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Abstract—Time series anomaly detection (TSAD) is a funda-
mental practice in information management, aimed at identifying
unusual patterns in temporal datasets. This process is critical to
maintaining the integrity and reliability of systems. Recently,
generative models have significantly advanced the capabilities of
artificial general intelligence, presenting novel methodologies to
understand and interpret complex data structures. In this review,
we examine the latest advancements in applying generative
models to TSAD and highlight how these models present a
paradigm shift in detecting and analyzing anomalies within
sequential data. In particular, we first present the background
information, including definitions of key concepts, a taxonomy
of anomaly types, and the distinction between generative and
discriminative models in time series data. Then, we investigate a
range of generative models, offering mathematical summaries of
the predominant techniques in TSAD. Furthermore, we provide
a summary of the datasets and propose recommendations for
appropriate generative methods tailored to various application
domains. Finally, we address the significant challenges in current
research and propose potential directions for future study.

Impact Statement—Generative approaches have shown ex-
ceptional performance in TSAD. Various emerging generative
methods have expanded in this field, signaling a shift from
traditional to deep generative techniques. Although some studies
have reviewed the use of generative models like GANs and
Transformers in time series, a comprehensive synthesis of these
methods for anomaly detection is still lacking. This paper reviews
existing work on mainstream generative approaches for this
purpose. We summarize datasets and analyze methods suited to
different dataset characteristics, providing tailored recommenda-
tions for various application domains. The goal of this paper is
to offer researchers a reliable review and valuable guidance for
future work.

Index Terms—Deep learning, generative models, time series
anomaly detection, survey

I. INTRODUCTION

T IME series data, owing to its sequential structure, has
broad applications across various areas, including health-

care [149], finance [29, 73], and energy [122]. Time series
analysis is of significant importance in the field of information
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management systems [43, 71]. It provides valuable insights
into patterns, trends, and deviations that have a significant
impact on decision-making processes.

A new focus in the research of temporal data is Time
Series Anomaly Detection (TSAD), which helps to identify
anomalies in temporal data streams, thereby mitigating poten-
tial risks inherent in real-world systems [109, 128, 146]. The
challenges encountered in the task of TSAD fall into three
primary dimensions. First, the dynamic and evolving nature
of temporal data presents a significant challenge. Second, the
presence of noise and outliers obfuscates meaningful patterns
and complicates the identification of true anomalies. Finally,
the scarcity of labeled anomaly data makes general supervised
algorithms unusable.

Traditional statistical-based methods perform anomaly de-
tection by identifying the boundary or difference between
anomalies and normal points. The K-Nearest Neighbors
(KNN) method [23, 140] determines anomalies by comparing
the distance between the target points and their nearest neigh-
bors.This means points with significantly greater distances
to their adjacent data points, indicating potential anomalies.
The Local Outlier Factor (LOF) method [65, 117] detects
anomalies in temporal data by assessing the density differences
between a data point and its neighbors within a specified
locality. It flags points with substantially lower densities as
potential anomalies, suggesting significant density differences
from their neighbors. OC-SVM (One-Class Support Vector
Machine) [83] is an unsupervised learning algorithm. The
core concept of OC-SVM is to construct a decision boundary
that closely encapsulates the normal patterns of the data,
with any points significantly deviating from this boundary
being identified as outliers. In time series analysis, OC-SVM
employs a suitable kernel function to model the temporal
features, which helps in distinguishing between normal and
anomalous patterns.

In recent years, the striking rise of generative models
[1, 17, 20, 98, 143] has provided a powerful avenue for TSAD.
Unlike discriminative models [5] that focus on delineating
decision boundaries, generative models work on understanding
and learning the underlying data distribution. The capacity
to generate samples mirroring the distribution of the training
set gives generative models a distinct advantage in TSAD.
Bayesian networks [40] are graphical models that represent
the conditional dependencies among variables to model the
joint distribution of multivariate data. By constructing models
of dependency relationships among key variables in time
series data, Bayesian networks facilitate the inference and
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TABLE I: A Comparison Between Existing Surveys on Time Series.

Surveys TS TSAD TSDL GTSAD Uni Mul Anomaly Detection Source Code Dataset
MR AS thresholds Real Synthetic

Our survey ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wen et al. [135] ✓ - ✓ - - ✓ - - - - - -
Lin et al. [94] ✓ - ✓ - - ✓ - - - - - -

Blázquez et al. [11] ✓ ✓ - - ✓ ✓ - - - ✓ - -
Cook et al. [32] ✓ ✓ - - ✓ ✓ - - - - - -
Zhang et al. [146] ✓ ✓ - - - - - - - - - -
Shaukat et al. [119] ✓ ✓ - - - - - - - - - -

Braei et al. [13] ✓ ✓ ✓ - ✓ - - - - - ✓ ✓
Chen et al. [24] ✓ ✓ ✓ - - ✓ - - - - - -
Darban et al. [37] ✓ ✓ ✓ - ✓ ✓ - - - - ✓ ✓
Freeman et al. [46] ✓ ✓ ✓ - ✓ - - - - - - -

Ho et al. [63] ✓ ✓ ✓ - - ✓ - - - - - -
Li et al. [82] ✓ ✓ ✓ - - ✓ - - - ✓ - -
Wang et al. [132] ✓ ✓ ✓ - ✓ ✓ ✓ ✓ - ✓ ✓ -

* TS: Time Series, TSAD: Time Series Anomaly Detection, TSDL: Time Series with Deep Learning, GTSAD: Generative Time Series
Anomaly Detection.
* Uni: Univariate, Mul: Multivariate, MR: Mathematical Representation, AS: Anomaly Score.
* ✓: included, -: not included.

Fig. 1: Total Process of the Generative MTS anomaly detection.

prediction of normal behavior at each time point. In real-time
monitoring, significant deviations of observed values from the
probability distributions predicted by the model indicate po-
tential anomalies, thereby enabling the discovery of anomalies
within temporal data. Hidden Markov Models (HMMs) [55]
can be used to model the state transitions and observation
probabilities of the data and to identify outliers or anomalous
patterns that differ significantly from normal patterns. The
effectiveness of HMMs is rooted in their capability to discern
underlying structures and temporal correlations in the data,
which has led to their excellent success in TSAD. However,
for data with high dimensionality, complex patterns and large
data volumes, traditional statistical models may face great
difficulties. The proposal of novel approaches is imminent.

The advent of deep neural network technology [15, 127]
has marked a new era in TSAD. Deep learning models,
including Variational Autoencoder (VAE) [41, 77] and Gener-
ative Adversarial Networks (GAN) [33, 54], have significantly
enhanced the accuracy and performance of TSAD. For exam-
ple, LSTM-VAE [107] employs LSTMs as both encoder and
decoder, effectively representing and reconstructing time series
data; BeatGAN [149] utilizes autoencoders as the generator
within a GAN framework, providing stability and regular-

ization to the reconstruction process. Additionally, methods
based on normalizing flows [39, 106] and diffusion models
[34, 99, 141] are continuously emerging.

As for TSAD, many research teams have explored and sum-
marized this field. As shown in Table I, Blázquez et al. [11],
Cook et al. [32], Zhang et al. [146], and Shaukat et al. [119]
reviewed traditional TSAD approaches, focusing mainly on
statistical methods and machine learning methods. Meanwhile,
Braei et al. [13], Chen et al. [24], Darban et al. [37] and
Freeman et al. [46] delved into deep learning-based TSAD
approaches and provided a comprehensive categorization of
these approaches. In addition, Wen et al. [135] and Blázquez
et al. extensively summarize specific deep learning models
such as GANs, Transformers, and Diffusion models in time
series. Other studies have focused on specific applications
of TSAD in areas such as smart grid [146], Internet of
Things (IoT) [32], and TSAD [63, 82]. These studies provide
important insights into the roles and challenges of TSAD
techniques in real-world applications. However, there is a
lack of systematic reviews on TSAD generative methods. It
suggests that this is an unexplored area of research. This
paper aims to offer researchers a comprehensive overview of
generative approaches to TSAD, offering valuable advice and
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Fig. 2: An overview of the development of representative generative TSAD models. Those with corresponding background
colors are deep learning models.

guidelines for future study in this area.
The organization of the subsequent chapters in this paper is

outlined as follows:

• Basics: Section 2 gives some definitions of temporal
data and anomaly detection, generalizes the types of
anomalies, and summarizes the common generative and
discriminative methods in this area.

• Mainstream Generative Methods: Section 3 presents
six types of mainstream TSAD methods and analytically
reviews the specific work of these methods.

• Libraries: Section 4 discusses the novel metrics for
TSAD and summarizes the frequently utilized datasets.
In addition, we expand to recommend effective methods
for different datasets. We also summarize the applications
of TSAD in various fields.

• Future Directions: In Section 5, we analyze the chal-
lenges encountered in TSAD and propose some targeted
directions for future research.

II. DEFINITIONS AND BACKGROUND CONCEPTS

A. Time Series Data

Time series: Let X ∈ RN×d represent a time series with N
sequential observations {x1, x2, . . . , xN}, where xi ∈ Rd and d
is the dimension of the time series. When d = 1, the time series is
univariate; otherwise, it’s multivariate.

Univariate time series(UTS): A sequence of data points, X =
{x1,x2, . . . ,xN}, where each data point xi represents the observa-
tion of a single variable at the ith equally spaced time interval. The
set T = {1, 2, . . . , N} denotes the discrete time steps at which these
observations occur.

Multivariate time series(MTS): A set of multiple univariate
time series. Formally, an MTS can be represented as a matrix
X = [x1,x2, . . . ,xn]

⊤, where xt = (x1
t , x

2
t , . . . , x

d
t ) is a snapshot

of d variables at time t, and each xj
t is the jth variable at the time

step t.

B. Anomaly detection

Time series anomaly detection: The goal of anomaly detection is
to provide an anomaly vector S ∈ {0, 1}N when given a time series
X. S[i] = 1 if the time point xi is judged as an anomaly, otherwise
S[i] = 0 .

Generative and Discriminative time series anomaly detection
methods: Generative methods primarily aim to study the distribution
characteristics of normal time series to generate new samples with the
same distribution as the training data. Discriminative methods focus
on directly learning the decision boundary to distinguish between
normal and anomalous time series. The overall architecture of deep
generative models for TSAD is depicted in Figure 1.

