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Abstract
We provide a rigorous mathematical approach to the beta-pricing model, starting from the
standard two-step cross-sectional regression, through Nonlinear Seemingly Unrelated Regression
(NSUR) and Generalized Method of Moments (GMM), and finally compare the results with sev-
eral linear approximation methods. The use of the linear approximation applied to a single-factor
nonlinear system of equations is new in the literature and is one of the major contributions of this
work. Our results show that, in the presence of heavy-tailed distributions, the L1-norm methods
proposed in this study are more appropriate (exhibiting lower bias and variance) for risk price
estimation than traditional L2-norm approaches.

It is also the first time that the Capital Asset Pricing Model (CAPM) is applied systematically to
compare the integration and segmentation between different markets and a given portfolio set.
Our study, Penco and Lucas (2024), applies a two-factor integration model to the economies of
Asia, Europe, Japan and North America, showing integration between the European and North
American economies.

We also extend the integration model to commodity markets. To capture more accurately the
cross-sectional pricing of commodity risk we use the Cochrane factor mimicking approach and
compare the results with alternative dependence-based integration measures using copulas. We
show how the copula correlation between the Stochastic Discount Factor (SDF) and returns
differentiates the contribution of joint dependence from the contribution of the risk prices.

Finally, we introduce a penalised p-value Fama-MacBeth Generalized Least Squares (GLS) reg-
ularisation, which provides several advantages over other methods as it ensures that retained
factors contribute not only to statistical fit but also to risk pricing. Unlike other approaches, this
method regularises the pricing kernel directly. Factors that lack significance or explanatory power
are penalised and removed, while priced and relevant sources of risk are preserved.
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Chapter 1

Introduction

1.1 Research Background and Context

Risk premium estimation is a central issue in finance. Its study describes the relation between
asset prices, risk, and expected returns. All asset pricing models can be traced back to the basic
consumption-based pricing equation, where the price equals the expected discounted payoff. A
key implication is the beta-pricing representation:

Ri,t = λ0 + βi(f̃t + λf ) + εi,t, ∀i, t

where Ri,t is the excess return of asset i at time t, given by the return minus the risk-free rate; ft
is the excess return of the factor at time t; µf is the factor mean; f̃t is the demeaned factor at time
t, f̃t = ft−µf ; λ0 is the model intercept; βi is the factor exposure of asset i, the sensitivity of its
excess return to f̃ ; λf is the factor risk price; and εi,t is an error term. In empirical applications,
each i typically denotes a test portfolio rather than a single security.

In this model, the expected excess return on an asset is proportional to its covariance with the
stochastic discount factor, or equivalently, to its exposure (beta) with respect to systematic
factors. This insight underlies CAPM and multifactor models.

Formally, these models involve solving a system of nonlinear equations linking expected returns,
portfolio exposures, and factors’ risk prices. Estimation can proceed in several ways: the Fama-
MacBeth procedure, which uses cross-sectional regressions of returns on betas; SUR-GLS meth-
ods, which exploit the system structure by stacking all equations together into a single system
and account for error correlation; and the Generalized Method of Moments (GMM), which es-
timates parameters from moment conditions implied by the pricing equation. Each approach
offers a way to test whether linear factor models adequately explain the cross-section of expected
returns.

However, the nonlinear nature of the underlying model raises computational and identification
challenges, especially when factors are weak or highly collinear. This provides motivation for the
introduction of linear approximation methods, which approximate nonlinear product terms (the
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risk premium, which in our notation is the product of the factor exposure βi of portfolio i and the
risk price λf of the factor f) by tractable linear or piecewise-linear forms. These approximations
simplify estimation, improve numerical stability, and allow the use of efficient linear or convex
programming techniques, while still capturing the essence of risk-return trade-off in beta-pricing
models.

We explore three main methods (Taylor approximation, Convex Approximation and Product
factor) with several variants used with linear approximation for product functions, including
piecewise linear functions with Linear Programming (LP) and Mixed-Integer Linear Program-
ming (MILP). Our results show that, in the presence of heavy-tailed distributions, the L1-norm
methods proposed in this study exhibit lower bias and variance for risk price estimation than tra-
ditional L2-norm approaches. The linear approximation methods represent a novel contribution
to the literature. Especially, the Taylor Convex and the Product Factor approximation methods
have the merit of matching the accuracy of other approaches while offering superior CPU time
performance.

The risk premium estimation of a two-factor model, presented in Chapter 2, evolved into an article
on global economic integration that we published, Penco and Lucas (2024). We apply classical
estimation methods (GMM and SUR) to study the integration of global economies (Europe,
North America, Asia, and Japan). Our results show integration between European portfolios and
the U.S. stock market, as well as between Asian portfolios and the U.S. stock market, over the
full period analysed: twenty years from January 2003 to December 2022. Furthermore, by means
of a rolling regression, we track how relationships between variables evolve over time, capturing
regime shifts, assessing parameter stability, and detecting transitions between integration and
segmentation.

In Chapter 3, we realised that our investigation could have a potentially wider theoretical goal,
the idea to better understand the integration and segmentation definitions and help to visualise
them, by means of other related concepts as Copula and Stochastic Discount Factor (SDF). We
developed the SDF copula analysis, an original method that helps to visualize whether strong
dependence arises primarily from exposure or from pricing. We show that the sum of the factor
realizations depends only on exposures and explains return variability regardless of whether factors
are priced. By contrast, the SDF-return copula correlation depends directly on which factors are
priced in the model: setting a factor’s risk price λ to zero removes its impact on the SDF while
it does still contribute to return variation. This distinction illustrates the essential difference
between exposure and pricing in factor models: exposure drives realised return variation through
the factor loadings, while only non-zero risk prices affect the expected return and the Stochastic
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Discount Factor.

The SDF copula analysis is also flexible, as it can be extended to Student-t copulas or other time-
dependent copulas. This is particularly relevant since financial data commonly exhibit extreme
co-movements during crises.

Finally, we propose a copula-based maximum likelihood estimator as a novel approach for risk
price estimation in the one-factor asset pricing model. While traditional methods such as Fama-
MacBeth, GMM, and SUR rely on linear covariance structures, the copula framework allows
explicit modelling of nonlinear and tail dependencies in residuals. In particular, the results show
that the multivariate copula density likelihood recovers cross-sectional Generalized Least Squares
(GLS) estimates, while the univariate copula likelihood recovers the Ordinary Least Squares (OLS)
estimates under the assumptions of homoscedasticity and no cross-sectional correlation. The cop-
ula formulation thus offers a direct comparison between linear correlation-based approaches and
dependence modelling based on transformed ranks. Although computationally more intensive,
the copula method can be extended to more flexible specifications such as the Student-t cop-
ula, which provides robustness to heavy tails, and to dynamic copulas capturing time-varying
dependence.

1.2 Organization of Thesis

After the literature review, in Section 2.2, we introduce the risk price estimation, which is the
theoretical foundation of the thesis, and define the beta-pricing model, which we identify as a
system of nonlinear equations where the unknowns are the parameters. In Section 2.3 we propose
several linear approximations of the model, including an integer programming method, that to our
knowledge is for the first time applied to risk price estimation. In Section 2.4, we define a general
system of nonlinear equations, which provides the framework for the estimation of the parameters
and the covariance matrix according to the main methods used in the literature: Seemingly Unre-
lated Regression (SUR), Generalized Least Squares (GLS), and Generalized Method of Moments
(GMM).

We compare the results between the classic estimation methods and the linear approximation
in the one-factor model experiment, Section 2.6.1.3, which is part of an article that has been
submitted for publication.

Our results suggest that the L1-norm methods are more appropriate for risk price estimation
under heavy-tails, as observed in the case of the EU market factor. In Section 2.6.1.4, we report
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the main results from the global economies article, and provide additional comments about the
errors-in-variables problem and weak factor issue related to risk price estimation.

In Section 2.6.2, we extend the integration model to commodity markets. To better capture
the cross-sectional pricing of commodity risk, we use the factor mimicking approach, which is
described in Section 2.6.2.5. As expected, the mimicked factors outperform standard factors in
explaining commodity risk.

In Chapter 3, we define the elliptical copula density likelihood, Section 3.2.2, and a stochastic
discount factor based copula, Section 3.2.3. Then, we build on this approach, by applying the
mimicking factor construction to a broader set of commodity indices for risk price estimation in
multifactor integration and segmentation models using the Stochastic Discount Factor and the
Copula Density Maximum Likelihood Estimation earlier defined. The results are summarised in
Section 3.4.2, and will be part of another article in preparation.

Finally, in the regularisation experiment 3.4.2.4, we test a Penalised p-value Fama-MacBeth (FM)
GLS Lasso1, which applies shrinkage directly to the stochastic discount factor. Insignificant factors
are penalised and removed, while priced and relevant sources of risk are retained. However, when
factors are weak and betas are highly collinear—as is often the case with commodity indices—the
regularisation procedure can become very unstable.

The Appendices contain the derivation of the objective function and the covariance matrix for
the Ordinary Least Squares (OLS), Generalized Least Squares (GLS), and the General Method
of Moments (GMM) in the context of a system of nonlinear equations. Although not entirely
new, this contribution is not marginal, as the topic is complex and rarely presented with rigorous
mathematical formalism. In particular, we highlight the differences among the methods and
provide evidence on why heteroscedasticity and error autocorrelation cannot be ignored.

1.3 Contribution and Publications

We summarise below the main contributions of this thesis.

We introduce novel convex and linear approximation methods for risk premium estimation, demon-
strating that L1-norm methods provide more reliable risk price estimates in the presence of heavy-
tailed distributions. We also, as a corollary, establish robust equivalence across classical factor
models, showing that centred and raw factor regressions provide consistent risk premium estimates
under OLS, SUR, GMM, and Fama-MacBeth GLS.
1 LASSO: Least Absolute Shrinkage and Selection Operator model
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We apply a systematic CAPM integration framework to global equity markets, providing clear evid-
ence of integration and segmentation patterns across Europe, North America, Asia, and Japan.
In parallel, we extend the integration analysis to commodity markets, applying factor-mimicking
techniques where we identify systematic integration patterns between Oil and Gas.

We introduce an original copula density maximum likelihood approach to risk price estimation,
which generalizes classical factor models by capturing nonlinear and tail dependencies and recovers
OLS and GLS as special cases. As an additional outcome, we develop an SDF–return copula
analysis that separates factor exposure from priced risk, helping to identify spurious factors and
clarify the distinction between return variation and expected return compensation.

Finally, we propose an heuristic penalised p-value Fama-MacBeth GLS Lasso model that dir-
ectly regularises the pricing kernel, retaining only statistically and economically relevant risk
factors.

Parts of this dissertation have been, or are being, submitted to peer-reviewed journals:

- Section 2.6.1.4: Financial Integration of the European, North America, Asian and Japan-
ese stock markets from 2003 to present times, Penco and Lucas (2024). Available online:
https://www.e-jei.org/journal/view.php?doi=10.11130/jei.2024012. Published
June 2024.

- Sections 2.3, 2.6.1.3: Linear Approximation Methods for Beta Pricing, Penco and Lucas
(2025). Submitted September 2025 to Computational Economics.

- Sections 2.6.2, 3.4.2: Copula Density MLE, Copula SDF and Penalised GLS in Commodity
Asset Pricing, Penco, Roman and Lucas (2025). Submitted September 2025 to Quantit-
ative Finance.
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Chapter 2

Linear Approximation for Risk Premium Estimation

In this chapter, we will look at the use of linear approximation methods for risk premium estimation
and at their application for the study of global markets and commodities indices integration.

2.1 Literature Review

This literature review discusses key contributions to beta-pricing estimation and risk prices meas-
urement, focusing on the Fama-MacBeth regression, Cochrane’s factor pricing approach, Seem-
ingly Unrelated Regression, Generalized Method of Moments, and recent advancements in ma-
chine learning (ML).

Fama and MacBeth (1973) introduced a two-step regression approach to estimate risk prices in
cross-sectional asset pricing models. Their method first estimates factor loadings using time-
series regressions and then regresses asset returns on these estimated betas to obtain the risk
prices. Despite its widespread application, the Fama-MacBeth procedure is prone to the errors-
in-variables (EIV) problems, as beta estimates from the first step contain measurement errors
that bias the second-step results.

Cochrane (2005) links beta-pricing models to the stochastic discount factor representation, ad-
dressing errors-in-variables in beta estimation. He investigated factor mimicking portfolios to
mitigate noise in factor loadings, thereby improving the robustness of estimated risk prices. He
also shows that when factors are weakly identified, the pricing equation may fail to hold in sample
applications, leading to significant discrepancies in risk prices estimation.

The Seemingly Unrelated Regression introduced by Zellner (1962) jointly estimates asset return
equations while allowing for correlated error terms. SUR, which accounts for cross-sectional
dependencies among assets, is especially useful where asset returns share common factor struc-
tures.

Jagannathan and Wang (1996) studied conditional CAPM models, allowing for time-varying betas
to improve parameter estimation. They also applied SUR to estimate risk prices in models with
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multiple factors, where weak factors can lead to poor identification of risk prices due to small
variations in betas across assets.

Hansen (1982) introduced the GMM estimator as a generalization of instrumental variables tech-
niques, requiring moment conditions to be imposed for estimation. Cochrane (2005) applied GMM
to estimate factor pricing models, emphasizing its ability to correct for errors-in-variables in beta
estimation. However, when factors are weakly correlated with returns, standard GMM approaches
can suffer from large finite-sample biases, as highlighted by Stock and Wright (2000).

Sarisoy et al. (2024) found out that weak identification of factors can lead to rejection of valid as-
set pricing models, proposing bias-corrected GMM and the use of additional instrumental variables
to bypass these problems.

In beta-pricing, the EIV problem arises in empirical asset research, where the independent variable
beta (exposure) is measured independent of the risk price. This measurement error leads to bias
toward zero, also known as downward bias: the standard errors of the estimated risk price increase,
making statistical inference less reliable, while misestimated betas may cause non-beta factors
(e.g., firm size, book-to-market ratio) to appear significant.

Black et al. (1972) were first in pointing out that beta estimates from historical data contain
noise, leading to biased estimates of the risk price. Vasicek (1973) proposed Bayesian shrinkage
estimation to reduce beta estimation noise. Litzenberger and Ramaswamy (1979) analysed how
errors in beta affect asset pricing tests. Shanken (1992) further explored these limitations, show-
ing that standard errors in the second-step regression are underestimated, leading to potential
misinterpretations of risk prices significance.

However the most cited works in the literature are: the Instrumental Variable (IV) approach,
Shanken (1992); Portfolio Grouping, where stocks are grouped into portfolios to reduce estimation
noise, using a cross-sectional regression which however is prone to bias due to beta estimation
errors, Fama and MacBeth (1973); Principal Component Analysis (PCA) that works extracting
strong factors from noisy data, Connor and Korajczyk (1988).

Fama and French (1993) found a weak relationship between beta and average returns, partly due
to beta mismeasurement caused by weak factors. Lewellen and Nagel (2006) showed that short-
term beta estimates exacerbate the EIV problem reducing the explanatory power of traditional
risk factors. Gagliardini et al. (2016) used a time varying factor model approach to improve beta
estimation and address weak factor issues.

More recent works, such as Anatolyev and Mikusheva (2022), have studied the implications of
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weak factors in the Fama-MacBeth setting, demonstrating that low-variance factors can inflate
standard errors and distort cross-sectional tests.

The beta-pricing model assumes that asset returns depend on their exposure to systematic risk
factors. However, if the measured betas or factors are weak, the risk prices estimation becomes
unreliable. Weak betas generally occur when the cross-sectional variation in betas is small or
contains substantial noise. Weak factors arise when factors have low explanatory power or weak
correlation with asset returns. The consequences are the same identified for the EIV, being weak
betas in part due to error measurement.

Machine learning (ML), neural networks and tree-based models, such as random forests and
gradient boosting, introduced alternative approaches to beta-pricing estimation by leveraging
high-dimensional datasets, improving latent factor selection and enhancing the robustness of risk
prices estimation. Gu et al. (2020) demonstrated that supervised learning algorithms outperform
traditional econometric methods in predicting expected returns, suggesting that nonlinearities in
factor structures may be better captured using ML techniques.

However, while ML methods allow for flexible interactions among factors, the risk prices estimates
derived from black-box models lack the economic intuition provided by traditional factor pricing
theories.

2.2 Risk Premium Estimation

The Capital Asset Pricing Model (CAPM), Sharpe (1964) and Black et al. (1972), provides a
theoretical foundation for asset pricing, linking expected returns to systematic risk.

CAPM is based on the following assumptions:

- Investors are rational and risk-averse, maximizing their expected utility.
- Markets are frictionless, with no transaction costs or taxes.
- All investors have homogeneous expectations about asset returns.
- There is a risk-free asset that investors can borrow and lend at the risk-free rate Rf .
- Investors hold efficient portfolios, meaning they only care about systematic risk.

Consider a standard factor model:

Ri,t = αi + βift + εi,t, ∀i, t (2.1)

where:
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- Rf,t = scalar random variable representing the risk-free rate at time t, we use the US zero
coupon bond rate time series1.

- R∗
i,t = return of the local portfolio i at time t.

- Ri,t = excess return of the local portfolio i at time t, i.e. Ri,t = R∗
i,t −Rf,t.

- R∗
m,t is the market simple return at time t.

- ft is the CAPM factor at time t, the market excess return, i.e. ft ≡ R∗
m,t −Rf,t.

- αi is the alpha of the asset, the excess return that is not explained by systematic factors at
a given cross-section of the data. For a portfolio including all market securities, this value
tends to converge toward zero.

- βi is the sensitivity of asset i’s excess return to f .

- εi,t is an error term with E[εi] = 0, ∀i.

The assumptions are: factor stationarity: the factors are assumed to be stationary with the
following unconditional moments (E[f ] = µf ,Var(f) = Var(f̃) = E[(f − µf )

2]); independence
of errors and factors: the asset error terms (εi,t) are uncorrelated with factors: Cov(f, εi) = 0;
uncorrelated error terms: the error terms (εi,t) are assumed to be serially uncorrelated and do
not exhibit cross-sectional correlation between different assets.

Consider an investor who chooses a portfolio containing:

- A risk-free asset with expected return µRf = E[Rf ].

- A market portfolio with expected return (E[R∗
m]).

According to CAPM, the expected return on asset i is given by2:

E[R∗
i ] = µRf + βi

(
E[R∗

m]− µRf

)
, µRf = E[Rf ], (2.2)

where E[R∗
m]− µRf is the market risk premium; and βi ≡ Cov(Ri,f)

Var(f) .

Following Cochrane (2005), we use “risk price” for the factor price λf and “risk premium” for
the product βiλf .

The CAPM equation 2.2 states that an asset’s expected return is determined by the expected
risk-free rate plus compensation for systematic risk and expresses the asset risk premium as a
1 Following standard econometric notation, the subscript f denotes ”free” (risk-free) and is not an index.
2 For a full derivation of the CAPM equation, we refer to Fama and MacBeth (1973)
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function of beta and the market risk premium (the factor’s risk price). Equation 2.2 is a special
case of the beta-pricing model (Cochrane, 2005), which in general takes the form:

E[R∗
i ] = µRf + βiλf , ∀i (2.3)

with βi =
Cov(Ri,f)
Var(f) and λf = E[f ] the risk price of factor f .

In the CAPM framework, the relevant factor is the market excess return

ft = R∗
m,t −Rf,t.

Any time series can be decomposed into its mean and an innovation component, so that

ft = µf + f̃t, ∀t E[f̃ ] = 0, (2.4)

where µf = E[f ] represents the expected market risk premium and f̃t captures the mean-zero
fluctuations around it. Equivalently, we can write

f̃t = ft − E[f ], ∀t

which emphasizes that f̃t is simply the demeaned factor. Thus, the innovation f̃t can be viewed
either as the shock relative to the long-run mean or as the demeaned factor used in estima-
tion.

Substituting equation 2.4 in equation 2.1, we obtain:

Ri,t = αi + βiµf + βif̃t + εi,t, ∀i, t (2.5)

From the time-series factor model, equation 2.1, taking expectations over t gives

E[Ri] = αi + βiµf , ∀i (2.6)

Fama and MacBeth (1973) defined a two-step regression approach to estimate risk prices in cross-
sectional asset pricing models. For the first-stage time-series regression they used the centred or
demeaned factor model f̃t:

Ri,t = αi + βif̃t + εi,t, ∀i, t (2.7)
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The second-stage is defined as a cross-sectional regression:

E[Ri] = λ0 + λfβi, with H0 : λ0 = 0, ∀i (2.8)

We use the cross-sectional pricing relation at equilibrium, see equation 2.3, so we drop the error
term in equation 2.8. Equating the two expressions for E[Ri] in equations 2.6 and 2.8, we
obtain:

αi = λ0 + λfβi − βiµf , ∀i (2.9)

Instead of using E[Ri], we use the first-stage alphas on the left-hand side of equation 2.8, then:
- using the demeaned factor yields

1st stage αdemeaned
i = E[Ri]

3, 2nd stage E[Ri] = λ0 + λf̃βi.

- using the raw factor yields

1st stage αraw
i = E[Ri]− βiµf , 2nd stage E[Ri] = λ0 + λfβi + βiµf .

The following equivalence holds:

λf̃ = λf + µf , λf̃ = λf + f̄ (with, f̄ = 1
T

T∑
t=1

ft).

i.e., demeaning the factor corrects the intercept α by βi µf .

Substituting equation 2.9 in equation 2.5, we obtain

Ri,t = λ0 + λfβi + βif̃t + εi,t, ∀i, t (2.10)

Note. We will use the notation λf in place of λf̃ , since our analysis is based on the centred-factor
specification. Only in the empirical section we report results under both conventions (with and
without factor demeaning) for comparison.

Because the Sharpe (1964) CAPM, written in excess returns, implies a zero intercept, in this
thesis, we include an intercept in equation 2.8 and equation 2.10 and test H0 : λ0 = 0.4

Expression 2.10 represents a version of the beta-pricing model, in which the excess return of asset
i is driven by its exposure βi to a common factor f̃ , along with a cross-sectional pricing relation
3 Taking expectations of equation (2.7) gives E[Ri] = αi + βi E[f̃ ] = αi, since E[f̃ ] = 0.
4 Running the model with simple returns R∗

i,t instead of excess returns Ri,t yields an equivalent reparametrisation:
λ∗
0 = λ0 + µRf , λ∗

f = λf , with µRf ≡ E[Rf ].
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governed by the risk prices λ0 and λf . This framework builds on the linear factor pricing models
pioneered by Ross (1976) in the Arbitrage Pricing Theory (APT), and later extended in empirical
asset pricing studies such as Fama and French (1993) and Cochrane (2005).

2.3 Linear Approximation Methods

Many real-world problems involve product terms of variables, for which linearization simplifies
the analysis, enhances computational efficiency, and allows for the application of standard linear
techniques.

We propose three main linear approximation methods of the beta-pricing model. The methods will
enable solving by Linear Programming (LP), Quadratic Programming (QP), and Mixed Integer
Linear Programming (MILP) convex solvers.

We also compare the results with the classic solutions via two steps Fama-MacBeth cross-sectional
regression, NSUR GLS-based method, and GMM.

The starting point is equation 2.10, our aim is to linearise the product terms λfβi, namely the
risk premia. In the experiments we use portfolio and market return time series where T = 240
months, corresponds to the number of time periods, and N=6, is the number of portfolios.

The error estimation is computed in Appendix B.

2.3.1 Taylor Product

The Taylor series expansion provides a local linear approximation of a product at a given point,
which is a good approximation of the product function provided that the variables do not deviate
from the centre. This type of linear approximation was first applied in beta-pricing by Gibbons
(1982) and Stambaugh (1982), which deploy a Taylor expansion centred in the beta and lambda
estimates (β̂i, λ̂f ):

βiλf ≈ β̂iλ̂f + β̂i(λf − λ̂f ) + λ̂f (βi − β̂i) (2.11)
= β̂iλf + λ̂fβi − λ̂f β̂i, ∀i

substituting equation 2.11 in equation 2.10, we obtain a system of linear equations:

Ri,t + λ̂f β̂i ≈ λ0 + β̂iλf + βi(f̃t + λ̂f ) + εi,t, ∀i, t (2.12)
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After applying the Taylor series linear approximation of the product term βiλf as shown in
Equation 2.11, the estimation reduces to solving the following least squares problem:

min
λ0,λf ,β

N∑
i=1

T∑
t=1

(
Ri,t − λ0 −

[
β̂iλf + λ̂fβi + βif̃t

]
+ β̂iλ̂f

)2
(2.13)

where β̂i and λ̂f are the linear approximation points from the previous iteration.

This procedure is repeated iteratively, updating (β̂i, λ̂f ) until convergence.

The residual inside the square is an affine function of the parameters (λ0, λf , βi), the sum of a
square of an affine function is a convex unconstrained quadratic problem (specifically, a Least
Squares problem), that is solved in Python cvxpy using OSQP (Operator Splitting Quadratic
Program).

In the results, this method is named Taylor product.

2.3.2 Product Factor

If the following two conditions are met: (i) one of the two parameters, λf , is not referenced
elsewhere in equation 2.10; and (ii) the product βiλf is non-negative for all i; we can substitute
the product factor βλf by the vector γ =

[
γ1 γ2 · · · γN

]⊤
, then:

Ri,t = λ0 + γi + βif̃t + εi,t, ∀i, t (2.14)

with the extra constraints lλf
βi ≤ γi ≤ uλf

βi and λf = γi
βi
. These constraints (we use l

for the lower bound and u for the upper bound of the subscript’s parameter) guarantee that
lλf
≤ λf ≤ uλf

whenever βi ≥ 0, otherwise the product βλf becomes non-monotonic and non
convex over its domain. However, we know that negative betas and negative risk price make
economic sense. In order to stay in the frame of the Disciplined Convex Programming (DCP)
rules, we remove the constraints β, λf ≥ 0 and do not enforce γi = βiλf directly. Instead, we
introduce a convex Taylor penalty around (β̂

(0)
, λ̂cs

f ) to encourage consistency between γ, β, and
λf .

In the first step, we solve the unconstrained model, equation 2.14, for the following vector of
estimates:

θ̂
(0)

=
[
λ̂
(0)
0 (β̂

(0)
)⊤ (γ̂(0))⊤

]⊤
∈ R2N+1

From this unconstrained model, we define a cross-sectional (CS) risk price signal for each portfolio
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as:
λ̂cs
f,i =

γ̂
(0)
i

β̂
(0)
i

, ∀i (2.15)

In practice, the average λ̂cs
f is computed over portfolios with sufficiently large |β̂(0)

i | to avoid
instability. We then compute its average:

λ̂cs
f =

1

N

N∑
i=1

γ̂
(0)
i

β̂
(0)
i

. (2.16)

The starting values for the second step, β̂(0)
i , λ̂cs

f , are computed only once from the uncon-
strained regression, and are then kept fixed in the penalty term.

In the second step, we introduce a regularisation term in the objective function, that penalizes
deviations from a common risk price λ̂cs

f among equations:

min
λ0, λf ,β,γ

N∑
i=1

T∑
t=1

(
Ri,t − λ0 − γi − βif̃t

)2
+ ρ

N∑
i=1

(
γi − βiλ̂

cs
f

)2
, (2.17)

where ρ > 0 controls the strength of the regularisation.

This soft constraint enforces:

γi ≈λ̂cs
f βi ⇒ Ri,t ≈ λ0 + λ̂cs

f βi + βif̃t, ∀i, t (2.18)

- When ρ = 0, the model is entirely unconstrained and γi is freely estimated.

- As ρ increases, the model enforces γi = λ̂cs
f βi+ β̂

(0)
i λf − λ̂cs

f β̂
(0)
i , recovering a linear factor

pricing model.

The product term βλ̂cs
f is approximated using a first-order Taylor expansion.

The parameter vector θ̂ =
[
λ̂0 λ̂f β̂

⊤
γ̂⊤
]⊤
∈ R2N+2 is estimated in Python by minimizing

the following objective function, enforcing the consistency of the γi elements with its Taylor-
linearised approximation:

min
λ0,λf ,β,γ

N∑
i=1

T∑
t=1

(
Ri,t − λ0 − γi − βif̃t

)2
+ ρ

N∑
i=1

(
γi −

[
λ̂cs
f βi + β̂

(0)
i λf − λ̂cs

f β̂
(0)
i

])2
(2.19)

where the second term is the quadratic penalty, and λ̂cs
f , β̂

(0)are the fixed input from the first
step. This objective is convex and can be solved efficiently using convex optimisation techniques.
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In the results, this variant is named Factor.

In the next method, we again use as the starting values β̂(0), λ̂(0)
f = λ̂cs

f in the Taylor approxim-
ation:

λfβi ≈ λ̂
(m)
f βi + β̂

(m)
i λf − λ̂

(m)
f β̂

(m)
i , ∀i,m (2.20)

However, in this iterative version, the linear approximation centres (λ̂
(m)
f , β̂

(m)
i ) are updated at

each step (m) to the current estimates until a convergence level is reached5:

β̂
(m)
i = βi, ∀i λ̂

(m)
f = λf

This approach generalizes both the Factor and the Taylor product models via an iterative estim-
ation strategy.

