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Abstract—Reducing the decision response time of load shedding
while considering the comprehensive value of load shedding is one of
the main challenges faced in emergency control of islanded
microgrids. However, the existing underfrequency load shedding
strategies do not fully consider the multiple factors associated with
the load, and load assessment and load shedding decision-making are
separated; this results in a long response time for underfrequency
load shedding decisions for islanded microgrids. Therefore, in this
paper, an integrated underfrequency load shedding strategy for
islanded microgrids is proposed, which integrates multiclass
load-related factors. This strategy first constructs an integrated
underfrequency load shedding model for islanded microgrids on the
basis of multiclass load-related factors such as the load frequency
regulation effect, load shedding cost, and three-phase system power
unbalance degree. Then, the load shedding model is described as a
Markov decision process (MDP), and the environment, action space,
and reward function are defined considering the load shedding
objectives and constraints of islanded microgrids. Finally, a novel
twin delay deep deterministic policy gradient method with softmax
and dual buffer replay (DBR-SD3) is developed to determine the
optimal integrated underfrequency load shedding strategy. This
approach integrates softmax and the dual buffer replay mechanism
into twin delay deep deterministic policy gradient (TD3), which
greatly improves the ability of the agent to learn the optimal load
shedding strategy in a complex microgrid operating environment.
The simulation results based on the improved IEEE 37-bus microgrid
and IEEE 118-bus microgrid verify that the proposed integrated load
shedding strategy can greatly reduce the decision response time,
correct the three-phase power unbalance of the system while
minimizing the load shedding cost, and restore the system frequency
to a normal level more quickly. Moreover, even under strong noise
interference, the proposed strategy can produce stable load shedding
decisions and has strong robustness and adaptability.
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[. INTRODUCTION

ITH the gradual increase in smart grid construction in

China, the penetration rate of distributed generators

(DGs), which are powered primarily by new energy in
microgrids, is increasing daily [1], [2]. However, DGs need to be
connected to the power grid through power electronic equipment,
and their frequency recovery ability is weak, which may cause
problems such as frequency safety and stability issues when
serious faults occur. Especially for islanded microgrids, postfault
frequency instability is an important cause of economic losses [3].
When a fault occurs in an islanded microgrid, if effective
emergency intervention measures cannot be taken in time, it may
lead to chain failure or power outages in the whole network [4].
To minimize the adverse effects of fault events on islanded
microgrids, the frequency recovery problem must be effectively
addressed.

To enable the frequency of the islanded microgrid system to
recover to a stable state after a disturbance quickly, a multi-stage
droop control parameter optimization method was proposed in [5].
This method optimizes the power output strategy of DGs by
adaptively modifying the droop control parameters to recover the
frequency deviation caused by unexpected disturbances quickly. A
distributed control strategy was designed in [6]. This strategy can
control the energy storage system to participate in different
frequency regulation tasks and effectively reduce the frequency
variation caused by power fluctuations. To fully utilize the ability
of each unit in the microgrid to regulate the system frequency, an
adaptive control strategy that combines decentralized and
distributed technologies was proposed in [7]. This strategy
coordinates the output power amount of each unit according to the
inverter capacity of photovoltaic and energy storage, thus
maintaining the microgrid frequency in a safe and stable state. All
of the above research has proposed different control strategies to
optimize the frequency regulation capability of microgrids from
the source-side perspective. However, when faced with an
emergency scenario in which the power output has reached the
upper limit but still cannot effectively suppress the frequency drop,
the above control strategies cannot further play the role of
frequency regulation. As an important means of emergency
control of a power system, underfrequency load shedding can
prevent a rapid drop in system frequency by cutting off part of the
load when the power output is saturated ensure the safety of the
system frequency [8], [9]. Therefore, it is crucial to design an
effective and reasonable underfrequency load shedding (UFLS)
strategy for the safe and stable operation of islanded microgrids.

As research on UFLS increases, the traditional load-shedding
problem has been constructed as a variety of mathematical and
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physical models to find the optimal load shedding scheme [10-12].
In [10], an adaptive undervoltage load shedding scheme based on
model predictive control (MPC) was proposed, which introduced
the concept of voltage and reactive power variables to alleviate
voltage instability in the case of unexpected faults. In [11], an
adaptive load-shedding strategy based on a comprehensive
evaluation of the frequency and voltage stability of synchronous
phasor measurements was proposed. This strategy allocates load
shedding according to the voltage and frequency information
provided by the phasor measurement units (PMUs) to improve the
stability of voltage and frequency recovery. In [12], a dynamic
multistage underfrequency load shedding strategy considering
generation loss uncertainty was proposed, which describes the
UFLS problem as a mixed integer linear programming
optimization problem to minimize load shedding. However, the
above methods rely on the system model, require high-accuracy
models, and have problems with poor scalability and long model
solving times. When applied to emergency control of a power grid,
the instantaneous response effect is poor.

In recent years, methods based on machine learning (ML) have
shown great potential in the field of microgrid control [13], [14].
Unlike traditional modeling methods, methods based on ML can
output control decisions in a short time. In [15], a two-stage load
shedding strategy was proposed, which first uses a support vector
machine to evaluate the stability of the system and then performs
load shedding according to a predefined scheme. In [16-17], an
extreme learning machine model was trained according to
pregenerated load-shedding data, and then the trained model was
used to predict the amount of load shedding. However, these
traditional ML models rely on high-quality databases, and their
data processing is more complex. In this context, a coordinated
load shedding control strategy for islanded microgrids based on
the Q learning framework was proposed in [18], which uses a Q
value table to record the data values in the model training process,
greatly reducing the workload of data processing. However, Q
learning encounters dimensional disasters in high-dimensional
spaces, which greatly limits the application of this strategy. To
solve this problem, deep reinforcement learning (DRL), which
organically integrates deep learning and reinforcement learning,
has been widely researched and applied. A novel adaptive
emergency control scheme was designed on the basis of the
high-dimensional feature extraction and nonlinear generalization
capabilities of the deep Q-network (DQN) in [19]. However, as a
discrete control-oriented method, the DQN cannot output the
optimal Q values for continuous actions. In [20], a frequency
control method based on deep deterministic policy gradient
(DDPG), which can address continuous states and actions, was
proposed. In [21], an adaptive power tracking control method
integrating adaptive learning and DDPG was proposed, which can
adaptively adjust DDPG model parameters according to the
control effect. To solve the problem of poor adaptability of
traditional DRL in the face of new tasks, a frequency control
method for islanded microgrids based on deep meta deterministic
policy gradient was proposed in [22], which introduces
meta-learning into DDPG to guide agents to perform multi-task
collaborative learning through meta-learning, thereby enhancing
the adaptability of the model in different fault scenarios. However,
the DDPG is more sensitive to parameter settings, and
overestimating the Q value leads to the failure of the learned
strategy. A frequency regulation method based on TD3 was

proposed in [23], which effectively reduces the problem of
overestimation of the Q value. In [24], a load restoration strategy
for a distribution network based on TD3 was proposed, which
significantly improves the model's generalization ability to
untrained scenarios by introducing meta-learning. However, the
conservative value function estimation method of TD3 may lead
to underestimation, causing the agent to only learn suboptimal
strategies.

It is also notable that in the microgrid system, in addition to
many three-phase loads, there are also some single-phase
source—load—storage components, and these single-phase
components will cause a three-phase unbalance in the system. The
method of virtual three-phase combination sorting of
heterogeneous sources, loads, and storage was proposed in [25-26]
to effectively avoid the issue of three-phase system power
unbalance in the passive parallel transfer process for the microgrid.
However, the above studies first preprocess the load through
virtual combination and evaluation to obtain the contribution
value of the load and then construct a set of load shedding actions
on the basis of this contribution value and execute the load
shedding actions. This method of first evaluating and then
reducing the load increases the response time of the system's load
shedding actions, thereby impacting the frequency recovery of the
system. In addition, the load-cutting method based on virtual
combination has strong limitations and must be used in the initial
island equilibrium state. For an islanded microgrid with unbalance
at the initial time, the load-cutting method of virtual combination
may increase the unbalance and the operating loss of the system.

Considering the shortcomings of the above research, this paper
proposes an integrated underfrequency load shedding strategy for
islanded microgrids that integrates multiclass load-related factors.
The proposed strategy fully considers the influence of multiclass
load-related factors on the system load shedding process and
combines the two separate processes of load assessment and
underfrequency load shedding into one to obtain a new integrated
load shedding mode, which overcomes the defects of long
response times caused by insufficient consideration of load factors
and the independence of load assessment and load shedding
decisions in current load shedding decision-making. In addition,
the proposed strategy uses a new twin delayed deep deterministic
policy gradient with softmax and dual buffer replay (DBR-SD3)
method based on a continuous action space for learning load
shedding decisions, effectively improving the learning efficiency
and quality of decision-making. When a power shortage occurs in
an islanded microgrid due to faults, the proposed strategy can
effectively prevent rapid frequency drops in the system, ensuring
the reliability of important load supply with lower load shedding
costs while correcting three-phase power unbalance issues during
system operation.

The main contributions of this paper are as follows:

(1) A three-phase unbalanced load shedding correction method
suitable for multiple scenarios is proposed. Unlike in [25-26], the
strategy proposed in this paper directly determines the optimal
underfrequency load shedding strategy through DRL for agents.
The application scenario of the proposed strategy is not limited by
the initial three-phase unbalance degree of the system and can
quickly restore the system frequency while correcting the
unbalanced operations of the system. In the modified IEEE 37-bus
and IEEE 118-bus systems, the proposed strategy 1 reduced the
system power unbalance by 7.69% and 5.86%, respectively
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compared to before the load shedding operation, while the system
the power unbalance of the system increased under the
MPC-based load shedding strategy 2, DDPG-based load shedding
strategy 3, and DQN-based load shedding strategy 4. The
proposed strategy achieved the best unbalance improvement
effect.

(2) An integrated underfrequency load shedding mode for
islanded microgrids is proposed. Unlike the load shedding mode
that load assessment and load shedding are separated from each
other in references [7], [17] and [19], the proposed strategy uses
the DRL method to combine load assessment and underfrequency
load shedding into one process, which greatly reduces the
response time of the load shedding decision. In addition, unlike in
reference [7], the proposed strategy is less affected by the
accuracy of physical or mathematical models and has strong
scalability, so it can provide optimal load shedding control actions
quickly and stably. In the modified IEEE 37-bus system, the
online calculation time of the proposed strategy is 0.032 seconds,
which reduces strategies 2, 3, and 4 by 58.44%, 23.81%, and
38.46%, respectively. In the modified IEEE 118-bus system, the
online calculation time of the proposed strategy is 0.092 seconds,
which is reduced by 45.24%, 9.8%, and 22.03% compared to
strategies 2, 3, and 4, respectively. The strategies proposed in
different bus systems have achieved the fastest online response
speed.

