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• Transformer models outperform 
XGBoost across Chalk and Limestone 
aquifers.

• Continuous flood forecasting captures 
dynamics better than binary thresholds.

• Limestone aquifer predictions achieve 
very high accuracy (R2 

= 0.98–0.99).
• Chalk aquifer models show moderate 

accuracy (R2 
≈ 0.77–0.80).

• Models in Greensand perform poorly 
(R2 ≤ 0, negative predictability).
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A B S T R A C T

Accurate flood prediction is critical for avoiding catastrophic impacts, but its difficulty varies by geological 
location. This study evaluates four machine learning models – TFT, Informer, LSTM, and XGBoost – for multi- 
horizon flood forecasting (1-4 days), across Limestone, Chalk, and Greensand located in the Thames Basin, 
UK. Stations were carefully chosen using the UK government flood risk maps, geological mapping, and Envi
ronment Agency hydrological data to guarantee a complete portrayal of aquifer-specific groundwater-river in
teractions. The results show that the model accuracy varies significantly depending on aquifer features. Rapid 
GWL-river interactions allowed Limestone aquifers to achieve very high precision (R2 = 0.98–0.99), with 
transformers and LSTM clearly surpassing XGBoost. The accuracy of Chalk aquifers was moderate (R2 =

0.77–0.80), indicating delayed reactions and intermediate permeability. Greensand aquifers were difficult to 
model due to delayed and complex reactions, resulting in low or negative R2 values. Correlation study confirmed 
these findings: Limestone showed a significant groundwater-river linkage (r = 0.84), Chalk moderate (r = 0.26), 
and Greensand had a small negative association (r = − 0.14). The novelty of this study highlights the significant 
impact of subsurface hydrology on predicted reliability, revealing aquifer-specific geological restrictions in ML- 
based forecasting. This research offers a more physically consistent early warning method by fusing GWL data 
with developed transformer architectures. The results highlight the significance of adjusting forecasting 
frameworks to geological environments, which has direct implications for resilience planning and flood risk 
management at the watershed scale.
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1. Introduction

Floods are one of the most frequent and destructive natural catas
trophes in the world, and reducing their negative effect requires accu
rate flood forecasts (Tellman et al., 2021). Accurate forecasting helps 
with long-term planning, infrastructure design, and flood-defence tac
tics in addition to emergency reaction and evacuation (Brunner et al., 
2021; Hamel and Tan, 2022). Advanced forecasting techniques are 
becoming increasingly important as climate change intensifies extreme 
rains, raises sea levels, and changes hydrological regimes (Tabari, 2020; 
Ahmed et al., 2024). The intricate relationships between land surfaces, 
human activity, and climatic variables make flood prediction funda
mentally difficult. The geological differences between Chalk, Limestone, 
and Greensand aquifers result in diverse groundwater-river reactions, 
complicating predictions (Perzan et al., 2023).

Predicting and managing floods is particularly difficult in the 
Thames Basin, which includes both rural areas like Oxfordshire and 
Gloucestershire and urban areas like London (Bearcock and Smedley, 
2010). These issues are the result of a combination of varied landscapes, 
climate change, and human activity. Urbanisation in Greater London has 
disrupted natural drainage, increased surface runoff and decreased soil 
permeability (Jenkins et al., 2018; Environment Agency, 2022). Tidal, 
surface water, groundwater, and fluvial floods all affect the Basin, 
necessitating different mitigation and forecasting strategies 
(Environment Agency, 2022).

Climate change intensifies threats by increasing the frequency of 
extreme weather events and rising sea levels, specifically in the lower 
Thames. Large catchments also respond slowly to rainfall, necessitating 
the use of hydrological and meteorological models for forecasting 
(Crooks and Kay, 2015; Ali et al., 2024). Effective long-term manage
ment necessitates cross-agency coordination within complicated regu
latory frameworks (Fan, 2024), as well as advanced forecasting 
techniques customised to basin conditions.

Recent advancements integrate hydrological and meteorological 
measurements with real-time monitoring and machine learning (ML). 
Distributed and physically based models can capture regional vari
ability, but their processing requirements restrict their use (Hussain 
et al., 2021; Wang et al., 2023). To address these restrictions, data- 
driven solutions have gained popularity. Surrogate modelling provides 
efficient approximations of complicated flood processes (Donnelly et al., 
2022), but physics-informed neural networks include hydrological re
strictions directly into training, enhancing physical consistency 
(Donnelly et al., 2024).

With the increased availability of large data from ground sensors, 
radar, and satellites, AI-driven techniques have shown higher accuracy 
and lead times, which are critical for early warning and resource allo
cation (Motta et al., 2021; Yuan et al., 2022). These developments 
represent a significant move towards integrated, adaptive flood fore
casting that uses ML to overcome the challenges of solely empirical or 
physics-based models.

Transformer-based models, such as the Temporal Fusion Trans
former (TFT), use gating and attention processes to capture both short- 
and long-term relationships whilst providing interpretability for hy
drological data (Lim et al., 2021; Ali and Ahmed, 2024). The Informer 
improves on these techniques by including a ProbSparse self-attention 
mechanism, making it more efficient for lengthy sequences and appro
priate for longer flood predicting horizons (Zhou et al., 2021; Wang and 
Zhao, 2023).

Extreme Gradient Boosting (XGBoost) is still a popular ensemble 
approach, appreciated for its scalability, tolerance to missing informa
tion, and good performance in rainfall-runoff and flood risk applications 
(Chen and Guestrin, 2016). Long Short-term Memory (LSTM), as 
recurrent models, are still used to forecast river flow, rainfall, and flood 
events due to their ability to learn long-term dependencies (Hochreiter 
and Schmidhuber, 1997; Noh, 2021).

This research uses these four models to present a comparative 

framework for aquifer-specific, multi-horizon flood forecasting. By 
comparing transformer topologies to conventional and recurrent ap
proaches, we can see how model design and geological context impact 
forecast reliability in the Thames Basin. By combining hydrological re
cords of rainfall, groundwater levels, and river stages with cutting-edge 
machine learning algorithms, this project seeks to enhance flood fore
casting and risk management in the Thames Basin. In order to ascertain 
how aquifer-specific variables affect prediction reliability, we specif
ically assess the performance of four top models – Temporal Fusion 
Transformer (TFT), Informer, Long Short-Term Memory (LSTM), and 
XGBoost – across short-term horizons (1–4 days).

This study offers the first aquifer-specific, multi-horizon comparative 
analysis of flood forecasting in the Thames Basin, combining cutting- 
edge machine learning with geological context. Unlike prior research 
that assumed catchments were hydrologically homogeneous, our 
approach explicitly shows how geological variations across Chalk, 
Limestone, and Greensand aquifers affect forecast dependability. This is 
the first demonstration that transformer-based models may detect 
consistent differences in predictability caused by subsurface controls. 
The peculiarity of this work is that it not only benchmarks sophisticated 
models but also links their performance to aquifer features, demon
strating that even cutting-edge designs might fail if subsurface dynamics 
are disregarded. By creating this link, we introduce a new paradigm for 
flood forecasting that is both data-driven and hydrogeologically 
informed. This contribution has immediate implications for operational 
agencies like the Environment Agency, which can use aquifer-aware 
forecasting to provide more reliable, region-specific flood warnings, as 
well as researchers looking for reproducible, physically consistent 
methods of incorporating groundwater-river interactions into machine 
learning-based forecasting.