C. Types of Anomalies

1) Time-Dependent Anomaly Patterns: These anomalies are
primarily related to the temporal dependencies inherent in the time
series data and include:

Spike Anomalies: Spike anomalies refer to sudden extreme val-
ues or fluctuations in a time series that significantly deviate from
surrounding data points. For example, in stock trading data, a sudden
surge or drop in the price of a stock within a short period may indicate
a spike anomaly.

Collective Anomalies: Collective anomalies indicate long periods
of anomalous states in a time series, which may be caused by system
failures, persistent anomalous events, etc. For instance, if the response
time of a network server consistently exceeds the average response
time for an extended period, it could signal a collective anomaly due
to server malfunctions or network congestion.

Seasonal Anomalies: Seasonal anomalies occur when data points
within certain cycles in a time series significantly deviate from the
expected pattern. For instance, in yearly sales data, a seasonal product
suddenly experiencing a surge in sales during off-season periods may
indicate the presence of a seasonal anomaly.

Trend Anomalies: Trend anomalies refer to non-periodic long-
term trend changes in a time series that either go against the expected
trend or significantly deviate from it. For example, in weather data,
if the temperature in an area shows a gradual upward trend over
time, contrary to the expected seasonal temperature change, this may
indicate a trend anomaly.
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2) Variable-Related Anomaly Patterns: These anomalies are
associated with the relationships between various variables in the time
series, including:

Sequence Synchronization Anomalies: Sequence synchroniza-
tion anomalies occur when the synchronization or temporal alignment
between related sequences in a multivariate time series is disrupted.
This anomaly manifests as one or more sequences deviating from
their normal synchronization patterns with others, leading to a
breakdown in the overall coherence of the system. Sequence syn-
chronization anomalies are particularly significant in time-sensitive
systems, such as industrial control or network communications, where
maintaining temporal synchronization is crucial.

Cross-Sequence Relationship Anomalies: Cross-sequence rela-
tionship anomalies refer to changes in the relationships between
multiple sequences in a multivariate time series. Such anomalies
cannot be detected by analyzing individual sequences in isolation but
require a holistic analysis of the relationships between sequences.
These anomalies are closely tied to the physical significance of
the data, often reflecting abnormal deviations in the coupling or
collaborative patterns between different variables in the system.
However, these types of anomalies are often underrepresented in
existing classification frameworks, making them easy to overlook.

D. Generative Models for Time series anomaly detection
TSAD remains a hot topic. Early discriminative methods focused

on detecting anomalies distinct from known normal patterns. In con-
trast, generative approaches emphasize learning data distributions and
producing new samples. The advancement of generative methods in
time series is attributed to progress in deep learning and probabilistic
modeling. These methods provide flexible and accurate approaches
to capturing data distributions, thereby pushing the frontier of time
series forward.

After investigating generative methods for TSAD, we categorize
them as follows:

Markov Methods [31, 113, 118], initially for speech recognition,
model the probabilistic relationship between observation and state
sequences in time series. They offer a probabilistic framework for
generative anomaly detection methods.

Variational Autoencoders (VAEs) [27, 93, 107, 111] applied
successfully in TSAD, aim to train the probabilistic encoder qϕ(z|x)
(parameterized by ϕ) to map temporal data into a low-dimensional
embedding z. Concurrently, the decoder pθ(x|z) (parameterized by
θ) is tasked with reconstructing sequences from z.

Generative Adversarial Networks (GANs) [85, 116, 130] lever-
age adversarial learning for implicit time series data distribution
modeling, employing a generator (G) and discriminator (D). Specifi-
cally, the generator learns the time series distribution to produce new
sequences, while the discriminator distinguishes real from generated
ones.

Normalizing Flows (NFs) map time series into latent variables
z using invertible functions f(x). They model distributions by
tracking density changes through Jacobian matrices. Function f−1(z)
produces new samples from latent variables, with training maximizing
log-likelihood via gradient descent. [36] enhances Normalizing Flows
with Bayesian networks to more accurately estimate joint densities,
achieving unsupervised anomaly detection across multiple sequences.

Diffusion Models, also known as diffusion probabilistic models,
gradually add Gaussian noise to transform a time series into pure
Gaussian noise z. They then generate a new time series by gradually
denoising z until it approximates the true data distribution. Some
scholars [138] proposed a diffusion-based anomaly detection method
that uses weighted incremental diffusion, effectively mitigating the
impact of anomalies by capturing long-range dependencies from
selected normal points.

Adversarial Autoencoder (AAE) [101] is an improved neural
network architecture of autoencoders(AE), which skillfully combines
AE with GAN. It aims to learn efficient representations of time
series in an unsupervised manner. In AAEs, the encoder-decoder

architecture is augmented with a discriminator network, similar to
those used in generative adversarial networks (GANs). The encoder
maps input data into latent variables z, the decoder reconstructs the
data from the latent variables z, and the discriminator distinguishes
between temporal data from the true sequence and those generated
by the decoder.

Other Methods, such as Denoising Autoencoder [72, 145],
Masked Autoencoder [51, 125], and Boltzmann Machine [62, 80],
have found application in other time series tasks like forecasting
[38, 91] and classification [70, 148]. However, the discussion and
utilization of them in anomaly detection tasks are relatively limited.

III. MAINSTREAM METHODS FOR TIME SERIES ANOMALY
DETECTION

A. Markov Models for time series anomaly detection
Markov Model is a classic statistical model widely used in natural

language processing (NLP) tasks such as speech recognition, part-of-
speech tagging, phoneme-to-grapheme conversion, and probabilistic
grammars. Over years of development, particularly its successful
application in speech recognition, the Markov Model has become
a general and effective statistical tool. Currently, it is still considered
one of the most successful methods for implementing fast and
accurate speech recognition systems.

The challenges of TSAD include the temporal dependence and
dynamics of the data, for which Markov methods tend to capture
potential patterns and transitions in temporal data through state
transfer modeling. The model is trained as a predictor to simulate
normal behavior and can be used to generate predictions for points or
subsequences of the nearest window. This is particularly useful in real
industrial scenarios where normal behavior is abundant but anomalous
behavior is scarce. Anomalies can be detected by comparing the
differences or residuals between the actual observations and the
model predictions. This can be expressed as:

x̂t = Predictor(xt−1, zt−1)

∥xt − x̂t∥ > threshold
(1)

Here, x̂t and xt are the predicted and true values at time t, respec-
tively. xt−1 and zt−1 are the value and potential representations
of the previous moment t− 1. Function Predictor is specifically
designed for each method separately.

Markov models are widely recognized for their computational ef-
ficiency and strong theoretical foundations, making them particularly
effective for real-time detection tasks and offering high interpretabil-
ity that is critical for problem diagnosis in industrial applications.
However, their reliance on the assumption that future states depend
solely on the current state inherently limits their ability to capture
long-term dependencies, while the simplification of state transition
dynamics may reduce their adaptability to complex patterns. Addi-
tionally, the assumption of stationary state transitions often conflicts
with the non-stationary nature of real-world data, leading to potential
performance degradation in dynamic environments.

HMAD [55] combines Hidden Markov Anomaly Detectors and
One-class Support Vector Machines to deal with time series with
latent dependency structure. Additionally, A DC (Difference of Con-
vex Functions) algorithm is introduced to optimize the non-convex
methods, improving the generalization ability and performance of
the anomaly detection model. Similarly, Cao et al. [16] proposed
the AHMMAS model, which integrates the adaptive hidden Markov
model with the wavelet transform to provide an enhanced signal
decomposition technique for time series. In addition, the introduction
of an adaptive mechanism also compensates for the non-stationarity
of the time series. However, the primary objective of these methods
is to generate a single scalar representation of the outlier degree
in a sample, often lacking direct variable-level information. For
multivariate time series, sGMRFmix [69] combined Gaussian Markov
Random Fields and Bayesian inference, which were able to filter out
uncorrelated variables and effectively identify outliers. To cope with
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Fig. 3: Structure of the Markov-based TSAD.

Fig. 4: Structure of the VAE-based TSAD.

Fig. 5: Structure of the GAN-based TSAD.

Fig. 6: Structure of the NF-based TSAD.

multivariate, variable-length datasets, SMS-VAR [102] uses a semi-
Markov switching vector autoregressive model for heterogeneous
time series. Owing to the lightweight and parallelizable nature of
the model, the method can be used for online anomaly detection.
ADDMM [115] introduces a dynamic Markov TSAD approach for
sequence data, addressing limitations of traditional Markov chain
techniques. Utilizing a sliding window and higher order Markov
models, it balances memory length with sequence trends. An anomaly
substitution strategy ensures continuous detection without compro-
mising the integrity of the model.

B. Variational Autoencoders for time series anomaly detection
The Variational Autoencoder (VAE) is a classic generative model

proposed by Kingma and Welling in 2013. It combines variational
inference and deep learning, approximating complex probability dis-

tributions through neural networks. Due to its simplicity, stability, and
clear theoretical foundation, VAE has received widespread attention.

In time series anomaly detection, VAE can learn normal patterns
of time series and detect anomalies using reconstruction errors. VAE
is suitable for various types of time series data, such as financial data
and industrial sensor data.
Inference Network

The working principle of VAE is similar to an autoencoder, but
instead of encoding inputs into a single point, it employs an inference
network qϕ(z | x) to encode them into a distribution, where ϕ
represents its parameters. It maps a d-dimensional series x to a latent
representation z with a lower dimension k < d.

qϕ(z | x) = N (µϕ(x), log(σ
2
ϕ(x))) (2)

Here, N denotes the Gaussian distribution with mean µ and variance
σ2. The functions µϕ(x) and σ2

ϕ(x) are the outputs of the inference
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Fig. 7: Structure of the Diffusion Models for TSAD.

