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Abstract—Facial expression recognition has emerged as a critical
research area in health monitoring, enabling healthcare
professionals to assess patients’ emotional and psychological
states for timely intervention and personalized care. However,
existing methods often struggle to balance computational
accuracy with energy efficiency. To address this challenge, this
paper proposes FE-SpikeFormer — a high-accuracy, low-energy,
and deployment-friendly Spiking Neural Network (SNN) for
facial emotion recognition. The proposed architecture comprises
three key components: the initial convolution module, the spiking
extraction block, and the spiking integration block. These three
modules collectively support detailed and contextual feature
extraction, promote spatial feature integration, and strengthen
the representational capacity of spiking signals. Meanwhile, a
joint verification is conducted in both controlled laboratory
settings and real-world hospital scenarios. Experimental results
demonstrate that FE-SpikeFormer achieves top-three recognition
accuracy among state-of-the-art methods, while utilizing only
6.93 million parameters. Moreover, it exhibits strong robustness
against various noise conditions, underscoring its potential for
practical deployment in healthcare environments.

Index Terms—Facial Expression Recognition, Hospital Health
Monitoring, Dual Attention Mechanism, Spiking Neural Network

I. INTRODUCTION

ith the development of deep learning technologies,

facial expression recognition has increasingly emerged
as a key research direction, particularly in the domain of
human health monitoring [1, 2]. Notably, facial expressions
are one of the most natural and universal ways for humans to
convey their emotional states and behavioral intentions.
Accurate and rapid facial expression recognition plays a
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clinically significant role in healthcare, particularly in the
domains of pain assessment, neuropsychiatric monitoring, and
patient engagement. It enables clinical interventions and
facilitates personalized care [3].

Many studies have sought to enhance the accuracy and real-
time performance of facial expression recognition through the
use of Artificial Neural Networks (ANNSs) [4-13]. Specifically,
both [4] and [5] focus on enhancing Convolutional Neural
Networks (CNNSs) to provide an efficient and computationally
lightweight solution for facial expression recognition. In [6], a
multimodal-based facial expression recognition method (i.e.,
IdentiFace) is developed, which requires extensive data and
computational resources. In [7], an Adaptive Correlation (Ad-
Corre) loss function is designed to enhance facial expression
recognition by improving feature discrimination. Then, a fine-
tunning VGGNet is proposed to perform facial expression
recognition without using additional training data [8]. By
simplifying the structure and compressing parameters, a
Squeeze-and-Excitation Network (i.e., SENet) is developed to
perform facial expression recognition [9]. A Poker Face
Vision Transformer (i.e., PF-ViT) that separates emotion-
related features from emotion-irrelevant components is
proposed for facial expression recognition [10]. [11] proposes
an Oriented Attention Enable Network (OAENet) for facial
expression recognition, ensuring the sufficient utilization of
both global and local features. [12] proposes an end-to-end
Facial Expression Recognition model that integrates
Expression Synthesis with Representation learning (ESR-
FER). In [13], a De-Elements Network (DENet) is proposed to
enhance feature discrimination and improve classification
performance in facial expression recognition.

Although these above-mentioned methods are able to
successfully perform facial expression recognition, they still
suffer from some limitations: All these methods rely on
different ANN architectures, intensive computing has to
execute to guarantee the recognition accuracy, which always
makes these networks redundant and hard to deploy.
Meanwhile, heavy calculation burden brings high energy
consumption. The desire for high-accuracy and energy-
efficiency computing paradigm that is compatible with facial
expression recognition technology in hospital health
monitoring is becoming realistic and attractive [14, 15].

Inspired by human brain, Spiking Neural Networks (SNNs)
have emerged as energy-efficient computing paradigms,
owing to event-driven mechanisms and binary spike
characteristics. So far, SNN has made some progress in image
detection and classification task [16-18]. However, most of
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Fig. 1. The systemic comparison of ANNs- and SNNs-based methods for facial expression recognition

existing SNN-based applications are still difficult to achieve
ANN-comparable accuracy and hard to directly deploy in the
real-world outdoor scenario. For clarity, the systemic
comparison of ANNs- and SNNs-based methods for facial
expression recognition is illustrated in Fig. 1.

From Fig. 1, the specific challenges are concluded below:

Challenge 1: In the existing SNNs, different information is
processed using sparse computing, which makes sufficient and
comprehensive facial feature extraction difficult and
challengeable [19]. Hence, Hence, how to design a specific
facial feature extraction method suitable for SNNs is
important and urgent.

Challenge 2: Although SNNs inherently encode temporal
dynamics [20], conventional spiking feature fusion methods
fail to effectively integrate multi-scale spatial and temporal
cues that are critical for understanding facial expressions.
Hence, how to design a specific facial feature fusion module
in SNNs is important.

Challenge 3: Almost all existing SNNs have been deployed
in controlled laboratory environments [21, 22] to demonstrate
their potential for energy-efficient computing. It is important
to develop a SNN-based facial expression recognition network
in a real-world hospital scenario, enabling to balance the
trade-off between accuracy, energy consumption, and running
speed.

Based on these challenges, this work proposes FE-
SpikeFormer, a high-accuracy, low-energy consumption, and
easy-deployable SNN-based facial emotion recognition
network designed for hospital health monitoring.

The main contributions of this work can be summarized as
follows:

1) To address the challenge of sparse feature extraction, this
work proposes a dual attention-based architecture, combining
both the local and global attention to capture detailed and
contextual features, enhancing the representation of facial
expression features in SNNs.

2) To address the challenge of spiking feature fusion, this
work proposes a novel feature integration strategy, which
facilitates the integration of spatial features in each stage and
enhances the representation capability of spiking signals,
indicating better overall performance of facial expression
recognition.

3) To address deployment issue of SNNs in real-world
outdoor environments, the proposed FE-SpikeFormer is
evaluated in both a controlled laboratory environment and a
real-world hospital setting. The joint validation results
demonstrate that the entire scheme is able to balance the
tradeoff between accuracy, energy efficiency, and running
speed, ensuring reliable performance under diverse and
dynamic conditions beyond controlled indoor settings.

The rest of this work is organized as follows: Section 11
elaborates on the design of FE-SpikeFormer. In Section Ill,
the dataset and the experimental preparation are described in
detail. In Section 1V, a series of experiments are conducted in
both laboratory and hospital environments to demonstrate the
superiority of the proposed FE-SpikeFormer in facial
expression recognition. Section V concludes the entire work,
and Section VI discusses its limitations and outlines future
research directions.

