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Handling Editor: Ibrahim Dincer The adoption of clean hydrogen is expected to transform the global energy landscape, reducing greenhouse gas

emissions, bridging gaps in renewable energy integration, and driving innovation across multiple sectors. In the

Keywords: medical and pharmaceutical industries, hydrogen offers unique opportunities for transformative progress. This
Hospitals review critically examines recent advances in three domains: hydrogen fuel cells as reliable, scalable, and sus-
Eyc;mgleln tainable energy solutions for hospitals; molecular hydrogen as a therapeutic and preventive medical gas,
uel ce

particularly for brain disorders; and hydrogenation technologies for the efficient and sustainable pharmaceutical
production. Despite encouraging advancements, widespread adoption remains limited by economic constraints,
regulatory gaps, and limited clinical evidence. Addressing these barriers through technological innovation, large-
scale studies, and life-cycle sustainability assessments is essential to translate hydrogen’s full potential into
clinical and industrial practice. Responsible adoption of green hydrogen is poised to reshape the clinical
approach to global health and enhance the quality of life for people worldwide.

Medical gas
Pharmaceutical manufacturing

1. Role of hydrogen in future global energy generation and
decarbonisation

The global population growth and the accelerated pace of economic
activities have increased the demand for energy, which resulted in the
unbridled use of fossil fuels [1,2]. The overexploitation and utilisation of
fossil fuels, in turn, have significantly elevated global greenhouse gas
emissions and led to a cascade of climatic and environmental crises.
Such challenges have made the global transition obligatory from con-
ventional fossil fuels to cleaner renewable energy sources. In this
context, hydrogen (Hj) has garnered significant international attention
as a promising superior clean energy carrier, energy vector, and auxil-
iary component for several industrial processes that can be obtained
through renewable and non-renewable sources [3,4]. According to an
ever-increasing number of studies, hydrogen is being predicted as a
critical and transformative component in the global sustainable energy
plan shown in Fig. 1 [5]. The International Renewable Energy Agency
(IRENA) has projected that clean hydrogen can reduce global carbon

emissions by about 10 %, and its production is estimated to represent 30
% of the total electricity demand by 2050 [6].

Amongst the capability of being truly carbon neutral or even nega-
tive on a life cycle basis, hydrogen has many beneficial characteristics,
including high energy density, versatility, rapid recovery, large storage
capacity, purity, renewability, easy transportation, and high trans-
formation [7-9]. Nevertheless, its sustainability depends upon the
cleanliness of the production pathway and the energy used during the
manufacturing process, with about 96 % of the hydrogen still being
produced from fossil fuels and only the remaining 4 %, known as green
hydrogen, from other alternative renewable sources [10-13]. The
adoption of green hydrogen in particular offers substantial environ-
mental and socio-economic benefits poised to revolutionise the global
energy landscape, reducing greenhouse gas emissions, bridging gaps in
renewable energy integration, and driving innovation across multiple
sectors [14-18]. To adequately realise the potential of green hydrogen
and address existing challenges and barriers, strategic investments, in-
ternational collaboration, and progressive policies are required [19-25].
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Several hydrogen-based projects are already attracting funding
around the globe. Air Products, a worldwide leader in the hydrogen
value chain, has been a first mover, committing more than $15 billion to
energy transition projects and launching several large clean energy
projects. The preeminent one is NEOM - green-hydrogen-based
ammonia production facility that will run on renewable energy and
produce up to 600 tonnes per day of carbon-free hydrogen in the form of
green ammonia. Another large investment is the Louisiana Clean Energy
Complex for low-carbon blue hydrogen production, aiming to capture
and sequester 95 % of its carbon dioxide (CO3) emissions which total
over 5 million tonnes per year. These hydrogen production facilities and
the onsite hydrogen generator are highly efficient, robust, and
economical supply option that is designed to supply fuelling stations
with up to 5000 nm>/h.

