
Abstract—Reducing the decision response time of load shedding 

while considering the comprehensive value of load shedding is one of 

the main challenges faced in emergency control of islanded 

microgrids. However, the existing underfrequency load shedding 

strategies do not fully consider the multiple factors associated with 

the load, and load assessment and load shedding decision-making are 

separated; this results in a long response time for underfrequency 

load shedding decisions for islanded microgrids. Therefore, in this 

paper, an integrated underfrequency load shedding strategy for 

islanded microgrids is proposed, which integrates multiclass 

load-related factors. This strategy first constructs an integrated 

underfrequency load shedding model for islanded microgrids on the 

basis of multiclass load-related factors such as the load frequency 

regulation effect, load shedding cost, and three-phase system power 

unbalance degree. Then, the load shedding model is described as a 

Markov decision process (MDP), and the environment, action space, 

and reward function are defined considering the load shedding 

objectives and constraints of islanded microgrids. Finally, a novel 

twin delay deep deterministic policy gradient method with softmax 

and dual buffer replay (DBR-SD3) is developed to determine the 

optimal integrated underfrequency load shedding strategy. This 

approach integrates softmax and the dual buffer replay mechanism 

into twin delay deep deterministic policy gradient (TD3), which 

greatly improves the ability of the agent to learn the optimal load 

shedding strategy in a complex microgrid operating environment. 

The simulation results based on the improved IEEE 37-bus microgrid 

and IEEE 118-bus microgrid verify that the proposed integrated load 

shedding strategy can greatly reduce the decision response time, 

correct the three-phase power unbalance of the system while 

minimizing the load shedding cost, and restore the system frequency 

to a normal level more quickly. Moreover, even under strong noise 

interference, the proposed strategy can produce stable load shedding 

decisions and has strong robustness and adaptability.  

Index Terms—microgrid, underfrequency load shedding, 

load-related factors, DBR-SD3. 
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I. INTRODUCTION

ITH the gradual increase in smart grid construction in 

China, the penetration rate of distributed generators 

(DGs), which are powered primarily by new energy in 

microgrids, is increasing daily [1], [2]. However, DGs need to be 

connected to the power grid through power electronic equipment, 

and their frequency recovery ability is weak, which may cause 

problems such as frequency safety and stability issues when 

serious faults occur. Especially for islanded microgrids, postfault 

frequency instability is an important cause of economic losses [3]. 

When a fault occurs in an islanded microgrid, if effective 

emergency intervention measures cannot be taken in time, it may 

lead to chain failure or power outages in the whole network [4]. 

To minimize the adverse effects of fault events on islanded 

microgrids, the frequency recovery problem must be effectively 

addressed. 

To enable the frequency of the islanded microgrid system to 

recover to a stable state after a disturbance quickly, a multi-stage 

droop control parameter optimization method was proposed in [5]. 

This method optimizes the power output strategy of DGs by 

adaptively modifying the droop control parameters to recover the 

frequency deviation caused by unexpected disturbances quickly. A 

distributed control strategy was designed in [6]. This strategy can 

control the energy storage system to participate in different 

frequency regulation tasks and effectively reduce the frequency 

variation caused by power fluctuations. To fully utilize the ability 

of each unit in the microgrid to regulate the system frequency, an 

adaptive control strategy that combines decentralized and 

distributed technologies was proposed in [7]. This strategy 

coordinates the output power amount of each unit according to the 

inverter capacity of photovoltaic and energy storage, thus 

maintaining the microgrid frequency in a safe and stable state. All 

of the above research has proposed different control strategies to 

optimize the frequency regulation capability of microgrids from 

the source-side perspective. However, when faced with an 

emergency scenario in which the power output has reached the 

upper limit but still cannot effectively suppress the frequency drop, 

the above control strategies cannot further play the role of 

frequency regulation. As an important means of emergency 

control of a power system, underfrequency load shedding can 

prevent a rapid drop in system frequency by cutting off part of the 

load when the power output is saturated ensure the safety of the 

system frequency [8], [9]. Therefore, it is crucial to design an 

effective and reasonable underfrequency load shedding (UFLS) 

strategy for the safe and stable operation of islanded microgrids. 

As research on UFLS increases, the traditional load-shedding 

problem has been constructed as a variety of mathematical and 

Integrated Underfrequency Load Shedding 

Strategy for Islanded Microgrids Integrating 

Multiclass Load-related Factors 
Can Wang, Member, IEEE, Bentao Cheng, Xuhui He, Lei Xi, Nan Yang, Senior Member, IEEE, 

Zhuoli Zhao, Chun Sing Lai, Senior Member, IEEE, and Loi Lei Lai, Life Fellow, IEEE 

W 

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ). 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 10.1109/TSG.2025.3586757, IEEE Transactions on Smart Grid



physical models to find the optimal load shedding scheme [10-12]. 

In [10], an adaptive undervoltage load shedding scheme based on 

model predictive control (MPC) was proposed, which introduced 

the concept of voltage and reactive power variables to alleviate 

voltage instability in the case of unexpected faults. In [11], an 

adaptive load-shedding strategy based on a comprehensive 

evaluation of the frequency and voltage stability of synchronous 

phasor measurements was proposed. This strategy allocates load 

shedding according to the voltage and frequency information 

provided by the phasor measurement units (PMUs) to improve the 

stability of voltage and frequency recovery. In [12], a dynamic 

multistage underfrequency load shedding strategy considering 

generation loss uncertainty was proposed, which describes the 

UFLS problem as a mixed integer linear programming 

optimization problem to minimize load shedding. However, the 

above methods rely on the system model, require high-accuracy 

models, and have problems with poor scalability and long model 

solving times. When applied to emergency control of a power grid, 

the instantaneous response effect is poor. 

In recent years, methods based on machine learning (ML) have 

shown great potential in the field of microgrid control [13], [14]. 

Unlike traditional modeling methods, methods based on ML can 

output control decisions in a short time. In [15], a two-stage load 

shedding strategy was proposed, which first uses a support vector 

machine to evaluate the stability of the system and then performs 

load shedding according to a predefined scheme. In [16-17], an 

extreme learning machine model was trained according to 

pregenerated load-shedding data, and then the trained model was 

used to predict the amount of load shedding. However, these 

traditional ML models rely on high-quality databases, and their 

data processing is more complex. In this context, a coordinated 

load shedding control strategy for islanded microgrids based on 

the Q learning framework was proposed in [18], which uses a Q 

value table to record the data values in the model training process, 

greatly reducing the workload of data processing. However, Q 

learning encounters dimensional disasters in high-dimensional 

spaces, which greatly limits the application of this strategy. To 

solve this problem, deep reinforcement learning (DRL), which 

organically integrates deep learning and reinforcement learning, 

has been widely researched and applied. A novel adaptive 

emergency control scheme was designed on the basis of the 

high-dimensional feature extraction and nonlinear generalization 

capabilities of the deep Q-network (DQN) in [19]. However, as a 

discrete control-oriented method, the DQN cannot output the 

optimal Q values for continuous actions. In [20], a frequency 

control method based on deep deterministic policy gradient 

(DDPG), which can address continuous states and actions, was 

proposed. In [21], an adaptive power tracking control method 

integrating adaptive learning and DDPG was proposed, which can 

adaptively adjust DDPG model parameters according to the 

control effect. To solve the problem of poor adaptability of 

traditional DRL in the face of new tasks, a frequency control 

method for islanded microgrids based on deep meta deterministic 

policy gradient was proposed in [22], which introduces 

meta-learning into DDPG to guide agents to perform multi-task 

collaborative learning through meta-learning, thereby enhancing 

the adaptability of the model in different fault scenarios. However, 

the DDPG is more sensitive to parameter settings, and 

overestimating the Q value leads to the failure of the learned 

strategy. A frequency regulation method based on TD3 was 

proposed in [23], which effectively reduces the problem of 

overestimation of the Q value. In [24], a load restoration strategy 

for a distribution network based on TD3 was proposed, which 

significantly improves the model's generalization ability to 

untrained scenarios by introducing meta-learning. However, the 

conservative value function estimation method of TD3 may lead 

to underestimation, causing the agent to only learn suboptimal 

strategies. 

It is also notable that in the microgrid system, in addition to 

many three-phase loads, there are also some single-phase 

source–load–storage components, and these single-phase 

components will cause a three-phase unbalance in the system. The 

method of virtual three-phase combination sorting of 

heterogeneous sources, loads, and storage was proposed in [25-26] 

to effectively avoid the issue of three-phase system power 

unbalance in the passive parallel transfer process for the microgrid. 

However, the above studies first preprocess the load through 

virtual combination and evaluation to obtain the contribution 

value of the load and then construct a set of load shedding actions 

on the basis of this contribution value and execute the load 

shedding actions. This method of first evaluating and then 

reducing the load increases the response time of the system's load 

shedding actions, thereby impacting the frequency recovery of the 

system. In addition, the load-cutting method based on virtual 

combination has strong limitations and must be used in the initial 

island equilibrium state. For an islanded microgrid with unbalance 

at the initial time, the load-cutting method of virtual combination 

may increase the unbalance and the operating loss of the system. 

Considering the shortcomings of the above research, this paper 

proposes an integrated underfrequency load shedding strategy for 

islanded microgrids that integrates multiclass load-related factors. 

The proposed strategy fully considers the influence of multiclass 

load-related factors on the system load shedding process and 

combines the two separate processes of load assessment and 

underfrequency load shedding into one to obtain a new integrated 

load shedding mode, which overcomes the defects of long 

response times caused by insufficient consideration of load factors 

and the independence of load assessment and load shedding 

decisions in current load shedding decision-making. In addition, 

the proposed strategy uses a new twin delayed deep deterministic 

policy gradient with softmax and dual buffer replay (DBR-SD3) 

method based on a continuous action space for learning load 

shedding decisions, effectively improving the learning efficiency 

and quality of decision-making. When a power shortage occurs in 

an islanded microgrid due to faults, the proposed strategy can 

effectively prevent rapid frequency drops in the system, ensuring 

the reliability of important load supply with lower load shedding 

costs while correcting three-phase power unbalance issues during 

system operation. 

