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 Abstract—Facial expression recognition has emerged as a critical 

research area in health monitoring, enabling healthcare 

professionals to assess patients’ emotional and psychological 

states for timely intervention and personalized care. However, 

existing methods often struggle to balance computational 

accuracy with energy efficiency. To address this challenge, this 

paper proposes FE-SpikeFormer — a high-accuracy, low-energy, 

and deployment-friendly Spiking Neural Network (SNN) for 

facial emotion recognition. The proposed architecture comprises 

three key components: the initial convolution module, the spiking 

extraction block, and the spiking integration block. These three 

modules collectively support detailed and contextual feature 

extraction, promote spatial feature integration, and strengthen 

the representational capacity of spiking signals. Meanwhile, a 

joint verification is conducted in both controlled laboratory 

settings and real-world hospital scenarios. Experimental results 

demonstrate that FE-SpikeFormer achieves top-three recognition 

accuracy among state-of-the-art methods, while utilizing only 

6.93 million parameters. Moreover, it exhibits strong robustness 

against various noise conditions, underscoring its potential for 

practical deployment in healthcare environments. 

Index Terms—Facial Expression Recognition, Hospital Health 

Monitoring, Dual Attention Mechanism, Spiking Neural Network 

I. INTRODUCTION

ith the development of deep learning technologies,

facial expression recognition has increasingly emerged 

as a key research direction, particularly in the domain of 

human health monitoring [1, 2]. Notably, facial expressions 

are one of the most natural and universal ways for humans to 

convey their emotional states and behavioral intentions. 

Accurate and rapid facial expression recognition plays a 
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clinically significant role in healthcare, particularly in the 

domains of pain assessment, neuropsychiatric monitoring, and 

patient engagement. It enables clinical interventions and 

facilitates personalized care [3]. 

Many studies have sought to enhance the accuracy and real-

time performance of facial expression recognition through the 

use of Artificial Neural Networks (ANNs) [4-13]. Specifically, 

both [4] and [5] focus on enhancing Convolutional Neural 

Networks (CNNs) to provide an efficient and computationally 

lightweight solution for facial expression recognition. In [6], a 

multimodal-based facial expression recognition method (i.e., 

IdentiFace) is developed, which requires extensive data and 

computational resources. In [7], an Adaptive Correlation (Ad-

Corre) loss function is designed to enhance facial expression 

recognition by improving feature discrimination. Then, a fine-

tunning VGGNet is proposed to perform facial expression 

recognition without using additional training data [8]. By 

simplifying the structure and compressing parameters, a 

Squeeze-and-Excitation Network (i.e., SENet) is developed to 

perform facial expression recognition [9]. A Poker Face 

Vision Transformer (i.e., PF-ViT) that separates emotion-

related features from emotion-irrelevant components is 

proposed for facial expression recognition [10]. [11] proposes 

an Oriented Attention Enable Network (OAENet) for facial 

expression recognition, ensuring the sufficient utilization of 

both global and local features. [12] proposes an end-to-end 

Facial Expression Recognition model that integrates 

Expression Synthesis with Representation learning (ESR-

FER). In [13], a De-Elements Network (DENet) is proposed to 

enhance feature discrimination and improve classification 

performance in facial expression recognition. 

Although these above-mentioned methods are able to 

successfully perform facial expression recognition, they still 

suffer from some limitations: All these methods rely on 

different ANN architectures, intensive computing has to 

execute to guarantee the recognition accuracy, which always 

makes these networks redundant and hard to deploy. 

Meanwhile, heavy calculation burden brings high energy 

consumption. The desire for high-accuracy and energy-

efficiency computing paradigm that is compatible with facial 

expression recognition technology in hospital health 

monitoring is becoming realistic and attractive [14, 15]. 

Inspired by human brain, Spiking Neural Networks (SNNs) 

have emerged as energy-efficient computing paradigms, 

owing to event-driven mechanisms and binary spike 

characteristics. So far, SNN has made some progress in image 

detection and classification task [16-18]. However, most of 
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Fig. 1. The systemic comparison of ANNs- and SNNs-based methods for facial expression recognition 
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existing SNN-based applications are still difficult to achieve 

ANN-comparable accuracy and hard to directly deploy in the 

real-world outdoor scenario. For clarity, the systemic 

comparison of ANNs- and SNNs-based methods for facial 

expression recognition is illustrated in Fig. 1.  

From Fig. 1, the specific challenges are concluded below: 

Challenge 1: In the existing SNNs, different information is 

processed using sparse computing, which makes sufficient and 

comprehensive facial feature extraction difficult and 

challengeable [19]. Hence, Hence, how to design a specific 

facial feature extraction method suitable for SNNs is 

important and urgent. 

Challenge 2: Although SNNs inherently encode temporal 

dynamics [20], conventional spiking feature fusion methods 

fail to effectively integrate multi-scale spatial and temporal 

cues that are critical for understanding facial expressions. 

Hence, how to design a specific facial feature fusion module 

in SNNs is important. 