In the results, this variant is named Factor iter (abbreviation of iterated).

2.3.3 McCormick Envelope

In this linear programming (LP) formulation, built on equation 2.14, we link the product factor
γi to the common risk price λf through the bilinear identity γi = βiλf , which we replace by its
McCormick convex envelope, McCormick (1976), over the boxes βi ∈ [li, ui] and λf ∈ [lλf

, uλf
],

for each portfolio i:
γi ≥ li λf + βi lλf

− lilλf

γi ≥ ui λf + βi uλf
− uiuλf

γi ≤ ui λf + βi lλf
− uilλf

γi ≤ li λf + βi uλf
− liuλf

(2.21)

The returns are fitted in the same form as the product factor specification:

R̂i,t = λ0 + γi + βi f̃t, ∀i, t,

We enforce stability and tighten the relaxation by adding the following corner product bounds:

min{lilλf
, liuλf

, uilλf
, uiuλf

} ≤ γi ≤ max{lilλf
, liuλf

, uilλf
, uiuλf

}. (2.22)

We estimate by least absolute deviations, introduce variables ui,t ≥ 0 for absolute residuals and
5 We set a tolerance to exit the iteration when the residual ≤ 10−7 and alternatively a maximum number of

iteration M=10.
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solve the LP:

min
λ0,λf ,{βi,γi},{ui,t}

N∑
i=1

T∑
t=1

ui,t

s.t. ui,t ≥ Ri,t −
(
λ0 + γi + βif̃t

)
,

ui,t ≥ −Ri,t +
(
λ0 + γi + βif̃t

)
, ∀i, t,

McCormick for γi = βiλf on [li, ui]× [lλf
, uλf

] (Eq. 2.21),
li ≤ βi ≤ ui, lλf

≤ λf ≤ uλf
, ui,t ≥ 0.

(2.23)

For each portfolio i, the McCormick formulation consists of: the four linear inequalities given
by equation 2.21; the two box constraints for each βi; the two λf bounds. Therefore, for six
portfolios with a common factor λf , the polyhedron in (β, λf , γ)-space is defined by 4N+2N+2 =

6 · 4 + 6 · 2 + 2 = 38 facet inequalities. The γi corner-product bounds are included for numerical
robustness, though they are implied by the McCormick envelope and do not add facets. Tighter
bounds [li, ui] and [lλf

, uλf
] shrink the McCormick envelope, which, in the limit, collapses onto

the bilinear graph γi = βiλf .

While the sector constraints in the product factor method 2.14, lλf
βi ≤ γi ≤ uλf

βi, guarantee
lλf
≤ γi/βi ≤ uλf

only when βi ≥ 0, the McCormick envelope 2.21 does not require any
restrictions on βi, as long as finite bounds [li, ui] and [lλf

, uλf
] are provided.

Problem 2.23 can be solved with a standard Guroby Dual Simplex LP solver. In the results, this
variant is named LP L1.

2.3.4 Integer Programming

In this section we use a combination of Taylor approximation alternate with piecewise linear ap-
proximation associated with an integer programming method, see Asghari et al. (2022). Although
these methods are well known in operational research, to our knowledge they have never been ap-
plied to beta-pricing. The method consists of defining the vectors y1 =

[
y1,1 y2,1 · · · yN,1

]⊤
,

y2 =
[
y1,2 y2,2 · · · yN,2

]⊤
and the following new variables6:

yi,1 =
1

2
(βi + λf ) yi,2 =

1

2
(βi − λf ), ∀i (2.24)

6 Under the constraints lβi
≤ βi ≤ uβi

, lλf
≤ λf ≤ uλf
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Then, we obtain a result that is separable:

βiλf = y2i,1 − y2i,2, ∀i (2.25)

The model under the new variables7 is defined as:

Ri,t = λ0 + y2i,1 − y2i,2 + (yi,1 + yi,2)f̃t + εi,t, ∀i, t

yi,1 − yi,2 =yj,1 − yj,2, where i ̸= j with i, j ∈ [1, N ]
(2.26)

Betas and risk price can then be derived as:

βi = yi,1 + yi,2 λf = yi,1 − yi,2, ∀i. (2.27)

However, the term y2i,1 − y2i,2 is non-convex, and thus incompatible with standard convex optim-
isation frameworks. Then, we apply the following variants.

2.3.4.1 Taylor Convex Approximation

The nonlinear term y2i,1 − y2i,2 is approximated using a first-order Taylor expansion around the
starting centre points ai and bi:

y2i,1 − y2i,2 ≈ 2aiyi,1 − 2biyi,2 − a2i + b2i , ∀i (2.28)

The parameter vector is defined as θ̂ =
[
λ̂0 λ̂f ŷ1 ŷ2

]⊤
∈ R2N+2. The objective function is

given by:

min
λ0,λf ,y1,y2

N∑
i=1

T∑
t=1

(
Ri,t − λ0 − (2aiyi,1 − 2biyi,2 − a2i + b2i )− (yi,1 + yi,2)f̃t

)2
subject to yi,1 − yi,2 = λf , ∀i

(2.29)

This linear approximation reduces the problem to a Quadratic Program (QP) with linear con-
straints, which enables the use of iterative convex optimisation techniques, as discussed in Boyd
and Vandenberghe (2004).

After solving, we update the Taylor centre points:

ai ← yi,1, bi ← yi,2, ∀i (2.30)
7 The constraints under the new variables are: 1

2 (lβi + lλf
) ≤ yi,1 ≤ 1

2 (uβi + uλf
), and 1

2 (lβi − lλf
) ≤ yi,2 ≤

1
2 (uβi

− uλf
)
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and repeat the process until the convergence tolerance is reached.

In the results, we name this method Taylor convex

2.3.4.2 Piecewise Approximation

We use piecewise linear interpolation via hybrid Mixed-Integer Linear Programming (MILP),
Vielma (2015).
First, we define the grids to approximate yi,1 and yi,2:

xi,1,k ∈ [li,1,ui,1] xi,2,k ∈ [li,2,ui,2], ∀i, k (2.31)

We allocate each portfolio to an individual grid of K points each, with the respective lower
(li,1, li,2) and upper (ui,1, ui,2) bounds.

Then, the method consists of the following formulations:

Special Ordered Set of Type 1. SOS1 constraints allow only one variable in the set to be non-
zero, with the result of selecting a single grid point (piecewise constant approximation). SOS1 are
related with discrete weights, and require integer programming. The trade-off is between model
complexity (due to integer variables) and the approximation accuracy (dependent on K).

Special Ordered Set of Type 2. SOS2 constraints allow at most two adjacent variables to be non-
zero, enabling linear interpolation between two grid points (piecewise linear approximation). SOS2
are associated with continuous Weights (Convex Combination), resulting in smoother approxim-
ations and faster solve times. However, it may lead to over-smoothing and reduced statistical
significance in estimates.

In our setup we mostly use the SOS2 approach where:
- the convex combination constraints are defined as:

K∑
k=1

wi,1,k = 1,
K∑
k=1

wi,2,k = 1; wi,1,k ≥ 0, wi,2,k ≥ 0, ∀i (2.32)

- the variable definitions are:

yi,1 ≈
K∑
k=1

xi,1,kwi,1,k, yi,2 ≈
K∑
k=1

xi,2,kwi,2,k, ∀i (2.33)

y2i,1 ≈
K∑
k=1

x2
i,1,kwi,1,k, y2i,2 ≈

K∑
k=1

x2
i,2,kwi,2,k, ∀i
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For SOS1, we replace the weights in equations 2.32 and 2.33 with:

yi,1 ≈
K∑
k=1

xi,1,kδi,1,k, yi,2 ≈
K∑
k=1

xi,2,kδi,2,k (2.34)

y2i,1 ≈
K∑
k=1

x2
i,1,kδi,1,k, y2i,2 ≈

K∑
k=1

x2
i,2,kδi,2,k

δi,1,k ∈ {0, 1}, δi,2,k ∈ {0, 1}, ∀i

The mixed-integer linear programming model utilizes both binary and continuous variables to
achieve accurate piecewise linear approximations. Most of the solvers use the branch-and-cut
(branch-and-bound augmented with cutting planes) algorithm for the solution.

2.3.4.3 MILP L1

The objective function is defined as:

min
λ0,λf ,y1,y2

N∑
i=1

T∑
t=1

|Ri,t − R̂i,t|+ ρ
N∑
i=1

|yi,1 − yi,2 − λf | (2.35)

where:

- Ri,t is the actual excess return for portfolio i at time t.

- R̂i,t is the model predicted return.

R̂i,t = λ0 + (y2i,1 − y2i,2) + (yi,1 + yi,2)ft, ∀i, t (2.36)

- ρ is the regularisation parameter that is introduced to penalize deviations between yi,1−yi,2
and the parameter λf .
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Substituting the piecewise approximation of equation 2.33 in equation 2.35 and 2.36:

min
λ0, λf ,

wi,1,k, wi,2,k

N∑
i=1

T∑
t=1

∣∣∣∣∣Ri,t − λ0 −

(
K∑
k=1

x2
i,1,kwi,1,k −

K∑
k=1

x2
i,2,kwi,2,k

)
(2.37)

−

(
K∑
k=1

xi,1,kwi,1,k +
K∑
k=1

xi,2,kwi,2,k

)
ft

∣∣∣∣∣
+ ρ

N∑
i=1

∣∣∣∣∣
K∑
k=1

xi,1,kwi,1,k −
K∑
k=1

xi,2,kwi,2,k − λf

∣∣∣∣∣
We use a hybrid approximation: SOS1 for betas and SOS2 for the other estimates.

In the results, we name this method MILP L1.

The L1-norm corresponds to the median of the conditional distribution and is more robust to
outliers and heavy-tailed noise than the L2-norm.

Although L1 and L2 typically produce different estimates, they coincide under certain restrictive
conditions: the factors are orthogonal and properly scaled (at the cost of losing economic inter-
pretability); the error terms are symmetrically distributed with zero mean; there are no outliers,
especially in the regressor space; the model is low-dimensional or has symmetric structure; and
there is no conditional skew in the dependent variable.

In Tables 2.1 and 2.2, we report the normality tests for the EU Market factor and the residual of
our portfolio equation system, equation 2.10.

Statistic Value Interpretation

Mean 0.667 -
Median 0.945 Left-skew
Skewness -0.493 Moderate left skew
Excess Kurtosis 1.603 Heavy tails (leptokurtic)
Jarque-Bera Test 33.459 (p < 0.001) Reject normality
Shapiro-Wilk Test 0.976 (p < 0.001) Reject normality

Table 2.1: Normality and Tail Tests, EU Market Factor

Because the factors and the residuals are asymmetric and heavy-tailed, our model does not meet
the restrictions necessary for the equivalence between L1 and L2 estimates.

We first estimate the parameters λ0, λf , and the vector of portfolio exposures β using an L1 non
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Statistic Value Interpretation

Mean 0.000 –
Median -0.031 Asymmetry (Mean ̸= Median)
Skewness 0.211 Mild positive skew
Excess Kurtosis 2.315 Heavy tails
Jarque-Bera Test 328.811 (p < 0.001) Reject normality
Shapiro-Wilk Test 0.976 (p < 0.001) Reject normality

Table 2.2: Normality and Tail Tests of Residuals, Equities

linear estimator (equation 2.44) applied to the sample data.

These estimates serve as the ”true” parameter values in a simulation experiment with Laplace-
distributed (double exponential) error terms,

εi,t ∼ Laplace(0, bi), ∀i, t,

where the scale parameter bi is chosen to match the empirical residual variance,

bi =
σ̂i√
2
,

with σ̂2
i denoting the sample variance of ε̂i,t. Thus, the simulated errors have mean zero and the

same variance as the empirical residuals.

We then simulate 10,000 datasets, each consisting of T = 500 time periods, and re-estimate the
model parameters on each simulated dataset using L1.

The same procedure is repeated using an L2 non linear estimator (equation 2.45) from the
empirical data as the true parameters, and simulating data with Gaussian error terms. Then, we
re-estimate the model parameters on each simulated dataset using L2.

While the true parameters obtained from L1 and L2 estimation differ, we find that in both setups
the corresponding estimator (L1 for Laplace, L2 for Gaussian) is consistently recovering the true
parameters on average, see Table 2.3. This confirms that both methods are well-calibrated under
their respective noise assumptions.
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Parameter True (from data) Average Estimate (simulations)

L1 with Laplace noise (10000 simulations)
λ0 0.8290 0.8253
λf -0.1284 -0.1245

L2 with Gaussian noise (10000 simulations)
λ0 0.7483 0.7463
λf 0.0110 0.0134

Table 2.3: True and Simulated Estimates under the L1- and L2-norms.

The robustness8 and efficiency9 of the L1 and L2 estimators are then compared under heavy-tailed
errors, via a Monte Carlo simulation experiment where the true parameters are derived from L2
estimation on real data: we estimate λ0, λf , and the vector of portfolio exposures β using the
Fama–MacBeth two-step procedure.

Given an estimator θ̂ of the true parameter vector θ, we define:

Bias(θ̂) = E[θ̂]− θ (2.38)

Var(θ̂) = E
[(

θ̂ − E[θ̂]
)(

θ̂ − E[θ̂]
)⊤]

(2.39)

MSE(θ̂) = E
[∥∥∥θ̂ − θ

∥∥∥2] = ∥∥∥Bias(θ̂)∥∥∥2 + Tr
(
Var(θ̂)

)
(2.40)

where Var(θ̂) is the covariance matrix of a vector estimator θ̂ ∈ Rn+2, and its trace, Tr(Var(θ̂))
represents the sum of the variances of the individual components of θ̂.

For the test, we then simulate 10,000 datasets, each consisting of T = 500 time periods. In
each simulation, we generate factor realizations and return data using the pricing equation 2.10,
where the error term εi,t is drawn independently from a standardised t-distribution with 3 degrees
of freedom (i.e., heavy-tailed noise) and the noise scale is calibrated using the empirical residuals
from the initial 1st step OLS regression, equation 2.7.

For each simulated dataset, we estimate the model parameters (λ0, λf ,β) using both L1 and L2
methods. We then compute the empirical bias, variance and mean squared error (MSE) of each
estimator with respect to the L1 and L2 derived true parameters, respectively.
8 In the context of parameter estimation, robustness refers to the stability of the estimator θ̂ in the presence

of deviations from classic assumptions such as normality or homoscedasticity. A robust estimator exhibits
relatively low variance and bounded bias even under heavy-tailed or heteroskedastic noise.

9 Efficiency describes the ability of an estimator to achieve minimal variance when the model is correctly specified.
In this sense, the classic L2 estimator is efficient under Gaussian noise.
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In Figures 2.1 and 2.2, we show the trade-off between bias and variance when estimating paramet-
ers under fat-tailed and Gaussian distributions, and the relative performance of robust (L1) versus
efficient (L2) estimation techniques. The results show that, for the portfolios10 beta loadings
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Figure 2.1: Bias–Variance Trade-off for the L1- vs L2-Norms under Heavy Tailed Errors.
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Figure 2.2: Bias–Variance Trade-off for the L1- vs L2-Norms under Normal Errors.

and the risk price parameters, the L1 estimator exhibits lower bias and variance than L2 under
heavy tail, while the L2 performs better under Gaussian errors. This highlights L1 as a robust
alternative when the classic assumptions of normality and homoscedasticity are violated.
10 See Section 2.3 for the portfolios definition.
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2.3.4.4 MIQP L2

We use an L2-norm, which has the advantage of more stable results, although the problem is
now convex quadratic.
The objective function is:

min
λ0,λf ,y1,y2

N∑
i=1

T∑
t=1

(
Ri,t − R̂i,t

)2
(2.41)

where R̂i,t is already defined in equation 2.36, and instead of the regularisation term we use the
following constraint:

λf = yi,1 − yi,2 ∀i (2.42)

Substituting the piecewise approximation of equation 2.33:

min
λ0, λf ,

wi,1,k, wi,2,k

N∑
i=1

T∑
t=1

[
Ri,t − λ0 −

(
K∑
k=1

x2
i,1,kwi,1,k −

K∑
k=1

x2
i,2,kwi,2,k

)

−

(
K∑
k=1

xi,1,kwi,1,k +
K∑
k=1

xi,2,kwi,2,k

)
ft

]2
(2.43)

λf =
K∑
k=1

xi,1,kwi,1,k −
K∑
k=1

xi,2,kwi,2,k

In addition, the model is solved iteratively using refined grids. The changes in beta values are
computed untill they are below a certain tolerance (10−7), while the process exits if the changes
started to increase.

After each step, the grid is re-centred around the latest βi plus a span to ensure full grid cover-
age.

In the results, we name this method MIQP L2.

The L2-norm corresponds to the mean of the conditional distribution of errors. It is optimal when
residuals are normally distributed, but it is highly sensitive to outliers (large deviations).

2.3.5 Nonlinear

Finally, we use a nonlinear solver with the following objective function.

L1-norm:

min
λ0,λf ,β

N∑
i=1

T∑
t=1

∣∣∣Ri,t − λ0 − βiλf − βif̃t

∣∣∣ (2.44)
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In the results, this variant is named Nonlinear L1.

L2-norm:

min
λ0,λf ,β

N∑
i=1

T∑
t=1

(
Ri,t − λ0 − βiλf − βif̃t

)2
(2.45)

In the results, this variant is named Nonlinear L2.

For the optimisation, we use the quasi-Newton method of Broyden, Fletcher, Goldfarb, and
Shanno (BFGS) and the Sequential Least Squares Programming (SLSQP) to further check ac-
curacy.

2.4 A General Nonlinear Model

The motivation for this section is to provide a general framework for a system of nonlinear
equations. We follow the definition of a system of nonlinear equations reported in the SAS Model
Procedure guide, page 1488, SAS (2018):

q1(y1,t, y2,t, . . . , yN,t, x1,t, x2,t, . . . , xℓ̄,t, θ1, θ2, . . . , θk̄) = ε1,t

q2(y1,t, y2,t, . . . , yN,t, x1,t, x2,t, . . . , xℓ̄,t, θ1, θ2, . . . , θk̄) = ε2,t
...

qN(y1,t, y2,t, . . . , yN,t, x1,t, x2,t, . . . , xℓ̄,t, θ1, θ2, . . . , θk̄) = εN,t, ∀t

(2.46)

where q ∈ RN is a real vector valued function of yt ∈ RN , xt ∈ Rℓ̄,θ ∈ Rk̄,.

N is the number of the endogenous variables; ℓ̄ is the number of exogenous components; k̄ is
the number of parameters; t ranges from 1 to T is the number of non missing observations;
zt ∈ Rp̄ is a vector of p̄ instruments; εt is an unobservable disturbance vector with the following
properties: E(ε) = 0; E(εε⊤) = Σ.

The vector of endogenous variables at time t is defined as

yt =
[
y1,t y2,t · · · yN,t

]⊤
, ∀t

The vector of observable variables at time t is given by the factor vector ft11:

xt =
[
x1,t x2,t · · · xℓ̄,t

]⊤
=
[
f1,t f2,t · · · fℓ̄,t

]⊤
, ∀t

11 We use bold font to denote vectors, e.g., ft = [f1,t, f2,t, . . . , fℓ̄,t]
⊤.

25



The instrument vector zt is a function of xt:

zt = Z(xt) =
[
Z1(x1,t) Z2(x2,t) · · · Zℓ̄(xℓ̄,t)

]⊤
, ∀t

where each Zl(xℓ̄,t) represents a transformation of the corresponding component of xt.
The normalised form of the model can be written:

yt = f(yt, xt,θ) + εt, ∀t

zt = Z(xt), ∀t
(2.47)

The same nonlinear model in general vector form is shown below:

εt = q(yt, xt,θ), ∀t

zt = Z(xt), ∀t
(2.48)

In the Generalized Method of Moments, we assume that the model implies a set of moment
conditions:

E[q(y, x, z,θ)] = 0. (2.49)

These conditions imply that, at the true parameter vector, the expectation of the moment function
is zero. The following definitions apply:

gT is a vector of moment functions.
ĝT = 1

T

∑T
t=1 q(yt, xt,θ)⊗ zt is the sample moment condition

ri =
[
qi(y1, x1,θ) qi(y2, x2,θ) · · · qi(yT , xT ,θ)

]⊤
∈ RT×1 is the column vector of residuals

for the ithequation
r =

[
r⊤1 r⊤2 · · · r⊤N

]⊤
∈ RTN×1 is the vector of residuals of the N equations stacked together

S ∈ RN×N is a matrix that estimates Σ the covariances of the errors across equations (referred
to as the S matrix).
V̂ ∈ RNp̄×Np̄ is the matrix that represents the variance of the moment functions.12

Z ∈ RT×p̄ is the matrix of instruments
J is the Jacobian, ∂r

∂θ⊤ ∈ RTN×k̄, the partial derivatives matrix of the residual with respect to
the parameters
I ∈ RT×T is the identity matrix
12 See equation 4.65 for the definition
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H ∈ RNp̄×TN is a matrix of instruments, H =


Z⊤ 0 · · · 0

0 Z⊤ · · · 0
... ... . . . ...
0 0 · · · Z⊤

 = IN ⊗ Z⊤

⊗ is the notation for a Kronecker product13

In the appendices, we derive the objective function and the covariance matrix for the a systems of
nonlinear equations, using the following methods: Ordinary Least Squares, Seemingly Unrelated
Regression, and Generalized Method of Moments. Here, we present the objective functions and
covariance matrices as obtained from those derivations, with reference to the corresponding proofs
in the appendices.

OLS objective function = r⊤r/T 14

OLS covariance of θ = (J⊤(diag(S)−1 ⊗ I)J)−1 15

NSUR objective function = r⊤(S−1 ⊗ I)r/T 16

NSUR covariance of θ = (J⊤(S−1 ⊗ I)J)−1 17

GMM objective function = [T ĝT (θ]
⊤V̂−1

[T ĝT (θ)]/T 18

GMM covariance of θ = ((HJ)⊤V̂−1
(HJ))−1 19

We now focus on a simplified system of nonlinear equations derived from equation 2.47, the
SAS-style general model notation. While equation 2.47 defines a fully general simultaneous
nonlinear system of equations in terms of the parameters, a reduced specification is sufficient for
the purposes of beta-pricing and risk premium estimation.

Specifically, we define:

- yt ≡ Rt ∈ RN : is a column vector of excess returns across N portfolios,

- xt = [̃ft] ∈ Rℓ̄, where f̃t = ft − E[ft] is the vector of demeaned factors,

- θ =
[
λ0 vec(B)⊤ λ⊤

f

]⊤ ∈ R1+Nℓ̄+ℓ̄ is the parameter vector:

- λ0 · 1N ∈ RN : common intercept across all assets,
13 See definition of the matrix direct product 4.15 in the Appendices
14 See equation 4.26 for reference. In literature, this is the nonlinear least squares (NLS) method unweighted.
15 See equation 4.54 for reference. SAS reports this as OLS, but it corresponds to the diagonal WLS/GLS case

with no cross equation off–diagonal terms.
16 See equation 4.34 for reference
17 See equation 4.58 for reference
18 See equation 4.68. The objective function is also written: [ĝT (θ]

⊤Λ̂
−1

[ĝT (θ)] with V̂ = T Λ̂
19 See equation 4.92 and Wooldridge (2010) pag.193
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- B ∈ RN×ℓ̄: matrix of factor loadings (row i is β⊤
i ), see equation 4.16,

- vec(B) ∈ RNℓ̄: vectorization of B by stacking its columns, see equation 4.17,

- λf ∈ Rℓ̄: vector of factor risk prices.

Then the model becomes:

f(yt, xt,θ) = λ0 · 1N +
(
IN ⊗ (xt + λf )

⊤) · vec(B) ∀t (2.50)

Alternatively:
yt = f(yt, xt,θ) + εt = λ0 · 1N +B (xt + λf ) + εt, ∀t

which can be written as:

Rt = λ0 · 1N +B(̃ft + λf ) + εt, ∀t

and is equivalent to the multifactor beta-pricing model:

Ri,t = λ0 +
ℓ̄∑

l=1

βi,l(f̃l,t + λl) + εi,t, ∀i, t (2.51)

From 2.51, we recover the one-factor model (ℓ̄ = 1) defined in Equation (2.10):

Ri,t = λ0 + βi(f̃t + λf ) + εi,t, ∀i, t

In the next section, we analyse a model with: ℓ̄ = 2 factors20; N = 6 portfolios. k̄ = 1 +

Nℓ̄ + ℓ̄ = 15 is the number of parameters; t ranges from 1 to T , the number of data points;
zt = [1, x1,t, x2,t]

⊤ ∈ Rp̄ is a vector of instruments, where p̄ = ℓ̄+ 1 = 3.

For the Generalized Method of Moments , the following orthogonality condition is desired21:

E[εi(θ) · zp] = 0 ∀i, p (2.52)

that corresponds to the Kronecker product:

E[ε(θ)⊗ z] = 0 (2.53)
20 The factors are the exogenous variables, Cov(x, ε) = 0.
21 In econometrics terms the instruments are exogenous, see Wooldridge (2010), pag. 187
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where ε(θ) ⊗ z ∈ RNp̄. The vector of sample moments ĝT is the empirical average of the
Kronecker product between the asset-level residual vector and the instrument vector:

ĝT (θ) =
1

T

T∑
t=1

εt(θ)⊗ zt (2.54)

It makes sense to denote the sample moment vector as ĝT (θ) to make the dependence on the
sample size explicit. In large-sample theory, this convergence is expressed as:

ĝT (θ)
p−→ g(θ) as T →∞,

where p−→ denotes convergence in probability.

We have ḡ moment conditions, where ḡ = Np̄, and k̄ = 1+Nℓ̄+ ℓ̄ parameters to estimate. The
system is overidentified if ḡ > k̄. For example, with two factors (i.e., ℓ̄ = 2), we would need at
least p̄ = 3 instruments to ensure overidentification.

2.5 Multifactor Beta-Pricing Model

We consider a multifactor beta-pricing model as specified in equation 2.51:

Ri,t = λ0 +
ℓ̄∑

l=1

βi,l(f̃l,t + λl) + εi,t ∀i, t

where Ri,t is the excess return of portfolio i at time t, computed as the return minus the risk-free
rate; fl,t is the excess return of factor l at time t; µf,l is the mean of factor l, i.e. the l-th element
of µf ; f̃l,t = fl,t−µf,l is the demeaned value of factor l at time t; λ0 ∈ R is the model intercept;
βi,l is the loading or exposure of portfolio i on factor l; βi =

[
βi,1 βi,2 · · · βi,ℓ̄

]⊤
∈ Rℓ̄

is the vector of factor loadings for portfolio i; λl ∈ R is the risk price of factor l and λf =[
λ1 λ2 · · · λℓ̄

]⊤
∈ Rℓ̄ the risk price vector; εi,t is the error term for asset i at time t; N is

the number of assets; T is the number of time periods; and ℓ̄ is the number of factors.

This formulation extends the linear factor pricing framework introduced by Fama and MacBeth
(1973) and builds on the asset pricing literature as summarized in Cochrane (2005).

The model under study is a special case of the general nonlinear framework described in the
previous section. In this setting, it reduces to a system of nonlinear equations with unknown
parameters, which in econometrics is usually solved using:
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- Fama-MacBeth two-step regression, FM, Fama and MacBeth (1973).

- Nonlinear Seemingly Unrelated Regression, NSUR22, Zellner (1962).

- Generalized Method of Moments, GMM, Hansen (1982).

The one-step GMM approach jointly estimates all parameters by enforcing the moment conditions
orthogonality across time and portfolios (see Appendix K for more details):

E
[
Ri − λ0 − β⊤

i (f+ λf − µf )
]
= 0 (pricing error) (2.55a)

E
[(
Ri − λ0 − β⊤

i (f+ λf − µf )
)
f⊤
]
= 0 (error × instrument) (2.55b)

E
[
f− µf

]
= 0 (factor mean) (2.55c)

Here, Ri denotes a scalar random variable representing the return of portfolio i at a generic time
point. The observed time series, (Ri,1, . . . , Ri,T )

⊤, consists of realizations of this random variable
over T periods. The population expectation E[·] is estimated by the sample average over these
T realizations.

For GMM estimation, the conditions are stacked across all N portfolios to form the moment
vector g(θ) ∈ RNp̄, where p̄ is the number of the instruments (instrumental variables), and the
GMM estimator is obtained by solving:

θ̂GMM = argmin
θ

(
ḡT (θ)

⊤WT ḡT (θ)
)
, (2.56)

where

ḡT (θ) =
1

T

T∑
t=1

gt(θ), (2.57)

and WT is a positive-definite weighting matrix.

In contrast, the Fama–MacBeth regression proceeds in two steps. First, betas are estimated via
time-series regressions for each portfolio:

Ri,t = αi + β⊤
i f̃t + εi,t, ∀i, t (2.58)

where f̃t ∈ Rℓ̄ is the vector of ℓ̄ demeaned factor values at time t, and βi ∈ Rℓ̄ is the vector of
factor loadings for portfolio i.

