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Abstract—A nonstandard tensor is frequently adopted to model
a large-sale complex dynamic network. A Tensor Representation
Learning (TRL) model enables extracting valuable knowledge
form a dynamic network via learning low-dimensional represen-
tation of a target nonstandard tensor. Nevertheless, the represen-
tation learning ability of existing TRL models are limited for a
nonstandard tensor due to its inability to accurately represent the
specific nature of the nonstandard tensor, i.e., mode imbalance,
high-dimension, and incompleteness. To address this issue, this
study innovatively proposes a Mode-Aware Tucker Network-
based Tensor Representation Learning (MTN-TRL) model with
three-fold ideas: a) designing a mode-aware Tucker network
to accurately represent the imbalanced mode of a nonstandard
tensor, b) building an MTN-based high-efficient TRL model that
fuses both data density-oriented modeling principle and adap-
tive parameters learning scheme, and c) theoretically proving
the MTN-TRL model’s convergence. Extensive experiments on
eight nonstandard tensors generating from real-world dynamic
networks demonstrate that MTN-TRL significantly outperforms
state-of-the-art models in terms of representation accuracy.

Index Terms—Tensor representation learning, nonstandard
tensor, tensor network, dynamic network representation.

I. INTRODUCTION

TENSORS are very versatile and powerful tools that is able
to natively model large-scale complex dynamic networks

such as a telecommunication network, a cryptocurrency trad-
ing network, and a traffic network, where the structural infor-
mation of a dynamic network can be fully preserved and each
element of tensor describes a certain interaction between a pair
of network nodes [1], [2]. However, as the scale of the dynamic
network continues to expand, a resultant tensor is normally
high-dimensional and incomplete due to the impossibility of
observing full interactions among all nodes at each time slot.
Further, such a tensor in practical applications is commonly
high imbalanced [3]–[5]. That is to say, such a resultant tensor
with high-dimension, incompleteness, and mode imbalance
properties is a typical nonstandard tensor. For example, Fig. 1
shows a “node×node×time” third-order nonstandard tensor Y
that models a telecommunication network used in this study,
where such a dynamic network involves 1,504,528 interactions
among 308,200 terminal nodes (e.g., computers or sensor
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Fig. 1. The process of a nonstandard tensor models a large-scale dynamic
network. (The |K| adjacency matrices describing a dynamic network are
sequentially connected to construct a nonstandard tensor. Each known element
denotes a weighted directed link.)

terminals) at 850 time slots (a time slot is ten minutes). As
a result, the dimension of the nonstandard tensor Y comes
to (308,200 × 308,200 × 850) but contains only 1,504,528
known elements, correspondingly, its data density (i.e., known
element count over total) is merely 1.86 × 10−8. Obviously,
the dimension of its mode-1 and mode-2 (i.e., the size of
node modes), which is the total number of involved nodes, is
very large compared to the dimension of mode-3, which is the
total number of the time slots. Evidently, a nonstandard tensor
contains rich knowledge regarding various characteristics of
involved network nodes, like unobserved links and nodes’
latent features [6]–[9]. Accurately and effectively acquiring
such valuable knowledge is challenging, with the key issue
being the accurate representation of a nonstandard tensor [10].
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Fig. 2. Tensor network diagrams of CP and Tucker formats.

To date, researchers have proposed a variety of Tensor
Representation Learning (TRL) models, which are constructed
based on different tensor decomposition methods to achieve
accurate representation of a target tensor. Among them, a
Canonical Polyadic (CP) decomposition–based TRL model
has gained significant popularity because of its concise math-
ematical form [11]. Notable examples include a Cauchy loss-
based nonnegative tensor factorization model [12], a transfer
learning-based biased tensor factorization model [13], and
a graph regularized sparse CP decomposition model [14].
Specially, CP decomposition is a special form of Tucker
decomposition when the Tucker core tensor is a super-diagonal
tensor. Compared with CP does, Tucker decomposition nor-
mally obtains higher representation ability because it maintains
a core tensor that can represents the relationship among latent
factors [15], [16]. Accordingly, several Tucker decomposition-
based TRL models have been built. Typical models include
a L∞-norm based nonnegative Tucker decomposition model
[17], a biased nonnegative Tucker factorization model [18],
and a graph regularized smooth nonnegative Tucker factor-
ization model [19]. In addition to this, some other decom-
position methods are also used to construct TRL models,
e.g., tensor singular value decomposition and tensor training
decomposition. However, the above models fail to account for
mode imbalance, high-dimension, and incompleteness prop-
erties simultaneously, leading to suboptimal representation
performance for a nonstandard tensor.

Tensor network is normally countable collections of low-
order tensors that are interconnected by tensor contractions
[20]–[22]. In particular, CP and Tucker decomposition are
commonly used tensor network formats. Tensor network dia-
gram is a straightforward graphical diagram for understanding

the interconnected structures of tensor network, where a tensor
is denoted graphically by a node with edges (an edge indicates
a mode of the tensor and a value on an edge denotes the
dimension of the corresponding mode). Fig. 2 illustrates tensor
network diagrams of CP and Tucker formats. As shown in
Fig. 2, an edge connecting two nodes means a type of tensor
contraction operation, e.g., mode-n product. As a result, is it
possible to construct a new edge connecting the two nodes,
thus designing a new form of tensor network oriented to a
nonstandard tensor for enhancing representation ability.

Inspired by the above findings, we innovatively design a
Mode-Aware Tucker Network (MTN), which is a novel tensor
network format for a nonstandard tensor. Accordingly, an
MTN-based tensor representation learning model is developed
for efficiently learning accurate representation of a nonstan-
dard tensor, which adopts the following three-fold ideas:

1) Designing a novel mode-aware Tucker network, where
a new edge is constructed on a tensor network of
Tucker format to connects two latent factor (LF) nodes
corresponding to two high-dimensional modes of a non-
standard tensor, thus, two high-dimensional modes are
represented by two LF tensors while a low-dimensional
mode is represented by a LF matrix.

2) Adopting data density-oriented modeling principle to
build an MTN-based TRL model for learning the LFs
accurately and efficiently, and implementing hyper-
parameters self-adaptation via a differential evolution
algorithm.

3) Theoretically proving that an MTN-TRL model can
converge to a stationary point of its learning objective
on a nonstandard tensor.

By doing so, this paper makes the following clear contribu-
tions:

1) A novel tensor network named MTN. It achieves fine-
grained representations for a nonstandard tensor via
constructing new tensor contraction operation between
the latent factors of high-dimensional modes.

2) An MTN-TRL model. It can learn the low-dimensional
representations of a nonstandard tensor accurately and
efficiently by building learning objective on tensor
known element set only.

3) The convergence proof of MTN-TRL. It demonstrates
MTN-TRL can converge to a stable stationary point.

Experiments are performed on eight nonstandard tensors
generated from real-world large-scale dynamic networks,
which confirm that MTN is more accurate than other com-
monly used tensor network in representing a nonstandard
tensor. At the same time, the results show that MTN-TRL
has better performance on learning the representation of a
nonstandard tensor compared with state-of-the-art models.

The rest is organized as follows: Section II introduces
the preliminary knowledge, Section III proposes MTN and
designs the MTN-TRL model in detail, Section IV conducts
the experiments and analyzes the results, Section V reviews
related work, and Section VI concludes this paper.
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Fig. 3. The MTN diagram and the framework of MTN-TRL model.

TABLE I
SYMBOL AND DESCRIPTIONS

Symbols Description

I, J,K Three entity sets.
Λ Known element entries set.
R Real number field.
R, R1, R2, R3 Rank of CP and Tucker decomposition.
r1, r2, r3 Index of R1, R2, R3.
Ŷ A low-rank approximation tensor of Y.
yijk , ŷijk Single element in tensor Y, Ŷ.
M The size of the expanded dimension.
m, i, j, k Index of M, |I| , |J | , |K| .
|∗| The size of the element collection.
||∗||2 Computes the L2 norm of a tensor.
G A core tensor.
a, b, c Three bias vectors.
ai, bj, ck Single element in a, b, c.
λ Regularization coefficient.
Ψ Training set.
Ω Validation set.
Φ Testing set.

II. PRELIMINARIES

A. Notations

In tensor network, a one-edge node indicates a first-order
tensor, i.e., a vector y ∈ RI1 , a two-edge node indicates a
second-order tensor, i.e., matrix Y ∈ RI1×I2 , and a three-edge
node indicates a third-order tensor, i.e., tensor Y ∈ RI1×I2×I3 .
Table I summarizes the symbols used in this paper.