Challenge 3: Almost all existing SNNs have been deployed 

in controlled laboratory environments [21, 22] to demonstrate 

their potential for energy-efficient computing. It is important 

to develop a SNN-based facial expression recognition network 

in a real-world hospital scenario, enabling to balance the 

trade-off between accuracy, energy consumption, and running 

speed. 

Based on these challenges, this work proposes FE-

SpikeFormer, a high-accuracy, low-energy consumption, and 

easy-deployable SNN-based facial emotion recognition 

network designed for hospital health monitoring.  

The main contributions of this work can be summarized as 

follows: 

1) To address the challenge of sparse feature extraction, this

work proposes a dual attention-based architecture, combining 

both the local and global attention to capture detailed and 

contextual features, enhancing the representation of facial 

expression features in SNNs. 

2) To address the challenge of spiking feature fusion, this

work proposes a novel feature integration strategy, which 

facilitates the integration of spatial features in each stage and 

enhances the representation capability of spiking signals, 

indicating better overall performance of facial expression 

recognition. 

3) To address deployment issue of SNNs in real-world

outdoor environments, the proposed FE-SpikeFormer is 

evaluated in both a controlled laboratory environment and a 

real-world hospital setting. The joint validation results 

demonstrate that the entire scheme is able to balance the 

tradeoff between accuracy, energy efficiency, and running 

speed, ensuring reliable performance under diverse and 

dynamic conditions beyond controlled indoor settings. 

The rest of this work is organized as follows: Section II 

elaborates on the design of FE-SpikeFormer. In Section III, 

the dataset and the experimental preparation are described in 

detail. In Section IV, a series of experiments are conducted in 

both laboratory and hospital environments to demonstrate the 

superiority of the proposed FE-SpikeFormer in facial 

expression recognition. Section V concludes the entire work, 

and Section VI discusses its limitations and outlines future 

research directions. 

II. METHODS

A. Overall Architecture

Fig. 2 demonstrates the overview of FE-SpikeFormer,

which primarily consists of three components: Initial-Conv 

(InConv), Spiking Extraction Block (SEB), and Spiking 

Integration Block (SIB). As the InConv module has a 

relatively simple structure [15], the analysis mainly 

concentrates on the latter two components. 

Here, when a 2-Dimensional (2D) image sequence P (as the 

input of FE-SpikeFormer) is given, the InConv module 

transforms this image sequence into more compact and 

informative spike-form patches x. Then, x is sequentially fed 

into the M-block SEB and N-block SIB to perform local and 
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Fig. 2. The overview of FE-SpikeFormer 

global attention operations, respectively. The output is then 

passed to the classification head (Head) to produce the final 

result I. 

B. Spiking neuron layer

In SNNs, the spike neuron serves as the core unit,

integrating incoming currents to accumulate membrane 

potential. When the potential surpasses a defined threshold, 

the neuron fires a spike. This study exclusively employs 

Leaky Integrate-and-Fire (LIF) neurons. The dynamics of LIF 

model can be expressed by: 

1
[ ] [ 1] ( [ ] ( [ 1] ))resetH t V t X t V t V


= − + − − −  (1) 

[ ] ( [ ] ),thS t H t V= −    (2) 

[ ] [ ](1 [ ]) [ ],resetV t H t S t V S t= − +       (3) 

where τ represents the membrane time constant, and X[t] 

denotes the input current at time step t. Notably, a spike S[t] is 

generated when the membrane potential H[t] surpasses the 

threshold Vth. The Heaviside step function Θ(v) outputs 1 

when v ≥ 0, and 0 when v < 0. After firing, the membrane 

potential V[t] is reset to Vreset; If no spike occurs, it retains the 

value H[t]. 

C. Spiking Extraction Block

The SEB consists of a ResConv-based SNN (RCS) and a

Pairwise-Attention SNN (PAS). In the RCS module, the 

model performs convolutional computations based on SNN 

architecture, while the pairwise-attention computations are 

performed in the PAS module. 

1) ResConv-based SNN

Given an input spiking map S  RTCHW, the spiking

representation is generated in the RCS module. Specifically, 

the Multi-Stage SNN Conv (MS-SNN Conv) module 

(MSConv1 and MSConv2) with 3×3 kernel size is used to learn 

local information. 2D-avg-pooling layer is applied to down-

sample the feature map. During this process, the size and 

channel dimensions of the feature maps change from RTCHW 

to RT2CH/2W/2. To ensure alignment in the shortcut 

connections and to enhance information representation, the 

spiking Multi-Layer Perception (MLP) module SMLP(∙) with 

a 1×1 kernel is applied. The operations performed in the RCS 

module are mathematically expressed by: 

1 1( )S MSConv S=  (4) 

2 2 1( )S MSConv S=     (5) 

3 ( )S SMLP S=  (6) 

2 3U S S= +    (7) 

1( ) ( ( 2 ( ( ))))MSConv S AvgPool BN Conv d LIF S=   (8) 

2 1 1( ) ( 2 ( ( )))MSConv S BN Conv d LIF S=      (9) 

( ) ( 2 ( ( )))SMLP S BN Conv d LIF S=    (10) 

where U denotes the output of RCS, LIF(∙) denotes the 

activation function of the spiking neuron layer, Conv2d(∙) 

represents 2D convolution operation, BN(∙) and AvgPool(∙) 

denote batch normalization and average pooling operation. S1, 

S2, and S3 are intermediate variables in the RCS module. 