Then, the vector of factor risk prices is estimated in the second step by regressing the average
22 In the rest of the document, we use NSUR and SUR interchangeably, as we deal with a nonlinear model and

employ the SAS implementation of nonlinear SUR for estimation.
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returns on the estimated betas:

R̄i = λ0 + λ⊤
f βi + ηi, ∀i (2.59)

where R̄i =
1
T

∑T
t=1 Ri,t, and λf ∈ Rℓ̄ is the vector of factor risk prices.

If the factors are not demeaned, this is equivalent to regressing the adjusted returns on the
estimated betas:

R̄i − f̄⊤βi = λ0 + λ⊤
f βi + ηi, ∀i (2.60)

where f̄ = 1
T

∑T
t=1 ft ∈ Rℓ̄ is the time-series mean of the factors.

While the second step in FM typically uses Ordinary Least Squares, it can also be performed
using Generalized Least Squares to account for cross-sectional heteroscedasticity or correlation,
making it closer to the GMM and NSUR frameworks.

For the cross-sectional regression step, let:

- R̄ ∈ RN : vector of average excess returns across N assets.

- B∗ ∈ RN×ℓ̄: matrix of estimated betas βi.

- B =
[
1, B∗] ∈ RN×(ℓ̄+1): augmented design matrix

- Σ ∈ RN×N : covariance matrix of residuals from the time-series regressions.

The GLS estimator of the risk prices is:

θ̂GLS = (B⊤Σ−1B)−1B⊤Σ−1R̄, (2.61)

where θ̂GLS = [λ̂0 λ̂
⊤
f ]

⊤ ∈ Rℓ̄+1 is the estimated vector of the intercept and factor risk prices.

2.5.1 Integration and Segmentation Models

In this section we report the methods and modelling described extensively in the global econom-
ies integration article, Penco and Lucas (2024), which is is built upon the one-factor CAPM
integration and segmentation model of Jorion and Schwartz (1986) and the three factors model
of Brooks and Iorio (2009). The model is an application of the multifactor beta-pricing model
described in the previous section.

For the definition of the integration model, we use the beta representation of the asset price,
Cochrane (2005), and we assume that integration cannot be tested by directly running a univariate
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regression on market beta, Stehle (1977), being the returns of the Local and Global market
positively correlated, Bruner et al. (2008). As noted by Brooks and Iorio (2009), a world market
portfolio that is mean variance efficient in a global integrated market should show that assets of
different geographic areas with the same sensitivities to the world market portfolio will be traded
at similar prices, irrespective of their physical location (Solnik (1974); Stultz (1984); Jorion and
Schwartz (1986)).

We refer to the CAPM integration model between a local market and a global market, the
extension to the three factor model and to the other markets is straightforward and not shown
here. In this work, the geographic market types are: Europe (EU), the local market; North
America (US), Asia (AS) and Japan (JP), the global markets; and the Commodities market
types are: Oil, the local market; Gas, Aluminium and Soybean, the global markets.

For this example, we use US as the Global market and EU as the Local market and six EU portfolios
built by Fama and French using the size (Market Capitalization) and the value (Book-to-Market)
as group criteria.

Notation:
Rf,t = risk-free rate at time t; we use the US zero coupon bond rate time series
R∗

i,t = random return of the local portfolio i at time t

Ri,t = excess random return of the local portfolio i at time t, i.e. Ri,t = R∗
i,t −Rf,t

E(Ri,t) = expected excess return of the of the local portfolio i at time t

R∗
US,t = US Global market return at time t

RUS,t = US excess Global market return at time t, i.e. RUS,t = R∗
US,t −Rf,t

RUS⊥EU,t = orthogonalised US return, obtained by projecting RUS,t onto the space orthogonal
to REU,t; equivalently, it is the residual from regressing RUS,t on REU,t

R∗
EU,t = EU Local market return at time t

REU,t = EU excess Local market return at time t, i.e. REU,t = R∗
EU,t −Rf,t

REU⊥US,t = orthogonalised EU return, obtained by projecting REU,t onto the space orthogonal
to RUS,t; equivalently, it is the residual from regressing REU,t on RUS,t

βUS
i = the integration exposure related to the US Global Market returns for portfolio i

βEU⊥US
i = the integration exposure related to the EU orthogonal Local vector of Market returns

for portfolio i

λUS = US Global Market risk price in the integration model
λEU = EU Local Market risk price in the integration model
ηi,t = the integration model error for the excess returns of the local portfolio i time t

ζEU
i = the segmentation exposure related to the EU Local Market returns for portfolio i
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ζUS⊥EU
i = the segmentation exposure related to the US orthogonal Global vector of Market
returns for portfolio i

δEU = EU Local Market risk price in the segmentation model
δUS = US Global Market risk price in the segmentation model
νi,t = the segmentation model error for the excess returns of the local portfolio i time t

Brooks and Iorio (2009) showed that if the European and US markets are integrated, the only
priced factor for an EU stock is the US market return. Hence, the returns on an EU stock-based
portfolio i are determined by the empirical CAPM equation below:

Ri,t = E(Ri,t) + βUS
i RUS,t + ηi,t, ∀i, t (2.62)

Assuming no arbitrage opportunities and some additional conditions, Connor (1984), the expected
return on portfolio i can be written as:

E(Ri) = λ0 + λUSβ
US
i , ∀i (2.63)

A non-zero λ0 implies that the expected return on the zero-beta portfolio is the riskless rate plus
a constant. We have already seen that equation 2.63 is the cross-sectional regression of asset
returns on beta, refer to the risk price estimation in Section 2.2, which is also called the beta
representation of the asset price, Cochrane (2005). In this equation, the local systematic risk,
βEU
i relative to the European portfolio, Ri, does not contribute to the pricing of assets. On

the other hand, Stehle (1977) exposed how integration cannot be tested by directly running a
univariate regression on βEU

i , being the returns on the European and Global market positively
correlated, Bruner et al. (2008). For testing the integration of two competing models we build
the enhanced model using the local and the global factors.
The collinearity issue between the EU and US market makes a multiple regression on the two
factors inadequate as well. Instead, we build the orthogonal projections of the local and global
market returns using the Graham – Schmidt process, Apostol (1969).
We define REU⊥US,t as the orthogonal local vector, the fitted values obtained from the projections
of REU,t into the line crossed by the vector RUS,t, and we use it as a measure of the local factors,
in the enhanced integration model:

E(Ri) = λ0 + λUSβ
US
i + λEUβ

EU⊥US
i , ∀i (2.64)

where λUS is the risk price related to the global US market return , λEU is the risk price related
to the local EU market return and λ0 is the intercept. Now, we can write the empirical CAPM
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equation for the integrated model:

Ri,t = E(Ri) + βUS
i RUS,t + βEU⊥US

i REU⊥US,t + ηi,t, ∀i, t (2.65)

Substituting equation 2.64 in equation 2.65 we obtain the integrated version of the CAPM
model:

Ri,t = λ0 + βUS
i (RUS,t + λUS) + βEU⊥US

i (REU⊥US,t + λEU) + ηi,t, ∀i, t (2.66)

In order to prove the complete integration hypothesis, the domestic market risk prices λEU should
be equal to zero, while the global factor λUS should be different from zero for integration.
The segmented model is built in a similar way and we get the following equation:

Ri,t = δ0 + ζEU
i (REU,t + δEU) + ζUS⊥EU

i (RUS⊥EU,t + δUS) + νi,t, ∀i, t (2.67)

In order to prove the complete segmentation hypothesis, the global market risk prices δUS should
be equal to zero, while the local factor δEU should be different from zero for segmentation.
In the approach proposed by Jorion and Schwartz (1986), we can write equation 2.62 as:

Ri,t =E(Ri) + βEU
i (RUS,t − E(RUS)) + ηi,t, ∀i, t (2.68)

Equation 2.65 can be rewritten as:

Ri,t = E(Ri)+βUS
i (RUS,t − E(RUS)) + βEU⊥US

i REU⊥US,t + ηi,t, ∀i, t (2.69)

Substituting equation 2.64 in equation 2.69 we obtain the integrated version of the CAPM
model:

Ri,t = λ0 + βUS
i (RUS,t − E(RUS) + λUS) + βEU⊥US

i (REU⊥US,t + λEU) + ηi,t, ∀i, t (2.70)

We note that the CAPM implies the restriction, λUS = E(RUS)− λ0 and write:

Ri,t = λ0(1− βUS
i ) + βUS

i RUS,t + βEU⊥US
i (REU⊥US,t + λEU) + ηi,t, ∀i, t (2.71)

The segmented model is built in a similar way and we get the following equation:

Ri,t = δ0(1− αEU
i ) + ζEU

i REU,t + ζUS⊥EU
i (RUS⊥EU,t + δUS) + νi,t, ∀i, t (2.72)

As described in the results sections, we used several methods to solve the system of nonlinear

34



equations: Fama-MacBeth (FB) or Cross sectional regression, Section 2.2; NSUR with FGLS,
Appendix I; GMM, Appendix K; and the linear approximation techniques, Section 2.3.

Below, we present the details of the Generalized Method of Moments (GMM) applied to the
integration system of nonlinear equations. An analogous representation can be derived for the
Nonlinear Seemingly Unrelated Regressions (NSUR) framework.

The GMM method is in general based on assigning different weights to the residuals as it is shown
for the Weight Least Squares estimator (Appendix G) which is the simplest case. Our article on
global economies integration use the Martingale Difference sequence for weighting the residuals
and improve the weighting matrix calculation.
Starting from equation 2.66, we define Mi,t as the measured error terms (Mi,t ̸= ηi,t since the
disturbances ηi,t in equation 2.66 are unobserved):

Mi,t(θ) = Ri,t−(λ0 + βUS
i (RUS,t + λUS) + βEU⊥US

i (REU⊥US,t + λEU)), ∀i, t (2.73)

Comparing equation 2.50 with our integration model, for each time period t, we have: the
equation vector yt = Rt ∈ R6, the independent variable vector x⊤

t = (RUS,t, REU⊥US,t)
⊤ ∈

R2, the sample error vector Mt(θ) = [M1,t, . . . ,MN,t]
⊤ ∈ R6, the parameter vector is θ =[

λ0 vec(B)⊤ λ⊤
f

]
∈ R15 with λf = (λUS, λEU) ∈ R2 and vec(β) =

[
βUS⊤

βEU⊥US⊤
]⊤
∈

R12, the instruments’ vector zt = [1, RUS,t, REU⊥US,t]
⊤ ∈ R3. We have fifteen parameters, six

equations, three instruments. Therefore the total number of moments ḡ (vectors of nonlinear
functions) is then composed of g ∈ R18 given by ḡ = Np̄ = 6 × 3 = 18. The system is over
identified, ḡ > k̄, as per definition of the GMM estimator.

The vector of sample moments ĝT is the empirical mean (first moment condition) of the Kronecker
product between the asset-level residual vector and the instrument vector, as defined in equation
2.54 which is rewritten below:

ĝT (θ) =
1

T

T∑
t=1

M t(θ)⊗ zt (2.74)

Since ḡ > k̄, we have more equations than parameters, and there is no solution for ĝT (θ) = 0.

Therefore we use a quadratic form, defined as:

QT (θ) = ∥ĝT (θ)∥2W = ĝ⊤
T (θ)WĝT (θ) (2.75)

where W ∈ Rḡ×ḡ is a positive definite weighting matrix. The GMM estimator of the objective
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function is:
θ̂GMM = argmin

θ
ĝ⊤
T (θ)WĝT (θ) (2.76)

In the first step (1st) we use the identity matrix I ∈ R18×18 as the initial weighting matrix: all
the moments will have the same weight.
In the second step we estimated the weighting matrix W using the Outer Product of Moments
estimator (OPG23), Hamilton (1994), to improve our weighting matrix calculation under the
assumption that the moment sequence (M t(θ)) is uncorrelated over time (e.g., satisfies a Mar-
tingale Difference Sequence property). The weight matrix W is now computed using the OPG
variance: the matrix product of the eighteen moments calculated using the parameters of the
first step, gT (θ̂

1st
).

W = Var−1
MDS = (

1

T
g⊤
T (θ̂

1st
)gT (θ̂

1st
))−1 (2.77)

The second step parameters estimator θ̂2nd of our models minimises this nonlinear optimisation
problem. The estimation can be iterated till the chosen GMM step tolerance (i.e. 10−7) is
reached.

2.6 Empirical Applications

This section presents the results of the risk premium estimation for the one-factor model and
the two-factor models (integration and segmentation), applied to global equity markets and
commodity indices.

2.6.1 Global Economies

2.6.1.1 Data Processing

For the test of market integration/segmentation, we used a set of six EU portfolios as dependent
variables (Ri,t). In most of the experiments, the EU portfolios returns were built using the size
(Market Capitalization) and the value (Book-to-Market) as group criteria and were found in the
French (2025) website together with the Market Factors, extracting the data from January 2003
to December 2022, 240 monthly observations. We refer to the original Fama and French (2015)
article for the details of the portfolio construction, and we use the following abbreviation:

- SS_V H: Small Size – High Value portfolio.
23 The acronym comes from likelihood estimation, Outer Product of Gradients (OPG), where the moments are

the gradients (the scores), and their outer product is taken.
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- SS_VM : Small Size – Medium Value portfolio.

- SS_V L: Small Size – Low Value portfolio.

- SB_V H: Big Size – High Value portfolio.

- SB_VM : Big Size – Medium Value portfolio.

- SB_V L: Big Size – Low Value portfolio.

The Fama-French portfolios and factors are constructed dynamically using data that accounts for
both newly listed firms and firms that have been delisted (e.g., due to liquidation or mergers).
Newly listed firms enter the portfolios based on their size and value characteristics, while delisted
firms are removed. Returns are adjusted to include delisting returns where available, ensuring that
the factor and portfolio data accurately reflect the current market and associated risks.

The independent variables of the integration model are the excess US market return time series
(RUS,t) and the corresponding orthogonalised domestic return (R

⊤
EU,t), as shown in equation

2.66. For the segmentation model, the independent variables are the excess EU market return
time series (REU,t) and the corresponding orthogonalised North American return RUS⊥EU,t.
The main correlation tests were run for the time series and their results can be found in Section
2.6.1.2. The difference in the results between the White and the Breusch-Pagan test is explained
because, the Breusch-Pagan test only checks for the linear form of heteroscedasticity, while the
White Test is more generic but it can be less efficient when the number of regressors increase.
From the low p value for some portfolio, we can conclude that we have heteroscedasticity and
it is worth using the NSUR and GMM methods over OLS. Finally, the following definitions are
provided to compare the results for the Brooks et al. model and the Jorion, Schwartz one24.
Brooks et al.
Integration test:
- Total Integration (TI, also named complete integration in the article): λLocal, the risk price of
the component orthogonal to the domestic and global market factors, should not be statistically
significant (p > 0.05), while the global risk price λGlobal should be significantly (p < 0.05) different
from zero (|λGlobal| > 0.1)
- Partial Integration (PI): evidence that the local factor is priced, the global risk price λGlobal

should be significantly (p<0.05) different from zero (|λGlobal| > 0.1) and the orthogonal risk price
should be significant and different from zero as well
- Integration Rejected (IR): evidence that only the local factor is priced, the global factor risk
price λGlobal should not be significant and the risk price of the local orthogonal factor should be
24 We slightly changed the definitions compared with the Penco and Lucas (2024) article
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significant and different from zero.
Segmentation test:
- Total Segmentation (TS, also named complete segmentation in the article): δGlobal, the risk
price of the component orthogonal to the global and domestic market factors, should not be
significant, while the local risk price δLocal should be significantly (p < 0.05) different from zero
(|δLocal| > 0.1)

- Partial Segmentation (PS): the local risk price δLocal should be significantly (p < 0.05) different
from zero (|δLocal| > 0.1) and the orthogonal risk price should be significant and different from
zero as well
- Segmentation Rejected (SR): evidence that only the global factor is priced, the local factor risk
price should not be statistically significant and the global orthogonal factor risk price should be
significant and different from zero.

Jorion and Schwartz
Total integration: the domestic market risk price λLocal should not be significantly different from
zero (p > 0.05); i.e., λLocal ≈ 0.
Total segmentation (also named complete segmentation in the article): the global market risk
price δGlobal should not be significantly different from zero (p > 0.05); i.e., δGlobal ≈ 0.

2.6.1.2 Data Analysis

Cross-Correlation and Multicollinearity

The correlation matrix between global market factors is shown in Table 2.4, together with the
Pearson correlation test results. As discussed, a high correlation between the market returns is
shown with a high confidence level (p below 1%).

REU,t RAS,t RJP,t RUS,t

REU,t 1.0000 (<0.001) 0.8694 (<0.001) 0.6740 (<0.001) 0.8761 (<0.001)
RAS,t 0.8694 (<0.001) 1.0000 (<0.001) 0.6543 (<0.001) 0.8105 (<0.001)
RJP,t 0.6740 (<0.001) 0.6543 (<0.001) 1.0000 (<0.001) 0.6359 (<0.001)
RUS,t 0.8761 (<0.001) 0.8105 (<0.001) 0.6359 (<0.001) 1.0000 (<0.001)

Table 2.4: Correlation Matrix with p-values, Global Market Factors

The results show multicollinearity, which was the reason to use the orthogonal projection of
the returns. As shown in Table 2.5, applying the projections will fix the multicollinearity prob-
lem.
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REU,t RAS⊥EU,t RUS⊥EU,t RJP⊥EU,t

REU,t 1.0000 (0.0000) -0.0098 (0.8802) -0.0178 (0.7832) -0.0048 (0.9413)
RAS⊥EU,t -0.0098 (0.8802) 1.0000 (0.0000) 0.2052 (0.0014) 0.1872 (0.0036)
RUS⊥EU,t -0.0178 (0.7832) 0.2052 (0.0014) 1.0000 (0.0000) 0.1276 (0.0484)
RJP⊥EU,t -0.0048 (0.9413) 0.1872 (0.0036) 0.1276 (0.0484) 1.0000 (0.0000)

Table 2.5: Correlation Matrix with p-values, EU vs Orthogonalised Global Market Factors

Autocorrelation and Residual Diagnostics

Autocorrelation was tried via the Durbin Watson test, Table 2.6, where we report the result
between the Big size and High Value Portfolio, the European market return and the US/EU
market return projection. The ordinary least square results are also reported.

Coefficient Std. Error t-Statistic

Intercept -0.0866 0.1270 -0.6818
REU,t 1.1750 0.0234 50.1320
RUS⊥EU,t -0.1024 0.0582 -1.7586
R2 0.914
Durbin-Watson 1.983

Table 2.6: OLS Regression, EU Big Size High Value Portfolio on REU,t and RUS⊥EU,t

Table 2.7 extends this diagnostic across all six portfolios. The values range from 1.78 to 1.98,
indicating weak or no first order serial correlation in the residuals: Cov(rt, rt−1) ̸= 0.

Portfolio Durbin-Watson

rSS_V H 1.8000
rSS_VM 1.9067
rSS_V L 1.7890
rSB_V H 1.9833
rSB_VM 1.7771
rSB_V L 1.8945

Table 2.7: Durbin-Watson Statistics, EU Portfolio Residuals on REU,t and RUS⊥EU,t

The Ljung–Box test in Table 2.8 indicates that two portfolios (e.g., SS_VL and SB_VL) exhibit
significant residual autocorrelation within the first ten lags.

In Table 2.9, we report the residual correlation matrix between the European Size and Value
portfolios and the EU market factor.
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Portfolio Statistic p-value

rSS_V H 18.661 0.045
rSS_VM 14.201 0.164
rSS_V L 27.747 0.002
rSB_V H 18.143 0.053
rSB_VM 14.400 0.156
rSB_V L 18.893 0.042

Table 2.8: Ljung–Box Autocorrelation Test, EU Portfolio Residuals on REU,t

rSS_V H rSS_V M rSS_V L rSB_V H rSB_V M rSB_V L

rSS_V H
1.000

(<0.0001)
0.776

(<0.0001)
0.443

(<0.0001)
0.377

(<0.0001)
-0.654

(<0.0001)
-0.610

(<0.0001)

rSS_VM
0.776

(<0.0001)
1.000

(<0.0001)
0.902

(<0.0001)
-0.256
(0.015)

-0.333
(0.005)

-0.012
(0.059)

rSS_V L
0.443

(<0.0001)
0.902

(<0.0001)
1.000

(<0.0001)
-0.594

(<0.0001)
-0.094
(0.006)

0.374
(0.004)

rSB_V H
0.377

(<0.0001)
-0.256
(0.015)

-0.594
(<0.0001)

1.000
(<0.0001)

-0.620
(<0.0001)

-0.953
(<0.0001)

rSB_VM
-0.654

(<0.0001)
-0.333
(0.005)

-0.094
(0.006)

-0.620
(<0.0001)

1.000
(<0.0001)

0.642
(0.207)

rSB_V L
-0.610

(<0.0001)
-0.012
(0.059)

0.374
(0.004)

-0.953
(<0.0001)

0.642
(0.207)

1.000
(<0.0001)

Table 2.9: Residual Correlation Matrix with p-values, EU Portfolios on REU,t

The results show evidence of cross-correlation between residuals.

Heteroscedasticity Tests

Below, we also tested for heteroscedasticity Var(rt) ̸= σ2, which causes the OLS estimates to be
inefficient as it assumes constant error variance, while GLS and GMM that take into account the
changing variance can make more efficient use of the data. Both White’s test and the Breusch-
Pagan (BP) test based on the residuals of the fitted model were run. The White test is robust to
general forms of heteroscedasticity, including nonlinearity, while the BP test is sensitive to linear
forms. For systems of equations, these tests are computed separately for the residuals of each
equation.
These results suggest that smaller firms, particularly those with high book-to-market ratios, are
more prone to heteroscedasticity in their return-generating process. This may reflect time-varying
volatility or other nonlinear dynamics. In such cases, using heteroscedasticity robust standard
errors or Generalized Least Squares may improve inference reliability.
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The results of the test are shown in Table 2.10 for the European market return and US/EU
market return projection model (segmentation model).

Equation Test Statistic df p-value

rSS_V H White 51.092 6 0.0000
rSS_V H Breusch-Pagan 6.501 2 0.0387
rSS_VM White 47.180 6 0.0000
rSS_VM Breusch-Pagan 3.086 2 0.2137
rSS_V L White 23.951 6 0.0002
rSS_V L Breusch-Pagan 2.049 2 0.3589
rSB_V H White 19.254 6 0.0017
rSB_V H Breusch-Pagan 0.774 2 0.6791
rSB_VM White 6.086 6 0.2980
rSB_VM Breusch-Pagan 1.294 2 0.5235
rSB_V L White 10.909 6 0.0532
rSB_V L Breusch-Pagan 1.832 2 0.4002

Table 2.10: White and BP Heteroscedasticity Test, EU Portfolios on REU,t and RUS⊥EU,t

The Autoregressive Conditional Heteroskedasticity Lagrange Multiplier (ARCH LM) test results
for the one-factor model with the European Market are shown in Table 2.11.

Portfolio Statistic p-value

rSS_V H 1.651 0.895
rSS_VM 6.042 0.302
rSS_V L 25.375 0.000
rSB_V H 21.653 0.001
rSB_VM 16.410 0.006
rSB_V L 8.635 0.125

Table 2.11: ARCH LM Test for Conditional Heteroscedasticity, EU Portfolios on REU,t

The White and Breusch-Pagan tests primarily detect cross-sectional heteroscedasticity—variance
that depends on the level of fitted values or regressors. In contrast, the ARCH LM test tar-
gets time-series heteroscedasticity (conditional heteroscedasticity or volatility clustering). Here,
SS_VL, SB_VH, and SB_VM show clear evidence of ARCH effects (p < 0.01), indicating that
their variance also depends on lagged shocks up to five lags.

2.6.1.3 One-Factor Model

The first experiment is to estimate a one-factor beta-pricing model of six European portfolios
excess returns regressed against the European Market factor excess returns. In the experiment
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we compare the classic methods and the linear approximation results.

Risk Premium Estimation via Linear Approximation

We present the results for six EU portfolios grouped on size and book-to-market against the EU
market excess returns using the different linear approximation methods:

- Taylor product, that refers to the first-order Taylor approximation of the product, proposed
in equation 2.11, which is a convex unconstrained quadratic problem (specifically, a Least
Squares problem).

- Taylor convex, which is the convex approximation proposed in equation 2.28, a Quadratic
Program (QP) with linear constraints.

- MILP L1, hybrid piecewise linear approximation solved with Linear Programming (LP).

- MIQP L2, piecewise linear approximations via convex continuous combination that is based
on L2-norm.

- Factor, the ratio substitution proposed in equation 2.14, which becomes a Convex Quadratic
Program with quadratic constraints.

- Factor iter, the iterated version of Factor as per equation 2.20, which is again a Convex
QP with quadratic constraints.

- LP, the linear program L1 method with McCormick envelope, equation 2.23.

- Nonlinear L1 , the nonlinear L1 method, equation 2.44.

- Nonlinear L2 , the nonlinear L2 method, equation 2.45.

We use Python packages (cvxpy, gurobipy, and pulp) together with custom code for all the
methods implemented.

In Table 2.12 we show the result of the centred factor regression as formulated in equation 2.10.
In Table 2.13 the results of the raw factor regression.

The results of the centred regression using linearised methods indicate that the estimated risk
price λf are consistently close to zero across all approaches, with high standard errors and p-
values near one, suggesting no significant factor risk price. The intercept estimates λ0 are stable
across methods but also statistically not significant, reflecting the limited explanatory power of
the single-factor specification under the linearised frameworks. Despite an R2 around 0.9 across
all portfolios, the intercept estimates λ0 are statistically insignificant, indicating limited pricing
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Method Parameter Estimate Std. Error1 t-Statistic p-value

Taylor product Intercept 0.7483 0.4674 1.6011 0.1096
Taylor product Risk price 0.0111 0.4571 0.0242 0.9807
Taylor convex Intercept 0.7483 0.4674 1.6011 0.1096
Taylor convex Risk price 0.0111 0.4571 0.0242 0.9807
MILP L1 Intercept 0.8223 0.5160 1.5937 0.1112
MILP L1 Risk price -0.1216 0.5089 -0.2390 0.8112
MIQP L2 Intercept 0.7478 0.4674 1.6000 0.1098
MIQP L2 Risk price 0.0116 0.4571 0.0254 0.9797
Nonlinear L1 Intercept 0.8290 0.5159 1.6070 0.1083
Nonlinear L1 Risk price -0.1284 0.5088 -0.2523 0.8009
Nonlinear L2 Intercept 0.7483 0.4674 1.6012 0.1096
Nonlinear L2 Risk price 0.0110 0.4571 0.0242 0.9807
Factor Intercept 0.7487 0.4674 1.6020 0.1094
Factor Risk price 0.0107 0.4571 0.0233 0.9814
Factor iter Intercept 0.7487 0.4674 1.6019 0.1094
Factor iter Risk price 0.0107 0.4571 0.0234 0.9814
LP L1 Intercept 0.8252 0.5262 1.5683 0.1170
LP L1 Risk premium -0.1284 0.5184 -0.2477 0.8044
FM Intercept 0.7487 0.5060 1.480 0.2131
FM Risk price 0.0107 0.4948 0.022 0.9838
OLS Intercept 0.7487 0.4422 1.69 0.0918
OLS Risk price 0.0107 0.4434 0.02 0.9808
FM GLS Intercept 1.3615 0.4937 2.758 0.0063
FM GLS Risk price -0.6636 0.4945 -1.342 0.1809
SUR Intercept 1.3782 0.4997 2.760 0.0063
SUR Risk price -0.6790 0.5009 -1.360 0.1766
GMM Intercept 1.3962 0.5036 2.580 0.0061
GMM Risk price -0.6973 0.5067 -1.380 0.1700
1 In all the variants we use the design matrix (dm) method for the inference estimation; see

Appendix B

Table 2.12: One-Factor Risk Price Estimates, Centred Factor

error; however, the slope coefficients λf are also not significant, suggesting that the price of risk
is small or uncertain. As a result, the product λf β̂i, which determines the magnitude of expected
returns across portfolios, is negligible.

For the centred factor f̃ (also shown as cent.), which sample average is zero (i.e., demeaned),
the following equivalence identity holds:

λf̃ = λf + f̄ (2.78)
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In Appendix L, we show the GMM equivalence of raw and demeaned factors.

In the example below, the risk price λf̃ , in the second last column of Table 2.13 is derived applying
the conversion formula to the Taylor prod estimate: λf̃ = λf + f̄ = −0.656 + 0.667 = 0.011,
where λf is the risk price estimated using the raw factor; λf̃ is the derived equivalent risk price
estimated with a demeaned factor; f̄ is the time-series mean of the factor (e.g., 0.6671).

The adjusted test statistic under the centred normalization is computed as:

tλf̃
= tλf

·
λf̃

λf
= −1.435 · 0.011

−0.656
≈ 0.024

Then the two-sided p-value is:

pλf̃
= 2

(
1− Tν

(
|tλf̃
|
))
≈ 0.9807 (2.79)

where Tν(·) denotes the CDF of the Student’s t-distribution with ν degrees of freedom (refer to
Appendix B), and |tλf̃

| is the absolute value of the adjusted statistic under the centred paramet-
risation.

