
ELSEVIER

Contents lists available at ScienceDirect

International Journal of Hydrogen Energy

journal homepage: www.elsevier.com/locate/he

Cutting-edge advances in hydrogen applications for the medical and pharmaceutical industries

Hussam Jouhara ^{a,b}, Alevtina Kodresko ^a, Abdulrahman Alhajeri ^a, Valentina Olabi ^a, Heba Ghazal ^{c,*}

- a Heat Pipe and Thermal Management Research Group, College of Engineering, Design and Physical Sciences, Brunel University, London, UB8 3PH, UK
- ^b Vytautas Magnus University, Studentu, Kaunas 44248, Lithuania
- ^c School of Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, UK

ARTICLE INFO

Handling Editor: Ibrahim Dincer

Keywords: Hospitals Hydrogen Fuel cell Medical gas Pharmaceutical manufacturing

ABSTRACT

The adoption of clean hydrogen is expected to transform the global energy landscape, reducing greenhouse gas emissions, bridging gaps in renewable energy integration, and driving innovation across multiple sectors. In the medical and pharmaceutical industries, hydrogen offers unique opportunities for transformative progress. This review critically examines recent advances in three domains: hydrogen fuel cells as reliable, scalable, and sustainable energy solutions for hospitals; molecular hydrogen as a therapeutic and preventive medical gas, particularly for brain disorders; and hydrogenation technologies for the efficient and sustainable pharmaceutical production. Despite encouraging advancements, widespread adoption remains limited by economic constraints, regulatory gaps, and limited clinical evidence. Addressing these barriers through technological innovation, large-scale studies, and life-cycle sustainability assessments is essential to translate hydrogen's full potential into clinical and industrial practice. Responsible adoption of green hydrogen is poised to reshape the clinical approach to global health and enhance the quality of life for people worldwide.

1. Role of hydrogen in future global energy generation and decarbonisation

The global population growth and the accelerated pace of economic activities have increased the demand for energy, which resulted in the unbridled use of fossil fuels [1,2]. The overexploitation and utilisation of fossil fuels, in turn, have significantly elevated global greenhouse gas emissions and led to a cascade of climatic and environmental crises. Such challenges have made the global transition obligatory from conventional fossil fuels to cleaner renewable energy sources. In this context, hydrogen (H₂) has garnered significant international attention as a promising superior clean energy carrier, energy vector, and auxiliary component for several industrial processes that can be obtained through renewable and non-renewable sources [3,4]. According to an ever-increasing number of studies, hydrogen is being predicted as a critical and transformative component in the global sustainable energy plan shown in Fig. 1 [5]. The International Renewable Energy Agency (IRENA) has projected that clean hydrogen can reduce global carbon

emissions by about 10%, and its production is estimated to represent 30% of the total electricity demand by 2050 [6].

Amongst the capability of being truly carbon neutral or even negative on a life cycle basis, hydrogen has many beneficial characteristics, including high energy density, versatility, rapid recovery, large storage capacity, purity, renewability, easy transportation, and high transformation [7-9]. Nevertheless, its sustainability depends upon the cleanliness of the production pathway and the energy used during the manufacturing process, with about 96 % of the hydrogen still being produced from fossil fuels and only the remaining 4 %, known as green hydrogen, from other alternative renewable sources [10-13]. The adoption of green hydrogen in particular offers substantial environmental and socio-economic benefits poised to revolutionise the global energy landscape, reducing greenhouse gas emissions, bridging gaps in renewable energy integration, and driving innovation across multiple sectors [14-18]. To adequately realise the potential of green hydrogen and address existing challenges and barriers, strategic investments, international collaboration, and progressive policies are required [19-25].

This article is part of a special issue entitled: ICEESEN-2024 (Akansu) published in International Journal of Hydrogen Energy.

^{*} Corresponding author. School of Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, KT1 2EE, UK. *E-mail address*: H.Ghazal@kingston.ac.uk (H. Ghazal).

Several hydrogen-based projects are already attracting funding around the globe. Air Products, a worldwide leader in the hydrogen value chain, has been a first mover, committing more than \$15 billion to energy transition projects and launching several large clean energy projects. The preeminent one is NEOM – green-hydrogen-based ammonia production facility that will run on renewable energy and produce up to 600 tonnes per day of carbon-free hydrogen in the form of green ammonia. Another large investment is the Louisiana Clean Energy Complex for low-carbon blue hydrogen production, aiming to capture and sequester 95 % of its carbon dioxide ($\rm CO_2$) emissions which total over 5 million tonnes per year. These hydrogen production facilities and the onsite hydrogen generator are highly efficient, robust, and economical supply option that is designed to supply fuelling stations with up to 5000 nm³/h.

Hydrogen has already been an important feedstock across various industries, such as metal reduction, oxyhydrogen flames for metal cutting and welding in metallurgy, ammonia and methanol synthesis in chemical manufacturing, hydrocarbon fuels processing and upgrading of, fuel cells, synthetic fuels, transportation, and heating. It is also used, in other industrial applications including electronics, aerospace, maritime, pharmaceutical, medical, and food sectors. Fig. 2 demonstrates hydrogen production routes and the main directions of consumption in the world.

Numerous studies have demonstrated the progress made in the field of hydrogen fuel including production methods, storage and transport facilities, economic value, and applications in oil refining and chemical production. However, the current literature on the next-generation applications of hydrogen, especially in the pharmaceutical and medical industries, is limited, restricting research dissemination, broader recognition of hydrogen's potential, and therefore hindering its widespread adoption. To address this, the review adopts a selective, evidence-driven approach to critically synthesise and explicitly investigate peer-reviewed studies that provide clear methodological detail, validated experimental or clinical data, and translational relevance to medicine or pharmaceutical practice. By consolidating current knowledge, identifying gaps, and outlining future research priorities, the review aims to provide a critical foundation for advancing hydrogen's emerging role in these industries.

2. Next-generation hydrogen applications

2.1. Hydrogen fuel cells

Hydrogen fuel cells, both primary and backup use, show potential as power solutions for critical infrastructure such as hospitals. The implementation of renewable energies in hospitals is a promising method that can use hydrogen as an energy carrier to satisfy heat and electricity demand and oxygen, as a by-product, to supply the medicinal oxygen requirements. Fuel cells (Fig. 3) as solid hydrogen sources can convert chemical energy stored in hydrogen fuel into electrical energy in a sustainable, reliable, and efficient way that is in particular crucial in hospital buildings to maintain vital equipment and guarantee patient safety [26].

