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Abstract—Visual foundation models (VFMs) have been widely
applied in the field of remote sensing (RS). However, they
still face two main challenges when applied to precise RS
change detection (RSCD) tasks in complex scenes. Firstly, the
nonnegligible domain shift between natural scene and RS scene
limits the direct application of VFMs to the RSCD task. Sec-
ond, most of the existing RSCD methods may suffer from
the boundary displacement problem due to the inadequate
exploration of temporal differences for bi-temporal features. To
address the above issues, this study proposes a Segment Anything
Model 2 (SAM2)-based domain adaptive and spatial difference
aggregation network (DA2-Net) for RSCD. The proposed DA2-
Net has two main advantages. First, a hierarchical low-rank
adaptation (LoRA) strategy is presented by introducing low-
rank matrices at key positions of SAM2, which can inject
inductive biases from the RS domain into the network and
alleviate the domain shift problem. Second, a difference adaptive
enhancement module (DAEM) is designed to explore temporal
differences for hierarchical bi-temporal features. The DAEM
provides respective attention weights for different information
through a dual branch of global difference awareness and local
detail optimization. Experimental results on SYSU-CD, WHU-
CD, and LEVIR-CD datasets demonstrate the superiority of
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I. INTRODUCTION

REMOTE sensing change detection (RSCD) is a signifi-
cant research topic in the field of Earth observation [1],

with the goal of detecting relevant semantic changes in bi-
temporal remote sensing (RS) images of the same area. It has
been widely applied in various scenarios, such as land planning
[2], urban expansion [3], military reconnaissance [4], disaster
monitoring [5], and environmental protection [6].

RSCD is a challenging task due to the interference of
various noises, such as illumination variations, seasonal and
environmental variations, which may cause pseudo changes. In
the past decade, deep learning (DL) techniques have almost
become the dominant architecture for RSCD due to their
powerful ability to automatically extract high-level seman-
tic features. Typical representatives of these methods are
convolutional neural networks (CNNs) based and transformer-
based RSCD methods. Generally, CNN-based RSCD methods
exploit various mechanisms (e.g., dilated convolutions [7],
multiscale features [8], [9], and various attention mechanisms
[10], [11]) for learning discriminative semantic features. For
example, Song et al. [12] built a spatial integration module
using dilated convolutions. Although CNN-based methods
have achieved practical success, they struggle to capture
global information, deteriorating the RSCD performance. In
recent years, due to the excellent global modeling capability,
vision transformers (ViTs) [13] have demonstrated outstanding
performance in various RS tasks [14], [15], particularly in
RSCD. For example, Zhang et al. [16] proposed a pure trans-
former network with shifted windowing. Although achieving
impressive performance, transformer-based RSCD methods
exhibit limited ability in learning local information, leading to
suboptimal detection result for changed object details. To this
end, some studies have combined CNNs with transformers,
aiming to explore more powerful RSCD variants. For example,
Feng et al. [17] used CNN and transformer to extract features
from each image simultaneously.
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In summary, these attempts have achieved a certain degree
of success. However, with the expansion of the model scale,
the limited data hinders further improvement of model perfor-
mance. In fact, the data acquisition and labeling for RSCD
is very time-consuming and labor-intensive. Despite much
research efforts to alleviate the data dependence, such as few-
shot learning [18], generating simulation data [19], and data
augmentation [20], the network’s overfitting for specific data
sets continues to hinder its generalization performance.

A. Motivation

Recently, visual foundation models (VFMs) have gained
considerable attention due to their task-agnostic characteristics
across various downstream tasks. After training on large-scale
natural datasets, VFMs acquire strong generalization and few-
shot learning capabilities, which help reduce the reliance of
downstream tasks on specific data. Although previous studies
[21], [22], [23] have applied VFMs (e.g., CLIP [24], SAM
[25]) to RSCD tasks, these VFMs still have some limitations.
First, CLIP optimizes the similarity between images and text
through global contrastive learning rather than focusing on
pixel-level visual understanding. As a result, the visual features
extracted by CLIP tend to be overly global and often introduce
substantial background noise. When applied to RSCD, this
leads to insensitivity to subtle changes and an increased
likelihood of false change detections. Second, although SAM
mitigates some of the aforementioned issues, it generates
features with a single scale and relatively low resolution. Its
computational and memory costs also become significant when
processing low-resolution images. These limitations hinder its
practical applicability, especially in scene-level RS scenarios
where object scales vary significantly.

Segment Anything Model 2 (SAM2) [26] is a typical
VFM designed to predict the related segmentation mask
based on user-provided prompts. In contrast, SAM2 is specif-
ically designed for dense prediction tasks and demonstrates
a stronger capacity to preserve spatial structures and fine-
grained semantic information. As an improved version of
SAM, SAM2 adopts a hierarchical downsampling architecture
to produce multiscale features, while achieving over six times
faster inference speed. These advantages, which distinguish
SAM2 from other VFMs, motivate this study to explore its
adaptation to RSCD tasks. However, when applied to the
RSCD task, SAM2 faces two main challenges.

1) Domain Shift: At the data level, there are significant
differences between RS images and natural images in
spatial resolution, imaging conditions, and object scale.
RS images usually have low resolution, and the spec-
tral overlap between ground objects is large, which
makes it difficult to distinguish the foreground from the
background. Directly employing SAM2 for the RSCD
task forces the network to rely on its inherent general
knowledge in natural scene, limiting its sensitivity to
subtle changes in and RS scene. As shown in Fig. 1(a),
directly employing SAM2 for the RSCD task leads to
distinct false detections and missed detections due to the
domain shift problem. Although VFMs adaptation strate-
gies have made progress in mitigating domain shift, they

Fig. 1. Visual examples. (a) Results of directly adopting SAM2 as the
feature extractor for RSCD. (b) Results of feature fusion with the concatenate
operation. (c) Results of the proposed DA2-Net. The rendered colors represent
true positives (white), false positives (green), true negatives (black), and false
negatives (red).

still face certain limitations. Full tuning strategies are
prone to overfitting [27], while adapter-based strategies
increase model complexity [21]. In contrast, hierarchical
low-rank adaptation (LoRA) [28] is a parameter-efficient
fine-tuning (PEFT) method, has been scarcely explored
in a systematic manner, limiting its full potential.

2) Boundary Displacement: At the feature level, simultane-
ously capturing category-discriminative information (to
locate coarse change regions) and spatial-detail infor-
mation (to preserve fine-grained boundaries) is crucial
for exploring temporal differences between bi-temporal
images. Simple feature fusion methods (e.g., concatena-
tion) fail to adequately explore temporal differences for
bi-temporal features. As shown in Fig. 1(b), inadequate
exploration of temporal differences results in an obvious
boundary displacement problem in detection results.