The main contributions of this paper are as follows: 

(1) A three-phase unbalanced load shedding correction method

suitable for multiple scenarios is proposed. Unlike in [25-26], the 

strategy proposed in this paper directly determines the optimal 

underfrequency load shedding strategy through DRL for agents. 

The application scenario of the proposed strategy is not limited by 

the initial three-phase unbalance degree of the system and can 

quickly restore the system frequency while correcting the 

unbalanced operations of the system. In the modified IEEE 37-bus 

and IEEE 118-bus systems, the proposed strategy 1 reduced the 

system power unbalance by 7.69% and 5.86%, respectively 
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compared to before the load shedding operation, while the system 

the power unbalance of the system increased under the 

MPC-based load shedding strategy 2, DDPG-based load shedding 

strategy 3, and DQN-based load shedding strategy 4. The 

proposed strategy achieved the best unbalance improvement 

effect. 

(2) An integrated underfrequency load shedding mode for

islanded microgrids is proposed. Unlike the load shedding mode 

that load assessment and load shedding are separated from each 

other in references [7], [17] and [19], the proposed strategy uses 

the DRL method to combine load assessment and underfrequency 

load shedding into one process, which greatly reduces the 

response time of the load shedding decision. In addition, unlike in 

reference [7], the proposed strategy is less affected by the 

accuracy of physical or mathematical models and has strong 

scalability, so it can provide optimal load shedding control actions 

quickly and stably. In the modified IEEE 37-bus system, the 

online calculation time of the proposed strategy is 0.032 seconds, 

which reduces strategies 2, 3, and 4 by 58.44%, 23.81%, and 

38.46%, respectively. In the modified IEEE 118-bus system, the 

online calculation time of the proposed strategy is 0.092 seconds, 

which is reduced by 45.24%, 9.8%, and 22.03% compared to 

strategies 2, 3, and 4, respectively. The strategies proposed in 

different bus systems have achieved the fastest online response 

speed.  

(3) A new DRL method, DBR-SD3, is proposed for generating

optimal load shedding strategies. Unlike traditional DRL methods, 

the proposed DBR-SD3 performs accurate estimation of the Q 

values during parameter training by integrating the softmax 

function with TD3. Moreover, to further improve the quality of 

the optimal strategy, a dual buffer replay mechanism is adopted to 

improve the learning speed and convergence stability of the 

strategy. Training performance analysis shows that the speed of 

the proposed DBR-SD3 to learn the optimal load shedding control 

strategy is about 1.5/3.25/3.5 times that of TD3/DDPG/DQN, 

respectively, and the average reward obtained during convergence 

is increased by 34.46%, 45.94%, 65.54% based on 

TD3/DDPG/DQN. The proposed strategy shows obvious 

advantages in convergence speed and convergence quality. 

The rest of this paper is organized as follows: Section II 

describes an integrated underfrequency load shedding model for 

islanded microgrids. Section III converts the underfrequency load 

shedding problem for islanded microgrids into an MDP. Section 

IV provides a detailed introduction to the proposed strategy 

training and integrated load shedding strategy framework. Section 

V evaluates the performance of the proposed method through 

simulation analysis. Finally, section Ⅵ provides a summary of the 

entire paper. 

II. INTEGRATED UNDERFREQUENCY LOAD SHEDDING MODEL FOR

ISLANDED MICROGRIDS 

The load shedding strategy proposed in this paper aims to  

fully consider multiple types of load shedding-related factors 

while minimizing the adverse effects of load shedding. In this 

section, the frequency regulation model of islanded microgrid is 

first described. Then, the relevant factors of integrated load 

shedding are introduced, and on this basis, the differences between 

the proposed integrated load shedding mode and the traditional 

load shedding mode are described. Then, the objective function of 

Fig. 1. V/f Operation Principle of BESS 

integrated load shedding is introduced, and finally, the operational 

constraints of the islanded microgrid system are explained.  

A. Islanded Microgrid Frequency Regulation Model

In islanded operation mode, microgrids dominated by

renewable energy lack the frequency and voltage support of the 

main grid. The frequency stability of the microgrid relies on the 

regulation of its DGs and battery energy storage systems (BESS). 

With its fast response characteristics and stable power supply 

capabilities, BESS can charge/discharge in real-time according to 

the system’s actual power demand, effectively addressing the 

insufficient regulation capacity caused by the intermittent output 

of DGs. In the islanded microgrid model constructed in this paper, 

BESS is connected to the system through grid-forming mode 

inverters and uses V/f control to maintain stable voltage and 

frequency in the islanded microgrid. DGs operating in 

grid-following mode provide power support to the islanded 

microgrid system using PQ control under stable voltage and 

frequency support, working together with BESS in grid-forming 

mode to maintain system power balance. The V/f operation 

principle of BESS is shown in Fig. 1. As indicated in Fig. 1, under 

rated frequency Nf , when the system experiences a power deficit 

P , BESS adjusts its output power to compensate for the deficit, 

thereby maintaining system frequency stability. When the 

maximum output power of DGs and BESS in the islanded 

microgrid is still insufficient to meet the load demand, load 

shedding through underfrequency load shedding becomes 

inevitable. 

B. Factors Related to Load Shedding

1) Load Frequency Characteristics

The active and reactive power absorbed by loads in the power

system varies with changes in frequency and voltage, which are 

called the static characteristics of the load voltage and frequency. 

To more accurately calculate the frequency change rate and power 

shortage of an islanded microgrid during underfrequency load 

shedding, it is necessary to consider the static frequency 

characteristics of the load. Considering the strong coupling 

between the system frequency and the active power, the load 

frequency characteristic model can be expressed as [27]: 
2
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Where LP represents the active power absorbed by the load at 

frequency f ; 0LP  represents the rated active power of the load; 

n represents the proportion of load proportional to the n th 

power of system frequency in 0LP . 

Differentiate the above equation and convert it into per unit 

form to obtain: 
* * * *( 1)

1 2/ 2 n
L L nK dP df f n f   −= = + + + (2) 

Where LK represents the frequency regulation effect 

coefficient of the load. 

When the system frequency changes, different loads have 

different frequency regulation effects, as shown in Fig. 2 (a). From 

Fig. 2 (a), it can be seen that loads with large coefficients of the 

frequency regulation effect result in more significant frequency 

changes. When the system frequency decreases from 0f to f , 

the load with a larger frequency regulation effect coefficient 

absorbs a greater amount 1LP  of power reduction, which can 

better alleviate the power balance burden of the system. Therefore, 

when the system frequency decreases and triggers underfrequency 

load shedding action, priority should be given to cutting off loads 

with small frequency regulation effect coefficients and retaining 

loads with large regulation effect coefficients. The frequency 

recovery curves of the system after different loads are cut off 

during underfrequency load shedding are shown in Fig. 2 (b), it 

can be seen from Fig. 2 (b) that when the frequency recovery is 

faster, the difference between the peak and valley values of the 

system frequency is smaller ( 2 2 1 1f f f f   −  − ). Therefore, 

the frequency regulation effect coefficient of the load during 

underfrequency load shedding can be represented by the 

amplitude of system frequency fluctuations. 

2) Load Shedding Cost

Typically, loads are divided into three categories: primary loads,

secondary loads, and tertiary loads. However, this simple 

classification method ignores the differences in the demands of 

electricity users for different types of loads at different time scales. 

In this paper, a load cost factor is used to measure the load 

shedding priorities at different times. The cost coefficient 
,i tF of 

load i  at time t  is: 

, ,i t i t iF C h= (3) 

where 
,i tC represents the time-varying demand coefficient for 

load i  at time t , which is determined by the type of load. In this 

paper, loads are divided into three categories, industrial, 

commercial and residential [28], and the demand degrees of these 

types of loads are different.   represents the weight of the load 

level, which is divided into levels Ⅰ, Ⅱ and Ⅲ according to the 

social and economic losses caused by the load power loss, 

corresponding to 100, 10 and 1, respectively [29]. ih represents 

the coefficient of load shedding loss. 

During underfrequency load shedding, on the basis of the 

magnitude of the load cost coefficient, priority is given to cutting 

off loads with low cost coefficients to ensure minimal losses 

during the shedding process. 

3) Load Characteristics under Three-phase Unbalance

With the rapid popularization and development of microgrid,

hybrid microgrids formed by the fusion of three-phase 

source-load-storage and multiple-phase-sequence single-phase 

Fig. 2. Load frequency characteristic curves 

source-load-storage are widely studied. Due to the presence of 

many single-phase devices, there may be a three-phase power 

unbalance in the interconnection line of the microgrid during 

operation, which will increase system losses and reduce the power 

quality of the microgrid and may even prevent the system from 

operating normally. With three-phase power as the calculation 

variable, the formula for calculating the three-phase unbalance 

degree of an islanded microgrid is as follows [30]: 

2 2
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I S
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
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
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
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Where 1I is the root mean square value of the positive sequence 

component of the three-phase current; 2I is the root mean square 

value of the negative sequence component of the three-phase 

current; AP , BP , CP and AQ , BQ , CQ are respectively 

three-phase active power and reactive power; LS , 2LS  and 2LP , 

2LQ are the positive and negative sequence apparent power, as 

well as the negative sequence active and reactive power, 

respectively. 

When studying the underfrequency load shedding problem for 

islanded microgrid systems, it is necessary to consider the 

three-phase unbalance characteristics of the load during the load 

shedding process. To restore the system frequency to a safe range, 

it is necessary to minimize the three-phase unbalance degree of 

the microgrid system during load shedding. 