B. Tucker Network

Tucker network (i.e., a tensor network of Tucker format)
represents a Nth-order tensor into a Nth-order core tensor
multiplied by a matrix along each mode [16], [17]. As shown
in Fig. 2(b), given a third-order tensor Y ∈ R|I|×|J|×|K|,
Tucker network can be formulated:

Y ≈ Ŷ = G×1P×2Q×3T, (1)

where G ∈ RR1×R2×R3 denotes a core tensor and P ∈
R|I|×R1 ,Q ∈ R|J|×R2 ,T ∈ R|K|×R3 denote three LF ma-
trices, the tensor contraction operators ×1, ×2 and ×3 denote
mode-n product, i.e., an edge connecting two nodes in tensor
network diagram. Generally, Ŷ is called the rank-{R1, R2, R3}
approximation of Y, thus, to obtain the core tensor and
LF matrices, a TRL model should be built to measure the
difference between Y and Ŷ, with normally adopted Euclidean
distance, its learning objective is formulated as follows:

ε =
∥∥∥Y− Ŷ

∥∥∥2
F
=

|I|∑
i=1

|J|∑
j=1

|K|∑
k=1

(yijk − ŷijk)
2

=
|I|∑
i=1

|J|∑
j=1

|K|∑
k=1

(
yijk −

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3pir1qjr2tkr3

)2

.

(2)

III. METHODOLOGY

A. Mode-Aware Tucker Network

As shown in Fig. 2(b), a Tucker network fails to represent
the mode imbalance of a nonstandard tensor, concretely,
the high-dimensional mode and low-dimensional mode are
uniformly represented by LF matrices. However, a high-
dimensional mode typically contains more knowledge of the
corresponding entities, thus requiring a larger representation
space. Therefore, as shown in Fig. 3, considering a third-
order nonstandard tensor Y with two high-dimensional modes,
we construct a new edge between LF nodes P and Q, intu-
itively, the LF matrices P ∈ R|I|×R1 and Q ∈ R|J|×R2 are
extended into two third-order LF tensors P ∈ RM×|I|×R1

and Q ∈ RM×|J|×R2 , thereby granting the high-dimensional
mode a larger representation space. As a result, a mode-
aware Tucker network is achieved. It adopts LF tensor to
represent high-dimensional mode and LF matrix represent low-
dimensional mode, and a core tensor is still needed to represent
the relationship among latent factors.
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Accordingly, the proposed MTN oriented to a third-order
nonstandard tensor Y can be expressed as:

Y ≈ Ŷ = [[G,P,Q,T]] =
M∑

m=1
G×1P

(m)×2Q
(m)×3T,

(3)
where M represents the dimension size of the shared order
after expanding the matrices P ∈ R|I|×R1 and Q ∈ R|J|×R2

into tensors P ∈ RM×|I|×R1 and Q ∈ RM×|J|×R2 , and
P(m) and Q(m) respectively denote the m-th frontal slice of
LF tensors P and Q. Hence, each element in the tensor Ŷ is:

ŷijk =
M∑

m=1

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3pmir1qmjr2tkr3 . (4)

To acquire the desired representations of a nonstandard tensor,
a tensor representation learning model is also necessary. Next,
we present MTN-TRL model.

B. Objective Function of MTN-TRL

When learning the representation of a nonstandard tensor,
as shown in (2), a traditional TRL model normally needs to
pre-fill the unknown elements with artificial values to obtain
a complete tensor as model input. Considering the high-
dimension and incompleteness properties of a nonstandard
tensor, such pre-filling strategy leads to unnecessarily high
computational cost, and the artificially filled data may bend
the learning process, causing loss of representation accuracy
[10], [11]. As previous research [7], [11], by using the data
density-oriented modeling principle, the objective function of
a TRL model can be defined on the known element set Λ
only of target nonstandard tensor Y, which avoids efficiency
and accuracy loss caused by the artificial pre-filling values.
Therefore, for accurate and efficient learning the LF tensors
P and Q, LF matrix T, and core tensor G, with the MTN, the
TRL model’s learning objective is obtained as:

ε =
∑

yijk∈Λ

(yijk − ŷijk)
2

=
∑

yijk∈Λ

(
yijk −

M∑
m=1

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3pmir1qmjr2tkr3

)2

.

(5)
As stated in [18], [19], incorporating linear biases to a TRL

model can improve its representation learning ability, as they
effectively handle the magnitude differences in nonstandard
tensor data. As reveal in [18], linear biases corresponding to
the third-order nonstandard tensor Y can be represented by
three linear bias vectors a ∈ R|I|, b ∈ R|J|, and c ∈ R|K|, by
integrating them to the learning objective, (5) is extended as:

ε =
∑

yijk∈Λ

(yijk − ŷijk)
2
=

∑
yijk∈Λ

(yijk − (ai + bj + ck

+
M∑

m=1

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3pmir1qmjr2tkr3

))2

.

(6)
Moreover, it is extremely important to introduce regulariza-

tion into (6) for avoiding overfitting. With normally adopted

L2 regularization, we achieve the objective function of MTN-
TRL model as:

ε =
∑

yijk∈Λ

((yijk − ai − bj − ck

−
M∑

m=1

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3pmir1qmjr2tkr3

)2

+λ

(
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

g2r1r2r3 + a2i + b2j + c2k

)
+λ

(
M∑

m=1

R1∑
r1=1

p2mir1
+

M∑
m=1

R2∑
r2=1

q2mjr2
+

R3∑
r3=1

t2kr3

))
s.t. ∀i ∈ I, j ∈ J, k ∈ K,m ∈ {1, 2, ...,M} ,
r1 ∈ {1, 2, ..., R1} , r2 ∈ {1, 2, ..., R2} , r3 ∈ {1, 2, ..., R3} .

(7)

C. Adaptive Parameters Learning Scheme

Although a Stochastic Gradient Descent (SGD) algorithm
can solve the MTN-TRL model, it normally suffers from
slow convergence, thus leading to high computational cost.
A momentum method can accelerate the SGD algorithm,
which uses the gradient of the previous iteration to correct
the current update direction and step size [23], [24]. Given an
objective function J(ω), the update rule of parameter ω using
Momentum-accelerated SGD (MSGD) algorithm as follows:

vn = γvn−1 + η∇ωJ (ωn−1) ,

ωn = ωn−1 − vn,
(8)

where γ denotes the momentum parameter, η denotes the
learning rate, ∇ωJ (ω) indicates the gradient of the parameter
ω, and vn and vn−1 represent the velocity vectors at the n-th
and (n-1)-th iterations respectively. Therefore, the gradients of
each parameter in (7) are given:

∇gr1r2r3
ε (gr1r2r3) = λgr1r2r3 − eijk

M∑
m=1

pimr1qmjr2tkr3 ,

∇pmir1
ε (pmir1) = λpimr1 − eijk

R2∑
r2=1

R3∑
r3=1

gr1r2r3qmjr2tkr3 ,

∇qmjr2
ε (qmjr2) = λqmjr2 − eijk

R1∑
r1=1

R3∑
r3=1

gr1r2r3pimr1tkr3 ,

∇tkr3
ε (tkr3) = λtkr3 − eijk

M∑
m=1

R1∑
r1=1

R3∑
r3=1

gr1r2r3pimr1qmjr2 ,

∇aiε (ai) = λai − eijk,
(9)

where eijk represents yijk − ŷijk, the gradients of ai, bj , and
ck are similar, so only the gradient of ai is shown in (9).

Hence, by combining (8) and (9), an MSGD-based param-
eter learning scheme is obtained for the MTN-TRL model.
However, the hyper-parameters η, λ and γ require manual
tuning via using a three-fold grid search, which would take
a lot of time and diminish the usefulness of the model. In
order to overcome these critical defects, we make these hyper-
parameters self-adaptation during the training process via a
Differential Evolution Algorithm (DEA) [25], [26], which has
a strong global search capability and simple structure. To do
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so, we first initialize Z vectors as a swarm, and each vector
has the following definition:

θ(z) =
(
γ(z), η(z), λ(z)

)
,

γ(z) = γmin + δ ·
(
γmax − γmin

)
,

η(z) = ηmin + δ ·
(
ηmax − ηmin

)
,

λ(z) = λmin + δ ·
(
λmax − λmin

)
,

(10)

where δ is a random value in the range [0, 1], (ηmin, ηmax),
(λmin, λmax) and (γmin, γmax) denote the range that η, λ and
γ can obtain respectively. According to the DEA principle,
the following mutation operation is performed on each vector
individual:

θn+1
(z) = τ + µ

(
θn(z1) − θn(z2)

)
, (11)

where θ is the scaling factor, τ is the global best individual,
z1 and z2 are two randomly selected individuals. Then, each
individual performs the following crossover operation:

θn+1
m(z) =

{
θn+1
m(z), if σ ≤ Cz or m = m∗;

