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Abstract. Accurate probabilistic load forecasting is essential for efficient energy
management and the safety operation of power system. Existing load forecasting
methods suffer from two limitations: 1) Inadequate utilization of feature; 2)
insufficient modelling capability for fine-grained dependencies. To end these
problems, a multi-region probabilistic load forecasting method based on graph
Bayesian Transformer network is proposed. Specifically, the proposed forecasting
framework consists of graph neural network and hybrid Bayesian Transformer
connected in cascaded configuration. The former one is used to develop multi-
graph spatial-temporal features, which can enhance the feature learning ability
and share the graph structure information to realize the joint forecasting of multi-
region. The latter one is used to capture multi-scale information, which can
improve the adaptability of model to complex dynamic data and forecasting
accuracy. For validation, a series of compared experiments and ablation analysis
are conducted under New England dataset. The experimental results demonstrate
that the proposed method has good performance in foresting accuracy, and
adaptability. In particular, compared to other comparative methods, the Continuous
Ranked Probability Score (CRPS) is reduced 32.7%.

1. Introduction

As industrialization continues, electricity demand in numerous countries has risen
significantly. As a result of the imbalance between energy supply and demand, the world is
experiencing an unprecedented energy crisis [1-3]. Consequently, efficient and rational utilization
of power resources has become a focal point for nations worldwide [4,5]. Probabilistic load
forecasting, by addressing the inherent uncertainties in load distribution, enables power system
operators to make risk-informed decisions in areas such as economic dispatch and steady-state
estimation of transmission networks [6-9]. Accurate probabilistic load forecasting is essential for
optimizing grid dispatch and promoting the rational use of power resources [10,11].

C. Li et al. [12] proposed an interpretable Long Short-Term Memory (LSTM) network for
probabilistic residential load forecasting within a memristor-based neuromorphic computing
architecture. A. Faustine et al. [13] introduced parameterized depth quantile regression to achieve
short-term probabilistic load forecasting. Alvarez et al. [14] proposed an adaptive probabilistic
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load forecasting methodology based on Hidden Markov model to capture load demand uncertainty
and dynamics. Bayesian neural networks are extensively applied for probabilistic forecasting, as
they capture both epistemic and aleatoric uncertainties [15-18]. Alessandro et al. [19] proposed
an approach framed on Bayesian Mixture Density Networks, which enhance neural network
mapping by integrating predictive distributions that address both uncertainty types. C. Wang et al.
[20] proposed a multi-region Bayesian neural network, Bayesian Multiple-Decoder Transformer
(BMDeT), to achieve probabilistic forecasting of multi-energy loads, accounting for their complex
interdependencies and uncertainties. However, there still some difficulties and challenges:

1) Inadequate utilization of feature: Electricity load typically exhibits spatial dependency
and load transfer effects. Utilizing features from a single region fails to fully leverage the spatio-
temporal information across regions, resulting in inadequate utilization of features.

2) Insufficient modelling capability for fine-grained dependencies: Due to the complex
spatial heterogeneity, the insufficient modeling of fine-grained dependencies leads to local
properties that are then difficult to capture adequately on individual regions.

Based on this, a multi-dimensional Bayesian Autoformer network for short-term load

probabilistic forecasting is proposed. The contributions are summarized below:

*  Graph neural network (GNN) is proposed to develop spatial-temporal features, which
can enhance the feature learning ability and share the graph structure information to
realize the joint forecasting of multi-regions.

*  Hybrid Bayesian attention is proposed to capture multi-scale information, which can
more acutely identify short-term, neighborhood, and fine-grained spatiotemporal
patterns and quantify electricity load uncertainty more accurately.

* The proposed model was subjected to a series of experimental analysis (compared
analysis, ablation analysis, adaptive analysis) on real load datasets from multiple regions.
The experimental results demonstrate that the proposed method has good performance
in foresting accuracy, and adaptability.