2. Methodology

2.1. Study area

2.1.1. Thames Basin overview
The Thames Basin is one of the biggest and most hydrologically 

varied areas in the United Kingdom. From northern Oxfordshire and 
Gloucestershire to the Thames Estuary and portions of Kent, including 
the heavily populated metropolitan area of Greater London, it covers an 
area of more than 16,200 km2 (Bearcock and Smedley, 2010). Wide 
floodplains, slow-responding river systems, and considerable tidal effect 
in the lower reaches contribute to a complicated flood-risk profile. 
Floods have already damaged millions in the watershed, necessitating 
ongoing monitoring and numerous risk-management techniques 
(Environment Agency, 2022). Ali et al. (2024) have highlighted the 
necessity for forecasting models in this area by demonstrating the 
crucial role that groundwater dynamics play in flood prediction.

2.1.2. Station selection
The choice of stations for this study was based on a deliberate focus 

on high-risk flood locations as determined by the UK's long-term flood 
risk service maps to capture a variety of hydrological settings 
throughout the Thames Basin Environment Agency (2022). The moni
toring sites were selected to symbolise the three main aquifer types in 
the area, as shown in Fig. 1: Greensand, Limestone and Chalk.

Chalk: High secondary porosity due to fracture networks, significant 
permeability, and often delayed groundwater reactions (Smedley et al., 
2003; Shand et al., 2003a; Neal et al., 2006; Environment Agency, 
2022).

Limestone: Jurassic limestone, with confined/ unconfined settings 
and fracture-controlled flow, can provide more dynamic groundwater 
reactions during rainfall events (Oubagaranadin et al., 2007).

Greensand: The greensand aquifer, which is usually found next to 
Chalk formations, has special geological features that provide excep
tional transmissivity and storage qualities (Shand et al., 2003b).
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To ensure comparability, three monitoring sites were selected within 
each aquifer type that measure rainfall, groundwater levels, and river 
levels simultaneously. Site selection was based on (i) geographic close
ness of measurements, (ii) high flood risk sites, and (iii) uniform tem
poral coverage. Data availability extended from April 2011 to early 
2025, with modest variations by aquifer. Figs. 1 and 2 depict the Thames 
Basin overview, aquifer borders and flood-risk zones.

2.1.3. Data sources and pre-processing
The Environment Agency's Hydrological Data Explorer was largely 

used to access hydrological datasets such as rainfall, groundwater levels 
(GWL), and river levels, with local weather stations providing support. 
Hourly observations were aggregated to daily averages to guarantee 
uniformity across variables and reduce the impact of infrequent missing 
data (Kang and Tian, 2018; Environment Agency, 2022) (Fig. 3).

The remaining gaps were filled using linear interpolation, a 
commonly used approach for hydrological time series that maintains 
temporal continuity while reducing biases in model training and 
assessment (Kang and Tian, 2018). To facilitate feature comparability 
and increase model stability, all variables were normalised to a 0–1 scale 
using the MinMaxScaler method (Deepa and Ramesh, 2022). To capture 
delayed hydrological responses and decrease noise in short-term fluc
tuations, lagged features (1–3 days) and 3-day rolling averages for 
rainfall, river level, and GWL were created. These designed predictors 
improve the depiction of aquifer-specific dynamics, where temporal 
delays and storage effects play a significant role in flooding processes.

This structured preprocessing methodology ensures that data is 
consistent and comparable among aquifers, which is essential for con
structing credible flood forecasting models. Supplementary Information 
(S2) includes detailed pretreatment techniques and implantation 
parameters.

2.2. Model development

Four sophisticated ML models were used to assess aquifer-specific 
flood forecasting ability over several time periods (1–4). These 

comprise two transformer-based architectures, a recurrent neural 
network, and a gradient-boosting baseline. They present a balanced 
evaluation of sequence learning, attention-based forecasting and 
ensemble techniques.

2.2.1. Long short-term memory
The LSTM network is a recurrent neural network that is intended to 

solve the vanishing gradient problem found in ordinary RNNs. Its gated 
structure (input, forget, and output gates) controls information flow, 
allowing for the learning of both short- and long-term dependencies 
(Hochreiter and Schmidhuber, 1997; Khozani et al., 2022). This is 
crucial in hydrology since floods are caused by both rapid rainfall and 
delayed groundwater contribution (Le et al., 2019). LSTM is commonly 
used in rainfall-runoff modelling, groundwater level forecasting, and 
streamflow prediction (Kratzert et al., 2019; Shen, 2018; Ali et al., 
2024). In this work, LSTM serves as a benchmark deep learning model 
for capturing temporal memory in aquifer river interactions. The Sup
plementary Information (S3) contains details of gate equations, opti
miser settings, and training parameters.

2.2.2. Temporal Fusion Transformer (TFT)
The TFT is a hybrid architecture that combines recurrent layers with 

multi-head attention and gating methods to provide interpretable multi- 
horizon forecasting (Lim et al., 2021). Unlike LSTM, TFT may dynami
cally weight inputs using variable selection networks and attention 
heads, delivering information on feature relevance over time. This is 
especially useful for aquifer-specific flood forecasting because the effects 
of rainfall, river levels, and groundwater might vary over time (Ali et al., 
2024). Because of its capacity to simulate nonlinear, non-stationary 
connections, the TFT has performed well in hydrological and environ
mental prediction tasks (Koya and Roy, 2024). Supplementary Infor
mation (S3) contains mathematical formulations of both the attention 
mechanism and gated residual networks.

2.2.3. Informer
The informer is a transformer-based model designed for efficient 

Fig. 1. Thames Basin (Ali et al., 2024).
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Fig. 2. Flood maps i) Chalk aquifer; ii) Greensand; iii) Limestone.
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long-sequence forecasting. It uses ProbSparse self-attention and a 
distillation operation to decrease computing costs (Zhou et al., 2021). 
Informer addresses the scalability constraints of traditional trans
formers, allowing for extended input windows without incurring 
excessive memory needs. This makes it appropriate for hydrological 
applications where long-term rainfall and groundwater dynamics can 
affect river levels. Informer has been used effectively in meteorology, 
renewable energy forecasting, and hydrologic modelling (Tepetidis 
et al., 2024). Supplementary Information (S3) provides technical spe
cifics such as ProbSparse attention equations and architectural 
parameters.