θnm(z), else,
(12)

where m denotes the dimension index of the vector individual
σ(p), m∗ represents a randomly selected dimension, Cz ∈[0,
1] indicates the crossover probability. Next, the fitness of each
individual is determined by the model parameters learning
process. Then, the fitness function for the (n+1)-th iteration is
expressed as:

Fn+1
(z) =

H
(
θn+1
(z)

)
−H

(
θn+1
(z−1)

)
H

(
θn+1
(Z)

)
−H

(
θn(Z)

) , (13)

where the function H(∗) is calculated based on the model
performance in the current iteration:

H
(
θ(z)
)
=

√√√√√ ∑
yijk∈Ω

(
yijk − ŷijk(z)

)2
|Ω| +

∑
yijk∈Ω

∣∣yijk − ŷijk(z)
∣∣

|Ω| ,

(14)
where Ω represents the validation set, and |Ω| represents
the number of samples in the validation set. If (14) is em-
ployed directly as the fitness function, it evaluates only the
generalization error of individual particles, which naturally
decreases over successive iterations. Consequently, the global
optimum may increasingly favor the most recent particle,
thereby diminishing the population’s exploratory capability.
In contrast, equation (13) quantifies each particle’s marginal
contribution to the reduction in overall generalization error,
enhancing both global search effectiveness and convergence
speed. By calculating the fitness function F , the global optimal
individual vector is selected as follows:

τn+1 =

{
θn+1
(z) , if Fn+1

(z) > Fn+1
(z−1),

τn, if Fn+1
(z) ≤ Fn+1

(z−1).
(15)

Through (10)-(15), we realize the hyper-parameters self-
adaptation via using DEA, thereby obtaining an MSGD-

Algorithm 1. MTN-TRL

Input Λ,Ω, I, J, K, R1, R2, R3, M

Operation Cost

1: Initialize G with random values; Θ(R1 ×R2 ×R3)
2: Initialize P with random values; Θ(R1 × |I| ×M)
3: Initialize Q with random values; Θ(R2 × |J | ×M)
4: Initialize T with random values; Θ(R3 × |K|)
5: Initialize a, b, c with random values; Θ(|I|+ |J |+ |K|)
6: Initialize vector vG, vP, vQ, vT, va, vb, vc=0;
7: Initialize individual vector θ=0, swarm Z=10; Θ(3) + Θ (1)
8: Initialize n=1, N=1000; Θ(1)
9: for each yijk ∈ Ω do ×|Ω|

10: Compute ŷijk based on (6); Θ(1)
11: end for –
12: Compute H

(
θ0
(Z)

)
based on (14); Θ(1)

13: while n ≤ N and not converge do ×n
14: for z = 1 to Z do ×Z
15: for each yijk ∈ Λ do ×|Λ|
16: Compute ŷijk based on (6); Θ(1)
17: Update velocity vector vG, vP, vQ,

Θ(7)18: vT, va, vb, vc based on (16);
19: Update G, P, Q, T based on (16); Θ(4×M×R1×R2×R3)
20: Update a, b, c based on (16); Θ(3)
21: end for –
22: end for –
23: Compute H

(
θn
(Z)

)
based on (14); Θ(1)

24: for z = 1 to Z do ×Z

25: Compute F
(
θn
(Z)

)
based on (13); Θ(1)

26: Update τ based on (15); Θ(1)
27: end for –
28: n = n+ 1; Θ(1)
29: end while –

Output G,P,Q,T, a, b, c

based self-adaptation parameter learning scheme for MTN-
TRL model, the detailed update rule is given as follows:

gn,zr1r2r3 ← gn−1,z
r1r2r3 − vn,zgr1r2r3

,

vn,zgr1r2r3
= θn,z1 vn−1,z

gr1r2r3
+ θn,z2 ∇gr1r2r3

ε
(
θn,z3 gn−1

r1r2r3

)
.

pn,zimr1
← pn−1,z

imr1
− vn,zpimr1

,

vn,zpimr1
= θn,z1 vn−1,z

pimr1
+ θn,z2 ∇pmir1

ε
(
θn,z3 pn−1

mir1

)
.

qn,zmjr2
← qn−1,z

mjr2
− vn,zqmjr2

,

vn,zqmjr2
= θn,z1 vn−1,z

qmjr2
+ θn,z2 ∇qmjr2

ε
(
θn,z3 qn−1

mjr2

)
.

tn,zkr3
← tn−1,z

kr3
− vn,ztkr3

,

vn,ztkr3
= θn,z1 vn−1,z

tkr3
+ θn,z2 ∇tkr3

ε
(
θn,z3 tn−1

kr3

)
.

an,zi ← an−1,z
i − vn,zai

,

vn,zai
= θn,z1 vn−1,z

ai
+ θn,z2 ∇ai

ε
(
θn,z3 an−1

i

)
,

(16)
where θn,z1 , θn,z2 and θn,z3 indicate the value of η, λ and γ in
the z-th individual vector during the n-th iteration.

D. Algorithm Design and Analysis

After the derivation in the previous section, Algorithm 1.
MTN-TRL is design. Noting that the time cost of each step
is listed, we find that MTN-TRL’s computational complexity
mainly relies on two parts:
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a) Initialization:

C1 = Θ(R1 ×R2 ×R3) + Θ (R1 × |I| ×M)
+Θ (R2 × |J | ×M) + Θ (R3 × |K|)
+Θ (|I|+ |J |+ |K|)

(17)

b) Parameters update:

C2 = Θ(n× Z × |Λ| × (Θ (4×M ×R1 ×R2 ×R3)))
(18)

Thus, the computational complexity of MTN-TRL is:

C = C1 + C2

≈ Θ(n×M ×R1 ×R2 ×R3 × |Λ|) .
(19)

where the low-order terms and constant coefficients are omit-
ted. Since |Λ| is much larger than max{n,M,R1, R2, R3},
the computational complexity of MTN-TRL is linear in the
number of known elements in the nonstandard tensor.

Moreover, the storage complexity of MTN-TRL primarily
consists of three parts:

a) The known elements set Λ and corresponding estimates:

S1 = Θ(|Λ|) (20)

b) The LF matrices and tensors, bias vectors:

S2 = Θ(M × (|I| ×R1 + |J | ×R2)
+ |K| ×R3 +R1 ×R2 ×R3 + |I|+ |J |+ |K|) .

(21)

c) The velocity vectors:

S3 = Θ(M × (|I| ×R1 + |J | ×R2)
+ |K| ×R3 +R1 ×R2 ×R3 + |I|+ |J |+ |K|) .

(22)

Hence, the MTN-TRL’s storage complexity is:

S = S1 + S2 + S3

≈ Θ(|Λ|+M × (|I| ×R1 + |J | ×R2) + |K| ×R3) ,
(23)

where (23) is obtained by reasonably dropping the lower-
order and constants terms. From (23), it is evident that the
storage complexity of MTN-TRL is linear with the size of
the latent factors and the target nonstandard tensor’s known
element count.

E. Model Convergence Analysis

In the optimization of MTN-TRL, although the full objec-
tive (7) is nonconvex due to the interaction of tensors and
matrices [27], our alternating optimization reduces each update
to a convex least-squares problem with L2 regularization.
When all variables except one block (for example, P, G, Q,
T or the bias vectors a, b, c) are held fixed, the subprob-
lem becomes a quadratic function whose Hessian is positive
semidefinite, ensuring convexity. Then, based on the core
update formula (16) of MSGD, we use MSGD to approximate
the global optimal value of each subproblem and ensure that
each iteration has a descending direction. This block-by-block
alternation strategy ensures that MTN-TRL can converge to
a stable point.This is also confirmed from the convergence

iteration curves in Fig. S1. Next we will briefly analyze the
convergence of the model, first reviewing the standard MSGD
convergence assumptions [28]:

Assumption 1:
1) For any x, y ∈ RN ,

g(x) ≥ g(y) +∇g(y)(x− y). (24)

2) There exists an θ∗ that satisfies the following:

∇θ∗g(θ∗) = 0. (25)

3) The second derivative of g(θ) exists.
Lemma 1: If {Xn} ∈ RN is martingale difference sequence,

the following results can be obtained [29]:
∞∑
k=0

E
(
∥XK∥2

)
< +∞⇒

∞∑
k=0

XK < +∞. (26)

Lemma 2: If {Xn} ∈ RN is a sequence of random variables,
according to the basic conclusions of probability theory, get

∞∑
t=1

E
(
∥XK∥2

)
< +∞⇒

∞∑
t=1
∥XK∥2 < +∞. (27)

Lemma 3: Suppose vt is the sequence generated by (10). If
2) and 3) in Assumption 1 hold [29], then we get:

n−1∑
t=1

E
(
∥vt−1∥2

)
< C < +∞, (28)

where C is a constant, and
∑n−1

t−1 ||vt − 1||2 < +∞.
Lemma 4: Assume that {ωn} is the estimated sequence

generated by (10). If 2) and 3) in Assumption 1 hold [30],
then

n∑
t=1

εtE
(
∥∇ωtg(ωt)∥2

)
< B < +∞,

n∑
t=1

εt∥∇ωtg(ωt)∥2 < +∞,
(29)

where B > 0 is a constant.
Then, based on the above lemmas, the convergence theorem

of MTN-TRL is given below.
Theorem 1: Assume that {θt} is the estimated sequence

generated by (8). If 1)-3) of Assumption 1 hold, then for ∀θ1 ∈
RN and ∀v0 ∈ RN , we have:

ωt → ω∗. (30)

Through the above assumptions and lemmas, we prove that
MTN-TRL can almost converge to a stationary point. For the
sake of brevity, the detailed proof of Theorem 1 is provided
in the Supplementary File (SF)1.