(3) A new DRL method, DBR-SD3, is proposed for generating
optimal load shedding strategies. Unlike traditional DRL methods,
the proposed DBR-SD3 performs accurate estimation of the Q
values during parameter training by integrating the softmax
function with TD3. Moreover, to further improve the quality of
the optimal strategy, a dual buffer replay mechanism is adopted to
improve the learning speed and convergence stability of the
strategy. Training performance analysis shows that the speed of
the proposed DBR-SD3 to learn the optimal load shedding control
strategy is about 1.5/3.25/3.5 times that of TD3/DDPG/DQN,
respectively, and the average reward obtained during convergence
is increased by 34.46%, 45.94%, 65.54% based on
TD3/DDPG/DQN. The proposed strategy shows obvious
advantages in convergence speed and convergence quality.

The rest of this paper is organized as follows: Section II
describes an integrated underfrequency load shedding model for
islanded microgrids. Section III converts the underfrequency load
shedding problem for islanded microgrids into an MDP. Section
IV provides a detailed introduction to the proposed strategy
training and integrated load shedding strategy framework. Section
V evaluates the performance of the proposed method through
simulation analysis. Finally, section VI provides a summary of the
entire paper.

II. INTEGRATED UNDERFREQUENCY LOAD SHEDDING MODEL FOR
ISLANDED MICROGRIDS

The load shedding strategy proposed in this paper aims to
fully consider multiple types of load shedding-related factors
while minimizing the adverse effects of load shedding. In this
section, the frequency regulation model of islanded microgrid is
first described. Then, the relevant factors of integrated load
shedding are introduced, and on this basis, the differences between
the proposed integrated load shedding mode and the traditional
load shedding mode are described. Then, the objective function of
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Fig. 1. V/f Operation Principle of BESS

integrated load shedding is introduced, and finally, the operational
constraints of the islanded microgrid system are explained.

A. Islanded Microgrid Frequency Regulation Model

In islanded operation mode, microgrids dominated by
renewable energy lack the frequency and voltage support of the
main grid. The frequency stability of the microgrid relies on the
regulation of its DGs and battery energy storage systems (BESS).
With its fast response characteristics and stable power supply
capabilities, BESS can charge/discharge in real-time according to
the system’s actual power demand, effectively addressing the
insufficient regulation capacity caused by the intermittent output
of DGs. In the islanded microgrid model constructed in this paper,
BESS is connected to the system through grid-forming mode
inverters and uses V/f control to maintain stable voltage and
frequency in the islanded microgrid. DGs operating in
grid-following mode provide power support to the islanded
microgrid system using PQ control under stable voltage and
frequency support, working together with BESS in grid-forming
mode to maintain system power balance. The V/f operation
principle of BESS is shown in Fig. 1. As indicated in Fig. 1, under
rated frequency fyx, when the system experiences a power deficit

AP, BESS adjusts its output power to compensate for the deficit,
thereby maintaining system frequency stability. When the
maximum output power of DGs and BESS in the islanded
microgrid is still insufficient to meet the load demand, load
shedding through underfrequency load shedding becomes
inevitable.

B. Factors Related to Load Shedding

1) Load Frequency Characteristics

The active and reactive power absorbed by loads in the power
system varies with changes in frequency and voltage, which are
called the static characteristics of the load voltage and frequency.
To more accurately calculate the frequency change rate and power
shortage of an islanded microgrid during underfrequency load
shedding, it is necessary to consider the static frequency
characteristics of the load. Considering the strong coupling
between the system frequency and the active power, the load
frequency characteristic model can be expressed as [27]:

B =¢&,F, +5|PLo(f/fo)+52PLo(f/fo)2 +

) (1)
et 8, P (f 1 1)
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Where P, represents the active power absorbed by the load at
frequency f; P,, represents the rated active power of the load;
&g, represents the proportion of load proportional to the n th
power of system frequency in P, .

Differentiate the above equation and convert it into per unit
form to obtain:

K, =dP /df" =& +2&f +-+ne, [ "7 )
Where K, effect

coefficient of the load.

When the system frequency changes, different loads have
different frequency regulation effects, as shown in Fig. 2 (a). From
Fig. 2 (a), it can be seen that loads with large coefficients of the
frequency regulation effect result in more significant frequency
changes. When the system frequency decreases from f;, to f,

represents the frequency regulation

the load with a larger frequency regulation effect coefficient
absorbs a greater amount AP, of power reduction, which can

better alleviate the power balance burden of the system. Therefore,
when the system frequency decreases and triggers underfrequency
load shedding action, priority should be given to cutting off loads
with small frequency regulation effect coefficients and retaining
loads with large regulation effect coefficients. The frequency
recovery curves of the system after different loads are cut off
during underfrequency load shedding are shown in Fig. 2 (b), it
can be seen from Fig. 2 (b) that when the frequency recovery is
faster, the difference between the peak and valley values of the

<|f1A - £’]). Therefore,

the frequency regulation effect coefficient of the load during
underfrequency load shedding can be represented by the
amplitude of system frequency fluctuations.

2) Load Shedding Cost

Typically, loads are divided into three categories: primary loads,
secondary loads, and tertiary loads. However, this simple
classification method ignores the differences in the demands of
electricity users for different types of loads at different time scales.
In this paper, a load cost factor is used to measure the load
shedding priorities at different times. The cost coefficient F], of

load i

system frequency is smaller (| =5

attime ¢ is:
F, = Ci,ta)hi 3
where C;, represents the time-varying demand coefficient for

load i attime f, which is determined by the type of load. In this
paper, loads are divided into three -categories, industrial,
commercial and residential [28], and the demand degrees of these
types of loads are different. @ represents the weight of the load
level, which is divided into levels I, II and III according to the
social and economic losses caused by the load power loss,
corresponding to 100, 10 and 1, respectively [29]. & represents

the coefficient of load shedding loss.

During underfrequency load shedding, on the basis of the
magnitude of the load cost coefficient, priority is given to cutting
off loads with low cost coefficients to ensure minimal losses
during the shedding process.

3) Load Characteristics under Three-phase Unbalance

With the rapid popularization and development of microgrid,
hybrid microgrids formed by the fusion of three-phase
source-load-storage and multiple-phase-sequence single-phase

Load 1 with frequency regulation cut off Load 2

effect coefficient K|

Load 2 with frequency regulation cut off Load 1
P A effect coefficient K, L,_‘\
B, b
K, >K, Us fa —»

0 1 /

(a)Load frequency characteristic curve

Fig. 2.

(b)Frequency recovery curve

Load frequency characteristic curves

source-load-storage are widely studied. Due to the presence of
many single-phase devices, there may be a three-phase power
unbalance in the interconnection line of the microgrid during
operation, which will increase system losses and reduce the power
quality of the microgrid and may even prevent the system from
operating normally. With three-phase power as the calculation
variable, the formula for calculating the three-phase unbalance
degree of an islanded microgrid is as follows [30]:

Unbalance = 1—2 = i 4)
L5

&:ﬂ&+&+&fﬂg+%+gf
Sy :\/PLzz +Q£2
PLZ

:%(2PA_PB+\/§QB_PC_\/§QC)

)

0,2 ==3(20,-0, - 37, + 3. -0

Where I, is the root mean square value of the positive sequence
component of the three-phase current; [, is the root mean square

value of the negative sequence component of the three-phase
current; P,, Py, P and O,, Oy, O, are respectively

three-phase active power and reactive power; S,, S,, and P,,,
0,, are the positive and negative sequence apparent power, as

well as the negative sequence active and reactive power,
respectively.

When studying the underfrequency load shedding problem for
islanded microgrid systems, it is necessary to consider the
three-phase unbalance characteristics of the load during the load
shedding process. To restore the system frequency to a safe range,
it is necessary to minimize the three-phase unbalance degree of
the microgrid system during load shedding.

C. Basis of Integrated Load Shedding

From the analysis in the previous section, it can be concluded
that the frequency regulation effect of the load, the cost of load
shedding, and the three-phase unbalance degree of the load are the
load shedding-related factors that must be considered during the
shedding process. In traditional research, to fully consider the
impact of these factors, researchers usually construct a load
evaluation model to measure the contribution of these factors to
the system frequency recovery during the load shedding process,
and then based on this contribution, construct an underfrequency
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load shedding control set for load shedding actions. This
emergency load shedding control mode of evaluation and load
shedding separation is shown in Fig. 3 (a). From Fig. 3 (a), it can
be seen that the comprehensive evaluation of the load and the
decision to reduce the load are relatively independent stages, and
the generation of load shedding decisions depends on the real-time
comprehensive load evaluation results. When a fault event occurs,
it is first necessary to conduct a comprehensive evaluation of the
load information through the evaluation model. Then, based on the
load evaluation results, the load shedding model is used to
generate online load shedding strategies. The process of
comprehensive load evaluation delays the response speed of the
decision to reduce the load, impacting the control effect of the
entire underfrequency load shedding action. The proposed
integrated load shedding strategy uses the DRL method to merge
the two relatively independent stages into one, forming an
end-to-end integrated load shedding mode, as shown in Fig. 3 (b).
In the integrated load shedding mode, all the fault data and the
original load information are directly input into the intelligent
agent as the decision-making basis for load shedding. The load
evaluation stage is incorporated into the training process of the
agent by using the mechanism linked to the agent’s learning
benefits so that the agent can independently mine the mapping
relationship between load information and decision-making. The
trained agent can directly generate online decisions based on the
real-time load data and system state information under the fault
event, without independent evaluation steps to evaluate the
contribution of the load, and thus avoid the action response delay
caused by the step-by-step execution of evaluation and decision.

D. Integrated Load Shedding Objective Function

According to the analysis in sections A and B, the proposed
integrated underfrequency load shedding model requires that the
system frequency of the islanded microgrid be restored to the
normal level with the minimum load shedding cost, and the
three-phase  system unbalance caused by the fault or
underfrequency load shedding should be minimized considering
the load frequency regulation effect and load importance.
Therefore, the frequency fluctuation amplitude, cost and
three-phase unbalance degree of the system in the load shedding
process are simultaneously minimized according to the objective
function of underfrequency load shedding:

min( "= )

ming =) F, Py (6)
i=1

min Unbalance

where f* and f"

respectively, in the frequency recovery process of the islanded
microgrid; m represents the number of loads in the islanded

represent the peak and valley values,

microgrid system; and P]* represents the amount of load i

removed at time .

E. Constraint Condition

To ensure that underfrequency load shedding meets the
operation requirements of islanded microgrid systems, the
following constraints should be met:

1) Power Flow Constraint

P,~U;, > U, (Gcos0;, +B;sind,;,) =0
Jei
. )
Ql.’, -U,, ZU/‘J (Gijcos 491.“ —B,.j sin Qj,t) =0

Jjei
where P, and (., represent the active power and reactive
and U,

represent the voltage amplitudes of nodes i and j, respectively,

power of node i, respectively, at time ¢; U,

at time f; 0;,

nodes i and j at time /; and G, and B; represent the

represents the voltage phase angle difference of

conductance and susceptance, respectively, between nodes i and
j-
2) Load Shedding Constraint
ut,min ut ut,max
Picu SPILM SP’Lu (8)
1, ma:
and P

maximum load shedding, respectively, of node i .
3) Frequency Constraint

fmin ngfmax (9)

where /™ and f™ represent the minimum and maximum

Cut,min
B‘

where represent the minimum and

frequencies allowed for normal operation of the system,
respectively.
4) Three-phase Unbalance Degree Constraint [31]

Unbalance, <15% (10)
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III. MARKOV DECISION MODELING FOR INTEGRATED
UNDERFREQUENCY LOAD SHEDDING

The action determined for integrated load shedding in the
islanded microgrid is related only to the current state of the
microgrid and has nothing to do with the action and state
corresponding to the previous sequence time. This means that the
decision problem for underfrequency load shedding satisfies the
Markov property and can be described as a Markov decision
process. Under the framework of reinforcement learning, the MDP
is a process in which agents and the environment constantly
interact to learn and seek the optimal strategy to obtain the

maximum return; which is mainly composed of (S,A,R,P, }/)

[32].

