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ABSTRACT Eco-driving research has grown significantly over the past decade, increasingly incorporating
real-world traffic and road conditions such as road gradients, lane changes, and queue effects. However,
most existing studies that account for queue effects are limited to single-lane scenarios, without considering
lane-merging disturbances, and can only estimate queue length or discharge time within restricted regions. To
address these limitations, this paper proposes a novel deep reinforcement learning (DRL) based eco-driving
algorithm that simultaneously considers on-the-fly queue dissipation time estimation and lane-merging
disturbances. The approach integrates a practical and cost-effective navigation-app-based traffic data shar-
ing framework with a data-driven dissipation time estimation model, enabling the reinforcement learning
agent to continuously receive accurate modified reference speeds that reflect both queueing and merging
vehicle effects. Five comprehensive case studies, benchmarked against conventional and state-of-the-art
eco-driving methods, were conducted to evaluate the effectiveness of the proposed approach. Simulation
results demonstrate that the proposed method consistently achieves the best energy performance across all
scenarios, reducing energy consumption by an average of 37.5% compared with the Intelligent Driver Model
(IDM) baseline.

INDEX TERMS Eco-driving, dissipation time estimation, connected vehicle, deep reinforcement learning,
deep learning.

NOMENCLATURE

Symbols and acronyms
At Action space of DRL-based eco-driving.
a Action of the Twin Delayed Deep Determin-

istic (TD3) model.
a1, a2, a3, a4 Weighting factors in the reward function.
at Action of DRL-based eco-driving
aIDM Acceleration provided by IDM. (m/s2)
alea Acceleration of the last leading vehicle.

(m/s2)

-c, c Action space limits of TD3 model.
De2s Distance from ego-vehicle to signalized in-

tersection. (m)
De2l Distance from ego-vehicle to the last leading

vehicle. (m)
Dl2s Distance from the last leading vehicle to the

signalized intersection. (m)
Ebat Instantaneous electricity consumed by the

battery pack. (W )
i Index of Q-value functions of TD3 model.
L Loss function of the TD3 model.
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N Number of leading vehicles.
n Index of leading vehicles.
Posm Position of surrounding vehicle m. (m)
r Instant reward of TD3 model.
Qθ1 and Qθ2 Q-value functions of TD3 model.
Rt Reward function of DRL agent
Rre f Reward function of modified reference

speed.
Rene Reward function of energy consumption.
Rsa f Reward function of safety.
Re f f Reward function of traffic efficiency.
St State space of the DRL agent.
s, s′ Current state and the next state of TD3

model.
trem Remaining time of current phase. (s)
tg Duration of green phase. (s)
tl2t Dissipation time of the last leading vehicle.

(s)
tcur Current time step. (s)
tpas Time step of the last leading vehicle pass

signalized intersection. (s)
trem2g Remaining time until the next green phase.

(s)
Vlim Speed limit. (m/s)
Vave Average speed of leading vehicles. (m/s)
Vlea Speed of the last leading vehicle. (m/s)
Vmax, Vmin Maximum and minimum reference speed,

respectively. (m/s)
Vmax

mod
, Vmin

mod
Modified maximum and minimum reference

speed, respectively. (m/s)
Vm Speed of surrounding vehicle m. (m/s)
Vn Speed of leading vehicle n. (m/s)
Vt Ego-vehicle speed. (m/s)
VehIDm Vehicle ID of surrounding vehicle m.
y Target Q value of the TD3 model.
β1, β2 Cut-of points.
γ Discount factor in the TD3 model.
w1,w2 Weighting coefficients in the multi-objective

function of eco-driving.
θ ′, ∅′ Parameters of target networks of TD3 model.
μ Policy of TD3 model.

I. INTRODUCTION
Driven by concerns over the gradual depletion of fossil en-
ergy and greenhouse gas emissions, electric vehicle (EVs)
are progressively replacing traditional gasoline or diesel cars,
becoming the dominant force in the vehicle market. Numerous
countries, such as the United States, the United Kingdom,
China, and other nations in Europe, have developed various
strategies and dedicated substantial funding to encourage the
widespread adoption of electric vehicles [1], [2]. Currently,
with battery technology yet to mature, range anxiety remains
a significant barrier to the widespread acceptance of electric
vehicles [3]. In recent years, eco-driving, a technology aimed

at enhancing vehicle energy efficiency and lowering emis-
sions, has attracted widespread interest and been extensively
researched within the electric vehicle sector [4]. Galvin et al.
[5] conducted EVs in relation to their acceleration and speed
across eight common models on the market. The findings
revealed that the optimal operating speed for electric vehicles
ranges between 43.26 km/h to 60 km/h, with a preference for
lower acceleration levels. Utilizing this principle, eco-driving
strategies plan speed trajectories for EVs and avoid needless
halts and idling [6], [7].

Eco-driving can be categorized into two scenarios: high-
way eco-driving and urban eco-driving. Highway eco-driving
primarily focuses on maintaining a steady headway dis-
tance from the vehicle ahead to save energy [8], [9], [10],
which is relatively straightforward. Urban eco-driving, on
the other hand, involves not only considering car-following
behavior but also taking into account the signal phase
and timing (SPaT) information at signalized intersections
[11], [12], [13], [14], [15]. Initial research indicates that
the eco-driving method can achieve approximately a 40%
energy savings compared to cruise control when consid-
ering SPaT information [16]. This approach aims to en-
able EVs to smoothly pass through signalized intersec-
tions without idling, thereby saving energy while ensuring
traffic efficiency, so that eco-driving at signalized inter-
sections are also known as eco-approach and departure
(EAD) [17]. Meanwhile, numerous advanced studies have
jointly considered energy management systems (EMS) and
eco-driving [18], [19].

However, in practice, idling events are influenced not solely
by SPaT information but also by the presence of vehicle
queues at the approaches to signalized intersections [20]. An
EV equipped with eco-driving technology that does not ac-
count for queue information will experience significant speed
fluctuations when encountering queued vehicles, though it
won’t come to a complete stop before a signalized intersection
as an EV without eco-driving would. However, the renowned
ring road experiment [21] demonstrates that even minor speed
oscillations intensify over time, preventing the maintenance of
uniform traffic flow. Eventually, this leads to traffic disruption
and more energy consumption.