IV. EXPERIMENTS

A. General Settings

Dataset. The experiments use eight dynamic network
datasets, and their properties are summarized in Table II.
In more detail, D1-D4 are derived from terminal devices in
the real-world Internet of Things, and the traffic transmission
between them is recorded in each time period [1]. D5-D8
originate from a cryptocurrency transaction website, which

1https://github.com/wangquuu/MTN-SF
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TABLE II
DESCRIPTION OF DATASET PROPERTIES

Datasets Nodes Edges Time slot Density

D1 308,200 1,504,528 850 1.86E-08
D2 240,500 658,079 765 1.49E-08
D3 186,600 545,795 640 2.45E-08
D4 128,805 208,894 580 2.17E-08
D5 236,110 677,854 124 9.81E-08
D6 198,863 563,420 124 1.15E-07
D7 201,848 451,554 124 8.94E-08
D8 98,022 206,980 120 1.80E-07

records the transaction amount between each account at each
point in time [4]. For each dataset, a “node×node×time”
third-order nonstandard tensor can be constructed, where each
element denotes an interaction weight between two nodes at
a certain time slot, e.g., for D1, a nonstandard tensor of size
308, 200× 308, 200× 850 is obtained, and its density is only
1.86× 10−8.

Evaluation Metrics. The representation learning ability of a
TRL model to a nonstandard model can be intuitively reflected
by prediction accuracy for dynamic network missing links (i.e.,
nonstandard tensor missing elements prediction accuracy), it is
measured by widely used Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE) and R-squared (R2):

MAE =
∑

yijk∈Φ |yijk − ŷijk|abs
/
|Φ|,

RMSE =

√∑
yijk∈Φ (yijk − ŷijk)

2
/
|Φ|,

R2 = 1−
∑

yijk∈Φ (yijk − ŷijk)
2
/∑

yijk∈Φ (yijk − ỹijk)
2
,

where ỹijk represents the mean of all yijk in the testing
set Φ. Note that lower MAE and RMSE indicate higher
prediction accuracy, whereas higher R2 indicates better model
performance.

Comparison Models. We compare the proposed MTN-TRL
model with the nine state-of-the-art models, their briefly
introduction is summarized in Table III.

Training Settings. The following training sets are uniformly
adopted for all tested models to ensure fairness:

1) In order to evaluate the computational efficiency of all
tested models, the total time of each model is recorded
(including hyper-parameters adjustment time). Thus, all
experiments are conducted on an i7-13700 CPU with
32G RAM, code in JAVA, and run under JDK1.8.

2) For obtaining objective results, for each dataset, 10% of
the data is used as the training set Ψ to train the model,
20% of the data is used as the validation set Ω to monitor
the training effect of the model, and 70% of the data is
used as the test set Φ to verify the performance of the
model. Note that the above processes are repeated for
20 times for obtaining 20 different sets of experimental
results to eliminate the data biases.

3) The latent factor dimension R of all models is set
to 5, e.g., M=R1=R2=R3=5 for MTN-TRL. We strictly
adjust the model’s hyper-parameters on the validation
set, and then verify the model’s performance on the

TABLE III
DESCRIPTION OF ALL TESTED MODELS

No. Competitor

M1 MTN-TRL: The model proposed in this paper.
M2 TW: A Tensor Wheel (TW) decomposition model trained with

SGD algorithm and incorporating L2 regularization [31].
M3 Tucker: A Tucker decomposition model trained with SGD

algorithm and incorporating L2 regularization [21].
M4 TR: A Tensor Ring decomposition model trained with SGD

algorithm and incorporating L2 regularization [32].
M5 GSNTD: A smooth nonnegative Tucker decomposition model,

which uses Lp norm regularization [19].
M6 SGCP: A sparse graph-regularized CP decomposition model that

adds L1 and graph regularization to each factor matrix [14].
M7 BNTucF: A Tucker decomposition-based model, which designs

a nonnegative update scheme [18].
M8 BCTL: A biased tensor latent factorization model that incorpo-

rates the idea of transfer learning into the training process [13].
M9 TCA: A tensor completion method based on CP, which adopts

a completion mechanism based on gradient descent [33].
M10 DNL: A deep nonnegative latent factorization of tensor model

that designs a scheme to jointly scale the depth of nonnegative
multiplication learning [34].

testing set after finding the optimal hyper-parameters.
The hyper-parameters of the comparison models are
searched according to the grid search to obtain their
optimal performance and Table S1 records the optimal
hyper-parameters for each model.

4) All involved models use the same early stopping strat-
egy. Specifically, a model is considered converged if
one of the following two conditions is met: a) the total
number of iterations reaches 1000, and b) the iteration
error of two consecutive rounds is less than 10−5.

B. Comparison with State-of-the-art Models

To verify the performance of the proposed model, we
compare MTN-TRL (M1) with nine TRL models. Table IV
and Fig. S2 record the RMSE, MAE and R2 of all test models
on D1-8. Fig. S3 and Table S2 record their total time cost.
Table S4 shows the results of Friedman Test, and Table S5
shows the results of Wilcoxon Signed-Ranks Test. Fig. S1
records the convergence iteration curves of MTN-TRL on D1-
D8. The following findings can be drawn from these results:

1) The representation learning ability of MTN-TRL
performs best among all tested models. As shown in
Table IV and Fig. S2, MTN-TRL’s RMSE, MAE and R2

are all superior to its peers. For instance, the RMSE ob-
tained by MTN-TRL on D1 is 0.2745, which is 1.12%,
5.90%, 3.68%, 6.78%, 7.91%, 5.06%, 6.56%, 5.32%,
and 9.98% lower than that of M2-10 respectively. The
MAE obtained by MTN-TRL on D1 is 0.1900, which
is 0.21%, 2.26%, 5.42%, 0.42%, 0.79%, 7.05%, 5.68%,
6.47%, and 6.21% lower than that of M2-10 respectively.
The R2 obtained by MTN-TRL on D1 is 0.3717, which
is 4.00%, 25.49%, 15.22%, 31.16%, 39.58%, 21.39%,
29.83%, 22.71%, and 55.07% higher than that of M2-10
respectively. In particular, the MTN-TRL outperforms
Tucker-based TRL in all cases, which proves the effec-
tiveness of the proposed MTN. On D2-8, as recorded in
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TABLE IV
THE RMSE, MAE AND R2 OF ALL TESTED MODELS ON D1-8

Models D1 D2 D3 D4 D5 D6 D7 D8 Win/Loss*

RMSE↓

M1 0.2745±2.1E-04 0.2904±5.8E-05 0.3041±1.7E-04 0.2662±1.6E-04 0.5745±3.2E-05 0.6207±2.4E-03 0.6350±7.9E-04 0.6806±6.4E-03 –
M2 0.2776±1.2E-04 0.2946±2.1E-04 0.3086±1.0E-04 0.2701±3.5E-04 0.5935±1.0E-03 0.6357±3.0E-03 0.6459±1.9E-03 0.6918±9.1E-04 8/0
M3 0.2907±5.8E-05 0.3069±1.2E-04 0.3164±1.7E-04 0.2790±5.8E-05 0.6228±4.2E-04 0.6667±1.5E-04 0.6801±9.5E-04 0.7419±3.2E-04 8/0
M4 0.2846±1.7E-04 0.2970±2.5E-04 0.3146±1.5E-04 0.2716±3.1E-04 0.5925±3.1E-04 0.6321±1.5E-04 0.6392±3.0E-04 0.6860±6.0E-04 8/0
M5 0.2931±2.6E-05 0.3110±1.0E-04 0.3241±2.5E-04 0.2859±2.7E-04 0.6537±2.4E-04 0.6874±4.2E-04 0.6900±7.0E-04 0.7544±4.0E-04 8/0
M6 0.2962±3.5E-04 0.3181±1.0E-03 0.3302±9.6E-04 0.2876±7.8E-04 0.6810±7.1E-04 0.7070±4.4E-03 0.7093±1.3E-02 0.7606±2.0E-03 8/0
M7 0.2884±1.2E-04 0.3034±1.0E-04 0.3161±2.0E-04 0.2760±5.8E-05 0.6215±3.6E-04 0.6678±6.7E-04 0.6852±5.4E-03 0.7431±5.5E-04 8/0
M8 0.2925±4.6E-04 0.3085±1.3E-03 0.3217±5.9E-04 0.2851±1.2E-03 0.6134±2.1E-04 0.6651±3.1E-04 0.6737±5.7E-04 0.7398±2.2E-03 8/0
M9 0.2891±1.5E-04 0.3071±5.5E-04 0.3210±5.8E-04 0.2834±5.9E-04 0.6566±2.9E-04 0.6980±3.2E-04 0.6949±1.2E-03 0.7726±5.2E-04 8/0