2.2.4. Extreme Gradient Boosting (XGBoost)
Extreme Gradient Boosting (XGBoost) is an ensemble tree-based 

strategy that uses boosting with regularisation to increase prediction 
accuracy whilst avoiding overfitting (Chen and Guestrin, 2016). It has 
become the standard baseline for hydrological modelling due to its 
resilience, speed, and capacity to manage missing variables (Gaffoor 
et al., 2022). Whilst lacking the sequential modelling capabilities of 
neural networks, XGBoost excels on organised tabular data and serves as 
a baseline for assessing the additional value of deep learning ap
proaches. In this work, XGBoost acts as a non-neural comparator, 
allowing us to determine if complicated sequence models significantly 
outperform ensemble baselines. Supplementary Information (S3) 

Fig. 2. (continued).

Fig. 3. A step-wise workflow of the study, showing data sources, preprocessing steps, training process, model development and performance evaluation.
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provides a summary of hyperparameters and implementation settings.

2.3. Training, validation and testing (holdout method)

In this study, a strict holdout validation methodology, created spe
cifically for evaluating predicting accuracy under practical operating 
situations, was used (Cerqueira et al., 2020). Using the holdout 
approach, the dataset is divided into discrete subsets for testing, vali
dation and training. About 85 % of the dataset was used for model 
training and validation, with the remaining 15 % acting as a holdout test 
set. The dataset was divided chronologically into two major sections. For 
time series forecasting tasks, this chronological splitting technique is 
crucial because it keeps data from leaking, maintains the temporal 
integrity of forecasts, and ensures the model assessment takes perfor
mance on completely unknown future data into account (Weytjens and 
De Weerdt, 2021).

Data was further randomly separated inside the first training vali
dation segment, with 85 % of the subset going towards model training 
and the remaining 15 % going towards validation. Model general
isability was improved by explicitly optimising model hyperparameters, 
using early stopping conditions, and avoiding overfitting using a vali
dation subset.

During training, the holdout testing subset (final 15 %) was 
completely isolated and not given exposure to the models. An objective 
assessment of each model's prediction capacity was given via perfor
mance evaluation on the last subgroup, which is essential for deter
mining practical applicability, especially when dealing with different 
hydrological circumstances and forecasting horizons (1–5 days).

Using the holdout method has a number of benefits over other 
strategies, such as k-fold cross-validation. In particular, non-stationary 
hydrological data, where temporal dynamics and sequential de
pendencies are crucial and better suited for a holdout validation strategy 
(Chandel and Ghosh, 2021). It produced more accurate and rationally 
meaningful performance estimates by preventing any data leakage 
through rigorous chronological separation. Thus, the holdout method 
increases confidence in the model's ability to generalise to new data, 
which makes it ideal for Thames Basin flood forecasting scenarios.

2.4. Performance metrics

For popular statistical measures – the Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2), 
and symmetric Mean Absolute percentage error (SMAPE) – were chosen 
to thoroughly emulate the prediction performance of the models utilised 
in this research. Together, these measures offer distinct insight into the 
performance of the model, allowing for a thorough assessment from 
several angles (Chicco et al., 2021; Li et al., 2025). 

MAE =
1
m
∑m

i=1
|Xi − Yi|; (best value = 0,worst value = +∞)

The extent of prediction mistakes was assessed using the Root Mean 
Squared Error (RMSE), which assigns more weight to bigger disparities. 
This is especially important when it comes to flood prediction, since 
major mistakes in estimating peak river levels can greatly impact 
emergency response plans and readiness. The Mean Absolute Error 
(MAE), which averages the absolute discrepancies between projected 
and observed river levels, was also used as a supplementary indicator to 
provide an intuitive grasp of model accuracy. MAE is simpler to grasp in 
practical situations since it handles all mistakes equally, unlike RMSE. It 
can be represented as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1
(Xi − Yi)

2

√

; (best value = 0,worst value = +∞)

To calculate the percentage of observed variability that the models 
could account for, the coefficient of determination (R2) was also 

included. For accurate flood forecasts, R2 shows how well each model 
reflects the general patterns and temporal dynamics of river behaviour. 
It can be calculated as follows: 

R2 = 1 −

∑m

i=1
(Xi − Yi)

2

∑m

i=1
(Y − Yi)

2
; (best value = +1,worst value = − ∞)

Additionally, prediction accuracy was assessed as a relative error 
measure using the Symmetric Mean Absolute Percentage Error 
(SMAPE). SMAPE has the benefit of being scale-independent, which 
allows for efficient comparisons of model performance across various 
river levels, rainfall intensities, and groundwater conditions. It also 
equally accounts for under- and over-predictions. In hydrological fore
casting studies, where measurement scales might differ greatly between 
stations or hydrological conditions, this feature is advantageous. 

SMAPE = 100×mean

(2 ×

⃒
⃒
⃒yprep − ytrue

⃒
⃒
⃒

|ytrue| +

⃒
⃒
⃒yprep

⃒
⃒
⃒

)

;

(

best value

= 0%,worst value = 100% 

Together, these criteria provide a thorough and impartial framework 
for evaluation, enabling in-depth analyses of each model's forecasting 
accuracy, robustness, and dependability over a range of hydrological 
circumstances and forecasting horizons.

3. Results

3.1. Model performance

Model performance was assessed using RMSE, MAE, R2, and SMAPE 
metrics for three aquifer types (Chalk, Limestone, and Greensand) and 
various predicting horizons (1–4 days) (Tables 1, 2, and 3). At shorter 
timeframes (1–2 days), all models performed comparably well for the 
Chalk aquifer (Station 1), with only slight variations in RMSE and MAE 
values (~0.02–0.04). At a 1-day horizon, LSTM performed somewhat 
better than the other models (R2 = 0.80, SMAPE = 5.74 %), with 
Informer (R2 = 0.79, SMAPE = 6.05 %) and TFT (R2 = 0.77, SMAPE =
6.44 %) following closely behind. The performance of XGBoost was 
somewhat worse (R2 = 0.72). All models performed worse over longer 
horizons (3–4 days) (R2 between 0.48 and 0.61), although TFT's per
formance remained more stable, as evidenced by lower SMAPE values 
than Informer and XGBoost.

All models showed remarkable forecast accuracy in the Limestone 
aquifer (Station 2), with extremely low RMSE (0.02–0.04) and MAE 

Table 1 
Station 1.

Aquifer Type Horizon Metrics Models

TFT LSTM Informer XGBoost

Chalk

1

RMSE 0.03 0.03 0.03 0.03
MAE 0.02 0.02 0.02 0.02
R2 0.77 0.80 0.79 0.72
SMAP 6.44 5.74 6.05 6.73

2

RMSE 0.04 0.03 0.04 0.04
MAE 0.03 0.02 0.03 0.03
R2 0.66 0.72 0.70 0.69
SMAP 8.16 6.60 6.89 7.18

3

RMSE 0.04 0.04 0.04 0.04
MAE 0.03 0.03 0.04 0.03
R2 0.61 0.60 0.52 0.54
SMAP 8.53 8.78 9.93 9.23

4

RMSE 0.04 0.04 0.05 0.05
MAE 0.03 0.03 0.04 0.03
R2 0.62 0.62 0.48 0.48
SMAP 7.46 8.19 10.32 10.08
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(0.01–0.02) values across all horizons. High R2 values (≥0.94) demon
strated superior model-to-model prediction ability. With significantly 
lower SMAPE values (1.53–1.64 % at 1-day horizon), TFT and Informer 
performed marginally better than other models at shorter horizons, 
indicating a good model capability to reflect the distinct and responsive 
temporal hydrological processes typical of limestone aquifers.