C. Basis of Integrated Load Shedding

From the analysis in the previous section, it can be concluded

that the frequency regulation effect of the load, the cost of load 

shedding, and the three-phase unbalance degree of the load are the 

load shedding-related factors that must be considered during the 

shedding process. In traditional research, to fully consider the 

impact of these factors, researchers usually construct a load 

evaluation model to measure the contribution of these factors to 

the system frequency recovery during the load shedding process, 

and then based on this contribution, construct an underfrequency 

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ). 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 10.1109/TSG.2025.3586757, IEEE Transactions on Smart Grid



load shedding control set for load shedding actions. This 

emergency load shedding control mode of evaluation and load 

shedding separation is shown in Fig. 3 (a). From Fig. 3 (a), it can 

be seen that the comprehensive evaluation of the load and the 

decision to reduce the load are relatively independent stages, and 

the generation of load shedding decisions depends on the real-time 

comprehensive load evaluation results. When a fault event occurs, 

it is first necessary to conduct a comprehensive evaluation of the 

load information through the evaluation model. Then, based on the 

load evaluation results, the load shedding model is used to 

generate online load shedding strategies. The process of 

comprehensive load evaluation delays the response speed of the 

decision to reduce the load, impacting the control effect of the 

entire underfrequency load shedding action. The proposed 

integrated load shedding strategy uses the DRL method to merge 

the two relatively independent stages into one, forming an 

end-to-end integrated load shedding mode, as shown in Fig. 3 (b). 

In the integrated load shedding mode, all the fault data and the 

original load information are directly input into the intelligent 

agent as the decision-making basis for load shedding. The load 

evaluation stage is incorporated into the training process of the 

agent by using the mechanism linked to the agent’s learning 

benefits so that the agent can independently mine the mapping 

relationship between load information and decision-making. The 

trained agent can directly generate online decisions based on the 

real-time load data and system state information under the fault 

event, without independent evaluation steps to evaluate the 

contribution of the load, and thus avoid the action response delay 

caused by the step-by-step execution of evaluation and decision. 

D. Integrated Load Shedding Objective Function

According to the analysis in sections A and B, the proposed

integrated underfrequency load shedding model requires that the 

system frequency of the islanded microgrid be restored to the 

normal level with the minimum load shedding cost, and the 

three-phase system unbalance caused by the fault or 

underfrequency load shedding should be minimized considering 

the load frequency regulation effect and load importance. 

Therefore, the frequency fluctuation amplitude, cost and 

three-phase unbalance degree of the system in the load shedding 

process are simultaneously minimized according to the objective 

function of underfrequency load shedding: 

( )

, ,

1

min

min

min

m
cut

i t i t

i

f f

g F P

Unbalance

 

=

 −



=



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where f   and f   represent the peak and valley values, 

respectively, in the frequency recovery process of the islanded 

microgrid; m  represents the number of loads in the islanded 

microgrid system; and ,

cut

i tP represents the amount of load i

removed at time t . 

E. Constraint Condition

To ensure that underfrequency load shedding meets the

operation requirements of islanded microgrid systems, the 

following constraints should be met: 

1) Power Flow Constraint

, , , , ,

, , , , ,

(G cos sin ) 0

(G cos sin ) 0

i t i t j t ij ij t ij ij t

j i

i t i t j t ij ij t ij ij t

j i
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


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
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


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where 
,i tP  and 

,i tQ  represent the active power and reactive 

power of node i , respectively, at time t ; 
,i tU  and 

,j tU

represent the voltage amplitudes of nodes i and j , respectively, 

at time t ; 
,ij t represents the voltage phase angle difference of

nodes i  and j  at time t ; and Gij
 and

ijB represent the

conductance and susceptance, respectively, between nodes i  and 

j . 

2) Load Shedding Constraint
,min ,maxcut cut cut

i i iP P P  (8) 

where 
,mincut

iP  and 
,maxcut

iP  represent the minimum and 

maximum load shedding, respectively, of node i . 

3) Frequency Constraint
min maxf f f  (9) 

where 
minf and 

maxf represent the minimum and maximum 

frequencies allowed for normal operation of the system, 

respectively. 

4) Three-phase Unbalance Degree Constraint [31]

15%tUnbalance  (10) 

(a) Assessment of the load shedding mode of decision separation

(b) Integrated load shedding mode

Fig. 3. Comparison of different load shedding modes 
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III. MARKOV DECISION MODELING FOR INTEGRATED 

UNDERFREQUENCY LOAD SHEDDING 

The action determined for integrated load shedding in the 

islanded microgrid is related only to the current state of the 

microgrid and has nothing to do with the action and state 

corresponding to the previous sequence time. This means that the 

decision problem for underfrequency load shedding satisfies the 

Markov property and can be described as a Markov decision 

process. Under the framework of reinforcement learning, the MDP 

is a process in which agents and the environment constantly 

interact to learn and seek the optimal strategy to obtain the 

maximum return; which is mainly composed of ( ), , , ,S A R P 

[32]. 

In this paper, the operating state of the islanded microgrid is the 

environment, and the amount of each load to shed in the microgrid 

is the action. To find the optimal load shedding strategy for the 

islanded microgrid, the state space, action space, and reward 

function are set as follows: 

1) State Space s  

The state space should reflect the operation characteristics of

the islanded microgrid as well as possible. Therefore, the output 

DG
tP of the DG unit, real-time power 

L
tP of the load, real-time

frequency tf of the microgrid, and frequency change rate 

ROCOFt are selected. For any time t , the state is expressed as: 

 , , ,ROCOFDG L
t t t t ts P P f= (11) 

2) Action Space a

The action space is the relevant decision quantity in the load

shedding model. In this paper, the shedding power 
cut

iP of the 

load at node i  is considered the action; then, the action space 

ta  of the islanded microgrid system at time t  can be expressed 

as: 

 ,
cut

t i ta P= (12) 

3) Reward r  

The goal of the proposed integrated underfrequency load

shedding strategy is to ensure that the frequency of the islanded 

microgrid is restored to the normal operating level with the 

minimum frequency fluctuation amplitude and load shedding cost, 

while the three-phase unbalance of the system is as small as 

possible. In addition, the environment should include the system 

operation constraints of equations (7)-(10) when giving feedback 

rewards to the agent. Therefore, the reward value for the agent at 

time t  is expressed as: 

( )1 2 , 3

1
i

m
cut

t i t t t

i

r f f F P Unbalance    

=

= − − − − + (13) 

where 1 , 2 and 3 represent the coefficient factors of the 

frequency fluctuation amplitude, load shedding cost and 

three-phase unbalance degree of the system in the reward function, 

respectively, and where t  represents the punishment when the 

agent’s decision cannot meet the operational constraints of the 

islanded microgrid. 

IV. INTEGRATED UNDERFREQUENCY LOAD SHEDDING STRATEGY 

BASED ON DBR-SD3 

A. SD3

The proposed SD3 is implemented on the TD3 framework. TD3

is a DRL method designed specifically for dealing with 

high-dimensional continuous action spaces. It was developed from 

the DDPG algorithm and has stronger stability and generalization 

performance [23]. By introducing the clipping double- Q  learning 

mechanism in TD3, the problem of overestimating the Q  value 

in parameter updating is limited to a great extent. However, this 

mechanism may lead to an underestimation of the Q  value, 

which may affect the performance of the method. Therefore, a 

new SD3 method based on TD3 is designed in this paper. By 

introducing softmax into TD3, this method not only avoids the 

overestimation problem for the DDPG but also effectively 

alleviates the influence of underestimation bias in TD3 and 

accurately estimates the value function. ( )( )1 1softmax ,b b
t tQ s a+ +



is obtained via importance sampling. The specific formula is as 

follows: 

( )( )

( )( ) ( )
( )

( )( )
( )

1 1 1 1

1

1 1

1 1

1

exp , ,

softmax ,
exp ,

b b b b
t t t t

b
t

b b
t t

b b
t t

b
t

Q s a Q s a

p a

Q s a
Q s a

p a





+ + + +

+

+ +

+ +

+

  
 
 
   =

 
 
 
  

(14) 

where ( )1 1,b b
t tQ s a+ +

 represents the smaller Q  value estimated 

by the two critic networks; the probability density function 

( )1
b
tp a + satisfies the Gaussian distribution; and   indicates the

operation parameter of softmax . After introducing the softmax

operator, the formula for calculating the target Q  value 
b
ty is 

as follows: 

( )( )1 1+softmax ,b b b b
t t t ty r Q s a+ +

= (15) 

B. Dual-Replay Buffer Mechanism

TD3 stores exploration data by setting up a playback buffer and

randomly extracts small batches of data for training. However, 

random sampling may result in uneven data quality, which affects 

training efficiency and convergence speed. In this context, this 

paper presents a DBR mechanism based on the TD3 framework, 

which classifies and stores experience data according to their 

importance and extracts parts of the experience data from two 

buffers as training samples according to different probabilities 

during training. 

Under DBR, experience data are stored in buffers 1  and 2

according to their immediate reward tr . Considering the 

time-ductility of reinforcement learning reward feedback, a 

temporary experience playback buffer 0  with a capacity of M  

is set up to store M  adjacent experience data values. When the 
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amount of stored experience data in 0  reaches the maximum 

capacity, the instant reward mean r of all experience data in 

0 is calculated, and the data in 0 are judged according to the 

order of storage time. If the reward value tr is greater than or

equal to r , it is stored in buffer 1 ; otherwise, it is stored in 

buffer 2 . The new experience data are then stored in 0  until 

the entire learning process is complete. Finally, the remaining 

experience data in 0 are stored in 1 and 2 according to 

the reward mean r , and 0 is cleared. 

