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Abstract. Accurate probabilistic load forecasting is essential for efficient energy 

management and the safety operation of power system. Existing load forecasting 

methods suffer from two limitations: 1) Inadequate utilization of feature; 2) 
insufficient modelling capability for fine-grained dependencies. To end these 

problems, a multi-region probabilistic load forecasting method based on graph 

Bayesian Transformer network is proposed. Specifically, the proposed forecasting 

framework consists of graph neural network and hybrid Bayesian Transformer 

connected in cascaded configuration. The former one is used to develop multi-

graph spatial-temporal features, which can enhance the feature learning ability 

and share the graph structure information to realize the joint forecasting of multi-

region. The latter one is used to capture multi-scale information, which can 

improve the adaptability of model to complex dynamic data and forecasting 

accuracy. For validation, a series of compared experiments and ablation analysis 

are conducted under New England dataset. The experimental results demonstrate 

that the proposed method has good performance in foresting accuracy, and 

adaptability. In particular, compared to other comparative methods, the Continuous 

Ranked Probability Score (CRPS) is reduced 32.7%. 

1. Introduction 

As industrialization continues, electricity demand in numerous countries has risen 

significantly. As a result of the imbalance between energy supply and demand, the world is 

experiencing an unprecedented energy crisis [1-3]. Consequently, efficient and rational utilization 

of power resources has become a focal point for nations worldwide [4,5]. Probabilistic load 

forecasting, by addressing the inherent uncertainties in load distribution, enables power system 

operators to make risk-informed decisions in areas such as economic dispatch and steady-state 

estimation of transmission networks [6-9]. Accurate probabilistic load forecasting is essential for 

optimizing grid dispatch and promoting the rational use of power resources [10,11]. 

C. Li et al. [12] proposed an interpretable Long Short-Term Memory (LSTM) network for 

probabilistic residential load forecasting within a memristor-based neuromorphic computing 

architecture. A. Faustine et al. [13] introduced parameterized depth quantile regression to achieve 

short-term probabilistic load forecasting. A lvarez et al. [14] proposed an adaptive probabilistic 

https://creativecommons.org/licenses/by/4.0/
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load forecasting methodology based on Hidden Markov model to capture load demand uncertainty 

and dynamics. Bayesian neural networks are extensively applied for probabilistic forecasting, as 

they capture both epistemic and aleatoric uncertainties [15-18]. Alessandro et al. [19] proposed 

an approach framed on Bayesian Mixture Density Networks, which enhance neural network 

mapping by integrating predictive distributions that address both uncertainty types. C. Wang et al. 

[20] proposed a multi-region Bayesian neural network, Bayesian Multiple-Decoder Transformer 

(BMDeT), to achieve probabilistic forecasting of multi-energy loads, accounting for their complex 

interdependencies and uncertainties. However, there still some difficulties and challenges: 

1) Inadequate utilization of feature: Electricity load typically exhibits spatial dependency 

and load transfer effects. Utilizing features from a single region fails to fully leverage the spatio-

temporal information across regions, resulting in inadequate utilization of features. 

2) Insufficient modelling capability for fine-grained dependencies: Due to the complex 

spatial heterogeneity, the insufficient modeling of fine-grained dependencies leads to local 

properties that are then difficult to capture adequately on individual regions. 

Based on this, a multi-dimensional Bayesian Autoformer network for short-term load 

probabilistic forecasting is proposed. The contributions are summarized below: 

 Graph neural network (GNN) is proposed to develop spatial-temporal features, which 

can enhance the feature learning ability and share the graph structure information to 

realize the joint forecasting of multi-regions. 

 Hybrid Bayesian attention is proposed to capture multi-scale information, which can 

more acutely identify short-term, neighborhood, and fine-grained spatiotemporal 

patterns and quantify electricity load uncertainty more accurately. 

 The proposed model was subjected to a series of experimental analysis (compared 

analysis, ablation analysis, adaptive analysis) on real load datasets from multiple regions. 

The experimental results demonstrate that the proposed method has good performance 

in foresting accuracy, and adaptability. 

The remainder of this work is organized as follows: Section 2 introduces the proposed model 
and the specific design. A series of comparison experiments and joint analysis (ablation analysis 

and adaptive analysis) are conducted in Section 3. Finally, Section 4 draws the conclusion. 