In contrast to the Chalk and Limestone aquifers, all models showed 
poorer forecasting ability for the Greensand aquifer (Station 3). Partic
ularly at horizons longer than two days, the RMSE and MAE were 
significantly higher (RMSE: 0.06–0.07, MAE: 0.04–0.07) with low or 
negative R2 values. TFT showed negative R2 values (− 0.17) at the 4-day 
horizon, suggesting a significant decline in predictive power. The 
complexity and delayed hydrological response of the Greensand aquifer 
are demonstrated by the difficulties faced by Informer, LSTM, and 
XGBoost, which cast doubt on model predictions over longer time ho
rizons (Shand et al., 2003b). All things considered, the performance 
study showed distinct model and aquifer-specific variations. The ability 
of transformer-based models (TFT and Informer) to capture temporal 
relationships is demonstrated by their higher performance, especially in 
sensitive aquifer settings like Limestone. The worst performance of all 
models in Greensand aquifers, however, points to the necessity of 
further modifying modelling techniques to better account for the slower 
and less responsive hydrological interactions that are characteristic of 
these geological environments. These comparison results show that, 
especially over longer time horizons, transformer-based models are 
consistently more resilient than ensemble techniques. When long-term 

dependencies were needed for delayed aquifer responses, XGBoost 
performed poorly, but LSTM demonstrated lasting utility as a sequential 
baseline. This demonstrates that rather than being presumed to be 
generally transferable, model design needs to be adapted to hydrological 
settings.

The comparison findings show distinct variations among aquifer 
types and between model designs. XGBoost was regularly outperformed 
by TFT and Informer, especially in areas with quick groundwater-river 
reactions. In the Limestone aquifer, for instance, TFT obtained R2 

values of 0.98 as opposed to 0.93 for XGBoost, highlighting the impor
tance of attention processes in identifying transient hydrological cor
relations. Additionally, LSTM performed well, confirming its proven 
dependability for sequential hydrological data. However, XGBoost per
formed poorly in situations when long-term dependencies were neces
sary due to delayed aquifer responses, underscoring the limitations of 
tree-based methods in this regard.

3.2. Aquifer-specific performance

Model performance in Chalk, Limestone, and Greensand aquifers was 
compared, revealing significant variation that was mostly driven by the 
hydrogeological characteristics and groundwater-river interactions 
particular to each aquifer type. Even over longer forecasting horizons, 
the limestone aquifer (station 2) showed the highest overall model 
performance out of the three aquifer types, with RMSE values consis
tently as low as 0.02 and usually high R2 values (~0.95–0.99) across all 
models (Table 2). Notably, this aquifer's historical data spanned the 
longest time of the three other stations, from April 2011 to January 
2025. The prolonged time series most likely contributed significantly to 
model performance by providing adequate historical variability, such as 
several seasonal cycles and hydrologic extremes. These consistently 
correct predictions imply that limestone aquifers have quick and distinct 
groundwater-river interaction, which makes it possible for models, 
especially TFT and informer, to efficiently learn different temporal 
patterns (Oberhelman et al., 2024). Generally speaking, limestone 
aquifers exhibit very high permeability and quick groundwater 
recharge, which causes quick and noticeable changes in river levels after 
rainfall events (Neumann et al., 2003). This clarity in response makes 
accurate forecasts easier, due to hydrological processes that are pre
dictable and simple to represent within the temporal framework of 
transformer-based models.

On the other hand, the greensand aquifer (station 3) showed 
noticeably worse predictive ability in all models, with considerably 
lower or negative R2 values and higher RMSE and MAE values, espe
cially at longer forecasting horizons (3–4 days). Despite a large historical 
dataset (April 2011 to April 2024) equivalent in duration to the Lime
stone aquifer, the Greensand aquifers have slower groundwater circu
lation and longer groundwater storage. Since this aquifer has a large 
storage capacity and delayed groundwater reaction, the poor perfor
mance suggests significant uncertainty and low prediction ability. These 
traits result in diffuse, delayed groundwater-river interactions, which 
makes it more difficult for models to predict changes in river level 
effectively, particularly when they depend mostly on short-term input 
features. These findings support a crucial finding: to improve predictive 
accuracy in hydrologically complex aquifers, standard temporal 
modelling techniques – even sophisticated ones like TFT and Informer – 
may need considerable modifications or extra data (like longer historical 
groundwater series or soil moisture data).

The chalk aquifer (station 1) performed at the middle levels. The 
historical data ranged from April 2011 to January 2024, offering a large 
dataset, slightly shorter than that of the Limestone aquifer. Models 
performed well for shorter predicting horizons (1–2 days) (R2: 
0.77–0.80). However, predicted accuracy fell considerably for time 
horizons longer than 2 days. Because of their high permeability, chalk 
aquifers often have reasonably fast groundwater-river interactions, 
although these interactions can be nuanced and complicated over time 

Table 2 
Station 2.

Aquifer Type Horizon Metrics Models

TFT LSTM Informer XGBoost

Limestone

1

RMSE 0.02 0.02 0.02 0.02
MAE 0.01 0.01 0.01 0.01
R2 0.99 0.99 0.99 0.99
SMAP 1.64 1.82 1.53 1.56

2

RMSE 0.03 0.03 0.03 0.03
MAE 0.02 0.01 0.0.02 0.01
R2 0.97 0.98 0.98 0.98
SMAP 2.83 2.38 2.57 2.05

3

RMSE 0.03 0.03 0.04 0.03
MAE 0.02 0.02 0.03 0.02
R2 0.97 0.97 0.95 0.97
SMAP 2.74 2.80 5.33 2.72

4

RMSE 0.04 0.04 0.05 0.04
MAE 0.02 0.02 0.03 0.02
R2 0.95 0.96 0.94 0.95
SMAP 3.54 3.38 4.24 3.33

Table 3 
Station 3.