B. Overview

To alleviate the above challenges, this study proposes a
SAM2-based domain adaptive and difference aggregation
network (DA2-Net) by exploring both domain adaptation and
multiinformation cooperation. On the one hand, a hierarchical
LoRA with PEFT strategy is designed to alleviate the
domain shift problem. Specifically, the trainable low-rank
decomposition matrices are introduced at key positions in
the SAM2 image encoder, enabling the network to efficiently
learn knowledge from the RS domain. On the other hand, a
difference adaptive enhancement module (DAEM) is designed
to alleviate the boundary displacement problem. Through
a global difference awareness and local detail optimization
dual-branch process, DAEM can adaptively aggregate bi-
temporal features and enhance change perception. As shown
in Fig. 1(c), the detection results by the proposed DA2-Net
have smoother edges and more uniform interiors than those
in Fig. 1(a) and (b).

C. Contributions

In summary, the contributions of this study are threefold.
1) To bridge the knowledge gap between VFMs and the

RSCD task, this study proposes DA2-Net with a hierar-
chical LoRA fine-tuning strategy. Unlike other VFMs
adaptation strategies, this study introduces low-rank
matrices into multiple key layers of SAM2. It guides
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the model to learn knowledge specific to the RS domain,
thereby achieving domain adaptation of VFMs to the RS
domain.

2) In order to coordinate category-discriminative and
spatial-detail information, this study proposes DAEM.
Unlike existing dual-branch fusion methods, DAEM
generates complementary attention weights through a
global difference awareness and local detail optimiza-
tion dual-branch. It can adaptively enhance difference
information and suppress the boundary displacement
problem.

3) Extensive experiments demonstrate that DA2-Net
exhibits competitive cross-scene generalization and
few-shot learning capabilities. Moreover, DA2-Net
can be easily extended to other multimodal vision
tasks, such as RGB-SAR land use classification and
RGB-thermal semantic segmentation.

D. Organization

The remainder of this study is organized as follows. Sec-
tion II reviews mainstream DL-based RSCD methods, recent
VFMs and adaptation strategies. In Section III, the framework
of DA2-Net is described in detail. The evaluation methods
and experimental results are thoroughly explained and ana-
lyzed in Section IV. Section V discusses the interpretability,
hyperparameters, and model efficiency. Finally, the work is
summarized in Section VI.

II. RELATED WORKS

A. DL-Based CD Methods

The widespread application of DL techniques has driven the
numerous DL-based RSCD networks. These networks can be
roughly divided into CNN-based methods, transformer-based
methods, and hybrid methods.

CNN-based RSCD methods [2], [29] leverage convolution
operations to extract local spatial features and progressively
build multiscale feature representations. Typically, the Siamese
network is a mainstream architecture in RSCD tasks due to
its ability to independently extract features from bi-temporal
images. Specifically, Daudt et al. [30] first proposed two fully
convolutional Siamese networks, FC-Conc and FC-Diff, which
reuse shallow features to enrich deep feature representations,
demonstrating their potential in RSCD. However, the two
fully convolutional Siamese networks adopt limited feature
fusion strategies and simple network structures, hindering
the full modeling of differential information. To address this
issue, Fang et al. [31] proposed SNUNet, which alleviates the
loss of localization information in deep layers by employing
dense skip connections between components. To capture richer
contextual information, Lei et al. [2] subsequently designed
a differential module with an attention mechanism. It can
learn the differences between foreground and background,
enhancing the internal consistency of the changed objects.
Zhang et al. [32] combined a Siamese RSCD network with
global attention and foreground-aware strategies, enhancing
contextual learning and feature extraction capabilities. Con-
sidering the impact of environmental noise, Shi et al. [33]

introduced deep supervision into the Siamese RSCD network.
They utilized multiscale attention to provide more discrimina-
tive information to the network, making it more sensitive to
fine-grained changes. Generally, CNN-based RSCD methods
can efficiently extract local spatial features and adapt to various
RSCD scenes through different attention mechanisms and
multiscale representations. However, the convolution operation
often neglects long-range dependencies between pixels [34],
hindering accurate capture of large-scale semantic changes.

In recent years, the extensive application of transformers in
the field of RS has brought new solutions to RSCD. The ViT
can accurately capture global context information in images
and establish associations between distant pixels through self-
attention mechanisms. For example, Chen et al. [35] proposed
BIT to efficiently model context information in the spatio-
temporal domain by representing bi-temporal deep features
as semantic tokens. Zhang et al. [16] proposed SwinSUNet,
which processes bi-temporal images in parallel and extracts
their multiscale features, achieving promising results. Bandara
and Patel [36] integrated a hierarchical transformer encoder
with a multilayer perceptron (MLP) decoder into the Siamese
network architecture, effectively capturing multiscale remote
details. While transformers effectively capture long-range
dependencies, they may struggle to represent the fine-grained
spatial detail structure of RS images, hindering the detection
of small change objects.

In fact, the independent structures of CNNs and trans-
formers limit the network’s global-local modeling capabilities.
Therefore, many RSCD networks are dedicated to leveraging
the complementary advantages of CNNs and transformers. For
example, Feng et al. [17] proposed ICIF-Net for capturing
bi-temporal features with a dual-branch parallel structure of
CNNs and transformers. Li et al. [37] presented ConvTransNet
by integrating CNNs and transformers in parallel connection as
a feature extraction module. Liu et al. [38] proposed AMTNet,
which leverages a cross-fusion transformer to process the
multiscale features output by ResNet [39].

Although the above DL-based RSCD methods have made
significant progress, their data demands for training also
increase with the expansion of the model scale. In RS scenarios
with complex spatio-temporal relationships, their detection
capabilities remain more limited.

B. Visual Foundation Models

VFMs refer to models that are pre-trained on large-scale
datasets and with general knowledge. They exhibit strong
generalization capabilities and can reduce data dependence for
downstream tasks. For example, OpenAI proposed a vision-
language model called CLIP [24], which has demonstrated
comparable performance to fully supervised CNNs in zero-
shot classification tasks. To enhance the cross-modal learning
capabilities of CLIP, Dong et al. [40] proposed MaskCLIP,
which incorporates masked self-distillation during training.
However, CLIP and MaskCLIP struggle with the image
segmentation task. To address this, Lan et al. [41] further
introduced ClearCLIP for generating segmentation maps by
removing noise-inducing components from CLIP.
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With the advancement of computer vision, integrating mul-
tiple segmentation tasks into a single model has become
increasingly attractive. For example, the SAM [25] is a
segmentation model released by Meta that is capable of
performing different types of segmentation tasks. Trained on
ultra-large scale natural image data, SAM exhibits strong zero-
shot generalization capabilities across various visual tasks.
To optimize the computational efficiency and resource con-
sumption of SAM, Meta introduced EfficientSAM [42]. By
incorporating masked image pretraining, the model is enabled
to operate efficiently even in resource-constrained environ-
ments. However, practical applications require handling time
series data. Therefore, Meta released SAM2 [26], which
extends SAM’s capabilities from image segmentation to video
segmentation.