In this paper, the operating state of the islanded microgrid is the
environment, and the amount of each load to shed in the microgrid
is the action. To find the optimal load shedding strategy for the
islanded microgrid, the state space, action space, and reward
function are set as follows:

1) State Space s

The state space should reflect the operation characteristics of
the islanded microgrid as well as possible. Therefore, the output

PtDG of the DG unit, real-time power BL of the load, real-time

frequency f, of the microgrid, and frequency change rate

ROCOF, are selected. For any time 1, the state is expressed as:

s, = {BDG,P,L,]‘;,ROCOE} (1n

2) Action Space a
The action space is the relevant decision quantity in the load

shedding model. In this paper, the shedding power fl’c " of the

load at node i is considered the action; then, the action space
a, of the islanded microgrid system at time ¢ can be expressed

as:

a, ={"} (12)

3) Reward r

The goal of the proposed integrated underfrequency load
shedding strategy is to ensure that the frequency of the islanded
microgrid is restored to the normal operating level with the
minimum frequency fluctuation amplitude and load shedding cost,
while the three-phase unbalance of the system is as small as
possible. In addition, the environment should include the system
operation constraints of equations (7)-(10) when giving feedback
rewards to the agent. Therefore, the reward value for the agent at
time ¢ is expressed as:

n=—a,(f = f")-a, ) F P" —aUnbalance,+ z, (13)
i=1

where «,, o, and «a, represent the coefficient factors of the
frequency fluctuation amplitude, load shedding cost and
three-phase unbalance degree of the system in the reward function,
respectively, and where y, represents the punishment when the

agent’s decision cannot meet the operational constraints of the
islanded microgrid.

IV. INTEGRATED UNDERFREQUENCY LOAD SHEDDING STRATEGY
BASED ON DBR-SD3

A. SD3

The proposed SD3 is implemented on the TD3 framework. TD3
is a DRL method designed specifically for dealing with
high-dimensional continuous action spaces. It was developed from
the DDPG algorithm and has stronger stability and generalization
performance [23]. By introducing the clipping double- O learning

mechanism in TD3, the problem of overestimating the O value
in parameter updating is limited to a great extent. However, this
mechanism may lead to an underestimation of the Q value,

which may affect the performance of the method. Therefore, a
new SD3 method based on TD3 is designed in this paper. By
introducing softmax into TD3, this method not only avoids the
overestimation problem for the DDPG but also effectively
alleviates the influence of underestimation bias in TD3 and

accurately estimates the value function. softmax(Q’(stb +1,atb +1))

is obtained via importance sampling. The specific formula is as
follows:

E eXp(ﬂQ'(sthrl’ath))Q'(Stbﬂ’atbﬂ)
p(atbﬂ)
E exp(ﬂQ'(Sth,atbﬂ))

p<atb+1)
(14)

where Q'(sf’ﬂ,atbﬂ) represents the smaller Q value estimated

softmax (Q’(stb+1 ,a’, )) -

by the two critic networks; the probability density function

p(at” +1) satisfies the Gaussian distribution; and S indicates the

operation parameter of softmax . After introducing the softmax

. b .
operator, the formula for calculating the target O value y, is

as follows:

b_ b b b
yW=r +softmax(Q'(sH1,aH1))

(15)

B. Dual-Replay Buffer Mechanism

TD3 stores exploration data by setting up a playback buffer and
randomly extracts small batches of data for training. However,
random sampling may result in uneven data quality, which affects
training efficiency and convergence speed. In this context, this
paper presents a DBR mechanism based on the TD3 framework,
which classifies and stores experience data according to their
importance and extracts parts of the experience data from two
buffers as training samples according to different probabilities
during training.

Under DBR, experience data are stored in buffers D, and D,

according to their immediate reward i, .

Considering the

time-ductility of reinforcement learning reward feedback, a
temporary experience playback buffer D, with a capacity of M

is set up to store M adjacent experience data values. When the
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amount of stored experience data in D, reaches the maximum

capacity, the instant reward mean 7 of all experience data in
D, is calculated, and the data in D, are judged according to the

order of storage time. If the reward value r is greater than or
equal to 7, it is stored in buffer D, ; otherwise, it is stored in
buffer D,. The new experience data are then stored in D, until

the entire learning process is complete. Finally, the remaining
experience data in D, are stored in D, and D, according to

the reward mean 7 ,and D, is cleared.

According to the empirical storage classification rule, the value
of the sample data stored in D, is greater than that of the data in

D, .

experiences from D, with a higher probability, so the preferred

The training process aims to extract more valuable

experience replay method is used for buffer D,. Moreover, to
ensure the diversity of sample data, sample data with small
immediate rewards and low importance should also be extracted
from D, in small batches. The specific sampling method is as

follows:
M, =nm
1 =7 (16)
M, =(1-n)m
where M, and M, represent the numbers of sample data

values extracted from buffers D, and D, , respectively;
n E[O,l] represents the extraction rate of samples from buffer
D,;and m indicates the number of small-batch samples.

Priority experience playback means preferentially extracting
experience data with higher values in the buffer, and the priority
p of the sample data is measured by the temporal difference error;

for example, the priority of the k th sample is as follows:

o=y =0, (s)af) (17)
The probability that the k th sample is chosen is:
/ 4
L (18)

o
n=1 Py
C. Integrated Load Shedding Strategy Framework

The proposed integrated underfrequency load shedding strategy
for a microgrid based on DBR-SD3 is divided into two parts:
offline learning and online application.

The offline training steps for DBR-SD3 are as follows:

Store the experience data in the temporary buffer D, , and store the

9 experience data in buffers 7 and D, according to the sorting storage
rules in section IV-C

Calculate the temporal difference error of the sample drawn from 7D,

Randomly initialize the parameters of the two Critic networks and the Actor
network: w,, w,, 0.
2 Initialize the target network parameters: W <—w,, W, < w,, '« 0.
3 for number of rounds =1 : M ““" do
Initialize search noise N

Obtain the initial environment state S, from the islanded microgrid

5
system
6 for=1: 7,  do
for n=1,2 do
7 Select actions and add noise according to state S,
8 Perform action @, and getreward 7; and the next state S,

Unit output

10
and update the sample priority p,
11 Calculate the next time action @,,, according to the Critic network
12 Calculate the target (0 value Y, for each sample using softmax
13 Update the Critic network parameter W
14 Update the Actor network parameters 6 every d steps
15 Soft-update the target network parameters w' and 6’
16 end for
17 end for
18 end for
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After offline training is complete, the parameters of the
integrated load shedding model are saved. In online applications,
the current state value of the islanded microgrid system plus the
random error value is input to the Actor network as a
comprehensive state; after full learning, DBR-SD3 directly
generates the optimal integrated load shedding decision. The
integrated load shedding strategy framework based on DBR-SD3
is shown in Fig. 4.