Hydrogen has already been an important feedstock across various
industries, such as metal reduction, oxyhydrogen flames for metal cut-
ting and welding in metallurgy, ammonia and methanol synthesis in
chemical manufacturing, hydrocarbon fuels processing and upgrading
of, fuel cells, synthetic fuels, transportation, and heating. It is also used,
in other industrial applications including electronics, aerospace, mari-
time, pharmaceutical, medical, and food sectors. Fig. 2 demonstrates
hydrogen production routes and the main directions of consumption in
the world.

Numerous studies have demonstrated the progress made in the field
of hydrogen fuel including production methods, storage and transport
facilities, economic value, and applications in oil refining and chemical
production. However, the current literature on the next-generation ap-
plications of hydrogen, especially in the pharmaceutical and medical
industries, is limited, restricting research dissemination, broader
recognition of hydrogen’s potential, and therefore hindering its wide-
spread adoption. To address this, the review adopts a selective,
evidence-driven approach to critically synthesise and explicitly inves-
tigate peer-reviewed studies that provide clear methodological detail,
validated experimental or clinical data, and translational relevance to
medicine or pharmaceutical practice. By consolidating current knowl-
edge, identifying gaps, and outlining future research priorities, the re-
view aims to provide a critical foundation for advancing hydrogen’s
emerging role in these industries.
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2. Next-generation hydrogen applications
2.1. Hydrogen fuel cells

Hydrogen fuel cells, both primary and backup use, show potential as
power solutions for critical infrastructure such as hospitals. The imple-
mentation of renewable energies in hospitals is a promising method that
can use hydrogen as an energy carrier to satisfy heat and electricity
demand and oxygen, as a by-product, to supply the medicinal oxygen
requirements. Fuel cells (Fig. 3) as solid hydrogen sources can convert
chemical energy stored in hydrogen fuel into electrical energy in a
sustainable, reliable, and efficient way that is in particular crucial in
hospital buildings to maintain vital equipment and guarantee patient
safety [26].

These backup power systems can provide reliable and continuous
power to critical hospital infrastructure in biological signal monitoring
devices, radiotherapy systems, medical imaging systems, operating
room and ventilators; and sterilisers and oven devices, to name a few.
Hydrogen fuel cells offer numerous benefits over conventional backup
power solutions, such as diesel generators or lead-acid batteries.
Growing evidence indicates that they can maintain continuity of oper-
ations, minimise downtime and losses, reduce the risk of system failures
and the associated consequences, improve safety and sustainability,
allow meeting regulatory requirements, protect assets, have a long
lifespan, and offer energy independence, scalability, and quiet operation
[28].

Recently, promising findings were reported by Ghimire et al. [27],
who have conducted a techno-economic assessment of fuel cell-based
combined heat and power systems both on-site and off-site as an alter-
native to diesel generators for hospital applications. The economic
analysis revealed that the on-site hydrogen production (Fig. 4) for
Dhulikhel Hospital in Nepal is both technically and economically
feasible with a net present value of $42,717, an internal rate of return of
8.4 % and a 10-year payback period. The uncertainty and sensitivity
analysis revealed that the net present value (NPV) is positive in 87.5 %
of cases and the electricity tariff rate is the most significant cost factor.
Overall, proposed on-site hydrogen production has been shown to be
economically and environmentally advantageous due to low operating
costs, low noise, no emissions, and reduced reliance on imported fossil
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Fig. 1. The transformation of the global energy system from solid to liquid from 1850 to 2150 [5].
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fuels.

Supportive findings were reported by Assuncao et al. [29], who
focused on the economic and environmental analysis of the imple-
mentation of on-site decentralised co-production of oxygen and
hydrogen through electrolysis for Santa Maria Hospital in Lisbon,
Portugal, with an integrated hydrogen refuelling station. In the pursuit
of providing the necessary oxygen hospital needs and simultaneously
producing hydrogen to fuel electric vehicles such as ambulances, the

proposed integrated system has shown both positive economic and
environmental benefits, with the potential to enhance the
self-sufficiency and sustainability of healthcare facilities. This includes
lower global warming potential (GWP) impact and yearly expenses
compared to the traditional diesel concept.