2) Pairwise-Attention SNN

The feature map U RTCHW is further passed to PAS for

attention computation. Similar to RCS, PAS is also composed 

by two parts: the pairwise-attention (PA) module and the 

spiking MLP module. 

After flattening operation, the feature map U is converted 

into a sequence of image patches u  RTCN, where N = HW. 

Then, the stimulus value SV and response value RV with the 

same size (RTCN) can be calculated by: 

( ( ' ))SV SVSV LIF BN u W=  (11) 

( ( ' ))RV RVRV LIF BN u W=  (12) 

where u'=LIF(u) is the spiked form of u, WSV and WRV are the 

learnable linear matrices, LIFSV(∙) and LIFRV(∙) are the 

corresponding neuron activation operation. 
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The spiking-form global features within SV channel 

dimension ASV RTC1 can be mathematically calculated by: 

( ( ))SVA LIF Avg SV=                (13) 

where Avg(∙) denotes the average computation operation. 

Next, the corresponding attention feature map ATTPai can be 

obtained and then flattened and transformed into spiking 

signals. The output of the pairwise-attention (PA) module Y1 

can be written by: 

Pai SVATT A RV=      (14) 

1 ( 1 ( ( ( ))))StiY BN Conv d LIF FLA ATT=       (15) 

where FLA(∙) and Conv1d(∙) denote the flattening operation 

and the one-dimensional convolution (1D convolution) 

operation, respectively. 

Then, the output of the pairwise-attention SNN can be 

expressed by: 

( )Y PA U U= +  (16) 

( )PASOUT SMLP Y Y= +  (17) 

where PA(∙) denotes the pairwise-attention module, and 

OUTPAS represents the output of the pairwise-attention SNN. 

D. Spiking Integration Block

The SIB module consists of two components: a ResConv-

based spiking neural network (RCS) and a spiking-attention-

based spiking neural network (SAS). In the SAS module, the 

spiking-attention computation is performed. Unlike the 

pairwise-attention module, spiking-attention module focuses 

more on global modeling across different channels, whereas 

the pairwise-attention mechanism emphasizes feature 

modeling within individual channels.  

Similarly, the input feature map Z RTCHW can be 

converted into a sequence of image patches z  RTCN after 

flattening operation. The query (Q), key (K), and Value (V) are 

computed through learnable matrices WQ, WK, WV RNN 

firstly. Then they are transformed into spiking sequences QS, 

KS, and VS through distinct spiking neuron layers: 

( ( ' ))S Q QQ LIF BN z W= (18) 

( ( ' ))S K KK LIF BN z W=  (19) 

( ( ' ))S V VV LIF BN z W=  (20) 

where z'=LIF(z) represents the spiked form of z. 

Then, a scaling factor b is added to prevent excessively 

large values during matrix multiplication. And the output of 

the spiking-attention (SA) module X1 can be written by: 

( ( ))T
Spi S S SATT Q K V b=  (21) 

1 ( 1 ( ( ( ))))SpiX BN Conv d FLA LIF ATT=    (22) 

where ATTSpi represents the output of the spiking-attention 

computation. The overall computation in the spiking-attention 

SNN can be expressed by: 

( )X SA Z Z= + (23) 

( )SASOUT SMLP X X= +    (24) 

where SA(∙) denotes the spiking-attention calculation, and 

OUTSAS represents the output of the spiking-attention SNN. 

For clarity and simplicity, the pseudocode of the proposed 

FE-SpikeFormer is provided in Table I.  

TABLE I 

THE PSEUDOCODE OF THE PROPOSED FE-SPIKEFORMER 

Algorithm FE-SpikeFormer 

Input: Raw facial images P, Number of blocks M for SEB, Number of 

blocks N for SIB  

Output: Prediction result I 

Step 1: Transform images into spike form patches: xInConv(P) 

Step 2: Extract local features in Spiking Extraction Block: 

for i from 1 to M do 

Initial feature extraction: U  RCS(x) 

Local attention computation: Y1  PA(U) 

Residual connection fusion: Y  Y1 + U 

Feature aggregation output: OUTPAS  SMLP(Y) + Y 

end 

Step 3: Integrate global features in Spiking Integration Block: 

for i from 1 to N do 

Initial feature extraction: Z RCS(OUTPAS) 

global attention computation: X1  SA(Z) 

Residual connection fusion: X  X1 + Z 

Feature aggregation output: OUTSAS  SMLP(X) + X 

end 

Step 4: Produce final prediction output: I  Head (OUTSAS) 

Return: I 

III. DATASET AND EXPERIMENTAL PREPARATION

A. Dataset

Currently there is no open-source facial expression

recognition dataset specifically for hospital environment, two 

widely-used public datasets (i.e., FER2013 dataset [23] and 

AffectNet dataset [24]) are used for laboratory environment 

experiment. We ensure a rigorous data partitioning between 

the training, validation, and test sets by strictly adhering to the 

official dataset splits [23, 24]. Specifically, the FER2013 

dataset (36157 images) is further divided into a training set 

(28709 images), a validation set (3859 images), and a testing 

set (3589 images) across seven facial expressions (including 

angry, disgust, fear, happy, sad, surprise, and neutral). The 

AffectNet dataset (420299 images) is further divided into a 

training set (416299 images) and a validation set (4000 images) 

across the same seven facial expressions. The specific 

distribution of these two datasets is shown in Table II.  