Fig. 8: Structure of the AAE-based TSAD.

network (encoder) parameterized by ϕ.
Generative Network

The sampling layer extracts a sample from the latent distribution
and feeds it into the generative network pθ(x | z), where θ is its
parameter, and the output is Decoder(Z).

pθ(x | z) = N (µθ(z), σ
2
θ(z)) (3)

ELBO (Evidence Lower Bound)
A commonly used variational inference method in VAEs is SGVB

(Stochastic Gradient Variational Bayes). It optimizes the parameters
ϕ and θ by maximizing the Evidence Lower Bound (ELBO), denoted
as ELBO(θ, ϕ;x):

ELBO(θ, ϕ;x) = Eqϕ(z|x) [log pθ(x | z)]− KL (qϕ(z | x)||p(z))
(4)

Here,Eqϕ(z|x) represents the expectation over the distribution qϕ(z |
x), KL is the KL divergence, and p(z) is the prior distribution for
latent variables.
Optimization Objective

max
θ,ϕ

1

N

N∑
i=1

[
Eqϕz|xi) [log pθ(xi | z)]− KL (qϕ(z | xi)||p(z))

]
(5)

Here, N represents the size of the training set, and xi is the i-th
sample in the training set.

To provide a comprehensive analysis of VAE-based methodologies,
we summarize the three pivotal modules of the process: 1)Represen-
tation Learning: Given a training set, models learn the representation
of the normal sequences by means of the respective neural network
modules. 2)Anomaly Score: For the sequences in the test set
X = {x1,x2, . . . ,xn}, the anomaly score S = {s1, s2, . . . , sn} cor-
responding to each point (subsequence) in the sequence is computed
using the respective scoring method. 3)Thresholds: Appropriate
thresholds are selected, and points (sub-sequences) with anomaly
scores greater than the thresholds are determined to be anomalous.
Representation Learning

Many state-of-the-art methodologies, including
OmniAnomaly[123], SISVAE [87], and RDSSM [90], employ
GRU (RNN) architectures as the primary encoding and decoding
structures to capture temporal characteristics inherent in the
sequence. In particular, approaches such as InterFusion [89] enhance
the basic GRU structure by incorporating 1D convolutional layers
and leveraging Two-view embeddings. This augmentation facilitates
a more nuanced understanding of intermetric embeddings, allowing
for the discernment of acquired temporal insights while preserving
temporal consistency within these embeddings. TopoMAD [61]
and DVGCRN [26] amalgamate RNNs with GCNs to emulate
the spatial and temporal granularity correlations present in MTS.
MT-RVAE [129] introduces the self-attention mechanism into the
VAE framework and devises a comprehensive temporal encoding
scheme. This innovation aims to capture latent correlations
between sequences and encapsulate multiscale temporal information
effectively.
Anomaly Score

The majority of methodologies[61, 87, 89, 90, 123] adopt a consis-
tent anomaly scoring strategy, namely the reconstruction probability.
DVGCRN [26] innovatively combines the reconstruction probability
with prediction error, establishing a novel scoring criterion. SLA-
VAE [67] employs the plain absolute reconstruction error. MT-RVAE
[129] uses the absolute reconstruction error and integrates an EWMA
method to facilitate the smoothing of reconstruction errors.
Thresholds

Anomaly scoring measures the extent of deviation observed in data
instances. Nevertheless, in practical applications, a threshold remains
essential to delineate between normal and anomalous patterns. Unlike
conventional static thresholding methods, VAE-based approaches typ-
ically incorporate dynamic thresholds that account for data variability.

Several techniques, such as OmniAnomaly [123] and DVGCRN
[26], utilize the POT(Peaks-Over-Threshold) [121] method to deter-
mine the threshold. InterFusion [89] adopts a threshold selection
based on maximizing the global F1-score. SISVAE [87] conducts
comprehensive experiments, exploring both globally optimal F1-score
thresholds and those determined by F1-score rankings. Similarly,
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TABLE II: Summary of representative VAE methods.

Models Representation Learning Anomaly Score Thresholds

OmniAnomaly [123]



Enc(·) = fϕ(ϕGRU , ϕMLP )

µz, σz = Enc(x)

z = PlanarNF (µz, σz)

qϕ(z|x) ∼ N(µz, diag(σ2
z))

Dec(·) = fθ(θGRU , θMLP )

µx, σx = Dec(z)

pθ(x|z) ∼ N(µx, diag(σ2
x))

St = − log(pθ(xt|zt−T :t))

th0 = Q(p)

th∗ ≈ th0 − β
γ

(
q N′

N′
th

)−γ
− 1

SISVAE [87]

{
Enc(·) = fϕ(ϕGRU , ϕMLP )

Dec(·) = fθ(θGRU , θMLP )
St = − log(pθ(xt|zt−T :t)) th∗ =

{
argmaxthF1(th)

TOPk(S)

TopoMAD [61]



GraphLSTM(·) = LSTM(GCN(·))
Enc(·) = fϕ(ϕGraphLSTM , ϕMLP )

µz, σz = Enc(x, E)

qϕ(z|x) ∼ N(µz, diag(σ2
z))

Dec(·) = fθ(θGraphLSTM , θMLP )

µx, σx = Dec(z, E)

pθ(x|z) ∼ N(µx, diag(σ2
x))

St = − log(pθ(xt|zt−T :t))



Gap(th) = min(S>th)−max(S<th)

Sum(th) = min(S>th) + max(S<th)

− 2 ∗min(S<th)

d(S<th, S>th) =
Gap(th)
Sum(th)

th∗ = argmaxthd(S<th, S>th)

InterFusion [89]



Enc1 : z2 = Conv1D(x)

Enc2 : z1 = GRU(DeConv1D(z2))

q(z1, z2|x) = q(z1|z2, x)q(z2|x)
Dec1 : z1 = GRU(DeConv1D(z2))

Dec2 : x′ = MLP (z1, z2)

St = − log(pθ(xt|zt−T :t)) th∗ = argmaxthF1(th)

RDSSM [90]

{
Enc(·) = fϕ(ϕBiGRU , ϕMLP )

Dec(·) = fθ(θGRU , θMLP )
St = − log(pθ(xt|zt−T :t)) -

DVGCRN [26]

{
Enc(·) = fϕ(ϕLSTM , ϕGCN )

Dec(·) = fθ(θLSTM , θGCN )


Rt = log(pθ(xt|zt))
Pt = ∥xt − x̂t∥2
St = η(−Rt) + (1− η)Pt

th0 = Q(p)

th∗ ≈ th0 − β
γ

(
q N′

N′
th

)−γ
− 1

SLA-VAE [67]


µz, σz = Enc(x)

qϕ(z|x) ∼ N(µz, diag(σ2
z))

µx, σx = Dec(z)

pθ(x|z) ∼ N(µx, diag(σ2
x))

St = ∥xt − x′
t∥2


th0 = Q(p)

th ≈ th0 − β
γ

(
q N′

N′
th

)−γ
− 1

th∗ = argmaxthF1(th)

MT-RVAE [129]

{
Enc(·) = fϕ(ϕTransformer)

Dec(·) = fθ(θTransformer)

{
Rt = ∥xt − x′

t∥2
St = ηSt−1 + (1− η)Rt

-

Notations: x ∈ Rn×d denotes the input time series data, z ∈ Rn×k represents the latent variable representation of x in a lower-dimensional
space (k < d). µz and σz are the mean vector and standard deviation vector of z output by the encoder. qϕ(z|x) indicates the approximate
posterior distribution defined by its parameters (µz, σz). pθ(x|z) represents the generative distribution (likelihood). x̂ ∈ Rn×d denotes the
reconstructed time series generated by the decoder. fϕ and fθ refer to the encoder and decoder neural networks respectively. ϕNN and θNN
specify the neural network architectures employed (e.g., MLP, 1D-CNN, LSTM, GRU, Transformer Encoder, or combinations).
* Enc(·): Encoder, Dec(·): Decoder.
* St: the anomaly score of time t.
* th0: the initial threshold, th∗: the final threshold, Q(p): the quantile function, β: the scale parameter of the Generalized Pareto
Distribution (GPD), γ: the GPD shape parameter (tail index), q: A tuning factor adjusting threshold selection sensitivity, N ′: the observed
number of exceedances over the initial threshold, N ′

th: theoretical or expected excess quantity.
* d(S<th, S>th) define the distance of two anomaly scores sets S<th and S>th separated by a threshold th, max(S) denotes the maximal
element in S, and min(S) denotes the minimal element.

SLA-VAE [67] initiates with a threshold derived from the POT
method and subsequently refines it based on the principle of optimiz-
ing the F1-score. Furthermore, TopoMAD [61] posits a hypothesis
wherein normal data anomalous scores reside within high-density
regions, while anomalous data scores occupy low-density regions.
Guided by this principle, threshold selection endeavors to maximize
the distance between these two distinct regions.

The core assumption of the Variational Autoencoder (VAE) model
is that time series data can be generated from low-dimensional
latent variables. By leveraging a learnable approximate posterior
distribution to replace the true posterior, VAE integrates the prob-
abilistic generative framework with deep representation learning,

offering a flexible solution for anomaly detection in time series.
However, there are several limitations associated with VAEs: the
ability to model temporal dependencies and long-term correlations
is restricted, and their performance in detecting abrupt changes
or changepoints is suboptimal. Additionally, the training process
of VAEs suffers from instability due to the non-convex nature of
Evidence Lower Bound (ELBO) optimization and the high variance
of gradient estimation, resulting in fluctuating reconstruction errors.
Furthermore, as the dimensionality of the latent space increases, the
variance of reparameterization gradients grows exponentially, which
imposes significant constraints on the application of VAEs in low-
latency, real-time detection tasks. Despite these challenges, VAEs
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demonstrate significant advantages in handling complex temporal pat-
terns and high-dimensional multivariate time series. In unsupervised
anomaly detection scenarios where large amounts of labeled data are
unavailable and real-time performance is not a priority, VAEs exhibit
substantial potential.