These backup power systems can provide reliable and continuous power to critical hospital infrastructure in biological signal monitoring devices, radiotherapy systems, medical imaging systems, operating room and ventilators; and sterilisers and oven devices, to name a few. Hydrogen fuel cells offer numerous benefits over conventional backup power solutions, such as diesel generators or lead-acid batteries. Growing evidence indicates that they can maintain continuity of operations, minimise downtime and losses, reduce the risk of system failures and the associated consequences, improve safety and sustainability, allow meeting regulatory requirements, protect assets, have a long lifespan, and offer energy independence, scalability, and quiet operation [28].

Recently, promising findings were reported by Ghimire et al. [27], who have conducted a techno-economic assessment of fuel cell-based combined heat and power systems both on-site and off-site as an alternative to diesel generators for hospital applications. The economic analysis revealed that the on-site hydrogen production (Fig. 4) for Dhulikhel Hospital in Nepal is both technically and economically feasible with a net present value of \$42,717, an internal rate of return of 8.4 % and a 10-year payback period. The uncertainty and sensitivity analysis revealed that the net present value (NPV) is positive in 87.5 % of cases and the electricity tariff rate is the most significant cost factor. Overall, proposed on-site hydrogen production has been shown to be economically and environmentally advantageous due to low operating costs, low noise, no emissions, and reduced reliance on imported fossil

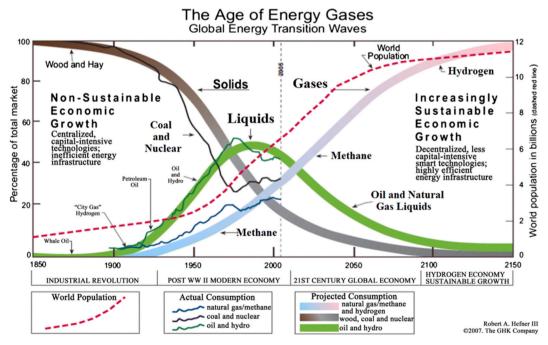


Fig. 1. The transformation of the global energy system from solid to liquid from 1850 to 2150 [5].

Fig. 2. Hydrogen production routes and main industrial applications.

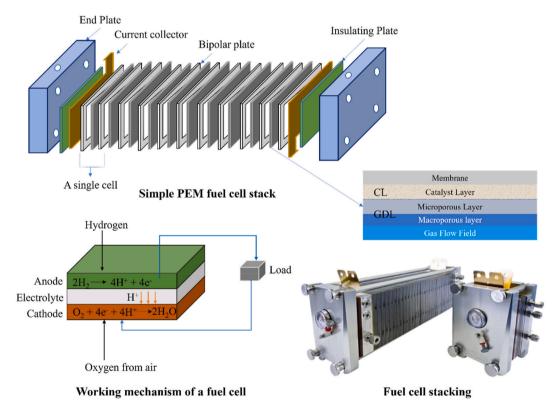


Fig. 3. Principle and structure of a fuel cell. PEM: polymer electrolyte membrane [27].

fuels.

Supportive findings were reported by Assuncao et al. [29], who focused on the economic and environmental analysis of the implementation of on-site decentralised co-production of oxygen and hydrogen through electrolysis for Santa Maria Hospital in Lisbon, Portugal, with an integrated hydrogen refuelling station. In the pursuit of providing the necessary oxygen hospital needs and simultaneously producing hydrogen to fuel electric vehicles such as ambulances, the

proposed integrated system has shown both positive economic and environmental benefits, with the potential to enhance the self-sufficiency and sustainability of healthcare facilities. This includes lower global warming potential (GWP) impact and yearly expenses compared to the traditional diesel concept.

A hydrogen storage system has been evaluated in a hybrid renewable energy system (HRES) using solar photovoltaic (PV) panels to produce electricity and oxygen for COVID-19 patients in a hospital located in

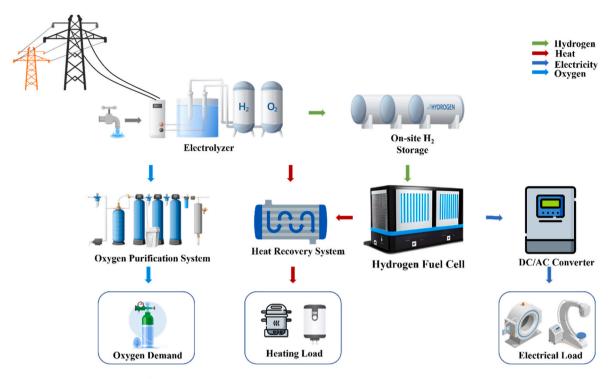


Fig. 4. Fuel cell-based combined heat and power (CHP) system with on-site hydrogen production [27].

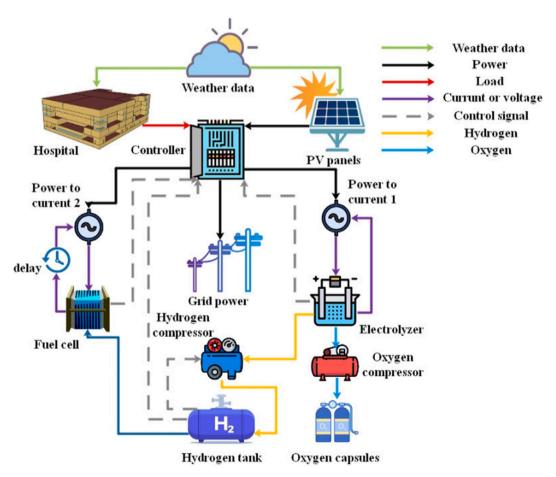


Fig. 5. The schematic of the novel renewable hybrid system [30].

Tehran, Iran (Fig. 5) [30].

After employing a neural network-genetic algorithm optimization, optimum results have been achieved covering the energy and oxygen demand through renewable resources, reducing dependency on grid power, CO₂ emissions and costs.