2. Proposed Methodology  

In this paper, we propose a multi-region probabilistic forecasting model based on Graph 

Bayesian Transformer network. The model framework is shown in Figure 1, it includes graph 

structure learning, graph Bayesian hybrid Transformer and performance optimize. The following 

is a further description of the model. 

2.1 Graph structure learning 

In electricity load forecasting, each node represents the electrical load of a region, while the 

edges of each node represent the connections between regions (proximity relationships). Based 

on this, the directed graph structure G can be represented as 

 ( )= ,G V E  (1) 

where V denotes the set of nodes (regions). E denotes the set of edges, i.e., the lines connecting the 

regions. Adjacency matrix A∈RN×N describes the connectivity relationship between each region. 
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The feature matrix X∈RN×F contains F-dimensional historical load data of each node. Then, the 

update formula is as follows: 

 ( ) ( ) ( )( )+
=

1l l l
H σ AH W  (2) 

where H(l)∈RN×Dl is the node identity matrix of the lth layer and H(0)=X is the initial input feature. Â 

is the normalized matrix of the adjacency matrix A after adding the identity matrix I. W(l)∈R Dl×Dl+1 

is the learnable weight matrix of the lth layer. σ () is a nonlinear activation function. 

2.2 Graph Bayesian Hybrid Transformer Network 

Hybrid Bayesian Transformer Network consists of an encoder module, a decoder module. The 

main task of the encoder is to extract and compress the multi-scale features of the input data. It 

efficiently captures the temporal trends and interdependencies between regions. The task of the 

decoder is to generate probabilistic forecasts based on the embedding of the encoder outputs. 

Hybrid Bayesian Encoder: The Bayesian encoder consists of four encoder layers, including 

Graph Bayesian Hybrid Multi-Head Attention Layer, Bayesian Feed Forward Layer and 

Normalization Layer. Graph Bayesian Hybrid Multi-Head Attention Layer includes hybrid attention, 

it can be represented by 

 = + +hybrid t s lH αH βH γH  (3) 

 ( )
 

= =  
 
 

, , soft max
t t

t t t t

Q KT
Q K V Vt i t i

t temproal t i t i t i t i

k

Q W K W
H Attention Q W K W V W V W

d
 (4) 

 ( )
 

= = + 
 
 

, , soft max
s s

s s s s

Q KT
Q K V Vs i s i

s spatia s i s i s i s i

k

Q W K W
H Attention Q W K W V W A V W

d
 (5) 

 

Figure 1. The framework of the proposed multi-region probabilistic forecasting model 
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 ( ) − +
− +

 
= =  

 
 

:
:, , soft max

c c

c c cl

Q KT
K V VQ c i c i ω i ω

l local c i c i c i c i ω i ω

k

Q W K W
H Attention Q W K W V W V W

d
 (6) 

where  and  denote the weight of learnable. WiQt, WiKt, and WiVt represent the weights of Qt, Kt, 
and Vt, respectively. Similarly, WiQs, WiKs, WiVs, WcQc, WcKc, and WcVc denote the weights of Qs, Ks, Vs, Qc, 
Kc, and Vc. dk denotes scaling coefficient, and A denotes the adjacency matrix.  denotes the size of 
sliding windows. Then, we utilize multiple hybrid attention mechanisms to parallelize the 
computational: 

 ( ) ( )=  1 2, , , ,oMultiHead Q K V W Concat Head Head  (7) 

 = i
i hybridHead H  (8) 

where Wo is the weight of Concat output. Bayesian neural networks evaluate uncertainty by 

sampling from a probability distribution to obtain weights and biases, such as Gaussian 

distribution. Weights, including WiQt, WiKt, WiVt, WiQs, WiKs, WiVs, WcQc, WcKc, WcVc and Wo, are taken by 

sampling from the Gaussian distribution. Similarly, the parameters of Bayesian Feed Forward 

Layer are sampled from the Gaussian distributions. 

Hybrid Bayesian Decoder: The Bayesian encoder includes Graph Bayesian Hybrid Multi-

Head Attention Layer, Graph Bayesian Hybrid Multi-Head Related Attention Layer, Bayesian Feed 

Forward Layer and Normalization Layer. Among them, the input Q and K of the Related Attention 

Layer are outputs from the encoder, while V is the output from the Attention Layer in decoder. 