OmniAnomaly [123] uses a stochastic RNN for MTSAD. The
method learns robust representations of normal time series patterns
through techniques such as stochastic variable connection and planar
normalizing flow. The model reconstructs the input data using these
representations and determines anomalies based on reconstruction
probabilities. Moreover, OmniAnnaly offers interpretability for de-
tected anomalies by quantifying the contribution of each individual
univariate series within the entity based on their respective recon-
struction probabilities. SISVAE [87] combines a recurrent neural
network and a variational autoencoder to parameterize the mean and
variance at each time point with a flexible neural network to obtain
a non-stationary model. In addition, a novel variational smoothing
regularizer is proposed which provides robustness by penalizing the
non-smooth output of the generated model. This work also discusses
two anomaly detection criteria based on reconstruction probability
and reconstruction error. As the complexity of a system increases, it
becomes a challenge to effectively model the data collected from the
various components of the system and to model the spatio-temporal
dependencies among them. TopoMAD [61] leverages a combination
of graph neural networks, LSTM, and VAE to form a novel neural
network architecture that effectively models complex spatiotemporal
dependencies in contaminated data. DVGCRN [26] combines EPN
with Graph Convolutional Recurrent Network (GCRN) into a unified
framework, thus learning the robust representations of MTS by
considering both temporal, interrelationship and stochasticity char-
acteristics. In addition, they combine reconstruction and prediction
optimization objectives for inference to increase the stability of
anomaly detection. The development of graph neural networks has
provided a boost to inter-relational modeling of time series, but
most of the methods are less effective in dealing with data with
fewer dimensions or sparse inter-relationships between sequences.
MT-RVAE [129] employs a self-attention mechanism to model in-
terdependencies among time series, thereby mitigating the influence
of feature dimensionality and relationship strength on algorithmic
performance. InterFusion [89] employs two stochastic latent variables
to jointly capture both inter-metric and temporal dependencies in
multivariate time series. Furthermore, an MCMC-based method is
proposed to derive plausible embeddings and reconstructions even at
anomalous segments, enabling improved interpretation of anomalies.
Unlike previous unsupervised models, SLA-VAE [67] adopts a semi-
supervised VAE to detect anomalies. It further utilizes an active
learning strategy to refine the online model using a limited number
of uncertain samples.

Critically, empirical implementations reveal that subtle archi-
tectural adjustments (e.g., LSTM-VAE’s hidden-to-input dimension
ratio) and numerical stabilization techniques (e.g., Monte Carlo
sampling for VAE reconstruction scoring) prove decisive to detection
efficacy [27, 59, 103, 120, 126] .

C. Generative Adversarial Networks for time series anomaly
detection

The Generative Adversarial Network (GAN) was initially proposed
by Goodfellow et al. in 2014 and was originally used for image
generation tasks. Due to its outstanding ability in sample generation,
GAN-based anomaly detection methods have rapidly developed.
GAN has achieved great success in tasks such as image generation,
image translation, and video prediction, and researchers have also
demonstrated its effectiveness in anomaly detection. However, at
that time, the application of GAN to time series data was relatively
rare, mainly because the complex temporal dependencies of such
data posed significant challenges to generative modeling. It was
not until 2020 that Bashar et al. proposed the reconstruction-based
TAnoGAN [8] model, marking an early seminal application of GANs
for anomaly detection in time series data.

The training process of a GAN follows an adversarial game
principle. The ability of G and D is continuously improved by
alternating training.

Here are the objective functions for GAN training, along with the
basic formulas achieved through min-max optimization:
Generator’s Objective Function (Minimization)

The objective of the generator is to generate sequences that are
close to the distribution of true samples, making it challenging for
the discriminator to distinguish. The loss function of G is usually
defined as the probability of misleading the discriminator.

min
G

V (G,D) = Ex∼p(x)[log(1−D(x))] (6)

Discriminator’s Objective Function (Maximization)
The discriminator aims to differentiate between the original series

and the generated ones. The discriminator’s loss function is usually
formulated as the summation of the probabilities of accurately
categorizing the true sample and the generated sample.

max
D

V (G,D) = Ex∼p(x)[logD(x)]

+Ez∼p(z)[log(1−D(G(z)))]
(7)

Final GAN Objective Function
The overall GAN objective function is a combination of the

generator and discriminator loss functions, which are usually trained
by alternating optimization.

min
G

max
D

V (G,D) = Ex∼p(x)
[logD(x)]

+Ez∼p(z)[log(1−D(G(z)))]
(8)

In practical training, SGD or its variants are commonly used to
minimize and maximize the respective loss functions.

For GAN-based methods, we propose a generalized framework
with three modules: 1)Data processing: GAN-based methods often
require clean data, and some methods are used to cull out anomalies
in the training set. 2)Representation Learning.: For for a given
training set, the model learns patterns of normal sequences via the
respective neural network modules to learn the patterns of normal
sequences. 3)Anomaly Detection: For the sequences in the test set
X = {x1,x2, . . . ,xn}, the anomaly score S = {s1, s2, . . . , sn}
corresponding to each point (subsequence) in the sequence is com-
puted using the respective scoring method. Points (sub-sequences)
with anomaly scores greater than a threshold are determined to be
anomalous.
Data processing

Most methods [25, 30, 64, 66] prefer clean data as the purity
of data significantly impacts GAN performance. Given the sparsity
of anomalies, some approaches [47, 116] default to training on
normal data to avoid influencing the model’s learning of normal data
distribution. FGANomaly [44] introduces a pseudo-label generation
method based on reconstruction error, enabling GANs to filter po-
tential anomaly samples. Additionally, DAEMON [22] employs the
spectral residual algorithm to clean potential outliers in the training
dataset, enhancing VAE’s accuracy in learning the normal distribution
of time series.
Representation Learning

Several approaches [53] employ an RNN generator and discrim-
inator as the foundational model for the GAN framework. Be-
sides, methods like MAD-GAN[86] and TAnoGAN [8] use LSTM
to capture temporal correlations in time series distribution. Some
methods [30, 88, 124] utilize CNN as the foundational model,
employing convolution operations to capture local patterns in the
data for anomaly identification. Furthermore, some approaches [88]
introduce attention mechanisms to capture relationships between vari-
ables, further enhancing anomaly detection performance. In contrast
to the aforementioned methods, BeatGAN [149] and FGANomaly
[44] use autoencoders as the generator for GAN, focusing on data
reconstruction. Some methods deviate from the original GAN archi-
tecture, making subtle modifications. TadGAN [50] adopts a dual-
discriminator architecture to assess the quality of both time series
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TABLE III: Summary of representative GAN methods.

Models Data processing Representation Learning Anomaly Detection

BeatGAN [149] clean


GD(·) = CNN()

GE(·) = CNN()

z = GE(x),x′ = GD(z)

Dcnn : x→ [0, 1]

St = ∥xt − x′
t∥2

MADGAN [86] clean


z← Random Latent Space
x′ = Grnn(z)

Drnn : x→ [0, 1]


Rest = ∥xt −Grnn(zt)∥
Dist = −log(Drnn(xt))

St = ηRest + (1− η)Dist

TadGAN [50] clean



GE(·) = BiLSTM()

GD(·) = BiLSTM(BiLSTM())

z = GE(x),x′ = GD(z)

Cx(x) = Conv1D(BiLSTM(x))

Cz(z) = Conv1D(BiLSTM(z))

Cx : x→ (0, 1)

Cz : z→ (0, 1)


Rest = ∥xt −GD(GE(xt))∥
Dist = −log(Cx(xt))

St = ηRest + (1− η)Dist

DAEMON [22]

{
contaminated

spectralresidual



GE(·) = Conv1D()

GD(·) = Deconv1D()

z = GE(x),x′ = GD(z)

DD(x) = Sigmoid(Conv1D(x))

DE(z) = Sigmoid(Conv1D(z))

DD : x→ (0, 1)

DE : z→ (0, 1)

St = ∥xt −GD(GE(xt))∥1

FGANomaly [44]

{
contaminated

pseudo− label



GE(·) = Linear(BiLSTM())

GD(·) = BiLSTM(Linear())

z = GE(x),x′ = GD(z)

D(·) = Feedforward()

D : x→ [0, 1]

St = ∥xt − x′
t∥2

DCT-GAN [88] contaminated


z← Random Latent Space
GE(·) = Attention(CNN())

x′ = GE(z)

D : x→ [0, 1]

St = ∥xt − x′
t∥2

Notations: x ∈ Rn×d represents the input time series data, z ∈ Rn×k denotes the latent representation of x sampled from a simple
distribution, and x̂ ∈ Rn×d indicates the time series reconstructed by the generator.
* G(·): Generator, D(·): Discriminator.
* GE(·): Encoder of Generator which using an autoencoder structure, GD(·): Decoder of Generator which using an autoencoder structure.
* Cx and Cz evaluate the quality of the original data x and the latent encoding z respectively, and similarly for DD and DE .

and latent space, addressing gradient instability and mode collapse
issues. DAEMON [22] includes two GAN sets, with two generators
acting as encoder and decoder, forming a shared VAE. The remaining
two discriminators serve as independent modules, making the training
of the variational autoencoder structure more robust and reducing
overfitting.

Anomaly Detection
Many GAN-based TSAD methods[44, 88, 149] use the L2 norm

reconstruction error. Some methods [22] employ the L1 norm, poten-
tially because of its greater robustness. Additionally, TAnoGAN [8]
attempts to consider a combination of sequence reconstruction error
and latent variable reconstruction error. In contrast, DEGAN [58] uses
discriminator results (discrimination probability) as the criterion for
anomaly scoring. Building on this, some methods, such as TadGAN
[50] and MAD-GAN [86], consider combining reconstruction error
with discriminator results for anomaly detection.

Compared to probabilistic models such as Variational Autoen-
coders (VAEs), Generative Adversarial Networks (GANs) do not
require explicit assumptions about the data distribution of time series.
This provides GANs with greater flexibility in handling time series
with unknown or complex distributions. The architecture of GANs
can capture the distribution of time series data and provide global
regularization information during training, thereby alleviating over-
fitting problems. However, this is only effective when the training set
is not contaminated by anomalous samples. If the training set contains
anomalies, the model may capture the distribution of anomalous
data, leading to degraded detection performance. Furthermore, GAN
training is difficult to balance due to the need for alternating training
of the generator and discriminator, making it prone to mode collapse
and poor diversity in generated samples. Many approaches have
been proposed to improve GAN-based anomaly detection methods.
It is also worth noting that GANs were originally designed for
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independent and identically distributed (i.i.d.) data. When directly
applied to time series, they may fail to adequately capture the
dynamic characteristics inherent in sequential data. To address these
limitations, numerous methods have been proposed to improve GAN-
based anomaly detection approaches.