2.2. Molecular hydrogen as a therapeutic and preventive medical gas

At the heart of hydrogen's transformative role is its therapeutic potential in reshaping the clinical approach to global health [31–34]. It is now well documented that molecular hydrogen exhibits exceptional pharmacokinetics, allowing it to exert selective antioxidant, anti-inflammatory, anti-apoptotic, anti-allergic, cytoprotective, gene regulation, energy generation, autophagy and cell death modulation properties on mammalian cells (Fig. 6) [35–37]. Swiftly traversing the blood-brain barrier and cellular biomembranes to access subcellular organelles, molecular hydrogen is surmised to act as a hormetic substance in several molecular mechanisms, including hydroxyl radicals (\bullet OH) and nitrite (\bullet NO₂) reduction, regulation of endogenous antioxidant pathways, adrenal receptor agonist activity, and suppression of Wnt/ β -catenin signal, to name a few [38–42].

Among other clinical justifications for hydrogen clinical use is safety and non-interference with the underlying mechanisms of most treatments [44]. Coupled with progressive innovations in targeted delivery

methods ranging from inhalation devices and intravenous injections to dietary supplements and topical administration (Table 1), this provides a convenient approach to target and address a wide range of conditions in chronic, emergency, and convalescent care.

Bibliometric analysis reveals a thriving trend of research with over 1000 publications with dozens of human studies and over 80 registered clinical trials supporting the translational therapeutic and preventive potential of molecular hydrogen across multiple organs and disease models [68,69]. Owing to the common pathological basis of many diseases being oxidative stress, metabolic dysregulation, and inflammation, the molecular mechanism and biological effects of hydrogen can be exploited for an array of conditions including cardiovascular, respiratory, thoracic, haematological, dermatological, neurological and neurodegenerative conditions, cancer, diabetes, metabolic syndrome, rheumatoid arthritis, chronic hepatitis B, hyperlipidaemia. wounds, as well as ageing-related disorders, improving exercise performance, and sport injuries recovery. However, the research is still in its relative infancy, with the primary targets, molecular mechanisms, specific concentrations and optimal forms of administration remaining elusive and yet to be determined. Further large-scale, multicentre, randomized, double-blind trials are required to confirm efficacy and validate long-term safety.

As an illustration, the biological properties of hydrogen have attracted significant attention due to its remarkable antioxidant and

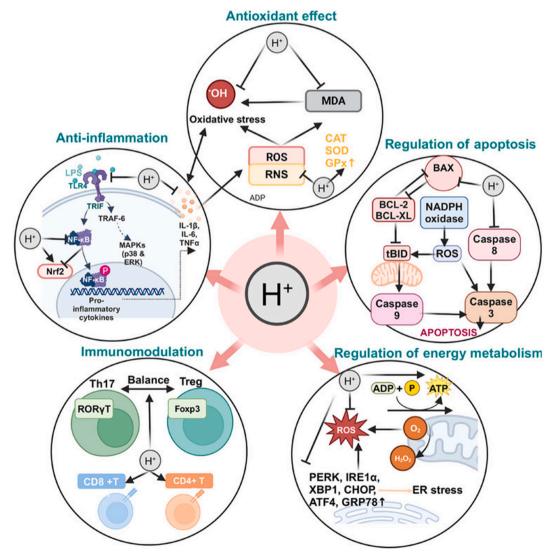


Fig. 6. Biological effects and mechanisms of action of molecular hydrogen [43].

Table 1
Method of administration of molecular hydrogen and its therapeutic targets.

Method of administration	Details	Therapeutic targets (from animal/human trials)
Ingestion	Dietary supplements (prebiotic substrates for H ₂ - producing bacteria or H ₂ - inducing calcium-rich powder) and H ₂ -rich water (HRW)	Gastrointestinal and inflammatory conditions, metabolic syndrome, post-exercise recovery in training athletes, prophylaxis against chronic conditions, such as cardiovascular disease and type 2 diabetes [42,45–49]
Inhalation	${ m H_2}$ and oxyhydrogen (HHO)	Respiratory and cardiovascular conditions, such as severe symptoms of coronavirus infectious disease, long-term inflammatory-related lung conditions such as asthma, chronic obstructive pulmonary disorder (COPD), emphysema, cystic fibrosis, and pulmonary adenoma; and benefits for training athletes [38,50–60]
Infusion	${ m H_2}$ -rich saline (HRS) administered intravenously or intraperitoneally	Post-operative care, ischaemia-reperfusion, liver disease, organ grafting, and rheumatoid arthritis [61–63]
Topical administration	Bathing in a H_2 -rich solution, absorbable gel, and patches	Wounds, inflammatory-related skin conditions (psoriasis and parapsoriasis <i>en plaques</i>), and traumatic injuries [64–66]
Nanotechnology	Nanodevices (magnesium/ hyaluronic acid) and nanoparticles (palladium hydride (PdH) for H ₂ delivery	Inflammatory-related conditions such as rheumatoid arthritis, neurodegenerative diseases, and cancer [39,67]

anti-inflammatory effects in brain disorders, including ischaemic stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, neonatal hypoxic-ischaemic encephalopathy, traumatic brain injury, depression, and anxiety (Fig. 7) [70]. Specifically, hydrogen acts as an electron donor to selectively scavenge the excessive •OH, enhance the activity of antioxidant enzymes, and activate the KEAP1/NRF2/ARE pathways, and therefore reduce oxidative stress as one of the essential pathological processes in most brain diseases. In terms of anti-inflammatory effects, molecular hydrogen attenuates the release of proinflammatory cytokines, reactive astrogliosis, and overactivation of microglia.

Effects of H_2 -rich water on Parkinson's disease were examined by Yoritaka et al. [71] in a randomised controlled clinical study. The authors demonstrated that the procedure is safe and well tolerated, and a significant improvement in total Unified Parkinson's Disease Rating Scale (UPDRS) scores can be achieved. Recently, Ichikawa et al. [72] presented a study on four Parkinson's disease patients in which hydrogen inhalation allowed for the improvement of the symptoms, such as body bending and hand tremor. Theoretically, the therapeutic effect can be attributed to the ability of hydrogen molecules to easily pass the blood-brain barrier and convert the hydroxyl radicals in the brain into water molecules, inhibiting a chain reaction of dopamine oxidation.