M10 0.3019±2.5E-04 0.3179±3.5E-04 0.3350±1.2E-03 0.2926±7.8E-04 0.6820±1.3E-03 0.7118±4.0E-04 0.7175±1.8E-03 0.7916±4.6E-03 8/0

MAE↓

M1 0.1900±2.3E-04 0.1957±1.5E-04 0.2077±1.2E-04 0.1905±2.1E-04 0.3929±4.5E-04 0.4194±1.3E-03 0.4605±1.2E-03 0.5124±3.0E-03 –
M2 0.1904±1.5E-04 0.1971±5.8E-05 0.2101±1.7E-04 0.1922±2.5E-04 0.4029±3.4E-03 0.4215±4.8E-03 0.4801±4.8E-03 0.5169±7.5E-04 8/0
M3 0.1943±1.5E-04 0.2050±1.2E-04 0.2140±1.0E-04 0.1993±1.7E-04 0.4104±1.5E-04 0.4363±3.1E-04 0.4786±4.6E-04 0.5429±1.5E-04 8/0
M4 0.2003±1.0E-04 0.2014±1.5E-04 0.2200±1.2E-04 0.1943±2.3E-04 0.4036±3.8E-04 0.4247±2.5E-04 0.4624±2.3E-03 0.5131±6.1E-04 8/0
M5 0.1908±5.6E-05 0.2007±5.8E-05 0.2116±1.1E-04 0.1994±2.5E-04 0.4213±2.9E-04 0.4482±1.5E-04 0.4782±4.0E-04 0.5471±2.9E-04 8/0
M6 0.1915±2.5E-04 0.2055±1.5E-04 0.2142±6.0E-04 0.1999±2.8E-04 0.4356±1.1E-03 0.4526±3.7E-03 0.4834±6.8E-03 0.5507±1.5E-03 8/0
M7 0.2034±5.8E-05 0.2051±1.0E-04 0.2193±5.8E-05 0.1991±5.8E-05 0.4323±2.1E-04 0.4550±2.3E-04 0.5003±3.0E-03 0.5546±8.3E-04 8/0
M8 0.2008±1.5E-04 0.2070±5.8E-05 0.2207±1.5E-04 0.2049±1.2E-04 0.4188±1.0E-04 0.4473±2.3E-04 0.4863±2.5E-04 0.5549±2.0E-03 8/0
M9 0.2023±5.0E-04 0.2083±3.2E-04 0.2173±4.6E-04 0.2026±3.6E-04 0.4767±1.0E-04 0.4975±4.0E-04 0.5018±1.1E-03 0.5621±4.6E-04 8/0

M10 0.2018±5.8E-05 0.2124±3.2E-04 0.2217±7.2E-04 0.2084±6.4E-04 0.4450±5.2E-04 0.4675±4.7E-04 0.4987±9.2E-04 0.5728±1.8E-03 8/0

R2↑

M1 0.3717±9.6E-04 0.2764±3.6E-04 0.2660±8.4E-04 0.2913±8.3E-04 0.4323±9.5E-05 0.3837±4.7E-03 0.3305±1.8E-03 0.3352±1.3E-02 –
M2 0.3574±6.1E-04 0.2551±9.9E-04 0.2451±4.2E-04 0.2702±1.5E-03 0.3938±1.7E-03 0.3537±5.9E-03 0.3072±4.0E-03 0.3128±1.9E-03 8/0
M3 0.2962±5.1E-04 0.1930±7.8E-04 0.2055±9.2E-04 0.2219±2.9E-04 0.3328±9.7E-04 0.2889±5.0E-04 0.2322±2.1E-03 0.2098±6.8E-04 8/0
M4 0.3226±7.9E-04 0.2417±1.4E-03 0.2133±7.5E-04 0.2597±1.6E-03 0.3916±7.4E-04 0.3493±3.6E-04 0.3135±6.0E-04 0.3183±1.2E-03 8/0
M5 0.2834±1.5E-04 0.1700±6.0E-04 0.1662±1.3E-03 0.1824±1.6E-03 0.2649±5.4E-04 0.2443±9.3E-04 0.2096±1.7E-03 0.1829±8.6E-04 8/0
M6 0.2663±1.8E-03 0.1283±5.8E-03 0.1343±6.6E-03 0.1701±4.7E-03 0.1959±2.8E-03 0.1851±1.0E-02 0.1545±3.0E-02 0.1604±6.5E-03 8/0
M7 0.3062±3.8E-04 0.2100±8.1E-04 0.2069±7.0E-04 0.2379±2.1E-04 0.3356±8.3E-04 0.2867±1.5E-03 0.2205±1.2E-02 0.2072±1.2E-03 8/0
M8 0.2863±2.1E-03 0.1830±6.8E-03 0.1785±3.0E-03 0.1870±6.9E-03 0.3528±5.5E-04 0.2925±6.2E-04 0.2464±1.3E-03 0.2143±4.8E-03 8/0
M9 0.3029±7.0E-04 0.1904±3.0E-03 0.1823±2.9E-03 0.1966±3.2E-03 0.2584±6.7E-04 0.2207±7.0E-04 0.1984±2.9E-03 0.1430±1.2E-03 8/0

M10 0.2397±1.3E-03 0.1327±1.9E-03 0.1094±6.6E-03 0.1437±4.4E-03 0.1999±3.1E-03 0.1895±8.5E-04 0.1453±4.3E-03 0.1003±1.0E-02 8/0
*Win/Loss represents the number of MTN-TRL compared to other models to win or lose cases on D1-8.

Table IV, similar results are also obtained. The above
experimental results are consistent with expectations.
This superior performance is mainly attributed to the
design of MTN, which improves the traditional Tucker
network by introducing a tensor contraction operation.
As a result, the latent feature space is expanded to
represent higher dimensions, which can more accurately
represent the mode imbalance in nonstandard tensors.

2) The MTN-TRL’s total time cost is very competitive
compared with its peers. For a tensor representation
learning model without hyper-parameters adaptation,
the tuning time before it reaches optimal performance
needs to be considered. Generally speaking, an effective
solution for manually tuning hyper-parameters is to per-
form a grid search. Considering M2-10, without hyper-
parameters self-adaptation, they normally have two or
three main hyper-parameters, their optimal values are
usually in range of [2−0, 2−12], so it is necessary to
search a 13×13 hyper-parameters grid on average. Table
S1 record the optimal hyper-parameters values of M2-
10 obtained by grid search. Table S2 records the total
time cost in obtaining the optimal RMSE, MAE and R2

of M1-M10. From it, we can obviously see that with
hyper-parameters self-adaptation using DEA, the total

time cost of M1 is highly competitive. For example,
on D1, the MTN-TRL’s total time cost in RMSE is
5.8min, which is 1.88% of M2’s 308.1min, 1.89% of
M3’s 306.7min, 11.49% of M4’s 50.5min, 14.39% of
M5’s 40.3min, 8.61% of M7’s 67.4min, 4.41% of M9’s
131.5min, 2.61% of M10’s 222.1min, but is only high
than that of M6 and M8. Similar situations can be
observed on D2-8. In general, MTN-TRL has such
an advantage in time cost due to the following two
aspects: a) the adopted MSGD algorithm reduces the
number of convergence iterations to a certain extent,
thereby accelerating convergence; b) the designed self-
adaptation parameters learning scheme based on the DE
algorithm makes it unnecessary to include parameter
adjustment time during training.
Remark. Note that MTN-TRL already has a lower train-
ing time cost than other baselines, but when deployed on
an industrial scale, it is usually pursued to have a lower
training time cost. To address this problem, we designed
a parallel computing method for MTN-TRL, as shown
in Fig. S4. This method divides the target tensor into
multiple sub-blocks according to the time dimension,
and divides the time factor matrix T in the same way
for multi-threaded parallel training. We performed 10-
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thread parallel training on MTN-TRL on D5, and the
experimental results are shown in Table S3. We find that
it needs to take 33 minutes to converge on the original
R2, but now it only takes 15.2 minutes to converge, and
it hardly affects the representation accuracy.