V.SIMULATION ANALYSIS

To verify the feasibility and effectiveness of the proposed
underfrequency load shedding strategy, an islanded microgrid
system model based on an improved IEEE 37-bus system is built
on the MATLAB/Simulink simulation platform, as shown in Fig.
5. The model consists of 9 DGs, 6 battery energy storage (BES)
systems, and 19 loads. BES1-BES6 operates in the grid-forming
mode, while DG1-DG9 operates in the grid-following mode.
Among them, LDI1-10 are three-phase loads, and LD11-19 are
single-phase loads. According to the social and economic losses
caused by load power loss, the loads are divided into levels I, II,
and III based on their importance. Additionally, according to the
type of electricity, the loads are classified into industrial loads,
commercial loads, and residential loads [34]. The DG and energy
storage output information are shown in TABLE I, the load grades
and load types are shown in TABLE II, and the load demand
degrees at different times are shown in Fig. 6. In this paper, when
implementing the underfrequency load shedding strategy, the
communication transmission delay is set to 10 ms, the relay
startup and underfrequency load shedding delays are set to 10 ms
[35], and the trigger threshold of the load shedding action is set to
49.5 Hz [36].
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A.Test Environment and Parameter Setting LDI12 I 10 2.46 5 residential
. LD13 111 20.4 0.58 15 residential
The proposed DBR-SD3 gons1sts of an Actor network and two LD14 1 25 116 10 industrial
Critic networks, both of which are made of four fully connected LDI5 il 16 0.54 12 commercial
neural networks with two hidden layers: the number of neurons in LD16 1 19.5 2.55 8 commercial
the first hidden layer is 400, and the number of neurons in the LD17 III 20 051 10 residential
d hidden 1 s 300. Th tivati functi . tified LDI18 i 20 0.52 10 commercial
second hidden layer is - The activation function is a rectifie LD19 I 25.4 0.61 15 industrial
linear unit (ReLU). The other hyperparameters used during 0 : : : : ‘
DBR-SD3 training are shown in TABLE III. 0ol - [ industrial load ||
On the basis of the above settings, the Python language is used ' %g;‘f‘”;::[]‘;]h')::“
to implement the DRL method on the TensorFlow framework. All 081 al -
tests are conducted on a 3.40 GHz Intel(R) Core (TM) i5-7500 0.7 B i 1 E
o 1
CPU. 506 1 1| .
() |
21 - zosf — |
- g 34 N _
-'._ 20 LD9 T é’ 04 ]
DG4 s LD7 | se—— 30 B 03 .
-1 BES2 LD6 02r ]
e b 29
19 0.1F -
L 33
O.D Il Il 1! il Il
6 I LDS 81 28 Gt 0 4 8 12 16 20 24
fid LDI10 ,
DG5S Time (h)
f DG3 LD8 Fig. 6. Different types of load demand
TABLE III
A s i . PARAMETER SETTINGS
I I I Parameter Value Parameter Value
. Number of small-batch
, Discount factor » 0.95 samples m 128
o 24 25 | 26 . oy Training steps per
» A Soft update coefficient = 0.001 round T 200
14 T 1 T max
B . . Extraction probability
L‘_—" b3 _L/DII LDI2 LDI3DG7 BES4 B Critic network learning rate 1, 0.003 7 0.9
R T . Maxi ber of
13 oo aximum number o
o o Lm() 2 Actor network learning rate 1, 0.0003 iterations 2000
h] §] 55
2 16 — T T T C Playback buffer capacity T 50000 Netwqu latency update 2
T interval d
15 LDI7 LDI§ LDI9DGY  BES6 Plavback bufk D Extraction rate 77 of
4 b2 1ni ayback buffer capacity D, 50000 buffer Dy 0.9
LD4
i i i i Action noise variance O Soft update
Fig.5. Improved IEEE 37-bus island microgrid system model Vi 0.03 coefficient T 0.005
TABLE I - ‘
DG AND ENERGY STORAGE CONFIGURATION INFORMATION B. Training Performance Analysis
Name Access Output Name Access Output To simulate the frequency disturbance of the islanded microgrid
location (kW) location (kW) .t X .
DGl Bus 7 100 oY) Bus 24.C 35 system, the fault scenario is set as follows: under different load
DG2 Bus 9 150 BESI Bus 12 75 demaqd degrees, a DG or BES is randomly selected .to exit
DG3 Bus 18 70 BES2 Bus 20 25 operation to cause a decrease in system frequency. To simulate
DG4 Bus 21 90 BES3 Bus 34 100 different operating states of the system, the loads are randomly set
DGs Bus 33 65 BES4 Bus 24-A 20 to 95% -105% of the initialization level, generating a total of 1080
DG6 Bus 35 80 BESS Bus 24-B 40 o . . . .. R .
- y . u
DG7 Bus 24-A 30 BES6 Bus 24-C 30 training scenarios. The duration of a single training episode is set
DG8 Bus 24-B 25 to 2 seconds, and the data collection resolution is 0.01 seconds.
TABLE II The proposed DBR-SD3 and other DRL methods are compared by
LOAD DATA INFORMATION using the above training scenarios, and the results are shown in
Load Priority P (kW)  h($/kWh)  pe-m> (kW)  Load type Fig. 7.
]L“gé IIIII 17000 ?';2 gg cr(ff;‘:::rtcl?;l A Specific analysis of Fig. 7 shows that the average reward of
| i ; e propose - is close to optimal after approximate
LD3 I 90 3.03 30 industrial the proposed DBR-SD3 is close to optimal after app tely
LD4 il 50 0.62 30 commercial 400 training rounds. Compared with TD3/DDPG/DQN, DBR-SD3
LDS I 3 1.28 35 industrial converges 200/900/1000 rounds earlier, indicating that the speed
LD6 I 52.5 2.98 15 commercial . . .
LD7 I 50 0.63 30 commercial gf DBR-SD3 leamlng the optimal load shedding control strategy
LD8 il 110 0.68 80 industrial is about 1.5/3.25/3.5 times that of TD3/DDPG/DQN, respectively.
LL]1))190 III 87252 ?3411 38 resgen?ai In addition, the average reward obtained when DBR-SD3
. resiaentia .
LDI1 1 20 055 10 commercial converges is greater than those of TD3/DDPG/DQN, the average
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rewards for TD3/DDPG/DQN convergence are
-304.1/-385.55/-604.88, respectively. The proposed DBR-SD3 has
improved by 31.46%/45.94%/65.54% on this basis, reaching
-208.42. This is mainly because the strategy proposed in this paper
introduces softmax and the dual-buffer replay mechanism into
TD3, greatly improving the learning speed and convergence
performance of the agent and enabling the agent to adaptively
learn more stable control strategies. Specifically, the faster
convergence speed of DBR-SD3 stems from its introduced DBR
mechanism, which dynamically classifies and stores training
samples by evaluating their immediate reward values. This
mechanism enhances the agent’s utilization -efficiency of
high-value samples during training, reduces interference from
low-reward samples on policy learning, and enables the agent to
learn the optimal strategy along a more efficient convergence
trajectory. The higher reward value achieved by DBR-SD3 at
convergence is attributed to the integration of the softmax
mechanism into TD3. This integration not only effectively
suppresses the Q-value overestimation issue inherent in DDPG but
also mitigates the Q-value underestimation problem caused by
TD3’s conservative estimation. By reducing Q-value estimation
bias and improving the accuracy of value function estimation, this
mechanism allows the agent to precisely identify and learn
high-return strategies, thereby enhancing the quality of the final
converged policy.

The offline training times of the four DRL methods are shown
in Table IV. From Table IV, it is evident that DQN requires the
shortest offline training time. This is mainly because DQN only
requires training one deep neural network (DNN), resulting in
fewer parameters to fit and thus less time spent on offline training.
However, its reliance on discrete action spaces limits its ability to
search for optimal strategies, leading to inferior policy quality
compared to the other three DRL methods, as validated in Fig. 7.
Among the remaining three DRL methods, DBR-SD3 exhibits the
shortest offline training time. This is due to the introduced
softmax mechanism optimizing the agent’s policy update direction
and the DBR mechanism improving the utilization efficiency of
high-quality samples, reducing its training time by 10.05% and
7.67% compared to TD3 and DDPG, respectively.

Overall, the above comparison demonstrates the superiority of
DBR-SD3 proposed in this paper in offline training of load
shedding control in islanded microgrids, with the best overall
performance in terms of learning speed and learning quality.

C. Superiority Analysis of Load Shedding Strategies

To verify the superiority of the proposed strategy compared
with other underfrequency load shedding strategies, the following
typical fault scenario is set: BES3 exits operation at 8:00 because
of a fault, and the load level is 100%. Owing to the loss of output
support from a high-power energy storage system in the islanded
microgrid system, the frequency begins to decrease, and
emergency load shedding control must be implemented
immediately to restore the system to normal operation. In this
scenario, the integrated load shedding strategy proposed in this
paper is analyzed and compared with the other three load shedding
strategies. The specific settings for the comparison strategies are
as follows:

0 0
-1000 -1000
= =
5 5-2000
£ -2000f z
= 23000
S-3000, B
5 5 -4000
< -4000 < 5000
-5000 ~——— DBR-5D3 6000 ———TD3 ]
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
0 Traylmng round 0 Tra'mmg m‘und
_1000}F -1000
- -2000
E -2000} E
E Z -3000
=-3000¢ =
:‘;ﬂ 1;_1'—4000
;; -4000 | § -5000
< 5000} < -6000
60001 DDPG -7000 DON
0 400 800 1200 1600 2000 .80000 400 800 1200 1600 2000
Training round Training round
Fig. 7. Comparison of the training processes of the four DRL methods
Table IV
COMPARISON OF TRAINING TIME OF FOUR DRL METHODS
Method DBR-SD3 TD3 DDPG DON
Training time/ h 7.34 8.16 7.95 6.98

Strategy 1: The integrated load shedding strategy proposed in
this paper;

Strategy 2: The adaptive load shedding scheme based on MPC
in [10];

Strategy 3: The emergency load shedding strategy based on
DDPG in [20];

Strategy 4: The underfrequency load shedding strategy based on
a DQN in [26].

(1) Comparison of Load Shedding Compositions

The composition of load shedding after the four load shedding
strategies are implemented is shown in Fig. 8 (a-e).

As can be seen from Fig. 8(a), strategy 1 achieves the smallest
load shedding amount among the four strategies, only requiring
the removal of 102kW of loads. Compared with strategies 2, 3,
and 4, the load shedding amount is reduced by 5.12%, 3.32%, and
4.67%, respectively. This is because strategy 1 fully considers the
frequency regulation effect of the load during load shedding. By
prioritizing the removal of loads with smaller frequency regulation
effect coefficients, the system frequency can return to normal
more quickly, resulting in the least amount of load shedding.
Additionally, none of the four strategies shed levels I or II loads,
ensuring the continuous power supply of important loads during
the load shedding period of the islanded microgrid system. Further
analysis of the specific load shedding targets under each strategy
shows that parts of the loads on LD4, LD7, LD11, LD13, LDI5,
LD17, LD18, and LD19 are removed in strategies 2 and 3, as
shown in Fig. 8(b-e). However, neither of these strategies consider
the three-phase power unbalance caused by single-phase loads
during the load shedding process, which may make the islanded
microgrid unable to meet normal operation requirements after load
shedding. Strategy 4 considers the problem of load shedding cost
and three-phase load unbalance. In the process of load shedding,
the virtual combination and evaluation of each single-phase load
are first carried out, and then a group of load combinations with
the least unbalance are removed on LD13, LD15, and LDI19. It is
worth noting that the above three strategies do not consider the
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user’s demand preferences for different load types and fail to
comprehensively evaluate the load. From Fig. 8(a), it can be
observed that strategies 2, 3, and 4 all shed some industrial loads
with relatively high demand during the load shedding process,
accounting for 12.09%, 14.22%, and 21.50% of the total load
shedding amount respectively. In contrast, strategy 1 considers
multiclass load-related factors including relative -electricity
demand, avoiding the removal of high-demand load types and
thereby minimizing the impact of load shedding on users' demand.
In summary, compared with strategies 2, 3, and 4, strategy 1 not
only minimizes the load shedding amount but also ensures the
continuous power supply of important loads and loads with high
user demand, achieving a more ideal load shedding effect.
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Fig. 8. Comparison of load shedding under different strategies

TABLE V
COMPARISON OF LOAD SHEDDING COSTS UNDER DIFFERENT
STRATEGIES
Index Strategy 1 Strategy 2 Strategy 3 Strategy 4
Load shedding cost g /$ 14.49 17.53 17.24 18.24

(2) Comparison of Load Shedding Costs

A comparison of the load shedding costs for each strategy is
shown in TABLE V.

TABLE V shows that the load shedding cost of strategy 4 is the
highest, 4.05% and 5.8% higher than those of strategies 2 and 3,
respectively. This is because strategy 4 considers the impact of
three-phase unbalance in the system and is constrained by a
certain amount of load shedding distribution during the shedding
process. It is necessary to cut off a virtual combination of
approximately balanced loads in the three phases. Furthermore,
although strategy 1 also considers the impact of the three-phase
unbalance in the system, its load shedding process also considers
the demand differences of different types of loads. It eliminates
the batch of loads with the lowest cost coefficient in the fault
scenario so that the load shedding cost of strategy 1 is still the
lowest among the four strategies; it is 17.34%, 15.95%, and
20.56% lower than those of strategies 2, 3, and 4, respectively.

(3) Comparison of the Frequency Recovery Effects

To better compare the frequency recovery effect of the islanded
microgrid system before and after load shedding, the failure
occurrence time is set to fr=1s. The frequency recovery
waveforms of the islanded microgrid system after load shedding
under the four strategies are shown in Fig. 9. The online

calculation time 7, system frequency recovery time fg,, and
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frequency fluctuation amplitude Af under each load shedding

strategy are shown in Table VI.

According to the analysis of Fig. 9, when a power deficit occurs
at ¢=1s in the islanded microgrid system due to BES 3 exits
operation, the four strategies reduce the load demand by cutting
off part of the load to restore the system frequency to a normal
level.