Preliminary supportive findings were reported in 11 patients with Alzheimer's disease following $\rm H_2$ gas inhalation and oral $\rm Li_2CO_3$ for 4–7 months that showed significantly improved Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) [73]. $\rm H_2$ gas inhalation was also safe and effective in patients with acute cerebral infarction, with significant effects found on the relative signal intensity of magnetic resonance imaging (MRI), National Institute of Health Stroke Scale (NIHSS) scores for clinically quantifying stroke severity, and physical therapy evaluation [74]. Acute cerebral infarction can also be intravenously treated with a combination of edaravone and $\rm H_2$ -rich saline to

improve MRI indices against the natural course [75]. H_2 -rich water demonstrated a potential for suppressing mild cognitive impairment (MCI) in apolipoprotein E4 (APOE4) carriers and a protective effect in newborns with hypoxic-ischaemia encephalopathy (HIE) by significantly decreasing the levels of serum neuron-specific enolase (NSE), interleukin-6 (IL-6), and tumour necrosis factor- α (TNF- α) [76,77].

2.3. Pharmaceutical manufacturing

Hydrogen plays a central role in the pharmaceutical manufacturing of active pharmaceutical ingredients (APIs), vitamins, and their intermediates through the process of hydrogenation, offering benefits such as tailored physical properties, enhanced biological activity, increased shelf life, and process efficiency. Hydrogenation is a chemical transformation with the addition of hydrogen across multiple bonds with the use of a heterogeneous or homogeneous catalyst, which can be carried out in a variety of ways, either in the liquid or gas phase, using asymmetric or symmetric methods, and in batch-wise or continuous modes [78–81]. Reaction types include hydrogenations of C=C double bonds, selective semi-hydrogenations of C=C triple bonds, hydrogenations of $C = X/C \equiv X$ multiple bonds, and stereoselective hydrogenations. In the pharmaceutical industry, the synthesis of APIs and vitamins is being actively researched, with the most prominent examples being L-dopa, naproxen, ibuprofen, paracetamol, erythromycin, cefprozil, cefixime, vitamin K, E, and (+)-biotin, to name a few [82,83]. Undoubtedly, hydrogenation of carbon-carbon double bonds is the most common type in the industry. For instance, it is currently being involved in the production of vitamin E by the synthesis of its intermediates isophytol and trimethylhydroquinone (TMHQ). TMHQ is one of the key building blocks for the chemical production of synthetic vitamin E, which is converted into (all-rac)-α-tocopherol by condensation with (all-rac)-isophytol and sequentially to (all-rac)-α-tocopherol and finally vitamin E [84]. Contemporary continuous hydrogenation technologies coupled with the wide variety of catalysts available allow excellent yields under nearly full conversion to be achieved. Further research is underway to develop concepts for enhanced and optimised efficiency of transformations, continuous processing and recycling, and high chemo- and stereoselectivities, thus avoiding laborious separation protocols and achieving robust and sustainable production methods.

3. Conclusion

In the vast spectrum of its revolutionary facets, hydrogen has established itself as a critical component in the medical and pharmaceutical industries, making it possible to achieve numerous breakthrough inventions in emerging fields of medicine, clinical sciences, biotechnology, and pharmaceutical research. Given the ever-increasing body of literature that substantiates the robust data on hydrogen's transforming role in the aforesaid industries, this paper is necessarily selective, covering novel solutions and scientific or technological advances such as hydrogen fuel cells, molecular hydrogen as a therapeutic and preventive medical gas, and pharmaceutical manufacturing.

In hospital settings, hydrogen fuel cells have proven to maintain continuity of operations, improve safety and sustainability, enhance reliability, and offer energy independence, scalability, and quiet operation. Growing evidence indicates that the molecular mechanism and biological effects of hydrogen can be exploited for an array of clinical conditions but specifically in brain disorders due to remarkable antioxidant and anti-inflammatory effects. Finally, contemporary hydrogenation technologies play a central role in the pharmaceutical manufacturing of vitamins, APIs, and their intermediates, offering benefits such as tailored physical properties, enhanced biological activity, increased shelf life, process efficiency, sustainability, and cost savings.

Nevertheless, a review of published research to date has clearly demonstrated that the widespread adoption of many of these advances

Brain disorders

Molecular hydrogen therapy

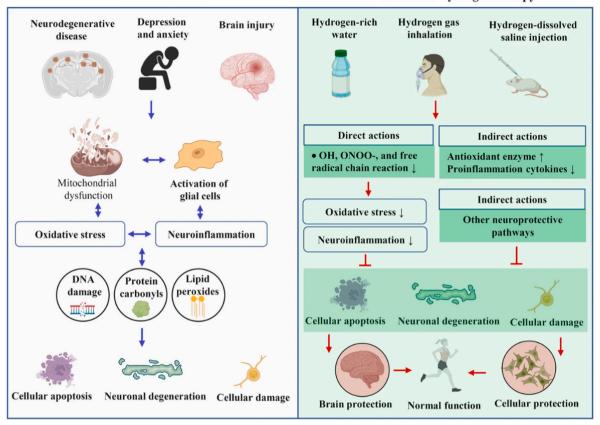


Fig. 7. Primary mechanisms of molecular hydrogen therapies in disorders [70].

has yet to gain traction and several limitations constrain their widespread implementation. Challenges remain in safe storage, flammability risks, economic feasibility, evolving regulatory frameworks, limited clinical evidence from small or pilot studies, including variability in delivery methods and incomplete understanding of the precise molecular mechanisms underlying therapeutic effects of hydrogen, and the development of efficient, cost-effective, and sustainable catalysts for hydrogenation processes, as well as process optimization. Collectively, these challenges argue for prioritized interdisciplinary research through large-scale, multicentre studies, technological innovation, and the establishment of supportive regulatory frameworks to unlock the full potential of hydrogen in these industries. Rigorous testing and validation studies are required to ensure the reliability and effectiveness in real-world applications to become part of the clinical and industry standard. Future translational and clinical studies should aim to report data on the source, purity, and carbon intensity and incorporate supplychain and life cycle assessment analyses to enable sustainability assessment once clinical and industrial scale-up occurs. Responsible scaling should prioritise green production and medical-grade supply chains, as medical and pharmaceutical applications require high purity, secure supply, and sterilisation standards. Accordingly, upon addressing existing multitudes of specialisation-specific factors and barriers, the adoption of green hydrogen in particular is poised to revolutionise the global energy landscape, reshape the clinical approach to global health, and enhance the quality of life for people worldwide.