Bayesian decoder combines known information about future time steps with spatio-temporal 

features of the encoder outputs and generates a probability distribution of the load forecast.  

2.3 Performance optimize 

During the training process, model performance is quantified and optimized in multiple 

dimensions such as accuracy of predicted values, coverage of interquartile range, and matching of 

prediction distributions. This multi-loss setting helps the model to generate more reliable 

predictions that not only give single-point predictions, but also quantify uncertainty through 

probability distributions, making the predictions richer and more robust. The overall loss function 

for the training model is obtained by: 

 1 2 31 2 3Loss a Loss a Loss a Loss= + +  (9) 

 ( )ˆ1=RMSE ,Loss y y  (10) 

 = ˆ2 ( , )Loss pinball y y  (11) 

 = ˆ3 ( , )Loss CRPS y y  (12) 

where parameters a1, a2, a3 represent the weight assignments for Loss1, Loss2, Loss3. 

To optimize the model and achieve probabilistic forecasting, variational inference is 

employed to enable effective Bayesian inference [21]. Specially, inference task is addressed by 

minimizing the Kullback–Leibler (KL) divergence from the latent posterior, formulated as: 

 

( ) ( ) ( )
( )

( ) ( )

( )
( )

( ) ( )

 
  =     

 

 
= − − + 

  


|

KL | || | | log
|

|
      E log log | logq

q ω θ
q ω θ P ω D q ω θ dω

P ω P D ω

q ω θ
P D ω P D

P ω

 (13) 

where q(ω|θ) represents the variational distribution of parameter θ, P(ω|D) is the posterior 
distribution approximated by q(ω|θ). In equation (13), the second term is constant with respect 
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to the network parameters. Therefore, the primary component requiring optimization through 
backpropagation is the Evidence Lower Bound (ELBO): 

 ( ) ( )( ) ( ) ( ) ( )( ) ( )   = − − = −   ELBO E log | log | | || E log |q qq ω θ P ω P D ω KL q ω θ P ω P D ω  (14) 

where Eq[logP(D|ω)] is reconstruction loss, we better adapt 𝓛 for the probabilistic forecasting 

model, we further customize it by jointly minimizing the multi-loss: 

 ( )=− +[ ] ( )|| ( )Loss KL q θ p θ  (15) 

3. Experiment and analysis 

3.1 Dataset 

The dataset chosen for the experiment was collected by New England Independent System 

Operator and is publicly available on the web https://www.iso-ne.com/. It is a real electricity load 

dataset that contains electric load data for the New England region of the northeastern U.S., 

including historical load profiles for six states (e.g. Miane, New Hampshire, Vermont, 

Massachusetts, Connecticut, and Rhode Island). It records the demand for electricity over time for 

each region at an hourly frequency. 

3.2 Evaluation Indicators 

In this paper, the three evaluation indicators are used to evaluate the performance of the 

forecasting model: Root Mean Square Error (RMSE), pinball loss, Continuous Ranked Probability 

Score (CRPS), the special formula is as follows [22-23]: 

 ( )
=

= −
2

1

1
ˆRMSE y y

N

t t
tN

 (16) 

 
( )

( )

 − 
= 

− − 

( ) ( )

( ) ( )

ˆ
_ ( , )

ˆ ˆ1

q q
t t t t

t q q
t t t t

q y c y y
pinball loss q y

q y y y y
 (17) 

 ( ) ( ) ( )
=

= − 
2

1

( ,y ) y
N

i

t t t i i t
i

CRPS F F τ ε τ  (18) 

where N is the number of prediction data, yt is the actual value and ŷt is the predicted value. q is 
quartile, ŷtq is the estimate when the quartile is q at time t.  