BeatGAN [149] enhances the robustness of the model by regulariz-
ing the reconstruction error and applying time series warping for data
augmentation. MAD-GAN [86] uses a novel anomaly score called
DR-score to detect anomalies by discrimination and reconstruction.
In addition, MAD-GAN was the first to explore the issues of
determining the optimal subsequence length as well as the potential
model instability of the GAN-based approaches. Similarly, TadGAN
[50] also explores new anomaly scoring methods. The combination of
reconstruction error and critic output provides more robust anomaly
scores, which helps to reduce the number of false positives and
increase the number of true positives. Meanwhile, trained by cycle
consistency loss, TadGAN allows robust reconstruction of time series
data. DAEMON [22] innovates on the structure of a GAN by using
two discriminators to inversely train a self-encoder to learn the
normal patterns of a multivariate time series. To address extremely
imbalanced and contaminated training datasets, FGANomaly [44]
filters out potential anomalous samples using pseudo-labels before
training the discriminator, thereby capturing the distribution of normal
data as accurately as possible. A new training objective is designed for
the generator, which encourages it to focus more on reliable normal
data while ignoring anomalies.

D. Normalizing Flows for time series anomaly detection
Normalizing Flows provide an efficient and flexible way to fit

arbitrary distributions by mapping simple distributions to complex
ones through a series of optimizable mapping functions. In recent
years, Normalizing Flows have achieved state-of-the-art (SOTA)
performance in tasks such as speech generation. One advantage of
Normalizing Flows over other methods is the convenience of data
generation, such as using the simplest Linear Flows. However, Linear
Flows are inefficient and slow to train because the computation of
determinants has an O(n3) complexity. Methods such as Real NVP
Flows have been designed to reduce computational complexity by
making the Jacobian matrix of the transformation triangular.

Normalizing Flows provide precise likelihood estimation, facili-
tating the generation of high-quality data, but they require signif-
icant computational resources and involve complex model design.
Additionally, the model’s output is a probability distribution at each
time point, which may affect the continuity and smoothness of the
generated time series.

Normalizing Flows (NFs) map time series data into latent variables
z using invertible functions f(x). They model distributions by track-
ing density changes through Jacobian matrices. The inverse function
f−1(z) produces new samples from latent variables, with training
maximizing log-likelihood via gradient descent. [36] enhances Nor-
malizing Flows with Bayesian networks to more accurately estimate
joint densities, achieving unsupervised anomaly detection across
multiple sequences.

In the NF framework, given a time series dataset X =
{x1,x2, ...,xN}, in which xi is the data sample at time i, the goal
is to map this data to a latent variable space Z = {z1, z2, ..., zN},
where zi corresponds to the latent variable associated with xi. NF
accomplishes this mapping through an invertible function f(x), such
that z = f(x). The inverse function f−1(z) can then map latent
representation back to the original series.

Density estimation in NF is achieved by tracking the transforma-
tions f(x) using Jacobian matrices. For a sample z in the latent
variable space z, its corresponding probability density is given by:

pZ(z) = pX(f−1(z)) ·
∣∣det(Jf (f

−1(z)))
∣∣ (9)

Here, pX(x) is the probability density function of the original time
series data x, and Jf (f

−1(z)) is the Jacobian matrix representing the
mapping from z to x in the latent variable space.

Detection of anomalous points can be performed by comparing
the probability density of data points in the latent variable space.
Specifically, for a given time series data point xi, we first map it to
the latent variable space to obtain zi = f(xi), and then compute its
probability density pZ(zi). If this density is below a certain threshold,
we can consider the data point as an anomaly.

In summary, NFs excel in high-dimensional, complexly distributed
and noisily controllable time series scenarios (e.g., server monitoring,
precision device sensing), but its computational overhead and tempo-
ral modeling shortcomings make it difficult to be directly applied to
ultra-long sequences, strong real-time requirements, or highly data-
contaminated tasks. The core conflict lies in the trade-off between
reversibility and computational efficiency, and the conflict between
global accuracy and local timing dependence of density estimation.
Future breakthroughs may rely on the deep integration of NF with
Neural ODEs or structured probabilistic models such as GraphNF.

E. Diffusion Models for time series anomaly detection
Diffusion models have rapidly emerged in various fields, signifi-

cantly impacting computer vision (CV), natural language processing
(NLP), and audio processing. Due to the availability of large and
diverse datasets in these fields, diffusion models are often combined
with large language models (LLM) or other foundational models,
driving rapid progress in these areas. Inspired by non-equilibrium
thermodynamics, diffusion models define a Markov chain with dif-
fusion steps, gradually adding random noise to the data and then
learning to reverse the diffusion process to generate the desired data
samples from noise.

In recent years, diffusion models exhibit unique advantages and
challenges in time series analysis. Its core advantage lies in its
fine-grained generation capability: through a multi-step denoising
process, the model is able to incrementally learn complex dynamic
characteristics (e.g., nonlinear relationships, long-term dependencies),
and compared with the adversarial training mechanism of GAN,
the optimization objective of diffusion model based on maximum
likelihood estimation ensures a more stable generation quality, which
can effectively circumvent the problem of pattern collapse.

However, its application to time series faces two challenges.
First, the native model undermodels the time series structure: the
standard diffusion process assumes that data points are generated
independently, ignoring causal dependencies in the time dimension.
Although subsequent work (e.g., TimeGrad’s introduction of RNNs
to encode historical information) has partially addressed this issue,
the underlying framework still requires targeted improvements. Sec-
ond, high computational costs limit real-time applications: typical
diffusion models require hundreds of iterations to generate samples,
resulting in significantly higher inference latencies than single-step
generation models such as GAN. Although knowledge distillation
(e.g., Progressive Distillation) can compress the number of steps to
less than 10, it is still difficult to meet the demand for millisecond
real-time detection. We analyze the process of diffusion models in
TSAD using Denoising Diffusion Probabilistic Models (DDPMs) as
a representative.

Let X0 ∈ RN×d be the input MTS, where N is the sequence
length and d is the number of features. In the forward process, we
keep adding Gaussian noise to the input at the previous time:

q(Xt|Xt−1) = N (Xt;
√

1− βtXt−1, βtI) (10)

where βt ∈ (0, 1) is the fixed variance that increases linearly with t.
During the reverse process, the gradual elimination of noise from

the impaired time series is characterized by the following formula:

pθ(Xt−1|Xt) = N (Xt−1;µθ(Xt, t), β̃tI) (11)

here, β̃t = 1−ᾱt−1
1−ᾱt

βt is acquired through neural network training,
where αt = 1− βt and ᾱt =

∏
s = 1tαs.

Instead of learning µθ(Xt, t), the network ϵθ is trained to predict
the noise ϵ ∼ N (0, I) given Xt. The loss function is:
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L = ∥ϵ− ϵθ(
√
ᾱtX0 +

√
1− ᾱtϵ, t)∥22 (12)

At test time, Gaussian noise is added to the input X0 and then
denoised back: X0 → Xnoisy → X̃0. Specifically, X0 is corrupted
with M steps of Gaussian noise, then iteratively denoised for M steps
to obtain the reconstruction X̃0. The distance between the initial and
denoised data is used as the anomaly score.

DiffusionAE [110] applies the diffusion process to the recon-
structed time series of the autoencoder (instead of the original series),
making the model robust to different training anomaly ratios. At the
same time, the diffusion process smooths the anomalous segments,
leading to higher reconstruction errors and improved performance.
Unlike previous prediction-based and reconstruction-based methods
that use partial or complete data as observations for estimation,
DiffAD [138] employs a density-ratio-based strategy with a flexible
selection of normal observations that can be easily adapted to
anomalous concentration scenarios.

F. Adversarial Autoencoder for time series anomaly detection
The Adversarial Autoencoder (AAE) was developed based on the

VAE, with the unique introduction of adversarial training. Unlike the
VAE, which uses the KL divergence to measure the distance between
a predefined prior distribution p(z) and the variational posterior
q(z|x), AAE employs deterministic encoding. Both VAE and AAE
attempt to explicitly find the probability density of real samples and
find the optimal solution by minimizing the log-likelihood function.
The latent encoding p(z|x) of VAE is usually a Gaussian distribution,
and the VAE Encoder fits the mean and variance of this Gaussian
distribution. In contrast, AAE’s latent encoding is deterministic
and can be directly obtained through the Encoder. In AAE, the
autoencoder and adversarial network play roles in the reconstruction
and regularization stages, respectively. In the reconstruction stage,
the autoencoder minimizes the reconstruction error of input data by
updating the encoder and decoder. In the regularization stage, the
adversarial network first updates the discriminator network to distin-
guish between real and generated samples, then updates the encoder
of the autoencoder to fool the discriminator network. Although AAE
performs well in time series, it also inherits the instability issues of
GAN training.

Adversarial Autoencoders (AAEs) are applied in TSAD due to
their capability to learn complex data distributions and generate
samples similar to normal data but distinct from them. AAEs com-
bine autoencoder architecture with adversarial training. Autoencoders
learn low-dimensional representations of data and reconstruct it,
enabling unsupervised learning.

z = E(x),

x̂ = D(z),

GAE(x) = D(E(x)),

(13)

where z represents the latent representation and x̂ is the reconstructed
output. The encoder E(x) and decoder D(x) work together to realize
the reconstruction of the time series.

Adversarial training involves adversarial networks, making gen-
erated samples harder to distinguish between real and reconstructed
samples. In adversarial training, an additional adversarial network
Dis, called the discriminator, is introduced. It aims to discriminate
between real data samples and generated (reconstructed) samples.
The generator (encoder-decoder) tries to fool the discriminator by
generating samples that are close to the true data distribution. This
procedure can be formulated as follows:

min
E,D

max
Dis

V (Dis,E,D) = Ex∼Pdata(x)[logDis(x)]

+Ez∼Penc(z)[log(1−Dis(D(z)))],
(14)

where Pdata(x) denotes the distribution of real data, and Penc(z)
denotes the distribution of latent representations.

Following training, TSAD process is performed by comparing
the reconstruction error between normal and abnormal series. The
underlying assumption is that anomalies will yield a significantly
higher error than normal samples. The reconstruction error can be
calculated using MSE:

L(x, x̂) = ||x− x̂||2 (15)

SaVAE-SR [97] uses the encoder as a discriminator in the frame-
work of AAE. The encoder is not only trained to model the approx-
imate posterior of latent variables, but also trained to distinguishes
between real samples in the training data and fake samples generated
by the generator in the latent space. To alleviate the problem of
anomaly data contamination encountered in many previous unsuper-
vised anomaly detection techniques, SaVAE-SR employs a spectral
residual technique to find the most significant anomalies and provide
pseudo-labels for unlabeled training data.