A hydrogen storage system has been evaluated in a hybrid renewable
energy system (HRES) using solar photovoltaic (PV) panels to produce
electricity and oxygen for COVID-19 patients in a hospital located in
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Tehran, Iran (Fig. 5) [30].

After employing a neural network-genetic algorithm optimization,
optimum results have been achieved covering the energy and oxygen
demand through renewable resources, reducing dependency on grid
power, CO, emissions and costs.

2.2. Molecular hydrogen as a therapeutic and preventive medical gas

At the heart of hydrogen’s transformative role is its therapeutic po-
tential in reshaping the clinical approach to global health [31-34]. It is
now well documented that molecular hydrogen exhibits exceptional
pharmacokinetics, allowing it to exert selective antioxidant,
anti-inflammatory, anti-apoptotic, anti-allergic, cytoprotective, gene
regulation, energy generation, autophagy and cell death modulation
properties on mammalian cells (Fig. 6) [35-37]. Swiftly traversing the
blood-brain barrier and cellular biomembranes to access subcellular
organelles, molecular hydrogen is surmised to act as a hormetic sub-
stance in several molecular mechanisms, including hydroxyl radicals
(eOH) and nitrite (éNOy) reduction, regulation of endogenous antioxi-
dant pathways, adrenal receptor agonist activity, and suppression of
Wnt/p-catenin signal, to name a few [38-42].

Among other clinical justifications for hydrogen clinical use is safety
and non-interference with the underlying mechanisms of most treat-
ments [44]. Coupled with progressive innovations in targeted delivery
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methods ranging from inhalation devices and intravenous injections to
dietary supplements and topical administration (Table 1), this provides
a convenient approach to target and address a wide range of conditions
in chronic, emergency, and convalescent care.

Bibliometric analysis reveals a thriving trend of research with over
1000 publications with dozens of human studies and over 80 regis-
tered clinical trials supporting the translational therapeutic and pre-
ventive potential of molecular hydrogen across multiple organs and
disease models [68,69]. Owing to the common pathological basis of
many diseases being oxidative stress, metabolic dysregulation, and
inflammation, the molecular mechanism and biological effects of
hydrogen can be exploited for an array of conditions including cardio-
vascular, respiratory, thoracic, haematological, dermatological, neuro-
logical and neurodegenerative conditions, cancer, diabetes, metabolic
syndrome, rheumatoid arthritis, chronic hepatitis B, hyperlipidaemia,
wounds, as well as ageing-related disorders, improving exercise per-
formance, and sport injuries recovery. However, the research is still in
its relative infancy, with the primary targets, molecular mechanisms,
specific concentrations and optimal forms of administration remaining
elusive and yet to be determined. Further large-scale, multicentre, ran-
domized, double-blind trials are required to confirm efficacy and vali-
date long-term safety.

As an illustration, the biological properties of hydrogen have
attracted significant attention due to its remarkable antioxidant and
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Fig. 6. Biological effects and mechanisms of action of molecular hydrogen [43].
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Table 1

Method of administration of molecular hydrogen and its therapeutic targets.

Method of Details Therapeutic targets (from
administration animal/human trials)
Ingestion Dietary supplements Gastrointestinal and
(prebiotic substrates for H,- inflammatory conditions,
producing bacteria or Hy- metabolic syndrome, post-
inducing calcium-rich exercise recovery in training
powder) and H,-rich water athletes, prophylaxis against
(HRW) chronic conditions, such as
cardiovascular disease and
type 2 diabetes [42,45-49]
Inhalation H, and oxyhydrogen (HHO)  Respiratory and
cardiovascular conditions,
such as severe symptoms of
coronavirus infectious disease,
long-term inflammatory-
related lung conditions such as
asthma, chronic obstructive
pulmonary disorder (COPD),
emphysema, cystic fibrosis,
and pulmonary adenoma; and
benefits for training athletes
[38,50-60]