Il. METHODS

A. Overall Architecture

Fig. 2 demonstrates the overview of FE-SpikeFormer,
which primarily consists of three components: Initial-Conv
(InConv), Spiking Extraction Block (SEB), and Spiking
Integration Block (SIB). As the InConv module has a
relatively simple structure [15], the analysis mainly
concentrates on the latter two components.

Here, when a 2-Dimensional (2D) image sequence P (as the
input of FE-SpikeFormer) is given, the InConv module
transforms this image sequence into more compact and
informative spike-form patches x. Then, x is sequentially fed
into the M-block SEB and N-block SIB to perform local and
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Fig. 2. The overview of FE-SpikeFormer

global attention operations, respectively. The output is then
passed to the classification head (Head) to produce the final
result I.

B. Spiking neuron layer

In SNNs, the spike neuron serves as the core unit,
integrating incoming currents to accumulate membrane
potential. When the potential surpasses a defined threshold,
the neuron fires a spike. This study exclusively employs
Leaky Integrate-and-Fire (LIF) neurons. The dynamics of LIF
model can be expressed by:

H[t]=V[t—1]+§(><[t]—(V[t—1]—vreset» &

S[t]=O(H[t]-V,), @)

V[t]= H[tJA- S[t]) + Ve SIE, ®)

where t represents the membrane time constant, and X[t]

denotes the input current at time step t. Notably, a spike S[t] is

generated when the membrane potential H[t] surpasses the

threshold Vi, The Heaviside step function ®(v) outputs 1

when v > 0, and 0 when v < 0. After firing, the membrane

potential V[t] is reset to Vyeser; If NO spike occurs, it retains the
value HJt].

C. Spiking Extraction Block

The SEB consists of a ResConv-based SNN (RCS) and a
Pairwise-Attention SNN (PAS). In the RCS module, the
model performs convolutional computations based on SNN
architecture, while the pairwise-attention computations are
performed in the PAS module.

1) ResConv-based SNN

Given an input spiking map S e R™®HW' the spiking
representation is generated in the RCS module. Specifically,
the Multi-Stage SNN Conv (MS-SNN Conv) module
(MSConv; and MSConv,) with 3>3 kernel size is used to learn
local information. 2D-avg-pooling layer is applied to down-
sample the feature map. During this process, the size and

channel dimensions of the feature maps change from R™CxH<W
to RT2CH2W2 T ensure alignment in the shortcut
connections and to enhance information representation, the
spiking Multi-Layer Perception (MLP) module SMLP(-) with
a 1x1 kernel is applied. The operations performed in the RCS
module are mathematically expressed by:

S, = MSConv, (S) 4)

S, = MSConv, (S,) (5)

S, =SMLP(S) (6)

U=S,+S, @)

MSConv, (S) = AvgPool (BN (Conv2d (LIF(S))))  (8)
MSConv, (S;) = BN(Conv2d (LIF (S,))) 9)

SMLP(S) = BN(Conv2d (LIF(S))) (10)
where U denotes the output of RCS, LIF(-) denotes the
activation function of the spiking neuron layer, Conv2d(-)
represents 2D convolution operation, BN(-) and AvgPool(-)
denote batch normalization and average pooling operation. Sy,
Sy, and Ss are intermediate variables in the RCS module.

2) Pairwise-Attention SNN

The feature map Ue R™&HW is further passed to PAS for
attention computation. Similar to RCS, PAS is also composed
by two parts: the pairwise-attention (PA) module and the
spiking MLP module.

After flattening operation, the feature map U is converted
into a sequence of image patches u € R™®N, where N = Hx\W.
Then, the stimulus value SV and response value RV with the
same size (R™N) can be calculated by:

SV = LIF, (BN (u'Wj,)) (11)
RV = LIFR, (BN(u'Wy,)) (12)
where u'=LIF(u) is the spiked form of u, Wsy and Wgy are the

learnable linear matrices, LIFsv(-) and LIFgry(-) are the
corresponding neuron activation operation.
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The spiking-form global features within SV channel

dimension Asy eR™® can be mathematically calculated by:
A, = LIF(Avg(SV)) (13)
where Avg(-) denotes the average computation operation.

Next, the corresponding attention feature map AT Tpai can be
obtained and then flattened and transformed into spiking
signals. The output of the pairwise-attention (PA) module Y
can be written by:

ATT,, = A, *RV (14)

Y, = BN (Convid (LIF (FLA(ATT,,)))) (15)

where FLA(-) and Convld(-) denote the flattening operation
and the one-dimensional convolution (1D convolution)
operation, respectively.
Then, the output of the pairwise-attention SNN can be
expressed by:
Y =PAU)+U (16)

OUT,, =SMLP(Y)+Y (17)

where PA(") denotes the pairwise-attention module, and
OUTpeas represents the output of the pairwise-attention SNN.

D. Spiking Integration Block

The SIB module consists of two components: a ResConv-
based spiking neural network (RCS) and a spiking-attention-
based spiking neural network (SAS). In the SAS module, the
spiking-attention computation is performed. Unlike the
pairwise-attention module, spiking-attention module focuses
more on global modeling across different channels, whereas
the pairwise-attention mechanism emphasizes feature
modeling within individual channels.

Similarly, the input feature map Ze R"®™W can be
converted into a sequence of image patches z € R™“N after
flattening operation. The query (Q), key (K), and Value (V) are
computed through learnable matrices Wq, Wk, Wye RNN
firstly. Then they are transformed into spiking sequences Qs,
Ks, and Vs through distinct spiking neuron layers:

Q, = LIF, (BN(2'W,)) (18)
K, = LIF, (BN(z'W,)) (19)
V, = LIF, (BN(z'W,)) (20)

where z'=LIF(z) represents the spiked form of z.

Then, a scaling factor b is added to prevent excessively
large values during matrix multiplication. And the output of
the spiking-attention (SA) module X; can be written by:

ATTsi = (Q, © (K ©V;))*b (21)

X, = BN(Convld (FLA(LIF (ATTsi)))) (22)

where ATTsg,i represents the output of the spiking-attention

computation. The overall computation in the spiking-attention

SNN can be expressed by:

X =SA(Z2)+Z (23)

OUT,,; =SMLP(X)+ X (24)

where SA(-) denotes the spiking-attention calculation, and
OUTsas represents the output of the spiking-attention SNN.

For clarity and simplicity, the pseudocode of the proposed
FE-SpikeFormer is provided in Table I.