Therefore, incorporating queue information into eco-
driving algorithms is crucial, and recently, many researchers
have begun to address this issue. Generally, eco-driving al-
gorithms that consider queue information can be divided into
two layers. The first layer predicts the queue length and queue
discharge time, then calculates an adjusted window for pass-
ing through traffic lights or computes a modified reference
speed considering predicted queue length and predicted dis-
charge time. Subsequently, the second layer of speed planning
algorithms takes this provided information to map out a speed
trajectory for the EV.

Table 1 summaries the eco-driving algorithms considering
the effect queue vehicles. It should be noted that in this paper,
the term ’discharge time’ refers to the time between when the
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TABLE 1. A Summary of Eco-Driving Algorithms Considering the Effects of Queue Vehicles

green phase starts and the vehicle at the end of the queue be-
gins to move. Meanwhile, the term ’dissipation time’ denotes
the time needed for a vehicle to pass through the upcoming
signalized intersection. He et al. [22] integrated the position
of the end of the queue and the discharge time of the last
car in the queue into their eco-driving algorithm, replacing
the distance of the ego vehicle to signalized intersections and
the start time of the green light. They simplified the speed
planning optimization problem into a multi-stage approxima-
tion model, enabling real-time computation. Building on this
work, Wu et al. [23] conducted Vehicle-in-the-loop experi-
ments, which further confirmed the reliability of the original
research.

However, both studies assumed given queue information,
an unrealistic scenario in real-world applications. Therefore,
queue estimation has become a focal point in subsequent
research efforts. Yang et al. [24] utilized vehicle-to-vehicle
(V2V) communication to acquire the speed of each vehicle
ahead, using a threshold of 5 mph to determine whether
the preceding vehicle has stopped, thereby estimating the
queue length. They determined the timing for vehicles to pass

through signalized intersections by combining traffic flow
theory [30] with a deterministic kinematic model (DKM).
Finally, they planned the speed trajectory for the ego vehicle
using an analytical model, ensuring real-time capability. Yang
et al. [20] estimated the dissipate time of vehicles ahead using
traffic flow theory. Based on these estimations, they formu-
lated a new ecodriving optimization problem and ultimately
solved it using a global search method. Similarly, Sun et al.
[25] employed an LSTM model to predict upcoming traffic
flow. Based on traffic flow theory, they used the predicted
traffic flow to estimate the time it takes for vehicles to pass
through signalized intersections. From this, they derived a
modified green light duration. This adjusted green light du-
ration was then incorporated as a new constraint into the
nonlinear programming (NLP) for speed planning.

However, relying merely on traffic lights and queue data
for velocity optimization is not practical, since the energy
efficiency of the ego-vehicle is also determined by the ac-
tions of the preceding vehicle [28]. Ye et al. [26] utilized a
radial-based neural network (RB-NN) for predicting the speed
of the leading vehicle, assessing whether it would halt at the
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queue’s end. Upon anticipation of a stop, the dissipate time
of the leading vehicle is estimated via traffic flow theory, and
the ego vehicle’s speed trajectory is formulated through an
analytical model. In instances where a stop is not projected,
a rule-based car-following model is employed to maintain
safety on the road. Dong et al. [27] acquired the length of
the queue using loop detectors and estimated the dissipate
time of the leading vehicle through a method that combines
traffic flow theory and the Dynamic Kinematic Model (DKM).
For speed planning, a two-layer optimization structure was
adopted: initially employing dynamic programming (DP) to
plan a reference speed trajectory, followed by the application
of model predictive control (MPC) to plan the ego vehicle’s
acceleration at each time step while ensuring a safe distance
from the leading vehicle. Similarly, Dong et al. [28] esti-
mated the dissipate time of the leading vehicle using traffic
flow theory. In speed planning, a combined approach of MPC
and Pontryagin’s Minimum Principle (PMP) was employed
to dynamically calculate the ego vehicle’s acceleration for
each time step in real-time. However, the previously discussed
methods assume that queued vehicles are already in place.

In reality, queues usually form slowly as the ego-vehicle
approaches a traffic light, making it difficult to predict when a
queue will start forming. Additionally, even during the green
light phase, slow-moving traffic can affect the ego-vehicle’s
progress [29]. Li et al. [29] placed loop detectors at each
signalized intersection and the midpoint of two signalized
intersections. These detectors record the entry time and speed
of each vehicle, which are then used to estimate the time each
vehicle will arrive at the upcoming signalized intersection
based on traffic flow theory. This estimated arrival time is
compared with SPaT information to determine whether each
vehicle will stop at the signalized intersection. If the last
leading vehicle is anticipated to stop, modified traffic light
position and discharge time will be further estimated, resulting
in a modified speed reference range. If the last leading vehicle
is not expected to stop, the estimated arrival time of the last
leading vehicle will be used as dissipation time to directly
determine the modified speed reference range. This modified
speed range is then incorporated as part of the state space for a
DRL agent to plan acceleration in real-time. With this design,
their work takes into account three different queue scenarios.

However, this line of work has two major limitations: (1) it
does not consider lane-merging disturbances, and (2) it cannot
achieve on-the-fly queue dissipation estimation. Specifically,
discharge time estimation only begins after the last leading
vehicle passes the loop detectors located at the midpoint
between two signalized intersections. Before this point, the
DRL agent relies solely on the unmodified reference speed
range as input, which may cause additional acceleration fluc-
tuations and consequently lead to extra energy consumption.
Moreover, the algorithm does not account for vehicles that
merge into the ego lane after passing the loop detector in
multi-lane scenarios, which may compromise the accuracy of
the estimated queue length and discharge time. Additionally,
the installation of extra loop detectors between two signalized

intersections incurs significant expenses. More importantly,
all the aforementioned methods use traffic flow theory or the
DKM to predict queues. Even when data-driven approaches
are employed, they serve indirectly to provide reference in-
formation for these two methods. Both these two approaches
treat vehicles in the queue as a single mass moving uniformly,
a simplification that overlooks the dynamic nature of vehicles
and the randomness of traffic in complex scenarios.