Infusion H,-rich saline (HRS) Post-operative care,
administered intravenously ischaemia-reperfusion, liver
or intraperitoneally disease, organ grafting, and

rheumatoid arthritis [61-63]
Topical Bathing in a Hy-rich Wounds, inflammatory-related
administration solution, absorbable gel, and  skin conditions (psoriasis and
patches parapsoriasis en plaques), and
traumatic injuries [64-66]
Nanotechnology Nanodevices (magnesium/ Inflammatory-related

hyaluronic acid) and
nanoparticles (palladium
hydride (PdH) for H,

conditions such as rheumatoid
arthritis, neurodegenerative
diseases, and cancer [39,67]

delivery

anti-inflammatory effects in brain disorders, including ischaemic stroke,
Parkinson’s disease, multiple sclerosis, Alzheimer’s disease, neonatal
hypoxic-ischaemic encephalopathy, traumatic brain injury, depression,
and anxiety (Fig. 7) [70]. Specifically, hydrogen acts as an electron
donor to selectively scavenge the excessive #OH, enhance the activity of
antioxidant enzymes, and activate the KEAP1/NRF2/ARE pathways,
and therefore reduce oxidative stress as one of the essential pathological
processes in most brain diseases. In terms of anti-inflammatory effects,
molecular hydrogen attenuates the release of proinflammatory cyto-
kines, reactive astrogliosis, and overactivation of microglia.

Effects of Hy-rich water on Parkinson’s disease were examined by
Yoritaka et al. [71] in a randomised controlled clinical study. The au-
thors demonstrated that the procedure is safe and well tolerated, and a
significant improvement in total Unified Parkinson’s Disease Rating
Scale (UPDRS) scores can be achieved. Recently, Ichikawa et al. [72]
presented a study on four Parkinson’s disease patients in which
hydrogen inhalation allowed for the improvement of the symptoms,
such as body bending and hand tremor. Theoretically, the therapeutic
effect can be attributed to the ability of hydrogen molecules to easily
pass the blood-brain barrier and convert the hydroxyl radicals in the
brain into water molecules, inhibiting a chain reaction of dopamine
oxidation.

Preliminary supportive findings were reported in 11 patients with
Alzheimer’s disease following Hy gas inhalation and oral Li,COs3 for 4-7
months that showed significantly improved Alzheimer’s Disease
Assessment Scale-cognitive subscale (ADAS-cog) [73]. Hy gas inhalation
was also safe and effective in patients with acute cerebral infarction,
with significant effects found on the relative signal intensity of magnetic
resonance imaging (MRI), National Institute of Health Stroke Scale
(NIHSS) scores for clinically quantifying stroke severity, and physical
therapy evaluation [74]. Acute cerebral infarction can also be intrave-
nously treated with a combination of edaravone and Hj-rich saline to
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improve MRI indices against the natural course [75]. Ha-rich water
demonstrated a potential for suppressing mild cognitive impairment
(MCI) in apolipoprotein E4 (APOE4) carriers and a protective effect in
newborns with hypoxic-ischaemia encephalopathy (HIE) by signifi-
cantly decreasing the levels of serum neuron-specific enolase (NSE),
interleukin-6 (IL-6), and tumour necrosis factor-o (TNF-a) [76,77].