According to the empirical storage classification rule, the value 

of the sample data stored in 1  is greater than that of the data in 

2 . The training process aims to extract more valuable 

experiences from 1 with a higher probability, so the preferred 

experience replay method is used for buffer 1 . Moreover, to 

ensure the diversity of sample data, sample data with small 

immediate rewards and low importance should also be extracted 

from 2  in small batches. The specific sampling method is as 

follows: 

( )
1

2 1

M m

M m





=


= −
(16) 

where 1M  and 2M  represent the numbers of sample data 

values extracted from buffers 1  and 2 , respectively; 

 0,1  represents the extraction rate of samples from buffer 

1 ; and m  indicates the number of small-batch samples. 

Priority experience playback means preferentially extracting 

experience data with higher values in the buffer, and the priority 

p  of the sample data is measured by the temporal difference error; 

for example, the priority of the k th sample is as follows: 

( ),k k k
k t w t tp y Q s a= − (17) 

The probability that the k th sample is chosen is: 

1

1

k
k M

nn

p
p

p
=

 =


(18) 

C. Integrated Load Shedding Strategy Framework

The proposed integrated underfrequency load shedding strategy

for a microgrid based on DBR-SD3 is divided into two parts: 

offline learning and online application. 

The offline training steps for DBR-SD3 are as follows: 

1 
Randomly initialize the parameters of the two Critic networks and the Actor 

network:  1w , 2w ,  . 

2 Initialize the target network parameters:  1 1w w  , 2 2w w  ,    . 

3 for number of rounds =1： trainM do 

4 Initialize search noise 

5 
Obtain the initial environment state 0s from the islanded microgrid 

system 

6 for t=1： maxT  do 

  for n=1,2 do 

7 Select actions and add noise according to state ts

8 Perform action ta and get reward tr and the next state 1ts +

9 

Store the experience data in the temporary buffer 0 , and store the 

experience data in buffers 1  and 2 according to the sorting storage 

rules in section IV-C 

10 
Calculate the temporal difference error of the sample drawn from 1

and update the sample priority kp

11 Calculate the next time action 1ta + according to the Critic network

12 Calculate the target Q  value ty for each sample using softmax

13 Update the Critic network parameter w   

14 Update the Actor network parameters   every d steps 

15 Soft-update the target network parameters w  and    

16 end for 

17 end for 

18 end for 

After offline training is complete, the parameters of the 

integrated load shedding model are saved. In online applications, 

the current state value of the islanded microgrid system plus the 

random error value is input to the Actor network as a 

comprehensive state; after full learning, DBR-SD3 directly 

generates the optimal integrated load shedding decision. The 

integrated load shedding strategy framework based on DBR-SD3 

is shown in Fig. 4. 

V. S IMULATION ANALYSIS

To verify the feasibility and effectiveness of the proposed 

underfrequency load shedding strategy, an islanded microgrid 

system model based on an improved IEEE 37-bus system is built 

on the MATLAB/Simulink simulation platform, as shown in Fig. 

5. The model consists of 9 DGs, 6 battery energy storage (BES)

systems, and 19 loads. BES1-BES6 operates in the grid-forming

mode, while DG1-DG9 operates in the grid-following mode.

Among them, LD1-10 are three-phase loads, and LD11-19 are

single-phase loads. According to the social and economic losses

caused by load power loss, the loads are divided into levels I, II,

and III based on their importance. Additionally, according to the

type of electricity, the loads are classified into industrial loads,

commercial loads, and residential loads [34]. The DG and energy

storage output information are shown in TABLE Ⅰ, the load grades

and load types are shown in TABLE Ⅱ, and the load demand

degrees at different times are shown in Fig. 6. In this paper, when

implementing the underfrequency load shedding strategy, the

communication transmission delay is set to 10 ms, the relay

startup and underfrequency load shedding delays are set to 10 ms

[35], and the trigger threshold of the load shedding action is set to

49.5 Hz [36].

Fig. 4.  Integrated load shedding strategy framework 
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A. Test Environment and Parameter Setting

The proposed DBR-SD3 consists of an Actor network and two

Critic networks, both of which are made of four fully connected 

neural networks with two hidden layers: the number of neurons in 

the first hidden layer is 400, and the number of neurons in the 

second hidden layer is 300. The activation function is a rectified 

linear unit (ReLU). The other hyperparameters used during 

DBR-SD3 training are shown in TABLE Ⅲ. 

On the basis of the above settings, the Python language is used 

to implement the DRL method on the TensorFlow framework. All 

tests are conducted on a 3.40 GHz Intel(R) Core (TM) i5-7500 

CPU. 

Fig. 5. Improved IEEE 37-bus island microgrid system model 

TABLE Ⅰ  

DG AND ENERGY STORAGE CONFIGURATION INFORMATION 

Name  
Access 

location  
Output 

(kW)  
Name  

Access 

location  
Output 

(kW)  
DG1 Bus 7 100 DG9 Bus 24-C 35 
DG2 Bus 9 150 BES1 Bus 12 75 
DG3 Bus 18 70 BES2 Bus 20 25 
DG4 Bus 21 90 BES3 Bus 34 100 
DG5 Bus 33 65 BES4 Bus 24-A 20 
DG6 Bus 35 80 BES5 Bus 24-B 40 
DG7 Bus 24-A 30 BES6 Bus 24-C 30 
DG8 Bus 24-B 25 

TABLE Ⅱ  
LOAD DATA INFORMATION 

Load  Priority LP (kW) h($/kWh) ,maxcutP (kW) Load type 

LD1 Ⅲ 100 0.75 60 residential 
LD2 Ⅱ 70 1.26 35 commercial 
LD3 Ⅰ 90 3.03 30 industrial 
LD4 Ⅲ 50 0.62 30 commercial 
LD5 Ⅱ 75 1.28 35 industrial 
LD6 Ⅰ 52.5 2.98 15 commercial 
LD7 Ⅲ 50 0.63 30 commercial 
LD8 Ⅲ 110 0.68 80 industrial 
LD9 Ⅰ 82.2 3.01 40 residential 

LD10 Ⅱ 75 1.24 40 residential 
LD11 Ⅲ 20 0.55 10 commercial 

LD12 Ⅰ 10 2.46 5 residential 
LD13 Ⅲ 20.4 0.58 15 residential 
LD14 Ⅱ 25 1.16 10 industrial 
LD15 Ⅲ 16 0.54 12 commercial 
LD16 Ⅰ 19.5 2.55 8 commercial 
LD17 Ⅲ 20 0.51 10 residential 
LD18 Ⅲ 20 0.52 10 commercial 
LD19 Ⅲ 25.4 0.61 15 industrial 

Fig. 6. Different types of load demand 

TABLE Ⅲ 
PARAMETER SETTINGS 

Parameter Value Parameter Value 

Discount factor   0.95 
Number of small-batch 

samples m  
128 

Soft update coefficient   0.001 
Training steps per 

round maxT 200 

Critic network learning rate w 0.003 
Extraction probability 

  0.9 

Actor network learning rate  0.0003 
Maximum number of 

iterations 
2000 

Playback buffer capacity 1 50000 
Network latency update 

interval d  
2 

Playback buffer capacity 2 50000 
Extraction rate   of 

buffer 1
0.9 

Action noise variance  0.03 
Soft update 

coefficient  0.005 

B. Training Performance Analysis

To simulate the frequency disturbance of the islanded microgrid

system, the fault scenario is set as follows: under different load 

demand degrees, a DG or BES is randomly selected to exit 

operation to cause a decrease in system frequency. To simulate 

different operating states of the system, the loads are randomly set 

to 95% -105% of the initialization level, generating a total of 1080 

training scenarios. The duration of a single training episode is set 

to 2 seconds, and the data collection resolution is 0.01 seconds. 

The proposed DBR-SD3 and other DRL methods are compared by 

using the above training scenarios, and the results are shown in 

Fig. 7. 

A Specific analysis of Fig. 7 shows that the average reward of 

the proposed DBR-SD3 is close to optimal after approximately 

400 training rounds. Compared with TD3/DDPG/DQN, DBR-SD3 

converges 200/900/1000 rounds earlier, indicating that the speed 

of DBR-SD3 learning the optimal load shedding control strategy 

is about 1.5/3.25/3.5 times that of TD3/DDPG/DQN, respectively. 

In addition, the average reward obtained when DBR-SD3 

converges is greater than those of TD3/DDPG/DQN, the average 
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rewards for TD3/DDPG/DQN convergence are 

-304.1/-385.55/-604.88, respectively. The proposed DBR-SD3 has

improved by 31.46%/45.94%/65.54% on this basis, reaching

-208.42. This is mainly because the strategy proposed in this paper

introduces softmax and the dual-buffer replay mechanism into

TD3, greatly improving the learning speed and convergence

performance of the agent and enabling the agent to adaptively

learn more stable control strategies. Specifically, the faster

convergence speed of DBR-SD3 stems from its introduced DBR

mechanism, which dynamically classifies and stores training

samples by evaluating their immediate reward values. This

mechanism enhances the agent’s utilization efficiency of

high-value samples during training, reduces interference from

low-reward samples on policy learning, and enables the agent to

learn the optimal strategy along a more efficient convergence

trajectory. The higher reward value achieved by DBR-SD3 at

convergence is attributed to the integration of the softmax

mechanism into TD3. This integration not only effectively

suppresses the Q-value overestimation issue inherent in DDPG but

also mitigates the Q-value underestimation problem caused by

TD3’s conservative estimation. By reducing Q-value estimation

bias and improving the accuracy of value function estimation, this

mechanism allows the agent to precisely identify and learn

high-return strategies, thereby enhancing the quality of the final

converged policy.