Aquifer Type Horizon Metrics Models

TFT LSTM Informer XGBoost

Greensand

1

RMSE 0.06 0.06 0.06 0.06
MAE 0.06 0.04 0.04 0.04
R2 0.15 0.19 0.19 0.10
SMAP 6.02 5.60 5.86 6.09

2

RMSE 0.06 0.07 0.08 0.06
MAE 0.04 0.04 0.06 0.04
R2 0.06 0.02 − 0.33 0.11
SMAP 6.55 6.63 8.57 6.06

3

RMSE 0.07 0.07 0.04 0.07
MAE 0.04 0.03 0.05 0.04
R2 0.00 0.05 − 0.09 0.05
SMAP 6.91 6.29 7.04 6.20

4

RMSE 0.07 0.07 0.07 0.07
MAE 0.05 0.04 0.04 0.04
R2 − 0.17 0.00 − 0.03 0.02
SMAP 7.30 6.52 6.83 6.33
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(MacDonald and Allen, 2001; Ali et al., 2024). The intermediate dataset 
length, whilst substantial, may not completely reflect all complexities or 
long-term trends found in chalk aquifers, particularly under changing 
climatic conditions or major hydrological events, resulting in lower 
forecasting accuracy at longer time horizons.

The aquifer-specific research revealed important insights into flood 
predictions. First, the duration of historical datasets has a considerable 
impact on model accuracy, particularly for aquifers with distinct 
groundwater-river interactions (Limestones). Second, for aquifers with 
slow or diffuse groundwater reactions (Greensand), more historical data 
alone may not be enough; instead, specialised modelling techniques or 
hybrid approaches may be required. Finally, even aquifers with typically 
responsive groundwater dynamics, such as Chalk, may require longer or 
more extensive datasets to adequately capture complicated temporal 
patterns that influence long-term forecasting accuracy. This research 
significantly supports aquifer-specific forecasting methodologies, 
emphasising the importance of explicitly considering both hydrological 
qualities and dataset characteristics in future model development and 
flood risk management approaches.

These results complement the larger body of research on ML in flood 
forecasting, but they also go beyond it. Physical realism has been 
enhanced by recent developments, including surrogate modelling 
(Donnelly et al., 2022) and physics-informed neural networks (Donnelly 
et al., 2024). However, the majority of these studies concentrate on 
hydrological processes at the surface and hardly ever take aquifer- 
specific responses into account. Our findings show that predicting 
capability is highly influenced by the geological environment in addi
tion to algorithmic design. Even the most sophisticated models can 
become useless if delayed subsurface processes are ignored, as evi
denced by the extremely low performance seen in the Greensand aquifer 
(R2 ≤ 0).

3.3. Actual vs predicted

Fig. 4 supplies the visual comparison between the actual and pre
dicted river levels for the chalk aquifer at forecasting horizons of 1 and 2 
days using the Informer, LSTM, TFT and XGBoost models. These charts 
show the effects of longer prediction horizons and offer comprehensive 
insights into the forecasting capabilities and shortcomings of each 
model. At a 1-day horizon, numerical metrics in the (R2 = 0.79 and 0.80, 
respectively) showed that both the Informer and LSTM models per
formed marginally better at the 1-day horizon, properly capturing river 
level oscillations and closely matching actual peaks and troughs. Minor 
but significant discrepancies in recording severe flow events were 
evident in the informer and LSTM models, which performed marginally 
better at the 1-day horizon, properly capturing river-level oscillations 
and closely matching actual peaks and troughs. Minor but significant 
discrepancies in recording severe flow events were evident in the in
former's occasional modest overestimations during mild peaks and 
LSTM's slight underestimations of certain greater peaks.

The TFT model produced visually solid predictions that closely 
mirrored real river-level patterns with few variations, although quanti
tatively lagging behind LSTM and Informer (R2 = 0.77). Although it is 
not numerically more accurate than LSTM or Informer, its performance 
at this horizon highlights its capacity to model short-term oscillations 
adequately. The XGBoost model, on the other hand, performed notice
ably worse at the 1-day horizon, especially during peak-flow occasions, 
where it consistently and obviously underestimated. Despite the 
computational benefits, a significant drawback of simpler, tree-based 
approaches for short-term flood forecasting was their inability to cap
ture short-term river-level peaks reliably.

At 2-day predicting horizons, all models showed decreased accuracy 
compared to the shorter horizons, indicating growing uncertainty. In 
terms of quantitative performance, the LSTM model performed best 

Fig. 4. Horizons 1 and 2 in the Chalk aquifer.
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overall (R2 = 0.72), closely followed by Informer (R2 = 0.70). Both 
models successfully captured significant temporal patterns, but they 
revealed more deviations, especially during higher peak flows. At this 
longer horizon, the informer's propensity for modest overestimations 
becomes more noticeable.

In comparison to LSTM and Informer, the TFT model demonstrated 
somewhat lower quantitative accuracy at the 2-day horizon (R2 = 0.66). 
Visually, TFT was still able to follow the overall temporal pattern suc
cessfully, but small deviations from actual values became more 
apparent, underscoring the difficulties that come with large predicting 
intervals. Compared to its 1-day performance, the XGBoost model 
showed somewhat better stability over the 2-day horizon; nonetheless, 
significant underestimations during peak events persisted. This dem
onstrates the continued inability of the more straightforward ensemble 
technique to capture intricate temporal dynamics that are essential to 
precise flood prediction.

When compared to more straightforward tree-based techniques like 
XGBoost, transformer-based models (Informer LSTM, and TFT) consis
tently showed greater predictive capacity. Although TFT maintained its 
visual reliability across horizons despite somewhat lower quantitative 
measures, LSTM and Informer demonstrated superior numerical accu
racy at shorter horizons. The obvious decrease in prediction accuracy 
with longer forecast horizons highlights the need for models that can 
effectively manage uncertainty in flood forecasting situations.

The TFT model had the best overall accuracy at the 3-day horizon, 
with an R2 value of 0.61. The LSTM model had a strong predictive 
performance (R2 = 0.60). Both models correctly reproduced the 
fundamental river-level variations and temporal patterns, while minor 
differences, notably in reliably anticipating peak magnitudes and 
timing, grew when compared to shorter forecasting periods. The 
Informer model's accuracy decreased (R2 = 0.52), resulting in 

overestimations during peak river-level occurrences. The XGBoost 
model struggled to accurately capture complicated hydrological pro
cesses over long time periods (R2 = 0.54), frequently underestimating 
peaks (Fig. 5).

At the 4-day horizon, the TFT and LSTM models had the best pre
diction accuracy, with R2 values of 0.62. While both models showed 
greater departures from real river levels than shorter periods, they 
nonetheless accurately reflected broad hydrological trends. Specifically, 
LSTM performed admirably, while variations at peak flow magnitudes 
were more noticeable. TFT produced similarly accurate overall fore
casts, but with significantly higher fluctuation in peak and trough 
magnitudes than shorter horizons. Informer and XGBoost saw consid
erable performance declines at the 4-day horizon, with R2 values of 0.48. 
Informer routinely overestimated river peaks, whilst XGBoost constantly 
showed instability and significant underestimations, highlighting their 
shortcomings in modelling long-term temporal dynamics.

Overall, examining model performance over horizons ranging from 
1-day to 4-day predictions demonstrates a steady and progressive 
decrease in prediction accuracy as forecast intervals get longer. 
Transformer-based models (Informer and TFT) and the LSTM out
performed XGBoost in terms of sustaining performance levels over time. 
Nonetheless, the overall fall in accuracy highlights the complexities of 
long-term hydrological forecasting. Thus, for operational flood fore
casting in Chalk aquifer contexts, TFT and LSTM models are particularly 
recommended due to their demonstrated robustness over longer time 
horizons, with potential accuracy gains achievable through improved 
modelling strategies or the incorporation of additional hydrological 
data.