CRediT authorship contribution statement

Hussam Jouhara: Writing – review & editing, Visualization, Validation, Supervision, Funding acquisition, Conceptualization. **Alevtina Kodresko:** Writing – review & editing, Writing – original draft, Visualization, Conceptualization. **Abdulrahman Alhajeri:** Writing – review

& editing, Visualization, Conceptualization. **Valentina Olabi:** Writing – review & editing, Visualization. **Heba Ghazal:** Writing – review & editing, Visualization, Supervision, Conceptualization.

Funding

The reported work was supported by Air Products PLC under grant agreement: 216-206-P-F.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- [1] Farias CBB, Barreiros RCS, da Silva MF, Casazza AA, Converti A, Sarubbo LA. Use of hydrogen as fuel: a trend of the 21st century. Energies (Basel) 2022;15(1):311. https://doi.org/10.3390/EN15010311.
- [2] Baum ZJ, Diaz LL, Konovalova T, Zhou QA. Materials research directions toward a green hydrogen economy: a review. ACS Omega 2022;7(37):32908–35. https:// doi.org/10.1021/ACSOMEGA.2C03996/ASSET/IMAGES/LARGE/AO2C03996_ 0016_IPEG.
- [3] Hassan Q, Hafedh SA, Mohammed HB, Abdulrahman IS, Salman HM, Jaszczur M. A review of hydrogen production from bio-energy, technologies and assessments. Energy Harvesting and Systems 2024;11(1). https://doi.org/10.1515/EHS-2022-0117/ASSET/GRAPHIC/J EHS-2022-0117 FIG 005.JPG.
- [4] Worku AK, Ayele DW, Deepak DB, Gebreyohannes AY, Agegnehu SD, Kolhe ML. Recent advances and challenges of hydrogen production technologies via renewable energy sources. Adv Energy Sustain Res 2024;5(5):2300273. https://doi.org/10.1002/AESR.202300273.
- [5] Le PA, Trung VD, Nguyen PL, Bac Phung TV, Natsuki J, Natsuki T. The current status of hydrogen energy: an overview. RSC Adv 2023;13(40):28262. https://doi. org/10.1039/D3RA05158G.

- [6] Ahmed IH, Alakoul KA, Al-Manea A, Wetaify ARH, Saleh K, Al-Rbaihat R, Alahmer A. An overview of hydrogen production techniques: challenges and limiting factors in achieving wide-scale productivity. AIP Conf Proc 2024;3051(1). https://doi.org/10.1063/5.0191762.
- [7] Sadeq AM, Homod RZ, Hussein AK, Togun H, Mahmoodi A, Isleem HF, Patil AR, Moghaddam AH. Hydrogen energy systems: technologies, trends, and future prospects. Sci Total Environ 2024;939:173622. https://doi.org/10.1016/J. SCITOTENV.2024.173622.
- [8] Ishaq H, Dincer I, Crawford C. A review on hydrogen production and utilization: challenges and opportunities. Int J Hydrogen Energy 2022;47(62):26238–64. https://doi.org/10.1016/J.IJHYDENE.2021.11.149.
- [9] Dash SK, Chakraborty S, Elangovan D. A brief review of hydrogen production methods and their challenges. Energies (Basel) 2023;16(3):1141. https://doi.org/ 10.3390/FN16031141.
- [10] Megia PJ, Vizcaino AJ, Calles JA, Carrero A. Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review. Energy Fuels 2021;35 (20):16403–15. https://doi.org/10.1021/ACS.ENERGYFUELS.1C02501/ASSET/ IMAGES/LARGE/EF1C02501 0004.JPEG.
- [11] Okolie JA, Patra BR, Mukherjee A, Nanda S, Dalai AK, Kozinski JA. Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. Int J Hydrogen Energy 2021;46(13):8885–905. https://doi.org/ 10.1016/J.IJHYDENE.2021.01.014.
- [12] Kalamaras CM, Efstathiou AM, Al-Assaf Y, Poullikkas A. Hydrogen production technologies: Current state and future developments. Conf Pap Sci 2013;2013(1): 690627. https://doi.org/10.1155/2013/690627.
- [13] Afanasev P, Askarova A, Alekhina T, Popov E, Markovic S, Mukhametdinova A, Cheremisin A, Mukhina E. An overview of hydrogen production methods: focus on hydrocarbon feedstock. Int J Hydrogen Energy 2024;78:805–28. https://doi.org/ 10.1016/J.IJHYDENE.2024.06.369.
- [14] Alhajeri A, Ghazal H, Olabi V, Jouhara H. Technical assessment of green hydrogen production in Kuwait. Int J Hydrogen Energy 2025. https://doi.org/10.1016/J. LJHYDENE.2025.01.273.
- [15] Anand C, Chandraja B, Nithiya P, Akshaya M, Tamizhdurai P, Shoba G, Subramani A, Kumaran R, Yadav KK, Gacem A, Bhutto JK, Alreshidi MA, Alam MW. Green hydrogen for a sustainable future: a review of production methods, innovations, and applications. Int J Hydrogen Energy 2025;111:319–41. https://doi.org/10.1016/J.JJHYDENE.2025.02.257.
- [16] Reda B, Elzamar AA, AlFazzani S, Ezzat SM. Green hydrogen as a source of renewable energy: a step towards sustainability, an overview. Environ Dev Sustain 2024:1–21. https://doi.org/10.1007/S10668-024-04892-Z/FIGURES/3.
- [17] Olabi V, Jouhara H. An assessment of current hydrogen supply chains in the Gulf Cooperation Council (GCC). Energy 2024;299:131576. https://doi.org/10.1016/J. ENERGY 2024 131576
- [18] Olabi V, Alhajeri A, Jouhara H. Designing a sustainable hydrogen supply chain network in the Gulf Cooperation Council (GCC) region: multi-objective optimisation using a Kuwait case-study. Int J Hydrogen Energy 2025;142: 994–1013. https://doi.org/10.1016/J.IJHYDENE.2025.03.296.
- [19] Chung CA, Chen YZ, Chen YP, Chang MS. CFD investigation on performance enhancement of metal hydride hydrogen storage vessels using heat pipes. Appl Therm Eng 2015;91:434–46. https://doi.org/10.1016/J. APPLTHERMALENG.2015.08.039.
- [20] Agyekum EB, Nutakor C, Agwa AM, Kamel S. A critical review of renewable hydrogen production methods: factors affecting their scale-up and its role in future energy generation. Membranes (Basel) 2022;12(2):173. https://doi.org/10.3390/ MEMBRANES12020173
- [21] Tuluhong A, Chang Q, Xie L, Xu Z, Song T. Current status of green hydrogen production technology: a review. Sustainability 2024;16(20):9070. https://doi. org/10.3390/SIII6200070
- [22] Segovia-Hernández JG, Hernández S, Cossío-Vargas E, Juarez-García M, Sánchez-Ramírez E. Green hydrogen production for sustainable development: a critical examination of barriers and strategic opportunities. RSC Sustain 2025;3(1): 134–57. https://doi.org/10.1039/D4SU00630E.
- [23] Maka AOM, Mehmood M. Green hydrogen energy production: current status and potential. Clean Energy 2024;8(2):1–7. https://doi.org/10.1093/CE/ZKAE012.
- [24] Johnravindar D, Selvakumar R. Applications of green hydrogen with commercial feasibility: identifying gaps, perspectives, and bottlenecks. ACS Symposium Series 2024:1–30. https://doi.org/10.1021/BK-2024-1474.CH001/ASSET/IMAGES/ MEDIUM/BK-2023-00716M_G010.GIF.
- [25] Osman AI, Mehta N, Elgarahy AM, Hefny M, Al-Hinai A, Al-Muhtaseb AH, Rooney DW. Hydrogen production, storage, utilisation and environmental impacts: a review. Environ Chem Lett 2021;20(1):153–88. https://doi.org/10.1007/ \$10311-021-01322-8.
- [26] Aydinli E, Göksu H. Use in the healthcare industry of the hydrogen energy produced by solid hydrogen sources used in fuel cells. Value in health sciences 2022;12(1):171–4. https://doi.org/10.33631/sabd.1055536.
- [27] Ghimire R, Niroula S, Pandey B, Subedi A, Thapa BS. Techno-economic assessment of fuel cell-based power backup system as an alternative to diesel generators in Nepal: a case study for hospital applications. Int J Hydrogen Energy 2024;56: 289–301. https://doi.org/10.1016/J.UHYDENE.2023.12.174.
- [28] Al Rikabi A, Abdelsalam S, Dabo OY. Hydrogen fuel cells for backup power applications: advantages, challenges, and case studies. Int Res J Adv Eng Technol 2023;9(1):25–30.
- [29] Assunção R, Ajeeb W, Eckl F, Gomes DM, Neto RC. Decentralized hydrogen-oxygen Co-Production via electrolysis for large hospitals with integrated hydrogen refueling station. Int J Hydrogen Energy 2025;103:87–98. https://doi.org/ 10.1016/J.IJHYDENE.2025.01.169.