The offline training times of the four DRL methods are shown 

in Table IV. From Table IV, it is evident that DQN requires the 

shortest offline training time. This is mainly because DQN only 

requires training one deep neural network (DNN), resulting in 

fewer parameters to fit and thus less time spent on offline training. 

However, its reliance on discrete action spaces limits its ability to 

search for optimal strategies, leading to inferior policy quality 

compared to the other three DRL methods, as validated in Fig. 7. 

Among the remaining three DRL methods, DBR-SD3 exhibits the 

shortest offline training time. This is due to the introduced 

softmax mechanism optimizing the agent’s policy update direction 

and the DBR mechanism improving the utilization efficiency of 

high-quality samples, reducing its training time by 10.05% and 

7.67% compared to TD3 and DDPG, respectively. 

Overall, the above comparison demonstrates the superiority of 

DBR-SD3 proposed in this paper in offline training of load 

shedding control in islanded microgrids, with the best overall 

performance in terms of learning speed and learning quality. 

C. Superiority Analysis of Load Shedding Strategies

To verify the superiority of the proposed strategy compared

with other underfrequency load shedding strategies, the following 

typical fault scenario is set: BES3 exits operation at 8:00 because 

of a fault, and the load level is 100%. Owing to the loss of output 

support from a high-power energy storage system in the islanded 

microgrid system, the frequency begins to decrease, and 

emergency load shedding control must be implemented 

immediately to restore the system to normal operation. In this 

scenario, the integrated load shedding strategy proposed in this 

paper is analyzed and compared with the other three load shedding 

strategies. The specific settings for the comparison strategies are 

as follows: 

Fig. 7. Comparison of the training processes of the four DRL methods 

Table IV 

COMPARISON OF TRAINING TIME OF FOUR DRL METHODS 

Method DBR-SD3 TD3 DDPG DQN 

Training time/ h 7.34 8.16 7.95 6.98 

Strategy 1: The integrated load shedding strategy proposed in 

this paper; 

Strategy 2: The adaptive load shedding scheme based on MPC 

in [10]; 

Strategy 3: The emergency load shedding strategy based on 

DDPG in [20]; 

Strategy 4: The underfrequency load shedding strategy based on 

a DQN in [26]. 

(1) Comparison of Load Shedding Compositions

The composition of load shedding after the four load shedding

strategies are implemented is shown in Fig. 8 (a-e). 

As can be seen from Fig. 8(a), strategy 1 achieves the smallest 

load shedding amount among the four strategies, only requiring 

the removal of 102kW of loads. Compared with strategies 2, 3, 

and 4, the load shedding amount is reduced by 5.12%, 3.32%, and 

4.67%, respectively. This is because strategy 1 fully considers the 

frequency regulation effect of the load during load shedding. By 

prioritizing the removal of loads with smaller frequency regulation 

effect coefficients, the system frequency can return to normal 

more quickly, resulting in the least amount of load shedding. 

Additionally, none of the four strategies shed levels I or II loads, 

ensuring the continuous power supply of important loads during 

the load shedding period of the islanded microgrid system. Further 

analysis of the specific load shedding targets under each strategy 

shows that parts of the loads on LD4, LD7, LD11, LD13, LD15, 

LD17, LD18, and LD19 are removed in strategies 2 and 3, as 

shown in Fig. 8(b-e). However, neither of these strategies consider 

the three-phase power unbalance caused by single-phase loads 

during the load shedding process, which may make the islanded 

microgrid unable to meet normal operation requirements after load 

shedding. Strategy 4 considers the problem of load shedding cost 

and three-phase load unbalance. In the process of load shedding, 

the virtual combination and evaluation of each single-phase load 

are first carried out, and then a group of load combinations with 

the least unbalance are removed on LD13, LD15, and LD19. It is 

worth noting that the above three strategies do not consider the 
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user’s demand preferences for different load types and fail to 

comprehensively evaluate the load. From Fig. 8(a), it can be 

observed that strategies 2, 3, and 4 all shed some industrial loads 

with relatively high demand during the load shedding process, 

accounting for 12.09%, 14.22%, and 21.50% of the total load 

shedding amount respectively. In contrast, strategy 1 considers 

multiclass load-related factors including relative electricity 

demand, avoiding the removal of high-demand load types and 

thereby minimizing the impact of load shedding on users' demand. 

In summary, compared with strategies 2, 3, and 4, strategy 1 not 

only minimizes the load shedding amount but also ensures the 

continuous power supply of important loads and loads with high 

user demand, achieving a more ideal load shedding effect. 

(a) Different types of load shedding amount under four strategies 

(b) Load shedding under strategy 1

(c) Load shedding under strategy 2 

(d) Load shedding under strategy 3 

(e) Load shedding under strategy 4 

Fig. 8. Comparison of load shedding under different strategies 

TABLE V  

COMPARISON OF LOAD SHEDDING COSTS UNDER DIFFERENT 
STRATEGIES 

Index Strategy 1 Strategy 2 Strategy 3 Strategy 4 
Load shedding cost g /$ 14.49 17.53 17.24 18.24 

(2) Comparison of Load Shedding Costs

A comparison of the load shedding costs for each strategy is

shown in TABLE V. 

TABLE V shows that the load shedding cost of strategy 4 is the 

highest, 4.05% and 5.8% higher than those of strategies 2 and 3, 

respectively. This is because strategy 4 considers the impact of 

three-phase unbalance in the system and is constrained by a 

certain amount of load shedding distribution during the shedding 

process. It is necessary to cut off a virtual combination of 

approximately balanced loads in the three phases. Furthermore, 

although strategy 1 also considers the impact of the three-phase 

unbalance in the system, its load shedding process also considers 

the demand differences of different types of loads. It eliminates 

the batch of loads with the lowest cost coefficient in the fault 

scenario so that the load shedding cost of strategy 1 is still the 

lowest among the four strategies; it is 17.34%, 15.95%, and 

20.56% lower than those of strategies 2, 3, and 4, respectively. 

(3) Comparison of the Frequency Recovery Effects

To better compare the frequency recovery effect of the islanded

microgrid system before and after load shedding, the failure 

occurrence time is set to 1t = s. The frequency recovery 

waveforms of the islanded microgrid system after load shedding 

under the four strategies are shown in Fig. 9. The online 

calculation time ont , system frequency recovery time sumt  and
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frequency fluctuation amplitude f  under each load shedding 

strategy are shown in Table VI. 

According to the analysis of Fig. 9, when a power deficit occurs 

at 1t = s in the islanded microgrid system due to BES 3 exits 

operation, the four strategies reduce the load demand by cutting 

off part of the load to restore the system frequency to a normal 

level. 

As can be seen from Table VI, the online calculation time 

consumed for strategy 2 is significantly higher than the other 

strategies. This is mainly because strategy 2 is a load shedding 

strategy based on MPC, which needs to solve the optimization 

model online and has a heavier computational burden. In contrast, 

strategies 1, 3, and 4 are all DRL-based methods, which enable 

the agent to acquire rich decision-making experience through 

offline training in the early stage. In actual operation, the trained 

agent can quickly generate load shedding commands according to 

the current state of the islanded microgrid, thus realizing efficient 

regulation of the system frequency, and this mode of offline 

training-online decision-making gives it a significant advantage in 

real-time computation. Furthermore, in contrast to strategy 3, 

strategy 1 proposes an improved DRL method, which introduces 

softmax into TD3, increases its replay buffer to three buffers, and 

classifies the stored experience samples. Through accurate value 

function estimation and learning of high-quality samples, it 

achieves precise fitting of model parameters, effectively 

improving the online inference speed of the model and reducing 

its online calculation time by 23.81% compared to strategy 3. 

Strategy 4 needs to sort the virtual combinations of the 

single-phase loads before determining the load shedding action, 

and then comprehensively evaluate the virtual three-phase load 

and other three-phase loads in various respects to determine the 

priority of the loads, and finally, use the agent to learn the optimal 

load shedding combination. This load shedding method for 

assessment and decision-making fails to make full use of the 

learning ability of the agent and has a longer response time in 

determining load shedding. The proposed strategy directly 

considers various load shedding-related factors, including the load 

frequency regulation effect, load importance, and three-phase 

unbalance degree, during the process of training the intelligent 

agent. Then, the trained intelligent agent is used to generate 

integrated load shedding decisions, thereby fully utilizing the 

learning ability of the intelligent agent while reducing the 

response time of load shedding decisions; this reduced its online 

computing time by 38.46% compared to strategy 4. In terms of 

frequency recovery time, the frequency recovery time of the 

system under the four strategies is 0.42 s, 0.58 s, 0.45 s, and 0.48 s, 

respectively. It can be seen that the system frequency under 

strategy 1 can recover to the normal range at the fastest speed, 

which is attributed to the fact that the TD3 after integrating the 

softmax and the DBR mechanism can make better load shedding 

decisions, and achieve the shortest online computation time based 

on further making high-quality decisions that are more conducive 

to the fast recovery of the system frequency, thus speeding up the 

frequency recovery speed. Based on achieving the shortest online 

computation time, TD3 can further formulate high-quality load 

shedding decisions that are more conducive to the rapid recovery 

of the system frequency, thus accelerating the frequency recovery  

Table VI 

LOAD SHEDDING ACTION PERFORMANCE ANALYSIS 

Index Strategy 1 Strategy 2 Strategy 3 Strategy 4 

ont 0.032s 0.077s 0.042s 0.052s 

sumt 0.42s 0.58s 0.45s 0.48s 

f 1.12Hz 1.87Hz 1.29Hz 1.49Hz 

speed. Further analyzing the fluctuation of the system frequency 

during the recovery period, from Table VI, it can be seen that the 

amplitudes of the system frequency fluctuation under strategies 2, 

3 and 4 during the recovery period are 1.87 Hz, 1.29 Hz and 1.49 

Hz, respectively. In contrast, the frequency fluctuation range of 

the system under strategy 1 during the recovery period is 49.13 

Hz–50.25 Hz, with a frequency fluctuation amplitude of only 1.12 

Hz, which is 40.11%, 13.18%, and 24.83% lower than those of 

strategies 2, 3, and 4, respectively. This is mainly because in 

strategy 1, the load frequency regulation effect coefficient is 

considered in the integrated load shedding process, and a load 

with a small frequency regulation effect coefficient is 

preferentially removed, which effectively suppresses the decrease 

in system frequency and makes the system frequency recover to a 

normal state more stably. 