As can be seen from Table VI, the online calculation time
consumed for strategy 2 is significantly higher than the other
strategies. This is mainly because strategy 2 is a load shedding
strategy based on MPC, which needs to solve the optimization
model online and has a heavier computational burden. In contrast,
strategies 1, 3, and 4 are all DRL-based methods, which enable
the agent to acquire rich decision-making experience through
offline training in the early stage. In actual operation, the trained
agent can quickly generate load shedding commands according to
the current state of the islanded microgrid, thus realizing efficient
regulation of the system frequency, and this mode of offline
training-online decision-making gives it a significant advantage in
real-time computation. Furthermore, in contrast to strategy 3,
strategy 1 proposes an improved DRL method, which introduces
softmax into TD3, increases its replay buffer to three buffers, and
classifies the stored experience samples. Through accurate value
function estimation and learning of high-quality samples, it
achieves precise fitting of model parameters, -effectively
improving the online inference speed of the model and reducing
its online calculation time by 23.81% compared to strategy 3.
Strategy 4 needs to sort the virtual combinations of the
single-phase loads before determining the load shedding action,
and then comprehensively evaluate the virtual three-phase load
and other three-phase loads in various respects to determine the
priority of the loads, and finally, use the agent to learn the optimal
load shedding combination. This load shedding method for
assessment and decision-making fails to make full use of the
learning ability of the agent and has a longer response time in
determining load shedding. The proposed strategy directly
considers various load shedding-related factors, including the load
frequency regulation effect, load importance, and three-phase
unbalance degree, during the process of training the intelligent
agent. Then, the trained intelligent agent is used to generate
integrated load shedding decisions, thereby fully utilizing the
learning ability of the intelligent agent while reducing the
response time of load shedding decisions; this reduced its online
computing time by 38.46% compared to strategy 4. In terms of
frequency recovery time, the frequency recovery time of the
system under the four strategies is 0.42 s, 0.58 s, 0.45 s, and 0.48 s,
respectively. It can be seen that the system frequency under
strategy | can recover to the normal range at the fastest speed,
which is attributed to the fact that the TD3 after integrating the
softmax and the DBR mechanism can make better load shedding
decisions, and achieve the shortest online computation time based
on further making high-quality decisions that are more conducive
to the fast recovery of the system frequency, thus speeding up the
frequency recovery speed. Based on achieving the shortest online
computation time, TD3 can further formulate high-quality load
shedding decisions that are more conducive to the rapid recovery
of the system frequency, thus accelerating the frequency recovery
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Fig. 9. System frequency recovery waveform under each strategy
Table VI
LOAD SHEDDING ACTION PERFORMANCE ANALYSIS
Index Strategy 1 Strategy 2 Strategy 3 Strategy 4
ton 0.032s 0.077s 0.042s 0.052s
faum 0.42s 0.58s 0.45s 0.48s
Af 1.12Hz 1.87Hz 1.29Hz 1.49Hz

speed. Further analyzing the fluctuation of the system frequency
during the recovery period, from Table VI, it can be seen that the
amplitudes of the system frequency fluctuation under strategies 2,

3 and 4 during the recovery period are 1.87 Hz, 1.29 Hz and 1.49
Hz, respectively. In contrast, the frequency fluctuation range of
the system under strategy 1 during the recovery period is 49.13
Hz-50.25 Hz, with a frequency fluctuation amplitude of only 1.12
Hz, which is 40.11%, 13.18%, and 24.83% lower than those of
strategies 2, 3, and 4, respectively. This is mainly because in
strategy 1, the load frequency regulation effect coefficient is
considered in the integrated load shedding process, and a load
with a small frequency regulation effect coefficient is
preferentially removed, which effectively suppresses the decrease
in system frequency and makes the system frequency recover to a
normal state more stably.

The above results show that strategy 1 can realize a fast
response when the system frequency falls to a threshold value,
which meets the computational performance requirements for
online real-time decision-making. At the same time, the load
shedding strategy shows significant advantages in reducing both
the amplitude of system frequency fluctuation and recovery time.

(4) Comparison of the Three-phase Unbalance During the Load
Shedding Process

Considering that serious voltage unbalance will bring potential
risks to the islanded microgrid system, the voltage unbalance
degree of the islanded microgrid system is first analyzed. This
section is also conducted under the fault scenario of BES3 exiting
operation. The variation of voltage unbalance degree of islanded
microgrid system in the process of underfrequency load shedding
under various strategies is shown in Fig. 10. The maximum
voltage unbalance of the islanded microgrid system before the
load shedding operation is 1.1%. It can be seen from Fig. 10 that
the voltage unbalance of the islanded microgrid system decreases
after the load shedding actions under the four strategies are
implemented. It can be seen that the system voltage unbalance
degree in this fault scenario has been effectively controlled and
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kept within the safe range of 3% [37], effectively avoiding the
impact of serious voltage unbalance on the effectiveness of the
case study.

To compare the three-phase power unbalance levels of islanded
microgrids under different strategies, the three-phase unbalance
degree of the system is calculated based on the three-phase power
information. The waveform changes of the three-phase power
unbalance in the islanded microgrid system during underfrequency
load shedding actions under the various strategies are shown in
Fig. 11.

According to Fig. 11, the three-phase unbalance degree of the
islanded microgrid system before the load shedding operation is
7.69%. Because they do not consider the three-phase unbalance
degree during the load shedding process, the three-phase
unbalances of strategy 2 and strategy 3 after stable system
operation was restored were 19.15% and 26.68%, respectively.
Compared with that before the load shedding operation, the
three-phase unbalance of the system increased by 11.46% and
18.99%, respectively, and exceeded the normal operation
requirements of the system. ( Unbalance <15%). Strategy 4
adopts a load combination approach to construct a single-phase
load as a virtual three-phase load and then prioritizes cutting off

the virtual three-phase loads with lower unbalances during the
load shedding process to reduce the three-phase unbalance of the
load shedding system. This load shedding method has an ideal
effect in the scenario in which there is three-phase balance in the
system before the fault occurs. However, when the system is
initially in an unbalanced state, after cutting off a set of balanced
virtual load combinations, strategy 4 increases the unbalance by
4.65%, reaching 12.34%. In contrast, the proposed strategy 1
reasonably distributes the load shedding each subphase by
considering the three-phase unbalance of the load and corrects the
three-phase unbalance of the system to 0, completely avoiding the
impact of the three-phase unbalance on the system loss and load
power quality.

In summary, compared with other strategies, the strategy
proposed in this paper can minimize the load shedding cost on the
premise that the voltage unbalance is lower than the safety
threshold of 3%, and at the same time, the three-phase power
unbalance of the system is corrected, and the system frequency is
restored to the normal level faster and more stably, which verifies
the superiority of the proposed strategy.

D. Robustness Analysis

From Section V-C, we conclude that the proposed integrated
load shedding strategy has better load shedding performance than
do the other comparative load shedding strategies. However, there
will be state measurement noise in real power systems. To further
verify the rationality and superiority of the proposed strategy,
Gaussian white noise interference is added to the corresponding
islanded microgrid environment state in each state detection step.
The level of measured noise is described on the basis of the
signal-to-noise ratio (SNR) in units of dB. Fig. 12 shows a
comparison of the results of the proposed integrated load shedding
strategy and the other strategies when BES3 exits due to faults
under measurement noise levels of 5 dB, 10 dB, 15 dB, and 20 dB.

Fig. 12 shows that all the indicators of the four strategies are
affected to some extent after noise is added. With increasing
signal-to-noise ratio, the index performance of each strategy tends
to improve. This is because the larger the signal-to-noise ratio is,
the less noise is contained in the information; thus, the accuracy of
each strategy in determining the state of the microgrid system is
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less affected by noise, and the accuracy of underfrequency load
shedding decisions is greater. The indexes of strategy 2 fluctuate
the most under the influence of noise. In contrast, strategies 1, 3,
and 4, as DRL-based load shedding strategies, choose the action
that can obtain the maximum benefit each time, that is, the optimal
load shedding strategy, and achieve better performance.
Furthermore, compared with those of strategies 3 and 4, the
differences in the load shedding, load shedding cost, recovery time
and three-phase power unbalance degree of the proposed strategy
1 are 0.95 kW, $0.12, 0.017 s, and 0.36%, respectively, in the 5
dB noise scenario and the 20 dB scenario. The differences from
these four indicators for strategy 3 are 1.1 kW, $0.16, 0.0192 s,
and 1.46%, respectively. The differences from these four
indicators for strategy 4 are 1.7 kW, $0.17, 0.0204 s, and 2.61%,
respectively. Although the load shedding indicators of the
proposed strategy 1 are slightly increased under the influence of
measurement noise, compared with those of strategies 3 and 4,
they are still maintained at a lower level, and the fluctuations in
the indicators are small. This shows that the proposed strategy 1
can better adapt to an uncertain environment and obtain more
stable load shedding results.

The above test results indicate that compared with other
strategies, the proposed integrated load shedding strategy can
better cope with the measurement uncertainty of state variables
such as the outputs of DG units in islanded microgrids, real-time
powers of loads, real-time frequencies of microgrids, and
frequency change rates. It can still obtain stable load shedding
results under strong measurement noise interference. In the face of
a changing islanded microgrid system environment, it has better
robustness.

E. Generalization Performance Analysis

To further validate the generalization performance of the
proposed strategy, a new fault scenario that is not involved in
training is selected for testing. Assuming that DG6 and BESS5 are
simultaneously out of operation due to failure at 10:00, and the
load level is 110% of the initial value. At this time, the withdrawal
of DG and BES and the increase in load level will lead to a
significant increase in the system power deficit, and the system
frequency will face more serious disturbance. The maximum
voltage unbalance and three-phase power unbalance of the
islanded microgrid system before load shedding operation are
1.65% and 11.54%, respectively. In this scenario, the four
strategies in Section V.C are still used for comparative analysis.

The composition of load shedding after the four load shedding
strategies are implemented is shown in Fig. 13. The results show
that strategy 1 has the smallest load shedding amount, only
requiring the shedding of 205.6 kW of load. Compared with
strategies 2, 3, and 4, the load shedding amount is reduced by
5.47%, 2.97%, and 4.46%, respectively. In this scenario, the four
strategies all cut off part of level II important loads, but the
proposed strategy 1 cut off the least level Il important loads, thus
ensuring the continuous power supply of high-priority loads to the
maximum extent. In the selection of load shedding types, the load
shedding objects of the four strategies all include industrial loads
with high load demand at the current time, and the shedding
amounts are 34.4kW, 40.3kW, 50.2kW and 52.5kW, respectively.
Although the load shedding options of the four strategies will all
have a certain impact on the user demand at this moment, the
proposed strategy 1 minimizes the load shedding with high
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Fig. 13. Comparison of load shedding amount under different strategies

demand by considering multiclass factors including the load
demand degree during the load shedding process and effectively
alleviates the adverse impact on the user. It can be seen that
strategy 1 performs better in ensuring the reliability of the power
supply for important loads and high-demand loads.