Adversarial Autoencoders (AAEs) enhance the framework of
Variational Autoencoders (VAEs) by employing adversarial training
to enforce the alignment of latent variables with a target prior
distribution. In certain implementations, the discriminator replaces the
KL divergence term in variational inference, effectively mitigating the
posterior collapse issue inherent in VAEs. Additionally, adversarial
training alleviates the non-convexity challenges associated with the
Evidence Lower Bound (ELBO), leading to accelerated convergence.
However, the mode collapse problem prevalent in Generative Adver-
sarial Networks (GANs) remains unresolved, and training instability
frequently occurs, ultimately resulting in degraded anomaly detection
performance.

IV. LIBRARIES FOR TIME SERIES ANOMALY DETECTION

A. Applications in various fields
TSAD has broad and deep applications across various fields,

including finance [18, 21], healthcare [75], real-world systems [32,
146], server monitoring [92], distributed networks, and even social
platforms [14, 137]. It is crucial in pinpointing potential problems,
optimizing system performance, and ultimately achieving safer, more
reliable, and more efficient business operations.
Finance

Risk management remains a critical priority for banks, portfolio
managers and firms involved in trading on stock exchanges. With the
increase in trading volume and frequency, illegal methods such as
price manipulation may cause great damage to the proper functioning
and integrity of financial markets. TSAD is an important tool for
protecting investors’ interests and optimizing asset allocation. By
monitoring trading patterns and abnormal fluctuations in stock prices,
it can detect market anomalies and fraudulent transactions in a timely
manner and help investors make better decisions.
Healthcare

In the healthcare sector, TSAD is employed to monitor patients’
physiological parameters, facilitating the timely detection of changes
in health status. Real-time monitoring of metrics including blood
pressure and heart rate enables the prompt identification of acute
conditions like heart attacks and hypertension, allowing healthcare
professionals to intervene and provide timely treatment. Additionally,
it is utilized for monitoring the operational status of medical equip-
ment to promptly detect faults or anomalies, ensuring the smooth
functioning of medical devices and patient safety.
Real-world Systems

In practical systems such as water treatment, transportation, and
power systems, TSAD is widely used for equipment condition moni-
toring and fault detection. By analyzing time series data of equipment
operating states, faults or anomalies can be promptly detected,
facilitating predictive maintenance and enhancing system reliability
and efficiency. Faults identified by industrial monitoring systems can
be simplified as anomalous points detected from temporal data. It is
essential for ensuring system security and preventing financial losses.
Server Monitoring and Distributed Networks
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In the domain of server monitoring and distributed networks,
TSAD is applied to monitor system performance, detect intrusion
behaviors, and ensure system security. By analyzing time series
data of server and network performance indicators, this method
can promptly detect anomalies like system overload and latency.
This facilitates proactive resource allocation adjustments and ensures
system stability. In addition, it can detect network intrusions, such
as network attacks and unauthorized access, and detect and stop
malicious activities in time to ensure system security.
Social Platforms

In the field of social platforms, TSAD is used to analyze user
behavior and content flow and identify anomalies such as fake
accounts and malicious comments. By analyzing user interaction
behavior patterns and content flow fluctuations on social platforms, it
can detect anomalous behaviors and take timely measures to protect
the rights and interests of users and maintain the integrity of social
platforms.

Overall, TSAD, as an important data analysis technique, plays a
vital role in various fields. It not only helps to identify potential
problems and optimize system operation, but also improves system
security, reliability and efficiency. With the continuous development
of data technology and the expansion of application scenarios, TSAD
will be more and more widely used in various fields, bringing more
convenience and safety to people’s life and work.

TABLE IV: Summary of Datasets.

Datasets Fields ∥Training∥ ∥Test∥ Dimension Anomalys(%)

NASA

MSL Space 58,317 73,729 55 10.7
SMAP Space 135,183 427,617 25 13.1

Real World System

SWaT Water System 224,959 224,960 51 19.1
WADI Water System 86,401 86,401 123 3.9

µPMU Power System 864,000 864,000 36 0.6
PMU-B Power System 10 months 1 months 38 -
PMU-C Power System 10 months 1 months 132 -

METR-LA Traffic - - 207 -

Numenta Anomaly Benchmark

NAB Art Artificial 24,192 6,048 1 1.0
NAB AdEx Transactions 7,965 1,992 1 1.0
NAB AWS Cloud 67,644 16,911 1 0.9
NAB Traf Traffic 15,662 3,916 1 1.0

NAB Tweets Twitter 158,511 39,628 1 1.0

Server Monitoring

SMD Server 708,405 708,420 38 4.2
MBD Server 1,000 1,000 130 0.2
MMS Server 1,000 1,000 310 0.1
ASD Server 302,400 216,000 19 0.3

Distributed Networks

KDDCUP99 Networks 562,387 494,021 34 80.3
DND Networks 8 days 2 days 38 0.5

MSDS Networks 146430 146430 10 5.4

Yahoo

Yahoo S5 A1 Server 94,866 23,717 1 0.2
Yahoo S5 A2 Synthetic 142,100 35,525 1 0.6
Yahoo S5 A3 Synthetic 168,000 42,000 1 0.6
Yahoo S5 A4 Synthetic 168,000 42,000 1 0.5

Electrocardiogram (ECG)

MIT-BIH ECG 31,221,760 - 2 10.5

Motion

CMU Motion 10,309 - 4 35.8

B. Datasets
Table IV summarizes common datasets for time series anomaly

detection tasks, presenting information on dataset scale, dimensions,
and anomaly proportions. Categorizing these datasets based on their
respective domains yields four classifications: 1) NASA: Various
sensor data from NASA’s Mars probes [68], widely utilized. Such

datasets are real and validated, and often have a high degree of
complexity and diversity. 2) Real World System: Temporal data
generated in diverse real-world systems such as water treatment
[52], power systems[122], and traffic systems[84]. These datasets
may vary widely in terms of data sources and uses, but what
they have in common is that they reflect the operation of different
systems in the real world. These datasets may be characterized
by their dynamism and need for real-time availability. 3) Server
Monitoring and Distributed Networks: Real-time data from server
monitoring [61, 89, 123] and distributed networks[26, 86]. This type
of data tends to be high-dimensional, high-frequency and requires
fast response times for anomaly detection algorithms. 4) Other
Datasets: Includes datasets provided by benchmarks [81], data from
domains like healthcare [104] and social platforms, and synthetic data
[50, 69, 102, 115]. The quality of such datasets tends to vary, posing
additional challenges to anomaly detection algorithms.

C. Dataset Types and Challenges in Datasets
Additionally, we reviewed recent research, analyzing the intrinsic

reasons for variations in performance across different datasets and
application scenarios. Based on this analysis, we recommend suit-
able methods for different types of datasets and specific scenario
challenges:

1) Dataset Types
Univariate dataset: Comprising time series data with only one

variable (or dimension), these datasets are often simpler in nature
[50, 81]. Univariate time series data represents the most basic form
of time series. Characteristically, it often exhibits periodic patterns,
seasonal variations, trends, and residual components. General gen-
erative methods can effectively perform single-dimensional TSAD
tasks. Considering the low complexity of the task, computationally
efficient methods are often preferred. Effective methods on such
datasets include ADDMM [115], RDSSM [90], DCT-GAN [88].

Multivariate dataset: Involving time series data with multiple
dimensions, such as data from multiple sensors, servers, or graph-
structured data. This type of data often possesses the ability to
represent both time and space. Treating them as multiple single-
dimensional time series often fails to achieve satisfactory results,
as considering only temporal dependencies is far from sufficient.
High-dimensional multivariate time series data necessitates our at-
tention to the correlations between variables, which is crucial for
understanding the complex interactions and relationships between
variables as they evolve over time. Multi-dimensional time series
encompass numerous periodic and seasonal time features, coupled
with the interplay between multiple variables, resulting in complex
dynamic patterns that pose challenges for TSAD. The emergence of
deep learning techniques such as Graph Neural Networks (GNNs) and
Transformers has, to some extent, addressed this issue. GNNs excel
in handling graph-structured data, enabling them to capture intricate
relationships between variables. Through interactions between nodes
and edges, GNNs can uncover the temporal evolution patterns of
node attributes, understanding the spatial semantics of time series.
Transformers employ bidirectional self-attention mechanisms to cap-
ture long-range dependencies and variable correlations respectively,
making them suitable for processing multi-dimensional time series
data. Furthermore, certain generative deep learning architectures,
such as Variational Autoencoders (VAEs) and Generative Adversarial
Networks (GANs), have distinguished themselves in variable correla-
tion modeling due to their powerful learning capabilities. Prominent
methods for these datasets include InterFusion [89], FGANomaly
[44], TopoMAD [61], DVGCRN [26], MT-RVAE [129], GANF [36].

2) Challenges in Datasets
Contaminated dataset: Typically, datasets are divided into train-

ing and testing sets. The training set generally contains no anoma-
lies or only a negligible number of anomalies, while the test set
includes both normal and anomalous data. However, in the case
of a ”Contaminated Dataset,” the training set includes a significant
number of anomalies, which poses challenges for standard training
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TABLE V: Summary of representative generative methods.