For the two steps regression (Fama-MacBeth) centring the factor f (i.e., subtracting its sample
mean so that E[f̃ ] = 0) does not affect the estimated factor loadings β̂i in the first-step (time-
series regressions), but it shifts the dependent variable in the second-step (cross-sectional re-
gression). This removes the influence of the factor mean from the returns and clarifies the
interpretation of the risk price λf as capturing compensation for zero-mean variation in factor
exposure.

In contrast, when using the uncentred (raw) factor, the intercept λ0 partially absorbs the effect of
the factor mean, that can obscure the interpretation of λf and the contribution of factor exposure
to expected returns.

However, the true economic value of the risk price is associated with the raw (uncentred) factor,
as shown in the simulation results.

For the FM method, the average return in the second step are demeaned using the betas of the
first step multiplied by the factor mean. In short, for FM OLS, the raw factor regression in the
second step corresponds to demeaned factor regression of the moments method. In fact, in order
to produce the FM raw equivalent we have to add the factor mean on the right-hand side, i.e.,
demean the average returns. In both the centred and raw risk price estimates tables, we use no
rolling in the second step.
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Method Parameter Estimate Std. Error1 t-Statistic p-value λf̃ p-valuef̃

Taylor product Intercept 0.7483 0.4674 1.6011 0.1096 – –
Taylor product Risk price -0.6561 0.4571 -1.4354 0.1514 0.0111 0.9807
Taylor convex Intercept 0.7483 0.4674 1.6011 0.1096 – –
Taylor convex Risk price -0.6561 0.4571 -1.4354 0.1514 0.0111 0.9807
MILP L1 Intercept 0.8272 0.5158 1.6036 0.1090 – –
MILP L1 Risk price -0.7937 0.5088 -1.5598 0.1190 -0.1265 0.8036
MIQP L2 Intercept 0.7468 0.4673 1.5980 0.1103 – –
MIQP L2 Risk price -0.6546 0.4570 -1.4323 0.1523 0.0125 0.9781
Nonlinear L1 Intercept 0.8290 0.5159 1.6070 0.1083 – –
Nonlinear L1 Risk price -0.7955 0.5088 -1.5634 0.1182 -0.1284 0.8009
Nonlinear L2 Intercept 0.7483 0.4674 1.6011 0.1096 – –
Nonlinear L2 Risk price -0.6561 0.4571 -1.4354 0.1514 0.0111 0.9807
Factor Intercept 0.7487 0.4674 1.6020 0.1094 – –
Factor Risk price -0.6565 0.4571 -1.4363 0.1511 0.0107 0.9814
Factor iter Intercept 0.7487 0.4674 1.6019 0.1094 – –
Factor iter Risk price -0.6564 0.4571 -1.4362 0.1512 0.0107 0.9814
LP L1 Intercept 0.8252 0.5262 1.5683 0.1170 – –
LP L1 Risk premium -0.7956 0.5184 -1.5345 0.1251 -0.1284 0.8044
FM Intercept 0.7487 0.2837 2.6396 0.0088 0.0088
FM Risk price -0.6565 0.2774 -2.3665 0.0187 0.0106 0.9692
OLS Intercept 0.7483 0.4420 1.690 0.0919 0.0918
OLS Risk price -0.6561 0.4432 -1.480 0.1402 0.0106 0.9808
FM GLS Intercept 1.3615 0.4937 2.758 0.0063 0.0063
FM GLS Risk price -1.3307 0.4945 -2.691 0.0076 -0.6636 0.1820
SUR Intercept 1.3783 0.4997 2.760 0.0063 0.0063
SUR Risk price -1.3462 0.5009 -2.690 0.0077 -0.6791 0.1761
GMM Intercept 1.3962 0.5051 2.760 0.0061 0.0061
GMM Risk price -1.3644 0.5067 -2.690 0.0076 -0.6973 0.1705
1 In all the variants, we use the design matrix for the inference estimation; see Appendix B

Table 2.13: One-Factor Risk Price Estimates, Raw Factor

When using raw factors, the estimates of λf are negative for most methods, but remain statist-
ically insignificant (large standard errors with high p-values). A negative λf suggests that higher
exposure to the factor would be associated with lower expected returns, which is counter intuitive
in typical risk-return frameworks where risk price are expected to be positive. After centring the
factor, the estimates of λf shift close to zero across all approaches, reflecting that the cent-
ring process removes the influence of the factor mean and clarifies the interpretation of the risk
price.

The results are consistent across the different convex approximation methods, which suggests
that the different linear approximation techniques all provide a valid estimation of the paramet-
ers.
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The LP L1, MILP L1 and Nonlinear L1 methods lead to different estimates than the other
approaches, both for the intercept λ0 and the risk price λf . However, their estimates are consistent
within the L1 methods: λ0 ≈ 0.829 and λf ≈ −0.795. In the earlier simulation, we have also
shown how the L1-norm risk price estimate will show lower bias and variance than the L2 one,
being more robust to outliers.

Risk Premium Estimation via Classical Methods

In this section, we estimate the cross-sectional asset pricing model using Fama-MacBeth (FM),
NSUR and GMM approaches. We use SAS proprietary software PROC MODEL to implement the
OLS, SUR, and GMM methods, and custom Python code for the Fama-MacBeth procedure
with both OLS and GLS estimators. We consider a one-factor asset pricing model, a system of
nonlinear equations, as defined in equation 2.10.

We show the different regression results in Table 2.12 for the demeaned factor and in Table 2.13
for the raw factor: the classic methods can be found below the double horizontal lines.

The GLS approach finds a statistically significant intercept, suggesting potential mispricing or
omitted factors. However, the estimated risk price on the EU market factor is not statistically
significant under either method. OLS and GLS yield substantially different estimates for both
parameters, highlighting the importance of accounting for cross-sectional error correlation in asset
pricing tests. The SAS GMM and SUR estimators account for the cross-sectional covariance of
residuals across portfolios through the contemporaneous weighting matrix Σ−1. In addition, time-
series heteroskedasticity and autocorrelation in the stacked moment conditions are addressed using
the Newey-West Heteroskedasticity and Autocorrelation Consistent (HAC) variance estimator.
Therefore in the FM GLS we implement the same estimator in the second step cross-sectional
regression: the GLS also takes into account the autocorrelation as shown below.

For the cross-sectional regression step of Fama-MacBeth, we already defined:

- R̄: vector of average returns (N × 1).

- B: matrix of estimated betas with intercept column (N × 2).

- Σ: covariance matrix of residuals from the first-step time-series regressions (N ×N).

The GLS estimator of the risk prices is:

θ̂GLS =
(
B⊤Σ−1B

)−1B⊤Σ−1 R̄,
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where θ̂GLS =
[
λ̂0 λ̂f

]⊤. To account for autocorrelation, we define the time-t moment vec-
tor:

gt = B⊤ Σ−1 εt, ∀t

with components:

gt,1 =
N∑
i=1

N∑
j=1

(
Σ−1

)
ij
εj,t, gt,2 =

N∑
i=1

N∑
j=1

βi

(
Σ−1

)
ij
εj,t,

and where
εt =

(
ε1,t, ε2,t, . . . , εN,t

)⊤
are the time-series residuals defined in equation (2.1).

The long-run covariance matrix of these moments is estimated by:

Ω̂HAC = Γ0 +
H∑

h=1

k(h)
(
Γh + Γ⊤

h

)
,

with:

Γ0 =
1

T

T∑
t=1

gt g⊤
t , Γh =

1

T

T∑
t=1+h

gt g⊤
t−h,

and k(h) is a kernel weighting function. In this work we use the Bartlett kernel:

k(h) = 1− h

H + 1
, for h = 0, . . . , H.

with lag order H = 4:

k(0) = 1, k(1) = 1− 1

5
= 0.8, , k(2) = 0.6, k(3) = 0.4, k(4) = 0.2.

Thus, the estimator incorporates the instantaneous cross-sectional covariance, Γ0, and the auto-
covariances up to lag H. The instantaneous cross-sectional covariance corresponds to the
heteroscedasticity-robust covariance estimator, White (1980)

The HAC variance-covariance matrix of θ̂GLS is:

V̂ar
(
θ̂GLS

)
=

1

T

(
B⊤Σ−1B

)−1
Ω̂HAC

(
B⊤Σ−1B

)−1
. (2.80)

Standard errors are computed as the square roots of the diagonal entries of this matrix: auto-
correlation of the residuals affects only the estimated standard errors, the GLS estimator itself
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remains unchanged.

Although Fama-MacBeth (OLS) estimation minimizes the sum of squared residuals (SSR) inde-
pendently for each portfolio, it ignores cross-sectional correlations in the residuals. In contrast,
its GLS version, as well as SAS GMM (or other GLS-based methods like NSUR), solve a system
of equations by minimizing a quadratic form of moment conditions, which accounts for cross-
equation residual covariance. As a result, GLS estimation does not directly minimize SSR, but
instead seeks efficiency and pricing consistency (same λf across portfolios) by balancing fit across
all equations. This explains why OLS may yield a lower total SSR, while GMM and GLS provide
more reliable inference results.

In GMM, SUR, and even OLS SAS, which is estimated via moments conditions, when the factor
f is centred (demeaned), equivalent to zero mean, the equivalence between centred and raw
factors holds (equation 2.78). This is because the GMM moment conditions explicitly account
for the factor mean f̄ , so centring f and setting zero mean, shifts the estimate of the risk price
λf by the factor mean f̄ . The two-sided p-value given a test statistic is computed as before using
the formula: tλf̃

= tλf
· λf̃

λf
.

We have already seen that when using an uncentred factor, the intercept picks up part of the
variation in returns that would otherwise be attributed to the slope, see Cochrane (2005). In
contrast, centring the factor removes this overlap, forcing the slope to explain only the cross-
sectional spread in returns. If the data are such that high-β portfolios do not earn high average
returns (maybe even reverse), then the slope will be negative, even though the factor mean is
positive. In this case, as we observe from our data, the raw (uncentred) estimate of the risk price
is more significant (lower p-value), because its value is larger in magnitude, while the standard
error does not change. In fact, adding a positive mean to a negative factor will decrease the
magnitude of the factor, decreasing the statistical significance. However, in the general case, if
returns increase with beta, and the factor mean is positive, then centring the factor improves the
estimation and increases the statistical significance of the risk price.

For what concerns the equivalence identity, equation 2.78, we have already noticed that using
the demeaned return R̃i = R̄i−βif̄ , i.e., demeaning the left-hand side, in the second step of the
FM regression is equivalent to using the raw data with OLS SAS. This is the reason we reported
FM demeaned average return in the raw factor table.
The risk price adjusted for common drift implies the best economic interpretation, for this reason
we do not report results without drift. The true risk price (adjusted for common drift) calculated
using the centred factor and the intercept in the regression leads to a high p-value, while the
raw factor regression without intercept (total average return per unit β, no drift split) gives a
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significant estimate, but the true risk price is hidden.

Solver Performance

For comparing performance, we tested each method with the centred and raw factor. As expected,
raw specification runs were consistently slower: when using the raw factor, the intercept and
factor are more collinear, which worsens conditioning and increases iterations. The computational
performance and accuracy are reported, sorted by Sum of Square Residuals (SSR) metric, in
Table 2.14.

Method Package Solver CPU Time Iter Avg Time SSR RMSE

Nonlinear L2 cent. scipy SLSQP 0.0218 17 0.0013 3887.82 1.6431
Nonlinear L2 raw scipy SLSQP 0.0547 16 0.0034 3887.82 1.6431
Factor cent. cvxpy OSQP 0.0297 75 0.0004 3887.82 1.6431
Factor raw cvxpy OSQP 0.2601 75 0.0035 3887.82 1.6431
Taylor product cent. cvxpy OSQP 0.0576 8 0.0072 3887.82 1.6431
Taylor product raw cvxpy OSQP 0.3873 8 0.0484 3887.82 1.6431
Taylor-convex cent. cvxpy ECOS 0.0863 5 0.0173 3887.82 1.6431
Taylor-convex raw cvxpy ECOS 1.1918 8 0.1490 3887.82 1.6431
MIQP L2 cent. gurobipy GRB 1.2165 1 1.2165 3887.83 1.6431
MIQP L2 raw gurobipy GRB 1.0102 1 1.0102 3887.83 1.6431
FM OLS raw numpy LU 0.0021 1 0.0021 3888.57 1.6433
FM OLS cent. numpy LU 0.0029 1 0.0029 3888.57 1.6433
LP L1 cent. gurobipy GRB 1.5421 1558 0.0010 3912.63 1.6484
LP L1 raw gurobipy GRB 1.5593 1579 0.0010 3912.63 1.6484
Nonlinear L1 cent. scipy SLSQP 0.0178 50 0.0004 3919.10 1.6497
Nonlinear L1 raw scipy SLSQP 0.1375 52 0.0026 3919.10 1.6497
MILP L1 cent. gurobipy GRB 3.7612 1 3.7612 3919.13 1.6497
MILP L1 raw gurobipy GRB 6.0705 1 6.0705 3919.09 1.6497

Table 2.14: Solver CPU Time and Accuracy

The python packages used are: cvxpy with OSQP (Operator Splitting Quadratic Program Solver);
gurobipy with GRB (Gurobi Optimizer) using the Dual Simplex algorithm for the LP method; scipy
with SLSQP (Sequential Least Squares Programming); numpy with LU (Lower Upper decompos-
ition LAPACK’s dgesv direct linear equation solving).

CPU time. The two-step Fama-MacBeth formulation that use LU decomposition is the fastest
method; however its estimation is affected by the errors-in-variables problem, and the accuracy is
not aligned with the other methods, reporting higher SSR and RMSE. The convex formulations
based on CVXPY quadratic programming outperforms MILP approaches. On average, the Factor
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Product requires only 0.03 seconds, that is half of the time compared to 0.06 seconds required
for Taylor-product. Nonlinear optimisation problems are traditionally considered more compu-
tationally intensive; however, it seems that for this problem class, the MILP solvers introduce
significant CPU time overhead, despite the convexity of the underlying objective (where any local
minimum is also a global minimum). It is worth noting that the Product factor and Taylor con-
vex approximation, which are novel approximation methods for risk premium estimation, result
in being as fast as the Nonlinear L2 and the Taylor approximation, respectively. While the MILP
L1 Linear Program is the slowest method, the fully linear programming (LP L1) approach via
McCormick relaxation delivers performance comparable to nonlinear methods. However, whereas
the nonlinear convex methods rely on smooth L2 objectives that can be sensitive to heavy tails,
LP and MILP piecewise linear discretizations of the product are exact at the chosen breakpoints
(given tightened bounds and chosen grid tolerances), and in general more accurate.

Accuracy. Beyond the Fama-MacBeth results, which are impacted by the two-step approach,
in general, we observe that the sum of squared residuals (SSR) and root mean squared error
(RMSE) are virtually identical across all approximation methods. Larger deviations are observed
for the L1 methods, which produce higher SSR and RMSE (3919.1 and 1.649).

The results bring evidence that smooth quadratic and convex methods implemented with CVXPY
and OSQP provide the right balance of speed and accuracy for this problem.

However, for the L1-norm methods, we should compare the results using the L1 metric, which is
the sum of the absolute errors (SAE):

SAE =
N∑
i=1

T∑
t=1

∣∣∣Ri,t − R̂i,t

∣∣∣ (2.81)

The results are reported in Table 2.15.

We have already noted that from the simulations (Figure 2.1), the L1 risk price estimate is closer
to the true value estimates (lower bias and variance) than the L2 one. From Table 2.15, we see
that in terms of the SAE metric, L1 methods outperform L2 methods. The result is as expected,
since in the presence of outliers,when the standard assumptions of normality and homoscedasticity
do not hold, L1 provides a more robust alternative. However, while the sum of squared residuals
(SSR) naturally favours L2-norm methods and the sum of absolute errors (SAE) favours L1-norm
methods, we find that in the presence of heavy tails, L1-norm approaches yield lower bias and
variance in the full set of parameters estimation (see Figure 2.1). Especially, L1-norm methods
appear more appropriate for risk price estimation under heavy-tailed distributions, as observed
in the case of the EU market factor (see Table 2.1) and its associated residual distribution (see
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Method Parameter Estimate Std. Error t-Stat p-value SAE

LP L1 Intercept 0.8252 0.5262 1.57 0.1170 1734.98
LP L1 Risk premium -0.7956 0.5184 -1.53 0.1251 1734.98
MILP L1 Intercept 0.8272 0.5158 1.60 0.1090 1734.99
MILP L1 Risk price -0.7937 0.5088 -1.56 0.1190 1734.99
Nonlinear L1 Intercept 0.8290 0.5159 1.61 0.1083 1734.99
Nonlinear L1 Risk price -0.7955 0.5088 -1.56 0.1182 1734.99
MIQP L2 Intercept 0.7484 0.5035 1.49 0.1372 1740.47
MIQP L2 Risk price -0.6562 0.4921 -1.33 0.1823 1740.47
Nonlinear L2 Intercept 0.7487 0.4674 1.60 0.1093 1740.41
Nonlinear L2 Risk price -0.6561 0.4571 -1.44 0.1512 1740.41

Table 2.15: L1 Metric Raw Estimation Results

Table 2.2).

Results Comparison

The risk price estimates obtained through the linear approximation methods are consistent with
the estimates computed with classic approaches, such as Fama-MacBeth, SUR, and GMM. In both
the centred and raw factor regressions, λf remains statistically insignificant across all methods.
The intercept estimates have similar magnitudes and statistical significance among the linear and
classic methods, under the homoscedasticity assumption (OLS), that confirms the validity of the
linear approximation approach as an alternative estimation technique. It is worth noting that,
the linear approximation method represents a novel contribution to the literature, capable of
handling nonlinearities through Taylor or piecewise approximations while preserving comparability
with traditional econometric estimators. Especially the Taylor Convex and the Product Factor
approximation methods have the merit of matching the accuracy of other approaches while
offering superior CPU time performance.

2.6.1.4 Integration and Segmentation

We now run the integration and segmentation analysis following the approaches of Jorion and
Schwartz (1986) and Brooks and Iorio (2009).

Here, we use six EU portfolios, grouped by size and book-to-market, to estimate a system of non-
linear equations that regress portfolio returns on market factors from North America, Asia-Pacific,
and Japan25. For verifying the results, different techniques have been used (Fama-MacBeth,
25 In the article Penco and Lucas (2024), given the importance of the US economy in the international financial
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Nonlinear Seemingly Unrelated Regression and the General Method of Moments26. As previously
explained, we proceed as follows:
1. Model construction. We build two competing models for asset pricing: the integrated and
the segmented model. This requires the orthogonalization of the local factors: orthogonal pro-
jections are taken when building the integrated model because the local factors can be some
non-significant proportion of the international factors.
2. Estimation via NSUR. We use the Nonlinear Seemingly Unrelated Regression NSUR, Zellner
(1962), to estimate the parameters of the equations defined in the first step: if the errors are
normally distributed the NSUR estimator is also a maximum likelihood estimator .
3. Fama–MacBeth procedure. We apply the Fama-MacBeth method to obtain cross-sectional
estimates of the model parameters.
4. Generalized Method of Moments, Finally, we estimate the parameters using the Generalized
Method of Moments GMM, Richardson and MacKinlay (1991), to verify the integration or seg-
mentation of the markets, relaxing the assumption of normalization of the assets returns.

The values of estimates coincide among different methods (FM, SUR and GMM). This seems
consistent with other literature results, see: Shi and Li (2019), Sarisoy et al. (2024), Anatolyev
and Mikusheva (2022). The significance can be improved enlarging the number of portfolios and
the range of beta, the six portfolio used are all highly correlated with the market factors.

The integration results are reported in Table 2.16, drawing from the methodology discussed in
the article Brooks and Iorio (2009), a structured interpretation of the EU portfolio integration
shows:

- λUS = −1.955 is negative and statistically significant at the 1% level (p = 0.0011),
indicating that global risk is priced in the cross-section of returns.

- λEU = 0.733 is not statistically significant (p = 0.1539), suggesting that EU orthogonal
specific risk is not priced.

- All portfolios show strong and statistically significant exposure to both factors: for the
global US factor, the estimated betas range from 0.91 to 1.20, all with p-values < 0.0001;
for the orthogonal EU factor, the estimated betas range from 0.78 to 1.25, all with p-values
< 0.0001.

market, we also perform the nonlinear regression of European, Asian and Japanese of six size and book-to-
market portfolios against the North America market factors. Finally, we also use the European economy as
global market, and we run the regression of North America, Asian and Japanese of six size and book-to-market
portfolios against the European market factors. These results are not reported here for brevity.

26 In the article we used Maximum Likelihood Estimation (MLE) instead of Fama-MacBeth. Reviewing the results,
we found some typos reported in the article that we corrected.
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Area Method Parameter Estimate Pr > |t| Signif. Comments Results
US_EU SUR λUS -1.955 0.001 *** Statistically significant and economically large; con-

sistent with integration
TI

US_EU SUR λEU 0.733 0.154 Estimate is not statistically significant; no evidence
of segmentation

US_EU SUR, JS λEU 0.098 <.001 *** Statistically significant and close to zero; consistent
with total integration

TI

US_EU GLS λUS -1.85 0.001 *** Consistent with SUR; significant global factor sup-
ports integration

TI

US_EU GLS λEU 0.623 0.1911 Estimate is not statistically significant; no evidence
of segmentation

US_EU GMM λUS -2.102 0.002 *** Consistent with SUR; significant global factor sup-
ports integration

TI

US_EU GMM λEU 0.805 0.121 Estimate not close to zero, but not statistically sig-
nificant; integration not rejected

AS_EU SUR λAS 0.303 0.785 Estimate not statistically significant; no evidence of
integration

AS_EU SUR λEU -1.200 0.049 ** Statistically significant and economically large; integ-
ration rejected

IR

AS_EU SUR, JS λEU -0.201 0.028 ** Statistically significant, but not close to zero; sug-
gests segmented pricing

AS_EU GLS λAS 0.07 0.941 Estimate is not statistically significant; no evidence
of integration

AS_EU GLS λEU -1.071 0.046 ** Statistically significant and economically large; in-
consistent with integration

IR

AS_EU GMM λAS 0.229 0.832 Estimate not statistically significant; no evidence of
integration

AS_EU GMM λEU -1.190 0.042 ** Statistically significant and economically large; in-
consistent with integration

IR

JP_EU SUR λJP 1.935 0.367 Estimate not statistically significant; no evidence of
integration

JP_EU SUR λEU -3.025 0.105 Estimate is not statistically significant; no evidence
of segmentation

JP_EU SUR, JS λEU -0.176 0.028 ** Statistically significant, but not close to zero; sug-
gests segmented pricing

JP_EU GLS λJP 0.127 0.923 Estimate not significant; no evidence of integration
JP_EU GLS λEU -1.237 0.283 Estimate not statistically significant; segmentation

not supported
JP_EU GMM λJP 0.841 0.580 Estimate not statistically significant; no evidence of

integration
JP_EU GMM λEU -2.093 0.118 Estimate not close to zero, but not significant; in-

conclusive regarding integration

Table 2.16: Equities Integration Test Results

- We use 2σ and 3σ confidence intervals, marking with ∗∗ for p-values below 0.05, with ∗∗∗

for p-values below 0.003, and with ∗ for p-values below 0.1.

This result supports the idea that, despite the strong exposure to both global and local risks, only
the global risk is rewarded in expected returns, while local EU-specific shocks do not command
a premium. This pattern is consistent with full financial integration.

The segmentation results are reported in Table 2.17. The interpretation is as follows:
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Area Method Parameter Estimate Pr > |t| Signif. Comments Results
US_EU SUR δEU -1.306 0.014 ** Significant and different from zero, which

shows segmentation
US_EU SUR δUS -0.990 0.036 ** Significant, and different from zero to de-

termine partial segmentation
PS

US_EU SUR, JS δUS -2.538 0.002 *** However significant, it is not close to zero
to determine segmentation

US_EU GLS δEU -1.298 0.009 ** Consistent with SUR; significant local factor
supports segmentation

US_EU GLS δUS -0.890 0.044 ** Consistent with SUR, there is no total seg-
mentation

PS

US_EU GMM δEU -1.388 0.015 ** Consistent with SUR; significant local factor
supports segmentation

US_EU GMM δUS -1.078 0.028 ** Consistent with SUR, there is no total seg-
mentation

PS

AS_EU SUR δEU -0.951 0.112 Estimate not statistically significant; no
evidence of segmentation

AS_EU SUR δAS 1.180 0.132 Estimate not statistically significant; no
evidence of segmentation rejection

AS_EU SUR, JS δAS 4.772 0.026 ** However significant, it is not close to zero
to determine segmentation

AS_EU GLS δEU -1.012 0.056 Consistent with SUR
AS_EU GLS δAS 1.005 0.144 Consistent with SUR
AS_EU GMM δEU -1.00 0.102 Consistent with SUR
AS_EU GMM δAS 1.15 0.125 Consistent with SUR
JP_EU SUR δEU -1.397 0.039 ** Significant and different from zero, which

shows segmentation
TS

JP_EU SUR δJP 2.706 0.208 Not Significant, which shows segmentation
JP_EU SUR, JS δJP 35.901 0.658 It is not close to zero, nor it is significant to

determine segmentation
JP_EU GLS δEU -1.345 0.007 ** Significant and different from zero, which

shows segmentation
TS

JP_EU GLS δJP 0.608 0.644 Not Significant, which shows segmentation
JP_EU GMM δEU -1.386 0.014 ** Significant and different from zero, which

shows segmentation
TS

JP_EU GMM δJP 1.60 0.291 Not Significant, which shows segmentation

Table 2.17: Equities Segmentation Test Results

- λEU (local EU market risk price) is strongly negative and highly significant (p < 0.001),
implying that the local EU factor is priced in the cross-section of returns. This supports
partial segmentation, as the EU factor drives expected returns.

- λUS (orthogonal component of US and EU factors is also negative and significant at the 1%
level, suggesting that this component—though orthogonal to the EU factor—also carries
pricing information. This points to a non-trivial influence from a global dimension (i.e.,
integrated information beyond the local EU factor), though not necessarily full integration.

- βi,US (exposure to global orthogonal factor, shown in the Apendix) are small and mostly
insignificant, meaning EU portfolios have little sensitivity to the orthogonal global factor.
This weakens the case for full integration—if the global factor were priced and portfolios
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were exposed to it, we would expect significant βi,US estimates.

- βi,EU (exposure to local EU factor) are statistically significant across all portfolios, consist-
ent with segmentation, where local risk is a primary driver of expected returns.

Our results show that partial integration and partial segmentation can be reported simultaneously
as our model is not able to provide a cut off value for partial integration nor for partial segment-
ation.
From the integration model, total integration is confirmed: the global US factor is priced while
the local EU factor is not significantly different from zero. From the segmentation model, the
significance of δUS (orthogonal US-EU) suggests that purely local pricing is not sufficient—some
influence from globalized markets exists. The result falls somewhere between full integration
and partial segmentation, which is most consistent with a hybrid scenario, where the EU market
prices its own risk (local factor), with some influence from global dynamics, but not enough
exposure to consider the markets fully integrated. This aligns well with Brooks et al.’s interpreta-
tion framework, where significant domestic premia and insignificant or weak international factor
exposures point to segmentation, while shared significant premia with high exposure would imply
integration.

When we consider as global market Asia Pacific, the integration is rejected, while there is no
significant result that can be drawn for Japan as a global integrated market. About the segment-
ation, there is not significant result for the Asian Pacific market while the Japan global market is
fully segmented in the period considered.

2.6.1.5 Rolling Regression

We have extended the data set period, and have now run a 20 years window rolling regression (240
data points), starting from January 1998 to December 2022 (25 years period). In order to achieve
a sufficient statistical significance we need a time series of at least 240 points, therefore we have
only 61 data points which corresponds to 5 years rolling by month (January 1998 - December
2017, February 1998 - January 2018, ..., January 2002 - December 2022). The rolling windows
are independent although partially overlapping due to the month rolling, we aim to monitor the
trend every 12 months: 1999-2019, 2000-2020, 2001-2021, 2002-2022. We use the start date of
the 240 points time series in the plots. The results are reported below, Figures 2.3 - 2.6. The
left axis shows the risk price and the right axis shows the corresponding p-values.

Tables 2.18 and 2.19 contain the test hypotheses.

The factor is significantly priced (p < 0.05), with an economically meaningful estimate, indicating
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H Integration
0 λUS ̸= 0 and λEU⊥US = 0

(EU portfolios are fully integrated with the global market;
only global risk is priced)

H Integration
1 λUS ̸= 0 and λEU⊥US ̸= 0

(EU portfolios are not fully integrated; EU-specific risk is
also priced)

Table 2.18: Equities Integration Hypotheses

HSegmentation
0 λEU ̸= 0 and λUS⊥EU = 0

(EU portfolios are fully segmented; only local risk is priced)
HSegmentation

1 λUS ̸= 0 and λUS⊥EU ̸= 0
(EU portfolios are not fully segmented; orthogonal global
risk is also priced)

Table 2.19: Equities Segmentation Hypotheses

λ ̸= 0. When the p-value is not significant, the factor is not significantly priced; we fail to reject
the null hypothesis that λ = 0.