Building on the above analysis, this paper proposes a
novel eco-driving algorithm that accounts for lane-merging
disturbances while enabling on-the-fly queue dissipation es-
timation, as illustrated in Fig. 1. Real-time vehicle data,
including position and speed, are collected via navigation
apps and transmitted to a cloud platform managed by the
transportation department. The ego vehicle can at any mo-
ment access information of leading vehicles in the same lane
from the cloud, including vehicles that have recently merged.
Leveraging this data, the dissipation time estimation model
continuously updates the estimated dissipation time of the last
leading vehicle, which is then used to determine the modi-
fied reference speed. The DRL agent subsequently exploits
this modified reference speed—together with the states of the
ego vehicle and its leading vehicles—to dynamically plan
the ego vehicle’s acceleration in real time. In this study, the
ego-vehicle can obtain SPaT information from signalized in-
tersections via Vehicle-to-Infrastructure (V2I) communication
and accurately gather the status of the last leading vehicle
through onboard sensors such as camera and Lidar. It is
assumed that all vehicles are connected, however, it is not
necessary for vehicles to be directly connected to each other
through V2V communication systems. Instead, information
can be shared through navigation apps on mobile devices,
allowing the dissipation time estimation model to precisely
predict the dissipation time of the last leading vehicle. This
assumption is considered reasonable because navigation apps
such as Baidu Maps now provides ’sub-meter level’ posi-
tioning and ’lane-level’ positioning [31]. Although there is
no specific data on the prevalence of navigation apps among
drivers across different regions, Google Maps was ranked
seventh on the global iOS app download charts in 2023 [32],
indicating widespread usage. More importantly, compared to
the additional installation of loop detectors on roads, sharing
traffic data through navigation apps to predict queue states is
clearly a more cost-effective choice.

The main contribution of this work unfolds in three as-
pects: 1) A deep reinforcement learning-based eco-driving
framework is developed that incorporates lane-merging dis-
turbances, enabling robust dissipation time estimation in
multi-lane scenarios, 2) An on-the-fly data-driven based queue
dissipation estimation mechanism is proposed, which allows
the ego vehicle to begin accurate estimation immediately after
lane entry, reducing latency and avoiding unnecessary acceler-
ation fluctuations and energy consumption, and 3) A practical
data acquisition strategy is designed by leveraging real-time
position and speed data from widely used navigation apps and
transmitting them to a cloud platform, thus enabling accurate
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FIGURE 1. The depiction of the proposed eco-driving algorithm in a multi-lane scenario.

estimation without requiring additional roadside infrastruc-
ture or direct V2V connectivity.

The remainder of the paper is organized as follows: Sec-
tion II presents the methodology of the proposed approach.
Section III describes the simulation setup. Section IV provides
case studies and discussion. Finally, Section V outlines the
conclusions and future work.

II. ENERGY CONSUMPTION AND SURROUNDING
VEHICLES MODELING
This section introduces the energy consumption model of the
ego-vehicle and the dynamic modelling of surrounding vehi-
cles.

A. ENERGY CONSUMPTION MODEL
To ensure precise performance evaluation of the proposed
framework, it is essential to adopt a reliable and accu-
rate energy consumption model for electric vehicles. In this
study, the Electric Vehicle Emission Model (MMPEVEM),
developed by the Mechatronics in Mobile Propulsion group
at RWTH Aachen University, is utilized. This model in-
corporates detailed representations of the entire powertrain,
enabling high-fidelity estimation of power demand. Validation
against chassis dynamometer experiments on the Worldwide
Harmonized Light Vehicles Test Cycle (WLTC) demonstrates

a root mean square error (RMSE) of only 4.99 kW, within a
tested battery power range of −40 kW to 50 kW. Readers are
referred to [38] for comprehensive descriptions of the model.

B. DYNAMIC MODELLING OF SURROUNDING VEHICLES
We employed the IDM [36] to describe the dynamics of all
vehicles on the road except the ego vehicle. In the IDM
configuration, the maximum acceleration and comfortable de-
celeration are both set to 3 m/s2, while the driver imperfection
factor is specified as 0.5 to introduce stochastic variations in
car-following behavior. Each vehicle is assigned a physical
length of 5 m, and the maximum speed is limited to 20 m/s. To
better reproduce realistic traffic conditions—including those
of the leading vehicle—a speed factor is introduced, which
follows a truncated normal distribution with mean 1 and
standard deviation 0.1, bounded between 0.2 and 2. This pa-
rameter reflects inter-driver heterogeneity in desired speeds
and allows for a more realistic simulation of mixed traffic
flow.

II. PROPOSED ECO-DRIVING FRAMEWORK
This section will first introduce the reference speed model,
followed by the navigation-apps-based traffic data sharing
framework. It will then cover the data-driven-based on-the-fly
dissipation time estimation model and the modified reference
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FIGURE 2. Illustration of navigation-apps-based traffic data sharing framework.

speed model, which provides input states for the DRL-based
eco-driving algorithm introduced at the end.

A. REFERENCE SPEED MODEL WITHOUT CONSIDERING
QUEUE EFFECT
For eco-driving that does not consider the queue effect, the
ego-vehicle should adhere to the reference speed to ensure it
passes through signalized intersections smoothly while main-
taining traffic efficiency. Therefore, when the current phase
is green, to promote the controlled ego-vehicle to pass the
signalized intersection during the current green phase, Vmax

and Vmin can be defined as follows:

Vmax = Vlim

Vmin = De2s

trem
(1)

Vlim is determined as 20 m/s in this paper. When the current
phase is red, to promote the controlled ego-vehicle to pass the
signalized intersection during the next green phase, Vmax and
Vmin can be defined as follows:

Vmax = De2s

trem

Vmin = De2s

trem + tg
(2)

B. NAVIGATION-APPS-BASED TRAFFIC DATA SHARING
FRAMEWORK
To implement an eco-driving approach that accounts for the
queue effect, it is necessary to modify the reference speed.
This modification requires the development of an accurate
method for estimating dissipation time. Intuitively, enhancing
the stability and reducing acceleration fluctuations can further
improve the energy efficiency of the eco-driving algorithm.
Consequently, the dissipation time estimation needs to be
continuously available and capable of integrating merge de-
tection. In other words, continuous collection of traffic data,
including the status of merged vehicles, is essential for up-
dating the dissipation time estimation model in on-the-fly.
Additionally, the practicality and cost implications of such a
traffic data collection method must be assessed. To address

these considerations, this article introduces a navigation-apps-
based traffic data sharing framework, illustrated in Fig. 2.