- [30] Izadi A, Shahafve M, Ahmadi P, Hanafizadeh P. Design, and optimization of COVID-19 hospital wards to produce oxygen and electricity through solar PV panels with hydrogen storage systems by neural network-genetic algorithm. Energy (Oxf) 2022;263:125578. https://doi.org/10.1016/J.ENERGY.2022.125578.
- [31] Iida A, Nosaka N, Yumoto T, Knaup E, Naito H, Nishiyama C, Yamakawa Y, Tsukahara K, Terado M, Sato K, Ugawa T, Nkao A. The clinical application of hydrogen as a medical treatment. Acta Med Okayama 2016;70(5):331–8. https:// doi.org/10.18926/AMO/54590.
- [32] Slezak J, Kura B. Molecular hydrogen in health and disease. In: Slezak J, Kura B, editors. Advances in biochemistry in health and disease, 27. Cham: Springer Nature Switzerland; 2024. https://doi.org/10.1007/978-3-031-47375-3.
- [33] Ohta S. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol 2015;555:289–317. https:// doi.org/10.1016/BS.MIE.2014.11.038.
- [34] Dixon BJ, Tang J, Zhang JH. The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance. Med Gas Res 2013;3(1):1–12. https:// doi.org/10.1186/2045-9912-3-10.
- [35] Chung M-H, Ro JY. The medical uses of hydrogen. Food Suppl Biomater Health 2021;1(1). https://doi.org/10.52361/FSBH.2021.1.E5.
- [36] Yıldız F, LeBaron TW, Alwazeer D. A comprehensive review of molecular hydrogen as a novel nutrition therapy in relieving oxidative stress and diseases: mechanisms and perspectives. Biochem Biophys Rep 2025;41:101933. https://doi.org/ 10.1016/J.BBREP.2025.101933
- [37] Nicolson GL, Mattos G F de, Settineri R, Costa C, Ellithorpe R, Rosenblatt S, Valle J La, Jimenez A, Ohta S, Nicolson GL, Mattos G F de, Settineri R, Costa C, Ellithorpe R, Rosenblatt S, Valle J La, Jimenez A, Ohta S. Clinical effects of hydrogen administration: from animal and human diseases to exercise medicine. Int J Clin Med 2016;7(1):32–76. https://doi.org/10.4236/JJCM.2016.71005.
- [38] Zhang Y, Zhang J, Fu Z. Molecular hydrogen is a potential protective agent in the management of acute lung injury. Mol Med 2022;28(1):1–18. https://doi.org/ 10.1186/S10020-022-00455-Y/TABLES/2.
- [39] Tian Y, Zhang Y, Wang Y, Chen Y, Fan W, Zhou J, Qiao J, Wei Y. Hydrogen, a novel therapeutic molecule, regulates oxidative stress, inflammation, and apoptosis. Front Physiol 2021;12:789507. https://doi.org/10.3389/FPHYS.2021.789507/ FILLI.
- [40] Yuan T, Zhao JN, Bao NR. Hydrogen applications: advances in the field of medical therapy. Med Gas Res 2022;13(3):99. https://doi.org/10.4103/2045-0013-044679
- [41] Russell G, Nenov A, Kisher H, Hancock JT. Molecular hydrogen as medicine: an assessment of administration methods. Hydrogen 2021;2(4):444–60. https://doi. org/10.3390/HYDROGEN2040025.
- [42] Ge L, Yang M, Yang N-N, Yin X-X, Song W-G, Ge L, Yang M, Yang N-N, Yin X-X, Song W-G. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017;8(60):102653–73. https://doi.org/10.18632/ONCOTARGET.21130.
- [43] Jin J, Yue L, Du M, Geng F, Gao X, Zhou Y, Lu Q, Pan X. Molecular hydrogen therapy: mechanisms, delivery methods, preventive, and therapeutic application. MedComm (Beijing) 2025;6(5):e70194. https://doi.org/10.1002/MCO2.70194.
- [44] Du D, Zhao L, Shen M, Noda M, Qin S, Long J, Sun X, Liu J. Hydrogen medicine: a rising star in gas medicine. Tradit Med Mod Med 2021;3(3):153–61. https://doi. org/10.1142/S2575900020300052.
- [45] Hirano SI, Ichikawa Y, Sato B, Takefuji Y, Satoh F. Molecular hydrogen as a medical gas for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome: possible efficacy based on a literature review. Front Neurol 2022;13: 841310. https://doi.org/10.3389/FNEUR.2022.841310/BIBTEX.
- [46] Ohno K, Ito M, Ichihara M, Ito M. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid Med Cell Longev 2012; 2012;353152. https://doi.org/10.1155/2012/353152.
- [47] Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015;5(1):1–21. https://doi.org/ 10.1186/S13618-015-0035-1/TABLES/5.
- [48] Singh RB, Sumbalova Z, Fatima G, Mojto V, Fedacko J, Tarnava A, Pokotylo O, Gvozdjakova A, Ferenczyova K, Vlkovicova J, Kura B, Kalocayova B, Zenuch P, Slezak J. Effects of molecular hydrogen in the pathophysiology and management of cardiovascular and metabolic diseases. Rev Cardiovasc Med 2024;25(1):33. https://doi.org/10.31083/J.RCM2501033.
- [49] Lu KC, Shen MC, Wang RL, Chen WW, Chiu SH, Kao YH, Liu FC, Hsiao PJ. Using oral molecular hydrogen supplements to combat microinflammation in humans: a pilot observational study. Int J Med Sci 2024;21(12):2390–401. https://doi.org/ 10.7150/LJMS.101114.
- [50] Hu Q, Li Y, Lin Z, Zhang H, Chen H, Chao C, Zhao C. The molecular biological mechanism of hydrogen therapy and its application in spinal cord injury. Drug Des Dev Ther 2024;18:1399–414. https://doi.org/10.2147/DDDT.S463177.
- [51] Qian L, Wu Z, Cen J, Pasca S, Tomuleasa C. Medical application of hydrogen in hematological diseases. Oxid Med Cell Longev 2019;2019(1):3917393. https://doi org/10.1155/2019/3917393.
- [52] Wang M, Peng J, Hui J, Hou D, Li W, Yang J. Hydrogen therapy as an effective and novel adjuvant treatment against COVID-19. QJM: Int J Med 2021;114(1):74–5. https://doi.org/10.1093/QJMED/HCAA301.
- [53] Russell G, Thomas A, Nenov A, Hancock JT. The influence of molecular hydrogen therapies in managing the symptoms of acute and chronic COVID-19. Med Res Arch 2022;10(9). https://doi.org/10.18103/MRA.V10I9.3036.
- [54] Salomez-Ihl C, Giai J, Barbado M, Paris A, Touati S, Alcaraz JP, Tanguy S, Leroy C, Lehmann A, Degano B, Gavard M, Bedouch P, Pavese P, Moreau-Gaudry A, Roustit M, Boucher F, Cinquin P, Brion JP. H2 inhalation therapy in patients with