Table 1. Parameter setting 

Model Parameters Model Parameters 

QLSTM [12] 
LSTM unit: 16 

FC unit: 16 layer: 4 
BNN [19] 

FC-1 unit: 512 layer:1 
FC-2 unit: 256 layer:4 

APLF [14] 
Forgetting factors 1: 0.2 
Forgetting factors 2: 0.7 

BMDeT [20] 

Encoder layer: 4 
Decoder layer: 4 

Decoder multi-head: 8 
model dimension: 24 

GNN [26] 

Hidden Dimension:24 
Convolution layer: 4 
Edge dimension: 7 

Node dimension: 48  

Proposed Model 

Encoder layer: 4 
Decoder layer: 4 

Decoder multi-head: 8 
model dimension: 24 

 

https://www.iso-ne.com/
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3.3 Experimental Environment and Parameter Settings 

The proposed model is trained and tested on a server equipped with NVIDIA GeForce RTX 

4090 GPUs and Programming language Python 3.10. Suitable parameters facilitate good 

performance of the model. Parameters of experienced models are determined by grid search 

method [24, 25], and the parameter settings for all models are demonstrated in Table 1.  

3.4. Comprised Experiment 

The performance of the proposed model is compared with other maintains load forecasting 

methods, including QLSTM [12], APLF [14], GNN [26], BNN [19], BMDeT [20]. Then, the special 

comprised results as shown in Table 2. From Table 2, the proposed model performs the best in 

overall performance, the average RMSE, Pinball Loss and CRPS are 0.0559, 0.0234, and 0.0409, 

respectively. Specifically, compared with signal-region forecasting model (QLSTM, APLF), the 

performance of proposed model is more accurate and stable. Compared with GNN, which also 

builds graph structure features, the accuracy of the proposed model is improved by 14.2%, and 

GNN only enables point forecasting. It is shown that the proposed model is able to better learn 

graph structure features and realize multi-region joint forecasting. Compared with multi-regions 

probabilistic forecasting models (BNN, BsDeT), the proposed model has significant advantages, 

with average RMSE, Pinball loss, and CRPS improving by at least 10.8%, 12%, and 32.7%, 

respectively. It indicates that the proposed model is able to efficiently capture the coupling 

relationship between the proximity region and the local, realizing the accurate probabilistic 

forecasting of the electricity loads in multiple regions. 

3.5. Ablation studies 

Graph structure based GNN: The experiment result with different input feature as shown in 

Table 3. The input with the graph structure demonstrates superior overall performance than time 

Table 2 Comprised experiment with different load forecasting methods 

Region       Average 

QLSTM 
RMSE 0.6187 0.1173 0.4618 0.2178 0.2617 0.0890 0.2943 
Pinbal

l 

0.2921 0.0509 0.2207 0.1029 0.1272 0.0361 0.1383 

CRPS 0.5694 0.0969 0.4295 0.2003 0.2503 0.0684 0.2691 

APLF 
RMSE 0.8307 0.2210 0.3844 0.2848 0.1577 0.0809 0.3265 
Pinbal

l 

0.5554 0.0994 0.1112 0.1557 0.0528 0.0159 0.1650 

CRPS 0.6023 0.1729 0.2963 0.2128 0.1099 0.0431 0.2395 

GNN* 
RMSE 0.0988 0.0647 0.07792 0.0522 0.0937 0.0429 0.0717 

Pinbal

l 

- - - - - - - 

CRPS - - - - - - - 

BNN* 
RMSE 0.1908 0.1598 0.1690 0.1954 0.1755 0.1412 0.1719 
Pinbal

l 

0.1135 0.1092 0.1167 0.1576 0.1158 0.0695 0.1137 

CRPS 0.1728 0.1325 0.1528 0.1778 0.1590 0.1144 0.1516 

BMDeT* 
RMSE 0.09242 0.04912 0.0819 0.03912 0.08492 0.03112 0.06902 

Pinbal

l 

0.03742 0.01952 0.03522 0.01582 0.04032 0.01192 0.02662 

CRPS 0.08332 0.07082 0.05792 0.05952 0.06111 0.04882 0.06362 

Our 

RMSE 0.08001 0.04091 0.06271 0.03801 0.08461 0.02921 0.06151 

Pinbal

l 

0.03161 0.01621 0.02551 0.01551 0.04031 0.01081 0.02341 

CRPS 0.05661 0.02881 0.04511 0.02781 0.06832 0.01881 0.04281 

Note: * represents multi-region forecasting model; Superscripts 1 and 2 denote the first and second 
rankings, respectively. 
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series, indicating its effectiveness to enhance the feature learning ability and share the graph 

structure information to realize the joint forecasting of multi-regions.  