TABLE II 

THE DISTRIBUTION OF FER2013 AND AFFECTNET DATASET. 

Dataset Categories Training Testing Total 

FER2013 

[23] 

Anger 3995 491 4486 

Disgust 436 55 491 

Fear 4097 528 4625 

Happy 7215 879 8094 

Sad 4830 594 5424 

Surprise 3171 416 3587 

Neutral 4965 626 5591 

AffectNet 

[24] 

Anger 24882 500 25382 

Disgust 3803 500 4303 

Fear 6378 500 6878 

Happy 134415 500 134915 

Sad 25459 500 25959 

Surprise 14090 500 14590 

Neutral 74874 500 75374 

To evaluate the generalization capability of the proposed 

FE-SpikeFormer in a clinical setting, we conducted a 
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deployment study at Lishui Central Hospital (Zhejiang 

Province, China). The setup involved a remote camera 

(Logitech C525) mounted on a short wall bracket with an 

adjustable viewing angle (0°–180°), and a local edge 

computing system (HS140) for on-site inference (as shown in 

Fig. 3). This configuration enabled unobtrusive, front-facing 

facial recording of patients under natural lighting conditions. 

Detailed information on the data collection in the hospital 

setting is provided in Table III. 

As summarized in Table III, the study involved 40 long-

term hospitalized patients, whose ages are grouped into four 

categories: 21–30, 31–40, 41–50, and over 50 years. All 

participants provided informed consent, and the study was 

approved by the hospital’s Ethics Committee (Approval ID: 

2024(1)-089-01). A total of 204 facial expression video 

segments were recorded while patients were resting in bed 

under natural conditions. Facial expressions were annotated 

frame by frame by three certified clinicians using a predefined 

emotion taxonomy comprising the categories: happy, neutral, 

sad, angry, fear, disgust, and surprise. Two clinicians 

independently labeled each frame, and a third adjudicated any 

disagreements to ensure high inter-rater reliability. 

Remote Camera

Logitech C525

Edge Computing 

System HS140

Adjustable angle

0°~180°

Fig. 3. Necessary sensor & computing devices deployed in a hospital 

environment 

B. Experimental Preparation

1) Experimental Setup

All experiments are conducted on a server equipped with

dual NVIDIA GeForce RTX 4090 GPUs, utilizing the 

PyTorch framework. Each GPU processes a batch size of 48. 

The AdamW optimizer is employed with a base learning rate 

of 110-3. The actual learning rate is determined by 

BatchSize/25610-3. Inspired by [17], [18], [25], and [26], the 

parameter settings of FE-SpikeFormer are shown in Table IV. 

TABLE IV 

THE PARAMETER SETTING OF FE-SPIKEFORMER 

Parameter Value 

Batch size 48 

Base learning rate 110-3 

M 2 

N 2 

dmodel 384 

T 4 

Epoch 300 

From Table IV, the number of SEB and SIB are both set to 

2 (i.e., M=N=2). dmodel is set to 384 within the attention 

calculation layer. The time step T is set to 4, and the total 

number of training epochs is 300. Notably, the configuration 

of parameters is determined by comprehensive optimization 

experiments. 

2) Evaluation Metrics

In this work, both the confusion matrices [27] and average

accuracy [28] are used to evaluate the performance of the 

proposed FE-SpikeFormer. The former provides detailed 

information on the model’s behavior across various expression 

categories, while the latter indicates the overall classification 

accuracy. Additionally, model size and energy consumption 

[29] are also used to evaluate the computational efficiency.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Comparison Experiments with State-of-the-Art Methods

This part evaluates the performance of FE-SpikeFormer on

two datasets and compare it with state-of-the-art (SOTA) 

methods developed in recent years, including CLCM [4], 

RTEC [5], IdentiFace [6], Add-Corre [7], VGGNet [8], SENet 

[9], PF-Vit [10], OAENet [11], ESR-FER [12], DENet [13], 

ConvSNN [16], Spikformer [17], and Meta-SpikeFormer [18]. 

The relevant comparison results are presented in Table V.  