- moderate COVID-19 (H2COVID): a prospective ascending-dose phase I clinical trial. Antimicrob Agents Chemother 2024;68(8). https://doi.org/10.1128/
- [55] Yao W, Shen L, Ma Z, Zhao J, Liu L, Wang Z, Hu B. Efficacy and safety of hydrogen gas versus standard therapy in Chinese patients with cerebral infarction: a pilot study. Trop J Pharmaceut Res 2022;21(3):665–71. https://doi.org/10.4314/TJPR. V2113.20
- [56] Jurcău R, Jurcău I, Colceriu N-A. Molecular hydrogen, a therapeutic gas with antioxidant effects, general aspects and mechanism. Health Sport Rehabilit Med 2023;24(1):32–7. https://doi.org/10.26659/PM3.2023.24.1.32.
- [57] Chitapanarux I, Onchan W, Chakrabandhu S, Muangwong P, Autsavapromporn N, Ariyanon T, Akagi J, Mizoo A. Pilot feasibility and safety study of hydrogen gas inhalation in locally advanced head and neck cancer patients. OncoTargets Ther 2024;17:863–70. https://doi.org/10.2147/OTT.S478613.
- [58] Lemaire M, Barbier F. Hydrogen: therapeutic potential in wellness and medicine. J Aging Res Lifestyle 2017;1–9. https://doi.org/10.14283/JARCP.2017.2.
- [59] Lebaron TW, Laher I, Kura B, Slezak J. Hydrogen Gas: From Clinical Medicine to an Emerging Ergogenic Molecule for Sports Athletes 2019;97(9):797–807. https://doi.org/10.1139/CJPP-2019-0067. 10.1139/cjpp-2019-0067.
- [60] Chawla LS. Gas as medicine: the case for hydrogen gas as a therapeutic agent for critical illness. Intensive Care Med Exp 2025;13(1):1–6. https://doi.org/10.1186/ S40635-025-00798-W/FIGURES/1.
- [61] Hirano SI, Ichikawa Y, Sato B, Satoh F, Takefuji Y. Hydrogen is promising for medical applications. Clean Technol 2020;2(4):529–41. https://doi.org/10.3390/ CLEANTECHNOL 2040033
- [62] Zhang Y, Tan S, Xu J, Wang T. Hydrogen therapy in cardiovascular and metabolic diseases: from bench to bedside. Cell Physiol Biochem 2018;47(1):1–10. https:// doi.org/10.1159/000489737
- [63] Ostojic SM. Molecular hydrogen: an inert gas turns clinically effective. Ann Med 2015;47(4):301–4. https://doi.org/10.3109/07853890.2015.1034765.
- [64] Artamonov M Yu, LeBaron TW, Pyatakovich FA, Minenko IA, Artamonov M Yu, LeBaron TW, Pyatakovich FA, Minenko IA. Molecular hydrogen and its effect on wound healing and tissue regeneration. Wound Healing - New Frontiers and Strategies 2024. https://doi.org/10.5772/INTECHOPEN.1004921.
- [65] Guo N, Zhang Y. Progress in the application of molecular hydrogen in medical skin cosmetology. Clin Cosmet Investig Dermatol 2025;18:511–23. https://doi.org/ 10.2147/CCID.S500255.
- [66] Artamonov MY, Martusevich AK, Pyatakovich FA, Minenko IA, Dlin SV, LeBaron TW. Molecular hydrogen: from molecular effects to stem cells management and tissue regeneration. Antioxidants 2023;12(3):636. https://doi. org/10.3390/ANTIOX12030636. 2023. 12.
- [67] Khiji MN, Arghidash F, Tanha GK, Zadeh RH, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Lam AK-Y, Giovannetti E, Ferns GA, Nazari E, Avan A. The therapeutic application of hydrogen in cancer: the potential and challenges. Curr Pharm Des 2024;30(17):1295–306. https://doi.org/10.2174/ 0113816128296710240404040232.
- [68] Li H, Ma HY, Hua WL, Zhang YX, Zhang L, Xing PF, Yang PF, Liu JM. Trend of research on the medical use of molecular hydrogen: a bibliometric analysis. Med Gas Res 2023;13(4):212–8. https://doi.org/10.4103/2045-9912.344980.
- [69] Johnsen HM, Hiorth M, Klaveness J. Molecular hydrogen therapy—A review on clinical studies and outcomes. Molecules 2023;28(23):7785. https://doi.org/ 10.3390/MOLECULES28237785.
- [70] Wu C, Zou P, Feng S, Zhu L, Li F, Liu TCY, Duan R, Yang L. Molecular hydrogen: an emerging therapeutic medical gas for brain disorders. Mol Neurobiol 2022;60(4): 1749–65. https://doi.org/10.1007/S12035-022-03175-W.