Fig. 6 assesses and compares the performance of the Informer, LSTM, 
TFT and XGBoost models for the Greensand aquifer at 1- and 2-day 
forecasting horizons, using both quantitative measures and visual 

Fig. 5. Horizons 3 and 4 in the Chalk aquifer.
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forecasts. All models had low R2 values at the 1-day horizons as shown in 
Table 3, ranging from 0.10 (XGBoost) to 0.19 (LSTM and Informer), 
indicating inadequate forecasting accuracy. This is seen graphically by 
the notable variations in peak and trough prediction across all models in 
Fig. 6. Even though there were significant errors in peak magnitudes, the 
LSTM and Informer models outperformed TFT and XGBoost in terms of 
timing some river-level fluctuations. Significant limits were shown by 
the TFT model (R2 = 0.15), which consistently underestimated peaks 
and was unable to describe abrupt changes adequately. The least accu
rate model (R2 = 10), XGBoost, continuously underestimated peak river 
levels, demonstrating its incapacity to manage the more intricate 
groundwater-river interactions seen in the Greensand aquifer. Due to the 
complicated and slow groundwater reaction that results in less pre
dictable surface water interactions, aquifers such as greensand are 
challenging to simulate for river dynamics (Shand et al., 2003b), as seen 
by their comparatively poor performance measures.

For the majority of models, predicted accuracy further decreased at 
the 2-day forecasting horizons. Despite maintaining a very low overall 
accuracy, the LSTM remained somewhat steady and achieved the 
greatest R2 value (0.06). In terms of catching peak flows, LSTM forecasts 
show consistent but marginally higher errors as seen in Fig. 6. The TFT 
model struggled with peak and trough prediction, which maintained 
poor accuracy (R2 = 0.06). Due to significant peak misalignment, severe 
prediction errors, and consistent overestimation or underestimation, the 
Informer's accuracy significantly decreases (R2 = -0.33). Significant 
challenges in modelling temporal dynamics at this horizon are high
lighted by the negative R2 values, which show performance below a 
simple average forecast. With its continued severe peak underestimation 
and minimal predictive improvement, XGBoost continued to perform 
quite poorly (R2 = 0.06).

Overall, compared to the Chalk aquifer, the Greensand aquifer re
sults at the 1-day and 2-day horizons clearly show significant modelling 

challenges. This is primarily because of the unique hydrological char
acteristics of greensand, which include complex surface-subsurface in
teractions and slower groundwater responses. Peak forecasts were 
significantly difficult for all models, indicating that more complex 
modelling techniques or more data sources are needed to capture 
groundwater-river interactions in detail. Out of all the models that were 
examined, the LSTM had somewhat higher, but restricted, accuracy 
across these short horizons. Informer came in second at the 1-day ho
rizon. Due to inherent aquifer-specific complexity, transformer-based 
models did not significantly outperform simpler models in this case, 
despite their potential advantage in capturing complicated temporal 
dynamics. Future model improvements could be on using models that 
are especially tailored to the particular groundwater dynamics of 
greensand-type aquifer or on integrating more comprehensive hydro
logical data.

Fig. 7 shows the capacity of the models to estimate Greensand 
aquifer river levels during extended prediction intervals of three and 
four days. Due to its large storage capacity and delayed river- 
groundwater interactions, which become more noticeable over longer 
horizons, the Greensand system poses unique hydrological issues. 
Although it was still low, the LSTM model had the greatest R2 value 
(0.05) at the 3-day horizon, suggesting only limited explanatory ability. 
However, with a negative R2 (− 0.09), the Informer model did not 
perform well, indicating that it was unable to acquire meaningful tem
poral characteristics under the growing uncertainty that comes with 
longer forecasts in this aquifer. TFT likewise had trouble, providing no 
discernible improvement over the basic baseline (R2 = 0.00).

All of the models were unable to precisely match the real river-level 
peaks and troughs, which were evident in Fig. 7. With an R2 of 0.05, 
XGBoost equalled LSTM despite having a simpler structure and exhibi
ted somewhat more consistent trend-following behaviour. SMAPE 
values (<6) were elevated in all models, nevertheless, suggesting that 

Fig. 6. Horizons 1 and 2 in the Greensand aquifer.
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relative error increased with flow conditions. Interpretability was 
negatively impacted by frequent noise and peak misplacement, which 
were specifically introduced by Informer.

By a 4-day horizon, all model performance further declined, with a 
very negative R2 value of − 0.17; the TFT model proved unable to cap
ture even the most fundamental river-level patterns in Greensand over a 
long period of time. During critical peak moments, the Informer model 
(R2 = -0.03) displayed chaotic predictions that deviated from the actual 
flow profiles, continuing its dismal performance. In accordance with its 
continual reduction over time, LSTM's R2 fell to 0.00. Its utility was 
restricted at this range by its inability to mimic fluctuations and ex
tremes, even if its visual output still roughly mirrored the overall di
rection of river level as seen in Fig. 7. XGBoost's usefulness for practical 
flood forecasting was diminished since it continued to underestimate 
peak and over-smooth the signal, whilst being comparatively more 
stable (R2 = 0.07). The SMAPE increased to 6.3–7.3 for all models, 
suggesting significant distortion in the predictions. This was verified 
visually, since there were significant discrepancies between the lines 
that were seen and those that were projected during times of hydro
logical activity.

The Greensand aquifer's 3-day and 4-day forecasting horizons 
demonstrated that this setting offers the most predictive difficulty 
among the three aquifer types. Regardless of architecture, the models 
did not generalise successfully. Greensand's groundwater movement is 
slow and diffuse, which probably reduces the accuracy of surface-level 
indicators like rainfall or river levels (Shand et al., 2003b). In contrast 
to transformer-based models (TFT and Informer), which seem to need 
deeper temporal signals than greensand systems can provide within the 

observed characteristics, LSTM and XGBoost were comparatively more 
consistent and stable, despite their overall poor performance. Specif
ically, Informer was extremely sensitive to horizon extension, displaying 
unpredictable or overfitting results after one day. To enhance perfor
mance in slower aquifer systems like greensand, our results emphasise 
the need for aquifer-specific model selection and maybe the incorpora
tion of extra variables (such as soil moisture, baseflow indices, or 
groundwater recession rate).

In the Limestone aquifer, all models demonstrated consistently high 
prediction performance, especially at the 1-day and 2-day timeframes. 
Because of its sensitive and well-drained characteristics, which provide a 
more distinct link between hydrological inputs (such as rainfall and 
groundwater levels) and river level output, this aquifer type demon
strated the best accuracy across all stations.