From Table V, the proposed FE-SpikeFormer demonstrates 

competitive performance on both datasets, achieving a notable 

balance between accuracy and parameter efficiency. For the 

FER2013 dataset, FE-SpikeFormer achieves the highest 

accuracy (73.58%) and less energy consumption (7.40 mJ), 

outperforming all the other SOTA methods. Meanwhile, the 

TABLE III 

DETAILED INFORMATION ON THE DATA COLLECTION IN HOSPITAL SETTING 

Category Description Note 

Participants 40 hospitalized patients 
All participants provided written informed consent in 

accordance with the hospital’s ethics committee approval 

(Approval No.: 2024(1)-089-01) 

Age distribution 21–30, 31–40, 41–50, and over 50 years old Even distribution 

Gender 20 males and 20 females Even distribution 

Data collection Facial expressions during bed rest in a natural hospital setting Data recording is conducted during daytime only; 

Emotion Annotation 3 independent clinical experts Anonymized labels (e.g., Patient 03: anger) 

Ethical compliance 
Data anonymization, on-site processing only, de-identified 

image data (no personal identifiers retained) 

Compliant with China’s Regulations on Ethical Review of 

Biomedical Research. 
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proposed FE-SpikeFormer uses only 6.93M parameters 

(ranking the second place among SOTA methods), which 

indicates that the proposed FE-SpikeFormer successfully 

leverages the strengths of SNNs for both computation 

efficiency and accuracy. For the AffectNet dataset, the 

proposed FE-SpikeFormer maintains a competitive edge with 

an accuracy of 59.90%, outperforming almost all the other 

competitors, except for ESR-FER (60.04%) and DENet 

(60.94%). But these two methods require more parameters and 

consume more energy (ESR-FER: 154.1M, 98.4mJ; DENet: 

23.33M, 39.60 mJ) compared to the proposed FE-

SpikeFormer (only 6.93M, 7.40 mJ). Meanwhile, it is clear 

that the proposed FE-SpikeFormer is better than Spikformer 

and Meta-SpikeFormer in terms of accuracy, energy 

consumption and parameter count. 

Fig. 4. Comparison of FE-SpikeFormer with SOTA methods in terms of 

recognition accuracy and parameter size on the FER2013 dataset 

To better illustrate that the proposed FE-SpikeFormer is 

able to balance the trade-off between recognition accuracy and 

parameter size, an intuitive result is provided in Fig. 4. It can 

be seen that FE-SpikeFormer achieves a superior balance 

between these two metrics compared to other competitors. 

Notably, it outperforms VGGNet and Ad-Corre in terms of 

recognition accuracy, reaching 73.58%, while maintaining a 

relatively low parameter count. Additionally, compared to 

traditional models such as ConvSNN and IdentiFace, FE-

SpikeFormer delivers higher accuracy with fewer parameters, 

highlighting its effectiveness in optimizing both performance 

and efficiency. 

Fig. 5 presents attention map examples from the SIB in FE-

SpikeFormer, demonstrating its ability to focus on image 

regions relevant to facial expression semantics. Specifically, 

the first row displays input images, followed by their 

corresponding attention maps in the second row. The attention 

maps highlight key features like the eyes, mouth, and facial 

expressions, essential for emotion recognition, while irrelevant 

regions are assigned a value of 0 (black areas). This selective 

focus enables FE-SpikeFormer to filter out unnecessary 

information, contributing to event-driven, energy-efficient 

processing. The results across AffectNet and FER2013 

demonstrate the proposed FE-SpikeFormer has the 

adaptability for diverse inputs (RGB and grayscale images). 

Fig. 5. Attention map visualization of FE-SpikeFormer on AffectNet and 

FER2013 datasets. The black region is 0. 
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TABLE V 

COMPARATIVE RESULTS OF FE-SPIKEFORMER AND OTHER METHODS 

Dataset Method Year SNN 
Acc 

(%) 

Energy 

(mJ) 

Params 

(M) 

Time 

Step 

FER2013 

CLCM [4] 2024 ✗ 63.01 11.803 2.311 1 

RTEC [5] 2024 ✗ 63.21 - - 1 

IdentiFace [6] 2024 ✗ 66.13 26.90 35.30 1 

Ad-Corre [7] 2022 ✗ 72.033 30.20 26.15 1 

VGGNet [8] 2021 ✗ 73.282 44.90 138.13 1 

ConvSNN [16] 2024 ✓ 61.87 21.30 21.50 8 

Spikformer [17] 2022 ✓ 70.70 7.702 9.323 4 

Meta-SpikeFormer [18] 2023 ✓ 71.82 16.70 15.10 4 

FE-SpikeFormer (ours) 2024 ✓ 73.581 7.401 6.932 4 

AffectNet 

CLCM [4] 2024 ✗ 54.11 11.803 2.311 8 

SENet [9] 2023 ✗ 56.54 40.50 11.27 1 

PF-Vit [10] 2022 ✗ 57.99 81.00 86.18 1 

OAENet [11] 2021 ✗ 58.70 - - 1 

ESR-FER [12] 2021 ✗ 60.042 98.40 154.10 1 

DENet [13] 2023 ✗ 60.941 39.60 23.33 1 

Spikformer [17] 2022 ✓ 57.61 7.702 9.323 4 

Meta-SpikeFormer [18] 2023 ✓ 58.01 16.70 15.10 4 

FE-SpikeFormer (ours) 2024 ✓ 59.903 7.401 6.932 4 

Note: the subscript 1, 2, and 3 represent the specific ranking results.
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Fig. 6. The workflow of the proposed FE-SpikeFormer model. 