From the integration rolling, Figure 2.3, the global US factor is always different from zero and
significant at 1% confidence level, which shows full integration. The orthogonal EU US com-
ponent, Figure 2.4, is different from zero and significant in the first half of the 5 year period
considered till 2001 circa (1998-2021), indicating partial integration, and then it is not significant
at the 5% level (2001-2022) with a couple of exceptions. It seems that EU and US market are
partially integrated in the first 3 years roll (1998-2021) and then switch to full integration in the
next two years (2001-2022).

From the segmentation rolling, the local EU factor is always different from zero and significant, see
Figure 2.5. The orthogonal US EU component, Figure 2.6, is different from zero and significant at
the 5% confidence level in the second half of the period considered from 2001 circa (2001-2022),
while in the first half it is not significant at 5% level (1998-2021) with few exceptions. The EU
and US market looks to be fully segmented in the first three years (1998-2021) and then switch
to partial segmentation in the last two year roll (2001-2022).

The overlapping rolling windows, reflects a smoothed dynamics rather than discrete shifts in the
estimated risk prices, that provide evidence of regime classification.

The integration test suggests that EU portfolios are fully integrated with the global market from
2001 to 2022, as only the US factor is significantly priced. However, the segmentation test
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Figure 2.3: Equities Integration Rolling Regression Results from 1998 to 2022, Global factor
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Figure 2.4: Equities Integration Rolling Regression Results from 1998 to 2022, Local factor
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Figure 2.5: Equities Segmentation Rolling Regression Results from 1998 to 2022, Local factor
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Figure 2.6: Equities Segmentation Rolling Regression Results from 1998 to 2022, Global factor
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over the same period shows that EU portfolios price both local EU and orthogonalised US risk.
However, from 1998 to 2021, the segmentation test suggest that the markets are fully segmented,
while the integration test suggest that the global factor is also priced in the same period.

This inconsistency indicates either model instability or overlapping explanatory power between
the orthogonalised and local components. Therefore, the results should be interpreted with
precaution: there is some evidence of stronger integration in the second half, starting from 2001,
and more segmentation in the first half starting from 1998. This transition from segmentation to
integration beginning around 2001, with estimates stabilizing by 2003 coincides with post-dot-com
recovery and Euro adoption in EU.

2.6.2 Commodities Indices

Similar to the global stock market integration study, this section aims to estimate the risk premium
and analyse the degree of integration between Oil-related exchange-traded funds (ETFs) and
global commodity markets, namely natural gas (GAS), aluminum (AL), and soybean (SOY). We
use the OIL commodity as the local market. All returns are computed as excess percentage
returns, we use the US Coupon bond risk-free rate as the benchmark.

2.6.2.1 Data Processing

The Oil ETFs (N = 6) analysed include:

- United States Oil Fund (USO): this ETF tracks the Oil commodity price as it triggers daily
changes in WTI crude oil spot prices via next-month futures, it is designed for short-term
crude oil hedging.

- Invesco DB Oil Fund (DBO): this ETF protects from crude oil exposure via an optimized
futures roll strategy to minimize contango loss, maximise backwardation gain. In contango,
storage costs, insurance, or financing drive futures prices up, the futures price Ft is above
the spot price St: Ft > St . When a next month rolling strategy is in place (like for USO),
the investor sells low and buys high, a loss is triggered. DBO follows an optimised rolling
strategy picking WTI contracts along the WTI futures curve with the least contango or
most backwardation.

- iShares US Oil & Gas Exploration & Production ETF (IEO): invests in US oil and gas
exploration and production companies.
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- iShares Global Energy ETF (IXC): includes large-capitalisation (cap) US energy firms and
international companies.

- iShares U.S. Energy ETF (IYE): includes large- and mid-cap US energy sector companies,
including oil producers and energy services.

- Energy Select Sector SPDR Fund (XLE): invests in S&P 500 energy-sector companies.

The reference commodity factors are:

- Crude Oil (OIL).

- Natural Gas (GAS).

- Aluminum (AL).

- Soybean (SOY).

The analysis covers T = 180 monthly observations from January 2007 to December 2022. The
ETF price data are downloaded from Yahoo Finance (2025) while the commodity prices are
extracted from the International Monetary Fund, IMF (2025), historical price database.

2.6.2.2 Data Analysis

Cross-Correlation and Multicollinearity

In the case of global market economies, there was strong multicollinearity among the factors,
and we had to use the orthogonal components in the integrated model. In Table 2.20, we report
the Variance Inflation Factor (VIF) for all two-factor combinations which quantifies how much a
factor’s coefficient variance is inflated due to collinearity, and it is computed as:

VIFl =
1

1−R2
l

for l = 1, . . . , ℓ̄

where R2
l is the R2 from regressing one-factor on the other factor in the integrated model and

ℓ̄ = 4.

- VIF < 4: satisfactory (low multicollinearity).

- VIF > 4: needs transformation (medium to high collinearity).

- VIF > 10: problematic (very high collinearity).
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EU US AS JP
EU - 4.300970 4.094873 1.832412
US 4.300970 - 2.914434 1.678825
AS 4.094873 2.914434 - 1.748523
JP 1.832412 1.678825 1.748523 -

Table 2.20: VIF Global Markets

The global market factors exhibit moderate multicollinearity, particularly between European and
US market excess returns. This justifies the use of orthogonalised factors in the integration
models.

In Table 2.21, we show the VIFs for the commodity factors.

OIL GAS AL SOY
OIL - 1.011982 1.294316 1.041972
GAS 1.011982 - 1.039341 1.043415
AL 1.294316 1.039341 - 1.043357
SOY 1.041972 1.043415 1.043357 -

Table 2.21: VIF Commodity Indices

All VIFs values are near 1, confirming negligible collinearity for the commodity factors (OIL, GAS,
AL, SOY): the factors are independent and there is no real need for the orthogonalization.

Autocorrelation and Residual Diagnostics

In Figure 2.7, we compare the residual variance across portfolios (Fama French, Equities vs
ETFs).

The commodity ETFs have much higher and dispersed residual variances, from 40 to 90, compared
to the Fama-French size and value portfolios, that are mostly clustered between 2 and 4.

As we will see later, in the one-factor regression, the large heteroscedasticity in the commodity
data makes the estimated covariance matrix ill-conditioned, so feasible GLS becomes unstable or
underperforms OLS, whereas it works well for the Equities data.

Figure 2.8 shows the residual autocorrelation for both time series: Fama French equities portfo-
lios and commodities ETFs. For Equities, AR(1) residual autocorrelation is very low (from 0.01
to 0.10), which shows no time dependence: residuals are effectively white noise. The residual
variance is low and fairly balanced across portfolios. OLS and GLS give similar results because the
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Figure 2.7: Residual Variance Across Portfolios, Equities vs ETFs
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Figure 2.8: AR(1) Residual Autocorrelation Across Portfolios, Equities vs ETFs

residual structure is close to spherical (independent residuals and heteroscedasticity not present).
For ETFs, AR(1) residual autocorrelation is strongly negative (from –0.25 to –0.30), which in-
dicates mean-reversion and oscillation over time. The residual variance is very high, showing
cross-sectional heteroskedasticy. OLS ignores both heteroscedasticity and correlation, resulting
in underestimated standard errors. The GLS model misspecifies the residual covariance struc-
ture if autocorrelation is ignored, leading to inflated standard errors. Heteroscedasticity- and
autocorrelation-consistent (HAC) adjustment is used to compensate for heteroscedasticity and
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autocorrelation in both OLS and GLS methods, but it does not change the estimated coeffi-
cients.

Finally, in Table 2.22, we show the ETFs cross-sectional correlation matrix of Residuals with the
Oil factor regression. In paragraph 2.6.1.2, we developed the cross-sectional correlation analysis
for the global economies market factor independently.

USO DBO IEO IXC IYE XLE
USO 1.000 0.855 0.470 0.547 0.487 0.493
DBO 0.855 1.000 0.646 0.682 0.643 0.646
IEO 0.470 0.646 1.000 0.923 0.965 0.965
IXC 0.547 0.682 0.923 1.000 0.969 0.971
IYE 0.487 0.643 0.965 0.969 1.000 0.997
XLE 0.493 0.646 0.965 0.971 0.997 1.000

Table 2.22: ETFs Cross-Sectional Correlation Matrix of Residuals with the Oil factor

From Table 2.22, we can see that the residuals are strongly correlated, especially among the ETFs
linked to the Oil firm prices: IEO, IXC, IYE, XLE. This represents a violation of OLS assumptions.
GLS performs better than OLS when residuals are heteroskedastic but not autocorrelated. For
commodity portfolios, the strong time-series dependence in residuals can lead OLS to misestimate
the covariance structure. This explains why OLS often reports smaller p-values: it ignores serial
correlation, whereas GLS explicitly account for it. For Equities, the covariance matrix is well-
behaved, which helps GLS to reweight without numerical instability. We will use GLS combined
with the HAC covariance estimator to address cross-sectional correlation, heteroscedasticity, and
autocorrelation in the residuals.

Factor Testing

Table 2.23 reports the Harvey–Liu test, Harvey and Liu (2021), for incremental factor significance.
The test compares pricing errors (intercepts of the cross-sectional regression) before/after adding
a factor.

For the pair Aluminium Oil the mean reduction in pricing errors is statistically significant, that
suggests the Aluminium factors adds explanatory power to the OIL ETFs. The median reduction
(robust evidence) is not significant however, indicating that the effect may not be across all
ETFs.
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Factor Pair Mean p (mean) Signif. Median p (median) Signif.

AL-OIL 0.0238 0.0450 ** 0.0451 0.1980
AL-OIL_AL_ort 0.0238 0.0540 0.0451 0.2000
GAS-OIL 0.0387 0.1990 0.0457 0.2470
GAS-OIL_GAS_ort 0.0387 0.1820 0.0457 0.2280
SOY-OIL 0.0813 0.1240 0.0878 0.2090
SOY-OIL_SOY_ort 0.0813 0.1250 0.0878 0.2020
OIL-AL 0.0085 0.0440 ** 0.0154 0.2000
OIL-AL_OIL_ort 0.0085 0.0370 ** 0.0154 0.1780
OIL-GAS -0.0084 0.8230 -0.0295 0.8630
OIL-GAS_OIL_ort -0.0084 0.8510 -0.0295 0.8940
OIL-SOY -0.0004 0.8310 -0.0014 0.9300
OIL-SOY_OIL_ort -0.0004 0.8520 -0.0014 0.9450

Table 2.23: Harvey–Liu Bootstrap Test for Factor Significance, Commodities

2.6.2.3 One-Factor Model

We refer to equation 2.7 and 2.8 for the Fama-MacBeth model and to equation 2.10 for the
nonlinear model. In this section, Ri,t is the excess percentage return of Oil ETF i at time t, ft is
the Oil factor excess percentage return at time t, f̃t = ft − E[f ] is the demeaned factor excess
percentage returns.

We estimate the cross-sectional asset pricing model using Fama-MacBeth (FM), SUR and GMM
approaches. In Table 2.24 and 2.25, we show the different regression results for the centred factor
and the raw factor, using the equivalence formula (equation 2.78) as we did for the Equities
regression: the Oil factor mean is 0.4451.

Method Parameter Estimate Std. Error t-Statistic p-value

FM Intercept 0.9242 0.8388 1.102 0.2706
FM Risk price -1.6276 1.3058 -1.246 0.2126
OLS Intercept 0.9242 0.5947 1.550 0.1220
OLS Risk price -1.6276 1.0927 -1.490 0.1381
GLS Intercept -0.1203 0.5216 -0.231 0.8179
GLS Risk price -0.6631 0.8416 -0.788 0.4318
SUR Intercept -0.0803 0.5291 -0.150 0.8795
SUR Risk price -0.7169 0.8479 -0.850 0.3990
GMM Intercept -0.1945 0.5436 -0.360 0.7210
GMM Risk price -0.4453 0.8890 -0.500 0.6170

Table 2.24: ETFs One-Factor Risk Price Estimates, Centred Factor
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The fit of the one-factor model is good: R2 = 0.837, adjusted R2
adj = 0.796, with a statistically

significant risk price for the OIL factor: λ̂OIL = −2.07, p-value = 0.11 for the centred factor with
the two steps Fama-MacBeth regression, as shown in the FM item of Table 2.25.

The Oil risk is negatively priced: ETFs with higher exposure to the OIL factor (higher βi) earn
lower expected returns. This suggests that investors value the factor for its insurance or hedging
benefits as compensation for the lower return.

Method Parameter Estimate Std. Error t-Statistic p-value λf̃ p-valuef̃

FM Intercept 0.9242 0.8388 1.102 0.2706 0.2706
FM Risk price -2.0721 1.3058 -1.587 0.1126 -1.6276 0.2126
OLS Intercept 0.9222 0.5947 1.550 0.1227 0.1227
OLS Risk price -2.0680 1.0926 -1.890 0.0600 -1.6234 0.1381
GLS Intercept -0.1203 0.5216 -0.231 0.8179 0.8179
GLS Risk price -1.1077 0.8416 -1.316 0.1898 -0.6631 0.4318
SUR Intercept -0.0804 0.5291 -0.150 0.8795 0.8795
SUR Risk price -1.1613 0.8478 -1.370 0.1725 -0.7167 0.3990
GMM Intercept -0.1945 0.5436 -0.360 0.7210 0.7210
GMM Risk price -0.8899 0.8890 -1.000 0.3182 -0.4453 0.6170

Table 2.25: ETFs One-Factor Risk Price Estimates, Raw Factor

We already noticed that the FM GLS significance is higher than the OLS one, which we have
already explained with the strong autocorrelation of the ETFs OIL residuals. OLS is com-
puted in SAS with PROC MODEL, which uses standard least squares for point estimates, but a
WLS/diagonal covariance for inferences, producing a lower standard error compared to a two-step
Fama–MacBeth OLS when there is substantial cross-equation heteroscedasticity/correlation.

2.6.2.4 Integration and Segmentation

In this section, we apply the CAPM integrated model, with the six ETFs, OIL as the local factor
and the other commodities as global factors. Below, we show the integrated model for the GAS
global factor and the OIL local factor. We use the orthogonal components, although we have
already shown that there is low collinearity between the local and the global factors.

Ri,t = λ0 + βGAS
i (RGAS,t + λGAS) + βOIL⊥GAS

i (ROIL⊥GAS,t + λOIL) + ηi,t, ∀i, t (2.82)

In order to prove the complete integration hypothesis, the domestic risk prices λOIL should be
equal to zero, while, for integration, the global factor λGAS should be different from zero.
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The segmented model is built in a similar way and we get the following general equation:

Ri,t = δ0 + ζOIL
i (ROIL,t + δOIL) + ζGAS⊥OIL

i (RGAS⊥OIL,t + δGAS) + νi,t, ∀i, t (2.83)

Area Method Parameter Estimate Pr > |t| Signif. Comments Results
AL_OIL FM OLS λAL 5.0244 0.2796 Estimate not statistically significant; no evidence of

integration
AL_OIL FM OLS λOIL -5.2168 0.1463 Estimate is not statistically significant; no evidence

of segmentation
GAS_OIL FM OLS λGAS -3.7277 0.5036 Estimate not statistically significant; no evidence of

integration
GAS_OIL FM OLS λOIL -1.3138 0.3757 Estimate is not statistically significant; no evidence

of segmentation
SOY_OIL FM OLS λSOY -1.4113 0.6730 Estimate not statistically significant; no evidence of

integration
SOY_OIL FM OLS λOIL -1.6383 0.1928 Estimate is not statistically significant; no evidence

of segmentation
AL_OIL FM HAC λAL 5.0244 0.1336 Estimate not statistically significant; no evidence of

integration
AL_OIL FM HAC λOIL -5.2168 0.0240 ** Estimate is statistically significant; integration rejec-

ted
IR

GAS_OIL FM HAC λGAS -3.7277 0.4822 Estimate not statistically significant; no evidence of
integration

GAS_OIL FM HAC λOIL -1.3138 0.4007 Estimate is not statistically significant; no evidence
of segmentation

SOY_OIL FM HAC λSOY -1.4113 0.6457 Estimate not statistically significant; no evidence of
integration

SOY_OIL FM HAC λOIL -1.6383 0.2038 Estimate is not statistically significant; no evidence
of segmentation

AL_OIL GLS λAL 1.0087 0.7433 Estimate not statistically significant; no evidence of
integration

AL_OIL GLS λOIL -1.6975 0.4121 Estimate is not statistically significant; no evidence
of segmentation

GAS_OIL GLS λGAS -3.5249 0.1640 Estimate not statistically significant; no evidence of
integration

GAS_OIL GLS λOIL -0.5471 0.5792 Estimate is not statistically significant; no evidence
of segmentation

SOY_OIL GLS λSOY 1.1259 0.6695 Estimate not statistically significant; no evidence of
integration

SOY_OIL GLS λOIL -1.3363 0.1841 Estimate is not statistically significant; no evidence
of segmentation

AL_OIL GLS HAC λAL 1.0087 0.6612 Estimate not statistically significant; no evidence of
integration

AL_OIL GLS HAC λOIL -1.6975 0.2846 Estimate not statistically significant; no evidence of
segmentation

GAS_OIL GLS HAC λGAS -3.5249 0.1762 Estimate not statistically significant; no evidence of
integration

GAS_OIL GLS HAC λOIL -0.5471 0.5090 Estimate is not statistically significant; no evidence
of segmentation

SOY_OIL GLS HAC λSOY 1.1259 0.6376 Estimate not statistically significant; no evidence of
integration

SOY_OIL GLS HAC λOIL -1.3363 0.1179 Estimate is not statistically significant; no evidence
of segmentation

Table 2.26: ETFs Integration Test Results, Centred Factors

In Tables 2.26 and 2.27, we show the results from the Fama-MacBeth regression with OLS,
GLS and GLS with HAC methods. The estimated risk prices are not statistically significant.
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Area Method Parameter Estimate Pr > |t| Signif. Comments Results
OIL_AL FM OLS δOIL -0.9369 0.4719 Estimate not statistically significant; no evidence of segment-

ation
OIL_AL FM OLS δAL 5.2747 0.2419 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_GAS FM OLS δOIL -1.6376 0.1911 Estimate not statistically significant; no evidence of segment-

ation
OIL_GAS FM OLS δGAS -3.4890 0.5358 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_SOY FM OLS δOIL -2.0469 0.1064 Estimate not statistically significant; no evidence of segment-

ation
OIL_SOY FM OLS δSOY -1.1211 0.7324 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_AL FM HAC δOIL -0.9369 0.4966 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_AL FM HAC δAL 5.2747 0.0933 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_GAS FM HAC δOIL -1.6376 0.2059 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_GAS FM HAC δGAS -3.4890 0.5178 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_SOY FM HAC δOIL -2.0469 0.0771 * Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_SOY FM HAC δSOY -1.1211 0.7120 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_AL GLS δOIL -0.8382 0.4310 Estimate not statistically significant; no evidence of segment-

ation
OIL_AL GLS δAL 1.2326 0.6706 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_GAS GLS δOIL -0.8533 0.3410 Estimate not statistically significant; no evidence of segment-

ation
OIL_GAS GLS δGAS -3.4005 0.1868 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_SOY GLS δOIL -1.0103 0.2403 Estimate not statistically significant; no evidence of segment-

ation
OIL_SOY GLS δSOY 1.2692 0.6270 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_AL GLS HAC δOIL -0.8382 0.2931 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_AL GLS HAC δAL 1.2326 0.5708 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_GAS GLS HAC δOIL -0.8533 0.2259 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_GAS GLS HAC δGAS -3.4005 0.1998 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_SOY GLS HAC δOIL -1.0103 0.1209 Estimate not statistically significant; no evidence of segment-

ation rejection
OIL_SOY GLS HAC δSOY 1.2692 0.5929 Estimate not statistically significant; no evidence of segment-

ation rejection

Table 2.27: ETFs Segmentation Test Results, Centred Factors

However, under HAC inference, we reject the hypothesis of full integration between the Oil
and Aluminium commodity markets. The OLS two-factor segmented model (OIL and GAS or-
thogonal component) has a slightly higher R2 = 0.915 compared with the one-factor model
(R2 = 0.909,Adjusted R2

adj = 0.886,), but a lower R2
adj = 0.859, reflecting that introducing

the global orthogonal component increases the model complexity but does not provide better
explanatory power. We use the GLS asymptotic Shanken variance formulation, Shanken (1992),
together with the two-pass Fama–MacBeth procedure: betas estimated from time-series, risk
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prices estimated from cross correlation, with a moment style HAC variance estimator (Newey-
West) manually built. GLS accounts for cross-sectional correlation, while HAC adjusts for serial
correlation and heteroscedasticity. In the presence of autocorrelation or volatility clustering, GLS
HAC-based and GLS standard errors can differ substantially: HAC-adjusted standard errors tend
to be smaller as in our case, while the parameter estimates will always be the same.

2.6.2.5 Factor-Mimicking GLS Estimation

Mimicking portfolios are at the base of Fama–French portfolio construction, which provides more
robust inference by securing factor exposures in the actual return space. Following Cochrane
(2005), we estimate the risk price vector λ using Generalized Least Squares with factor-mimicking
portfolios, which involves: constructing factor-mimicking portfolios; estimating betas from time-
series regressions using the constructed factor-mimicked in the first initial step, and applying GLS
on the cross-section of average returns.

The idea of projecting the factors into the asset space can improve statistical efficiency by reducing
noise and mitigating multicollinearity. This projection is achieved through mimicking portfolios,
as introduced by Cochrane (2005) and earlier formalized under the conditional projection theorem
of Hansen and Richard (1987).

We define X = (Xt,i) ∈ RT×N as the matrix of excess returns over t = 1, . . . , T periods for
i = 1, . . . , N assets, and Y = [y1, . . . , yℓ̄] ∈ RT×ℓ̄, the matrix of ℓ̄ factor realizations with
elements yt,l for l = 1, . . . , ℓ̄.

The demeaned matrices are:

X̃ = X− eT X̄, Ỹ = Y− eT Ȳ,

where eT is a T × 1 vector of ones, eT = [1, . . . , 1]⊤.

The model is:
Y = XW+ E,

where W ∈ RN×ℓ̄ is the weight matrix for the mimicking portfolios, and E ∈ RT×ℓ̄ is the error
matrix. The mimicking problem is a joint least squares projection:

Ŵ = arg min
W∈RN×ℓ̄

T∑
t=1

ℓ̄∑
l=1

(
ỹt,l −

N∑
i=1

X̃t,iWi,l

)2
. (2.84)
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subject to the normalization constraint:

e⊤NW = e⊤ℓ̄ , (2.85)

where eN is an N × 1 vector of ones and eℓ̄ is an ℓ̄× 1 vector of ones.

The solution without the constraint is the OLS solution:

Ŵ = (X̃⊤X̃)−1X̃⊤Ỹ. (2.86)

The solution with the constraint is the Lagrange multiplier solution:

Ŵ =
(
X̃⊤X̃

)−1X̃⊤Ỹ−
(
X̃⊤X̃

)−1eN
(
e⊤N
(
X̃⊤X̃

)−1eN
)−1(

e⊤N
(
X̃⊤X̃

)−1X̃⊤Ỹ− e⊤ℓ̄
)
. (2.87)

Each column of F̃ = X̃Ŵ, the mimicked demeaned factor vector, represents the return series of
a mimicking portfolio corresponding to one of the ℓ̄ original factors:

F̃t,l =
N∑
i=1

X̃t,i Ŵi,l, ∀t, l. (2.88)

We then apply Fama-Macbeth two-step regression using the mimicked factors: F̃t = (F̃t,1, . . . , F̃t,ℓ̄)
⊤.

First, we estimate factor loadings matrix B via time-series regression

Xt,i = αi +
ℓ̄∑

l=1

βi,lF̃t,l + εt,i, ∀t, i (2.89)

where the asset exposure vector is βi = (βi,1, . . . , βi,ℓ̄)
⊤. Stacking gives B ∈ RN×ℓ̄.

Then, we run a cross-sectional (CS) GLS regression with HAC inference, using the mimicked
factor beta matrix and X̄ = (X̄1, . . . , X̄N)

⊤, the N × 1 vector of average returns, where X̄i =
1
T

∑T
t=1 Xt,i:

X̄i = λ0 +
ℓ̄∑

l=1

βi,l λl + ηi, ∀i (2.90)

In matrix form:
X̄ = λ0e+ Bλ+ η,

where λ = (λ1, . . . , λℓ̄)
⊤ are factor risk prices. We define Xcs = [1,B].
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The GLS estimator is:
θ̂GLS = (X⊤

csΣ
−1Xcs)

−1X⊤
csΣ

−1X̄, (2.91)

where Σ is the residual covariance matrix from the first-step regressions.

The HAC robust covariance is defined as in equation 2.80, replacing B with Xcs:

V̂ar(θ̂GLS) =
1

T

(
X⊤
csΣ

−1Xcs
)−1

Ω̂HAC
(
X⊤
csΣ

−1Xcs
)−1

. (2.92)

While orthogonalization techniques (e.g., Gram–Schmidt) reduce collinearity initially, the OLS-
based factor-mimicking step reintroduces correlation because it projects onto the correlated return
space of ETFs. Regularisation is therefore necessary to maintain numerical stability in GLS
estimation.

The ARPM framework (Advanced Risk and Portfolio Management) constructs factor-mimicking
portfolios using the same projection principle but introduces two key differences:

1. Returns and factors are explicitly centred prior to projection.

2. Mimicking portfolios are rescaled to achieve unit variance or to meet exposure targets.

Our implementation follows Cochrane (2005) without variance normalization.

The empirical evidence in Sakkas (2024) demonstrates that mimicking portfolios based on Prin-
cipal Component Analysis (PCA) extracted latent factors explaining over three-quarters of the
time-series variation in commodity returns. Our approach uses raw and orthogonalised funda-
mental factors, addressing multicollinearity by orthogonalizing factors via Gram–Schmidt trans-
formations. This ensures that the second-pass GLS estimation operates on linearly independent
factors, mitigating instability, although it differs from PCA in that it preserves economic inter-
pretation of individual factors.

The Fama-MacBeth regression for the integrated and segmented models are shown below. The
excess percentage return now refers to the factor mimicking with weight constraint; we discard
the unconstrained model, as it tends to produce unrealistically large beta estimates.

As expected, the results in Tables 2.28 and 2.29 show that the mimicking portfolio factor regres-
sions compared with factor regressions, exhibit lower residual variance, and stronger pricing of
key factors under GLS and GLS with HAC.

The integration test results show that the Gas factor is priced with Oil ETFs under both models,
total integration is detected. The Gas orthogonal component is priced in the segmentation model,
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Area Method Parameter Estimate Pr > |t| Signif. Comments Results
AL_OIL GLS λAL +0.5523 0.8512 Estimate not statistically significant; no evidence of

integration
AL_OIL GLS λOIL +0.0915 0.9752 Estimate not statistically significant; no evidence of

segmentation
GAS_OIL GLS λGAS -2.1404 0.0049 ** Statistically significant and economically large; integ-

ration detected
TI

GAS_OIL GLS λOIL -1.2169 0.1096 Estimate not statistically significant; no evidence of
segmentation

SOY_OIL GLS λSOY +0.4325 0.8284 Estimate not statistically significant; no evidence of
integration

SOY_OIL GLS λOIL +0.1556 0.9379 Estimate not statistically significant; no evidence of
segmentation

AL_OIL GLS HAC λAL +0.5523 0.8149 Estimate not statistically significant; no evidence of
integration

AL_OIL GLS HAC λOIL +0.0915 0.9691 Estimate not statistically significant; no evidence of
segmentation

GAS_OIL GLS HAC λGAS -2.1404 0.0014 *** Statistically significant and economically large; integ-
ration detected

TI

GAS_OIL GLS HAC λOIL -1.2169 0.0691 * Estimate not statistically significant; no evidence of
segmentation

SOY_OIL GLS HAC λSOY +0.4325 0.8074 Estimate not statistically significant; no evidence of
integration

SOY_OIL GLS HAC λOIL +0.1556 0.9301 Estimate not statistically significant; no evidence of
segmentation

Table 2.28: ETFs Mimicking Factor Integration Test Results

which confirms rejection of segmentation.