Model Su/Un Dataset Venue Code

Markov

HMAD [55] Su - ICML’2015 -

AHMMAS [16] Un Google, Microsoft, Intel, Apple, ARM, BARCLAYS, Vodafone TNNLS’2015 -

SMS-VAR [102] Un Synthetic data and Real data KDD’2016 Link

sGMRFmix [69] Un Synthetic data and Real data from the oil industry ICDE’2016 Link

ADDMM [115] Un Synthetic data, ECG IS’2017 -

VAE

OmniAnomaly [123] Un SMD, MSL, SMAP KDD’2019 Link

SISVAE [87] Un Yahoo S5 A1, Yahoo S5 A2, Yahoo S5 A3, Yahoo S5 A4, µPMU TNNLS’2020 Link

TopoMAD [61] Un MBD, MMS TNNLS’2020 Link

InterFusion [89] Un SWaT, WADI, SMD, ASD KDD’2021 Link

RDSSM [90] Un MSL, SMAP, Yahoo S5 A1, Yahoo S5 A2, Yahoo S5 A3, Yahoo S5
A4

TKDE’2022 -

DVGCRN [26] Un DND, SMD, MSL, SMAP ICML’2022 Link

SLA-VAE [67] Semi Cloud Server A, Cloud Server B WWW’2022 Link

MT-RVAE [129] Un SAT, SKAB, NAB Measurement’2022 -

GAN

BeatGAN [149] Un MIT-BIH, CMU IJCAI’2019 Link

MADGAN [86] Un SWaT, WADI, KDDCUP99 ICANN’2019 Link

TadGAN [50] Un MSL, SMAP, Yahoo S5 A1, Yahoo S5 A2, Yahoo S5 A3, Yahoo S5
A4, NAB Art, NAB AdEx, NAB AWS, NAB Traf, NAB Tweets

BigData’2020 Link

DAEMON [22] Un SMD, MSL, SMAP, SWaT ICDE’2021 -

FGANomaly [44] Un MSL, SMAP, SWaT, WADI TKDE’2022 Link

DCT-GAN [88] Un NAB, SWAT, WADI TKDE’2023 -

Normalizing Flow

GANF [36] Un PMU-B, PMU-C, SWaT, METR-LA ICLR’2022 Link

Diffusion Model

DiffusionAE [110] Un NeurIPS-TS, SWaT, WADI ICDM(W)’2023 Link

DiffAD [138] Un MSL, SMAP, SWaT, PSM, SMD KDD’2023 Link

Adversarial Autoencoder

SaVAE-SR [97] Un KPI, Yahoo S5 A1, Yahoo S5 A2, Yahoo S5 A3, Yahoo S5 A4 Neurocomputing’2021 Link

methods. This contamination can hinder the model’s ability to learn
the distribution of normal data, thereby affecting its performance.
For example, on SMD and ASD, there are anomalies in the training
data. It is often difficult to achieve good results without using
strategies such as pre-filtering, which overfits the anomalous patterns
in the training data with learned flexible inter-embeddings of the
metrics. In the Secure Water Treatment datasets SWaT and WADI,
the original dataset encompasses 7 days of normal operation and
4 days under various attack scenarios. By partitioning the dataset
according to a specific principle (e.g., a time-based split), we can
ensure that the training subset contains only normal patterns and is
free from anomalies. Deep generative models such as GANs and
VAEs can capture the distribution of the training set, learn the
latent representation of normal data, and thereby generate samples
that follow this distribution. Since they have never encountered any
anomalous samples, it is difficult for them to produce anomalous
samples. In this scenario, the reconstruction of normal samples will
achieve relatively high accuracy, while anomalous samples cannot
be reconstructed well, ultimately making them easier to detect.
To address these challenges, some methods employ pseudo-labels
to filter potential anomalous samples before training the detector,

thereby capturing the distribution of normal data as accurately as
possible. Additionally, other methods design novel training objectives
that focus the loss function more on credible normal data while
neglecting anomalies. Effective methods for such datasets include
DAEMON [22], FGANomaly [44], DCT-GAN [88], InterFusion [89]
and MT-RVAE [129].

Online-offline industrial dataset: In industrial scenarios, models
need to adapt and adjust to new incoming data. Offline industrial
detection refers to analyzing and identifying anomalous patterns
in historical data, while online industrial detection involves real-
time analysis and monitoring of the industrial system’s state. In
industrial system environments, as time progresses and data charac-
teristics change, new data distributions continuously emerge, leading
to frequent concept drift phenomena. However, existing algorithms
typically can only capture historical data distributions, failing to meet
the requirements of online detection. Furthermore, online anomaly
detection algorithms need to keep inference latency within a low
range. Detecting anomalies earlier minimizes the losses caused by
system abnormalities, but this places higher demands on the algo-
rithm’s time complexity. To cope with them, some methods are de-
signed with specialized Offline Training with Active Online Detection
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strategies. Active learning methods are used to continuously optimize
the online detection model with the aim of learning and updating the
model from a small amount of new data. Methods demonstrating
good performance on these datasets include OmniAnomaly [123],
TopoMAD [61], InterFusion [89], SLA-VAE [67].

D. Threshold selection for time series anomaly detection
In the early stages of TSAD, little attention was paid to the

design of anomaly thresholds, and threshold selection based on expert
experience became the mainstream approach [55]. Experts establish
a threshold for each observed feature based on industry reference
values, and results exceeding the threshold are considered anomalous.
However, this requires sufficient priori knowledge. Various methods
have been proposed to improve thresholding.

1) Static Threshold Methods
AHMMAS [16] sets the threshold at the 99% cumulative distri-

bution cutoff, flagging the top and bottom 0.5% of feature values
as anomalies, considering them the most extreme and rare. [45]
uses an adaptive threshold where, for each cube position, the lowest
likelihood value among training samples is identified and multiplied
by a factor k (typically a constant greater than 1) to generate the
final threshold. BeatGAN [149] incorporates the anomaly proportion
of the dataset into its thresholding strategy by proposing a naive
percentile-based thresholding method for anomaly scores.

Despite these advancements, such approaches often fail to provide
robust discrimination between normal and anomalous samples. To
address this, statistical methods have been developed to refine thresh-
old selection. For instance, TopoMAD [61] introduces a thresholding
method based on the assumption that anomaly scores of normal
data lie in high-density regions, while those of anomalous data are
located in low-density regions, with a significant distance separating
the two. Other approaches, such as SISVAE [87] and InterFusion
[89], aim to select the threshold corresponding to the highest F1
score achievable by the model. These methods evaluate each anomaly
score as a potential threshold, compute the resulting F1 score, and
choose the score that maximizes it. Although effective, this approach
is computationally demanding in practice. Moreover, metrics like Av-
erage Precision (AP) and the Area Under the ROC Curve (AUROC),
which do not rely on threshold optimization, have shown to be robust
alternatives.

2) Dynamic Threshold Methods
While static thresholds remain fixed, they do not adapt to changes

in the variance of time series data, which is often non-stationary
in real-world applications. For example, in dynamic operating envi-
ronments with diverse working conditions, static threshold methods
struggle to generalize and apply a uniform limit to faults of varying
nature. Dynamic thresholding methods have emerged to address this
issue.

TadGAN employs a sliding window approach to compute thresh-
olds dynamically, with the window size determining the number of
historical anomaly scores used for threshold calculation. A common
formulation for a dynamic threshold is the Non-Parametric Dynamic
Threshold (NDT) [68], expressed as:

MAXt = µi + Z · δ2i
MINt = µi − Z · δ2i
i =

⌊
t
n

⌋ (16)

where:
• Z is a manually set hyperparameter.
• n represents the size of the sliding window.
• µi is the mean value of the error vector V in the i-th sliding

window.
• δ2i is the variance of the error vector V in the i-th sliding

window.
• ⌊·⌋ denotes the floor (round-down) operation.
OmniAnomaly uses an adapted Peak-Over-Threshold (POT)

methodology combined with sliding window and extreme value the-
ory for automatic threshold selection. Unlike traditional POT, which

focuses on the extremely high values of the distribution, SLA-VAE
identifies anomalies at the extremely low values of the distribution.
SLA-VAE further refines the threshold tuning by applying POT to
select an initial threshold, and then performs a grid search in a defined
grid space based on the initial threshold to find the threshold that
maximizes the F1 score.

E. Metrics
When evaluating the performance of TSAD models, common

evaluation metrics include Precision (P), Recall (R), F1 Score, and
Area Under Curve (AUC) [49, 79]. These metrics are widely used
to quantify the effectiveness of anomaly detection. The metrics and
their variants are listed below:

• Precision (P) measures the proportion of correctly identified
anomalies among all samples labeled as anomalies by the
model.

Precision =
TP

TP + FP
(17)

• Recall (R) quantifies the percentage of actual anomalies accu-
rately detected by the model.

Recall =
TP

TP + FN
(18)

• F1 Score (F1) is the harmonic mean of P and R. These three
metrics are often used together to comprehensively evaluate the
model’s performance, especially when there is a need to balance
P and R.

F1 = 2× P ×R

P +R
(19)

• F1 with Point-Adjustment [6] is a common evaluation strategy
in TSAD. Under this protocol, if any point within a contiguous
anomaly segment is detected, the entire segment is deemed to be
correctly identified. Many researchers believe that this method
tends to overestimate the effectiveness of anomaly detection
to some extent. In many studies, the F1 scores obtained using
the point adjustment strategy are significantly higher than those
obtained without it.

• F1 with PA%K [76] is proposed as an improvement on point
adjustment, which mitigates the effect of overestimation of F1
with Point-Adjustment and the possibility of underestimation
of F1. Unlike F1 with Point-Adjustment, all anomalies in an
anomalous segment are considered to be correctly detected only
if the ratio of the number of correctly detected anomalies in a
consecutive anomalous segment to its length exceeds the PA%K
threshold.

• Area Under the Curve (AUC) is a common metric used to
evaluate binary classification models and can also be applied to
assess the performance of TSAD models. The higher the AUC
value, the better the performance of the model in distinguishing
between normal and abnormal samples. The AUC value 1
indicates perfect discrimination between anomalies and normal
samples.

V. FUTURE DIRECTIONS

A. Data Source
Challenge. Most methods discussed in the paper operate on pre-
processed data, yet real-world data is often incomplete and of low
quality. Issues such as different frequencies in multivariate data and
the presence of missing data and labels pose significant challenges.
Varied frequencies may result in different time intervals across
dimensions in time series, while missing data and labels can impact
the accuracy of TSAD. Applying existing methods directly to such
data might not yield desirable results, as current models often demand
high-quality data.
Opportunity. Some efforts have explored standardized data pre-
processing methods, including advanced interpolation techniques and
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intelligent approaches for handling missing values when dealing with
different frequencies and missing data. Additionally, methods have
experimented with pseudo-labels [44], data augmentation [134], and
generating high-quality [130] data. However, there remains a lack
of universal approaches to efficiently enhance data quality. Thus,
we propose two prospective research directions: 1) Extend existing
data processing methods to formulate a rational and universal time
series data processing pattern, aiming to maintain data quality and
enhance model robustness. 2) Within the realm of existing GAN-
based methods, focus on strategies to generate higher-quality time
series data.