Fig. 6 demonstrates the workflow of the proposed FE-

SpikeFormer for facial expression recognition. In Fig. 6, five 

facial expression images (labelled as ① ~ ⑤) are input into 

the well-trained FE-SpikeFormer. After passing through the 

SEB and SIB, the corresponding attention maps can be 

obtained. The outputs of the classification head consist of a 

series of scores, and the final classification results are 

determined by the highest score, as illustrated in the lower-

right subfigure of Fig. 6. Notably, signals transmitted between 

modules are conveyed in spike form. This spike-based 

computation significantly improves computational efficiency 

and reduces power consumption, which makes it especially 

suitable for deployment in hospital settings. 

Fig. 7 presents the confusion matrices of FE-SpikeFormer, 

Meta-SpikeFormer, and Spikformer on two datasets. In 

FER2013 (Fig. 7a), FE-SpikeFormer demonstrates strong 

performance in recognizing emotions such as happy (0.90), 

neutral (0.85), and disgust (0.71). These results demonstrate 

the model is able to effectively extract both local and global 

features to enhance emotion representation. However, the 

classification accuracy for fear (0.56) and surprise (0.60) is 

lower, indicating that these emotions may be more challenging 

to distinguish due to overlapping facial expressions with other 

categories, such as anger and sadness. In AffectNet (Fig. 7b), 

the model maintains high accuracy, especially for happy (0.95) 

and neutral (0.79) emotions, further validating its robustness 

across datasets. However, it shows some confusion in 

distinguishing between disgust and anger, with noticeable 

misclassifications, such as disgust being confused with anger 

(0.22). This can be attributed to the subtle and ambiguous 

facial cues present in these emotions, which are inherently 

challenging for any classifier. 

Compared to Meta-SpikeFormer (Fig. 7c and 7d) and 

Spikformer (Fig. 7e and 7f), FE-SpikeFormer consistently 

achieves higher accuracy in key emotions across both datasets, 

especially for happy and neutral, indicating stronger 

generalization. While Meta-SpikeFormer and Spikformer 

perform well on certain emotions, they display more 

variability and a higher tendency to misclassify nuanced 

emotions like disgust. The dual attention-based feature 

extraction in proposed FE-SpikeFormer enhances its ability to 

capture fine-grained features, making it more effective in 

differentiating subtle expressions. Overall, FE-SpikeFormer 

demonstrates superior robustness and accuracy in complex 

facial expression recognition. 

B. Ablation Study

Fig. 7. Confusion Matrices of FE-SpikeFormer, Meta-SpikeFormer, and Spikformer on FER2013 and AffectNet Datasets. (a) FE-SpikeFormer on 

FER2013. (b) FE-SpikeFormer on AffectNet. (c) Meta-SpikeFormer on FER2013. (d) Meta-SpikeFormer on AffectNet. (e) Spikformer on FER2013. (f) 
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In this section, a series of ablation experiments are 

conducted on FER2013 dataset (including component ablation 

and block number ablation, and time step ablation). 

1) Ablation Study of the Key Components in FE-SpikeFormer

Component ablation experiments are conducted to

demonstrate the effectiveness of the proposed MS-SNN Conv 

and pairwise-attention module. Specifically, for the MS-SNN 

Conv module, we replace it with a simple convolutional 

down-sampling module based on an SNN architecture {LIF-

Conv-BN}. For the pairwise-attention module, we substitute it 

with a spiking-attention module, which eliminates the 

attention computation within individual feature channels and 

retains only the global attention across channels. Four sets of 

comparative experiments are conducted, and the relevant 

results are collected in Table VI. 

TABLE VI 

RESULTS OF COMPARATIVE EXPERIMENTS WITH DIFFERENT MODULE 

CONFIGURATIONS 

MS-SNN Conv Pairwise-Attention Acc (%) 

✗ ✗ 70.33 

✗ ✓ 72.74 

✓ ✗ 71.93 

✓ ✓ 73.58 

Replacing both modules results in the lowest accuracy of 

70.33%, indicating their critical role in the overall 

performance. Retaining only the Pairwise-Attention module 

improves accuracy to 72.74%, proving the effectiveness of its 

attention mechanism within feature channels, which better 

preserves the local semantic features of facial information. As 

a result, the model can more effectively capture fine details 

during subsequent global attention computations. When 

keeping only the MS-SNN Conv module improves accuracy to 

71.93%, demonstrating its value for feature extraction and its 

ability to integrate spatial features during down-sampling 

operation. The highest accuracy of 73.58% is achieved when 

both modules are included, showcasing their complementary 

roles. These results confirm that the combination of MS-SNN 

Conv and Pairwise-Attention significantly enhances model 

performance, thereby validating the effectiveness of the 

proposed design. 