3) The MTN-TRL’s performance is statistically signifi-
cantly improved. Statistical tests help to reflect the ex-
perimental results more intuitively. Thus, we perform the
commonly used Friedman Test and Wilcoxon Signed-
Ranks Test on Table S4 and S5 [1]. First, the Friedman
test is a nonparametric test used to compare the overall
differences of three or more related samples under
different treatment conditions. Note that in terms of
accuracy, RMSE, MAE, and R2 of each model on D1-8
have a total of 24 cases, and efficiency also has 24 cases.
As shown in Table S4, the Friedman Test is performed
on the accuracy and efficiency of all tested models and
two sets of F-rank are obtained, where the smaller the
F-rank, the better the performance. Specifically, MTN-
TRL achieved an F-rank of 1.00 and 2.25 in accuracy
and efficiency, respectively, both ahead of other models.
We also find that since MTN-TRL uses the proposed
self-adaptation parameter learning scheme, the F-rank
of 2.25 obtained in efficiency is leading compared to
other models. This is consistent with our experimental
results.
In addition, the Wilcoxon signed-rank test is a non-
parametric paired test used to assess the significance of
the difference between the medians of the same sample
under two treatment conditions. Table S5 records the
results of Wilcoxon Signed-Ranks Test, which mainly
include three indicators: R+, R-, p-value. Among them,
R+ represents the ranking of winning cases, R- is the
opposite, and p-value represents the significance level,
if it is less than 0.1, it is judged that the performance
of M1 has been improved compared to the comparison
model. In all comparisons on accuracy, M1 obtain a p-
value less than 0.1. And in terms of efficiency, M1 is on
par with M6, but far exceeds other models. The results
achieved are statistically significant.

C. Scalability of the MTN-TRL

In order to verify the scalability of the MTN-TRL model,
We conduct two extension experiments with different train-
ing set ratios and two new nonstandard tensors. First, the
proportion of the training set in one dataset is gradually
increased from 10% to 80% in 10% increments. Then, two
new nonstandard tensors (D9 and D10) with higher-dimension
and more extreme mode imbalance are added in the empirical
study, where the dimension of D9 is (352,678×352,678×50)
and its density is 1.57×10−8, and the dimension of D10 comes
to (409,025×409,025×30) and its density is 2.21×10−8. Figs.
S5 and S6 show the representation accuracy, based on two
experimental results, we obtain the following findings:

1) The MTN-TRL model has better performance than
its peers in different training set ratios. To validate

the performance of the proposed MTN-TRL model
on training sets of different proportions, we gradually
increase the training set ratio from 10% to 80% on
D4. As shown in Fig. S5, under different training set
ratios, M1 consistently achieves the highest representa-
tion accuracy. For example, when the training set ratio
reaches 20% (i.e., the ratio of training set-validation set-
testing set is 20%-10%-70%), the RMSE values for M1-
10 are 0.3330, 0.3375, 0.3456, 0.3384, 0.3616, 0.3536,
0.3545, 0.3552, 0.3557, 0.3668, and the MAE values
are 0.3256, 0.3318, 0.3423, 0.3261, 0.3556, 0.3553,
0.3441, 0.3489, 0.3502, 0.3657, with M1 exhibiting the
lowest RMSE and MAE. Furthermore, as the training
set ratio increase, the representation accuracy of M1 also
steadily improve. For instance, the R2 of M1 consistently
rises from 0.2913 to 0.4272. This continued advantage
highlights the advantages of MTN-TRL in extracting
salient features and modeling temporal relationships.

2) MTN-TRL still leads in performance on a non-
standard with higher-dimension and more extreme
mode imbalance. The experimental results in Fig. S6
show that MTN-TRL has lower RMSE and MAE than
other tested models. Specifically, on D9, MTN-TRL
achieves an RMSE of 0.3330, which is 1.33%, 3.65%,
1.60%, 7.91%, 5.83%, 6.06%, 6.25%, 6.38%, and 9.21%
lower than those of M2-M9, respectively. In addition,
the MAE achieves by MTN-TRL is 0.2247, which is
1.71%, 4.10%, 2.01%, 8.02%, 2.09%, 4.75%, 5.59%,
9.40%, and 7.03% lower than those of M2-9, respec-
tively. Considering R2, M1 still achieves the highest
R2-value compared with the benchmark models. Similar
findings can be obtained on D10. The above results
prove that MTN demonstrates excellent scalability when
representing nonstandard tensors.

D. Hyper-parameters Sensitivity Analysis

According to Section III, the proposed MTN-TRL’s hyper-
parameters, i.e., γ, η and λ, affect its performance. Thus,
we perform a hyper-parameter sensitivity analysis on D1-D8
via adopting manual grid search. First, the γ is set to 0.8
according to the empirical value, and then a double grid search
is performed on η and λ with a step size of 2−1 and a range
of [2−0, 2−12]. Then, under the optimal η and λ, γ is tuned
with a step size of 0.1 and a range of [0.1, 0.9]. According to
the experimental results depicted in Figs. S7-S9, the following
conclusions can be obtained.

1) The representation accuracy of MTN-TRL exhibits
sensitivity to η , λ, and γ. As shown in Fig. S7(a),
on D1, when γ is fixed, the highest RMSE obtained
by MTN-TRL is 0.3207 with η=2−5 and λ=2−8, and its
lowest RMSE stands at 0.2749 with η=2−11 and λ=2−7,
the gap between the highest and the lowest RMSE
reaches 14.28%. As shown in Fig. S7(b), the difference
between the highest MAE at 0.2284 with η=2−5 and
λ=2−8, and the lowest MAE at 0.1905 with η=2−11

and λ=2−5 comes 16.59%. Considering R2, as shown
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in Fig. S7(c), its highest and lowest values are 0.3727
with η=2−12 and λ=2−6 and 0.1459 with η=2−5 and
λ=2−7 respectively, resulting in an 60.85% difference.
Moreover, on D8, as shown in Fig. S9(v), when η and
λ are fixed, MTN-TRL achieves a minimum RMSE of
0.6748 at γ=0.7 and a maximum RMSE of 0.6949 at
γ=0.1. Similarly, as depicted in Fig. S9(w), when γ=0.1
and γ=0.7, MTN-TRL achieves the highest and lowest
MAE values of 0.5396 and 0.5125, respectively. As
depicted in Fig. S9(x), the highest R2 is 0.3341 with
γ=0.7 the lowest R2 is 0.3025 with γ=0.1. A similar
situation occurs in other datasets, as shown in Figs. S7-
S9.

2) The convergence iteration count of the MTN-TRL
model is primarily influenced by η and γ. As shown
in Fig. S7(d), on D1, when λ=2−7, as η increases
from 2−12 to 20, the number of iterations required to
converge to the minimum RMSE decreases from 112 to
3. Similarly, as shown in Fig. S7(e) when λ=2−5, as
η increases from 2−12 to 20, the number of iterations
required to converge to the minimum MAE decreases
from 136 to 2. As shown in Fig. S7(f), when λ=2−6,
as η increases from 2−12 to 20, convergence iterations
drop from 133 to 2 at the highest R2. When η and λ are
fixed, with γ increasing from 0.1 to 0.9, MTN-TRL’s
convergence iteration count shows a continuous decline.
As depicted in Fig. S9(v), on D8, when γ=0.1 and 0.9,
MTN-TRL takes 811 and 275 iterations respectively to
converge to the lowest RMSE, and similar trends can be
observed for both MAE and R2. Similar phenomena are
also encountered on other datasets, as in Figs. S7-S9.

Overall, the large swings in representation accuracy and
convergence iteration counts reveal that manually tuning
hyper-parameters is both inefficient and poorly adaptable
across datasets. By incorporating an adaptive hyperparameter
adjustment strategy, we can address these issues directly,
boosting the model’s robustness and real-world applicability.

E. Impact of Adaptive Hyper-parameters

To explore the impact of hyper-parameters adaptation
schemes on the MTN-TRL, we conduct a series of experiments
on D1-8, using both manual and adaptive hyper-parameters
tuning. Table S6 records in detail the RMSE, MAE, R2,
and total time of MTN-TRL under these two schemes. The
following conclusions can be drawn:

1) The hyper-parameters self-adaptation scheme is ben-
eficial for MTN-TRL’s representation accuracy gain.
As shown in Table S6, there are a total of 24 cases
including RMSE, MAE, and R2 on D1-8. MTN-TRL’s
representation accuracy after hyper-parameters adapta-
tion wins 17 cases compared with manual-tuning, among
which the largest accuracy gains are improved by 0.38%,
0.41% and 3.00% in RMSE, MAE, and R2 on D2,
respectively. Since the hyper-parameters self-adaptation
scheme optimally selects the current hyper-parameters
based on previous iteration errors during the learn-
ing process, compared with manual-tuning scheme, the

hyper-parameters adaptation scheme can dynamically
adjust the learning process and find the optimal solution
more easily. Therefore, the accuracy gain obtained by
MTN-TRL is reasonable.