Vehicle data, including VehIDm, Posm, and Vm of each
vehicle, will be transmitted to a cloud managed by the
transportation department via various navigation apps. Simul-
taneously, the ego-vehicle can continuously access the data
of leading vehicles traveling in the same lane, at any time,
through this cloud via a navigation app. Due to the ’lane level
positioning’ capability of current advanced navigation apps,
the vehicle data of merging and lane-changing vehicles can be
dynamically updated—added or removed as necessary.

In this scenario, it is not necessary for vehicles to be directly
connected to each other. Importantly, establishing a cloud
managed by the transportation department and promoting var-
ious navigation apps to share their data is significantly more
cost-effective than the procurement and installation of loop
detectors at each signalized intersection.

C. DATA-DRIVEN-BASED ON-THE-FLY DISSIPATION TIME
ESTIMATION METHOD
In this article, we operate under the assumption that the dis-
sipation time of the last leading vehicle is influenced by its
speed and position, as well as the number and speeds of
the vehicles ahead and the SPaT information. To predict the
dissipation time of the last leading vehicle, e.g., the time the
last leading vehicle needs to travel to the upcoming signal-
ized intersection tl2t , we have designed fully connected neural
network, illustrated in Fig. 3. This network receives 5 input
features: Vlea, Dl2s, N , Vave, and trem2g. Where Vave is deter-
mined by:

Vave = 1

N

N∑
n=0

Vn (3)

It’s important to note that if the current phase is green, trem2g

is equal to the remaining time of the current green phase, e.g.,

trem2g =
{

trem, Green
trem + tg, Red

(4)

The neural network was designed to optimize training ef-
ficiency, prediction accuracy, and real-time performance. It
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FIGURE 3. Illustration of the neural network for dissipation time estimation.

consists of 1 input layer, 5 hidden layers, and 1 output layer.
Each hidden layer includes a Dense layer with 100 neurons, a
batch normalization layer to enhance training efficiency and
stabilize the training process, and a ReLU [33] activation
function.

D. MODIFIED REFERENCE SPEED RANGE MODEL
Previous work on computing modified reference speeds or
constructing modified time-space constraints that consider
queue effects incorporated both the modified distance to the
signalized intersection and the modified green phase time
window [24], [25], [26], [27], [28], [29]. However, estimation
errors in both the modified distance and the modified time
have led to larger inaccuracies when determining the modified
reference speed. In this study, the focus is solely on the mod-
ified time, which is determined by the estimated dissipation
time of the last leading vehicle. This modified time is used to
calculate the modified reference speed [Vmax _mod ,Vmin _mod ],
incorporating the unmodified distance of the ego-vehicle to
the upcoming signalized intersection, as shown in (5).

Vmax _mod =

⎧⎪⎪⎨
⎪⎪⎩

Vmax _mod = De2s
tl2t

Vmax _mod , Vmax > Vmax _mod

Vmax , Vmax < Vmax _mod

Vmin _mod = Vmin

(5)

When the last leading vehicle has passed the signalized in-
tersection, the ego-vehicle is permitted to follow immediately,
and the modified maximum speed is determined accordingly.
However, if the modified maximum speed exceeds the unmod-
ified maximum speed, this indicates that the current phase is
green, and the last leading vehicle is nearing passage through
the intersection. In this case, the modified maximum speed
should be capped to ensure driving safety and adherence to
traffic rules.

E. DRL-BASED ECO-DRIVING ALGORITHM
In this paper, Twin Delayed Deep Deterministic Policy Gra-
dient (TD3) model is selected as the DRL agent to plan
acceleration for eco-vehicle. TD3 model is an advanced re-
inforcement learning algorithm introduced by Fujimoto et al

[34] as an improvement over the original Deep Determinis-
tic Policy Gradient (DDPG) method [35]. This algorithm is
specifically designed to address issues associated with func-
tion approximation errors that lead to overestimation of action
values in DDPG and similar algorithms. TD3 incorporates
three key innovations to improve the stability and performance
of the training process: 1) Twin Critic Networks: TD3 uti-
lizes two separate Critic networks (value functions), and the
smaller of the training process: 1) Twin Critic Networks: TD3
utilizes two separate Critic networks (value functions), and
the smaller of the two Q-values produced by these networks
is used to compute the target value. This twin-critic design
mitigates the overestimation bias inherent in Q-learning based
algorithms. The Q-value functions, Qθ1 and Qθ2 , are updated
using the following loss functions:

L (θi ) = E(s,a,r,s′ )∼D

[(
Qθi (s, a) − y

)2
]
, f or i = 1, 2 (6)

where y = r + γ min1,2Qθ ′
i
(si, μ∅′ (s′)), 2) Target Policy

Smoothing: This technique adds noise to the target action,
smoothing out the value estimation across similar states and
preventing sharp discrepancies in value estimations for similar
actions. The modified target policy thus becomes:

μ∅′
(
s′) + clip (ε,−c, c) , where ε ∼ N (0, σ ) (7)

These improvements help TD3 achieve more reliable per-
formance in various control tasks, demonstrating superior
results compared to earlier DDPG implementations. TD3’s
approach to decoupling policy and value updates, along
with its novel smoothing and twin critic mechanisms, set a
new standard for continuous control tasks in reinforcement
learning environments.