TABLE I
THE PSEUDOCODE OF THE PROPOSED FE-SPIKEFORMER

Algorithm FE-SpikeFormer

Input: Raw facial images P, Number of blocks M for SEB, Number of
blocks N for SIB
Output: Prediction result |
Step 1: Transform images into spike form patches: x«InConv(P)
Step 2: Extract local features in Spiking Extraction Block:
for i from 1 to M do
Initial feature extraction: U <~ RCS(x)
Local attention computation: Y, < PA(U)
Residual connection fusion: Y « Y, + U
Feature aggregation output: OUTpas <~ SMLP(Y) +Y
end

Step 3: Integrate global features in Spiking Integration Block:
forifrom1to N do
Initial feature extraction: Z¢— RCS(OUTpas)
global attention computation: X; <— SA(Z)
Residual connection fusion: X «— X; + Z
Feature aggregation output: OUTsas <~ SMLP(X) + X
end
Step 4: Produce final prediction output: | «— Head (OUTsas)
Return: |

I11. DATASET AND EXPERIMENTAL PREPARATION

A. Dataset

Currently there is no open-source facial expression
recognition dataset specifically for hospital environment, two

widely-used public datasets (i.e.,, FER2013 dataset [23] and

AffectNet dataset [24]) are used for laboratory environment
experiment. We ensure a rigorous data partitioning between
the training, validation, and test sets by strictly adhering to the
official dataset splits [23, 24]. Specifically, the FER2013
dataset (36157 images) is further divided into a training set
(28709 images), a validation set (3859 images), and a testing
set (3589 images) across seven facial expressions (including
angry, disgust, fear, happy, sad, surprise, and neutral). The
AffectNet dataset (420299 images) is further divided into a
training set (416299 images) and a validation set (4000 images)
across the same seven facial expressions. The specific
distribution of these two datasets is shown in Table I1.

TABLE Il
THE DISTRIBUTION OF FER2013 AND AFFECTNET DATASET.

Dataset Categories Training Testing Total
Anger & 3995 491 4486

Disgust #™ 436 55 491

Fear M 4097 528 4625

FERLS  appy @& 7215 879 8094
[23] Sad #4830 594 5424
Surprise 3171 416 3587

Neutral ® 4965 626 5501

Anger 24882 500 25382

Disgust # 3803 500 4303

Fear % 6378 500 6878
Aﬁ[ezc;]Net Happy @ 134415 500 134915
Sad M 25459 500 25959

Surprise 14090 500 14590

Neutral 74874 500 75374

To evaluate the generalization capability of the proposed
FE-SpikeFormer in a clinical setting, we conducted a
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TABLE Il
DETAILED INFORMATION ON THE DATA COLLECTION IN HOSPITAL SETTING
Category Description N[o]
All participants provided written informed consent in
Participants 40 hospitalized patients accordance with the hospital’s ethics committee approval
(Approval No.: 2024(1)-089-01)
Age distribution 21-30, 3140, 41-50, and over 50 years old Even distribution
Gender 20 males and 20 females Even distribution
Data collection Facial expressions during bed rest in a natural hospital setting Data recording is conducted during daytime only;
Emotion Annotation 3 independent clinical experts Anonymized labels (e.g., Patient 03: anger)
Ethi . Data anonymization, on-site processing only, de-identified Compliant with China’s Regulations on Ethical Review of
ical compliance . AN . < .
image data (no personal identifiers retained) Biomedical Research.

deployment study at Lishui Central Hospital (Zhejiang The AdamW optimizer is employed with a base learning rate
Province, China). The setup involved a remote camera of 1x10% The actual learning rate is determined by
(Logitech C525) mounted on a short wall bracket with an  BatchSize/256x10%3. Inspired by [17], [18], [25], and [26], the
adjustable viewing angle (01809, and a local edge parameter settings of FE-SpikeFormer are shown in Table IV.

computing system (HS140) for on-site inference (as shown in TABLE IV

Fig. 3). This configuration enabled unobtrusive, front-facing THE PARAMETER SETTING OF FE-SPIKEFORMER

facial recording of patients under natural lighting conditions.
Detailed information on the data collection in the hospital ~  Batchsize @ 48
setting is provided in Table III. Base |ea'\r/r|1ing rate 1x;0'3

As summarized in TableIII, the study involved 40 long-

- . . N 2
term hospitalized patients, whose ages are grouped into four o 384
categories: 21-30, 31-40, 41-50, and over 50 years. All T 4
participants provided informed consent, and the study was Epoch 300
approved by the hospital’s Ethics Committee (Approval ID: From Table IV, the number of SEB and SIB are both set to

2024(1)-089-01). A total of 204 facial expression video
segments were recorded while patients were resting in bed
under natural conditions. Facial expressions were annotated
frame by frame by three certified clinicians using a predefined
emotion taxonomy comprising the categories: happy, neutral, .
sad, angry, fear, disgust, and surprise. Two clinicians €XPeriments.

independently labeled each frame, and a third adjudicated any ~ 2) Evaluation Metrics

disagreements to ensure high inter-rater reliability. In this work, both the confusion matrices [27] and average

accuracy [28] are used to evaluate the performance of the

proposed FE-SpikeFormer. The former provides detailed

information on the model’s behavior across various expression

Adjustable angle categories, while the latter indicates the overall classification
0<180° accuracy. Additionally, model size and energy consumption
- ” [29] are also used to evaluate the computational efficiency.

2 (i.e., M=N=2). dmoder is set to 384 within the attention
calculation layer. The time step T is set to 4, and the total
number of training epochs is 300. Notably, the configuration
of parameters is determined by comprehensive optimization

Edge Computlng
System HS140

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Comparison Experiments with State-of-the-Art Methods

This part evaluates the performance of FE-SpikeFormer on
two datasets and compare it with state-of-the-art (SOTA)
methods developed in recent years, including CLCM [4],
RTEC [5], IdentiFace [6], Add-Corre [7], VGGNet [8], SENet
[9], PF-Vit [10], OAENet [11], ESR-FER [12], DENet [13],
Fig. 3. Necessary sensor & computing devices deployed in a hospiltél ConvSNN [16], Splk_former [17], and Meta—SplkeFormer [18].
environment The relevant comparison results are presented in Table V.