The frequency recovery waveforms of the islanded microgrid
system after load shedding under the four strategies are shown in
Fig. 14. Due to the withdrawal of DG and BES and the increase of
load level, the system frequency of the islanded microgrid
fluctuates significantly. When the frequency drops to the threshold,
the four strategies eliminate the system power shortage by
formulating load shedding strategies in real-time, so that the
system frequency returns to the normal range. The online
calculation time, system frequency recovery time, and frequency
fluctuation amplitude under each load shedding strategy are
shown in Table VII. It can be intuitively observed that the
proposed strategy 1 achieves the shortest online calculating time
among all strategies, reducing it by 63.11%, 44.44%, and 51.09%
compared to strategies 2, 3, and 4, respectively. This is because
softmax and DBR mechanisms introduced in strategy 1
significantly improve the learning performance of the agent, and
the trained model can realize more efficient forward reasoning by
using DNN with more accurate parameter fitting in the online
calculation stage, reducing redundant calculation and significantly
improving the reasoning speed. At the same time, the integrated
load shedding approach further reduces the transfer time between
real-time load factor evaluation information and online
decision-making, resulting in more efficient computing
performance. In terms of frequency recovery time, strategy 1
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Fig. 14. System frequency recovery waveform under each strategy
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Table VII Table VIII
LOAD SHEDDING ACTION PERFORMANCE ANALYSIS LOAD REDUCTION CONTROL RESULTS
Index Strategy 1 Strategy 2 Strategy 3 Strategy 4 Index Strategy 1 Strategy 2 Strategy 3 Strategy 4
Ton 0.045s 0.122s 0.081s 0.092s 8 $225.78 $296.8 $235.57 $346.2
t. 0.64s 0.79s 0.685 0.74s vuE 1.43% 1.58% 1.49% 1.53%
Af 1.51Hz 2 37Hz 1.77Hz 2.06Hz Unbalance 9.78% 23.26% 28.49% 14.21%

based on DBR-SD3 has a higher quality of real-time load
decision-making, and it can make the load shedding action that is
most conducive to the stability of frequency recovery. It makes the
frequency recovery time of the system under this strategy 0.64s,
while the frequency recovery time of strategies 2, 3 and 4 are
0.79s, 0.68s, and 0.74s, respectively. Compared with the other
three load shedding strategies, the frequency recovery time of
proposed strategy 1 is reduced by 18.99%, 6.25%, and 13.51%,
respectively, which indicates that strategy 1 is more conducive to
the rapid recovery of system frequency. The frequency fluctuation
amplitude of the islanded microgrid system under strategies 2, 3,
and 4 are 2.37Hz, 1.77Hz, and 2.06Hz respectively. In contrast,
strategy 1 retains more loads with a large frequency regulation
effect coefficient in the process of the load removal and makes full
use of the regulation effect of load itself in the process of
frequency reduction. As a result, the amplitude of system
frequency fluctuation of strategy 1 is 1.51Hz, which is 36.29%,
14.69%, and 26.7% lower than that of strategy 2, 3, and 4,
respectively. The frequency fluctuation amplitude of the system is
effectively suppressed. The above results show that strategy 1 can
not only significantly reduce the amplitude of frequency
fluctuation, but also accelerate the recovery of system frequency.
Under different load shedding strategies, the load shedding
costs g, as well as the maximum voltage unbalance VUF and

three-phase power unbalance Unbalance after the system
stabilizes are shown in Table VIII. As can be seen from Table VIII,
the four strategies can control the maximum voltage unbalance of
the system within the safety threshold of 3%, avoiding the impact
of voltage unbalance on the case study. In terms of load shedding
costs, the load shedding costs of strategies 1, 2, 3, and 4 are
$225.78, $296.8, $235.57, and $346.2 respectively. Strategy 1
considers both the importance level of the load and the demand for

different types of loads during the load shedding process. It
removes the load combination with the lowest cost coefficient,
resulting in a reduction of load shedding costs by 23.93%, 4.16%,
and 34.78% compared to strategies 2, 3, and 4, respectively. This
minimizes the economic losses of load shedding. In terms of
improving the three-phase power unbalance of the system, the
three-phase power unbalance of the system after the
implementation of strategies 2, 3, and 4 increased by 11.72%,
16.95%, and 2.67% respectively. Moreover, the load shedding
actions under strategies 2 and 3 did not consider the power
unbalance factor, which may affect the normal operation of the
system after load removal. In contrast, strategy 1 corrects the
power unbalance degree to 9.78%, which effectively reduces the
influence of power unbalance on power quality.

According to the above test results, when facing untrained test
scenarios, the agent can still make reasonable decisions and
restore the system frequency to a stable state, which indicates that
the model has a certain generalization ability. At the same time,
the proposed strategy 1 is superior to strategies 2, 3, and 4 in
reducing economic loss cost, inhibiting frequency fluctuation,
shortening online calculation time and frequency recovery time,
and improving three-phase power unbalance degree, showing
better comprehensive load shedding effect. However, due to the
difference between the training data distribution and the untrained
fault scenario, the load shedding effect of strategy 1 in the
untrained fault scenario has a certain degree of degradation.
Compared with the training scenario in Section V.C, the online
calculation time, system frequency recovery time, and fluctuation
amplitude of the proposed strategy 1 increased by 40.63%,
52.38%, and 34.82%, respectively. The above results show that
the model has some shortcomings in adaptability when dealing
with unfamiliar fault environments, and the decision-making
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Fig. 15. Improved IEEE 118-bus island microgrid system model
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ability of agents under unknown conditions needs to be further
improved.

F. Superiority Analysis of Load Shedding Strategies in IEEE
118-bus System

To further analyze the load shedding performance of the
proposed strategy in larger-scale systems, an islanded microgrid
model based on the improved IEEE 118-bus system is established
in MATLAB/Simulink, as shown in Fig. 15. The model consists
of 26 DGs, 20 BES, and 78 loads. BES1-BES20 operates in
grid-forming mode, while DG1-DG26 operates in grid-following
mode. Among them, LDI1-LD50 are three-phase loads, and
LD51-LD78 are single-phase loads. The DG and BES output
information are shown in TABLE IX, and the load grades and
load types are shown in TABLE X. The load demand degrees at
different times remain consistent with the data in Fig. 6.

Assuming DG9 exits operation due to a fault at 20:00, with a
load level of 105%. The maximum voltage unbalance and
three-phase power unbalance of the islanded microgrid system
before load shedding operation are 1.98% and 12.18%,
respectively. In this scenario, the four load shedding strategies
from Section V.C are used for comparative analysis.

LD16 11 42 2.72 2.1 industrial
LD17 11T 7.8 0.97 42 industrial
LDI18 1 52 2.75 22 residential
LD19 1 8.7 1.03 2.1 commercial
LD20 11 8.9 2.41 7.5 commercial
LD21 I 4.8 1.42 32 residential
LD22 1T 8.6 1.51 5.1 commercial
LD23 I 6.3 2.63 2.8 commercial
LD24 I 5.7 0.99 32 industrial
LD25 1 5.5 1.2 2.5 commercial
LD26 11 33 1.62 1.7 residential
LD27 I 5.8 3.04 2.4 industrial
LD28 1T 3.9 2.54 2.1 commercial
LD29 I 3.8 1.24 2.5 industrial
LD30 I 7.6 0.79 33 residential
LD31 1 49 1.21 2.8 industrial
LD32 11 4.5 1.36 2.1 commercial
LD33 I 5.3 2.77 2.2 residential
LD34 1 8.6 0.81 5.6 commercial
LD35 I 15.8 0.37 10.5 residential
LD36 11 49 1.41 3.1 commercial
LD37 1T 34 1.96 2.4 industrial
LD38 I 7.8 0.56 5.8 commercial
LD39 1 7.2 2.81 33 industrial
LD40 1 6.3 3.07 3.1 commercial
LD41 11T 5.9 1.24 32 residential
LD42 I 7.2 1.58 4.6 commercial
LD43 1 9.1 0.64 7.2 industrial
LD44 I 8.6 0.71 6.6 commercial
LD45 11T 5.4 1.06 4.1 residential
LD46 1I 55 1.55 3.5 industrial
LD47 1 9.8 2.76 4.5 commercial
LD48 I 8.3 0.87 6.8 industrial
LD49 I 7.8 1.34 4.2 commercial
LD50 11 7.9 1.22 4.0 residential
LD51 I 9.3 1.41 7.6 commercial
LD52 1T 53 0.86 39 commercial
LDS53 11T 4.8 0.71 3.1 industrial
LD54 1 9.6 2.58 8.5 residential
LD55 1 53 0.96 4.7 industrial
LD56 I 3.6 1.54 2.2 commercial
LD57 11T 1.1 1.02 0.5 industrial
LD58 1 2.1 2.63 1.1 residential
LD59 11 7.9 0.91 6.1 industrial
LD60 11 6.1 1.32 5.1 industrial
LD61 111 8.3 0.97 6.9 commercial
LD62 11 4.7 1.15 33 industrial
LD63 I 8.2 1.39 6.6 residential
LD64 1 5 2.11 39 industrial
LD65 111 6.8 1.01 5.2 commercial
LD66 1 3.6 0.79 2.4 residential
LD67 1T 8.5 1.36 6.2 commercial
LD68 11 2.8 0.85 1.6 residential
LD69 1 2.2 1.96 1.6 commercial
LD70 1T 6.7 1.52 54 commercial
LD71 111 5.5 0.67 32 industrial
LD72 I 6.8 1.44 5.5 commercial
LD73 1T 8.9 1.49 7.7 residential
LD74 1 7.1 2.59 5.6 commercial
LD75 11T 4.5 0.99 2.9 commercial
LD76 1 6.3 1.32 49 industrial
LD77 1T 7.9 1.46 6.1 commercial
LD78 111 5.5 0.82 3.9 industrial

Table IX
DG AND ENERGY STORAGE CONFIGURATION INFORMATION
Access Output Access Output
Name Location (kW) Name Location (kW)
DGl Bus 15 7 DG24 Bus 118-B 11.5
DG2 Bus 19 3 DG25 Bus 118-C 23
DG3 Bus 26 3 DG26 Bus 118-C 14
DG4 Bus 6 5 BESI1 Bus 12 5
DG5 Bus 46 5 BES2 Bus 20 4
DG6 Bus 51 21 BES3 Bus 24 3
DG7 Bus 32 8.3 BES4 Bus 5 3
DG8 Bus 36 7 BESS Bus 49 3
DGY Bus 39 35 BES6 Bus 33 4
DG10 Bus 53 12 BES7 Bus 37 10
DGI1 Bus 103 26.5 BESS Bus 55 20
DGI12 Bus 109 13 BES9 Bus 59 3
DG13 Bus 111 11.5 BES10 Bus 106 3
DG14 Bus 114 12 BESI11 Bus 107 10
DGI15 Bus 90 14 BESI12 Bus 98 3
DGl6 Bus 93 12.5 BESI13 Bus 67 3
DG17 Bus 69 30 BES14 Bus 76 4
DGI18 Bus 73 14 BESI15 Bus 80 20
DG19 Bus 75 13.5 BESI16 Bus 118-A 5
DG20 Bus 81 15 BES17 Bus 118-B 5
DG21 Bus 118-A 13.5 BESI8 Bus 118-B 8
DG22 Bus 118-A 20.5 BES19 Bus 118-C 5
DG23 Bus 118-B 12 BES20 Bus 118-C 8
Table X
LOAD DATA INFORMATION
Load Priority P" (kW) h($/kWh) P (kW) Load type
LDl I 5.5 1.21 2.5 commercial
LD2 1 3 2.46 1.2 industrial
LD3 11T 5.5 0.56 2.1 residential
LD4 1 4.8 3.01 1.5 commercial
LD5 11 4.1 2.27 2.1 industrial
LD6 I 17.5 1.94 11.7 residential
LD7 I 5.6 2.31 2.8 commercial
LD8 11 2.2 0.98 1.3 residential
LD9 11 3.1 1.84 1.7 industrial
LD10 1 6.6 2.25 22 commercial
LDI11 11T 7.1 1.05 4.3 industrial
LDI12 1T 4.5 2.16 2.5 residential
LD13 1 53 2.71 2.1 industrial
LD14 11 2.9 1.69 1.4 commercial
LD15 11 3.6 1.26 2.2 residential
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The composition of load shedding after the four load shedding
strategies are implemented is shown in Fig. 16. Strategy 1
achieved the minimal load shedding amount and the lowest
shedding amount of level II loads, indicating its ability to
maximize power supply reliability for critical loads while
minimizing overall load shedding amount. Further analysis of the
removal of various types of loads shows that strategies 2, 3, and 4
remove residential loads with high demand degree, accounting for
22.67%, 21.4%, and 23.34% of the load shedding amount,
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Fig. 16 Comparison of load shedding amount under different strategies

respectively.