The DRL-based eco-driving algorithm aims to allow the
ego-vehicle to pass through signalized intersections smoothly
and minimize energy consumption while ensuring safety
and traffic efficiency by determining acceleration at for the
ego-vehicle at each time step. Therefore, the action space
is represented by At = at , at ∈ [−3, 3 m/s2]. The reward
function Rt for the DRL agent is defined as follows:

Rt = a1 · Rre f + a2 · Rene + a3 · Rsa f + a4 · Re f f (8)
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To enable the ego-vehicle to pass through signalized inter-
sections without stop-and-go behavior, it is crucial to ensure
that the ego-vehicle maintains a speed Vt within the reference
range [Vmax,Vmin] at each time step. Therefore, Rre f is defined
as piecewise function in (9) shown at the bottom of this page.

Rre f will be 0 when Vt is within the modified reference
speed range. If Vt exceeds Vmax, the reward function will in-
crease gradually. Using the natural logarithm function ensures
that both the value and gradient of the modified reference
speed reward remain stable, even as the speed rapidly in-
creases and surpasses the cut-off point β1. This method
enhances the training stability of the DRL algorithm bottom
of this page.

To further minimize energy consumption, the reward func-
tion for energy consumption is defined as follows:

Rene =
{

Ebat , Ebat ≥ 0

0, Ebat < 0
(10)

Rene increases when Ebat is greater than 0, while Rene is set
to 0 when Ebat is less than 0, such as during the regenerative
braking process. This prevents the ego-vehicle from deliber-
ately braking and stopping.

To ensure traffic efficiency, the reward function for traffic
efficiency is defined as follows:

Re f f =
{

Vt
2, Vmin _mod ≤ Vt ≤ Vmax _mod

0, others
(11)

When Vt is within the reference range, the higher Vt is, the
higher Re f f becomes.

To ensure driving safety, the acceleration computed by the
IDM aIDM is considered, and the safety reward function is
defined as follows:

Rsa f =
{

(at − aIDM )2, aIDM ≤ at

0, aIDM ≥ at
(12)

Rsa f will increase when the acceleration generated by the
DRL agent exceeds that generated by the IDM. In terms of
selecting the state space, it is important that the chosen space
is closely related to the reward function. Therefore, the state
space of the DRL agent is defined as follows:

st = [
Vmax _mod ,Vmin _mod ,Vt , at ,Vlea, alea, De2s, De2l

]
(13)

FIGURE 4. Heatmap of correlation coefficients between variables.

III. SIMULATION SETUP
A. DATASET CONSTRUCTION AND TRAINING OF
DISSIPATION TIME ESTIMATION MODEL
To enable the dissipation time estimation model to adapt
to varying road lengths and traffic volumes, 12 single-lane
roads with different lengths (300 m, 700 m, 1200 m, with
traffic lights at the end of each road, to represent traffic
area of commercial area, residential area and arterial area
respectively) and traffic volumes (600 vehicles/hour, 800
vehicles/hour, 1000 vehicles/hour, 1200 vehicles/hour, to rep-
resent low, medium and high traffic volume respectively.)
were constructed in the Simulator of Urban Mobility (SUMO)
for dataset creation.

Each single-lane road underwent 25 simulations with ran-
domly set initial timings for the signalized intersections and
varying departure speeds for vehicles. For data collection ef-
ficiency, a simulation time step of one second was chosen.
During each simulation time step, Vlea, Dl2s, N , Vave, trem2g,
and tcur were recorded. When the last leading vehicle passed
the signalized intersection, tpas was recorded. tpas was then
broadcasted to previous collected data and used to calculate
tl2t by subtracting the previously recorded tcur . As a result,
totally 40131 data samples consisting of the elements [Vlea,
Dl2s, N , Vave, trem2g, tl2t ] were constructed.

Before training the dissipation time estimation model, a
correlation analysis was conducted to evaluate the relationship
between the five assumed features and the dissipation time
of the last leading vehicle. A correlation matrix depicting

Rre f =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β1 + ln
((

Vt − Vmax _mod
)2

)
, Vmax _mod < Vt and β1 <

(
Vt − Vmax _mod

)2(
Vt − Vmax _mod

)2
, Vmax _mod < Vt and β1 ≥ (

Vt − Vmax _mod
)2

0, Vmin _mod ≤ Vt ≤ Vmax _mod(
Vt − Vmin _mod

)2
, Vmin _mod > Vt and β2 ≥ (

Vt − Vmin _mod
)2

β2 + ln
((

Vt − Vmin _mod
)2

)
, Vmin _mod > Vt and β2 <

(
Vt − Vmin _mod

)2

(9)
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FIGURE 5. Training loss for 200 epochs of dissipation time estimation
model.

TABLE 2. Comparison of Prediction Results Between Proposed Model and
Li’s Model

the correlation among the assumed input features and the
prediction target is displayed in Fig. 4. From the colors on
the heatmap, green indicates stronger positive correlations.
Lighter colors (yellow) suggest weaker relationships. It can
be observed that Dl2s shows a strong correlation with tl2t ,
at 0.742, while features Vlea and N as well as Vave exhibit a
moderate correlation, at 0.505, 0.420 and 0.391 respectively.
Intuitively, one might expect trem2g to have a positive rela-
tionship with tl2t . However, when a queue is formed, the last
leading vehicle requires additional time to pass the signalized
intersection. During this time, feature trem2g enters the next
cycle, resulting in a negative relationship with tl2t , at –0.135.

The model was trained for 200 epochs using the Adam
optimizer [37] with a learning rate of 0.001. The training loss
is illustrated in Fig. 5. It can be seen that the training loss
decreased significantly in the first 25 epochs, indicating sat-
isfactory learning efficiency. After that, the training gradually
converged after 150 epochs.