Furthermore, we also utilize t-SNE [30] to illustrate the 

feature distribution. The visualization results for each 

experimental group are shown in Fig. 8. The baseline model 

(Fig. 8a) presents a scattered feature distribution with 

significant overlap between different emotion categories, 

resulting in low inter-class separability. Introducing the 

Pairwise-Attention module (Fig. 8b) increases the distance 

between some categories and improves intra-class 

compactness, although some categories remain mixed. Using 

the MS-SNN Conv module alone (Fig. 8c) further enhances 

feature separation, making some category boundaries clearer, 

but certain overlaps still exist. When combining MS-SNN 

Conv and Pairwise-Attention modules (Fig. 8d), the feature 

distribution reaches an optimal state, with highly compact 

intra-class features and distinct inter-class boundaries, 

significantly improving the facial expression recognition 

performance. This demonstrates that the combination of MS-

SNN Conv and Pairwise-Attention modules provides 

complementary strengths in feature extraction and category 

distinction, effectively enhancing model performance in facial 

expression recognition tasks. 

Fig. 8. Visualization of feature distributions for different module 

configurations (a) Baseline Model (b)Model with pairwise-attention module 

(c) Model with MS-SNN Conv Module (d)Model with MS-SNN Conv and 

pairwise-attention modules. 

2) Ablation Study on the Number of Blocks

To investigate the effect of module stacking depth on model

performance, we conducted a series of controlled experiments 

on the FER2013 dataset. Inspired by [31-33], a comprehensive 

exploration for different numbers of SEB (potential values: 1, 

2) and SIB (potential values: 2, 4, 6) is undertaken, 6 possible

combinations, i.e., (1, 2), (2, 2), (1, 4), (2, 4), (1, 6), and (2, 6),

are generated and the corresponding experimental results are

provided in Table VII.

TABLE VII 

IMPACT OF DIFFERENT SEB AND SIB COMBINATIONS ON MODEL 

PERFORMANCE 

Number of blocks 

Acc 

(%) 

Params 

(M) 

Acc Gain 

per M Spiking 

Extraction 

Block 

Spiking 

Integration 

Block 

Total 

Number 

1 2 3 71.96 5.41 baseline 

2 2 4 73.58 6.93 1.07 

1 4 5 73.51 8.22 -0.05 

2 4 6 73.72 9.37 0.18 

1 6 7 73.99 11.39 0.13 

2 6 8 74.06 13.54 0.03 

(c) (d)
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Fig. 9. Validation of the proposed FE-SpikeFormer in hospital scenario 

From Table VII, the results indicate that increasing the 

total number of blocks improves the model’s accuracy. As the 

number of blocks increases from 3 to 8, the accuracy rises 

from 71.96% to 74.06%, indicating that deeper architectures 

enhance the learning capability. However, the performance 

improvement is accompanied by an increase in model 

complexity, as the number of parameters grows from 5.41M to 

13.54M. Notably, the (2, 2) configuration achieves a balance 

between accuracy and parameter efficiency, yielding an 

accuracy of 73.58% with only 6.93 million parameters. 

yielding the highest accuracy gain per million parameters 

(1.07) among all configurations. As shown by the diminishing 

“Acc Gain per M” values with further depth—taking the 

model with the lowest parameter count as the baseline—the 

accuracy gain per million parameters decreases as the model’s 

complexity increases. This suggests diminishing returns with 

increased model complexity, and thus the (2, 2) configuration 

demonstrates an optimal trade-off, providing a high accuracy 

with relatively low complexity. 

3) Ablation Study on the time steps

The performance of FE-SpikeFormer with different time

steps is shown in Table VIII. The results indicate that 

increasing the time step generally improves accuracy, with the 

accuracy rising from 71.23% at 1 time step to 73.69% at 6-

time steps. However, the improvement becomes marginal as 

the time step increases beyond 4, with only a slight increase 

from 73.58% (4-time steps) to 73.69% (6-time steps). This 

suggests that while longer time steps enhance the model’s 

performance by capturing more temporal information, the 

benefits diminish at higher time steps. Based on this, the 

selection of the temporal step size is 4. 

TABLE VIII 

THE RESULTS OF FE-SPIKEFORMER WITH DIFFERENT TIME STEPS 

Time step Acc (%) 

1 71.23 

2 72.77 

4 73.58 

6 73.69 

C. Anti-Noise Analysis

In this experiment, we add four types of noise [34, 35] (i.e.,

Gaussian noise, Pepper noise, Poisson Noise, and Salt Noise) 

to the images to evaluate the anti-noise ability of the FE-

SpikeFormer. Gaussian noise is applied with a variance of 

0.001 to simulate random pixel perturbations. Pepper noise is 

introduced with a density of 0.05, randomly setting 5% of the 

pixels to 0 (black), while salt noise with the same density 

replaces some pixels with 1 (white). Additionally, Poisson 

noise is included, with its intensity proportional to the pixel 

values. These noise injections provide a comprehensive 

evaluation of the model’s robustness under various noisy 

conditions. The relevant results are shown in Table IX. 