In contrast, strategy 1 takes into account the differences in
demand among users for different types of loads, and prioritizes
the reduction of load on commercial and industrial loads with
lower demand at the current time, effectively avoiding the cutting
off of high-demand residential loads and minimizing the negative
impact of load shedding on the user level. These results
demonstrate that strategy 1 significantly enhances the continuous
power supply capability for critical and high-demand loads in
large-scale islanded microgrids. The above results indicate that
compared to the other three strategies, strategy 1 can still
effectively improve the sustained power supply capacity of
important loads and high demand loads in the face of larger
islanded microgrid system failure scenarios, further verifying the
superiority of the proposed strategy 1.

The fault occurrence time is set to 7=1 s in the modified IEEE
118-bus model. The frequency recovery waveforms of the
islanded microgrid system after load shedding under the four
strategies are shown in Fig. 17. The online calculation time ¢, ,

system frequency recovery time f#,, and frequency fluctuation
amplitude Af under each load shedding strategy are shown in

Table XI.

As shown in Fig. 17, after DG9 exits operation due to a fault,
the system experiences a frequency drop caused by a power deficit.
All four strategies respond in real time and generate load shedding
schemes online. In terms of online calculation time, the
calculation times for the four strategies are 0.092s, 0.168s, 0.102s,
and 0.118s, respectively. The load shedding method based on
MPC in strategy 2 is more complex and computationally intensive
when dealing with large-scale bus systems due to the need to
optimize more decision variables, resulting in the longest solution
time and certain limitations in real-time performance. However,
strategies 1, 2, and 3 based on DRL can achieve less online
calculation time through trained agent models. Furthermore, the
softmax and DBR mechanisms introduced in strategy 1 can
enhance the learning efficiency of the agent, while the integrated
load shedding method avoids the delayed response caused by
online evaluation. This reduces the real-time calculation time of
strategy 1 by 9.8% and 22.03% respectively compared to strategy
3 and strategy 4, effectively shortening the speed of model output
for online decision-making. In terms of frequency recovery time,
the frequency recovery time of the four strategies is 0.78s, 0.96s,
0.85s, and 0.89s, respectively. It can be seen that compared with

the other three strategies, the frequency recovery time of strategy
1 is reduced by 18.78%, 8.24%, and 12.36%, respectively. This
indicates that the load shedding action taken by strategy 1 is
superior to the other three strategies and more conducive to the
rapid recovery of system frequency. When executing the load
shedding action, strategy 1 prioritizes cutting off loads with small
frequency regulation effect coefficients, maximizing the
utilization of the load’s regulation effect, resulting in a frequency
fluctuation of 1.74Hz in the system. The frequency fluctuations in
strategies 2, 3, and 4 are 2.55Hz, 1.91Hz, and 2.2Hz, respectively.
Compared to strategies 2, 3, and 4, strategy 1 can reduce the
amplitude of frequency fluctuations by 31.76%, 8.9%, and 20.91%,
respectively, effectively reducing fluctuations during frequency
recovery. The above analysis results indicate that strategy 1 can
better meet the requirements of online real-time calculating
performance, while effectively reducing the frequency fluctuation
amplitude and frequency recovery time of islanded microgrids.
Under different load shedding strategies, the load shedding
costs g, as well as the maximum voltage unbalance VUF and

three-phase power unbalance Unbalance after the system
stabilizes are shown in Table XII. It can be seen from Table XII
that after the implementation of the four load shedding strategies,
the maximum voltage unbalance of the system is maintained
within the safe range of 3%. In terms of load shedding costs,
strategy 1 has a load shedding cost of $199.26, which is the lowest
among the four strategies, reducing 16.45%, 10.51%, and 28.04%
compared to strategies 2, 3, and 4, respectively. Regarding
three-phase power unbalance improvement, strategies 2 and 3 do
not consider power unbalance impacts during decision-making,
leading to increases of 14.58% and 19.24% compared to
pre-shedding levels. In contrast, strategies 1 and 4 consider the
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Fig. 17. System frequency recovery waveform under each strategy
Table XI
LOAD SHEDDING ACTION PERFORMANCE ANALYSIS
Index Strategy 1 Strategy 2 Strategy 3 Strategy 4
ton 0.092s 0.168s 0.102s 0.118s
taum 0.78s 0.96s 0.85s 0.89s
Af 1.74Hz 2.55Hz 1.91Hz 2.2Hz
Table XII
LOAD REDUCTION CONTROL RESULTS
Index Strategy 1 Strategy 2 Strategy 3 Strategy 4
g $199.26 $238.50 $222.65 $276.9
VUF 1.62% 1.83% 1.71% 1.78%
Unbalance 6.39% 26.76% 31.42% 13.54%
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power unbalance factor in the decision-making of load shedding
and control the unbalance degree within the normal range.
Furthermore, strategy 1 allocates the load shedding amount on
each single phase reasonably through an integrated load shedding
mode under the initial unbalance of the system, thereby reducing
the power unbalance of the system to 6.39%, achieving the
minimization of power unbalance under the four strategies. From
the above analysis, it can be seen that strategy 1 can minimize the
economic losses caused by load shedding while ensuring that
voltage unbalance is within a safe range, and control power
unbalance at the lowest level.

From the above analysis, it can be seen that the proposed
strategy 1 can effectively solve the frequency recovery problem in
larger islanded microgrid systems. Meanwhile, compared to the
other three strategies, the proposed strategy 1 can minimize the
cost of load shedding, while demonstrating significant advantages
in reducing frequency fluctuations, shortening frequency recovery
time, and improving three-phase power unbalance. This further
validates the superiority of the proposed strategy.

VI. CONCLUSION

Considering the frequency drop caused by unexpected faults
during the operation of islanded microgrids, this paper presents an
integrated underfrequency load shedding strategy for islanded
microgrids by integrating multiclass load-related factors on the
basis of the DRL framework. The strategy first combines load
assessment and load shedding to construct an integrated
underfrequency load shedding strategy integrating multiclass load
correlation factors. Then, the integrated load shedding model is
described as an MDP with the goal of minimizing the load
shedding response time, load shedding cost, and three-phase
system power unbalance, and a DBR-SD3 method based on a
continuous action space is proposed to determine the optimal load
shedding strategy for this objective. By integrating the softmax
function and dual-buffer replay mechanism into TD3, this method
greatly improves the ability of the agent to learn the optimal load

shedding strategy in the complex microgrid operating environment.

Finally, simulation and comparison tests are carried out on the
improved IEEE 37-bus and IEEE 118-bus islanded microgrid
system. The results show that the proposed strategy can prevent a
rapid drop in the system frequency through the integrated load
shedding decision and can achieve a low load shedding cost to
ensure the reliability of the power supplies of important loads
while correcting the three-phase power unbalance in system
operation. In addition, this strategy has greater robustness and
adaptability in a complex microgrid system environment.

REFERENCES

[1] C. Wang et al., “Strategy for optimizing the bidirectional time-of-use
electricity price in multi-microgrids coupled with multilevel games,” Energy,
vol. 323, no. 135731, May. 2025.

[2] Z. Zhao, J. Xu, Y. Lei, C. Liu, X. Shi and L. Lai, “Robust dynamic dispatch
strategy for multi-uncertainties integrated energy microgrids based on
enhanced hierarchical model predictive control,” Appl. Energy, vol. 381, no.
125141, Mar. 2025.

[3] Y. Zeng, Q. Yang, Y. Lin, Y. Chen, X. Chen and J. Wen, “Fractional-Order
Virtual Inertia Control and Parameter Tuning for Energy-Storage System in
Low-Inertia Power Grid,” Protection and Control of Modern Power Systems,
vol. 9, no. 5, pp. 70-83, Sept. 2024.

[4] S. Zhao et al., “Unreliability Tracing of Power Systems for Identifying the
Most Critical Risk Factors Considering Mixed Uncertainties in Wind Power

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

Output,” Protection and Control of Modern Power Systems, vol. 9, no. 5, pp.
96-111, Sept. 2024.

Y. Liu, Z. Li and J. Zhao, “Safety-Constrained Stagewise Optimization of
Droop Control Parameters for Isolated Microgrids,” IEEE Trans. Smart Grid,
vol. 15, no. 1, pp. 77-88, Jan. 2024.

L. He, Z. Tan, Y. Li, Y. Cao and C. Chen, “A Coordinated Consensus
Control Strategy for Distributed Battery Energy Storages Considering
Different Frequency Control Demands,” IEEE Trans. Sustainable Energy,
vol. 15, no. 1, pp. 304-315, Jan. 2024.

S. M. Rostami and M. Hamzeh, “An Adaptive Multi-Functional Control
Strategy for Power Management and Voltage-Frequency Regulation of PV,
BESS, and Hybrid Units in a Microgrid,” IEEE Trans. Smart Grid, vol. 15,
no. 4, pp. 3446-3458, Jul. 2024.

C. Wang et al., “A two-stage underfrequency load shedding strategy for
microgrid groups considering risk avoidance,” Appl. Energy, vol. 367, no.
123343, Aug. 2024.

F. Huang et al., “Integrated emergency control strategy for single/three-phase
hybrid microgrid group coupling load correlation factors and
under-frequency load shedding,” Electr. Power Syst. Res., vol. 242, no.
111481, May. 2025.

T. Amraee, A.M. Ranjbar, and R. Feuillet, “Adaptive under-voltage load
shedding scheme using model predictive control,” Electr. Power Syst. Res.,
vol. 81, no. 7, pp. 1507-1513, Jul. 2011.

J. Tang, J. Liu, F. Ponci and A. Monti, “Adaptive load shedding based on
combined frequency and voltage stability assessment using synchrophasor
measurements,” [EEE Trans. Power Syst., vol. 28, no. 2, pp. 2035-2047, May
2013.

D. G. Mohammad and A. Turaj, “Dynamic multi-stage under frequency load
shedding considering uncertainty of generation loss,” IET Gener. Transm.
Distrib., vol. 11, no. 13, pp. 3202-3209, Sept. 2017.

