra hydrological variables
or extensive historical data may benefit chalk aquifers, which need

careful consideration of somewhat delayed groundwater interactions.
On the other hand, Greensand aquifers present considerable forecasting
difficulties, which may necessitate integrated modelling techniques that
account for intricate, delayed groundwater interactions. Enhancing
flood risk management frameworks' prediction accuracy and depend-
ability requires this aquifer-specific knowledge.

3.5. Implications for flood risk management

The study's conclusions have significant applications in improving
flood early warning systems, especially when using cutting-edge ma-
chine learning algorithms. The significant variation between the three
stations highlights the vital need for aquifer-specific modelling tech-
niques to forecast flood occurrences precisely. Specifically, transformer-
based models (TFT and Informer) and LSTM revealed higher prediction
ability, successfully capturing complicated groundwater-river in-
teractions and temporal hydrological patterns. Particularly in regions
with quick groundwater-river exchange, like limestone aquifers, the
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integration of these sophisticated models into current flood forecasting
frameworks could greatly enhance early warnings, offering increased
dependability and earlier lead times.

Moreover, the demonstrated capability of these sophisticated models
to sustain accurate forecasts across many forecasting horizons makes
them particularly ideal for practical usage, enabling flood control au-
thorities to take pre-emptive actions several days in advance. This ca-
pacity is extremely useful since it enables quicker evacuation planning,
focused resource allocation, and more educated reactions during flood
disasters. Traditional or simpler models, such as XGBoost, whilst
computationally efficient, demonstrated limitations in dealing with
complex hydrological interactions, implying that advanced deep
learning models are a better choice for operational flood forecasting.

Furthermore, by continually updating projections as new data be-
comes available, incorporating these predictive models into already-
existing flood management systems might improve their responsive-
ness. Real-time forecasting using transformer-based models and LSTM
might considerably increase preparation, decrease flood-related dam-
age, and enhance public safety, particularly in high-risk zones charac-
terised by aquifer-specific features. This work emphasises not only the
predictive power of these sophisticated model but also their practicality
and relevance in real-world flood risk management scenarios, opening
the way for more robust and adaptable flood control systems.

Planning for resilience and flood control is directly impacted by the
findings. With models achieving very high accuracy (R? > 0.98) in
limestone aquifers, predictions can provide accurate short-range flood
warnings. Chalk aquifers are more appropriate for preparation planning
with thorough uncertainty communication because of their moderate
predictability (R? = 0.77-0.80). In contrast, the Greensand aquifer's
weak performance indicates the necessity for adaptive measures, such as
hybrid modelling or improved monitoring, to prevent an over-reliance
on ML predictions. These unique perspectives suggest the creation of a
flood resilience framework that takes into account aquifers and matches
forecasting capabilities with regional hydrological reality. This study
offers an aquifer-aware framework that can be immediately used by
organisations like the Environment Agency for customised flood man-
agement by clearly connecting the geological setting to model
dependability.

4. Summary and conclusions

Using cutting-edge machine learning methods, to the best of the
authors' knowledge, this work offers the first aquifer-specific, multi-
horizon comparative investigation of flood forecasting in the Thames
Basin. Through the explicit incorporation of groundwater-river in-
teractions into the forecasting framework, we show that aquifer type has
a significant impact on prediction. Dependability. This methodological
contribution emphasises the significance of geological context in ma-
chine learning flood prediction, going beyond algorithmic
benchmarking.

The findings demonstrated that transformer-based models (TFT and
Informer) consistently performed better than XGBoost and LSTM, with
intermediate skill in chalk (R® ~ 0.77-0.80) and perfect accuracy in
limestone aquifers (R > 0.98). The efficacy of existing machine learning
techniques is limited by delayed subsurface reactions, as seen by the
poor performance in Greensand aquifers (R? < 0). The novel insight that
geological variability is a key factor in prediction robustness is added by
these findings, which also support recent developments in physics-
informed and hybrid models. This study emphasises the value of
aquifer-specific modelling techniques, reaffirming that broad modelling
approaches cannot handle the complexity of hydrological forecasting in
various geological contexts. Future studies should improve these models
even further, including more hydrological variables, and investigate
hybrid or ensemble modelling techniques to deal with the inherent un-
certainties found, especially in intricate environments like Greensand
aquifers.
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The study's limitations include its sole use of continuous forecasting
without hybrid or physics-informed limits, its dependence on daily
aggregated data, and its single-region emphasis. Future studies should
investigate hybrid data-process frameworks, higher-resolution moni-
toring networks, and physics-informed machine learning techniques.
They should also test the framework in a variety of hydrogeological
environments. Notwithstanding these drawbacks, the architecture
described here is obviously applicable to various aquifer-controlled
basins around the globe. Water managers and organisations like the
Environment Agency may create more dependable flood resilience plans
that consider aquifers by customising flood forecasting techniques to the
geological environment.
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