In the RS domain, an increasing number of task-specific
VFMs have been proposed. SAMRS [43] provides a large-
scale RS image segmentation dataset, while Ma et al. [44]
utilize SAM for fast RS image segmentation with mini-
mal interaction. Additionally, several adaptation methods for
VFMs have been proposed. For example, Zheng et al. [45]
introduced a multicognitive visual adapter to facilitate the
transfer learning of the SAM in RS semantic segmentation.
Yuan et al. [46] designed a multimodal adapter for the RS
image-text retrieval task, which enables cross-domain transfer
of multimodal information through a shared-weight mecha-
nism.

It is worth noting that current research on SAM2 remains
limited; however, it still demonstrates strong application poten-
tial. In [47], the prompt-based segmentation capability of
SAM2 was leveraged to convert an RS object tracking dataset
into a video segmentation dataset. In [48], the authors lever-
aged the positive and negative click prompts of SAM2 to
achieve high-resolution water body extraction. In [49], SAM2
was employed to generate pseudo-labels for object bound-
ary regions, thereby improving the accuracy of multiview
RS multiview segmentation. However, due to the significant
domain shift between natural images and RS images, directly
transferring SAM2 to RSCD fails to yield satisfactory perfor-
mance. Moreover, temporal differences are particularly critical
for RSCD, while SAM2 excels at segmentation but lacks the
ability to compare temporal changes.

C. VFMs Adaptation Strategies

A reasonable integration of VFMs with downstream tasks
can save substantial resources while significantly improv-
ing the performance ceiling and generalization ability of
new models. With the continuous advancement of VFMs,
three adaptation strategies have emerged, namely full tuning,
adapters, and PEFT.

The essence of full tuning lies in leveraging existing knowl-
edge to guide the learning process of downstream tasks,
allowing all pre-trained weights to be updated during training.
This approach enables direct sharing of low-level features
across different tasks and can fit the feature distributions of
out-of-distribution data. Owing to these advantages, full tuning
has been widely applied in various RS scenarios, including
segmentation [14], retrieval [50], and detection [51], achieving

encouraging success. However, the widespread practice of full
tuning was primarily on earlier pre-trained model (e.g., VGG
and ResNet), which had relatively simple architectures and
limited scale, and thus can no longer satisfy the performance
demands of downstream applications. Although recent VFMs
with hundreds of millions of parameters (e.g., SAM and CLIP)
have emerged, the computational cost and risk of overfitting
have constrained the development of full tuning.

Adapters are an effective alternative to full tuning. Its core
idea is to introduce learnable modules into frozen VFMs to
facilitate the optimization of downstream tasks under super-
vision signals. The standard adapter [52] typically consists
of dimension reduction, activation, and dimension expansion,
and is inserted between adjacent transformer layers. For RSCD
tasks, BAN [21] treats the existing RSCD model as an external
adapter, where multiscale features extracted by CLIP are fused
with features extracted by the external adapter. SAM-CD [53]
is another adapter-based RSCD method, which introduces con-
volutional modules into each layer of FastSAM and provides
semantic information to the network through segmentation
masks. The above methods typically treat VFMs as frozen
feature extractors, lacking dynamic optimization of internal
features, which limits their cross-domain understanding capa-
bilities.

To overcome the limitations of adapters, it is necessary
to perform PEFT within VFMs to mitigate the domain shift
between natural images and RS imagery. In recent years,
LoRA has attracted widespread attention as a PEFT method.
LoRA decomposes a high-dimensional weight matrix into
two low-rank matrices, updating only these low-rank matrices
during training. This approach enables the network to learn
inductive biases specific to the target data while significantly
reducing the number of trainable parameters. In previous
studies [54], [55], LoRA has been applied to RSCD tasks.
However, these works merely inserted LoRA modules simply
into every layer of the VFMs, lacking a systematic exploration
of the optimal embedding locations and frequencies. More-
over, they did not thoroughly investigate the effects of LoRA’s
hyperparameters (e.g., rank, scaling factor, and dropout rate)
on detection performance. Therefore, the full potential of
LoRA in RSCD tasks remains to be further explored.

III. METHOD

A. Overall Framework

As shown in Fig. 2, the main components of DA2-
Net include: a hierarchical low-rank domain adaptive image
encoder, a DAEM, and a residual convolutional decoder.
First, bi-temporal images are input into the hierarchical
low-rank domain adaptive image encoder for extracting mul-
tiscale contextual features. Each encoder block contains
several transformer blocks. To reduce the domain knowledge
gap, a trainable low-rank factorization matrix is introduced
in the self-attention and MLP layers of the transformer
block. Subsequently, DAEM processes detailed and discrim-
inative information to output multilevel enhanced difference
features. The difference features are then fed into the resid-
ual convolutional decoder to generate a feature map with



NING et al.: DA2-Net: INTEGRATING SAM2 WITH DOMAIN ADAPTION AND DIFFERENCE AGGREGATION 5648517

Fig. 2. Architecture of the proposed DA2-Net. It mainly consists of three parts: the hierarchical low-rank domain adaptive image encoder, the DAEM, and
the residual convolutional decoder.

Fig. 3. Diagram of transformer block in encoder block. (a) Transformer block architecture after introducing hierarchical LoRA. (b) Schematic of the LoRA
principle.

change-related semantic information. Finally, a convolutional
layer is employed to obtain the RDCD results.

B. Hierarchical Low-Rank Domain Adaptive Image Encoder

SAM2 has exhibited outstanding performance in various
downstream tasks after high-quality training on large-scale
natural datasets. However, the domain gap between natural
images and RS images restricts its performance in RSCD
tasks. To extract the inductive bias of RS images and further
enhance the generalization ability of SAM2, this study pro-
poses a hierarchical LoRA strategy with PEFT. As shown in
Fig. 3(a), driven by the functional heterogeneity of transformer
components, LoRA is integrated into both the self-attention
and MLP layers of the transformer module in the SAM2
image encoder. Specifically, in the self-attention layer, low-
rank adjustments are applied to the weight matrices to optimize
the adaptive weight distribution of the attention mechanism.
This allows the model to capture the global relationships
among input features more accurately. In the MLP layer, LoRA
enables more effective adjustments to feature representations
through nonlinear transformations, which facilitates improved
adaptability of the model to the specific characteristics of RS
data.