2) The hyper-parameters self-adaptation scheme can
significantly reduce the total time cost of MTN-TRL.
For instance, as shown in Table S6, the MTN-TRL’s total
time cost in RMSE, MAE, and R2 with adaptive hyper-
parameters on D1 is 5.8min, 8.1 min, 5.8min, which
is 96.50%, 96.29%, 96.55% less than the 165.8min,
218.3min, 168.0min with manual-tuning. Similar results
can be observed on other datasets as well, and the time
cost savings are significant. Accordingly, this efficiency
improvement is reasonable. As mentioned above, MTN-
TRL’s hyper-parameters γ, η and λ need to be optimal
through three-fold grid search, which requires 13×13×10
training cycles. On the contrary, with hyper-parameters
adaptation, MTN-TRL can automatically find optimal
hyper-parameters in a single training process, thereby
significantly reducing the total time cost.

Through the above experiments and analysis, we found that
the adaptive hyper-parameters learning scheme based on DEA
can not only save a lot of time, but also obtain certain accuracy
benefits.

F. Model Performance Analysis with Different Parameters
Learning Schemes

In this section, we mainly evaluate the performance of the
MTN-TRL model under different parameter learning schemes.
Considering the differential evolution strategy, we use formula
(14) as the fitness function to construct the model MTN-DE1,
and replace the mutation formula (11) of differential evolution
with θn+1

(z) = θn(z1)+µ
(
θn(z2) − θn(z3)

)
to obtain MTN-DE2. In

addition, two commonly used optimization algorithms (SGD
and Adam) are used to learn the representations, and two
variants of the MTN-TRL model are constructed based on
these two optimization algorithms, namely MTN-SGD and
MTN-Adam. The above models are then compared with the
MTN-TRL model. Figs. S10 and S11 show the representation
accuracy and total training time of the five test models,
respectively. From these results, we can observe that:

1) The adaptive parameter learning scheme based on
the newly designed differential evolution strategy in
this study demonstrates better representation accu-
racy and computational efficiency compared with
other differential evolution strategies. As shown in
Figs. S10 and S11, there are a total of 96 cases on D1-
8, including RMSE, MAE, R2 and their corresponding
time costs. It can be clearly seen that MTN-TRL has
lower RMSE/MAE and highest R2 than MTN-DE1 and
MTN-DE2. For example, as shown in Figs. S10(a) and
S11(a), the RMSE of MTN-TRL in D2 decreases by
1.06% and 0.75% compared with that of MTN-DE1
and MTN-DE2, respectively, and the corresponding time
cost decreases by 45.28% and 62.82%. This is because
the fitness function of MTN-DE1 will result in the last
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particle in the iteration process being selected each time,
while the fitness function (13) we designed considers the
particle with the greatest contribution in the evolution
process. In addition, the mutation strategy used by MTN-
DE2 considers random particles for mutation, while
the mutation strategy (11) we use considers the global
optimal particle for mutation. For the above reasons,
MTN-TRL naturally has higher representation accuracy
and computational efficiency.

2) Compared with MTN-SGD and MTN-Adam, MTN-
TRL exhibits higher computational efficiency and
highly competitive representation accuracy. As shown
in Fig. S11(a), on D1, when converging to the low-
est RMSE, MTN-TRL takes only 5.8 minutes, while
MTN-SGD and MTN-Adam require 33.7 minutes and
194.4 minutes, which are 5.8 times and 33.5 times
the time taken by MTN-TRL, respectively. Considering
the MAE, MTN-TRL takes 8.1 minutes to converge to
the lowest MAE, while MTN-SGD and MTN-Adam
take 12.7 times and 20.8 times the time of MTN-
TRL, respectively. When the metric is R2, MTN-TRL
converges to the optimal R2 in only about 1/6 of the
time taken by MTN-SGD and about 1/30 of the time
taken by MTN-Adam. Similar results can be obtained
on D2-8. In term of representation accuracy, as shown
in Fig. S10, on D1-8, based on the RMSE, MAE, and R2

metrics, MTN-SGD and MTN-Adam generate a total of
48 cases to measure representation accuracy, with M1
winning in 45 cases. For example, as shown in Fig.
S10(a), on D2, MTN-TRL’s RMSE is 0.2765, which
is 0.50% and 1.29% lower than those of MTN-SGD
and MTN-Adam, respectively. These results indicate that
the MSGD-based adaptive parameter learning scheme
proposed in this study is essential and necessary for
efficiently and accurately learning the representation of
nonstandard tensors.

In summary, the proposed adaptive parameter learning
scheme based on MSGD and DE algorithm is crucial for
building an efficient and accurate MTN-TRL model. It enables
MTN-TRL to achieve good representation accuracy while
significantly reducing the time cost.

G. Impact of Dimension M

In MTN, two LF matrices P ∈ R|I|×R1 and Q ∈ R|J|×R2

are extended into two third-order LF tensors P ∈ RM×|I|×R1

and Q ∈ RM×|J|×R2 for representing two high-dimensional
mode of the nonstandard tensor, as a result, the dimension M
of LF tensors’ newly constructed mode has a directed effect on
the representation learning ability of MTN-TRL. Therefore, in
this part, we explore the impact of the dimension M to MTN-
TRL, and verify the effectiveness of MTN via comparing with
a traditional Tucker network (i.e., M=1). As shown in Fig.
S12, we gradually increase the value of dimension M from the
range [1, 10] on D1-D8, and record the RMSE, MAE, and R2

of MTN-TRL. Based on these results, the following findings
can be drawn:

1) The representation learning ability of MTN-TRL can
be significantly enhanced by the newly constructed
mode of LF tensors. As mentioned above, when M=1,
MTN degenerates into a Tucker network. As shown in
Fig. S12, on D1-D8, when M=1, the maximum RMSE
and MAE are obtained, and the minimum R2 is obtain.
Concretely, when M=1, the RMSE of MTN-TRL are
0.2993, 0.3229, 0.331, 0.2949, 0.6247, 0.672, 0.692,
and 0.7567 on D1-8, respectively. When M=2, i.e., LF
matrices are extended into third-order LF tensors (a
new mode is constructed), the RMSE of MTN-TRL
respectively are 0.2877, 0.3082, 0.3168, 0.2798, 0.6052,
0.6497, 0.6617, and 0.7153 on D1-8, which are reduced
by 3.88%, 4.55%, 4.29%, 5.12%, 3.12%, 3.32%, 4.38%,
and 5.47%, respectively. Considering MAE and R2,
similar results are also obtained on D1-8.

2) The dimension M of LF tensor affects the per-
formance of MTN-TRL. As shown in Fig. S12, as
the value of dimension M increases, the RMSE and
MAE show a downward trend, while R2 shows the
opposite trend. Specifically, the MTN-TRL obtains the
minimum RMSE of 0.2757 on D1 when M=10, which is
4.17% lower than 0.2877 when M=2, at the same time,
MAE decreases by 2.16% and R2 increases by 18.06%.
Moreover, the MTN-TRL’s MAE on D3 and RMSE on
D6 have a trend of first decreasing and then rising, e.g.,
the minimum MAE is 0.2089 when M=5 on D3, that is
to say, the optimal M for LF tensor has been obtained
with MAE as metric. In general, when the value of M
is larger, the performance of MTN-TRL will gradually
improve, but there is an optimal value of M, which is
normally data-dependent.

H. Ablation Study
In order to verify whether a high-dimensional mode of a

nonstandard tensor need to adopt an LF tensor representation,
in other words, verifying the rationality of constructing a
new edge between latent factor nodes representing two high-
dimensional modes in MTN. As shown in Fig. S13, two new
MTN is designed, i.e., an MTN-2 by expanding matrices Q
and T (i.e., constructing a new edge between nodes Q and
T), and an MTN-3 by expanding matrices P and T (i.e.,
constructing a new edge between nodes P and T). Fig. S14
records the RMSE, MAE, and R2 of TRL adopting three
different MTN on D1-8. As illustrated in Fig. S14, the TRL
with MTN demonstrates better representation learning ability
than TRL with MTN-2 and MTN-3 on D1-8. For example,
the RMSE obtained by MTN-TRL on D1 is 0.2745, which is
5.67% lower than 0.2910 of MTN-2 and 4.05% lower than
0.2861 of MTN-3. Likewise, similar findings can be obtained
in other cases. Through experimental verification, we conclude
that a larger representation space can better represent high-
dimensional mode of a nonstandard tensor.