The remainder of this work is organized as follows: Section 2 introduces the proposed model

and the specific design. A series of comparison experiments and joint analysis (ablation analysis
and adaptive analysis) are conducted in Section 3. Finally, Section 4 draws the conclusion.

2. Proposed Methodology

In this paper, we propose a multi-region probabilistic forecasting model based on Graph
Bayesian Transformer network. The model framework is shown in Figure 1, it includes graph
structure learning, graph Bayesian hybrid Transformer and performance optimize. The following
is a further description of the model.

2.1 Graph structure learning

In electricity load forecasting, each node represents the electrical load of a region, while the
edges of each node represent the connections between regions (proximity relationships). Based
on this, the directed graph structure G can be represented as

G=(V,E) (1D
where V denotes the set of nodes (regions). E denotes the set of edges, i.e, the lines connecting the
regions. Adjacency matrix AER¥N describes the connectivity relationship between each region.
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Figure 1. The framework of the proposed multi-region probabilistic forecasting model

The feature matrix XeRN<F contains F-dimensional historical load data of each node. Then, the
update formula is as follows:

H(1+1) ZO'(AH(I)W(I)) (2)

where HOERMN2iis the node identity matrix of the I layer and H(©=X is the initial input feature. A
is the normalized matrix of the adjacency matrix A after adding the identity matrix I. W€ER DD
is the learnable weight matrix of the I, layer. o (+) is a nonlinear activation function.

2.2 Graph Bayesian Hybrid Transformer Network

Hybrid Bayesian Transformer Network consists of an encoder module, a decoder module. The
main task of the encoder is to extract and compress the multi-scale features of the input data. It
efficiently captures the temporal trends and interdependencies between regions. The task of the
decoder is to generate probabilistic forecasts based on the embedding of the encoder outputs.

Hybrid Bayesian Encoder: The Bayesian encoder consists of four encoder layers, including
Graph Bayesian Hybrid Multi-Head Attention Layer, Bayesian Feed Forward Layer and
Normalization Layer. Graph Bayesian Hybrid Multi-Head Attention Layer includes hybrid attention,
it can be represented by

H, . =aH, +BH_ +YH, (3)
'QcKT ch
H, = Attention,,,, .. (QtWI.Qt N A AATAL ) =soft max(%}/twﬁ (4)
k

CKTW
H, = Attention,,,, (Qsm‘?s N A TARATAL ) =soft mau{M + AJVSW;VS (5)

k



ICDIES-2025 10P Publishing
Journal of Physics: Conference Series 3001 (2025) 012013 doi:10.1088/1742-6596/3001/1/012013

QWK W

Jd_ et J]/CVViVCw:Hw (6)
k

where o and S denote the weight of learnable. W2, Wikt, and Wt represent the weights of Q;, K,
and V;, respectively. Similarly, Wies, Wiks, W%, Wee, W.ke, and W " denote the weights of Qs, K, Vs, Q,
K., and V.. dx denotes scaling coefficient, and A denotes the adjacency matrix. @ denotes the size of
sliding windows. Then, we utilize multiple hybrid attention mechanisms to parallelize the
computational:

H, = Attention,,,, (QCW;Q’ N ATASRATAS ) =soft max(

MultiHead(Q,K,V ) =W, -Concat(Head,,...,Head, ) (7)
Head,. = H;xybrid (8)

where W, is the weight of Concat output. Bayesian neural networks evaluate uncertainty by
sampling from a probability distribution to obtain weights and biases, such as Gaussian
distribution. Weights, including Wi, Wik, Wivt, Wies, Wiks, Wi¥s, Wee, W ke, W e and W, are taken by
sampling from the Gaussian distribution. Similarly, the parameters of Bayesian Feed Forward
Layer are sampled from the Gaussian distributions.