The principle of LoRA is illustrated in Fig. 3(b). Given
the weight matrix W ∈ RC1×C2 of a certain layer in the

transformer block, an additional branch is introduced on one
side of W. The branch is responsible for decomposing W into
two lower rank matrices WA ∈ Rr×C2 and WB ∈ RC1×r, where
r � min{C1,C2}. During training, the weights of W are frozen,
and WA and WB are trained to approximate the updates to W.
Let the input feature be Sin, and the output feature be Sout. The
process can be expressed as

Sout = ŴSin (1)

Ŵ = W + ∆W = W + WBWA (2)

where Ŵ denotes the weight matrix after introducing LoRA,
and ∆W represents the weight matrix that is updated. In the
multihead self-attention of the transformer module, the cosine
similarity between different positions is computed to determine
which features should be weighted. In this study, LoRA is
applied to query and value projection layers for modulating
the attention scores, thus adjusting the model to focus on
different regions. The self-attention computation process after
introducing LoRA is as follows:

Attention (Q,K,V) = Softmax
�

QKT

√
C1

�
V (3)

Q = ŴqF = WqF + WB
q WA

q F (4)

K = WkF (5)

V = ŴvF = WvF + WB
v WA

v F (6)
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Fig. 4. Illustration of DAEM.

where Q, K, and V are the query, key, and value matrices,
Wq, Wk, and Wv are the weight matrices of the Q, K,
and V projection layers in SAM2. C1 denotes the dimension
of single-head attention, while WA

q , WB
q , WA

v , and WB
v are

the trainable low-rank matrices. F represents the multiscale
contextual features extracted by the SAM2 image encoder.

In the MLP layer of the transformer module, nonlinear
transformations enable the model to learn more complex
feature representations. To capture the complex relationships
between input features for the RS data, LoRA is introduced
in the first linear layer of the MLP. The computation process
of the linear layer after introducing LoRA is as follows:

MLP (Z) = W2
�
Ŵ1Z + b1

�
+ b2 (7)

Ŵ1 = W1 + WB
1 WA

1 (8)

where Z is the input sequence to the MLP layer. W1 and W2
are the weight matrices of the first and second linear layers
in the MLP layer, respectively. WA

1 and WB
1 are the low-rank

matrices from the decomposition of W1. b1 and b2 represent
the bias terms.

C. Difference Adaptive Enhancement Module

Traditional feature fusion methods (e.g., differential or
concatenate approaches) often overlook the synergistic rela-
tionship between change awareness and detail capture. This
makes it challenging for RSCD networks to simultaneously
preserve edge details of changed objects and internal tight-
ness. To address this issue, this study proposes the DAEM.
Unlike single-branch feature fusion strategies [35], [37], [36],
[56], DAEM can accurately capture bi-temporal difference
information through the collaboration of two branches: global
difference awareness and local detail optimization.

The DAEM employs two distinct branches to capture
category-discriminative information via global attention and
spatial-detail information via local attention, respectively.
Each branch generates corresponding attention weights for
subsequently adaptively integrating bi-temporal features and
obtaining difference features. As shown in Fig. 4, the bi-
temporal features are denoted as Fpre

i and Fpost
i (i = 1, 2, 3, 4

indexes the ith encoder block). The difference features
enhanced by DAEM are denoted as F̃i. The operation steps of
DAEM are as follows: First, Fpre

i and Fpost
i are element-wise

added to obtain Fadd
i , and then Fpre

i and Fpost
i are element-

wise subtracted to obtain Fsub
i . Subsequently, Fadd

i and Fsub
i

are fed into the global difference awareness and optimization
branches, respectively, for learning category-discriminative
and spatial-detail information.

In the global difference awareness branch, the global aver-
age pooling operation is first applied to each feature channel in
Fadd

i for learning the global attention feature FG
i . The operation

reduces the spatial dimensions of Fadd
i from [C,H,W] to

[C, 1, 1], where C,H, and W represent the channel number,
height, and width of the feature map, respectively. The global
attention feature FG

i can be computed as follows:

Fadd
i =

(
Fpre

i ⊕ Fpost
i , i = 1

UP
�
Fpre

i

�
⊕ UP

�
Fpost

i

�
, i > 1

(9)

FG
i = ReLU

�
BN

�
Conv1

�
GAP

�
Fadd

i

����
(10)

where ⊕ denotes element-wise addition, UP stands for a
2× upsampling operation, GAP represents the global average
pooling operation, Conv1 refers to a 1 × 1 convolution oper-
ation, BN stands for batch normalization, and ReLU(X) =

max{0,X}.
In the local detail optimization branch, a max pool-

ing operation is employed to extract the maximum value
within each local receptive field to emphasize salient local
details. The local attention feature FL

i is calculated as
follows:

Fsub
i =

(
|Fpre

i 	 Fpost
i |, i = 1

|UP
�
Fpre

i

�
	 UP

�
Fpost

i

�
|, i > 1

(11)

FL
i = ReLU

�
BN

�
Conv1

�
MAP

�
Fsub

i

����
(12)

where 	 denotes element-wise subtraction, | · | represents the
absolute value operation, and MAP stands for max pooling
operation.

Then, FG
i and FL

i are added together and passed through a
sigmoid function to obtain the attention weight matrices Wadd

i
and Wsub

i . The details are as follows:

Wadd
i = Sigmoid

�
Conv1

�
FG

i ⊕ FL
i

��
(13)

Wsub
i = 1 −Wadd

i . (14)

Finally, Wadd
i and Wsub

i are utilized as the global and local
attention weights, respectively, for obtaining the final enhanced
features. Specifically, the extracted global attention feature and
local attention feature are multiplied by their corresponding
pixel-level attention weights and then integrated by element-
wise addition to obtain the enhanced feature F̃i. It can be
calculated as follows:

F̃i =
�
Wadd

i � FG
i

�
⊕
�
Wsub

i � FL
i

�
(15)

where � denotes element-wise multiplication.

D. Residual Convolutional Decoder and Optimization
Strategy

To obtain the final RSCD results, this study introduces
a simple yet efficient residual convolutional decoder. The
decoder details are shown in Fig. 5. Initially, the F̃i (i =

1, 2, 3, 4) are concatenated along the channel dimension and
conducted a 1 × 1 convolution operation. Subsequently, to
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Fig. 5. Illustration of residual convolutional decoder.

avoid the checkerboard effect [57] during upsampling, a cross-
structured combination of “transposed convolution + 3 × 3
residual convolution” is adopted to achieve feature upsampling
and refinement. Finally, a 3 × 3 convolution operation is
applied to obtain the final change prediction probability map,
where the first channel corresponds to no change and the
second channel corresponds to the change class probability.
To obtain the binary change map, an argmax operation is
performed along the channel dimension.