B. TRAINING OF DRL-BASED ECO-DRIVING ALGORITHM
AND BASELINES
The principal parameters of the DRL agent are detailed in
Table 2 in the appendix. Both the actor network and the
critic network are structured with four hidden layers each.
The actor network is constructed with a single deep network,

FIGURE 6. Convergence of the training of the DRL-based eco-driving
algorithm.

whereas the critic network is built with two deep networks. A
single-lane road 4 km in length was constructed in SUMO for
the training process. This road features six signalized inter-
sections positioned randomly, with each intersection having a
static signal timing of 60 seconds for green and 60 seconds for
red. The training encompassed 40 episodes, during which the
initial signal timing at the six intersections and the departure
speeds of vehicles were randomized for each episode. It is
important to note that the simulation time interval for both
training and subsequent case studies was set at 0.1 seconds to
achieve higher accuracy. The training reward is displayed in
Fig. 6. It can be observed that the model learned very quickly,
beginning to converge as early as the 6th episode. There were
some fluctuations between the 6th and 40th episodes due to
various initial timing settings of the signalized intersections.
These settings caused the ego-vehicle to travel at different
speeds, which significantly influenced the reward function.

It is important to note that, to critically and fairly evaluate
the performance of the proposed method against the following
baselines, only one DRL-based eco-driving model was trained
using the unmodified reference speed range as input features.
This model was tested both individually and in conjunction
with various queue estimation methods.

In this study, the baselines include the IDM model, which
mimics the driving behavior of human drivers, and the DRL-
based eco-driving model, representing standard eco-driving
practices without accounting for queue effects. Addition-
ally, the study compares the DRL-based eco-driving model
enhanced with Li’s queue estimation method [29], which em-
bodies a state-of-the-art eco-driving approach that considers
queue effects, and the DRL-based eco-driving model com-
bined with the proposed model.

IV. SIMULATION RESULTS AND DISCUSSION
5 case studies were conducted to critically evaluate various
aspects of the proposed method: its prediction accuracy, its
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FIGURE 7. Two specific time steps are identified for collecting estimation
results: 1) Time step A, which is the time when the last leading vehicle
passes the midpoint between two signalized intersections, and 2) Time
step B, which is the time when the ego vehicle passes the midpoint
between two signalized intersections.

performance under scenario without lane-changing distur-
bances, its performance under scenario with lane-changing
disturbances, its adaptability under different traffic density,
and its adaptability under different partial connectivity. Mean-
while, two ablation studies were conducted to evaluate the
impact of the reward function weighting scheme of the DRL
agent and the network depth of the dissipation time estimation
model.

A. EVALUATION OF THE PREDICTION ACCURACY OF THE
PROPOSED METHOD
To assess the accuracy of the proposed dissipation time es-
timation method, this case study compares its estimation
accuracy with that of Li’s model. Li’s model predicts the
time when the last leading vehicle reaches the signalized in-
tersections using a traffic-flow based approach. This method
provides estimations only when the last leading vehicle passes
the loop detectors, which is at the midpoint between two
signalized intersections. In this study, this specific time step
is designated as time step A, as illustrated in Fig. 7.

A single-lane road, 4 km in length, was constructed in
SUMO to conduct this study. The locations of 6 signalized
intersections were randomized and differed from those in
the training environment. Both the proposed model and Li’s
model were executed 64 times in this scenario, each with
different initial signal timings at the intersections. Although
the proposed model is capable of providing estimation results
continuously, to ensure fairness, the prediction results of the
proposed model were only recorded at Time Step A. Conse-
quently, both the proposed model and Li’s model yielded 6
prediction results per run, totaling 384 prediction results for
the entire study.

Additionally, to further assess the prediction accuracy of the
proposed model, 384 more prediction results were recorded
when the ego-vehicle passed the midpoint between two signal-
ized intersections, designated as Time Step B. This additional
data collection at Time Step B allows for a more comprehen-
sive evaluation of the proposed model’s performance.

The analysis of prediction results of proposed method and
Li’s method are shown in Table 2. To evaluate the prediction
result critically, Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) were used in this study, which are
defined in the appendix. The MAE of the prediction results

from the proposed method at Time step A is 2.31, which
represents a 51.95% improvement over Li’s model, highlight-
ing the superior accuracy of the proposed data-driven model.
Additionally, the RMSE at the same time step is 3.08, 44.48%
lower than that of Li’s model, underscoring the stability of the
proposed approach. Moreover, the proposed model can deliver
predictions at any given time. Intuitively, as the last leading
vehicle approaches the signalized intersection, the prediction
accuracy increases. This is evidenced by the data collected
at Time step B, where the MAE and RMSE are 2.17 and
2.59, respectively, further validating the effectiveness of the
proposed data-driven model.

B. EVALUATION OF THE PROPOSED METHOD UNDER
SCENARIOS WITHOUT LANE-MERGING DISTURBANCES
To evaluate the performance of the proposed model under
traffic scenarios without lane-merging disturbances, a spe-
cific initial signal timing was adopted, and simulations were
conducted on the same single lane road as in Case Study A.
The distance, acceleration, and speed profiles of four models
are illustrated in Fig. 8. Moreover, energy consumption and
travel time were employed as performance metrics, with the
results summarized in Table 2.

From Fig. 8(a), it is observable that the vehicle controlled
by the IDM consistently followed the last leading vehicle and
either stopped or braked at each signalized intersection. This
behavior is characteristic of the IDM, which aims to adhere
to the speed limit (set at 20m/s in this study) as closely as
possible and decelerates in response to leading vehicles or a
stop line ahead.

The vehicle controlled by the DRL, which used the unmod-
ified reference speed as input states, attempted to pass through
signalized intersections immediately after the phase turned
green. However, the presence of leading queues ahead ob-
structed this behavior, resulting in the vehicle either stopping
or braking at each intersection. The vehicle controlled by the
combined DRL + Li’s method initially used the unmodified
reference speed as its input state until the last leading vehicle
passed the loop detectors, after which it switched to a modified
reference speed. This approach enabled the vehicle to pass
through signalized intersections more smoothly. However, as
indicated by the two pink arrows in Fig. 8(a), the vehicle
initially followed the same reference speed as the vehicle
controlled solely by DRL after passing the last signalized
intersection. It then decelerated to avoid stopping at the end of
queues once the last leading vehicle had passed the loop de-
tectors, leading to noticeable acceleration fluctuations, which
can be observed from Fig. 8(b). Additionally, as highlighted
by the pink circles in Fig. 8(a), the vehicle controlled by DRL
+ Li’s method still exhibited significant braking, particularly
when traversing short sections.