From Table V, the proposed FE-SpikeFormer demonstrates
competitive performance on both datasets, achieving a notable
1) Experimental Setup balance between accuracy and parameter efficiency. For the

All experiments are conducted on a server equipped with FER2013 dataset, FE-SpikeFormer achieves the highest
dual NVIDIA GeForce RTX 4090 GPUs, utilizing the accuracy (73.58%) and less energy consumption (7.40 mJ),
PyTorch framework. Each GPU processes a batch size of 48.  outperforming all the other SOTA methods. Meanwhile, the

B. Experimental Preparation
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TABLE V
COMPARATIVE RESULTS OF FE-SPIKEFORMER AND OTHER METHODS
Dataset Method Year SNN (AO/CO(; E(r:s;g)]y P?;;l;n s ';r:;
CLCM [4] 2024 X 63.01 11.803 1
RTEC [5] 2024 X 63.21 - - 1
IdentiFace [6] 2024 X 66.13 26.90 35.30 1
Ad-Corre [7] 2022 X 72.03; 30.20 26.15 1
FER2013 VGGNet [8] 2021 X 73.28, 44.90 138.13 1
ConvSNN [16] 2024 v 61.87 21.30 21.50 8
Spikformer [17] 2022 v/ 70.70 7.70, 9.323 4
Meta-SpikeFormer [18] 2023 v 71.82 16.70 15.10 4
FE-SpikeFormer (ours) 2024 v/ 73.58; 7.40, 6.93, 4
CLCM [4] 2024 X 54.11 11.803 2.31; 8
SENet [9] 2023 X 56.54 40.50 11.27 1
PF-Vit [10] 2022 X 57.99 81.00 86.18 1
OAENet [11] 2021 X 58.70 - - 1
AffectNet ESR-FER [12] 2021 X 60.04, 98.40 154.10 1
DENet [13] 2023 X 39.60 23.33 1
Spikformer [17] 2022 v 57.61 7.70, 9.32; 4
Meta-SpikeFormer [18] 2023 v/ 58.01 16.70 15.10 4
FE-SpikeFormer (ours) 2024 v 59.905 6.93, 4

Note: the subscriot ll. 2. and 3 renresent the soecific rankina results.

proposed FE-SpikeFormer uses only 6.93M parameters
(ranking the second place among SOTA methods), which
indicates that the proposed FE-SpikeFormer successfully
leverages the strengths of SNNs for both computation
efficiency and accuracy. For the AffectNet dataset, the
proposed FE-SpikeFormer maintains a competitive edge with
an accuracy of 59.90%, outperforming almost all the other
competitors, except for ESR-FER (60.04%) and DENet
(60.94%). But these two methods require more parameters and
consume more energy (ESR-FER: 154.1M, 98.4mJ; DENet:
23.33M, 39.60 mJ) compared to the proposed FE-
SpikeFormer (only 6.93M, 7.40 mJ). Meanwhile, it is clear
that the proposed FE-SpikeFormer is better than Spikformer
and Meta-SpikeFormer in terms of accuracy, energy

consumption and parameter count.
FE-Spikeformer
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Fig. 4. Comparison of FE-SpikeFormer with SOTA methods in terms of
recognition accuracy and parameter size on the FER2013 dataset

To better illustrate that the proposed FE-SpikeFormer is
able to balance the trade-off between recognition accuracy and
parameter size, an intuitive result is provided in Fig. 4. It can
be seen that FE-SpikeFormer achieves a superior balance

between these two metrics compared to other competitors.
Notably, it outperforms VGGNet and Ad-Corre in terms of
recognition accuracy, reaching 73.58%, while maintaining a
relatively low parameter count. Additionally, compared to
traditional models such as ConvSNN and ldentiFace, FE-
SpikeFormer delivers higher accuracy with fewer parameters,
highlighting its effectiveness in optimizing both performance
and efficiency.

Fig. 5 presents attention map examples from the SIB in FE-
SpikeFormer, demonstrating its ability to focus on image
regions relevant to facial expression semantics. Specifically,
the first row displays input images, followed by their
corresponding attention maps in the second row. The attention
maps highlight key features like the eyes, mouth, and facial
expressions, essential for emotion recognition, while irrelevant
regions are assigned a value of 0 (black areas). This selective
focus enables FE-SpikeFormer to filter out unnecessary
information, contributing to event-driven, energy-efficient
processing. The results across AffectNet and FER2013
demonstrate the proposed FE-SpikeFormer has the
adaptability for diverse inputs (RGB and grayscale images).
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AffectNet Anger Sad Surprise Fear Neutral
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Fig. 5. Attention map visualization of FE-SpikeFormer on AffectNet and
FER2013 datasets. The black region is 0.

Attention
map
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FER2013 (Fig. 7a), FE-SpikeFormer demonstrates strong
performance in recognizing emotions such as happy (0.90),
neutral (0.85), and disgust (0.71). These results demonstrate
the model is able to effectively extract both local and global
features to enhance emotion representation. However, the
classification accuracy for fear (0.56) and surprise (0.60) is
lower, indicating that these emotions may be more challenging
=T to distinguish due to overlapping facial expressions with other

categories, such as anger and sadness. In AffectNet (Fig. 7b),
the model maintains high accuracy, especially for happy (0.95)
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distinguishing between disgust and anger, with noticeable
misclassifications, such as disgust being confused with anger
(0.22). This can be attributed to the subtle and ambiguous
facial cues present in these emotions, which are inherently
challenging for any classifier.

Compared to Meta-SpikeFormer (Fig. 7c¢ and 7d) and
Spikformer (Fig. 7e and 7f), FE-SpikeFormer consistently
achieves higher accuracy in key emotions across both datasets,
especially for happy and neutral, indicating stronger
generalization. While Meta-SpikeFormer and Spikformer
perform well on certain emotions, they display more
variability and a higher tendency to misclassify nuanced
emotions like disgust. The dual attention-based feature
extraction in proposed FE-SpikeFormer enhances its ability to
capture fine-grained features, making it more effective in
differentiating subtle expressions. Overall, FE-SpikeFormer
demonstrates superior robustness and accuracy in complex
facial expression recognition.

B. Ablation Study

Fig. 6. The workflow of the proposed FE-SpikeFormer model.

Fig. 6 demonstrates the workflow of the proposed FE-
SpikeFormer for facial expression recognition. In Fig. 6, five
facial expression images (labelled as (1) ~ (5)) are input into
the well-trained FE-SpikeFormer. After passing through the
SEB and SIB, the corresponding attention maps can be
obtained. The outputs of the classification head consist of a
series of scores, and the final classification results are
determined by the highest score, as illustrated in the lower-
right subfigure of Fig. 6. Notably, signals transmitted between
modules are conveyed in spike form. This spike-based
computation significantly improves computational efficiency
and reduces power consumption, which makes it especially
suitable for deployment in hospital settings.