The RSCD is essentially a dense prediction task. During
training, this study optimizes the network by minimizing the
cross-entropy loss. The cross-entropy loss is as follows:

Loss = −
1
N

NX
i=1

�
yi log (ŷi) + (1 − yi) log (1 − ŷi)

�
(16)

where yi is the true class label of the sample, ŷi is the predicted
class label, and N is the total number of pixels in each sample.

IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

1) Dataset Description: The proposed DA2-Net is validated
on three public CD datasets: SYSU-CD [33], WHU-CD [58],
and LEVIR-CD [59].

SYSU-CD dataset contains 20 000 pairs of high-resolution
(0.5 m/pixel) aerial images with spatial dimensions of 256 ×
256, captured between 2007 and 2014. The types of changes
in the dataset include newly constructed urban buildings,
suburban expansion, pre-construction groundwork, vegetation
changes, road expansion, and offshore construction. In our
experiments, the default data split is adopted, with the training,
validation, and test sets consisting of 12 000, 4000, and 4000
image pairs, respectively.

WHU-CD dataset contains a pair of high-resolution
(0.2 m/pixel) aerial images with spatial dimensions of 32 507
× 15 354. The WHU-CD dataset is specifically designed for
building CD. Since no default partitioning strategy is provided,
this study follows the settings used in [21], where the original
images are cropped with non-overlapping 256 × 256 patches.
The training, validation, and test sets consist of 5947, 743, and
744 image pairs, respectively.

LEVIR-CD contains 637 pairs of high-resolution
(0.5 m/pixel) images with spatial dimensions of 1024
× 1024. The period span for each pair of images ranges
from 5 to 14 years. This dataset primarily focuses on changes
related to building construction and demolition. In our
experiments, the default data split is adopted, and the original

images are cropped into non-overlapping 256 × 256 patches.
The training, validation, and test sets consist of 7120, 1024,
and 2048 image pairs, respectively.

2) Evaluation Metrics: To quantitatively evaluate the effec-
tiveness of DA2-Net, this study adopted a comprehensive set
of performance metrics, including the F1-score (F1), precision
(Pre.), recall (Rec.), overall accuracy (OA), and intersection
over union (IoU)

Pre. =
TP

TP + FP
(17)

Rec. =
TP

TP + FN
(18)

F1 = 2 ·
Pre · Rec

Pre + Rec
(19)

IoU =
TP

TP + FP + FN
(20)

OA =
TP + TN

TP + TN + FP + FN
(21)

where rmTP, rmTN, rmFP, and rmFN are the numbers of true
positives, true negatives, false positives, and false negatives,
respectively.

B. Implementation Details

DA2-Net leverages the SAM2-large image encoder as the
feature extractor and outputs multiscale features at the 2nd,
8th, 44th, and 48th transformer module layers. During the
training phase, various data augmentation strategies, such as
random flipping and random rotation are applied to increase
the diversity of the training dataset. The pre-trained weights of
the network’s backbone are kept frozen to preserve the inher-
ent general knowledge. The network is trained on an NVIDIA
4090 GPU. The low-rank matrices WA and WB are initialized
to 0 and 1, and the remaining trainable parameters are ran-
domly initialized. Based on empirical settings, the learning rate
is set to 2.1e−4, and the model is trained for 150 epochs. The
learning rate is linearly decayed until the final epoch, using the
AdamW optimizer with weight decay of 0.01 and beta values
of (0.9, 0.999). To achieve optimal model performance, the
hierarchical LoRA introduction frequency N = 2, and the rank
value R = 16 (for all datasets). On the SYSU-CD and LEVIR-
CD datasets, the scale factor α = 16 and the dropout rate β =

0, while on the WHU dataset, the scale factor α = 32 and the
dropout rate β = 0.1. The above hyperparameter discussion
and analysis are presented in Sections IV-D3 and V-B.

C. Comparison With State-of-the-Art Methods

In this study, the proposed DA2-Net is compared with 11
representative CD methods, including CNN-based methods
(FC-EF [30], FC-Diff [30], USSFC [60]), transformer-based
methods (BIT [35], ChangeFormer [36], LSAT [61], ELGC-
Net [56]), and VFMs-based methods (ChangeViT [27], BAN
[21], SAM-CD [53], Meta-CD [62]).

FC-EF is a fully convolutional RSCD network that fuses bi-
temporal images at an early stage and then adopts a U-structure
to perform RSCD. FC-Diff is a variant of FC-EF that fuses
the bi-temporal features output by the Siamese network during
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TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON SYSU-CD, WHU-CD, AND LEVIR-CD DATASETS. ALL THE VALUES ARE IN %

TABLE II

IMPACT OF THE COMBINATION OF DIFFERENT COMPONENTS ON THE PERFORMANCE OF DA2-NET [PARAM (M), PRE. (%), IOU (%), AND F1 (%)]. X
ADDS THE COMPONENT, AND × REMOVES THE COMPONENT. WITHOUT DAEM, THE DIFFERENCE FEATURES ARE OBTAINED BY ELEMENT-WISE

SUBTRACTION. MARK * DENOTES TRAINABLE PARAMETERS IN NETWORK

the decoding phase to perform RSCD. USSFC is an efficient
ultra-lightweight spatial-spectral feature collaborative network,
which introduces a 3-D attention mechanism for flexible cap-
ture of transformed features. BIT converts bi-temporal image
features into semantic tokens and leverages a transformer
encoder to model contextual tokens. ChangeFormer (denoted
by CFormer) effectively models multiscale long-range infor-
mation by using a hierarchical transformer encoder and a
lightweight MLP decoder. LSAT is a lightweight structure-
aware transformer network, which utilizes cross-dimensional
interactive self-attention to replace the ordinary self-attention
module in the visual transformer to focus on key regions.
ELGC-Net introduces an efficient local-global context aggre-
gator module in the transformer encoder. It captures enhanced
global context and local spatial information through novel
pooling-transpose attention and deep convolution mechanisms.
ChangeViT integrates DINOv2 [63] with ResNet, it unleashes
the potential of VFMs in RSCD through full-parameter fine-
tuning. BAN is a model-agnostic concept that extracts general
features from a frozen VFMs, which are then aligned and
injected into existing RSCD models. SAM-CD utilizing the
visual encoder of FastSAM to extract visual representations
from RS scenes, further improving RSCD performance by
incorporating segmentation semantic information. Meta-CD
introduces an additional convolutional encoder to FastSAM,
significantly improving the model’s cross-scene generalization
capability.