The above results show that strategy 1 can realize a fast 

response when the system frequency falls to a threshold value, 

which meets the computational performance requirements for 

online real-time decision-making. At the same time, the load 

shedding strategy shows significant advantages in reducing both 

the amplitude of system frequency fluctuation and recovery time. 

(4) Comparison of the Three-phase Unbalance During the Load

Shedding Process 

Considering that serious voltage unbalance will bring potential 

risks to the islanded microgrid system, the voltage unbalance 

degree of the islanded microgrid system is first analyzed. This 

section is also conducted under the fault scenario of BES3 exiting 

operation. The variation of voltage unbalance degree of islanded 

microgrid system in the process of underfrequency load shedding 

under various strategies is shown in Fig. 10. The maximum 

voltage unbalance of the islanded microgrid system before the 

load shedding operation is 1.1%. It can be seen from Fig. 10 that 

the voltage unbalance of the islanded microgrid system decreases 

after the load shedding actions under the four strategies are 

implemented. It can be seen that the system voltage unbalance 

degree in this fault scenario has been effectively controlled and 

Fig. 9. System frequency recovery waveform under each strategy 
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Fig. 10. Voltage unbalance variation of the islanded microgrid system under 

various strategies 

kept within the safe range of 3% [37], effectively avoiding the 

impact of serious voltage unbalance on the effectiveness of the 

case study. 

To compare the three-phase power unbalance levels of islanded 

microgrids under different strategies, the three-phase unbalance 

degree of the system is calculated based on the three-phase power 

information. The waveform changes of the three-phase power 

unbalance in the islanded microgrid system during underfrequency 

load shedding actions under the various strategies are shown in 

Fig. 11. 

According to Fig. 11, the three-phase unbalance degree of the 

islanded microgrid system before the load shedding operation is 

7.69%. Because they do not consider the three-phase unbalance 

degree during the load shedding process, the three-phase 

unbalances of strategy 2 and strategy 3 after stable system 

operation was restored were 19.15% and 26.68%, respectively. 

Compared with that before the load shedding operation, the 

three-phase unbalance of the system increased by 11.46% and 

18.99%, respectively, and exceeded the normal operation 

requirements of the system. ( 15%Unbalance ). Strategy 4 

adopts a load combination approach to construct a single-phase 

load as a virtual three-phase load and then prioritizes cutting off 

the virtual three-phase loads with lower unbalances during the 

load shedding process to reduce the three-phase unbalance of the 

load shedding system. This load shedding method has an ideal 

effect in the scenario in which there is three-phase balance in the 

system before the fault occurs. However, when the system is 

initially in an unbalanced state, after cutting off a set of balanced 

virtual load combinations, strategy 4 increases the unbalance by 

4.65%, reaching 12.34%. In contrast, the proposed strategy 1 

reasonably distributes the load shedding each subphase by 

considering the three-phase unbalance of the load and corrects the 

three-phase unbalance of the system to 0, completely avoiding the 

impact of the three-phase unbalance on the system loss and load 

power quality. 

In summary, compared with other strategies, the strategy 

proposed in this paper can minimize the load shedding cost on the 

premise that the voltage unbalance is lower than the safety 

threshold of 3%, and at the same time, the three-phase power 

unbalance of the system is corrected, and the system frequency is 

restored to the normal level faster and more stably, which verifies 

the superiority of the proposed strategy. 

D. Robustness Analysis

From Section V-C, we conclude that the proposed integrated

load shedding strategy has better load shedding performance than 

do the other comparative load shedding strategies. However, there 

will be state measurement noise in real power systems. To further 

verify the rationality and superiority of the proposed strategy, 

Gaussian white noise interference is added to the corresponding 

islanded microgrid environment state in each state detection step. 

The level of measured noise is described on the basis of the 

signal-to-noise ratio (SNR) in units of dB. Fig. 12 shows a 

comparison of the results of the proposed integrated load shedding 

strategy and the other strategies when BES3 exits due to faults 

under measurement noise levels of 5 dB, 10 dB, 15 dB, and 20 dB. 

Fig. 12 shows that all the indicators of the four strategies are 

affected to some extent after noise is added. With increasing 

signal-to-noise ratio, the index performance of each strategy tends 

to improve. This is because the larger the signal-to-noise ratio is, 

the less noise is contained in the information; thus, the accuracy of 

each strategy in determining the state of the microgrid system is 

Fig. 12. Robustness comparison of strategies under noise 

Fig. 11. Three-phase unbalance waveforms of the islanded microgrid system 
under various strategies 
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less affected by noise, and the accuracy of underfrequency load 

shedding decisions is greater. The indexes of strategy 2 fluctuate 

the most under the influence of noise. In contrast, strategies 1, 3, 

and 4, as DRL-based load shedding strategies, choose the action 

that can obtain the maximum benefit each time, that is, the optimal 

load shedding strategy, and achieve better performance. 

Furthermore, compared with those of strategies 3 and 4, the 

differences in the load shedding, load shedding cost, recovery time 

and three-phase power unbalance degree of the proposed strategy 

1 are 0.95 kW, $0.12, 0.017 s, and 0.36%, respectively, in the 5 

dB noise scenario and the 20 dB scenario. The differences from 

these four indicators for strategy 3 are 1.1 kW, $0.16, 0.0192 s, 

and 1.46%, respectively. The differences from these four 

indicators for strategy 4 are 1.7 kW, $0.17, 0.0204 s, and 2.61%, 

respectively. Although the load shedding indicators of the 

proposed strategy 1 are slightly increased under the influence of 

measurement noise, compared with those of strategies 3 and 4, 

they are still maintained at a lower level, and the fluctuations in 

the indicators are small. This shows that the proposed strategy 1 

can better adapt to an uncertain environment and obtain more 

stable load shedding results. 

The above test results indicate that compared with other 

strategies, the proposed integrated load shedding strategy can 

better cope with the measurement uncertainty of state variables 

such as the outputs of DG units in islanded microgrids, real-time 

powers of loads, real-time frequencies of microgrids, and 

frequency change rates. It can still obtain stable load shedding 

results under strong measurement noise interference. In the face of 

a changing islanded microgrid system environment, it has better 

robustness. 

E. Generalization Performance Analysis

To further validate the generalization performance of the

proposed strategy, a new fault scenario that is not involved in 

training is selected for testing. Assuming that DG6 and BES5 are 

simultaneously out of operation due to failure at 10:00, and the 

load level is 110% of the initial value. At this time, the withdrawal 

of DG and BES and the increase in load level will lead to a 

significant increase in the system power deficit, and the system 

frequency will face more serious disturbance. The maximum 

voltage unbalance and three-phase power unbalance of the 

islanded microgrid system before load shedding operation are 

1.65% and 11.54%, respectively. In this scenario, the four 

strategies in Section V.C are still used for comparative analysis. 

The composition of load shedding after the four load shedding 

strategies are implemented is shown in Fig. 13. The results show 

that strategy 1 has the smallest load shedding amount, only 

requiring the shedding of 205.6 kW of load. Compared with 

strategies 2, 3, and 4, the load shedding amount is reduced by 

5.47%, 2.97%, and 4.46%, respectively. In this scenario, the four 

strategies all cut off part of level II important loads, but the 

proposed strategy 1 cut off the least level II important loads, thus 

ensuring the continuous power supply of high-priority loads to the 

maximum extent. In the selection of load shedding types, the load 

shedding objects of the four strategies all include industrial loads 

with high load demand at the current time, and the shedding 

amounts are 34.4kW, 40.3kW, 50.2kW and 52.5kW, respectively. 

Although the load shedding options of the four strategies will all 

have a certain impact on the user demand at this moment, the 

proposed strategy 1 minimizes the load shedding with high 

Fig. 13. Comparison of load shedding amount under different strategies 

demand by considering multiclass factors including the load 

demand degree during the load shedding process and effectively 

alleviates the adverse impact on the user. It can be seen that 

strategy 1 performs better in ensuring the reliability of the power 

supply for important loads and high-demand loads. 