- [71] Yoritaka A, Takanashi M, Hirayama M, Nakahara T, Ohta S, Hattori N. Pilot study of H2 therapy in parkinson's disease: a randomized double-blind placebocontrolled trial. Mov Disord 2013;28(6):836–9. https://doi.org/10.1002/ MDS.25375;WGROUP:STRING:PUBLICATION.
- [72] Ichikawa Y, Sato B, Hirano SI, Takefuji Y, Satoh F. Realizing brain therapy with "smart medicine": mechanism and case report of molecular hydrogen inhalation for parkinson's disease. Med Gas Res 2024;14(3):89–95. https://doi.org/10.4103/ 2045-9912.385949.
- [73] Ono H, Nishizima Y, Sakamoto M, Horikoshi T, Tamaki M, Oishi W, Naitoh Y, Futaki T, Ishii S, Suzuki K. Pilot study on therapeutic inhalation of hydrogen gas for improving patients with alzheimer's disease assessed by cognitive subscale scores and magnetic resonance diffusion tensor imaging. Int J Alzheimers & Neuro Disorder 2018;1(1).
- [74] Ono H, Nishijima Y, Ohta S, Sakamoto M, Kinone K, Horikosi T, Tamaki M, Takeshita H, Futatuki T, Ohishi W, Ishiguro T, Okamoto S, Ishii S, Takanami H. Hydrogen gas inhalation treatment in acute cerebral infarction: a randomized controlled clinical study on safety and neuroprotection. J Stroke Cerebrovasc Dis 2017;26(11):2587–94. https://doi.org/10.1016/J. JSTROKECEREBROVASDIS.2017.06.012.
- [75] Ono H, Nishijima Y, Adachi N, Tachibana S, Chitoku S, Mukaihara S, Sakamoto M, Kudo Y, Nakazawa J, Kaneko K, Nawashiro H. Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, edaravone and hydrogen, as compared to edaravone alone. A non-controlled study. Med Gas Res 2011;1(1):1–9. https://doi.org/10.1186/2045-9912-1-12/FIGURES/2.
- [76] Nishimaki K, Asada T, Ohsawa I, Nakajima E, Ikejima C, Yokota T, Kamimura N, Ohta S. Effects of molecular hydrogen assessed by an animal model and a randomized clinical study on mild cognitive impairment. Curr Alzheimer Res 2018; 15(5):482–92. https://doi.org/10.2174/1567205014666171106145017
- [77] Yang L, Li D, Chen S. Hydrogen water reduces NSE, IL-6, and TNF-α levels in hypoxic-ischemic encephalopathy. Open Med 2016;11(1):399–406. https://doi. org/10.1515/MED-2016-0072.
- [78] Sun Y, Leblond C. Understanding fundamental processes in catalytic hydrogenation reactions. Chemical Engineering in the Pharmaceutical Industry 2019:191–201. https://doi.org/10.1002/9781119600800.CH9.
- [79] Biosca M, Diéguez M, Zanotti-Gerosa A. Asymmetric hydrogenation in industry. Adv Catal 2021;68:341–83. https://doi.org/10.1016/BS.ACAT.2021.08.005.
- [80] Royo B. Transfer hydrogenation with non-toxic metals for drug synthesis. RSC Green Chemistry 2018 2018-January;54:105–38. https://doi.org/10.1039/ 9781788010658-00105.
- [81] Mendoza Suarez F, Tatarchuk B. Comparative economic analysis of batch vs. continuous manufacturing in catalytic heterogeneous processes: impact of catalyst activity maintenance and materials costs on total costs of manufacturing in the production of fine chemicals and pharmaceuticals. J Flow Chem 2025;15(1): 21–38. https://doi.org/10.1007/S41981-024-00342-Z/TABLES/5.
- [82] Rahman R, Uahengo V, Likius D. Green chemistry concept: applications of catalysis in pharmacuetical industry. Glob Drugs Ther 2017;2(4). https://doi.org/ 10.15761/GDT.1000130.
- [83] Steven A. Heterogeneous hydrogenation in pharmaceutical development. In: Adsorption - fundamental mechanisms and applications. IntechOpen; 2024. https://doi.org/10.5772/INTECHOPEN.1007431.
- [84] Bonrath W, Medlock J, Schutz J, Wustenberg B, Netscher T, Bonrath W, Medlock J, Schutz J, Wustenberg B, Netscher T. Hydrogenation in the vitamins and fine chemicals industry – an overview. Hydrogenation 2012. https://doi.org/10.5772/ 48751.