Hybrid Bayesian Decoder: The Bayesian encoder includes Graph Bayesian Hybrid Multi-
Head Attention Layer, Graph Bayesian Hybrid Multi-Head Related Attention Layer, Bayesian Feed
Forward Layer and Normalization Layer. Among them, the input Q and K of the Related Attention
Layer are outputs from the encoder, while V is the output from the Attention Layer in decoder.
Bayesian decoder combines known information about future time steps with spatio-temporal
features of the encoder outputs and generates a probability distribution of the load forecast.

2.3 Performance optimize

During the training process, model performance is quantified and optimized in multiple
dimensions such as accuracy of predicted values, coverage of interquartile range, and matching of
prediction distributions. This multi-loss setting helps the model to generate more reliable
predictions that not only give single-point predictions, but also quantify uncertainty through
probability distributions, making the predictions richer and more robust. The overall loss function
for the training model is obtained by:

Loss =a,Loss1+a,Loss2+a,Loss3 (9)
Loss1=RMSE( J, y) (10)
Loss2 = pinball(y, y) (11)
Loss3=CRPS(y,y) (12)

where parameters as, a, as represent the weight assignments for Loss1, LossZ2, Loss3.

To optimize the model and achieve probabilistic forecasting, variational inference is
employed to enable effective Bayesian inference [21]. Specially, inference task is addressed by
minimizing the Kullback-Leibler (KL) divergence from the latent posterior, formulated as:

q(w|0)
KL 0)||P(w|D)|= 0)log| ——————|d

[a(w16)11P(w]D)]=[q(w] )og(P((u)P(DM)) w
(13)
0

:—Eq{logqﬁf—olu))—logP(ma))}rlogP(D)
where q(w|60) represents the variational distribution of parameter 6, P(w|D) is the posterior
distribution approximated by gq(w|8). In equation (13), the second term is constant with respect
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to the network parameters. Therefore, the primary component requiring optimization through
backpropagation is the Evidence Lower Bound (ELBO):

ELBO=E, [ log(q(w|6)-P(w))-logP(D|w) |=KL(q(w|0)|| P(w))-E,[logP(D|w)] ~ (14)

where E,[logP(D|w)] is reconstruction loss, we better adapt £ for the probabilistic forecasting
model, we further customize it by jointly minimizing the multi-loss:

L=—E[Loss]+KL(q(6)|| p(6)) (15)

3. Experiment and analysis

3.1 Dataset

The dataset chosen for the experiment was collected by New England Independent System
Operator and is publicly available on the web https: //www.iso-ne.com/. It is a real electricity load
dataset that contains electric load data for the New England region of the northeastern U.S,,
including historical load profiles for six states (e.g. Miane, New Hampshire, Vermont,
Massachusetts, Connecticut, and Rhode Island). It records the demand for electricity over time for
each region at an hourly frequency.

3.2 Evaluation Indicators

In this paper, the three evaluation indicators are used to evaluate the performance of the
forecasting model: Root Mean Square Error (RMSE), pinball loss, Continuous Ranked Probability
Score (CRPS), the special formula is as follows [22-23]:

N
RMSE= |~ >(y, -9, (16)
Q(Yt (q) ¥, Zf/t[q]
pinball _loss(q,y,)= (17)
1- q( s @ _ ) ¥, <J;t(q)
CRPS(F, Z (t >y O1) 18
(F.y.) ey, (18)

=1
where N is the number of prediction data, y: is the actual value and y: is the predicted value. q is
quartile, y4 is the estimate when the quartile is g at time t.

Table 1. Parameter setting

Model Parameters Model Parameters

LSTM unit: 16 FC-1 unit: 512 layer:1

QLSTM [12] FC unit: 16 layer: 4 BNN [19] FC-2 unit: 256 layer:4
Encoder layer: 4
Forgetting factors 1: 0.2 Decoder layer: 4
APLF [14] Forgetting factors 2: 0.7 BMDeT [20] Decoder multi-head: 8
model dimension: 24
Hidden Dimension:24 Encoder layer: 4
Convolution layer: 4 Decoder layer: 4
GNN [26] Edge dimension: 7 Proposed Model Decoder multi-head: 8
Node dimension: 48 model dimension: 24
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3.3 Experimental Environment and Parameter Settings

The proposed model is trained and tested on a server equipped with NVIDIA GeForce RTX
4090 GPUs and Programming language Python 3.10. Suitable parameters facilitate good
performance of the model. Parameters of experienced models are determined by grid search
method [24, 25], and the parameter settings for all models are demonstrated in Table 1.