The frequency recovery waveforms of the islanded microgrid 

system after load shedding under the four strategies are shown in 

Fig. 14. Due to the withdrawal of DG and BES and the increase of 

load level, the system frequency of the islanded microgrid 

fluctuates significantly. When the frequency drops to the threshold, 

the four strategies eliminate the system power shortage by 

formulating load shedding strategies in real-time, so that the 

system frequency returns to the normal range. The online 

calculation time, system frequency recovery time, and frequency 

fluctuation amplitude under each load shedding strategy are 

shown in Table VII. It can be intuitively observed that the 

proposed strategy 1 achieves the shortest online calculating time 

among all strategies, reducing it by 63.11%, 44.44%, and 51.09% 

compared to strategies 2, 3, and 4, respectively. This is because 

softmax and DBR mechanisms introduced in strategy 1 

significantly improve the learning performance of the agent, and 

the trained model can realize more efficient forward reasoning by 

using DNN with more accurate parameter fitting in the online 

calculation stage, reducing redundant calculation and significantly 

improving the reasoning speed. At the same time, the integrated 

load shedding approach further reduces the transfer time between 

real-time load factor evaluation information and online 

decision-making, resulting in more efficient computing 

performance. In terms of frequency recovery time, strategy 1  

Fig. 14. System frequency recovery waveform under each strategy 
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Table VII 

LOAD SHEDDING ACTION PERFORMANCE ANALYSIS 

Index Strategy 1 Strategy 2 Strategy 3 Strategy 4 

ont 0.045s 0.122s 0.081s 0.092s 

sumt 0.64s 0.79s 0.68s 0.74s 

f 1.51Hz 2.37Hz 1.77Hz 2.06Hz 

based on DBR-SD3 has a higher quality of real-time load 

decision-making, and it can make the load shedding action that is 

most conducive to the stability of frequency recovery. It makes the 

frequency recovery time of the system under this strategy 0.64s, 

while the frequency recovery time of strategies 2, 3 and 4 are 

0.79s, 0.68s, and 0.74s, respectively. Compared with the other 

three load shedding strategies, the frequency recovery time of 

proposed strategy 1 is reduced by 18.99%, 6.25%, and 13.51%, 

respectively, which indicates that strategy 1 is more conducive to 

the rapid recovery of system frequency. The frequency fluctuation 

amplitude of the islanded microgrid system under strategies 2, 3, 

and 4 are 2.37Hz, 1.77Hz, and 2.06Hz respectively. In contrast, 

strategy 1 retains more loads with a large frequency regulation 

effect coefficient in the process of the load removal and makes full 

use of the regulation effect of load itself in the process of 

frequency reduction. As a result, the amplitude of system 

frequency fluctuation of strategy 1 is 1.51Hz, which is 36.29%, 

14.69%, and 26.7% lower than that of strategy 2, 3, and 4, 

respectively. The frequency fluctuation amplitude of the system is 

effectively suppressed. The above results show that strategy 1 can 

not only significantly reduce the amplitude of frequency 

fluctuation, but also accelerate the recovery of system frequency. 

Under different load shedding strategies, the load shedding 

costs g , as well as the maximum voltage unbalance VUF  and 

three-phase power unbalance Unbalance  after the system 

stabilizes are shown in Table VIII. As can be seen from Table VIII, 

the four strategies can control the maximum voltage unbalance of 

the system within the safety threshold of 3%, avoiding the impact 

of voltage unbalance on the case study. In terms of load shedding 

costs, the load shedding costs of strategies 1, 2, 3, and 4 are 

$225.78, $296.8, $235.57, and $346.2 respectively. Strategy 1 

considers both the importance level of the load and the demand for 

different types of loads during the load shedding process. It 

removes the load combination with the lowest cost coefficient, 

resulting in a reduction of load shedding costs by 23.93%, 4.16%, 

and 34.78% compared to strategies 2, 3, and 4, respectively. This 

minimizes the economic losses of load shedding. In terms of 

improving the three-phase power unbalance of the system, the 

three-phase power unbalance of the system after the 

implementation of strategies 2, 3, and 4 increased by 11.72%, 

16.95%, and 2.67% respectively. Moreover, the load shedding 

actions under strategies 2 and 3 did not consider the power 

unbalance factor, which may affect the normal operation of the 

system after load removal. In contrast, strategy 1 corrects the 

power unbalance degree to 9.78%, which effectively reduces the 

influence of power unbalance on power quality. 

According to the above test results, when facing untrained test 

scenarios, the agent can still make reasonable decisions and 

restore the system frequency to a stable state, which indicates that 

the model has a certain generalization ability. At the same time, 

the proposed strategy 1 is superior to strategies 2, 3, and 4 in 

reducing economic loss cost, inhibiting frequency fluctuation, 

shortening online calculation time and frequency recovery time, 

and improving three-phase power unbalance degree, showing 

better comprehensive load shedding effect. However, due to the 

difference between the training data distribution and the untrained 

fault scenario, the load shedding effect of strategy 1 in the 

untrained fault scenario has a certain degree of degradation. 

Compared with the training scenario in Section V.C, the online 

calculation time, system frequency recovery time, and fluctuation 

amplitude of the proposed strategy 1 increased by 40.63%, 

52.38%, and 34.82%, respectively. The above results show that 

the model has some shortcomings in adaptability when dealing 

with unfamiliar fault environments, and the decision-making 

Fig. 15. Improved IEEE 118-bus island microgrid system model 

Table VIII 

LOAD REDUCTION CONTROL RESULTS 

Index Strategy 1 Strategy 2 Strategy 3 Strategy 4 

g $225.78 $296.8 $235.57 $346.2 

VUF 1.43% 1.58% 1.49% 1.53% 

Unbalance 9.78% 23.26% 28.49% 14.21% 
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ability of agents under unknown conditions needs to be further 

improved. 

F. Superiority Analysis of Load Shedding Strategies in IEEE

118-bus System

To further analyze the load shedding performance of the

proposed strategy in larger-scale systems, an islanded microgrid 

model based on the improved IEEE 118-bus system is established 

in MATLAB/Simulink, as shown in Fig. 15. The model consists 

of 26 DGs, 20 BES, and 78 loads. BES1-BES20 operates in 

grid-forming mode, while DG1-DG26 operates in grid-following 

mode. Among them, LD1-LD50 are three-phase loads, and 

LD51-LD78 are single-phase loads. The DG and BES output 

information are shown in TABLE IX, and the load grades and 

load types are shown in TABLE X. The load demand degrees at 

different times remain consistent with the data in Fig. 6. 

Assuming DG9 exits operation due to a fault at 20:00, with a 

load level of 105%. The maximum voltage unbalance and 

three-phase power unbalance of the islanded microgrid system 

before load shedding operation are 1.98% and 12.18%, 

respectively. In this scenario, the four load shedding strategies 

from Section V.C are used for comparative analysis. 
Table IX  

DG AND ENERGY STORAGE CONFIGURATION INFORMATION 

Name 
Access 

Location 

Output 

(kW) 
Name 

Access 

Location 

Output 

(kW) 