1) Quantitative Comparison: The performance of DA2-Net
and the other methods on the three datasets is summarized
in Table I. The higher IoU and F1 indicate better detection
performance, with the best result in each column highlighted
in red and bold, and the second best in blue. Distinctly, DA2-
Net performs the best on the SYSU-CD dataset, with Recall,
IoU, and F1 improved by 1.79%, 3.82%, and 2.61%, respec-
tively, compared to ChangeViT. DA2-Net also shows excellent
performance on the WHU-CD dataset, with Recall and IoU
improved by 5.20% and 3.97%, respectively, compared to
BAN. The results on the LEVIR-CD dataset, reveal that DA2-
Net excels in both IoU and OA, with IoU and OA improved
by 2.80% and 0.14%, respectively, compared to Meta-CD.
Overall, VFMs-based methods outperform traditional CNN or
transformer-based approaches. This is because VFMs leverage
additional prior knowledge, which enables better performance
for RSCD. The experimental results above demonstrate that
DA2-Net outperforms other VFMs-based RSCD methods, val-
idating the superiority of the proposed method.

2) Visual Analysis: To further demonstrate the superiority
of the proposed DA2-Net, a visual comparison is shown
in Fig. 6. It can be observed that most methods exhibit a
boundary displacement problem in the detection of large-scale
objects [Fig. 6(a)–(c) and (g)], while DA2-Net shows complete
interiors and smooth boundaries. Specifically, in cases with
dense change objects [Fig. 6(f) and (i)], DA2-Net detects more
complete results compared to other methods, with virtually no
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Fig. 6. Visual comparison of different methods on SYSU-CD, WHU-CD, and LEVIR-CD datasets. To present the results more clearly, white, green, black,
and red represent TP, FP, TN, and FN, respectively.

missed or false detections. In cases with sparse change objects
[Fig. 6(d) and (h)], DA2-Net accurately detects all change
objects and provides clear details, whereas other methods
have false detections. Notably, although other methods all
detect the change of the blue building in Fig. 6(e), they fail
to accurately identify the white building that is similar to
the surrounding environment. This suggests that DA2-Net has
greater semantic perception capabilities for changing objects
in complex environments. Overall, the visualization results
underscore the superiority of DA2-Net in detecting structurally
complex and densely populated change scenes, demonstrating
clear advantages over existing methods.

D. Ablation Experiments

1) Different Components: To validate the effectiveness of
the proposed hierarchical LoRA strategy and DAEM, ablation
experiments were conducted for each component. Specifically,
sLoRA and mLoRA represent the application of LoRA in
the self-attention layer and the MLP layer of the transformer
module, respectively. Considering both the scale of the datasets

and the number of change objects, experiments were carried
out on the WHU-CD and SYSU-CD datasets, and the results
are shown in Table II. The pre-trained SAM2 image encoder
with weight sharing was used as the baseline. From the
experimental results, it can be observed that the model’s
performance improves progressively with the inclusion of
different components.

Comparing the first three strategies in Table II, the baseline
model cannot effectively identify the change region due to the
relative lack of RS domain knowledge contained in SAM2.
With the progressive introduction of sLoRA and mLoRA,
these trainable parameters significantly enhance the model’s
ability to learn RS domain knowledge. On the WHU-CD
dataset, compared to the Strategy1, precision, IoU, and F1 of
Strategy3 are increased by 2.84%, 9.65%, and 5.05%, respec-
tively. This demonstrates the effectiveness of the hierarchical
LoRA strategy. Observing Strategy3 and Strategy2, the naive
difference fusion strategy exhibits limited representational
power for features, resulting in lower model accuracy. Strat-
egy4 integrates a global difference awareness branch, thereby
strengthening the network’s ability to capture and discriminate
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TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED HIERARCHICAL LORA

AGAINST OTHER VFMS ADAPTATION METHODS.
TESTED ON SYSU-CD

TABLE IV

IMPACT OF HIERARCHICAL LORA INTRODUCTION FREQUENCY AND RANK

VALUE ON THE PERFORMANCE OF DA2-NET [PARAM (M), PRE. (%),
IOU (%), AND F1 (%)]. TESTED ON SYSU-CD AND LEVIR-CD

genuine changes. With the introduction of the local detail
optimization branch, DAEM is capable of adaptively weight-
ing spatial detail features and class discriminative features,
thereby enhancing the model’s spatial localization capabilities.
Compared to Strategy3, the IoU of DA2-Net on the SYSU-CD
dataset increased by 3.01%, which sufficiently validates the
effectiveness of DAEM. Additionally, the learnable parameters
of DA2-Net constitute only 1.5% of the encoder network. The
introduction of a small number of parameters has enabled
the domain adaptation of SAM2’s general knowledge to the

RS domain, significantly enhancing the performance of RSCD
models.

2) Different VFMs and Fine-tuning: To evaluate the gen-
eralization capability of the proposed hierarchical LoRA
and DAEM across different VFMs, replaced the backbone
of DA2-Net with two representative VFMs. Specifically,
the EfficientSAM-s (denoted by ESAM in Table III) and
DINOv2-s variants were introduced, retaining only their image
encoders. As shown in Table III, the proposed method
achieved a notable performance gain when integrated with
EfficientSAM-s, reaching an IoU of 70.78% on the SYSU-CD
dataset. In contrast, the performance improvement was less
pronounced when using DINOv2-s as the backbone, which
may be attributed to the greater heterogeneity between its
training data and RS images. These results demonstrate that
the proposed method exhibits robust adaptability, it can deliver
effective performance gains without reliance on a specific
backbone architecture.

Furthermore, we compared the hierarchical LoRA (Ours)
with several popular VFMs fine-tuning strategies, including
full-parameter fine-tuning (Full), freezing, Adapter [52], LoRA
[28], DoRA [64], and Mona [65]. As shown in Table III,
full-parameter fine-tuning despite involving the largest num-
ber of trainable parameters, yielded the lowest performance.
This may result from overfitting to specific samples during
full-parameter fine-tuning, which compromises the general
representation ability of the VFMs. In contrast, freezing all
backbone parameters (Freeze) preserved the semantic pars-
ing capabilities of the original VFMs, leading to improved
performance. Introducing lightweight fine-tuning approaches
enabled the injection of RS-specific inductive biases with a
limited number of trainable parameters. Among them, Mona
introduced the highest parameter count and helped DINOv2
achieve the highest precision (63.19%) and F1 (72.91%).
In the cases where EfficientSAM and SAM2 were used as
backbones, hierarchical LoRA required the fewest trainable
parameters while delivering the best performance. Notably,
it outperformed DoRA on EfficientSAM, achieving an F1
of 82.89%. When applied to SAM2, our method improved
precision by 0.81%.