TABLE IX 

ANTI-NOISE ANALYSIS OF NOISE EFFECT 

Noise Acc (%) 

Clean 73.58 

Gaussian Noise 71.42 

Pepper Noise 71.89 

Poisson Noise 67.57 

Salt Noise 71.73 

Table IX shows the accuracy of the proposed FE-

SpikeFormer under different kinds of noise. With Gaussian 

noise, the accuracy slightly drops to 71.42%, indicating the 

model’s resilience to random perturbations. Under pepper and 

salt noise, the accuracies remain stable at 71.89% and 71.73%, 

respectively, showing that the model effectively handles 

isolated pixel disruptions. Poisson noise, however, causes a 

more noticeable decline, with the accuracy decreasing to 

67.57%. Despite this drop, the model performance keeps in an 

acceptable range, indicating the solid anti-noise ability of FE-

SpikeFormer across various types of noise.  

D. Validation in Hospital Environment

To validate the generalization capability of the proposed

FE-SpikeFormer in real-world clinical scenarios, we 

conducted an in-hospital deployment at Lishui Central 

Hospital. The system configuration and experimental results 

are presented in Fig. 9 and Table X. A remote camera was 

mounted at a fixed angle of 35.5° to ensure unobstructed and 

complete capture of patients’ facial regions, while the well-

trained model was deployed on a local edge computing device 

for real-time expression recognition. In accordance with 
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ethical regulations, all raw video data were processed on-site 

and the de-identified image data is available for verification 

purposes. The specific dataset information is provided in 

Table III. Then, the anonymized classification outputs (e.g., 

“surprise detected at 14:20”) were recorded and shared with 

clinical personnel. This privacy-preserving deployment 

demonstrates the model’s practical applicability in clinical 

environments, meeting real-time performance demands under 

low-power and low-latency constraints. 

TABLE X 

THE RESULTS OF FE-SPIKEFORMER IN HOSPITAL ENVIRONMENT 

Emotion Acc (%) 

Anger 69.46% 

Disgust 75.29% 

Fear 62.73% 

Happy 92.03% 

Sad 71.96% 

Surprise 59.27% 

Neutral 84.28% 

Average 73.57% 

From Fig. 9 and Table X, the experimental results 

demonstrate that the proposed FE-SpikeFormer achieves high 

recognition accuracy for happy (92.03%) and neutral (84.28%) 

facial expressions. This high performance is crucial for real-

time emotion detection in clinical settings, as it allows 

healthcare providers to accurately assess a patient's emotional 

state and formulate appropriate personalized care plans and 

treatment decisions. Meanwhile, the classification 

performance for anger, disgust, and sadness also reaches 

acceptable levels, with recognition accuracy around 70%. 

These negative emotions are particularly important in clinical 

contexts, where effective monitoring can support the 

management of patient stress, anxiety, or pain. Compared to 

positive emotions, the recognition rates for negative emotions 

are lower, primarily due to the imbalanced distribution of the 

data. In addition, the proposed FE-SpikeFormer achieves a 

response time, latency, and processing time of approximately 

0.25s, 0.10s, and 0.03s, respectively. These low-latency 

characteristics are critical in hospital scenarios, where rapid, 

real-time emotional feedback is essential for guiding 

immediate medical interventions. The ability to operate 

efficiently and with minimal delay ensures the proposed FE-

SpikeFormer can be seamlessly integrated into clinical 

environments, providing valuable emotional insights without 

compromising the workflow of healthcare professionals. 

V. CONCLUSION

This paper focuses on the development of a camera-based 

facial expression recognition method, i.e., FE-SpikeFormer, 

for hospital health monitoring. Specifically, a dual attention-

based architecture is proposed, which combines both local and 

global attention mechanisms to capture fine-grained and 

contextual features, thereby enhancing feature representation 

in spiking neural networks (SNNs). Then, a feature integration 

strategy is developed, which facilitates the integration of 

spatial features in each stage and enhances the representation 

capability of spiking signals, indicating better overall model 

performance. For joint validation, the proposed FE-

SpikeFormer is applied to realize facial expression recognition 

task in both the realistic laboratory environment and the real-

world hospital scenario. The experimental results and 

comprehensive analysis (including anti-noise and 

computational energy analysis) show that the proposed FE-

SpikeFormer achieves the good balance between recognition 

accuracy (FER2013 dataset: 73.58%; AffectNet: 59.90%), 

model size (6.93 M) and energy consumption (7.40 mJ), 

outperforming SOTA methods. Additionally, the proposed 

FE-SpikeFormer is further validated in the hospital 

environment with an average accuracy of 73.57%, satisfying 

practical processing requirements. 

VI. DISCUSSION

The proposed FE-SpikeFormer advances facial expression 

recognition for hospital health monitoring by effectively 

balancing accuracy, energy efficiency, and deployability. Its 

performance has been validated in both laboratory settings and 

real-world clinical environments. However, the model 

achieves higher classification accuracy for positive emotions 

than for negative emotions due to the imbalanced data 

distribution. Based on these observations, our future research 

will explore two key directions: 1) Constructing a facial 

expression dataset with balanced data distribution in clinical 

environments; 2) Enhancing the recognition accuracy of 

negative emotions through more effective feature extraction 

(potentially by integrating physiological signals) 
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