Fig. 7 presents the confusion matrices of FE-SpikeFormer,
Meta-SpikeFormer, and Spikformer on two datasets. In

FE-SpikeFormer Meta-SpikeFormer Spikformer

Anger 0.01 0.09 0.02 0.09 0.14 0.02 * Anger 0.02 0.10 0.03 0.08 0.10 0.02 ” Anger 0.02 0.08 0.03 0.08 0.10 0.03 "
Disgust 10.12 0.00 0.01 0.04 0.05 0.02 07 Disgust10.14 0.01 0.01 0.05 0.05 0.02 07 Disgust10.12 0.01 0.02 0.03 0.08 0.02 07
Fear40.10 0.01/0.56 0.02 0.09 0.16 0.07 05 Fear40.08 0.02 /0.55 0.01 0.10 0.15 0.07 05 Fear40.10 0.030.54 0.03 0.10 0.15 0.05 05

Happy 10.02 0.00 0.01 0.04 0.02 0.02 Happy 10.02 0.01 0.02 0.03 0.02 0.02 Happy 10.02 0.02 0.04 0.02 0.02 0.02
Sad-0.03 0.00 0.06 0.03 b ! 04 Sad-0.03 0.01 0.07 0.04 b y 04 Sad-0.03 0.02 0.07 0.04 0.14 0.04 o4
Surprised 10.08 0.00 0.10 0.03 0.18 y 0.2 Surprised 10.06 0.01 0.11 0.02 0.16 y 0.2 Surprised 10.08 0.02 0.13 0.02 0.17 0.56 0.02 0.2
Neutral 10.02 0.00 0.07 0.03 0.01 0.02 0o Neutral 10.01 0.02 0.06 0.04 0.03 0.02 oo Neutral 10.01 0.02 0.06 0.05 0.03 0.03- 0

& Q‘?a) '”"’;é@l@@ & @( )"i‘é\&b &»@ W @ (e)@;&b @‘q}
0.9 0.9 0.9

Neutral 0.11 0.04 0.02 0.00 0.00 0.04 Neutral 0.12 0.05 0.02 0.00 0.00 0.04 Neutral 0.14 0.06 0.03 0.01 0.02 0.02
Happyg. 0.00 0.00 0.00 0.00 0.00 07 Happyg. 0.00 0.00 0.00 0.01 0.01 0.7 Happyg. 0.01 0.01 0.01 0.01 0.01 0.7
sad+0.30 0.03/0.56 0.02 0.01 0.01 0.07 05 sad0.31 0.030.54 0.02 0.02 0.01 0.07 06 sad10.30 0.04 0.50 0.04 0.04 0.02 0.06 05

Surprised 10.26 0.20 0.04 0.40 0.07 0.00 0.03 Surprised 10.27 0.19 0.04 0.38 0.08 0.00 0.04 Surprised 10.25 0.19 0.05 0.35 0.08 0.02 0.06
Fear 10.15 0.04 0.10 0.16 0.46 0.01 0.07 04 Fear40.14 0.05 0.09 0.17 0.44 0.01 0.10 04 Fear10.15 0.06 0.09 0.17 0.40 0.03 0.10 04
Disgust10.17 0.12 0.10 0.03 0.02 0.33 0.22 0.2 Disgust10.18 0.11 0.10 0.02 0.03 0.21 0.35 0.2 Disgust10.17 0.12 0.12 0.04 0.05 0.19 0.31 02

Anger 10.29 0.03 0.04 0.01 0.01 0.01 {0.60 Anger 10.30 0.02 0.05 0.05 0.02 0.01 /0.55 Anger 10.32 0.03 0.06 0.05 0.03 0.02 |0.49

> (b) < (d) )

Fig. 7. Confusion Matrices of FE-SpikeFormer, Meta-SpikeFormer, and Spikformer on FER2013 and AffectNet Datasets. (a) FE-SpikeFormer on
FER2013. (b) FE-SpikeFormer on AffectNet. (c) Meta-SpikeFormer on FER2013. (d) Meta-SpikeFormer on AffectNet. (e) Spikformer on FER2013. (f)
Spikformer on AffectNet
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In this section, a series of ablation experiments are
conducted on FER2013 dataset (including component ablation
and block number ablation, and time step ablation).

1) Ablation Study of the Key Components in FE-SpikeFormer

Component ablation experiments are conducted to
demonstrate the effectiveness of the proposed MS-SNN Conv
and pairwise-attention module. Specifically, for the MS-SNN
Conv module, we replace it with a simple convolutional
down-sampling module based on an SNN architecture {LIF-
Conv-BN}. For the pairwise-attention module, we substitute it
with a spiking-attention module, which eliminates the
attention computation within individual feature channels and
retains only the global attention across channels. Four sets of
comparative experiments are conducted, and the relevant
results are collected in Table V1.

TABLE VI
RESULTS OF COMPARATIVE EXPERIMENTS WITH DIFFERENT MODULE
CONFIGURATIONS

MS-SNN Conv Pairwise-Attention Acc (%)
X X 70.33
X v 72.74
v X 71.93
v v 73.58

Replacing both modules results in the lowest accuracy of
70.33%, indicating their critical role in the overall
performance. Retaining only the Pairwise-Attention module
improves accuracy to 72.74%, proving the effectiveness of its
attention mechanism within feature channels, which better
preserves the local semantic features of facial information. As
a result, the model can more effectively capture fine details
during subsequent global attention computations. When
keeping only the MS-SNN Conv module improves accuracy to
71.93%, demonstrating its value for feature extraction and its
ability to integrate spatial features during down-sampling
operation. The highest accuracy of 73.58% is achieved when
both modules are included, showcasing their complementary
roles. These results confirm that the combination of MS-SNN
Conv and Pairwise-Attention significantly enhances model
performance, thereby validating the effectiveness of the
proposed design.