All models performed almost perfectly at the 1-day horizon with R2 

values of 0.099, as shown in Table 2 for each model. This suggests a 
system with a limited horizon that is quite predictable. Compared to 
other models, the Informer model was the most accurate, as seen by its 
lowest SMAPE (1.53). With SMAPE ratings of 1.64 and 1.56, respec
tively, TFT and XGBoost were in close pursuit, whilst LSTM lagged 
somewhat (SMAPE = 1.82), but it was still achieving very good results. 
All models closely followed the real peak and trough of the river level, 
with very little variance, based on the visual charts. Excellent fit and 
little lag were shown by the Informer and XGBoost models' very seamless 
alignment with the observed data. TFT likewise matched the river dy
namics nicely, although at strong peaks, it responded a little more 
rounded, perhaps because of its multi-head attention smoothing func
tion. LSTM demonstrated slight delays in capturing certain peak 

Fig. 7. Horizons 2 and 3 in the Greensand aquifer.
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occurrences, despite their perceived similarity.
Even though there were minor accuracy declines, all models 

continue to perform well at the 2-day forecast horizon, as shown in 
Fig. 8. Despite the increased uncertainty of making a prediction two days 
in advance, R2 values stayed high, ranging from 0.97 to 0.98, indicating 
robust model generalisation. With the lowest SMAPE of 2.38 and an R2 

of 0.98, LSTM dominated the field and demonstrated exceptional con
sistency in monitoring river-level variations. Additionally, XGBoost 
demonstrated its ability to capture structured patterns in high-quality, 
well-behaved datasets such as this one by performing well (R2 = 0.98, 
SMAPE = 2.05).

When compared to its 1-day horizon output, Informer showed a 
slightly higher propensity to overpredict high peaks, but it still produced 
solid predictions with R2 = 0.89 and SMAPE = 2.57. TFT reported a high 
SMAPE (2.83), indicating a somewhat increased sensitivity to shifting 
dynamics over longer periods, even if it was still operating well (R2 =

0.97). These measurements are supported by the plots, which continue 
to demonstrate extremely tight alignment between LSTM and XGBoost 
and real values, particularly around increasing limbs of hydrographs. 
Although TFT and Informer maintained solid timing, they may have 
overestimated some low-flow sectors because of their deeper temporal 
designs' reliance on lag patterns.

At 1- and 2-day timeframes, the limestone aquifer demonstrated 
remarkable predictability with all four models operating at or close to 
ideal levels. Even basic models like XGBoost performed well because of 
the close correlation between input characteristics and river levels, 
which was probably caused by the aquifer's moderate permeability and 
steady hydrological behaviour (Thakkar and Lohiya, 2022).

Fig. 9 assesses the performance of the Informer, TFT, LSTM, and 
XGBoost models for the Limestone aquifer across extended forecasting 
horizons of 3 and 4 days. This aquifer provides ideal circumstances for 

precise long-term forecasting due to its quick and direct groundwater- 
surface water interactions (Oubagaranadin et al., 2007). All four 
models showed consistently good predicted accuracy at the 3-day ho
rizon. With an R2 of 0.97, both the TFT and LSTM models were in the 
lead and had a very high capacity for explanation. Especially when it 
comes to capturing critical hydrological peaks, their low SMAPE values 
(2.74 and 2.80, respectively) demonstrate precise alignment with actual 
river-level changes. With very slight variations at peak flows, the figures 
demonstrate how TFT and LSTM closely reflect the observed river 
patterns.

Equally well, XGBoost generated predictions that closely matched 
the observed values (R2 = 0.97). Although it occasionally under
estimated peak magnitudes, its more straightforward structure was 
adequate in the Limestone environment and successfully captured peak 
dynamics. At this horizon, the informer model's accuracy was somewhat 
lower (R2 = 0.95), and its SMAPE significantly increased to 5.33, sug
gesting more relative mistakes. Despite having adequate timeless for 
detecting river-level changes, informer visually exaggerated peak mag
nitudes, especially around significant hydrological events, indicating 
sensitivity to prolonged horizons.

Overall predictive quality remained quite good, although model 
accuracy started to exhibit mild reductions at the 4-day horizon. TFT, 
LSTM, and XGBoost all exhibited robust performance (R2 = 0.96), sug
gesting reliable forecasts despite longer lead periods. Even across 
extended forecasting horizons, LSTM consistently shows its capacity to 
capture complex temporal dynamics by achieving the lowest SMAPE 
(3,38). Even whilst TFT was still quite accurate (SMAPE = 3.54), it 
showed more flattering peaks and troughs, which indicated that it was 
challenging to capture abrupt changes over a long period of time 
adequately.

In constant hydrological circumstances, such as those seen in 

Fig. 8. Horizons 1 and 2 in the Limestone aquifer.
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limestone aquifers, XGBoost demonstrated exceptional efficacy by 
maintaining competitive performance (SMAPE 3.33). Its forecasts 
showed little latency and accurately captured notable peaks and 
troughs, nearly matching real river levels. On the other hand, the 
Informer model showed a more significant decline in performance (R2 =

94, SMAPE = 4.24 %), which was especially noticeable in over
estimations during high flow and significant departures during low flow. 
Informer's decreased accuracy shows the model's susceptibility to cu
mulative prediction mistakes over this extended horizon.

Overall, because of its hydrological features that encourage quick 
groundwater river interactions, the limestone aquifer enabled 
outstanding model performance even at longer horizons. The TFT and 
LSTM models performed better in managing more prediction uncer
tainty over longer time horizons. In highly predictable aquifer systems, 
complicated models may not necessarily deliver considerable gains, as 
demonstrated by XGBoost, which offered a simpler but equally reliable 
option. Informer showed decreased stability as forecasting intervals 
grew, although it was robust at shorter horizons. This suggests that it 
should not be used for longer-term operational forecasting unless it is 
better calibrated or backed by additional data sources.

This study's integration of aquifer-specific characteristics into a 
comparative ML framework represents a significant methodological 
advancement. Our method specifically takes into account groundwater- 
river interactions across several aquifers, in contrast to previous flood 
forecasting studies that frequently consider catchments as homogenous 
entities. This is the first proof that ML performance in flood forecasting is 
consistently aquifer-dependent that we are aware of. Therefore, this 
methodology goes beyond algorithmic benchmarking to show how 
forecast reliability is governed by geological variability.

3.4. Aquifer-specific interactions

The heat map in Fig. 10 outlines the essential requirement for 
aquifer-specific approaches to flood prediction modelling, which shows 
different groundwater-river interactions and rainfall effects within the 
three aquifer types: limestone, chalk, and greensand.

The Limestone aquifer showed a strong positive correlation (r =
0.84) between groundwater and river levels, due to its karstic nature, 
which is marked by high permeability and quick groundwater transfer 
(Ali et al., 2024). These circumstances allow for rapid groundwater 
recharge and release, which has a major effect on river levels nearly 
immediately after groundwater variations. Rainfall showed a poor as
sociation (r = 0.067), suggesting that groundwater dynamics, rather 
than direct rainfall-runoff reactions, are the primary cause of river level 
fluctuation. This explains why models, particularly transformer-based 
models (TFT and Informer) and LSTM, which effectively take advan
tage of the strong groundwater-river link to predict river dynamics, 
consistently have higher prediction accuracy.