The vehicle controlled by DRL + the proposed model
demonstrated the most stable and smooth distance,
acceleration, and speed trajectories among the four models,
as evidenced by Fig. 8(a)–(c). This enhanced performance
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FIGURE 8. Vehicle trajectories in scenarios without lane-merging disturbances under four control models: (a) distance profile, (b) acceleration profile,
and (c) speed profile.

TABLE 3. Simulation Results of Vehicles Controlled By Four Models in
Scenarios Without Lane-Merging Disturbances

results from the proposed data-driven based on-the-fly dis-
sipation time estimation model, which continuously updates
the modified reference speed for the DRL agent, allowing
it to effectively determine acceleration early on, taking into
account the queue effect immediately after the vehicle passes
the last signalized intersection. Furthermore, the smooth
trajectories observed in the two pink circles of Fig. 8(a) while
the vehicle traveled through short sections underscore the
benefits of the accurate dissipation time predictions for the
last leading vehicle predicted by the data-driven model.

Eventually, the superiority and effectiveness of the pro-
posed model are clearly reflected in the energy consumption
metrics. According to Table 3, the energy consumption of
the vehicle controlled by DRL + the proposed model is
355.6 Wh, the lowest among the four models, and 47.27%
lower than that of the vehicle controlled by the IDM model.
This efficiency was achieved with only a minimal increase in
travel time, which was 1.7% longer than that of the vehicle
controlled by IDM model.

C. EVALUATION OF THE PROPOSED METHOD UNDER
SCENARIOS WITH LANE-MERGING DISTURBANCES
To analyze and evaluate the performance of the proposed
model under scenarios with lane-merging disturbances, the
traffic scenario from Case Study B was expanded to include
three lanes, and simulations were conducted within this setup.
In this study, the ego-vehicle was restricted to the right-hand
lane, while the surrounding vehicles were permitted to change
lanes.

One key distinction between single-lane and multi-lane
roads is the potential for surrounding vehicles to merge into
the lane where the ego-vehicle is traveling. This dynamic
can impact the effectiveness of the queue estimation and dis-
sipation time estimation algorithms. Motivated by this, the
primary focus of this case study is to observe and analyze the
differences in results between vehicles controlled by the DRL
+ Li’s model and the DRL + proposed model. Accordingly,
the distance profiles and energy trajectories for vehicles using
these 2 methods were recorded and are displayed in Fig. 9.
Additionally, the simulation results for energy consumption
and travel time across 4 baseline models are presented in
Table 3 for further evaluation and discussion.

The grey dashed lines that appear before the second sig-
nalized intersection in both Fig. 9(a) and (b) represent the
distance profiles of the merging vehicles. It is crucial to note
that these vehicles merged into the lane where the ego-vehicle
was traveling after passing the loop detector located between
the first and second signalized intersections. In this scenario,
the vehicle controlled by DRL + Li’s model continued to
follow the modified reference speed set when the previous
last leading vehicle passed the loop detector. This model did
not account for the newly merged vehicles as they were not
detected by the loop detector. Consequently, the vehicle con-
trolled by DRL + Li’s model eventually stopped at the end of
the queue.

Conversely, the vehicle controlled by DRL + the proposed
model decelerated after the vehicles merged into its lane,
ultimately passing the signalized intersection smoothly. This
behavior is attributed to the superiority of the navigation-apps-
based traffic data sharing framework and data-driven-based
on-the-fly dissipation time estimation model, which allows the
ego-vehicle to instantly obtain the status of merging vehicles
and immediately update the modified reference speed to con-
sider these vehicles.

To further analyze the impact of these behaviors on energy
consumption, the pink dashed line in Fig. 9(c) illustrates the
difference in energy consumption between the vehicles con-
trolled by the two strategies as they passed the second signal-
ized intersection. A significant difference of over 50 Wh can
be observed, highlighting the energy efficiency benefits of the
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FIGURE 9. Vehicle trajectories under scenarios with lane-merging disturbances: (a) distance profile with DRL + proposed method, (b) distance profile
with DRL + Li’s method, and (c) comparison of the energy trajectories between DRL + proposed method and DRL + Li’s method.

TABLE 4. Simulation Results of Vehicles Controlled By Four Models Under
Scenarios with Lane-Merging Disturbances

ability of the proposed model to adapt to dynamically chang-
ing traffic conditions, e.g., vehicles merging into the lane.

A more quantified analysis is available from Table 4, where
it is evident that the energy consumption of the vehicle
controlled by the DRL + proposed model is the lowest, at
324.4 Wh, which is 60.97% lower than that of the vehicle
controlled by the IDM model. Meanwhile, the travel time for
the vehicle controlled by the proposed model is 3.5% higher
than that of the IDM model. In a multi-lane scenario, the
vehicle controlled by the DRL + proposed model decelerates
when surrounding vehicles merge into its lane, leading to
more vehicles attempting to overtake it. This behavior results
in a slightly lower energy consumption, but a slightly higher
travel time compared to single-lane road scenario.

D. EVALUATION OF THE ADAPTABILITY OF THE PROPOSED
METHOD UNDER DIFFERENT TRAFFIC DENSITIES
To critically evaluate the adaptability of the proposed method
under different traffic densities, simulations were conducted
on the same 3-lane road setup as in Case Study C. For each
baseline method, 64 simulation runs were performed under
three traffic density levels—300, 700, and 1000 vehicles per
lane—while varying the initial signal timings. The average
results from these simulations for the 4 methods are illustrated
in Table 5.