Furthermore, we also utilize t-SNE [30] to illustrate the
feature distribution. The visualization results for each
experimental group are shown in Fig. 8. The baseline model
(Fig. 8a) presents a scattered feature distribution with
significant overlap between different emotion categories,
resulting in low inter-class separability. Introducing the
Pairwise-Attention module (Fig. 8b) increases the distance
between some categories and improves intra-class
compactness, although some categories remain mixed. Using
the MS-SNN Conv module alone (Fig. 8c) further enhances
feature separation, making some category boundaries clearer,
but certain overlaps still exist. When combining MS-SNN
Conv and Pairwise-Attention modules (Fig. 8d), the feature
distribution reaches an optimal state, with highly compact

intra-class features and distinct inter-class boundaries,
significantly improving the facial expression recognition
performance. This demonstrates that the combination of MS-
SNN Conv and Pairwise-Attention modules provides
complementary strengths in feature extraction and category
distinction, effectively enhancing model performance in facial
expression recognition tasks.
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Fig. 8. Visualization of feature distributions for different module
configurations (a) Baseline Model (b)Model with pairwise-attention module
(c) Model with MS-SNN Conv Module (d)Model with MS-SNN Conv and
pairwise-attention modules.

2) Ablation Study on the Number of Blocks

To investigate the effect of module stacking depth on model
performance, we conducted a series of controlled experiments
on the FER2013 dataset. Inspired by [31-33], a comprehensive
exploration for different numbers of SEB (potential values: 1,
2) and SIB (potential values: 2, 4, 6) is undertaken, 6 possible
combinations, i.e., (1, 2), (2, 2), (1, 4), (2, 4), (1, 6), and (2, 6),
are generated and the corresponding experimental results are
provided in Table VII.

Happy @ Sad

Surprise

TABLE VII
IMPACT OF DIFFERENT SEB AND SIB COMBINATIONS ON MODEL
PERFORMANCE

Number of blocks

Soiki Soiki Acc Params  Acc Gain
piKing pixing Total (%) (M) per M
Extraction Integration Number
Block Block
1 2 3 71.96 541 baseline
2 2 4 73.58 6.93 1.07
1 4 5 7351 8.22 -0.05
2 4 6 73.72 9.37 0.18
1 6 7 73.99 11.39 0.13
2 6 8 74.06 13.54 0.03
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From Table VII, the results indicate that increasing the
total number of blocks improves the model’s accuracy. As the
number of blocks increases from 3 to 8, the accuracy rises
from 71.96% to 74.06%, indicating that deeper architectures
enhance the learning capability. However, the performance
improvement is accompanied by an increase in model
complexity, as the number of parameters grows from 5.41M to
13.54M. Notably, the (2, 2) configuration achieves a balance
between accuracy and parameter efficiency, yielding an
accuracy of 73.58% with only 6.93 million parameters.
yielding the highest accuracy gain per million parameters
(1.07) among all configurations. As shown by the diminishing
“Acc Gain per M” values with further depth—taking the
model with the lowest parameter count as the baseline—the
accuracy gain per million parameters decreases as the model’s
complexity increases. This suggests diminishing returns with
increased model complexity, and thus the (2, 2) configuration
demonstrates an optimal trade-off, providing a high accuracy
with relatively low complexity.

3) Ablation Study on the time steps

The performance of FE-SpikeFormer with different time
steps is shown in Table VIII. The results indicate that
increasing the time step generally improves accuracy, with the
accuracy rising from 71.23% at 1 time step to 73.69% at 6-
time steps. However, the improvement becomes marginal as
the time step increases beyond 4, with only a slight increase
from 73.58% (4-time steps) to 73.69% (6-time steps). This
suggests that while longer time steps enhance the model’s
performance by capturing more temporal information, the
benefits diminish at higher time steps. Based on this, the
selection of the temporal step size is 4.

TABLE VIII
THE RESULTS OF FE-SPIKEFORMER WITH DIFFERENT TIME STEPS
Time step Acc (%)
1 71.23
2 72.77
4 73.58
6 73.69

C. Anti-Noise Analysis
In this experiment, we add four types of noise [34, 35] (i.e.,

Remote Camera

Logitech C525  |grysepey

\

Gaussian noise, Pepper noise, Poisson Noise, and Salt Noise)
to the images to evaluate the anti-noise ability of the FE-
SpikeFormer. Gaussian noise is applied with a variance of
0.001 to simulate random pixel perturbations. Pepper noise is
introduced with a density of 0.05, randomly setting 5% of the
pixels to 0 (black), while salt noise with the same density
replaces some pixels with 1 (white). Additionally, Poisson
noise is included, with its intensity proportional to the pixel
values. These noise injections provide a comprehensive
evaluation of the model’s robustness under various noisy
conditions. The relevant results are shown in Table IX.

TABLE IX
ANTI-NOISE ANALYSIS OF NOISE EFFECT

Noise Acc (%)
Clean 73.58
Gaussian Noise 71.42
Pepper Noise 71.89
Poisson Noise 67.57
Salt Noise 7173

Hospital Health Monitoring 900!

Table 1X shows the accuracy of the proposed FE-
SpikeFormer under different kinds of noise. With Gaussian
noise, the accuracy slightly drops to 71.42%, indicating the
model’s resilience to random perturbations. Under pepper and
salt noise, the accuracies remain stable at 71.89% and 71.73%,
respectively, showing that the model effectively handles
isolated pixel disruptions. Poisson noise, however, causes a
more noticeable decline, with the accuracy decreasing to
67.57%. Despite this drop, the model performance keeps in an
acceptable range, indicating the solid anti-noise ability of FE-
SpikeFormer across various types of noise.

D. Validation in Hospital Environment

To validate the generalization capability of the proposed
FE-SpikeFormer in real-world clinical scenarios, we
conducted an in-hospital deployment at Lishui Central
Hospital. The system configuration and experimental results
are presented in Fig.9 and Table X. A remote camera was
mounted at a fixed angle of 35.5°to ensure unobstructed and
complete capture of patients’ facial regions, while the well-
trained model was deployed on a local edge computing device
for real-time expression recognition. In accordance with
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Fig. 9. Validation of the proposed FE-SpikeFormer in hospital scenario
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ethical regulations, all raw video data were processed on-site
and the de-identified image data is available for verification
purposes. The specific dataset information is provided in
Table IlI. Then, the anonymized classification outputs (e.g.,
“surprise detected at 14:20”) were recorded and shared with
clinical personnel. This privacy-preserving deployment
demonstrates the model’s practical applicability in clinical
environments, meeting real-time performance demands under
low-power and low-latency constraints.