Area Method Parameter Estimate Pr > |t| Signif. Comments Results
OIL_AL GLS δOIL +1.0557 0.8301 Estimate not statistically significant; no

evidence of segmentation
OIL_AL GLS δAL +1.8277 0.7103 Estimate not statistically significant; no

evidence of segmentation rejection
OIL_GAS GLS δOIL -1.4197 0.0782 * Estimate not statistically significant; no

evidence of segmentation rejection
OIL_GAS GLS δGAS -2.1071 0.0090 ** Estimate statistically significant; evidence of

segmentation rejection
SR

OIL_SOY GLS δOIL +0.3549 0.8789 Estimate not statistically significant; no
evidence of segmentation

OIL_SOY GLS δSOY +0.8333 0.7205 Estimate not statistically significant; no
evidence of segmentation rejection

OIL_AL GLS HAC δOIL +1.0557 0.7811 Estimate not statistically significant; no
evidence of segmentation

OIL_AL GLS HAC δAL +1.8277 0.6304 Estimate not statistically significant; no
evidence of segmentation rejection

OIL_GAS GLS HAC δOIL -1.4197 0.0523 * Estimate statistically significant; weak evid-
ence of segmentation

OIL_GAS GLS HAC δGAS -2.1071 0.0040 ** Estimate statistically significant; evidence of
segmentation rejection

SR

OIL_SOY GLS HAC δOIL +0.3549 0.8643 Estimate not statistically significant; no
evidence of segmentation

OIL_SOY GLS HAC δSOY +0.8333 0.6882 Estimate not statistically significant; no
evidence of segmentation rejection

Table 2.29: ETFs Mimicking Factor Segmentation Test Results
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For the integration model, the estimated price of risk of the mimicked Gas factor in the pair with
Oil Gas orthogonal components is -2.14%, with a highly statistical significant p-value. The Gas
Oil orthogonal component in the segmentation model has a similar risk penalty, being as well
statistically significant. This implies that an OIL ETF with unit exposure to the mimicked GAS
factor earns, on average, 2.14% lower monthly excess return. Annualized, this corresponds to
a risk penalty of approximately: 2.14 × 12 = 25.7% per year. The large negative price of risk
suggests that Gas behaves as an hedging instrument: investors accept lower returns for exposure
to it, possibly due to its diversification benefit.

In the Appendix 4.2, we present an alternative approach using synthetic rolling yields (RYS),
motivated by the contango and backwardation dynamics of futures-based ETFs such as USO and
DBO. However, this method does not conform to the SDF framework because the RYS is a signal
constructed from returns rather than a tradable payoff, so using it as the dependent variable of
the regression violates the fundamental asset pricing restriction that expected returns should be
explained by factor loadings on tradable portfolios.

2.7 Contribution

In the classic factor model analysis, we provide robust evidence of equivalence of the centred and
raw factor regression under Ordinary Least Squares and Generalized Least Squares. We noted
that, as expected, Fama-MacBeth GLS regression, results in estimates of the risk price that are
equivalent to the SUR and GMM methods.

In the linear approximation section, we introduce several convex approximation and linear approx-
imation methods, which to our knowledge, are applied for first time to beta-pricing modelling.
In the related results section, we show how the estimates and p -value are consistent with the
results obtained with more classic estimation techniques.

Our results suggest that the L1-norm methods, proposed in this chapter, are more appropriate
for risk price estimation under heavy-tails, as observed in the case of the EU market factor and
its associated residual distributions.

Although the standard methods applied in the global economies integration research, have been
already introduced in the literature, this is the first time that they are applied systematically to
compare the integration and segmentation between different economies and a given portfolio set.
This systematic approach helps to establish the conclusiveness of their forecasts and corroborates
the validity of the CAPM integrated model, as shown in Penco and Lucas (2024) article.
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Finally, we extend the integration model to commodity markets. To better capture the cross-
sectional pricing of commodity risk, we use a factor mimicking approach, that, as expected,
outperforms standard factors in explaining cross-sectional commodity risk. The integration and
segmentation model between Oil (as a local factor) and other commodities (Aluminium, Gas, and
Soybean, modelled as global factors), lead to lower residual variance, more stable and interpretable
factor loadings, and stronger pricing of key factors under both GLS and GLS HAC methods.
The results show total integration of the Oil ETFs with Gas, which makes economically sense.
However, other commodities like Soybean — despite the fact that circa 5% of global Soybean
production is used to produce biofuel — do not exhibit signs of integration with Oil.
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Chapter 3

Dependence, Copula, Regularisation

This chapter investigates the risk price estimation and the integration and segmentation ana-
lysis of global equity markets and commodity indices with alternative copula-based dependence
methods.

We have the following objectives:

- Examine whether alternative methods provide consistent outcomes.

- Confirm the added value of the beta-pricing integration and segmentation models.

- Show that copula dependence can assist in the integration and segmentation analysis.

One of the main implementations of copula is the aggregation of the single risk driversX1,t, . . . , Xℓ̄,t

dynamics into a joint multivariate model for the whole risk drivers process Xt ≡ (X1,t, . . . , Xℓ̄,t).
For each set of data, global economies and commodities, we apply a copula marginal model,
fitting elliptical copulas, for the joint integration analysis with the related portfolios and ETFs.
Via examples, we show how the copula density together with the maximum likelihood estimator
can successfully reproduce the exposure (betas) and risk price (lambda) of the moments based
standard methods (GMM, FGLS).

In a second experiment, we generate two different simulations: one scenario where both the global
and the local orthogonal factors are priced and another where only the global factor is priced.
We then apply our integration and segmentation analysis. The results show that correlation
alone does not imply pricing. It is the cross-sectional covariance with the expected returns that
determines whether a factor is priced. To better visualise this result we define two measures: the
sum of the factors copula with the returns and the stochastic discount factor copula with the
returns. We apply these measures to our simulation data and to the historical experimental data.
The results illustrate the difference between exposure and pricing:

- The sum of the factors and returns copula measures the extent to which factors explain
the time-series variability of returns.

- The copula of the SDF and returns captures how much payoffs in different states are
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discounted, which depends directly on the risk price λl.

This distinction is central in asset pricing: factors can generate return variation and co-movement
even if they do not earn a risk price.

For the definitions and methods used in this chapter we refer the reader to the Advance Risk and
Portfolio Management material, ARPM (2025), which is available online for subscribers.

3.1 Literature Review

Copulas have been widely applied in finance to model the dependence among asset returns,
particularly for risk management and tail dependence. A classic example is Embrechts et al.
(2002), who discuss copulas in the context of credit risk and value-at-risk applications. For the
integration experiment, our main reference is Patton (2006), who develops asymmetric copula
models for exchange rate dependence, illustrating how flexible dependence structures can improve
modelling of joint returns.

However, in most of this literature, the focus is on modelling the joint distribution of raw returns,
rather than residuals from a factor model. Copulas are typically used to describe co-movements
in levels or volatilities, not to estimate risk prices.

A parallel literature develops copula-GARCH models, in which each marginal series follows a
GARCH process and the copula captures the evolving dependence. Notable examples include Jon-
deau and Rockinger (2006), who estimate copula-GARCH models for international stock indices,
and Patton (2013), who reviews copula models for economic time series. These approaches are
primarily designed to capture dynamic tail dependence for forecasting and risk measurement.

While such models embed both heteroscedasticity and time-varying dependence, they are not
typically formulated as estimators of factor model parameters or as alternatives to GMM or Fama-
MacBeth estimation, which is the goal of our first experiment using the one-factor model.

Shanken and Roll (1985) and Cochrane (2005) discuss maximum likelihood estimation of linear
factor models under multivariate normality. In that setting, the full covariance matrix of residuals
plays a role analogous to the copula correlation matrix in our approach. Under the assumption
of multivariate Gaussian residuals, MLE and GLS estimators coincide, and efficient estimation is
possible without GMM.

This framework is closest in spirit to the Gaussian copula likelihood presented here, as both
rely on specifying a parametric dependence structure. However, even in this literature, estimation
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typically proceeds by specifying a multivariate normal model, rather than expressing the likelihood
in copula form.

We have already seen that the standard two-pass Fama-MacBeth estimator, Fama and MacBeth
(1973), and GMM approaches, Hansen (1982), remain the dominant methodologies in empirical
asset pricing. These methods rely on moment conditions rather than specifying the full likelihood.
In particular:

- Fama-MacBeth OLS treats residuals as independent across assets and over time.

- Fama-MacBeth with GLS weights the cross-sectional regressions by the estimated covari-
ance matrix of residuals.

- GMM estimates both risk prices and standard errors by consistently estimating the covari-
ance of the moment conditions, including serial and cross-sectional dependence.

The copula likelihood approach assumes a parametric dependence structure rather than estimating
the covariance nonparametrically as is done in GMM with optimal weighting. For this reason, if
the copula is misspecified, standard errors and inference may be invalid.

Most applications of copulas in finance address dependence among returns themselves, not the
estimation of factor risk prices. The methodology documented in this study contributes to the
literature by demonstrating how copula density likelihood estimation can serve as a parametric
analogue to GMM or FGLS methods, and by providing a unified framework to compare these
approaches empirically.

3.2 Copula

3.2.1 Copula Density

This section is derived from the corresponding unit of the Advance Risk and Portfolio Manage-
ment, ARPM (2025) course.

Copula extends linear correlation to capture more general forms of dependence across variables,
including nonlinear relationships, tail co-movements, and higher-moment features. Traditional
covariance-based measures cannot fully characterize such dependencies. Instead, copulas provide
a rigorous framework to separate marginal distributions from the joint dependence structure. For
comprehensive treatments, see Joe (1997) and Rayens and Nelsen (2000).
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Any random vector X = (X1, . . . , XN)
⊤ with continuous marginal cumulative distribution func-

tions FXi
can be transformed via the probability integral transform:

Ui = FXi
(Xi), for i = 1, . . . , N. (3.1)

The transformation is applied separately to each marginal, producing a vector U whose compon-
ents are uniform on [0, 1]. However, while each marginal Un is uniform, the vector U as a whole
is generally not uniformly distributed on the unit hypercube. Its joint distribution, called the
copula, encodes all dependence among the components. For each i, let ui ∈ [0, 1] be the uniform
probabilities, a real number representing the argument of the copula cdf (CX). Then:

CX(u1, . . . , uN) = P
(
U1 ≤ u1, . . . , UN ≤ uN

)
. (3.2)

This defines a valid multivariate cumulative distribution function with uniform marginals.

From Sklar’s theorem, Sklar (1959), the original joint cumulative distribution function FX can
be uniquely decomposed (if the marginals are continuous) as:

FX(x1, . . . , xN) = CX

(
FX1(x1), . . . , FXN

(xN)
)
. (3.3)

We use uppercase letters such as Xi to denote random variables, and lowercase letters xi to
denote realizations or arguments at which the functions are evaluated. Here:

- FX denotes the joint cumulative distribution function of the vector X = (X1, . . . , XN)
⊤.

- FXi
denotes the marginal cumulative distribution function of Xi.

- CX denotes the copula function, i.e., the multivariate CDF on [0, 1]N capturing the de-
pendence structure.

If the joint distribution is absolutely continuous with a density fX and marginal densities fXi
, the

decomposition can also be expressed in the density form:

fX(x1, . . . , xN) = cX
(
FX1(x1), . . . , FXN

(xN)
) N∏

i=1

fXi
(xi), (3.4)

where:

- fX denotes the joint probability density function of X.

- fXi
denotes the marginal density function of Xi.
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- cX denotes the copula density, defined as:

cX(u1, . . . , uN) =
∂N

∂u1 · · · ∂uN

CX(u1, . . . , uN).

Given any copula C and any set of marginals, formula 3.3 reconstructs a valid joint distribution.
This separation and combination of the copula and marginals enables a two-stage modelling
approach:

1. Estimate the marginal distributions, for example via empirical cumulative distribution func-
tions (ECDFs).

2. Estimate the copula that captures dependence beyond marginal behaviour.

Using the empirical copula provides a nonparametric way to retain rank dependence and tail
association observed in the data. Practically, in our simulation, this allows resampling residuals or
in general generating observations with preserved marginal properties (including higher moments)
and flexible dependence structure, rather than assuming linear Gaussian correlation.

3.2.2 Elliptical Copula Density Likelihood

We consider a one-factor model according to equation 2.10:

Ri,t = λ0 + λfβi + βif̃t + εi,t, ∀i, t

where: Ri,t is the return of portfolio i at time t; f̃t is the demeaned factor; λ0, λf are the intercept
and risk price; βi is the exposure of portfolio i and εi,t are residuals.

We present a unified framework to estimate the risk price using elliptical copulas, which gen-
eralizes the Gaussian copula and extends naturally to the Student-t copula and other elliptical
distributions.

The residuals are:
εi,t = Ri,t − (λ0 + λfβi + βif̃t), ∀i, t

The risk drivers are defined as the residual random variables Ei, with observed time series

(Ei,1, . . . , Ei,T )
⊤ =

[
εi,1 εi,2 · · · εi,T

]⊤
∈ RT , for all i,
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where εi,t denotes the realization of Ei at time t. Then:

Xi ≡ Ei, for all i

Applying the marginal cumulative distribution function:

FXi
(x) = P

(
Xi ≤ x

)
, ∀i

we compute the probability integral transform (PIT):

ui,t = FXi

(
εi,t
)
, ∀i, t

Depending on the application, FXi
can be a parametric CDF (e.g., Gaussian or Student-t) or

an Empirical Cumulative Distribution Function, ECDF, see the example below for the Gaussian
case:

ui,t(Gaussian) = Φ
(εi,t
σi

)
, where σi =

√
Σii, and Σii = Var(εi,t)

u
(empirical)
i,t = F̂Xi

(
εi,t
)
, where F̂Xi

(x) =
1

T

T∑
s=1

1
{
εi,s ≤ x

}
.

Here, 1{·} denotes the indicator function:

1
{
εi,s ≤ x

}
=


1, if εi,s ≤ x,

0, otherwise.

The empirical PIT is defined via ranks, which is equivalent to computing the empirical grade of
the residuals1, defined via their ranks:

ui,t =
rank

(
εi,t among {εi,s}Ts=1

)
T

, ∀i, t

where the rank is defined as the ordinal position in the sorted list of residuals performed separately
for each residual series i (i.e., the smallest residual receives rank 1, the largest receives rank
T )2.
1 Using a more rigorous formalism, we compute the empirical grade (probability integral transform, PIT) of the

residuals:
ui,t = F̂Ei

(
εi,t
)
, ∀i, t

where F̂Ei
(x) denotes the empirical cumulative distribution function of the residuals {εi,s}Ts=1, which is the

entire sample used to estimate F̂Ei .
2 In the implementation, we use the finite sample rank transformation ui,t =

rank(εi,t)−0.5
T+1 , which avoids values
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In the parametric approach, we compute the distribution grade of the residuals via the univariate
marginal CDF:

ui,t = FXi

(
εi,t
)
, ∀i, t

where FXi
denotes the CDF of the univariate marginal distribution.

For any elliptical copula characterized by:

- a univariate standardised CDF G(·),

- a univariate standardised density g(·),

- a multivariate standardised density gN(·; 0,P) with correlation matrix P,

the copula density is3:

cX(u1, . . . , uN) =
gN
(
G−1(u1), . . . , G

−1(uN); 0,P
)∏N

i=1 g
(
G−1(ui)

) . (3.5)

The copula correlation matrix P is estimated by first transforming the PITs:

ui,t = F̂Ei

(
εi,t
)
, ∀i, t

into latent variables whose marginal distributions match the distribution, for example:

qi,t =


Φ−1

(
ui,t

)
, for the Gaussian copula,

t−1
(
ui,t; ν

)
, for the t copula with ν degrees of freedom,

where Φ−1(·) denotes the inverse standard normal CDF and t−1(·; ν) denotes the inverse CDF of
the univariate t distribution with ν degrees of freedom.

The estimated correlation matrix is:

P̂ = Corr
(
q1,t, . . . , qN,t

)
which fully determines the dependence structure of the copula, controls the implied tail depend-
ence and rank correlation among the margins via rank-based measures.

exactly equal to 0 or 1 in the probability integral transform.
3 The result can be derived by means of the Sklar’s theorem 3.4
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Then the log-likelihood is:

lnL(θ) =
T∑
t=1

[
ln c
(
u1,t, . . . , uN,t

)
+

N∑
i=1

ln fXi

(
εi,t
)]
.

In Appendix N we derive the closed form of the Gaussian and Student-t copula density: the
methods described above are named Gauss Multi (abbreviation of multivariate) and Student-t
Multi in the application results.

We refer to Appendix N.3 for the details of the optimisation steps and the definition of the
parameter vector θ below:

θ =
(
λ0, λf , β1, . . . , βN , vech(L), ν

)
,

where ν are the degrees of freedom, and L is the lower triangular Cholesky factor of a covariance
matrix S (i.e. S = LL⊤). The vech operator, obtained by stacking in a single column vector
the elements of the lower triangular matrix. L, is defined in Appendix M.

In the application results, we estimate the same model assuming that the residuals are independent
across portfolios and over time. This corresponds to specifying the independent copula:

C⊥⊥(u1, . . . , uN

)
=

N∏
i=1

ui,

whose copula density is identically equal to 1:

c⊥⊥
(
u1, . . . , uN

)
= 1.

Taking logarithms, we find:
ln c⊥⊥(u) = 0.

Therefore, the total log-likelihood simplifies to summing the marginal log-densities:

Lindep(θ) =
T∑
t=1

N∑
i=1

ln fXi

(
εi,t
)
,

where fXi
denotes the marginal density of the residuals.
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In the example below, we assume standard Gaussian marginals:

fXi
(εi,t) = ϕ

(
εi,t
)
, ∀i, t

where ϕ denotes the standard normal density, we have:

lnϕ(εi,t) = −
1

2
ε2i,t −

1

2
ln(2π), ∀i, t

Thus:

Lindep(θ) = −
1

2

T∑
t=1

N∑
i=1

ε2i,t + constant,

where the constant is irrelevant for optimisation.

Maximizing this likelihood is equivalent to minimizing the sum of squared residuals:

min
θ

T∑
t=1

N∑
i=1

[
Ri,t − λ0 − λf βi − βi f̃t

]2
.

This is exactly the objective function minimized in FM OLS. These methods are named Gauss
Uni (abbreviation of univariate) and Student-t Uni in the application results.

3.2.3 Stochastic Discount Factor and Copula

For a two-factor model, using equation 2.51, the return Ri,t of asset i at time t is specified
as

Ri,t = βi,1

(
f̃1,t + λ1

)
+ βi,2

(
f̃2,t + λ2

)
+ εi,t, ∀i, t

The exposures to systematic factors determine expected returns through their associated prices
of risk λl:

E
[
Ri

]
= βi,1 λ1 + βi,2 λ2 + ηi, ∀i

The stochastic discount factor4 consistent with the linear factor pricing model above is derived
4 According to Cochrane (2005), the stochastic discount factor is a state-dependent weighting function that

prices assets by adjusting future payoffs for both time and risk, and assigns higher value to payoffs in bad
times, when marginal utility is high and consumption (Ct) is low:

mt+1 = γ · u
′(Ct+1)

u′(Ct)

where u(·) is a utility function and γ ∈ (0, 1) is the time discount factor.
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in Cochrane (2005):
mt = 1 − λ1 f̃1,t − λ2 f̃2,t, ∀t (3.6)

The fundamental pricing equation, no-arbitrage pricing condition, states:

E
[
mRi

]
= 0, ∀i

The decomposition below shows how the mean return is offset by the discounted co-movement
with the factors, scaled by their prices of risk:

E
[
mRi

]
= E

[
Ri

]
− λ1 E

[
f̃1 Ri

]
− λ2 E

[
f̃2 Ri

]
, ∀i

If λl = 0, factor l is unpriced: it contributes to variability but does not affect expected re-
turns.

For our two-factor model, we use orthogonalised factors (Cov(f̃1, f̃2) = 0):

Var(Ri) = β2
i,1 Var(f̃1) + β2

i,2 Var(f̃2) + Var(εi), ∀i

The factor loadings βi,l explain return variation and co-movement of returns, even though the
factor does not contribute to expected returns when λl = 0.

The price of risk λl determines the compensation investors require for bearing exposure to factor
l. The sign indicates whether investors view the factor as desirable or undesirable risk.

The dependence structure between the SDF and returns is analysed using copulas:

1. The SDF series is computed according to equation 3.6

2. The returns Ri,t are our portfolio data (simulated or historical)

3. Both series are transformed to uniform ranks:

um,t =
rank(mt)

T + 1
, uR,t =

rank(Ri,t)

T + 1
.

4. A Gaussian copula is fitted to (um,t, uR,t).

The estimated copula correlation provides a description of dependence beyond linear correlation.
Scenarios where both factors are priced exhibit stronger dependence between the SDF and returns.
In scenarios where only one-factor is priced, dependence is weaker but still present because factor
exposures continue to drive return variability.
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3.3 Regularisation

Initially, we apply regularisation techniques to estimate loadings (exposure) in a multifactor re-
gression where the observable inputs are regional market factor returns and the observable outputs
are regional portfolio returns. We use the following regularisation methods:

- Lasso (L1), Tibshirani (2011)

- Ridge (L2), Hoerl and Kennard (1970)

- Elastic Net, Zou and Hastie (2005)

Starting from a model in which all factors are considered relevant for all portfolios, we identify
and discard spurious factors.

- Ri,t: excess return of portfolio i = 1, . . . , N at time t = 1, . . . , T ,

- f̃l,t = fl,t − f̄l: centred value of factor l = 1, . . . , ℓ̄, with f̄l =
1
T

∑T
t=1 fl,t,

- βi,l: loading of factor l on portfolio i,

- εi,t: residual term.

The regression model is:

Ri,t =
ℓ̄∑

l=1

βi,lf̃l,t + εi,t, ∀i, t (3.7)

Regularisation imposes constraints on the regression coefficients:

- Lasso (L1 penalty) encourages factor selection (sparsity) by setting some loadings exactly to
zero. The objective function combines the sum of squared residuals (SSR), which decreases
as more factors are included, and an L1 penalty that grows linearly with the absolute value
of the coefficients: a factor is retained only if the SSR gain outweighs the additional
penalty. The Lasso penalty ρ|β| has a constant gradient (±ρ) near zero, that forces small
coefficients toward zero:

min
{βi,l}Ll=1

T∑
t=1

(
Ri,t −

ℓ̄∑
l=1

βi,lf̃l,t

)2

+ ρ
ℓ̄∑

l=1

|βi,l| (3.8)

- Ridge (L2 penalty) shrinks coefficients continuously but retains all factors, which helps when
predictors are correlated and OLS estimates of betas become unstable. In Ridge regression,
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the L2 penalty ρβ2 has a gradient of 2ρβ, which approaches zero as β approaches zero. As a
result, the shrinkage weakens near zero, the L2 penalty avoids large coefficients and shrinks
them smoothly towards zero: the solution is still dense (non-sparse), but less variable:

min
{βi,l}Ll=1

T∑
t=1

(
Ri,t −

ℓ̄∑
l=1

βi,lf̃l,t

)2

+ ρ
ℓ̄∑

l=1

β2
i,l (3.9)

- Elastic Net combines L1 and L2, and is known for enabling group selection (of related
factors) and stability in high-dimensional settings thanks to the L2 component:

min
{βi,l}Ll=1

T∑
t=1

(
Ri,t −

ℓ̄∑
l=1

βi,lf̃l,t

)2

+ ρ

[
α

ℓ̄∑
l=1

|βi,l|+ (1− α)
ℓ̄∑

l=1

β2
i,l

]
(3.10)

The penalty parameter ρ > 0 controls the overall strength of the regularisation, while α ∈ [0, 1]

controls the mix between Lasso, α = 1, and Ridge, α = 0. In all the models, as the penalty
parameter increases, more coefficients are driven toward zero, the model becomes simpler but
typically the in-sample R2 is reduced.

While Lasso, Ridge, and Elastic Net are powerful tools for identifying statistically significant
factor exposures, the simple OLS multifactor regression, presents two fundamental limitations,
see Harvey and Bekaert (1994), Bruner et al. (2008):

- Collinearity. Global market factors tend to be highly correlated: the U.S. and European
market returns co-move significantly. A straight regularisation OLS multifactor model is
not identifying additional explanatory power of each factor. Ridge regularisation mitigates
the instability through shrinkage, and Lasso may perform variable selection, but neither
fully clarifies the marginal value of one-factor over another. When two factors are highly
collinear, even though both are informative, OLS chooses a combination that best fits the
data, and this often favours the factor with the slightly better raw correlation with Ri,t,
which makes it difficult to assess phenomena such as regional (marginal) integration.

- No Pricing of Risk. The model focuses exclusively on exposures, the estimated loadings
βi,j, without testing whether the corresponding factors are priced. It implicitly assumes that
all factors carry a nonzero risk price, which is a limitation: a factor might explain return
variation (i.e., have high exposure) but still be unpriced in equilibrium. What matters for
pricing is not the exposure βi,j alone, but the product βi,jλj, which determines the factor’s
contribution to the SDF.
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To resolve these issues, in the first chapter we constructed two complementary models based on
orthogonalised factors and cross-sectional risk pricing:

- The integration model, in which local portfolios are priced using global factors orthogonal-
ised with respect to the dominant (e.g., U.S.) market factor, see equation 2.66.

- The segmentation model, in which we test whether local returns are explained mainly by
local factors, even after accounting for orthogonalised global influences, equation 2.67.

In this section, we extend the two-factor integrated model to multifactor, we estimate risk prices
λl and, in addition, apply regularisation not to exposures but to the cross-sectional pricing model,
incorporating p-value-based threshold. The procedure builds on the approach introduced by
Bryzgalova (2015), who proposed Lasso penalised beta estimation of risk prices in a two-step
cross-sectional asset pricing model to identify spurious factors. We extend that framework to
incorporate both economic and statistical criteria in the pricing of risk factors, and regularise the
FM second step using the Lasso penalty based on beta for the risk prices together with a soft
constraint to shrink factors with high p-values, encouraging factor selection (sparsity) both in
economic relevance and statistical significance.

Let Ri,t denote the excess return of portfolio i ∈ {1, . . . , N} at time t ∈ {1, . . . , T}, and let
fl,t be the return of factor l ∈ {1, . . . , ℓ̄}. In the first step, we estimate exposures βi,l from
time-series regressions:

Ri,t =
ℓ̄∑

j=1

βi,lfl,t + εi,t, ∀i, t (3.11)

We orthogonalise global components with respect to local markets, enabling identification of
marginal explanatory power (e.g., Asia or US factors orthogonal to the EU market).

In the second step of Fama-MacBeth, we subtract β⊤
i f̄ from R̄i and obtain the demeaned factor

return R̃i, ensuring the estimation targets the risk prices λ rather than factor mean effects: see
Table 2.13, where the same method is implemented for one-factor. Finally, for each factor l we
estimate its risk prices λl via a penalised cross-sectional GLS regression, minimizing the following
objective function:

min
λ0,λ

(
R̃− λ01− Bλ

)⊤
Σ−1

(
R̃− λ01− Bλ

)
+ ρ

ℓ̄∑
l=1

wl |λl|+ ρpval

ℓ̄∑
l=1

max(0, pl − τ) |λl|, (3.12)

where:
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- R̃ ∈ RN is the vector of average portfolio excess returns adjusted for time-series fit, i.e.,
R̃i = R̄i − β⊤

i f̄ .

- B ∈ RN×ℓ̄ is the matrix of time-series betas.

- Σ is the cross-sectional residual covariance matrix estimated from first-step residuals.

- λ = (λ1, . . . , λℓ̄)
⊤ are the risk prices to be estimated.

- wl = 1/|β·,l|d are adaptive weights, based on the L1-norm across portfolios. d > 0 is a
tuning parameter in the adaptive weights; we use wl = (∥β̂·,l∥1 + ε)−d, where ∥β̂·,l∥1 =∑N

i=1 |β̂i,l| (L1 across portfolios) and ε > 0 avoids division by zero. Larger d penalizes
weak loadings more strongly (more sparsity): d = 1 corresponds to adaptive Lasso, and
d = 0 to standard Lasso.

- ρ is the Lasso regularisation strength.

- pl is the p-value for λl based on GLS inference.

- τ ∈ (0, 1) is the significance threshold (set to 0.05 in the program).

- ρpval penalizes coefficients with p-values above threshold.

Equation 3.12 represents a heuristic one-step penalised GLS estimator, where the weights and p-
values are computed from a fixed preliminary stage. A better optimisation would require iteratively
updating both the GLS weights and the p-value penalties until convergence.

The GLS covariance matrix for the estimated risk prices is given by:

V̂ar(λ̂) =
1

T

(
X⊤Σ−1X

)−1
. (3.13)

where X = [1,B] is the matrix of regressors including an intercept and the time-series betas.
This expression accounts for heteroscedasticity and cross-sectional correlation of errors. For each
risk price λl, the standard error is given by:

SE(λ̂l) =

√[
1

T

(
X⊤Σ−1X

)−1
]
ll

.

We compute the t-statistic:

tl =
λ̂l

SE(λ̂l)
, pl = 2 (1− Φ (|tl|)) , (3.14)
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where Φ(·) is the cumulative distribution function of the standard normal distribution. The
penalty term

∑
lmax(0, pl − τ)|λl| will shrink coefficients with weak statistical significance,

p-value = pl > τ , while retaining factors that are still significant for marginal exposures near the
threshold.

3.4 Empirical Applications

3.4.1 Global Economies

3.4.1.1 Data Processing

In the experiments, we use the market returns adjusted by the risk-free rate for Europe (EU), North
America (US), Asia (AS), and Japan (JP), and the Europe six size and value Portfolios from the
French (2025) website from January 2003 to December 2022, 240 monthly observations.