3.4. Comprised Experiment

The performance of the proposed model is compared with other maintains load forecasting
methods, including QLSTM [12], APLF [14], GNN [26], BNN [19], BMDeT [20]. Then, the special
comprised results as shown in Table 2. From Table 2, the proposed model performs the best in
overall performance, the average RMSE, Pinball Loss and CRPS are 0.0559, 0.0234, and 0.0409,
respectively. Specifically, compared with signal-region forecasting model (QLSTM, APLF), the
performance of proposed model is more accurate and stable. Compared with GNN, which also
builds graph structure features, the accuracy of the proposed model is improved by 14.2%, and
GNN only enables point forecasting. It is shown that the proposed model is able to better learn
graph structure features and realize multi-region joint forecasting. Compared with multi-regions
probabilistic forecasting models (BNN, BsDeT), the proposed model has significant advantages,
with average RMSE, Pinball loss, and CRPS improving by at least 10.8%, 12%, and 32.7%,
respectively. It indicates that the proposed model is able to efficiently capture the coupling
relationship between the proximity region and the local, realizing the accurate probabilistic
forecasting of the electricity loads in multiple regions.

Table 2 Comprised experiment with different load forecasting methods

Region (€ @) ® @ ® ® Average
RMSE 0.6187 0.1173 0.4618 0.2178 0.2617 0.0890 0.2943
QLSTM Pinbal 0.2921 0.0509 0.2207 0.1029 0.1272 0.0361 0.1383

CRPS 0.5694 0.0969 0.4295 0.2003 0.2503 0.0684 0.2691
RMSE  0.8307 0.2210 0.3844 0.2848 0.1577 0.0809 0.3265
APLF  Pinbal 0.5554 0.0994 0.1112 0.1557 0.0528 0.0159 0.1650

CRPS 0.6023 0.1729 0.2963 0.2128 0.1099 0.0431 0.2395
RMSE  0.0988 0.0647 0.07792 0.0522 0.0937 0.0429 0.0717
GNN*  Pinbal - - - - - - -
CRPS - - - - - - -
RMSE  0.1908 0.1598 0.1690 0.1954 0.1755 0.1412 0.1719
BNN*  Pinbal 0.1135 0.1092 0.1167 0.1576 0.1158 0.0695 0.1137
CRPS 0.1728 0.1325 0.1528 0.1778 0.1590 0.1144 0.1516

RMSE 0.0924: 0.0491: 0.0819 0.0391: 0.0849: 0.0311z  0.06902
BMDeT* Pinbal 0.03742 0.0195: 0.03522 0.01582 0.0403: 0.01192;  0.02662
CRPS  0.08332 0.07082 0.05792 0.05952 0.06114 0.04882  0.06362
RMSE 0.0800:1 0.04091 0.0627:1 0.03801 0.08461  0.0292:1 0.06151
Our Pinbal 0.03161 0.0162:1  0.02551 0.01551 0.04031  0.01081 0.02344
CRPS  0.0566:1 0.0288:1 0.0451: 0.02781 0.06832 0.0188:1  0.0428:
Note: * represents multi-region forecasting model; Superscripts 1 and 2 denote the first and second
rankings, respectively.