 
(a) (b) (c) 

Figure 2. Ablation experiment with graph structure based on GNN, (a) RMSE, (b) pinball loss, (c)CRPS 

Graph Bayesian hybrid attention: As shown in Table 3, the proposed Graph Bayesian Hybrid 

Transformer Network demonstrates superior overall performance, indicating its effectiveness in 

capturing the spatiotemporal relationships of regional electricity load. For certain specific regions 

(e.g., Regions 4 and 5), the Spatio-temporal attention performs less effectively than the local-global 

attention model. This discrepancy may be attributed to significant differences in load patterns 

between these regions and others. The proposed Graph Bayesian Hybrid attention can alleviate 

the problem of regional variations and improve the accuracy of forecasting. 

3.5. multi-loss balance method 

To verify the effectiveness of the proposed multi-loss balance method, the experimental 
results as shown in Figure 3. Figure 3(a) illustrates the weight of loss during model training. It can 
be observed that each task begins with the same initial weight, the weights adaptively adjust as 
training progresses. Figure 3(b) shows Loss curves for models trained with and without the multi-
loss balancing method. It can be seen that the proposed multi-loss balance method can effectively 
accelerate the training of multi-task models. The results indicate that the proposed method 
significantly accelerates model training by dynamically adjusting the weight ratios of each loss, 
enhancing the training efficiency. 

Table 3 Ablation experiment with Bayesian hybrid attention 

Region       Average 

Full 
RMSE 0.1278 0.0745 0.0706 0.0648 0.07782 0.0490 0.0774 
Pinball 0.0530 0.0322 0.0285 0.0277 0.03642 0.0203 0.0331 
CRPS 0.0970 0.0608 0.0504 0.0516 0.06952 0.0369 0.0610 

Auto 
RMSE 0.1124 0.0540 0.0951 0.0389 0.0901 0.0333 0.0717 
Pinball 0.0472 0.0224 0.0412 0.0157 0.0431 0.0131 0.0305 
CRPS 0.0879 0.0423 0.0774 0.0285 0.0838 0.0233 0.0572 

Mix 
RMSE 0.0998 0.0539 0.06092 0.0429 0.07131 0.0308 0.0607 
Pinball 0.0410 0.0227 0.02332 0.0176 0.03291 0.0118 0.0249 
CRPS 0.0743 0.0420 0.04152 0.0322 0.06321 0.0205 0.0456 

Spatio-
temporal 

RMSE 0.08882 0.04272 0.0676 0.03802 0.0856 0.03262 0.05992 
Pinball 0.03482 0.01662 0.0262 0.01702 0.0410 0.01262 0.02462 
CRPS 0.06342 0.02942 0.0473 0.02652 0.0694 0.02212 0.04462 

Our 
RMSE 0.08001 0.04091 0.05791 0.03711 0.0846 0.03021 0.05741 
Pinball 0.03161 0.01591 0.02291 0.01471 0.0403 0.01121 0.02311 
CRPS 0.05661 0.02761 0.03971 0.02591 0.0683 0.01871 0.04171 

Note: Superscripts 1 and 2 denote the first and second rankings, respectively. 
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(a) (b) 

Figure 3 The effectiveness of the proposed multi-loss balance method. (a) the weight of loss during model 

training; (b) loss curves for models trained with and without the multi-loss balancing method. 

4. Conclusion 

In this work, we mainly focus on the investigation of multi-region probabilistic load 
forecasting. Specially, GNN is proposed to enhance the feature learning ability and share the graph 
structure information with multi-region. Then, hybrid Bayesian attention is proposed to achieve 
more acutely identify short-term, neighbourhood, and fine-grained spatiotemporal patterns and 
quantify electricity load uncertainty more accurately. Based on these, the spatial-temporal 
information is inadequate utilized, and the capability of fine-grained dependencies is capture. The 
experimental results and joint analysis demonstrate that the proposed model outperforms the 
existing mainstream methods in terms of accuracy and adaptability. In the future, datasets need 
to analyse for better understand pattern differences and focus on different forecasting dimensions. 
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