3.4.1.2 Data Analysis

We use location-dispersion ellipsoids to visualize the joint residuals of two portfolios under each
exposure regularisation method, equations 3.8, 3.9, 3.10. Ellipsoids are constructed from the
covariance matrix of residuals and visualize the remaining (idiosyncratic) risk after accounting for
common risk drivers (factors). A circular shape implies low or no correlation between residuals,
while an elongated ellipse indicates significant correlation. The orientation of the ellipse reflects
the direction of maximal joint variability, i.e., the first principal component of the residuals. The
ellipsoid summarizes the joint residual distribution between portfolios; in an ideal case of perfect
invariance, the ellipsoid is a small circle aligned with the axes.

Although each ellipsoid in Figure 3.1 compares the residuals of just two portfolios, these residuals
are derived from a global multifactor model that is estimated jointly across all portfolios and all
factors.

For the EU portfolios, such as SSLV_EU versus SSMV_EU, the ellipsoids are elongated, indicating
a strong residual correlation. This suggests that despite regularisation, these portfolios share
exposure to common factors that are not fully captured by the model. When comparing SSLV_EU
with non-EU portfolios, such as SSLV_AS or SSMV_US, the ellipsoids are more circular and tighter,
reflecting weaker and more idiosyncratic residual relationships.

Across all comparisons, the ellipsoids from the Elastic Net estimates with α = 0.5 lie between
those from Lasso and Ridge.
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Figure 3.1: Cross Sectional Ellipsoids of Residuals, EU pairs and EU non-EU portfolios
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3.4.1.3 One-Factor Model

We consider a one-factor asset pricing model, defined as a system of nonlinear equations in
equation 2.10.

We use the copula density log-likelihood optimisation to estimate the parameters of the cross-
sectional asset pricing model, and compare the results to the Fama-MacBeth (FM), SUR, and
GMM approaches. We use SAS proprietary software PROC MODEL to implement the OLS, SUR,
and GMM methods, and custom Python code for the copula optimisation and the Fama-MacBeth
procedure with both OLS and GLS estimators.

We show the different regression results in Table 3.1 for the demeaned factor. The results are
divided into four different sections, each separated by a double line.

In the first section, we present the Gauss copula density likelihood method results (univariate, uni)
and multivariate (multi), followed by the same result for the Student-t copula density likelihood
where the degrees of freedom (abbreviated with d.o.f. and shown with ν, nu in the table) are
optimised in the objective function. The univariate and multivariate Student-t optimisations
estimate slightly different degrees of freedom: 2.72 vs 7.23.

In the second section, we present the results of different fixed degrees of freedom Student-t
univariate and multivariate optimisations.

The last two sections contain the results of the previous chapter experiments, respectively: the
non linear L1 approximation methods and the standard methods.

In the Gauss multivariate (abbreviated multi) approach, the copula correlation matrix P captures
the cross-sectional dependence of residuals, similar to the GLS SUR covariance matrix in equation
4.50:

S =
1

T

T∑
t=1

εtε
⊤
t .

However, instead of using only second moments of the residuals in the original scale, the copula
likelihood models the dependence structure implied by the joint correlation of transformed ranks
(probability integral transforms). This parametric approach is fully determined by the correlation
matrix P for the Gaussian copula, but will capture fatter tail dependence or asymmetric rela-
tionships, with different copula for example: the t-copula for heavy tails, the Skew t-copula for
asymmetric tails.

Copula multivariate likelihood estimation assumes that standardised residuals are i.i.d. across
time, while allowing for dependence across equations (cross-sectional correlation), which is mod-
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elled by the multivariate copula itself. HAC adjusts the estimated variance-covariance matrix of
the parameter estimates to remain consistent under autocorrelation and heteroscedasticity while
cross-sectional dependence remains in the error terms5, so it is ideal to be used together with
copula likelihood.

The intercept and risk price estimated with the multivariate copula likelihood have similar values
of the parameters obtained by GMM or GLS shown at the bottom of the table. Both methods
aim to achieve efficient weighting of the moment conditions: the copula density uses all available
information about the dependence structure of the residuals, while GMM achieves robustness by
consistently estimating the covariance of the moment conditions without assuming a parametric
model. Only if the copula is correctly specified, the copula density maximum likelihood estimator
is asymptotically efficient.

On the other hand, the univariate methods’ parameters are close to the intercept and risk price
estimated with FM OLS, where standard errors are computed assuming homoscedasticity and
independence. In the univariate methods, the likelihood treats all residuals as independent over
time and across assets: the estimation does not weight residuals to account for cross-sectional
correlation or cross-sectional dependence.

In the second section of the table, where we apply the univariate and multivariate Student-t copula
density likelihood for a fixed range of degrees of freedom ν, the convergence of the Student-t
distribution to the Gaussian is quite slow in numerical estimation: ν in the order of 10,000 to
100,000 6, analogue results have been reported in the literature, see Lange et al. (1989) and
Fernandez and Steel (1998).

For the copula PIT we use the notation Empirical (E) and Parametric (P). The univariate Gaussian
with a risk price of 0.0111 (p-value 0.99), closely matching FM and OLS estimates, with equivalent
high p-value. As expected, the Gauss multivariate values, −0.698 (p-value 0.21), are close to the
FIML, GLS, SUR standard methods. Under multivariate copula specifications, standard error and
estimates are comparable with the classic methods.

Employing a Student-t likelihood with a small value of ν (e.g., ν = 3 or ν = 7) is not equivalent
to performing an L1-norm regression. In our experiment an equivalent L1 risk price estimate
is reached only with ν > 100 in the Student-t Univariate. While both approaches reduce the
influence of extreme residuals compared with the Gaussian, they are not equivalent. The Student-
5 In contrast, prewhitening explicitly transforms the residuals to remove autocorrelation.
6 Although the density of the standardised Student-t approaches the standard normal density in distribution

as ν → ∞, in practice the log-likelihood retains differences even for moderately large ν: the tail decay rate
remains distinctly heavier than the normal for ν up to several hundreds, which affects the curvature of the
objective function and therefore the parameter estimates.
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Method Parameter Estimate Std. Error t-Statistic p-value
Gauss Uni Intercept 0.7483 0.6898 1.0848 0.2780
Gauss Uni Risk price 0.0111 0.6837 0.0162 0.9871
Gauss Copula Uni E P Intercept 0.7483 0.6901 1.0844 0.2782
Gauss Copula Uni E P Risk price 0.0111 0.6839 0.0162 0.9871
Gauss Multi Intercept 1.3961 0.5595 2.4953 0.0126
Gauss Multi Risk price -0.6982 0.5609 -1.2448 0.2132
Gauss Copula Multi P Intercept 1.3961 0.5600 2.4930 0.0127
Gauss Copula Multi P Risk price -0.6982 0.5616 -1.2433 0.2138
Gauss Copula Multi E Intercept 1.3760 0.5624 2.4467 0.0144
Gauss Copula Multi E Risk price -0.6776 0.5640 -1.2015 0.2296
t Uni nu = 2.72 Intercept 1.3038 0.7433 1.7540 0.0794
t Uni nu = 2.72 Risk price -0.5948 0.7461 -0.7972 0.4253
t Copula Uni E 1 P 2 Intercept 1.3038 0.7433 1.7540 0.0794
t Copula Uni E 1 P 2 Risk price -0.5948 0.7461 -0.7972 0.4253
t Multi nu = 7.23 Intercept 1.7852 0.5854 3.0493 0.0023
t Multi nu = 7.23 Risk price -1.0949 0.5858 -1.8691 0.0616
t Copula Multi P 3 Intercept 1.7973 0.6476 2.7755 0.0055
t Copula Multi P 3 Risk price -1.1065 0.6503 -1.7014 0.0889
t Copula Multi E 4 Intercept 1.7291 0.6342 2.7262 0.0064
t Copula Multi E 4 Risk price -1.0380 0.6367 -1.6304 0.1030
t Uni nu = 2.72 Intercept 1.3037 0.7432 1.7543 0.0794
t Uni nu = 2.72 Risk price -0.5947 0.7461 -0.7971 0.4254
t Uni nu = 25 Intercept 1.0773 0.6818 1.5800 0.1141
t Uni nu = 25 Risk price -0.3332 0.6795 -0.4903 0.6239
t Uni nu = 100 Intercept 0.8946 0.6767 1.3219 0.1862
t Uni nu = 100 Risk price -0.1405 0.6720 -0.2091 0.8344
t Uni nu = 10000 Intercept 0.7504 0.6897 1.0880 0.2766
t Uni nu = 10000 Risk price 0.0089 0.6836 0.0130 0.9896
t Multi nu = 7.23 Intercept 1.7851 0.5858 3.0475 0.0023
t Multi nu = 7.23 Risk price -1.0948 0.5861 -1.8681 0.0618
t Multi nu = 25 Intercept 1.6128 0.5665 2.8468 0.0044
t Multi nu = 25 Risk price -0.9188 0.5674 -1.6191 0.1054
t Multi nu = 100 Intercept 1.4718 0.5679 2.5918 0.0095
t Multi nu = 100 Risk price -0.7752 0.5691 -1.3621 0.1732
t Multi nu = 10000 Intercept 1.3969 0.5696 2.4526 0.0142
t Multi nu = 10000 Risk price -0.6991 0.5710 -1.2244 0.2208
Nonlinear L1 Intercept 0.8290 0.5159 1.6070 0.1083
Nonlinear L1 Risk price -0.1284 0.5088 -0.2523 0.8009
FM Intercept 0.7487 0.6514 1.149 0.2504
FM Risk price 0.0107 0.7332 0.015 0.9884
OLS Intercept 0.7487 0.4422 1.69 0.0918
OLS Risk price 0.0107 0.4434 0.02 0.9808
FIML Intercept 1.3932 0.5155 2.700 0.0074
FIML Risk price -0.6954 0.5164 -1.350 0.1794
GLS Intercept 1.3615 0.4937 2.758 0.0063
GLS Risk price -0.6636 0.4945 -1.342 0.1809
SUR Intercept 1.3786 0.4997 2.760 0.0062
SUR Risk price -0.6793 0.5009 -1.360 0.1763
GMM Intercept 1.3962 0.5051 2.760 0.0061
GMM Risk price -0.6973 0.5067 -1.380 0.1700

1 The estimated d.o.f. of the marginals are 2.01 and the d.o.f. of the copula are 8.01
2 The estimated d.o.f. of the marginals are 2.01 and the d.o.f. of the copula are 18

3 The estimated d.o.f. of the marginals are 2.01 and the d.o.f. of the copula are 7.01
4 The estimated d.o.f. of the marginals are 2.01 and the d.o.f. of the copula are 8.01

Table 3.1: One-Factor Risk Price Estimates, Copula, Centred Factor
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t log-likelihood remains a smooth and differentiable function, penalizing squared residuals scaled
by a heavy-tailed variance factor. In contrast, the L1 regression corresponds to the minimization
of the sum of absolute errors, which yields a piecewise linear (non-differentiable at zero residual)
objective function. As a result, small-ν Student-t estimators can behave similarly to robust
regression but do not possess the same properties as quantile regression or L1 loss minimization:
see Koenker and Hallock (2001) Lange et al. (1989) for a detailed comparison.

Under a different modelling approach, our results make it clear that student-t copula leverages
robustness in the estimation of the risk price, while the multivariate copula density recovers the
cross-sectional GLS results. Possibly, the most robust estimates are computed with the Student-t
multivariate method where both properties are present.

Although the computation of the multivariate copula density might be less efficient than the
standard methods, the technique is more robust when applied to skewed or heavy-tailed distribu-
tions, while its estimates are consistent with the classic approaches.

3.4.1.4 Integration and Segmentation Simulation

This section presents a Monte Carlo simulation of the cross-sectional expected returns integration
and segmentation models.

The initial dataset contains 240 monthly observations of European and US Market factors, from
January 2003 to December 2022, and their orthogonal components as described in the previous
chapter.

We construct synthetic time series (T = 500) by resampling. Each factor is centred and ortho-
gonalised so that: E[f̃1] = E[f̃2] = 0, Corr(f̃1, f̃2) = 0.

For each scenario, we simulate N = 6 portfolio returns using equation 2.51:

Ri,t = βi,1(f̃1,t + λ1) + βi,2(f̃2,t + λ2) + εi,t, ∀i, t

where: βi,1, βi,2 ∼ U(0.5, 1.0) i.i.d., and εi,t ∼ N (0, σ2
ε) with σε = 0.5%.

We consider two scenarios with two models for integration and segmentation each, with different
risk price that define how factors are priced. In Scenario 1, both the global (US) and local (EU)
factors are priced in both the integration and the segmentation models. In Scenario 2, only the
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global (US) factor is priced in both models:

Integration Scenario 1 f̃1 = US, f̃2 = EU⊥US, (λ1 = 0.6%, λ2 = 0.4%)

Segmentation Scenario 1 f̃1 = EU, f̃2 = US⊥EU, (λ1 = 0.6%, λ2 = 0.4%)

Integration Scenario 2 f̃1 = US, f̃2 = EU⊥US, (λ1 = 0.6%, λ2 = 0)

Segmentation Scenario 2 f̃1 = EU, f̃2 = US⊥EU, (λ1 = 0, λ2 = 0.6%)

Each simulation is run with 500 repetitions. For each replication, we estimate factor risk prices
using the standard two-pass Fama–MacBeth approach, as in equations 2.7 and 2.8. We report
the average estimates, standard errors, t-statistics, and p-values in Table 3.2.

Scenario Parameter Estimate Std. Error t-Statistic p-value

Integration Scenario 1 Intercept 0.0057 0.0952 0.0280 0.4909
Integration Scenario 1 λ1 0.6013 0.2163 2.7972 0.0135
Integration Scenario 1 λ2 0.3909 0.1469 2.7299 0.0387

Segmentation Scenario 1 Intercept -0.0147 0.0935 -0.1169 0.4848
Segmentation Scenario 1 λ1 0.6133 0.2495 2.4646 0.0228
Segmentation Scenario 1 λ2 0.4072 0.1340 3.1368 0.0233

Integration Scenario 2 Intercept -0.0077 0.0933 -0.0348 0.4812
Integration Scenario 2 λ1 0.6052 0.2160 2.8244 0.0139
Integration Scenario 2 λ2 0.0063 0.1473 0.0261 0.6443

Segmentation Scenario 2 Intercept -0.0063 0.0956 -0.0354 0.5049
Segmentation Scenario 2 λ1 0.0037 0.2506 0.0104 0.7889
Segmentation Scenario 2 λ2 0.6040 0.1332 4.6687 0.0043

Table 3.2: Estimated Risk Prices, Simulated Data

As expected:

- In Scenario 1, both factors are priced (significant λ1 and λ2).

- In Scenario 2, only the global factor (f1) and its orthogonal component, both with nonzero
λ are significantly priced.

- The intercept is always close to zero.

The average correlation matrices between portfolios and factors, Corr(Ri, f̃l), for i = 1, . . . , N, l =

1, . . . , ℓ̄, are highly similar across scenarios, βi,1, βi,2 ∼ U(0.5, 1.0) i.i.d., and only the expected
risk prices (λl) differ.

The simulation shows that correlation alone does not imply pricing. It is the cross-sectional cov-
ariance with expected returns that determines whether a factor is priced. In Table 3.3, we report
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the average cross-sectional covariance and correlation between estimated betas and expected
returns over 500 simulations.

Scenario Factor Mean Covariance Std. Dev. Mean Correlation

Integration Scenario 1 Factor 1 0.01264 0.00732 0.76975
Integration Scenario 1 Factor 2 0.00841 0.00668 0.48962
Segmentation Scenario 1 Factor 1 0.01246 0.00694 0.77449
Segmentation Scenario 1 Factor 2 0.00848 0.00701 0.51363
Integration Scenario 2 Factor 1 0.01295 0.00604 0.95390
Integration Scenario 2 Factor 2 -0.00004 0.00608 -0.01251
Segmentation Scenario 2 Factor 1 -0.00041 0.00559 -0.04212
Segmentation Scenario 2 Factor 2 0.01248 0.00583 0.95350

Table 3.3: Cross-sectional Covariance and Correlation, Simulated Data

In order to demonstrate the distinction between exposure and pricing, for each of the four scenarios
previously simulated:

1. Integration Scenario 1: both factors priced,

2. Segmentation Scenario 1: both factors priced,

3. Integration Scenario 2: only factor 1 priced,

4. Segmentation Scenario 2: only factor 2 priced,

we define two different measures of dependence:

1. The dependence between the sum of the two demeaned factors Xt and the returns Ri,t,
where:

Xt = f̃1,t + f̃2,t, for all t

2. The dependence between the stochastic discount factor mt and the returns Ri,t, where:

mt = 1− λ1f̃1,t − λ2f̃2,t, for all t

Tables 3.4 and 3.5 report the results for the first portfolio, i = 1.

First, we compute the simple Pearson correlation (without copula) for both measures7:

ρsum = ρPearson
(
f̃1,t + f̃2,t, R1,t

)
7 For theoretical moments of the random variables we suppress the time index, while for empirical correlations

we keep it to emphasize the time-series dimension
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and
ρSDF = ρPearson

(
mt, R1,t

)
, mt = 1− λ1 f̃1,t − λ2 f̃2,t.

Scenario ρsum ρSDF

Integration Scenario 1 +0.935 −0.900
Segmentation Scenario 1 +0.921 −0.923
Integration Scenario 2 +0.900 −0.643
Segmentation Scenario 2 +0.905 −0.627

Table 3.4: Pearson Correlations, Factors and Returns, Simulated Data

Then, we compute the Gaussian copula (C) correlations, see Section 3.2.3:

ρC, sum = Corr
(
Φ−1

(
Ff̃1+f̃2

(
f̃1,t + f̃2,t

))
, Φ−1

(
FR

(
R1,t

)))
,

where Ff̃1+f̃2
and FR denote the marginal cumulative distribution functions.

ρC, SDF = Corr
(
Φ−1

(
Fm

(
mt

))
, Φ−1

(
FR

(
R1,t

)))
, mt = 1 − λ1 f̃1,t − λ2 f̃2,t.

Scenario Copula ρC,sum Copula ρC,SDF

Integration Scenario 1 +0.881 −0.813
Segmentation Scenario 1 +0.877 −0.814
Integration Scenario 2 +0.882 −0.670
Segmentation Scenario 2 +0.879 −0.676

Table 3.5: Gaussian Copula Correlations, Factors and Returns, Simulated Data

The strong positive dependence between (f̃1 + f̃2) and returns arises because both factors con-
tribute to return variability through the exposures β1,l, regardless of whether they are priced.
Even in scenarios where a factor is unpriced (i.e., λl = 0), it continues to affect return variation,
which leads to strong positive dependence between the sum of factors and returns.

By contrast, the SDF dependence decreases in scenarios where only one-factor is priced, because
it does not take into account unpriced factor variance. The negative dependence between the
SDF and returns reflects how the stochastic discount factor assigns higher value to payoffs in bad
times, when marginal utility is high and consumption is low.

Figures 3.2 and 3.3 display the scatter plots across the four scenarios of the transformed Gaussian
scores (PIT) used in the copula estimation for the two different measures.
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Figure 3.2: PIT Scatter Plots, Factors and Returns, Simulated Data

These plots confirm the numerical results: the dependence between the sum of factors and returns
is strong and positive, while the dependence between the SDF and returns is negative and weaker
in scenarios with only one priced factor.

Although the correlation analysis already explains the distinction between exposure and pricing –
while exposures β1,l determine how much returns fluctuate with factors, only nonzero λl generate
compensation for bearing factor risk and affect the expected returns in the pricing equation –
we show the copula dependence measures because they characterize the entire joint distribution,
including tail dependence and rank co-movement.
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Figure 3.3: PIT Scatter Plots, SDF and Returns, Simulated Data

3.4.1.5 Integration and Segmentation

This section reports the dependence analysis between the factors and the returns using the
historical data: the observed returns of six European portfolios and two factors, the US market,
the EU market and their orthogonal components, over the period January 2003 to December
2022 (240 observations).

Integration

For the integration model, refer to equation 2.66. The estimated Pearson correlations between the
sum of factors and returns, shown in Table 3.6, are extremely high, ranging from approximately
+0.93 to +0.99, which indicates that realised factor innovations strongly co-move with portfolio
returns in the time series.

The Gaussian copula correlations in Table 3.7 show a similar pattern.

The stochastic discount factor was constructed using a negative estimated risk price on the US
market factor (λ̂US = −1.96, highly significant, p-value = 0.001), while the EU orthogonal factor
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Portfolio ρsum ρSDF

SS_VH +0.950 +0.812
SS_VM +0.957 +0.844
SS_VL +0.935 +0.849
SB_VH +0.956 +0.821
SB_VM +0.993 +0.866
SB_VL +0.958 +0.860

Table 3.6: Integration Correlations, Factors and Returns, Equities

Portfolio ρC,sum ρC,SDF

SS_VH +0.945 +0.780
SS_VM +0.952 +0.813
SS_VL +0.932 +0.821
SB_VH +0.951 +0.797
SB_VM +0.990 +0.849
SB_VL +0.956 +0.849

Table 3.7: Integration Copula Correlations, Factors and Returns, Equities

was found to be statistically insignificant (λ̂EU = 0.733) and therefore set to zero in the SDF
calculation: the SDF behaves as an inverse of the US market factor.

The resulting correlations between the SDF and returns are positive and large (approximately
+0.78 to+0.85), in contrast to classic asset pricing intuition, where the SDF is typically negatively
correlated with returns. In this case, the significant negative risk price implies that exposure to
the US factor reduces expected returns, so the SDF increases in high-return states, generating
positive dependence.

Figures 3.4 and 3.5 display the scatter plots of the transformed Gaussian scores (PIT) used in the
copula estimation. In Figure 3.4, the PIT ranks of the sum of factors and returns are very tight
clustered along the diagonal, reflecting the high dependence measured in the correlation tables.
In contrast, Figure 3.5 shows visibly more dispersed ranks for the SDF, consistent with the lower
copula correlations.

The greater dispersion of the SDF PIT reflects that, with the EU orthogonal factor excluded,
the SDF depends primarily on a single factor and therefore provides less stable rankings of return
realizations. Consistent with this, the Gaussian copula correlations between the SDF and returns
are uniformly lower than the correlations between the sum of factors and returns, highlighting how
the SDF, compared to the factor sum, captures only the priced component of this variation.
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Figure 3.4: Integration PIT, Factors and Returns, Equities
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Figure 3.5: Integration PIT, SDF and Returns, Equities
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Segmentation

For the segmentation model, refer to equation 2.67. The estimated Pearson correlations between
the sum of factors and returns, shown in Table 3.8, are high (approximately+0.86 to+0.92).

Portfolio ρsum ρSDF

SS_VH +0.864 +0.894
SS_VM +0.891 +0.917
SS_VL +0.890 +0.911
SB_VH +0.873 +0.902
SB_VM +0.918 +0.946
SB_VL +0.904 +0.928

Table 3.8: Segmentation Correlations, Factors and Returns, Equities

The Gaussian copula correlations in Table 3.9 show a similar pattern.

Portfolio ρC,sum ρC,SDF

SS_VH +0.841 +0.880
SS_VM +0.868 +0.902
SS_VL +0.869 +0.900
SB_VH +0.858 +0.894
SB_VM +0.906 +0.941
SB_VL +0.896 +0.927

Table 3.9: Segmentation Copula Correlations, Factors and Returns, Equities

The segmentation risk price on the EU market factor (δ̂EU = −1.31, p-value = 0.014) is signi-
ficant. The US orthogonal factor was found to be statistically significant as well (δ̂US = −1.00,
p-value = 0.031).

In contrast to the integration scenario, the correlations between the SDF and returns are uniformly
higher than those between the sum of factors and returns, suggesting that the SDF captures a
larger portion of the return variation.

Figures 3.6 and 3.7 display the scatter plots of the Gaussian scores (PIT) used in the copula
estimation. The PIT scatter plots confirm that the ranks of the SDF are more concentrated
along the diagonal with the return ranks, showing less dispersion compared to the PITs of the
sum of factors: the SDF ranks track return ranks more closely than the raw factor sum, reflecting
the different role of pricing and exposure when the US orthogonal factor is not excluded.
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Figure 3.6: Segmentation PIT, Factors and Returns, Equities
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Figure 3.7: Segmentation PIT, SDF and Returns, Equities
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3.4.1.6 Regularisation

In the regularisation of global economies, we use a panel of global size and value portfolios
excess returns (Asia, AS, Europe, EU, Japan, JP, and North America, US) together with the
corresponding global market factors excess returns. The dataset, consisting of 24 portfolios and
4 market factors covering the period from January 2003 to December 2022, was downloaded
from the Fama–French website.

To analyse the effect of the different regularisation methods on factor loadings for global market
economies, equations 3.8, 3.9, 3.10, we generate heatmaps of the estimated coefficients for each
technique with the same penalty value (ρ = 0.001): Figures 3.8, 3.9, 3.10. The heatmaps
help identify which factors remain relevant across portfolios as regularisation is applied. Darker
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Figure 3.8: Lasso Loadings Heatmap

colors indicate stronger exposures; white areas correspond to zero loadings due to regularisation.
The Lasso regularisation produces sparse solutions: it effectively filters out factors that are not
locally relevant. For instance, only the European market factor retains significant loadings in the
European portfolios, while most of the non-local factors (e.g., U.S. or Asia-Pacific) are driven to
exact zeros: the only exceptions are Asia for the US portfolio and EU for Big in Size and High
Book-to-Market Value US portfolio. This selective sparsity reflects Lasso’s strength in performing
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variable selection by eliminating irrelevant predictors entirely. In contrast, Ridge tends to preserve
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Figure 3.9: Ridge Loadings Heatmap

more diffuse structure across portfolios, under the same penalty, it retains non-local factors, with
smaller coefficients. The result is a more diffuse dependence structure, more suited for models
that assume some degree of global integration or where multicollinearity among predictors is
present.

Elastic Net regularisation combines the properties of both Lasso and Ridge by combining L1 and
L2 penalties. On one hand, it filters out irrelevant global market factors, helping reveal region-
specific drivers as Lasso does. On the other hand, it avoids over-aggressive zeroing that may
occur under pure Lasso, preserving some structure when factors exhibit collinearity—as is often
the case across international markets. With a balanced penalty (ρ = 0.001, α = 0.5), Elastic
Net offers a flexible trade-off, particularly in cross-sectional financial data where local and global
exposures may overlap.

Although heatmaps of exposures provide a clear visual summary of factor relevance, they do not
take into account collinearity and assumes that risk price is not relevant to the model.

Then, we switch to the Lasso p-value penalised model, where we introduce orthogonal factors
to address collinearity and account for marginal contributions, and regularise the Fama-MacBeth

104



Mkt-RF_AS Mkt-RF_EU Mkt-RF_JP Mkt-RF_US
Factors

SSLV_AS
SSMV_AS
SSHV_AS
BSLV_AS

BSMV_AS
BSHV_AS
SSLV_EU

SSMV_EU
SSHV_EU
BSLV_EU

BSMV_EU
BSHV_EU

SSLV_JP
SSMV_JP
SSHV_JP
BSLV_JP

BSMV_JP
BSHV_JP
SSLV_US

SSMV_US
SSHV_US
BSLV_US

BSMV_US
BSHV_US

Po
rtf

ol
io

s

0.78 0.15 0.01 0.11
0.82 0.13 0.00 0.02
0.74 0.08 0.00 0.00
0.75 0.11 0.00 0.06
0.72 0.15 0.00 0.00
0.84 0.03 0.00 0.00
0.16 0.61 0.02 0.16
0.20 0.65 0.00 0.07
0.23 0.70 0.00 0.00
0.09 0.56 0.00 0.10
0.13 0.69 0.00 0.04
0.12 0.88 0.00 0.02
0.01 0.00 0.88 0.04
0.00 0.00 0.72 0.00
0.00 0.00 0.68 0.00
0.01 0.06 0.70 0.05
0.04 0.07 0.63 0.00
0.05 0.00 0.73 0.00
0.22 0.02 0.02 0.75
0.13 0.10 0.00 0.73
0.16 0.12 0.00 0.70
0.02 0.10 0.00 0.65
0.07 0.16 0.00 0.51
0.07 0.23 0.00 0.58

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.10: Elastic Net Loadings Heatmap.

second step using the Lasso penalty based on betas together with a soft constraint to shrink
factors with high p-values (factors above a threshold p-value will be considered spurious), see
equation 3.12. The soft p-value penalty is introduced directly into the GLS objective to shrink
statistically insignificant risk prices. While this approach encourages sparsity, it is heuristic as it
relies on approximate p-values within the optimisation.

The integrated model assumes the US as global market, with regional markets (EU, Asia, Japan)
entering only after orthogonalization with respect to the U.S.

Ri,t = λ0 + βUS
i (RUS,t + λUS) + βEU⊥US

i (REU⊥US,t + λEU) (3.15)
+ βAS⊥US

i (RAS⊥US,t + λAS) + βJP⊥US
i (RJP⊥US,t + λJP ) + ηi,t, ∀i, t

The segmented model places the EU market at the centre and treats other regions as external
and orthogonalised with respect to Europe.