3) LoRA Introduction Frequency and Rank Value: Inspired
by [66], it is not necessary to introduce trainable parameters
into each layer of VFMs. Additionally, the rank value has a
direct impact on both model performance and resource con-
sumption in the context of LoRA fine-tuning. To validate the
combined effect of these two factors on model performance,
extensive experiments were conducted, and the results are
shown in Table IV. N indicates the frequency of introducing
hierarchical LoRA once every N transformer blocks in the
encoder, and R represents the rank value. It can be observed
that the model performance reaches its peak when N = 2 and R
= 16. Notably, comparing the three strategies listed in rows 1,
5, and 9, it can be seen that the model performs best when R =

16, despite having nearly identical parameters. The analysis is
as follows: the first strategy, despite having broader parameter
coverage, suffers from the limited optimization capability of
hierarchical LoRA under lower rank conditions. This makes
it difficult to efficiently model contextual features. The third
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TABLE V

IOU (%) AND OA (%) OF DA2-NET AND SEMI-SUPERVISED CD METHODS UNDER DIFFERENT PROPORTIONS OF TRAINING DATA.
TESTED ON LEVIR-CD AND WHU-CD

TABLE VI

CROSS-SCENE GENERALIZATION PERFORMANCE OF DIFFERENT METH-
ODS. LEVIR-CD TO WHU-CD. ALL THE VALUES ARE IN %

TABLE VII

COMPARISON OF DA2-NET WITH OTHER METHODS IN TERMS OF LEARN-
ABLE PARAMETERS [PARAMETERS (M)], FLOPS (G), AND INFERENCE

TIME (S). THE F1 (%) SCORE IS BASED ON THE RESULTS FROM
THE WHU-CD DATASET

strategy exhibits strong expressive capability in a single trans-
former block. However, the sparse distribution of parameters
leads to insufficient optimization of some key feature layers,

weakening the ability to express both global and local features.
The proposed DA2-Net is based on the second strategy, where
LoRA introduces a balanced setting of frequency and rank
values to achieve optimal model performance.

E. Performance Evaluation With Limited Labeled Data

The annotation of RSCD datasets is typically time-
consuming and labor-intensive. Semi-supervised methods
mitigate this issue by leveraging a small set of labeled samples
and a large number of unlabeled samples for training [67],
achieving good detection performance. To verify the learning
ability of DA2-Net in scenes with limited labeled data, this
section compares it with four other advanced semi-supervised
RSCD methods: S4GAN [68], SemiCDNet [10], SemiCD [69],
and UniMatch [70]. In this experiment, DA2-Net and the
methods above were all trained using 5%, 10%, 20%, and
40% of the labeled data from the training set. This comparison
setting is more challenging for DA2-Net, as semi-supervised
methods typically rely on joint learning from both labeled and
unlabeled data, along with complicated training strategies. In
contrast, DA2-Net is trained solely with a small fraction of
labeled data using a standard supervised learning paradigm.

The experimental results are shown in Table V. UniMatch is
an advanced semi-supervised semantic segmentation network
that also demonstrates excellent performance in the RSCD
task. It achieves the best performance when using 5% and 10%
of the training data. Under conditions where training data is
scarce, due to the lack of RS-related knowledge in low-rank
matrices, DAEM, and the decoder, they still require sufficient
data for learning. It leads to DA2-Net having lower accuracy
than UniMatch when using 5% and 10% of the training data.
When training data is abundant, the potential of each compo-
nent is fully exploited, and the highest accuracy is achieved
when using 20% and 40% of the training data. In summary,
under the same data conditions, the performance of DA2-Net
has already surpassed most semi-supervised CD networks,
demonstrating the potential of the proposed DA2-Net under
conditions with a limited number of labeled samples.

F. Performance Evaluation in Cross-Scene

To further evaluate the generalization capability of DA2-
Net, this study conducts a zero-shot performance test. Without
any fine-tuning or domain adaptation, the model is directly
applied to a completely unseen dataset. Specifically, the model
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Fig. 7. Visualization results of DA2-Net on different downstream tasks.
(a) RGB-SAR land use classification. (b) RGB-thermal semantic segmenta-
tion.

is trained on the LEVIR-CD dataset and tested directly on the
WHU-CD dataset. The LEVIR-CD dataset primarily focuses
on urban building changes, whereas the WHU-CD dataset
covers both urban and rural environments. This setup simulates
a practical RSCD scenario in which no labeled data is available
in the target domain.

The experimental results are summarized in Table VI.
Overall, early convolutional networks exhibited limited gen-
eralization performance, likely due to their relatively small
number of parameters. With continuous architectural improve-
ments, the three transformer-based methods demonstrated
significantly enhanced generalization capabilities. Driven by
powerful data engines, the remaining methods based on VFMs
also achieved strong performance, with all F1 exceeding 70%.
The proposed DA2-Net outperforms all other methods across
multiple evaluation metrics, achieving improvements of 9.44%
in precision and 5.65% in IoU compared to BAN. These results
demonstrate the superior zero-shot generalization capability
of DA2-Net and underscore its strong potential for practical
applications.

G. Performance Evaluation in Cross-Task

This section evaluates the generalization performance of
DA2-Net on various multimodal visual tasks.

1) RGB-SAR Land Use Classification: Integrating RGB
and SAR data for fine-grained land category extraction holds
practical significance. To demonstrate the generalizability of
the proposed method in the RGB-SAR land use classification
task, the two inputs of DA2-Net were replaced, respectively,
with RGB and SAR images. The DA2-Net was then retrained
on the WHU-OPT-SAR dataset [71], following the same data

Fig. 8. Internal features of SAM2 are visualized using t-SNE, where blue
and purple points represent changed and unchanged features, respectively.
(a) SAM2 image encoder. (b) SAM2 image encoder with hierarchical LoRA.

partitioning protocol as in [71]. As shown in Fig. 7(a), DA2-
Net produces accurate predictions, effectively distinguishing
various classes and generating complete boundaries.

2) RGB-Thermal Semantic Segmentation: Urban road seg-
mentation is fundamental to autonomous driving technologies,
and the fusion of RGB and thermal infrared data facilitates
robust semantic understanding under challenging conditions
such as low illumination and occlusion. In this study, further
experiments were conducted on the MFNet dataset [72], with
the training, validation, and test sets split at a ratio of 2:1:1.
As shown in the visualization results in Fig. 7(b), DA2-
Net demonstrates a certain degree of cross-task generalization
capability.