The Chalk aquifer has a moderate correlation (r = 0.26) between 
groundwater and river levels. Compared to limestone, this mild associ
ation suggests that groundwater contributions to river flow are less 
immediate or strong, but still significant. Rainfall showed an even less 
correlation (r = 0.12) with river levels, indicating that other hydrolog
ical processes, such as storage capacity and delayed reactions within the 
aquifer, may complicate groundwater dynamics, even though it is 
relatively influential. Over the course of the forecasting horizons, these 
dynamics led to moderately varied model results. Due to their ability to 
capture subtle interactions over extended time periods, transformer- 
based models and LSTM continued to perform better than more 

Fig. 9. Horizons 3 and 4 in the Limestone aquifer.
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straightforward models like XGBoost.
Moreover, in the Limestone aquifer, a weak negative association (r =

− 0.14) between river levels and groundwater in the Greensand aquifer. 
This negative association points to more intricate hydrological processes 
that may involve substantial groundwater storage and delayed release, 
which might mitigate or even reverse immediate river-level changes. 
Rainfall and river levels showed a weak connection (r = 0.032), high
lighting the rainfall's limited direct impact and making flood forecasting 
in the Greensand aquifer even more challenging. Significant difficulties 
in effectively modelling flood dynamics are highlighted by the intricacy 
and indirect interactions in Greensand environments, which resulted in 
noticeably reduced forecast accuracy across all models and horizons.

These results highlight the need to modify flood prediction tech
niques to account for particular aquifer properties. Since groundwater- 
river interactions occur quickly in limestone aquifers, developed 
models that appropriately take advantage of these robust linkages are 
obviously beneficial. Models incorporating extra hydrological variables 
or extensive historical data may benefit chalk aquifers, which need 

careful consideration of somewhat delayed groundwater interactions. 
On the other hand, Greensand aquifers present considerable forecasting 
difficulties, which may necessitate integrated modelling techniques that 
account for intricate, delayed groundwater interactions. Enhancing 
flood risk management frameworks' prediction accuracy and depend
ability requires this aquifer-specific knowledge.

3.5. Implications for flood risk management

The study's conclusions have significant applications in improving 
flood early warning systems, especially when using cutting-edge ma
chine learning algorithms. The significant variation between the three 
stations highlights the vital need for aquifer-specific modelling tech
niques to forecast flood occurrences precisely. Specifically, transformer- 
based models (TFT and Informer) and LSTM revealed higher prediction 
ability, successfully capturing complicated groundwater-river in
teractions and temporal hydrological patterns. Particularly in regions 
with quick groundwater-river exchange, like limestone aquifers, the 

Fig. 10. Heat map of all aquifers.
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integration of these sophisticated models into current flood forecasting 
frameworks could greatly enhance early warnings, offering increased 
dependability and earlier lead times.

Moreover, the demonstrated capability of these sophisticated models 
to sustain accurate forecasts across many forecasting horizons makes 
them particularly ideal for practical usage, enabling flood control au
thorities to take pre-emptive actions several days in advance. This ca
pacity is extremely useful since it enables quicker evacuation planning, 
focused resource allocation, and more educated reactions during flood 
disasters. Traditional or simpler models, such as XGBoost, whilst 
computationally efficient, demonstrated limitations in dealing with 
complex hydrological interactions, implying that advanced deep 
learning models are a better choice for operational flood forecasting.

Furthermore, by continually updating projections as new data be
comes available, incorporating these predictive models into already- 
existing flood management systems might improve their responsive
ness. Real-time forecasting using transformer-based models and LSTM 
might considerably increase preparation, decrease flood-related dam
age, and enhance public safety, particularly in high-risk zones charac
terised by aquifer-specific features. This work emphasises not only the 
predictive power of these sophisticated model but also their practicality 
and relevance in real-world flood risk management scenarios, opening 
the way for more robust and adaptable flood control systems.

Planning for resilience and flood control is directly impacted by the 
findings. With models achieving very high accuracy (R2 > 0.98) in 
limestone aquifers, predictions can provide accurate short-range flood 
warnings. Chalk aquifers are more appropriate for preparation planning 
with thorough uncertainty communication because of their moderate 
predictability (R2 = 0.77–0.80). In contrast, the Greensand aquifer's 
weak performance indicates the necessity for adaptive measures, such as 
hybrid modelling or improved monitoring, to prevent an over-reliance 
on ML predictions. These unique perspectives suggest the creation of a 
flood resilience framework that takes into account aquifers and matches 
forecasting capabilities with regional hydrological reality. This study 
offers an aquifer-aware framework that can be immediately used by 
organisations like the Environment Agency for customised flood man
agement by clearly connecting the geological setting to model 
dependability.

4. Summary and conclusions

Using cutting-edge machine learning methods, to the best of the 
authors' knowledge, this work offers the first aquifer-specific, multi- 
horizon comparative investigation of flood forecasting in the Thames 
Basin. Through the explicit incorporation of groundwater-river in
teractions into the forecasting framework, we show that aquifer type has 
a significant impact on prediction. Dependability. This methodological 
contribution emphasises the significance of geological context in ma
chine learning flood prediction, going beyond algorithmic 
benchmarking.

The findings demonstrated that transformer-based models (TFT and 
Informer) consistently performed better than XGBoost and LSTM, with 
intermediate skill in chalk (R2 ≈ 0.77–0.80) and perfect accuracy in 
limestone aquifers (R2 > 0.98). The efficacy of existing machine learning 
techniques is limited by delayed subsurface reactions, as seen by the 
poor performance in Greensand aquifers (R2 < 0). The novel insight that 
geological variability is a key factor in prediction robustness is added by 
these findings, which also support recent developments in physics- 
informed and hybrid models. This study emphasises the value of 
aquifer-specific modelling techniques, reaffirming that broad modelling 
approaches cannot handle the complexity of hydrological forecasting in 
various geological contexts. Future studies should improve these models 
even further, including more hydrological variables, and investigate 
hybrid or ensemble modelling techniques to deal with the inherent un
certainties found, especially in intricate environments like Greensand 
aquifers.

The study's limitations include its sole use of continuous forecasting 
without hybrid or physics-informed limits, its dependence on daily 
aggregated data, and its single-region emphasis. Future studies should 
investigate hybrid data-process frameworks, higher-resolution moni
toring networks, and physics-informed machine learning techniques. 
They should also test the framework in a variety of hydrogeological 
environments. Notwithstanding these drawbacks, the architecture 
described here is obviously applicable to various aquifer-controlled 
basins around the globe. Water managers and organisations like the 
Environment Agency may create more dependable flood resilience plans 
that consider aquifers by customising flood forecasting techniques to the 
geological environment.
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