3.5. Ablation studies

Graph structure based GNN: The experiment result with different input feature as shown in
Table 3. The input with the graph structure demonstrates superior overall performance than time
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series, indicating its effectiveness to enhance the feature learning ability and share the graph
structure information to realize the joint forecasting of multi-regions.
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Figure 2. Ablation experiment with graph structure based on GNN, (a) RMSE, (b) pinball loss, (c)CRPS

Graph Bayesian hybrid attention: As shown in Table 3, the proposed Graph Bayesian Hybrid
Transformer Network demonstrates superior overall performance, indicating its effectiveness in
capturing the spatiotemporal relationships of regional electricity load. For certain specific regions
(e.g., Regions 4 and 5), the Spatio-temporal attention performs less effectively than the local-global
attention model. This discrepancy may be attributed to significant differences in load patterns
between these regions and others. The proposed Graph Bayesian Hybrid attention can alleviate
the problem of regional variations and improve the accuracy of forecasting.

Table 3 Ablation experiment with Bayesian hybrid attention

Region (€ ® ® @ ® ® Average

RMSE 0.1278  0.0745  0.0706 _ 0.0648 0.0778z  0.0490  0.0774
Full Pinball  0.0530  0.0322  0.0285  0.0277 0.03642 0.0203  0.0331
CRPS 0.0970  0.0608  0.0504  0.0516 0.06952 0.0369  0.0610

RMSE 0.1124  0.0540  0.0951  0.0389  0.0901  0.0333  0.0717

Auto Pinball  0.0472  0.0224  0.0412  0.0157  0.0431  0.0131  0.0305
CRPS 0.0879  0.0423  0.0774  0.0285  0.0838  0.0233  0.0572

RMSE 0.0998 0.0539 0.0609: 0.0429 0.0713: 0.0308  0.0607

Mix Pinball  0.0410  0.0227 0.0233; 0.0176  0.0329: 0.0118  0.0249
CRPS 0.0743  0.0420  0.0415; 0.0322 0.0632:1 0.0205  0.0456

. RMSE  0.0888z 0.0427: 0.0676 0.0380z 0.0856  0.0326z  0.0599:
tsr%ég(‘)‘;;ﬂ Pinball  0.0348; 0.01662 0.0262  0.01702 0.0410 0.01262 0.0246
CRPS 0.06342 0.0294; 0.0473  0.02652 0.0694  0.02212 0.04462

RMSE  0.0800: 0.0409: 0.0579: 0.0371: 0.0846 0.0302:1 0.05741

Our Pinball 0.0316: 0.0159: 0.0229: 0.0147: 0.0403  0.0112: 0.0231:
CRPS  0.05661 0.02761 0.0397: 0.0259: 0.0683  0.0187: 0.0417:

Note: Superscripts 1 and 2 denote the first and second rankings, respectively.

3.5. multi-loss balance method

To verify the effectiveness of the proposed multi-loss balance method, the experimental
results as shown in Figure 3. Figure 3(a) illustrates the weight of loss during model training. It can
be observed that each task begins with the same initial weight, the weights adaptively adjust as
training progresses. Figure 3(b) shows Loss curves for models trained with and without the multi-
loss balancing method. It can be seen that the proposed multi-loss balance method can effectively
accelerate the training of multi-task models. The results indicate that the proposed method
significantly accelerates model training by dynamically adjusting the weight ratios of each loss,
enhancing the training efficiency.
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Figure 3 The effectiveness of the proposed multi-loss balance method. (a) the weight of loss during model
training; (b) loss curves for models trained with and without the multi-loss balancing method.

4. Conclusion

In this work, we mainly focus on the investigation of multi-region probabilistic load
forecasting. Specially, GNN is proposed to enhance the feature learning ability and share the graph
structure information with multi-region. Then, hybrid Bayesian attention is proposed to achieve
more acutely identify short-term, neighbourhood, and fine-grained spatiotemporal patterns and
quantify electricity load uncertainty more accurately. Based on these, the spatial-temporal
information is inadequate utilized, and the capability of fine-grained dependencies is capture. The
experimental results and joint analysis demonstrate that the proposed model outperforms the
existing mainstream methods in terms of accuracy and adaptability. In the future, datasets need
to analyse for better understand pattern differences and focus on different forecasting dimensions.
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