TABLE X
THE RESULTS OF FE-SPIKEFORMER IN HOSPITAL ENVIRONMENT
Emotion Acc (%)

Anger ™3 69.46%

Disgust 75.20%

Fear ¥ 62.73%
Happy 92.03%
sad 71.96%
Surprise @ 59.27%
Neutral ﬂ 84.28%
Average 73.57%

From Fig. 9 and Table X, the experimental results
demonstrate that the proposed FE-SpikeFormer achieves high
recognition accuracy for happy (92.03%) and neutral (84.28%)
facial expressions. This high performance is crucial for real-
time emotion detection in clinical settings, as it allows
healthcare providers to accurately assess a patient's emotional
state and formulate appropriate personalized care plans and
treatment  decisions.  Meanwhile, the classification
performance for anger, disgust, and sadness also reaches
acceptable levels, with recognition accuracy around 70%.
These negative emotions are particularly important in clinical
contexts, where effective monitoring can support the
management of patient stress, anxiety, or pain. Compared to
positive emotions, the recognition rates for negative emotions
are lower, primarily due to the imbalanced distribution of the
data. In addition, the proposed FE-SpikeFormer achieves a
response time, latency, and processing time of approximately
0.25s, 0.10s, and 0.03s, respectively. These low-latency
characteristics are critical in hospital scenarios, where rapid,
real-time emotional feedback is essential for guiding
immediate medical interventions. The ability to operate
efficiently and with minimal delay ensures the proposed FE-
SpikeFormer can be seamlessly integrated into clinical
environments, providing valuable emotional insights without
compromising the workflow of healthcare professionals.

V. CONCLUSION

This paper focuses on the development of a camera-based
facial expression recognition method, i.e., FE-SpikeFormer,
for hospital health monitoring. Specifically, a dual attention-
based architecture is proposed, which combines both local and
global attention mechanisms to capture fine-grained and
contextual features, thereby enhancing feature representation
in spiking neural networks (SNNs). Then, a feature integration

strategy is developed, which facilitates the integration of
spatial features in each stage and enhances the representation
capability of spiking signals, indicating better overall model
performance. For joint validation, the proposed FE-
SpikeFormer is applied to realize facial expression recognition
task in both the realistic laboratory environment and the real-
world hospital scenario. The experimental results and
comprehensive  analysis  (including  anti-noise  and
computational energy analysis) show that the proposed FE-
SpikeFormer achieves the good balance between recognition
accuracy (FER2013 dataset: 73.58%; AffectNet: 59.90%),
model size (6.93 M) and energy consumption (7.40 mJ),
outperforming SOTA methods. Additionally, the proposed
FE-SpikeFormer is further validated in the hospital
environment with an average accuracy of 73.57%, satisfying
practical processing requirements.

V1. DISCUSSION

The proposed FE-SpikeFormer advances facial expression
recognition for hospital health monitoring by effectively
balancing accuracy, energy efficiency, and deployability. Its
performance has been validated in both laboratory settings and
real-world clinical environments. However, the model
achieves higher classification accuracy for positive emotions
than for negative emotions due to the imbalanced data
distribution. Based on these observations, our future research
will explore two key directions: 1) Constructing a facial
expression dataset with balanced data distribution in clinical
environments; 2) Enhancing the recognition accuracy of
negative emotions through more effective feature extraction
(potentially by integrating physiological signals)

REFERENCES

[1] M. Chen et al., "Negative information measurement at Al edge: A new
perspective for mental health monitoring,” ACM Trans. Internet
Technol., vol. 22, no. 3, pp. 1-16, Aug. 2022, doi: 10.1145/3471902.

[2] B. Zhaet al., "Intelligent wearable photonic sensing system for remote
healthcare monitoring using stretchable elastomer optical fiber," IEEE
Internet Things J., vol. 11, no. 10, pp. 17317-17329, May 15, 2024, doi:
10.1109/J10T.2024.3356574.

[3] Z. Dong, X.Ji, C. S. Lai, D. Qi, G. Zhou, and L. L. Lai, "Memristor-
based hierarchical attention network for multimodal affective
computing in mental health monitoring," IEEE Consum. Electron. Mag.,
vol. 12, no. 4, pp. 94-106, Jul. 2023, doi: 10.1109/MCE.2022.3159350.

[4] M. C. Gursesli, S. Lombardi, M. Duradoni, L. Bocchi, A. Guazzini, and
A. Lanata, "Facial emotion recognition (FER) through custom
lightweight CNN model: performance evaluation in public datasets,”
IEEE Access, vol. 12, no. 1, pp. 45543-45559, Mar. 2024, doi:
10.1109/ACCESS.2024.3380847.

[5] A. A.O.D#z S. C. Tamayo, D. N. De Oliveira, and G. A. Abensur,
"Models for real-time emotion classification: FER-2013 dataset,” Intell.
Syst. Appl., K. Arai, Ed., Lect. Notes Networks Syst., vol. 1067, pp. 231-
241, Jul. 2024, doi: 10.1007/978-3-031-66431-1_19.

[6] M. Rabea et al., "ldentiFace: A VGG-based multimodal facial
biometric system," pp. 1-12, Jan. 2024, doi:
10.48550/arXiv.2401.01227.

[71 A. P. Fard and M. H. Mahoor, "Ad-Corre: Adaptive correlation-based
loss for facial expression recognition in the Wild," IEEE Access, vol. 10,
pp. 26756-26768, Mar. 2022, doi: 10.1109/ACCESS.2022.3156598.

[8] Y. Khaireddin and Z. Chen, "Facial emotion recognition: State-of-the-
art performance on FER2013," pp. 1-9, May 2021, doi:
10.48550/arXiv.2105.03588.

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Citation information: DOI: 10.1109/JBHI.2025.3589267, IEEE Journal of Biomedical and Health Informatics

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Z. Y. Huang et al., "A study on computer vision for facial emotion
recognition,”" Sci. Rep., vol. 13, no. 8425, pp. 1-13, May 2023, doi:
10.1038/541598-023-35446-4.

J. Li, J. Nie, D. Guo, R. Hong, and M. Wang, "Emotion separation and
recognition from a facial expression by generating the poker face with
vision transformers,” IEEE Trans. Comput. Soc. Syst., Early Access,
2024, doi: 10.1109/TCSS.2024.3478839.

Z. Wang, F. Zeng, S. Liu, and B. Zeng, "OAENet: Oriented attention
ensemble for accurate facial expression recognition," Pattern Recognit.,
vol. 112, pp. 1-14, Apr. 2021, doi: 10.1016/j.patcog.2020.107694.

X. Zhang, F. Zhang, and C. Xu, "Joint expression synthesis and
representation learning for facial expression recognition,” IEEE Trans.
Circuits Syst. Video Technol., vol. 32, no. 3, pp. 1681-1695, Mar. 2022,
doi: 10.1109/TCSVT.2021.3056098.