C. Wang et al., “Multiagent deep reinforcement learning-based cooperative
optimal operation with strong scalability for residential microgrid clusters,”
Energy, vol. 314, no. 134165, Jan. 2025.

W. Zhao, T. Zeng, Z. Liu, L. Xie, L. Xi and H. Ma, “Automatic Generation
Control in a Distributed Power Grid Based on Multi-Step Reinforcement
Learning,” Protection and Control of Modern Power Systems, vol. 9, no. 4,
pp. 39-50, Jul. 2024.

A. K. Singh and M. Fozdar, “Event-driven frequency and voltage stability
predictive assessment and unified load shedding,” IET Gener., Transmiss.
Distrib., vol. 13, no. 19, pp. 4410-4420, 2019.

Y. Dai, Y. Xu, Z. Dong, K. Wong and L. Zhuang, “Real-time prediction of
event-driven load shedding for frequency stability enhancement of power
systems,” IET Gener., Transmiss. Distrib., vol. 6, no. 9, pp. 914-921, 2012.
C. Li et al., “Continuous under-frequency load shedding scheme for power
system adaptive frequency control,” [EEE Trans. Power Syst., vol. 35, no. 2,
pp- 950-961, Mar. 2020.

C. Wang, S. Mei, Q. Dong, R. Chen and B. Zhu, “Coordinated load shedding
control scheme for recovering frequency in islanded microgrids,” IEEE
Access, vol. 8, pp. 215388-215398, 2020.

Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan and Z. Huang. “Adaptive power
system emergency control using deep reinforcement learning,” [EEE Trans.
Smart Grid, vol. 11, no. 2, pp. 1171-1182, Mar. 2020.

C. Chen, M. Cui, F. Li, S. Yin and X. Wang, “Model-Free Emergency
Frequency Control Based on Reinforcement Learning,” IEEE Trans. Ind. Inf.,
vol. 17, no. 4, pp. 2336-2346, Apr. 2021.

P. Chen and D. Han, “Reward adaptive wind power tracking control based on
deep deterministic policy gradient,” Appl. Energy, vol. 348, no. 121519, Oct.
2023.

J. Li and Y. Cheng, “Deep Meta-Reinforcement Learning-Based Data-Driven
Active Fault Tolerance Load Frequency Control for Islanded Microgrids
Considering Internet of Things,” IEEE Internet Things. J, vol. 11, no. 6, pp.
10295-10303, Mar. 2024.

R. Wang, S. Bu and C. Y. Chung, “Real-Time Joint Regulations of
Frequency and Voltage for TSO-DSO Coordination: A Deep Reinforcement
Learning-Based Approach,” [EEE Trans. Smart Grid, vol. 15, no. 2, pp.
2294-2308, Mar. 2024.

B. Fan, X. Liu, G. Xiao, X. Yang, B. Chen and P. Wang, “Enhancing
Adaptability of Restoration Strategy for Distribution Network: A Meta-Based
Graph Reinforcement Learning Approach,” IEEE Internet Things. J, vol. 11,
no. 14, pp. 25440-25453, Jul. 2024

C. Wang, X. Li, T. Tian, Z. Xu and R. Chen, “Coordinated control of passive
transition from grid-connected to islanded operation for three/single-phase
hybrid multimicrogrids considering speed and smoothness,” IEEE Trans. Ind.
Electr., vol. 67, no. 3, pp. 1921-1931, Mar. 2020.

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works ( https:/journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Citation information: DOI: 10.1109/TSG.2025.3586757, IEEE Transactions on Smart Grid

[26] C. Wang, S. Chu, H. Yu, Y. Ying and R. Chen, “Control strategy of
unintentional islanding transition with high adaptability for three/single-phase
hybrid multimicrogrids,” Int. J. Electr. Power Energy Syst., vol. 136, no.
107724, Mar. 2022.

[27] C. Wang et al., “Underfrequency Load Shedding Scheme for Islanded
Microgrids Considering Objective and Subjective Weight of Loads,” IEEE
Trans. Smart Grid, vol. 14, no. 2, pp. 899-913, Mar. 2023.

[28] A. Bokhari et al., “Experimental determination of the ZIP coefficients for
modern residential, commercial, and industrial loads,” IEEE Trans. Power
Deli., vol. 29, no. 3, pp. 1372-1381, Jun. 2014.

[29] L. Yang, X Cui, Y Qin, “Emergency power supply scheme and fault repair
strategy for distribution networks considering electric -traffic synergy,”
Sustain. Energy Grids Netw., vol. 40, no. 101575, Dec. 2024.

[30] C. Wang, S. Mei, H. Yu, S. Cheng, L. Du and P. Yang, “Unintentional
Islanding  Transition = Control  Strategy for  Three-/Single-Phase
Multimicrogrids Based on Artificial Emotional Reinforcement Learning,”
IEEE Syst. J, vol. 15, no. 4, pp. 5464-5475, Dec. 2021.

[31] Z. Xu, P. Yang, Y. Zhang, S. Song and Z, Zhao, “Day-Ahead Economic
Optimized Dispatch of Single and Three Phase Hybrid Multi-Microgrid
Considering Unbalance Constraint,” Power System Technology, vol. 41, no. 1,
pp. 40-47, Jan. 2017.

[32] C. Jiang, L. Zheng, C. Liu, F. Chen and Z. Shao, “MADDPG-Based Active
Distribution Network Dynamic Reconfiguration with Renewable Energy,”
Protection and Control of Modern Power Systems, vol. 9, no. 6, pp. 143-155,
Nov, 2024.

[33] C. Wang et al., “Prioritized sum-tree experience replay TD3 DRL-based
online energy management of a residential microgrid,” Appl. Energy, vol.
368, no. 123471, Aug. 2024.

[34] H. Wang, Z. Chen, H. Zhao and Y. Yue, “Reconstruction strategies for fault
recovery of active distribution network with distributed generation
uncertainties,” Power System Technology, vol. 46, no. 11, pp. 4356-4364,
Nov. 2022.

[35] C. Wang, Q. Dong, S. Mei, X. Li, S. Kang and H. Wang, “Seamless
transition control strategy for three/single-phase multimicrogrids during
unintentional islanding scenarios,” Int. J. Electr. Power Energy Syst., vol.
133, no. 107257, Dec. 2021.

[36] S. Mohammad, S. Kalajahi, H. Seyedi and K. Zare, “Under-frequency load
shedding in isolated multi-microgrids,” Sustain Energy Grids, vol. 27, no.
100494, Sep. 2021.

[37] Q. Xiao et al., “Assessment of Transmission-level Fault Impacts on 3-phase
and 1-phase Distribution IBR Operation,” 2024 IEEE Power & Energy
Society General Meeting (PESGM), Seattle, WA, USA, pp. 1-5, 2024.

Can Wang (Member, IEEE) was born in Hubei, China. He
received the Ph.D. degree in electrical engineering from the
South China University of Technology, Guangzhou, China, in
2017.He is currently an Associate Professor of Electrical
Engineering with the College of Electrical Engineering and
New Energy, China Three Gorges University, Yichang, China.
His current research interests include distributed generation,
microgrid operation and control, integrated energy system, and
smart grids. He serves as the Co-Chair of the Special Session
on “Power Systems With Penetration of RE and EV” in IEEE IGBSG 2019. He is
also a member of the Youth Editorial Committee of Electric Power, Electric Power
Construction, Journal of Electric Power Science and Technology, and Protection
and Control of Modern Power Systems.

He is an Active Reviewer of IEEE Transactions on Smart Grid, IEEE
Transactions on Sustainable Energy, IEEE Transactions on Industrial Electronics,
IEEE Transactions on Industrial Informatics, Applied Energy, Energy, Energies,
and IEEE Access.

Bentao Cheng was born in Hubei, China. He is currently
working toward the M.S. degree in electrical engineering with
China Three Gorges University, Yichang, China. His research
interests include distributed generation and microgrid
operation and control.

Xuhui He was born in Hubei, China. He received his M.S.
degree in electrical engineering with China Three Gorges
University, Yichang, China. His research interests include
distributed generation and operation optimization of smart grid.

Lei Xi (Member, IEEE) received the M.S. degree in control
theory and control engineering from the Harbin University of
Science and Technology, Harbin, China, in 2009, and the Ph.D.
degree in electrical engineering from the South China
University of Technology, Guangzhou, China, in 2016. He is
currently a Full Professor with the College of Electrical
Engineering and New Energy, China Three Gorges University,
Yichang, China. His research interests include the load
frequency control, artificial intelligence techniques, automatic
generation control and network attack and defense.

Nan Yang (Senior Member, IEEE) received the B.S. degree
in electrical engineering from Taiyuan University of
Technology, Taiyuan, China, in 2009, and the Ph.D. degree in
electrical engineering from Wuhan University, Wuhan, China,
in 2014. He is currently an Associate Professor with the
College of Electrical Engineering and New Energy, China
Three Gorges University, Yichang, China. His major research
interests include power dispatching automation of new energy
sources, artificial intelligence, planning and operation of
power systems, operation and control of microgrid, and active distribution
networks.

Zhouli Zhao (Member, IEEE)) received the Ph.D. degree in
electrical engineering from the South China University of
Technology, Guangzhou, China, in 2017. From 2014 to 2015,
he was a Joint Ph.D. Student and Sponsored Researcher with
B the Control and Power Research Group, Department of
. Electrical and Electronic Engineering, Imperial College
| London, London, U.K. From 2017 to 2018, he was a Research
\_‘/ . Associate with the Smart Grid Research Laboratory, Electric
Power Research Institute, China Southern Power Grid,
Guangzhou, China. He is currently an Associate Professor with the School of
Automation, Guangdong University of Technology, Guangzhou, China. His
research interests include microgrid control and energy management, renewable
power generation control, and smart grids.

Chun Sing Lai (Senior Member, IEEE) received the B.Eng.
(First Class Hons.) in electrical and electronic engineering
from Brunel University London, London, UK., in 2013, and
the D.Phil. degree in engineering science from the University
of Oxford, Oxford, UK., in 2019. He is with the Department
of Electronic and Electrical Engineering, Brunel University
London and also with the Department of Electrical
Engineering, School of Automation, Guangdong University of
Technology. His major research interests include power
dispatching automation of new energy sources, power system optimization, energy
system modeling, operation and control of microgrid, and active distribution
networks.

Loi Lei Lai (Life Member, IEEE) received the B.Sc. (First
Class Hons.), Ph.D., and D.Sc. degrees in electrical and
electronic engineering from the University of Aston,
Birmingham, U.K., and City, University of London, London,
U.K., in 1980, 1984, and 2005, respectively. Professor Lai is
currently a University Distinguished Professor with the
Guangdong University of Technology, Guangzhou, China. He
. was a Pao Yue Kong Chair Professor with Zhejiang
University, Hangzhou, China, and the Professor and Chair of
Electrical Engineering with City, University of London. His major research
interests include power system under high penetration of renewables, smart energy
network, operation and control of microgrid, and active distribution networks.

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works ( https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/ ).