2.3. Pharmaceutical manufacturing

Hydrogen plays a central role in the pharmaceutical manufacturing
of active pharmaceutical ingredients (APIs), vitamins, and their in-
termediates through the process of hydrogenation, offering benefits such
as tailored physical properties, enhanced biological activity, increased
shelf life, and process efficiency. Hydrogenation is a chemical trans-
formation with the addition of hydrogen across multiple bonds with the
use of a heterogeneous or homogeneous catalyst, which can be carried
out in a variety of ways, either in the liquid or gas phase, using asym-
metric or symmetric methods, and in batch-wise or continuous modes
[78-81]. Reaction types include hydrogenations of C—=C double bonds,
selective semi-hydrogenations of C=C triple bonds, hydrogenations of
C = X/C = X multiple bonds, and stereoselective hydrogenations. In the
pharmaceutical industry, the synthesis of APIs and vitamins is being
actively researched, with the most prominent examples being 1-dopa,
naproxen, ibuprofen, paracetamol, erythromycin, cefprozil, cefixime,
vitamin K, E, and (+)-biotin, to name a few [82,83]. Undoubtedly, hy-
drogenation of carbon-carbon double bonds is the most common type in
the industry. For instance, it is currently being involved in the produc-
tion of vitamin E by the synthesis of its intermediates isophytol and
trimethylhydroquinone (TMHQ). TMHQ is one of the key building
blocks for the chemical production of synthetic vitamin E, which is
converted into (all-rac)-a-tocopherol by condensation with (all-rac)-i-
sophytol and sequentially to (all-rac)-a-tocopherol and finally vitamin E
[84]. Contemporary continuous hydrogenation technologies coupled
with the wide variety of catalysts available allow excellent yields under
nearly full conversion to be achieved. Further research is underway to
develop concepts for enhanced and optimised efficiency of trans-
formations, continuous processing and recycling, and high chemo- and
stereoselectivities, thus avoiding laborious separation protocols and
achieving robust and sustainable production methods.

3. Conclusion

In the vast spectrum of its revolutionary facets, hydrogen has
established itself as a critical component in the medical and pharma-
ceutical industries, making it possible to achieve numerous break-
through inventions in emerging fields of medicine, clinical sciences,
biotechnology, and pharmaceutical research. Given the ever-increasing
body of literature that substantiates the robust data on hydrogen’s
transforming role in the aforesaid industries, this paper is necessarily
selective, covering novel solutions and scientific or technological ad-
vances such as hydrogen fuel cells, molecular hydrogen as a therapeutic
and preventive medical gas, and pharmaceutical manufacturing.

In hospital settings, hydrogen fuel cells have proven to maintain
continuity of operations, improve safety and sustainability, enhance
reliability, and offer energy independence, scalability, and quiet oper-
ation. Growing evidence indicates that the molecular mechanism and
biological effects of hydrogen can be exploited for an array of clinical
conditions but specifically in brain disorders due to remarkable anti-
oxidant and anti-inflammatory effects. Finally, contemporary hydroge-
nation technologies play a central role in the pharmaceutical
manufacturing of vitamins, APIs, and their intermediates, offering
benefits such as tailored physical properties, enhanced biological ac-
tivity, increased shelf life, process efficiency, sustainability, and cost
savings.

Nevertheless, a review of published research to date has clearly
demonstrated that the widespread adoption of many of these advances
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has yet to gain traction and several limitations constrain their wide-
spread implementation. Challenges remain in safe storage, flammability
risks, economic feasibility, evolving regulatory frameworks, limited
clinical evidence from small or pilot studies, including variability in
delivery methods and incomplete understanding of the precise molec-
ular mechanisms underlying therapeutic effects of hydrogen, and the
development of efficient, cost-effective, and sustainable catalysts for
hydrogenation processes, as well as process optimization. Collectively,
these challenges argue for prioritized interdisciplinary research through
large-scale, multicentre studies, technological innovation, and the
establishment of supportive regulatory frameworks to unlock the full
potential of hydrogen in these industries. Rigorous testing and valida-
tion studies are required to ensure the reliability and effectiveness in
real-world applications to become part of the clinical and industry
standard. Future translational and clinical studies should aim to report
data on the source, purity, and carbon intensity and incorporate supply-
chain and life cycle assessment analyses to enable sustainability
assessment once clinical and industrial scale-up occurs. Responsible
scaling should prioritise green production and medical-grade supply
chains, as medical and pharmaceutical applications require high purity,
secure supply, and sterilisation standards. Accordingly, upon addressing
existing multitudes of specialisation-specific factors and barriers, the
adoption of green hydrogen in particular is poised to revolutionise the
global energy landscape, reshape the clinical approach to global health,
and enhance the quality of life for people worldwide.
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