H. Li, N. Wang, X. Yang, X. Wang, and X. Gao, "Unconstrained facial
expression recognition with no-reference de-elements learning," IEEE
Trans. Affect. Comput., vol. 15, no. 1, pp. 173-185, Mar. 2024, doi:
10.1109/TAFFC.2023.3263886.

X.Ji, Z. Dong, Y. Han, C. S. Lai, G. Zhou, and D. Qi, "EMSN: An
energy-efficient memristive sequencer network for human emotion
classification in mental health monitoring,” IEEE Trans. Consum.
Electron., vol. 69, no. 4, pp. 1005-1016, Nov. 2023, doi:
10.1109/TCE.2023.3263672.

X. Ji, Z. Dong, Y. Han, C. S. Lai, and D. Qi, "A Brain-inspired
hierarchical interactive in-memory computing system and its
application in video sentiment analysis," IEEE Trans. Circuits Syst.
Video Technol., vol. 33, no. 12, pp. 7928-7942, Dec. 2023, doi:
10.1109/TCSVT.2023.3275708.

G. Pu and J. Chen, "Facial expression recognition based on
convolutional spiking neural network and STDP fine-tune," Preprints,
pp. 1-18, Jan. 2024, doi: 10.20944/preprints202401.2165.v1.

Z. Zhou, Y. Zhu, C. He, Y. Wang, S. Yan, Y. Tian, and L. Yuan,
"Spikformer: When spiking neural network meets transformer," Proc.
11th Int. Conf. Learn. Represent.,, pp. 1-19, Nov. 2022. doi:
10.48550/arXiv.2209.15425.

M. Yao et al., "Spike-driven Transformer V2: Meta spiking neural
network architecture inspiring the design of next-generation
neuromorphic chips,” pp. 1-24, Feb. 2024, doi:
10.48550/arXiv.2404.03663.

A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P. Maguire, and T.
M. McGinnity, "A review of learning in biologically plausible spiking
neural networks," Neural Netw., vol. 122, pp. 253-272, Feb. 2020, doi:
10.1016/j.neunet.2019.09.036.

M. Yao et al, "Attention spiking neural networks," IEEE Trans.
Pattern Anal. Mach. Intell., vol. 45, no. 8, pp. 9393-9410, Aug. 2023,
doi: 10.1109/TPAMI.2023.3241201.

J. Wang, Y. Chen, X. Ji, Z. Dong, M. Gao, and Z. He, "SpikeTOD: A
biologically interpretable spike-driven object detection in challenging
traffic scenarios," IEEE Trans. Intell. Transp. Syst., vol. 25, no. 12, pp.
21297-21314, Dec. 2024, doi: 10.1109/TITS.2024.3468038.

Y. Hu, Q. Zheng, X. Jiang, and G. Pan, "Fast-SNN: Fast spiking neural
network by converting quantized ANN," IEEE Trans. Pattern Anal.
Mach. Intell., vol. 45, no. 12, pp. 14546-14562, Dec. 2023, doi:
10.1109/TPAMI.2023.3275769.

1. J. Goodfellow et al., "Challenges in representation learning: A report
on three machine learning contests," Neural Inf. Process., pp. 145-153,
Nov. 2013, doi: 10.1007/978-3-642-37465-8_18.

A. Mollahosseini, B. Hasani, and M. H. Mahoor, "AffectNet: A
database for facial expression, valence, and arousal computing in the
wild," IEEE Trans. Affect. Comput., vol. 10, no. 1, pp. 18-31, Jan.-Mar.
2019, doi: 10.1109/TAFFC.2017.2740923.

A. Vaswani et al., "Attention is all you need," Adv. Neural Inf. Process.
Syst, vol. 30, pp. 5998-6008, Jun. 2017,  doi:
10.48550/arXiv.1706.03762.

A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers
for image recognition at scale," Proc. Int. Conf. Learn. Represent., pp.
1-22, Jun. 2021. doi: 10.48550/arXiv.2010.11929.

A. Arias-Duart, E. Mariotti, D. Garcia-Gasulla, and J. M. Alonso-Moral,
"A confusion matrix for evaluating feature attribution methods," Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops, pp. 17-24,
Jun. 2023, doi: 10.1109/CVPRW59228.2023.00380.

X. Ji, Z. Dong, G. Zhou, C. S. Lai, and D. Qi, "MLG-NCS: Multimodal
local-global neuromorphic computing system for affective video
content analysis," IEEE Trans. Syst. Man Cybern. Syst., vol. 54, no. 8,
pp. 5137-5149, Aug. 2024, doi: 10.1109/TSMC.2024.3392732.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

11
<

X. Qiu, R.-J. Zhu, Y. Chou, Z. Wang, L.-J. Deng, and G. Li, “Gated
attention coding for training high-performance and efficient spiking
neural networks,” Proc. AAAI Conf. Artif. Intell., vol. 38, no. 1, pp.
601-610, Mar. 2024, https://doi.org/10.1609/aaai.v38i1.27816.

L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," J.
Mach. Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.

M. Wen et al., "Multi-agent reinforcement learning is a sequence
modeling problem,” Proc. Int. Conf. Neural Inf. Process. Syst., pp.
16509-16521, 2022.

C. Yang, J. Xu, S. De Mello, E. J. Crowley, and X. Wang, "GPVIiT: A
high resolution non-hierarchical vision transformer with group
propagation,” pp. 1-19, Apr. 2023, doi: 10.48550/arXiv.2212.06795.

Z. Tu et al., "MaxViT: Multi-axis vision transformer,” ECCV 2022.
Lecture Notes in Computer Science. pp. 459-479, Nov. 2022,
https://doi.org/10.1007/978-3-031-20053-3_27

G. Zhang, C. Li, and X. Xiong, "Analysis and comparison of four
signal processing schemes for noise reduction in chaotic
communication systems and application of LDPC code,” Chaos
Solitons  Fractals, vol. 186, p. 115184, Sep. 2024, doi:
10.1016/j.chaos.2024.115184.

Y. Huang et al., " An accelerated anti-noise adaptive neural network for
robotic flexible endoscope with multitype surgical objectives and
constraints,” IEEE Trans. Syst. Man Cybern. Syst., vol. 55, no. 2, pp.
900-1003, Feb. 2025, doi: 10.1109/TSMC.2024.3492324.

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).