Overall, as traffic density increases, the energy consump-
tion of all models exhibits a decreasing trend, while travel time
correspondingly increases. At each individual traffic density

TABLE 5. Average Simulation Results of Vehicles Controlled By Four
Models Under Different Traffic Densities

level, the IDM consistently shows the highest energy con-
sumption and the lowest travel time, whereas the DRL +
proposed model achieves the lowest energy consumption but
with the longest travel time. Across the three traffic density
settings (300, 700, and 1000 vehicles per lane), the DRL
+ proposed model reduces energy consumption relative to
IDM by approximately −40.29%, −37.5%, and −32.9%, re-
spectively. However, it also incurs additional travel time of
+1.00%, +4.65%, and +7.46%. This occurs because the DRL
+ proposed model tends to decelerate when being merged
into, which in turn encourages more vehicles to attempt merg-
ing. The effect becomes more pronounced as traffic density
increases.
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TABLE 6. Average Simulation Results of Vehicles Controlled By the
Proposed Model Under Different Partial Connectivity

TABLE 7. Average Simulation Results of Vehicles Controlled By DRL Agent
Under Different Reward Function Weightings

E. EVALUATION OF THE ADAPTABILITY OF THE PROPOSED
METHOD UNDER DIFFERENT PARTIAL CONNECTIVITY
To validate the effectiveness of the proposed model under dif-
ferent levels of partial connectivity, 64 simulation runs were
conducted in the Case Study C setting with a traffic density
of 700 vehicles per lane, where the initial signal timings were
varied. The partial connectivity of surrounding vehicles was
set to 100%, 80%, 50%, and 30%, with the important as-
sumption that the last leading vehicle was always connected.
As shown in Table 6, travel time remains nearly unchanged
across the four connectivity levels, while energy consumption
increases as partial connectivity decreases. Nevertheless, even
under the 30% connectivity condition, the energy consump-
tion is only 9.82% higher than that under full connectivity,
which is comparable to the consumption of DRL + Li at the
same traffic density in Case Study D. These results demon-
strate the robustness of the proposed method under varying
degrees of partial connectivity.

F. IMPACT OF REWARD FUNCTION WEIGHTING IN THE
DRL AGENT
In this ablation study, we investigate the impact of differ-
ent reward function weightings on the performance of the
DRL agent. The baseline weights are set to a1 = 8, a2 = 0.1,
a3 = 3, and a4 = 0.15. This configuration was selected to bal-
ance energy consumption and traffic efficiency, given that the
efficiency-related term is naturally larger in magnitude than
the reference term. The ablation primarily focuses on varying
a1 and a4 , as they directly influence the trade-off between
energy efficiency and traffic performance. Fig. 10 illustrates
the convergence of DRL agent training under different weight
settings, while Table 7 reports the average simulation results
obtained from 64 runs in the Case Study C setting with a
traffic density of 700 vehicles per lane, where initial sig-
nal timings were varied. The results show that increasing a4

accelerates convergence and leads to higher final rewards,

FIGURE 10. Convergence of DRL agent training under different reward
function weightings.

TABLE 8. Comparison of Prediction Results of Dissipation Time Estimation
Model Under Different Network Depth

with traffic efficiency largely unchanged but at the cost of
higher energy consumption. Conversely, decreasing a4 slows
convergence and reduces the final reward, resulting in lower
energy consumption but degraded traffic efficiency. Adjusting
a1 also has a noticeable effect: larger values yield slightly
slower convergence and lower final rewards, reducing energy
consumption but at the expense of efficiency, while smaller
values produce the opposite trend with only marginal changes
in efficiency. Overall, these findings confirm that the chosen
baseline weights achieve a reasonable balance between traffic
efficiency and energy saving.

G. IMPACT OF NETWORK DEPTH IN THE DISSIPATION
TIME ESTIMATION MODEL
An ablation study was conducted on the network depth of the
dissipation time estimation model while keeping the number
of neurons per layer unchanged. Models with 3, 5, and 7 layers
were trained and then evaluated under the same experimental
setup as in Case Study A. At Time Step A, 384 data points
were collected for testing, and the results are summarized
in Table 2. When the depth increased from 3 to 5 layers,
the MAE and RMSE decreased by 24.68% and 25.00%, re-
spectively, while the computation delay increased by 37.5%
to 0.16 ms (measured on an 11th Gen Intel(R) Core (TM)
i7-11700 @ 2.50 GHz processor). However, further increasing
the depth from 5 to 7 layers yielded only marginal improve-
ments in MAE and RMSE, accompanied by a significant rise
in computation delay.
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TABLE 9. The Principal Parameters of the TD3 Agent

V. CONCLUSION
This research introduced a pioneering deep reinforcement
learning-based eco-driving algorithm capable of handling
lane-merging disturbances while incorporating on-the-fly
queue dissipation time estimation. By integrating a practical
and cost-effective navigation-app-based traffic data sharing
framework with a data-driven dissipation time estimation
model, the proposed approach enables the reinforcement
learning agent to continuously receive accurate modified ref-
erence speeds that account for both queueing and merging
vehicle effects. Through four detailed case studies, involving
comparisons with the conventional IDM, standard eco-driving
strategies, and state-of-the-art methods that consider queue ef-
fects, the proposed framework and estimation method demon-
strated high accuracy, operational continuity, and effective
merging detection. The results highlighted the superior energy
efficiency of the proposed model over all baselines, achiev-
ing an average energy reduction of 37.5% compared to IDM
under lane-merging scenarios, albeit with a slight increase in
travel time. Furthermore, additional case studies under vary-
ing traffic densities and different levels of partial connectivity
confirmed the robustness of the proposed method.

Future research will address the reliance on SUMO-based
simulations by pursuing real-world validations and tackling
potential challenges such as GPS inaccuracies in navigation
apps and cloud latency. In addition, future work will extend
the modeling framework to incorporate more complex sur-
rounding traffic conditions, including heterogeneous vehicle
types, to further enhance the generalizability of the proposed
approach.

APPENDIX
Table 9 shows principal parameters of the TD3 agent.

The equations for MAE and RMSE, using J as the number
of observations, are:

MAE = 1

J

J∑
j=1

∣∣ f j − f̂ j
∣∣

RMSE =
√√√√1

J

J∑
j=1

(
f j − f̂ j

)2

where j is the number of observations, y j is the actual value
for j-th observation, f̂ j is the predicted value for the j-th obser-
vation, | f j − f̂ j | represents the absolute error for each predic-

tion, and ( f j − f̂ j )
2

is the squared error for each prediction.
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