DG1 Bus 15 7 DG24 Bus 118-B 11.5 
DG2 Bus 19 3 DG25 Bus 118-C 23 

DG3 Bus 26 3 DG26 Bus 118-C 14 

DG4 Bus 6 5 BES1 Bus 12 5 
DG5 Bus 46 5 BES2 Bus 20 4 

DG6 Bus 51 21 BES3 Bus 24 3 

DG7 Bus 32 8.3 BES4 Bus 5 3 
DG8 Bus 36 7 BES5 Bus 49 3 

DG9 Bus 39 35 BES6 Bus 33 4 

DG10 Bus 53 12 BES7 Bus 37 10 
DG11 Bus 103 26.5 BES8 Bus 55 20 

DG12 Bus 109 13 BES9 Bus 59 3 

DG13 Bus 111 11.5 BES10 Bus 106 3 
DG14 Bus 114 12 BES11 Bus 107 10 

DG15 Bus 90 14 BES12 Bus 98 3 

DG16 Bus 93 12.5 BES13 Bus 67 3 
DG17 Bus 69 30 BES14 Bus 76 4 

DG18 Bus 73 14 BES15 Bus 80 20 

DG19 Bus 75 13.5 BES16 Bus 118-A 5 
DG20 Bus 81 15 BES17 Bus 118-B 5 

DG21 Bus 118-A 13.5 BES18 Bus 118-B 8 

DG22 Bus 118-A 20.5 BES19 Bus 118-C 5 
DG23 Bus 118-B 12 BES20 Bus 118-C 8 

Table X  

LOAD DATA INFORMATION 

Load Priority LP (kW) h($/kWh) ,maxcutP (kW) Load type 

LD1 II 5.5 1.21 2.5 commercial 
LD2 I 3 2.46 1.2 industrial 

LD3 III 5.5 0.56 2.1 residential 
LD4 I 4.8 3.01 1.5 commercial 

LD5 II 4.1 2.27 2.1 industrial 

LD6 II 17.5 1.94 11.7 residential 
LD7 II 5.6 2.31 2.8 commercial 

LD8 III 2.2 0.98 1.3 residential 

LD9 III 3.1 1.84 1.7 industrial 
LD10 I 6.6 2.25 2.2 commercial 

LD11 III 7.1 1.05 4.3 industrial 

LD12 II 4.5 2.16 2.5 residential 
LD13 I 5.3 2.71 2.1 industrial 

LD14 III 2.9 1.69 1.4 commercial 

LD15 III 3.6 1.26 2.2 residential 

LD16 II 4.2 2.72 2.1 industrial 

LD17 III 7.8 0.97 4.2 industrial 
LD18 I 5.2 2.75 2.2 residential 

LD19 III 8.7 1.03 2.1 commercial 

LD20 II 8.9 2.41 7.5 commercial 
LD21 III 4.8 1.42 3.2 residential 

LD22 II 8.6 1.51 5.1 commercial 

LD23 I 6.3 2.63 2.8 commercial 
LD24 III 5.7 0.99 3.2 industrial 

LD25 III 5.5 1.2 2.5 commercial 

LD26 II 3.3 1.62 1.7 residential 
LD27 I 5.8 3.04 2.4 industrial 

LD28 II 3.9 2.54 2.1 commercial 

LD29 III 3.8 1.24 2.5 industrial 
LD30 II 7.6 0.79 3.3 residential 

LD31 III 4.9 1.21 2.8 industrial 

LD32 II 4.5 1.36 2.1 commercial 
LD33 I 5.3 2.77 2.2 residential 

LD34 III 8.6 0.81 5.6 commercial 

LD35 III 15.8 0.37 10.5 residential 
LD36 II 4.9 1.41 3.1 commercial 

LD37 II 3.4 1.96 2.4 industrial 

LD38 III 7.8 0.56 5.8 commercial 
LD39 I 7.2 2.81 3.3 industrial 

LD40 I 6.3 3.07 3.1 commercial 

LD41 III 5.9 1.24 3.2 residential 
LD42 II 7.2 1.58 4.6 commercial 

LD43 III 9.1 0.64 7.2 industrial 

LD44 III 8.6 0.71 6.6 commercial 
LD45 III 5.4 1.06 4.1 residential 

LD46 II 5.5 1.55 3.5 industrial 

LD47 I 9.8 2.76 4.5 commercial 
LD48 III 8.3 0.87 6.8 industrial 

LD49 II 7.8 1.34 4.2 commercial 

LD50 II 7.9 1.22 4.0 residential 
LD51 II 9.3 1.41 7.6 commercial 

LD52 III 5.3 0.86 3.9 commercial 

LD53 III 4.8 0.71 3.1 industrial 
LD54 I 9.6 2.58 8.5 residential 

LD55 III 5.3 0.96 4.7 industrial 
LD56 II 3.6 1.54 2.2 commercial 

LD57 III 1.1 1.02 0.5 industrial 

LD58 I 2.1 2.63 1.1 residential 
LD59 III 7.9 0.91 6.1 industrial 

LD60 II 6.1 1.32 5.1 industrial 

LD61 III 8.3 0.97 6.9 commercial 
LD62 III 4.7 1.15 3.3 industrial 

LD63 II 8.2 1.39 6.6 residential 

LD64 I 5 2.11 3.9 industrial 
LD65 III 6.8 1.01 5.2 commercial 

LD66 III 3.6 0.79 2.4 residential 

LD67 II 8.5 1.36 6.2 commercial 
LD68 III 2.8 0.85 1.6 residential 

LD69 I 2.2 1.96 1.6 commercial 

LD70 II 6.7 1.52 5.4 commercial 
LD71 III 5.5 0.67 3.2 industrial 

LD72 II 6.8 1.44 5.5 commercial 

LD73 II 8.9 1.49 7.7 residential 
LD74 I 7.1 2.59 5.6 commercial 

LD75 III 4.5 0.99 2.9 commercial 

LD76 I 6.3 1.32 4.9 industrial 
LD77 II 7.9 1.46 6.1 commercial 

LD78 III 5.5 0.82 3.9 industrial 

The composition of load shedding after the four load shedding 

strategies are implemented is shown in Fig. 16. Strategy 1 

achieved the minimal load shedding amount and the lowest 

shedding amount of level II loads, indicating its ability to 

maximize power supply reliability for critical loads while 

minimizing overall load shedding amount. Further analysis of the 

removal of various types of loads shows that strategies 2, 3, and 4 

remove residential loads with high demand degree, accounting for 

22.67%, 21.4%, and 23.34% of the load shedding amount, 
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respectively. 

In contrast, strategy 1 takes into account the differences in 

demand among users for different types of loads, and prioritizes 

the reduction of load on commercial and industrial loads with 

lower demand at the current time, effectively avoiding the cutting 

off of high-demand residential loads and minimizing the negative 

impact of load shedding on the user level. These results 

demonstrate that strategy 1 significantly enhances the continuous 

power supply capability for critical and high-demand loads in 

large-scale islanded microgrids. The above results indicate that 

compared to the other three strategies, strategy 1 can still 

effectively improve the sustained power supply capacity of 

important loads and high demand loads in the face of larger 

islanded microgrid system failure scenarios, further verifying the 

superiority of the proposed strategy 1. 

The fault occurrence time is set to =1t  s in the modified IEEE 

118-bus model. The frequency recovery waveforms of the

islanded microgrid system after load shedding under the four

strategies are shown in Fig. 17. The online calculation time ont ,

system frequency recovery time sumt , and frequency fluctuation

amplitude f  under each load shedding strategy are shown in

Table XI.

As shown in Fig. 17, after DG9 exits operation due to a fault, 

the system experiences a frequency drop caused by a power deficit. 

All four strategies respond in real time and generate load shedding 

schemes online. In terms of online calculation time, the 

calculation times for the four strategies are 0.092s, 0.168s, 0.102s, 

and 0.118s, respectively. The load shedding method based on 

MPC in strategy 2 is more complex and computationally intensive 

when dealing with large-scale bus systems due to the need to 

optimize more decision variables, resulting in the longest solution 

time and certain limitations in real-time performance. However, 

strategies 1, 2, and 3 based on DRL can achieve less online 

calculation time through trained agent models. Furthermore, the 

softmax and DBR mechanisms introduced in strategy 1 can 

enhance the learning efficiency of the agent, while the integrated 

load shedding method avoids the delayed response caused by 

online evaluation. This reduces the real-time calculation time of 

strategy 1 by 9.8% and 22.03% respectively compared to strategy 

3 and strategy 4, effectively shortening the speed of model output 

for online decision-making. In terms of frequency recovery time, 

the frequency recovery time of the four strategies is 0.78s, 0.96s, 

0.85s, and 0.89s, respectively. It can be seen that compared with 

the other three strategies, the frequency recovery time of strategy 

1 is reduced by 18.78%, 8.24%, and 12.36%, respectively. This 

indicates that the load shedding action taken by strategy 1 is 

superior to the other three strategies and more conducive to the 

rapid recovery of system frequency. When executing the load 

shedding action, strategy 1 prioritizes cutting off loads with small 

frequency regulation effect coefficients, maximizing the 

utilization of the load’s regulation effect, resulting in a frequency 

fluctuation of 1.74Hz in the system. The frequency fluctuations in 

strategies 2, 3, and 4 are 2.55Hz, 1.91Hz, and 2.2Hz, respectively. 

Compared to strategies 2, 3, and 4, strategy 1 can reduce the 

amplitude of frequency fluctuations by 31.76%, 8.9%, and 20.91%, 

respectively, effectively reducing fluctuations during frequency 

recovery. The above analysis results indicate that strategy 1 can 

better meet the requirements of online real-time calculating 

performance, while effectively reducing the frequency fluctuation 

amplitude and frequency recovery time of islanded microgrids. 

Under different load shedding strategies, the load shedding 

costs g , as well as the maximum voltage unbalance VUF  and 

three-phase power unbalance Unbalance  after the system 

stabilizes are shown in Table XII. It can be seen from Table XII 

that after the implementation of the four load shedding strategies, 

the maximum voltage unbalance of the system is maintained 

within the safe range of 3%. In terms of load shedding costs, 

strategy 1 has a load shedding cost of $199.26, which is the lowest 

among the four strategies, reducing 16.45%, 10.51%, and 28.04% 

compared to strategies 2, 3, and 4, respectively. Regarding 

three-phase power unbalance improvement, strategies 2 and 3 do 

not consider power unbalance impacts during decision-making, 

leading to increases of 14.58% and 19.24% compared to 

pre-shedding levels. In contrast, strategies 1 and 4 consider the 

Table XI 

LOAD SHEDDING ACTION PERFORMANCE ANALYSIS 

Index Strategy 1 Strategy 2 Strategy 3 Strategy 4 

ont 0.092s 0.168s 0.102s 0.118s 

sumt 0.78s 0.96s 0.85s 0.89s 

f 1.74Hz 2.55Hz 1.91Hz 2.2Hz 

Table XII  
LOAD REDUCTION CONTROL RESULTS 

Index Strategy 1 Strategy 2 Strategy 3 Strategy 4 

g $199.26 $238.50 $222.65 $276.9 

VUF 1.62% 1.83% 1.71% 1.78% 

Unbalance 6.39% 26.76% 31.42% 13.54% 

Fig. 16 Comparison of load shedding amount under different strategies 

Fig. 17. System frequency recovery waveform under each strategy 
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power unbalance factor in the decision-making of load shedding 

and control the unbalance degree within the normal range. 

Furthermore, strategy 1 allocates the load shedding amount on 

each single phase reasonably through an integrated load shedding 

mode under the initial unbalance of the system, thereby reducing 

the power unbalance of the system to 6.39%, achieving the 

minimization of power unbalance under the four strategies. From 

the above analysis, it can be seen that strategy 1 can minimize the 

economic losses caused by load shedding while ensuring that 

voltage unbalance is within a safe range, and control power 

unbalance at the lowest level. 

From the above analysis, it can be seen that the proposed 

strategy 1 can effectively solve the frequency recovery problem in 

larger islanded microgrid systems. Meanwhile, compared to the 

other three strategies, the proposed strategy 1 can minimize the 

cost of load shedding, while demonstrating significant advantages 

in reducing frequency fluctuations, shortening frequency recovery 

time, and improving three-phase power unbalance. This further 

validates the superiority of the proposed strategy. 

VI. CONCLUSION

Considering the frequency drop caused by unexpected faults 

during the operation of islanded microgrids, this paper presents an 

integrated underfrequency load shedding strategy for islanded 

microgrids by integrating multiclass load-related factors on the 

basis of the DRL framework. The strategy first combines load 

assessment and load shedding to construct an integrated 

underfrequency load shedding strategy integrating multiclass load 

correlation factors. Then, the integrated load shedding model is 

described as an MDP with the goal of minimizing the load 

shedding response time, load shedding cost, and three-phase 

system power unbalance, and a DBR-SD3 method based on a 

continuous action space is proposed to determine the optimal load 

shedding strategy for this objective. By integrating the softmax 

function and dual-buffer replay mechanism into TD3, this method 

greatly improves the ability of the agent to learn the optimal load 

shedding strategy in the complex microgrid operating environment. 

Finally, simulation and comparison tests are carried out on the 

improved IEEE 37-bus and IEEE 118-bus islanded microgrid 

system. The results show that the proposed strategy can prevent a 

rapid drop in the system frequency through the integrated load 

shedding decision and can achieve a low load shedding cost to 

ensure the reliability of the power supplies of important loads 

while correcting the three-phase power unbalance in system 

operation. In addition, this strategy has greater robustness and 

adaptability in a complex microgrid system environment. 
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