I. The Generalization of MTN-TRL on 4th-order Nonstandard
Tensors

To assess the representation capability of MTN to higher-
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order nonstandard tensors, two fourth-order nonstandard ten-
sors (Tensor1 and Tensor2) are adopted in this experiment.
Tensor1 is a “node×node×time×feature” fourth-order nonstan-
dard tensor which models a telecommunication network, and
each element describes a interaction feature value (e.g., byte
count, packet count, latency, or packet loss rate between two
nodes). It has the dimension of (1392×1392×100×4) and its
data density is 0.04%. Tensor2 models a road traffic network,
where each element represents the average speed of one road
monitored by a sensor. It has the dimension of (214×144×7×8)
and its data density is 10%, where 214 denotes the number of
speed sensors, 144 and 7 represents the time slots of one day
and the number of consecutive monitoring days, and 8 indi-
cates monitoring cycles. For such a fourth-order non-standard
tensor, according to the design idea of MTN, we construct
a new edge between two LF nodes with higher-dimensional
modes. Three common tensor networks, i.e., Tucker, Tensor
Ring (TR), and Tensor Wheel (TW), are used as benchmarks,
and the experimental results are shown in Table S7. From the
results, we can find that MTN has comprehensive advantages
over the other three common tensor networks in the fourth-
order nonstandard tensor representation. As recorded on Table
S7, on Tensor1, the RMSE of MTN is 0.8389, which is
7.94% lower than Tucker’s 0.9113, 7.84% lower than TR’s
0.9103, and 3.71% lower than TW’s 0.8712. Similarly, on
Tensor2, the RMSE of MTN is 0.0850, which is 1.62% lower
than Tucker’s 0.0864, 2.86% lower than TR’s 0.0875, and
1.16% lower than TW’s 0.0860. It also shows similar trends
in MAE and R2. These results indicate that MTN not only
represents third-order nonstandard tensors effectively but also
exhibits excellent representation capabilities for higher-order
nonstandard tensors, demonstrating its strong generalization
ability owing to its mode-aware design philosophy.

J. Engineering Application Scenes

In this section we apply MTN-TRL to a real-world engineer-
ing application, i.e., traffic congestion prediction. Specifically,
traffic congestion prediction can be achieved through road
network link prediction, where each road is represented as
a weighted link based on vehicle speed data collected by
sensors. By predicting the future weights of these links, the
level of congestion can be effectively assessed. However, in the
actual process of data collection, some factors (i.e., network
interruption or sensor anomaly) may lead to the loss of data
acquisition, making it difficult to accurately predict future
speed data when directly using predictors like LSTM. As
shown in Fig. S15, a road network can be modeled as a
third-order “road×interval×day” nonstandard tensor, where an
element of the tensor represents the average speed on one
road during a specific time interval within one day. Hence,
we first employ the MTN-TRL model to learn representations
of the non-standard speed tensor, i.e., latent factors of road
mode, interval mode and day mode, then impute missing
historical speed data based on the low-dimensional represen-
tations. Subsequently, the completed tensor is fed as input
to a predictor (e.g., LSTM) to predict road average speed

data for each interval over the next N days. Concretely, this
study employs a road network of 214 links, capturing 60
consecutive days of vehicle speed data at a temporal resolution
of 144 intervals per day. Correspondingly, the road network
is modeled as a 214×144×60 nonstandard tensor, and it is
used to predicted the speed data on the 61st day. M2 (TW
model) serves as the benchmark model, as it demonstrates the
best performance among the nine state-of-the-art models in
Section VI.B. Accordingly, the MTN-TRL and TW models are
utilized to learn the low-dimensional representations of target
nonstandard tensor, which serve as the basis for predicting
vehicle speeds on Day 61. The prediction results show that
MTN-TRL achieves RMSE and MAE values of 0.1801 and
0.1294, respectively, while the TW model yields 0.1865 and
0.1326. The experimental results indicate that MTN-TRL
provides robust support for downstream tasks.

K. Summary

Based on the above experimental results, we draw the
following summary:

1) Compared with other commonly used tensor networks,
MTN-TRL has better performance owing to its excellent
represent ability to a nonstandard tensor with mode un-
balance, high-dimension, and incompleteness properties.

2) The hyper-parameter self-adaptation mechanism is nec-
essary for MTN-TRL model because the model’s per-
formance is highly sensitive to hyper-parameter config-
urations.

3) The MSGD-based adaptive parameters learning scheme
plays a pivotal role in constructing MTN-TRL model
owing to its computational efficiency.

4) The MTN-TRL possesses remarkable scalability and
generalization capabilities owing to its superior rep-
resentation learning ability when handling higher-
dimensional tensors with more extreme mode unbalance
and higher-order nonstandard tensors.

V. RELATED WORK

Tensor representation learning has performed well in many
fields, such as traffic prediction, network embedding, image
completion, etc. To date, researchers design various tensor
network formats to build a TRL model. Li et al. [22] use
tensor train subspace to represent features, and solve the
problem of structural damage and excessive parameters caused
by vectorization. Liu et al. [35] estimates the rank of a tensor
ring through group sparse constraints, and introduces total
variational components to enhance local consistency. Wu et
al. [31] develop a tensor wheel decomposition by introducing
a core tensor into TR and established the connection between
multiple latent tensors. Yang et al. [36] propose a general-
ized transformed tensor representation learning model for the
concurrent recovery of corrupted tensor data. Zhang et al. [37]
efficiently handle third-order tensor data with partial and noisy
observations by minimizing the maximum likelihood estimate.

The above methods all consider complete tensors, but real-
world data are usually incomplete [11]–[15], [38]. Thus, Zhang
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et al. [39] propose a sparse tensor decomposition model, which
decomposes a tensor via sparse coding and learns its compact
dictionary and sparse core tensor. Chen et al. [40] design
a tensor low-rank learning model to explore the local and
global patterns of high-dimensional data by constructing a
sparse similarity matrix. Zhang et al. [41] develop a novel
low-rank tensor regularized view recovery by reconstructing
missing views and learning multi-level graphs to discover the
consistency and complementarity between views. Bi et al. [42]
use simplified graph convolution, prior convolution operators
and local enhancement pooling schemes to efficiently obtain
hidden information in incomplete data.

Furthermore, in order to achieve the effective representation
of dynamic graphs with imbalanced modes, Hoang et al. [43]
enhance the tensor by 2D index encoding and factorized it
using the concept of tensor train for efficient completion of
imbalanced and sparse low-rank tensors. Van Belle et al.
[44] adopt a nearest neighbor search sampler, a heterogeneous
graph neural network layer, and an aggregation function for
category imbalance to solve the problems of large data scale,
graph heterogeneity, and category imbalance faced in dynamic
graph inductive learning. Qian et al. [45] use dynamic graphs
and hybrid contrastive learning to enhance the expression of
minority class features and improve the learning performance
of unbalanced graphs. Sun et al. [46] design dynamic graph
attention mechanism to accurately model label associations,
and adopt double sampling and collaborative training strategies
to effectively overcome the unbalanced label distribution in
multi-label time series.

However, the above representation learning methods are
confronted with high computational and storage complexity,
making it difficult to efficiently represent large-scale dynamic
graphs. Therefore, this study models a large-scale dynamic
graph as a nonstandard tensor, correspondingly, the MTN is
specially designed to represent such a nonstandard tensors,and
an efficient MTN-TRL model is developed to learn the repre-
sentation.

VI. CONCLUSIONS

Aiming to learning the accurate representation of the non-
standard tensor, this paper designs a Mode-Aware Tucker Net-
work (MTN) and builds an MTN-based tensor representation
learning model. Specifically, in MTN, a newly generating LF
tensor is adopted to represent the high-dimensional mode of
a nonstandard tensor. Furthermore, with data density-oriented
modeling principle, an MTN-TRL model is built to learn
the representations of nonstandard tensor efficiently and ac-
curately, where an adaptive fast gradient descent algorithm
is designed by fusing differential evolution and momentum
methods. Finally, the experimental results on eight nonstandard
tensors demonstrate that the proposed MTN-TRL performs
better than other state-of-the-art models. Moreover, we also
verified that MTN is more suitable for nonstandard tensor
representation than other commonly used tensor network.
Considering the future work,

1) It is highly meaningful to integrate neural network
framework and MTN-TRL model (such as introducing

activation functions in MTN) to construct more sophisti-
cated model for capturing nonlinearity in a nonstandard
tensor.

2) It is of great significance to design a GPU parallel
computing framework compatible with the MTN-TRL
model to enhance the efficiency of both model training
and inference.

We plan to address the above issues in the future.
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