V. DISCUSSION

A. Effectiveness of the Hierarchical LoRA and the DAEM

The hierarchical LoRA strategy introduces LoRA into the
self-attention and MLP layers of the transformer blocks to
achieve domain adaptation between VFMs and RS images. To
further demonstrate the effectiveness of the hierarchical LoRA
strategy, this study compares the distribution of deep features
in SAM2 before and after its introduction. Specifically, post-
temporal images rich in land-cover categories are fed into the
SAM2 image encoder to extract high-level semantic features.
These features are then spatially divided into changed and
unchanged regions, followed by dimensionality reduction and
visualization. As shown in Fig. 8(a), when SAM2 is used
directly as a feature extractor, the changed and unchanged
features exhibit substantial overlap in the feature space. The
inter-class boundaries are indistinct, indicating insufficient
discriminative information, which limits the network’s ability
to capture changes. In contrast, as illustrated in Fig. 8(b),
the introduction of hierarchical LoRA enhances inter-class
separability, leading to more distinct intra-class feature distri-
butions. The above results indicate that the hierarchical LoRA
effectively mitigates domain shift, thereby enhancing change
features and suppressing unchanged features.

The proposed DAEM is designed to coordinate category-
discriminative and spatial detail information to mitigate the
boundary shift problem in RSCD. To further demonstrate
the effectiveness of DAEM, several feature visualizations
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Fig. 9. Visualization examples of features in DAEM. (a) Feature map obtained by element-wise subtraction of bi-temporal features. (b) Feature map from
the global difference awareness branch in DAEM. (c) Feature map from the local detail optimization branch in DAEM. (d) Feature maps obtained from the
final output of DAEM. The samples are from SYSU-CD, WHU-CD, and LEVIR-CD, respectively.

are presented in Fig. 9. Specifically, Fig. 9(a) shows the
difference features obtained through element-wise subtraction.
This simple fusion strategy fails to provide meaningful change
information. Fig. 9(b) illustrates the output from the global
difference awareness branch of DAEM, where the network
captures the approximate change regions but lacks accurate
localization of object boundaries. In Fig. 9(c), although the
interior activation of the targets is relatively weak, the edges
appear smoother and more structurally enriched. As shown in
Fig. 9(d), DAEM not only preserves the internal consistency
of the targets but also enhances the delineation of their
boundaries. These visualizations collectively demonstrate that
DAEM effectively leverages the complementary strengths of
different branches, thereby strengthening the network’s ability
to detect substantial changes.

B. Sensitivity of Hyperparameters

The hierarchical LoRA involves three key hyperparameters:
the rank value R, the scaling factor α, and the dropout rate
β. The R controls the number of trainable parameters, and
experimental results presented in Section IV-D3 indicate that
the model achieves optimal performance when R = 16. The
parameter α adjusts the magnitude of the output from the low-
rank adapters (the output scaled to (α/R)WBWA), while the
β serves to mitigate overfitting. To investigate the sensitivity
of DA2-Net to variations in α and β, this study evaluated its
performance under multiple configurations.

1) Scaling Factor α: The impact of the α on network
performance is shown in Fig. 10(a). Excessively large or
small values of α lead to a notable decline in performance.
The network achieves the best results on the SYSU-CD and
LEVIR-CD datasets when α = 16, while optimal performance
on the WHU-CD dataset is obtained when α = 32. This
discrepancy may stem from variations in scene complexity
and change patterns among different datasets.

2) Dropout Rate β: The impact of the β on network perfor-
mance is shown in Fig. 10(b). It can be observed that DA2-Net

exhibits no significant performance fluctuations across differ-
ent values of β. When β = 0.2, the network achieves the best
overall performance on the SYSU-CD dataset. For the WHU-
CD dataset, the best performance is obtained at β = 0.1, while
for the LEVIR-CD dataset, the optimal results are achieved
when β = 0. These results indicate that the sensitivity to β
varies across datasets, suggesting that β should be adaptively
tuned to achieve optimal RSCD performance.

C. Model Efficiency

Table VII presents the computational cost of DA2-Net and
other methods. It can be observed that FC-EF has the fewest
parameters, lowest FLOPs, and shortest inference time, but its
F1 is only 58.81%. USSFC achieves a good balance across
these three metrics. LSAT has the most learnable parameters,
but its accuracy is not the highest. Although SAM-CD has
the longest inference time, its learnable parameters and the
number of FLOPs operations are considerable. BAN exhibits
the highest model complexity, with FLOPs reaching 353.72.
Overall, VFMs-based methods generally achieve higher F1,
which can be attributed to the strong generalization ability of
VFMs. The intricate nature of VFMs leads to higher FLOPs
and inference time for their adapter networks compared to
traditional CNN or transformer networks. Among the com-
parison methods, the proposed DA2-Net achieves an optimal
balance between learnable parameters and performance. With
only 6.85 million trainable parameters, DA2-Net achieves an
impressive F1 of 94.48%. It indicates that DA2-Net offers a
reasonable computational cost and excellent detection perfor-
mance.

To further improve the practical deployment potential of
the model, this study proposes DA2-Net-tiny (denoted by
DA2-Net-t in Table VII), a lightweight version of DA2-
Net. DA2-Net-t adopts SAM2-tiny as its backbone, and the
embedding dimension of the decoder is reduced to 1/4 that of
DA2-Net. As a result, it has the fewest trainable parameters
among all methods (0.82 M) and a computational cost of
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Fig. 10. Sensitivity analysis of hyperparameters. (a) Scale factor α. (b) Dropout rate β.

Fig. 11. Comparison of performance and trainable parameter efficiency across
different methods.

only 27.85 G FLOPs. DA2-Net-t not only significantly reduces
computational cost but also delivers satisfactory performance,
achieving an F1 on the WHU-CD dataset that is second only
to DA2-Net. Fig. 11 illustrates the superiority of the proposed
method. Compared with ChangeViT, the DA2-Net reduces the
number of parameters by 34.29 M while achieving a 2.1%
performance gain. Moreover, the model efficiency of DA2-
Net-t also surpasses that of prevailing RSCD methods.

VI. CONCLUSION

This study presents DA2-Net for RSCD, which integrates
SAM2 domain adaptation with the difference aggregation.
By introducing hierarchical LoRA into SAM2, the proposed
DA2-Net can bridge the knowledge gap between natural
and RS images, thereby achieving effective domain adap-
tation. In addition, the DAEM can adaptively aggregate
category-discriminative and spatial-detail information through

generating attention weights, thereby alleviating the boundary
displacement problem and further enhancing the precision
of RSCD. Through extensive comparative experiments and
ablation studies, it is demonstrated that DA2-Net significantly
enhances the applicability of SAM2 in complex RS scenes.
However, the proposed method still exhibits relatively high
FLOPs and overall parameters. In future work, techniques such
as knowledge distillation will be explored to develop more
lightweight models for deployment on edge devices.
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