Self-supervised learning (SSL) is an essential technique to ex-
plore, especially when dealing with the scarcity of labeled data.
With the limited availability of annotated datasets, self-supervised
pretraining has gained significant attention and has been exten-
sively researched in natural language modeling [112], sequence
recommendation [131, 142], and computer vision [60, 139]. Self-
supervised learning notably reduces the dependency on high-quality
labeled data across various tasks while enhancing the representational
power of time series data. Notably, recent studies have begun to
focus on self-supervised pretraining methods specifically tailored
for time series data. The two most prominent paradigms in this
context are contrastive learning and masked time series modeling.
Contrastive learning involves learning representations of time series
data by contrasting positive and negative samples. Some approaches
[147] have introduced the use of multiple invariances to generate a
diverse set of augmentations.TimesURL [95] highlights that improper
construction of positive and negative pairs can introduce undesirable
inductive biases, which may neither preserve temporal characteristics
nor provide sufficient discriminative features. To address this, they
introduced a frequency-based augmentation method that preserves
time-related features and employed temporal reconstruction as a joint
optimization objective in contrastive learning, aiming to capture both
segment-level and instance-level information. On the other hand,
masked time series modeling [42] enables the model to learn the
structure and dependencies within time series data by masking parts
of the input sequence and predicting the masked portions. This
approach allows the model to develop a deeper understanding of
temporal patterns and relationships.

B. Integration of Multimodal Data

Challenge. While significant progress has been made in single-modal
TSAD tasks, real-world applications, including industrial production,
IOT and healthcare, often involve multimodal time series data. Some
methods have shown promising results for multimodal data from
different sensors, but existing work in TSAD has yet to extensively
cover richer modalities like audio, video, trajectory graphs, and text
streams. Therefore, there is substantial exploration space for the
detection of anomalies in multimodal temporal data.
Opportunity. For multimodal temporal data, exploring advanced
fusion methods becomes crucial, with a particular focus on under-
standing the correlation of temporal information in the multimodal
feature space. An In-depth investigation into the interactions between
multimodal features aids in a more comprehensive understanding
of information from different modalities. Bai et al. [7] proposed a
Prompt-based Distribution Alignment method for the unsupervised
Domain Adaptation problem. It uses two prompt tuning modules to
realize cross-domain alignment, which enhances the model’s learning
capability within the target modality. Therefore, I suggest future work
should focus on the following two directions: 1) Modality alignment
is a key issue in multimodal data processing. Future research may
concentrate on improving data alignment across different modalities,
especially considering different time scales, sampling rates, and data
types. 2) Designing more complex model structures, effective training
strategies, and loss functions adaptable to multimodal data should be
prioritized to address this gap.

C. Enhancing Interpretability and Trustworthiness
Challenge. While existing generative methods have demonstrated
effectiveness in the task of TSAD, a prevalent challenge is the limited
interpretability [151] of these methods. This becomes particularly
problematic in sensitive domains such as healthcare or finance, where
it is vital to understand how these methods work. Despite some
progress in generative methods for TSAD, the interpretability of these
approaches remains a notable challenge, especially in explaining the
rationale behind model outputs.
Opportunity. Current methods often provide explanations based on
reconstruction. For instance, OmniAnomaly offers anomaly explana-
tions based on reconstruction probabilities, avoiding rule-based or
expert knowledge-based interpretations to reduce biases and errors.
BeatGAN [149] locates the time points of anomalies by comparing
residuals between input and reconstructed heartbeat signals, offering
visualizations and attention guidance. However, such explanatory
results often exhibit incompleteness or uncertainty.

In time series analysis, causal inference is a crucial approach.
Identifying potential lagged causal processes in sequence data is
essential for understanding temporal dynamics and downstream
reasoning. Based on this theory, researchers introduced a method
called CaRiNG [28], which learns causal representations of non-
reversible generative time series data with identifiability guarantees.
This method utilizes temporal context to recover missing latent
information and applies theoretical conditions to guide the training
process. Additionally, time series decomposition is another promising
direction. Existing decomposition methods are categorized into three
types [132]: Seasonal-Trend Decomposition [35], Basis Expansion
[105], and Matrix Factorization [144]. Some studies suggest that a
better approach is to decouple information in the time and sample
dimensions, allowing each representation to be learned more fully
under its specific objectives. TimeDRL [19] proposes an unsuper-
vised pre-training method based on decomposition learning, which
decouples representations in the time and sample dimensions. This
generates representation vectors that better support various time series
tasks while enhancing interpretability.

D. LLMs for Time Series
Challenge. While foundational models have achieved significant
success in domains such as natural language processing (NLP)
and computer vision [12, 78, 114], the development of foundational
models for time series prediction has lagged behind. Early efforts
in this area attempted to leverage the network structures of large
models to retrain a foundational model specifically for time series
data using vast amounts of time series data across various domains.
These methods often employed Transformer-based unified sequence
modeling approaches to enable cross-domain learning, thereby aiming
to achieve robust time series representations. Although some progress
has been made in developing a unified time series foundational model
[10, 48, 56, 74, 96, 100, 150], there are still many challenges. 1) There
are notable differences between the different domains, especially in
terms of dimensionality, frequency and modalities. These differences
present obstacles to joint training efforts. 2) Pretraining a time series-
specific foundational model often requires an enormous amount of
high-quality time series data, which is difficult to obtain. 3) Models
trained on low-quality, weakly semantic, and hard-to-predict data tend
to lack the general understanding necessary for effective time series
analysis.
Opportunity. Recent efforts have addressed these challenges by
adopting patch-based approaches for modeling time series. Re-
searchers [136] concatenated multivariate time series, flattening them
into a single sequence and introducing mask characters to denote po-
sitions for prediction. Structurally, they employed a multi-granularity
patch modeling approach, accommodating sequences of different
frequencies. [10] proposed a training methodology more aligned with
conventional NLP large models. They introduced the next patch
prediction task, continuously predicting the next patch with MSE
used to compute loss for each patch prediction. Therefore, based
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on their theoretical findings, it is very promising and feasible to
explore a more refined approach to LLM modeling and training.
Another representative work in this area is Chronos, which operates
on the premise that, despite the differences between natural language
and time series data, both are inherently sequential. By scaling
and quantizing time series data, Chronos [4] converts continuous
time series into discrete tokens, allowing the application of lan-
guage models without significant architectural modifications. It then
employs a cross-entropy loss to train existing Transformer-based
language model architectures to handle these tokenized time series.
Similarly, TIME-LLM [74] introduces the concept of text prototypes
to reprogram the input time series, aligning it with the frozen LLM.
To enhance the reasoning capabilities of LLMs for time series data,
TIME-LLM introduces the Prompt-as-Prefix (PaP) approach, which
enriches the input context and guides the reprogramming of input
patches. This method has demonstrated strong performance in both
few-shot and zero-shot learning scenarios. In the context of anomaly
detection, two primary LLM-based approaches have emerged for time
series: 1) PROMPTER: This approach converts the anomaly detection
task into a prompt that is fed into the LLM, which then directly
provides the answer. 2) DETECTOR: In this approach, the LLM first
predicts the time series, and anomalies are identified by comparing the
predicted values to the actual ones. The SIGLLM [3] framework, for
example, employs GPT-3.5-turbo to address TSAD, providing initial
validation of the effectiveness of LLMs in this domain. To adapt
time series data for LLM input, SIGLLM converts the series into
numerical values, with a focus on retaining as much of the original
time series information as possible using the shortest input length.
Additionally, exploring alternatives to the Transformer architecture is
another direction worth noting. Mamba [57, 133] is one of the most
discussed models in this context and is even considered by some
in the industry as a potential replacement for Transformers. Mamba
is a State Space Model-based architecture, reminiscent of RNNs.
Compared to Transformers, Mamba exhibits linear time complexity
concerning sequence length during both training and inference stages,
leading to significantly higher computational efficiency. Some studies
[2, 9, 108] have explored the application of the Mamba model in time
series prediction tasks, demonstrating its effectiveness.

E. Online Learning and Adaptive Approaches
Challenge. In practical applications, the demand for models to
dynamically adapt to changing data distributions and patterns is
particularly pronounced, especially in industrial settings and network
service monitoring. When faced with previously unseen data distribu-
tions beyond what the model has learned, the model’s generalization
ability can sharply degrade, leading to a decline in anomaly detection
performance. Ensuring stability and adaptability in online learning
scenarios proves to be an exceptionally challenging task, especially
for generative models that need to continuously learn the distribution
and patterns of normal data. The degradation of performance in
detecting anomalies due to the dynamic nature of data poses a
significant challenge.
Opportunity. The challenge presents a substantial opportunity for
research in adaptive methods for TSAD, particularly focusing on
approaches grounded in Generative Adversarial Networks (GANs).
Investigating GAN-based methods for adapting to changing data
distributions in online learning scenarios holds promise in enhancing
stability and adaptability. By leveraging the adversarial training capa-
bilities of GANs, these methods can potentially facilitate more effec-
tive adaptation to evolving normal data distributions and patterns.
This opportunity not only addresses the challenge of maintaining
performance in dynamic environments but also opens avenues for
advancing the field’s understanding of how generative models can
adapt to real-world changes.

VI. CONCLUSION

In this survey, we systematically review generative methods for
TSAD. Unlike previous reviews that focus on deep time series

analysis methods, this paper provides a comprehensive investigation
and analysis of existing generative methods for TSAD. Generative
anomaly detection for time series is more than just applying off-
the-shelf generative models. The core challenge is the fundamental
mismatch between time series characteristics (temporal dependency,
dynamic patterns, multi-scale nature) and the objective of generative
models. Complex cross-dimensional dependencies in multi-variate
sequences are also often overlooked by generative models. Detec-
tion effectiveness heavily relies on clean training data. Anomalous
segments can distort the model’s learning of normal patterns (long-
term dependencies, periodicity, trends), potentially leading the model
to mistake anomalies as normal. In models like VAE or Diffusion,
anomalies may reside in atypical locations or form separate clusters
in latent space, yet still be considered part of the normal repre-
sentation. Additionally, the anomaly scoring mechanism must align
with temporal characteristics, as reconstruction error or negative log-
likelihood may be overly sensitive to temporal misalignment. An
appropriate anomaly scoring mechanism can significantly enhance
anomaly detection performance.
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