Ri,t = δ0 + ζEU
i (REU,t + δEU) + ζUS⊥EU

i (RUS⊥EU,t + δUS) (3.16)
+ ζAS⊥EU

i (RAS⊥EU,t + δAS) + ζJP⊥EU
i (RJP⊥EU,t + δJP ) + νi,t, ∀i, t
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In Figures 3.11 and 3.12, we report the heatmap results for the EU portfolios according to the
regularisation objective function in equation 3.12.
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Figure 3.11: Penalised p-value Fama-MacBeth GLS, Equities Integration

The segmentation model uses European and orthogonalised foreign factors, while the integration
model uses U.S. and orthogonalised non-U.S. factors. We apply adaptive Lasso with a p-value-
driven penalty with ρint = 0.0005, dint = 5, ρseg = 0.0005, dseg = 4, p-value threshold τ = 0.05,
and p-value penalty weight ρpval = 0.001.

Each cell in the heatmaps reports four values:

- Top: the product βi,lλl, i.e., the contribution of factor l to the expected return of portfolio
i, with βi,l in parentheses.

- Bottom: the estimated risk price λl, with its GLS-based p-value in parentheses.

From the heatmaps, we observe that the only surviving (non-zero) orthogonal factors are the US
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Figure 3.12: Penalised p-value Fama-MacBeth GLS, Equities Segmentation

market factor orthogonal to EU, Mkt_RFUS_EU, in the segmentation model, and the EU market
factor orthogonal to US, Mkt_RFEU_US, in the integration model. All other orthogonalised non-
local factors are shrunk to (or near) zero due to the joint regularisation and p-value penalty.

Including spurious factors in the model can lead to overfitting and distorted inference: highly
correlated factors may partially explain the same variation in portfolio returns, which leads to
lower estimates of true λl values (due to diluted attribution) and inflated p-values for real factors,
because the noise explained by spurious variables undermines statistical significance. This mo-
tivates a simplified model that includes only the two relevant factors, that is shown in Figure
3.13. Estimates are obtained with: ρint = 0.00005, dint = 4, ρseg = 0.00005, dseg = 4,
τ = 0.05, ρpval = 0.0001. We have now relaxed the penalty as we are interested in allowing
non-primary components to enter the model. In the integration model there is no contribution
of the EU orthogonal component, while in the segmentation model, however the EU factor is
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Figure 3.13: Penalised p-value Fama-MacBeth GLS, Equities Two-Factor

the main component, the US orthogonal factor is also significant, suggesting partial segmenta-
tion.

The displayed table reports the product λlβi,l, while the SDF is defined as the negative of this
product: a negative value in the heatmap implies a positive contribution to the SDF, and vice
versa. This sign inversion is consistent with the economic role of discount factors: assets that
covary positively with the SDF are priced to offer lower expected returns (i.e., they hedge in bad
times), while those with negative SDF exposure require higher expected returns.

Finally, we note that the risk price estimates and p-values in the heatmaps are consistent with
those reported in Table 2.16 and 2.17 for the FM GLS model.

3.4.2 Commodities

Similar to the global stock market, this section extends the copula density application to Oil-
related exchange-traded funds (ETFs) and global commodity markets, namely Natural Gas (GAS),
Aluminium (AL), and Soybean (SOY). We use the OIL commodity as local market. All returns are
computed as excess percentage returns, using the US Coupon bond risk-free rate as benchmark.
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The ETF tickers are listed below, the full description can be found in Section 2.6.2.1: ’USO’,
’DBO’, ’IEO’, ’IXC’, ’IYE’, ’XLE’.

3.4.2.1 Data Processing

The analysis covers T = 180 monthly observations from January 2007 to December 2022. The
ETFs price data are downloaded from Yahoo Finance (2025) while the commodity prices are
extracted from the International Monetary Fund, IMF (2025), historical prices database. The
reader should refer to Section 2.6.2.1 for more details.

3.4.2.2 One-Factor Model

We estimate a one-factor pricing model for the given ETFs using the OIL factor as the systematic
risk driver. Estimation is performed via maximum likelihood copula densities and compared to
standard methods such as Fama-MacBeth (FM), GLS, and GMM.

The results are shown in Table 3.10 for the centred factor. We report estimates from both
univariate and multivariate copula likelihood models using Gaussian and Student-t distributions.
The univariate Gaussian with a risk price of −1.64 (p-value 0.1) closely matches FM and OLS
estimates, however with lower p-value. As expected, the Gauss multivariate values, −0.69 (p-value
0.41), are close to those obtained by FIML, GLS, SUR classic methods. Under multivariate copula
specifications and heavy-tailed Student-t models, standard errors and estimates are comparable
with the classic methods as well.

For the copula PIT we use the notation Empirical (E) and Parametric (P). Multivariate copula
takes into account cross-sectional dependence, and produces parameter values comparable to FM
GLS and GMM. Among standard estimators, FM GLS matches closely the Gauss multivariate
risk price estimate. In the univariate case, the copula reduces to the identity and carries no extra
information, so empirical and parametric margins yield identical risk price estimates.

Both Gauss univariate and Gauss multivariate start from separate (independent) marginals, but
Gauss multivariate replaces the diagonal covariance with a full Σ from the copula, which intro-
duces cross-sectional dependence.

These results confirm that copula-based estimation can replicate and extend standard inferences,
offering robustness through flexible tail modelling and cross-sectional correlation structures. The
Student-t multivariate copula, with optimized degrees of freedom, provides a more conservative
estimate, consistent with the behaviour of robust estimators.
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Method Parameter Estimate Std. Error t-Statistic p-value
Gauss Uni Intercept 0.9319 0.7709 1.2088 0.2267
Gauss Uni Risk price -1.6432 1.0076 -1.6308 0.1029
Gauss Copula Uni E, P Intercept 0.9315 0.7707 1.2086 0.2268
Gauss Copula Uni E, P Risk price -1.6425 1.0073 -1.6306 0.1030
Gauss Multi Intercept -0.1087 0.5422 -0.2005 0.8411
Gauss Multi Risk price -0.6893 0.8380 -0.8226 0.4107
Gauss Copula Multi P Intercept -0.1087 0.5630 -0.1931 0.8469
Gauss Copula Multi P Risk price -0.6894 0.9505 -0.7253 0.4683
Gauss Copula Multi E Intercept 0.0716 0.5339 0.1341 0.8933
Gauss Copula Multi E Risk price -1.0345 0.8924 -1.1593 0.2463
t Uni nu = 2.01 Intercept 1.0454 0.5090 2.0539 0.0400
t Uni nu = 2.01 Risk price -1.5307 1.2469 -1.2276 0.2196
t Copula Uni E1P 2 Intercept 1.0454 0.5090 2.0539 0.0400
t Copula Uni E1P 2 Risk price -1.5307 1.2469 -1.2276 0.2196
t Multi nu = 4.65 Intercept -0.5640 0.6380 -0.8839 0.3768
t Multi nu = 4.65 Risk price -0.1604 1.1008 -0.1457 0.8841
t Copula Multi P 3 Intercept -0.5338 0.5971 -0.8939 0.3714
t Copula Multi P 3 Risk price -0.1034 1.0772 -0.0960 0.9235
t Copula Multi E 4 Intercept -0.5175 0.6623 -0.7814 0.4346
t Copula Multi E 4 Risk price -0.1994 1.2703 -0.1570 0.8753
t Uni nu = 2.5 Intercept 1.0516 0.5283 1.9906 0.0465
t Uni nu = 2.5 Risk price -1.5417 1.2639 -1.2198 0.2225
t Uni nu = 25 Intercept 0.8314 0.6427 1.2936 0.1958
t Uni nu = 25 Risk price -1.3139 1.1371 -1.1555 0.2479
t Uni nu = 100 Intercept 0.6665 0.6816 0.9779 0.3281
t Uni nu = 100 Risk price -1.2819 1.0417 -1.2305 0.2185
t Uni nu = 10000 Intercept 0.8766 0.7615 1.1512 0.2497
t Uni nu = 10000 Risk price -1.5725 0.9972 -1.5770 0.1148
t Multi nu = 2.5 Intercept -0.6881 0.6736 -1.0215 0.3070
t Multi nu = 2.5 Risk price 0.0230 1.1548 0.0199 0.9841
t Multi nu = 4.65 Intercept -0.5639 0.6297 -0.8955 0.3705
t Multi nu = 4.65 Risk price -0.1606 1.0857 -0.1479 0.8824
t Multi nu = 100 Intercept -0.2189 0.5439 -0.4026 0.6873
t Multi nu = 100 Risk price -0.5084 0.8924 -0.5697 0.5689
t Multi nu = 100000 Intercept -0.1100 0.5306 -0.2073 0.8357
t Multi nu = 100000 Risk price -0.6876 0.8284 -0.8301 0.4065
Nonlinear L1 Intercept 0.7887 0.5407 1.46 0.1447
Nonlinear L1 Risk price -1.3216 1.0394 -1.27 0.2036
FM Intercept 0.9242 0.8388 1.102 0.2706
FM Risk price -1.6276 1.3058 -1.246 0.2126
OLS Intercept 0.9242 0.5947 1.550 0.1220
OLS Risk price -1.6276 1.0927 -1.490 0.1381
FIML Intercept -0.1068 0.5342 -0.200 0.8418
FIML Risk price -0.6932 0.8705 -0.796 0.4269
GLS Intercept -0.1203 0.5216 -0.231 0.8179
GLS Risk price -0.6631 0.8416 -0.788 0.4318
SUR Intercept -0.0803 0.5291 -0.150 0.8795
SUR Risk price -0.7169 0.8479 -0.850 0.3990
GMM Intercept -0.1945 0.5436 -0.360 0.7210
GMM Risk price -0.4453 0.8890 -0.500 0.6170

1 The estimated marginal d.o.f. are 2.01, and the copula d.o.f. are 7.01
2 The estimated marginal d.o.f. are 2.01, and the copula d.o.f. are 3.01
3 The estimated marginal d.o.f. are 2.01, and the copula d.o.f. are 8.01
4 The estimated marginal d.o.f. are 2.01, and the copula d.o.f. are 6.01

Table 3.10: One-Factor Risk Price Estimates, ETFs Copula, Centred Factor
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In the empirical Gaussian copula case, the results tend to lie between the univariate (OLS)
benchmark and the multivariate GLS benchmark, due to the following reasons:

- Ranks Correlation matrix vs. residuals. In the parametric Gaussian case, the correlation
matrix ρ̂ is computed from the standardised residuals, matching the GLS benchmark exactly.
In the empirical case, residuals are first transformed to ranks and then Gaussian inverse
CDF is applied Z = Φ−1(u), where u is the empirical PIT. This produces a Spearman-
type correlation, which is generally smaller in magnitude than the Pearson correlation (see
Section 3.2.3, Table 3.5), pulling GLS estimates closer to the univariate values.

- Weaker GLS weighting. GLS uses the weight matrix Σ−1. When Σ is based on rank
correlations, it is typically closer to the identity matrix than the Pearson-based Σ, due to
the inverse scaling factor depending on the square of partial correlations, resulting in weaker
GLS adjustments and estimates that lie between OLS and GLS.

- Difference with the t-copula case. In the t-copula, even when empirical ranks are used for
PIT, the tail-dependence structure inflates the estimated correlations toward Pearson-like
values, especially for small degrees of freedom ν. This explains why the empirical t-copula
estimates remain close to the multivariate benchmark, whereas the Gaussian empirical
estimates do not.

Notably, the Univariate Student-t with fixed ν = 25 delivers risk price estimates close to those
obtained via L1 minimization, supporting the interpretation of heavy-tailed likelihoods as robust
alternatives to Gaussian loss functions.

3.4.2.3 Integration and Segmentation

In this section, we use the ETFs together with the mimicking portfolio factors that were defined
in Section 2.6.2.5 and defined in equation 2.88.

We report the results for the integration model of Oil ETFs and Gas as global factor and Crude
Oil orthogonal component as local factor, and the corresponding segmentation with Oil as local
factor and Gas orthogonal component as global factor.

Integration

For the integration model, refer to equation 2.82, the dependence between mimicked market
factor and ETFs excess return is visibly decreased in the constructed stochastic discount factor
compared with the sum of the factors. Being only the Gas factor significant, we set to zero the
risk price of the Oil orthogonal component. While the estimated Pearson correlations between
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the raw sum of factors and ETFs remain moderate to high (ranging from approximately +0.5 to
+0.88), the correlations between the SDF and ETFs are weaker, ranging from about 0.4 to 0.67

(Table 3.11).

The Gaussian copula correlations in Table 3.12 confirm this pattern, with ρC,SDF values uniformly
lower than ρC,sum. Despite the strong individual factor exposures, the estimated SDF effectively
balances them via the cross-sectional GLS risk prices, such that their combined pricing kernel
exhibits lower residual dependence with the ETFs excess returns.

On average, the R2 of the first step regression is 0.57 (USO, R2 = 0.97, and DBO R2 = 0.89),
the ETFs exhibit weaker average exposure (β̄GAS = −0.07) to the Gas factor and, as expected,
stronger exposure to Oil Gas orthogonal factor (β̄OIL⊥GAS = 0.84), which is however balanced
by the prices of risk: λGAS = −2.14 (p = 0.0014) and λOIL = −1.22 (p = 0.07).

ETF ρsum ρSDF

USO +0.843 +0.575
DBO +0.883 +0.679
IEO +0.514 +0.386
IXC +0.670 +0.542
IYE +0.600 +0.470
XLE +0.574 +0.428

Table 3.11: Integration Correlations, Mimicked Factors and Excess returns

ETF ρC,sum ρC,SDF

USO +0.822 +0.571
DBO +0.856 +0.644
IEO +0.554 +0.423
IXC +0.684 +0.565
IYE +0.645 +0.522
XLE +0.624 +0.487

Table 3.12: Integration Copula Correlations, Mimicked Factors and Excess returns

Figures 3.14 and 3.15 display the scatter plots of the Gaussian scores (PIT) used in the copula
estimation.
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Figure 3.14: Integration PIT, Factors and Returns, ETFs
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Figure 3.15: Integration PIT, SDF and Returns, ETFs

The PIT scatter plots confirm that the ranks of the SDF are more dispersed and less diagonally
aligned with the mimicked factor ranks than the raw factor sum, revealing how the SDF pricing
kernel reflects real statistical dependence through estimated λ reweighting.
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Segmentation

The segmentation results, refer to equation 2.83, are shown below. On average, the R2 of the first
step regression is 0.56, the estimated SDF reflects a strong positive exposure (β̄OIL = 0.79) to the
OIL factor and a weaker exposure to the Gas Oil orthogonal component (β̄GAS⊥OIL = −0.034)
; however, this is compensated by the cross-sectional GLS estimates of the risk prices, with
δOIL = −1.42 (p = 0.052) and δGAS = −2.1 (p = 0.004), such that the combined pricing kernel
neutralizes much of the return co-movement. However as the p-value is not significant, we set
the risk price of the Oil component to zero.

In Tables 3.13 and 3.14, we report the segmentation correlation values. After we set the risk
price of the Oil factor to zero, the dependence structure breaks down: the sum of the two-factor
components shows correlations with ETFs excess returns (ranging from 0.56 to +0.87), while the
correlation between the constructed SDF and the ETFs returns is weaker (approximately 0.37 to
0.62 across both Pearson and copula measures).

ETF ρsum ρSDF

USO +0.815 +0.488
DBO +0.866 +0.614
IEO +0.508 +0.371
IXC +0.669 +0.535
IYE +0.597 +0.462
XLE +0.569 +0.420

Table 3.13: Segmentation Correlations, Mimicked Factors and Excess Returns

ETF ρC,sum ρC,SDF

USO +0.796 +0.495
DBO +0.835 +0.583
IEO +0.543 +0.409
IXC +0.679 +0.562
IYE +0.638 +0.519
XLE +0.615 +0.482

Table 3.14: Segmentation Copula Correlations, Mimicked Factors and Excess Returns

Figures 3.16 and 3.17 show the scatter plots of the Gaussian PIT scores used in the copula
estimation. The PITs for the raw sum of factors do show a stronger dependence along the
diagonal with the return PITs, due to spurious Oil factor interference, while the PITs for the SDF
show a weaker dependence as we manually removed the effect of the Oil factor, which is not
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priced. This visual pattern reinforces the numerical findings: the SDF ranks co-move lightly with
Gas Excess return ranks, indicating integrated risk exposures in the pricing kernel.
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Figure 3.16: Segmentation PIT, Factors and Returns, ETFs
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Figure 3.17: Segmentation PIT, SDF and Returns, ETFs
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3.4.2.4 Regularisation

We apply penalised regression methods—Lasso, Ridge, and Elastic Net—as described in equations
3.8, 3.9, 3.10 to commodity indices and OIL ETF excess returns: Figures 3.18, 3.19, 3.20.
The analysis is limited to the OIL ETFs, using mimicked factors for the commodity indices:
Aluminium, Gas, Oil, Soybean. We start by running time series regularisation using the same
penalty level (ρ = 0.0001). The resulting factor loading coefficients (exposures) are visualized
through heatmaps.
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Figure 3.18: Lasso Loadings Heatmap, ETFs

Darker colors represent stronger factor exposures; white areas indicate coefficients shrunk to zero
due to regularisation. Lasso produces sparse solutions by performing factor selection.

In Figure 3.18, we can see that Lasso mostly captures Oil-related exposures and filters out weaker
signals: DBO and USO with AL, IYE and XLE with SOY. In contrast, Ridge regularisation,
Figure 3.19, retains most of the factor loadings but shrinks them proportionally. This results
in a more diffuse exposure profile where all factors contribute marginally. Balanced Elastic Net
regularisation, α = 0.5, combines Lasso’s sparsity and Ridge’s stability, filtering out irrelevant
factors while preserving structure among correlated predictors. In Figure 3.20, we can see that
Oil factor is dominant but still appreciate partial influence from Aluminium and Gas.

The exposure heatmaps, as already noticed for global economies, have two important limitations:
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Figure 3.19: Ridge Loadings Heatmap, ETFs
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Figure 3.20: Elastic Net Loadings Heatmap, ETFs
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they ignore collinearity among factors and do not consider that risk price is not the same for all
the factors.

To incorporate cross-sectional risk prices (λl) and link exposures more explicitly to asset returns,
we deploy the Lasso p-value penalised model. We also introduce orthogonal factors to address
collinearity, and to account for marginal contributions. We regularise the Fama–MacBeth second
step using a Lasso penalty on the risk prices, with adaptive weights derived from the betas. In
addition, we impose a soft constraint that shrinks factors with a high p-value (factors above a
threshold p-value will be considered spurious), see equation 3.12.

The integration model assumes the GAS factor as the global source of risk, while OIL, AL, and
SOY are introduced only for their marginal contribution, using their GAS orthogonal compon-
ent:

Ri,t = λ0 + βGAS
i (fGAS,t + λGAS) + βOIL⊥GAS

i (fOIL⊥GAS,t + λOIL) (3.17)
+ βAL⊥GAS

i (fAL⊥GAS,t + λAL) + βSOY⊥GAS
i (fSOY⊥GAS,t + λSOY ) + ηi,t, ∀i, t

where fl,t is the mimicked factor l at time t.

The segmentation model treats OIL as the local reference market, and other commodity factors
are orthogonalised with respect to it:

Ri,t = δ0 + ζOIL
i (fOIL,t + δOIL) + ζAL⊥OIL

i (fAL⊥OIL,t + δAL) (3.18)
+ ζGAS⊥OIL

i (fGAS⊥OIL,t + δGAS) + ζSOY⊥OIL
i (fSOY⊥OIL,t + δSOY ) + νi,t, ∀i, t

Figures 3.21 and 3.22 show the multifactor heatmap results, with the following regularisation
setting: ρint = 0.00005, dint = 5, ρseg = 0.00005, dseg = 4, p-value threshold τ = 0.05, and
p-value penalty weight ρpval = 0.0005.

Each heatmap cell contains:

- Top: the product βi,lλl of Excess Return factor l vs. ETFs i’s expected return, with the
beta βi,l in parentheses.

- Bottom: the estimated risk price λl, with the corresponding GLS p-value in parentheses.

The choice of the regularisation penalty in Lasso estimation is not straightforward, especially in
settings with orthogonal but weak factors where Lasso can yield unstable results.

We opt to exclude Soybean, which is not priced, and Aluminium, which has higher betas but
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Figure 3.21: Penalised p-value Fama-MacBeth GLS, ETFs Integration

shows a lower p-value in the dual factor model (refer to tables 2.28, and 2.29). However both in-
tegration and segmentation models with four factors are unstable due to the high beta collinearity
in the second step of the Fama-Macbeth regression. In this setting, we also tried to use a back-
ward selection, but factor shrinkage was not successful. By contrast, a forward selection model,
starting from GAS for the integration and from OIL for the segmentation, consistently selected
OIL_GAS_ort and GAS_OIL_ort, respectively. The numerical results of these experiments are
available upon request.

For this reason, we retain GAS and OIL_GAS_ort in the integration model, and OIL and
GAS_OIL_ort in the segmentation model. The simplified two-factor specification is shown in
Figure 3.23. The reduced model was run relaxing the penalty as we are interested to allow non-
primary components to enter the model: ρint = 0.00005, dint = 5, ρseg = 0.00005, dseg = 4,
p-value threshold τ = 0.0005, and p-value penalty weight ρpval = 0.0005.
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Figure 3.22: Penalised p-value Fama-MacBeth GLS, ETFs Segmentation

The estimated risk prices and p-values shown in the heatmaps are consistent with the values
reported in Tables 2.28 and 2.29. The regularisation integration heatmap shows that the GAS
factor, although it has lower betas, is priced. In the segmentation model, the orthogonal GAS
factor is also priced while the OIL factor is weakly priced. This evidence supports total integration
between the Gas and Oil commodities.

The sign of the estimated products λfβi,f implies opposite signs for the stochastic discount factor
contributions, as we have already noticed for global economies.

We can notice that in the presence of weak factors and beta collinearity the Lasso regularisation
becomes unstable, and highly sensitive to the choice of regularisation parameters.
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Figure 3.23: Penalised p-value Fama-MacBeth GLS, ETFs Two-Factor

3.5 Practical Implications for Investors

This section addresses the practical implications for portfolio managers, institutional investors
and commodity traders, particularly regarding the understanding of market integration, tail de-
pendence, and risk transmission mechanisms.

3.5.1 Risk Transmission

In classical portfolio analysis, the focus is on the first stage time-series regression introduced in
equation 2.7. Beta captures the exposure to the market, and alpha captures the idiosyncratic
component associated with active management.

Multifactor models, such as the Fama–French framework, introduce additional factors bey-
ond the market—such as size (SMB,Small Minus Big), value (HML, High Minus Low), prof-
itability (RMW,Robust Minus Weak), and investment (CMA,Conservative Minus Aggressive)—
challenging the interpretation of portfolio managers’ α as genuine skill.

According to our study, in multifactor models the relevance of a factor should be assessed not

121



only through time-series fit (adjusted R2) but also by the significance of its estimated risk price
λ in the cross‐sectional regression, equation 2.8. A factor l with λl ≈ 0 is considered spurious,
even if portfolios show high or statistically significant loadings (βi,l) on it in the time‐series
regressions.

In addition, classical linear estimation of λ and β assumes normally distributed returns. These
assumptions fail under heavy tails and nonlinear dependence, precisely when risk transmission
becomes most important. During the 2007–2008 financial crisis, for example, collateralized debt
obligations (CDOs) were priced using the Gaussian copula, which implied independence in the
tails of joint default probabilities, and led to a systematic underestimation of the probability of
joint extreme losses.

Estimating risk premia with Student-t copula-based maximum likelihood methods, as proposed
in this study, provides a more realistic measure of priced risk, which enables the identification
of non-spurious factors even under heavy-tailed distributions, capturing the higher probability of
simultaneous losses under stress conditions. This ensures that, in periods of market stress, the
inferred risk prices λ remain valid and informative for portfolio construction, and systemic risk
assessment.

The idea is to identify the factors that drive performance under different volatility regimes, such
as crisis and non-crisis periods: the investors can use λ as a signal for factor‐based stock picking,
allocating more weight to securities with high risk premium (high βilλl).

Furthermore, λ can be integrated directly into portfolio construction if the expected returns are
modelled as µ = Bλ, where B ∈ RN×ℓ collects the factor loadings for N portfolios and ℓ factors,
and λ ∈ Rℓ×1 is the vector of corresponding risk prices. While the classical mean–variance
optimization relies on historical sample means µ̂, this approach derives expected returns from
economically priced risk factors. When λ and B are estimated via the copula‐based MLE method
proposed in this study, tail dependence and nonlinear co‐movements are taken into account,
making the optimization robust to fat tails and high volatility dynamics.

3.5.2 Integration

In commodity trading, the approach extends naturally to the classical pricing relation between
the Forward (Ft) and the Spot Price (St), Ft = St e

(rt+ct−yt)τ , where rt is the interest rate,
ct the cost of carry, yt the convenience yield, and τ = T − t is the time to maturity, with t

denoting the current time (when the forward is priced) and T the maturity or delivery date of
the forward contract. The structural pricing model can be expressed in a equivalent multi-factor
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framework. The interest rate, cost of carry, and convenience yield play roles analogous to the
market, size, and value factors in equity models, acting as systematic drivers of expected yields
and term structure dynamics through their associated risk premia, see Ballestra and Tezza (2025)
for a continuous-time commodity model where the spot price, convenience yield, and interest rate
follow a system of stochastic differential equations (SDE).

On one hand, integration, as defined by Brooks and Iorio (2009) and applied in this study, repres-
ents the economic linkage among the relevant factors through a shared pricing kernel that explains
why prices move together. On the other hand, cointegration provides statistical evidence of a
shared long-run trend, confirming price comovements. Taken together, integrated markets should
exhibit cointegration, allowing practitioners to identify benchmarks, redundant prices references,
and mean-reverting spreads that can be exploited through pairs trading strategies.

Integration is typically stronger at the micro level—for example, between two futures that ref-
erence the same product specification, delivery point, and incoterm—where arbitrage and price
discovery operate efficiently. For example, the ICE and CME ULSD 10 ppm CIF Mediterranean
Platts futures contracts both settle to the same price assessment, so if they are economically
integrated, their cointegration should be stable. The stationary spread between them would then
represent only short-term noise or liquidity differences. In such a case, either future series can
serve as the representative benchmark for hedging Mediterranean diesel, as both embed the same
market information. However, a breakdown in cointegration would signal partial segmentation
between contracts.

While cointegration analysis is purely statistical and detects the presence of a stable long-run
relation between price series, it does not explain why the relation exists or what economic factors
drive it. Market integration, by contrast, provides the underlying mechanism: it identifies the
common factors that generate the co-movement. Here comes the importance of the SDF copula
analysis and the p-value penalised Fama-MacBeth GLS Lasso regularisation proposed in this
study: they potentially enable the application of trading strategies (for example, the classic pair-
trading mean-reversion approach based on cointegration) through a guided selection of factors
that effectively drive risk pricing. The trader will use the integration signal to decide whether and
how much to rely on a cointegration strategy, and at the same time, the cointegration signal will
be used to time the trades and manage the spread.
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3.6 Contribution

In this Chapter we presented two applications of copula: one for risk price estimation and an-
other, based on the dependence between SDF and returns, that we apply to market integration
analysis.

The risk price estimation is a novel application of copula-based maximum likelihood optimisation
of the one-factor asset pricing model. While traditional methods such as Fama-MacBeth, GMM,
and SUR rely on linear covariance structures, the copula framework allows explicit modelling of
nonlinear and tail dependencies in residuals. In particular, our results show that the multivariate
copula density likelihood recovers cross-sectional GLS estimates, while the univariate copula like-
lihood recovers OLS estimates under the assumptions of homoscedasticity and no cross-sectional
correlation. Although computationally more intensive, the copula method can be extended to
more flexible specifications such as the Student-t copula, which provides robustness to heavy
tails, and to dynamic copulas capturing time-varying dependence.

The second application, the copula correlation between the SDF and returns, helps to differentiate
the contribution of joint dependence from the contribution of risk prices. We show that in a
multifactor model, the sum of the factor realizations depends only on exposures and explains
return variability regardless of whether factors are priced. By contrast, the SDF-return copula
correlation depends directly on which factors are priced in the model: setting a factor’s risk price
to zero, removes its impact on the SDF while it does still contribute to return variation. This
distinction illustrates the essential difference between exposure and pricing in factor models:

- Exposure drives variation in realised returns through the factor loadings βl. Even if the
factor’s risk price is zero, λl = 0, fluctuations in fl induce fluctuations in returns.

- Risk prices determine the compensation for risk in expected returns. Only nonzero λl affect
the expected returns and the SDF.

The SDF copula analysis helps to visualize whether strong dependence arises primarily from factor
exposure or from pricing. If a factor is unpriced, the SDF and returns will show weaker dependence
in the copula analysis, even though the factor still drives return variation. In contrast, when risk
prices are significant, the SDF systematically discounts returns, creating stronger dependence.
SDF copula helps to identify scenarios where dependence is driven by exposure alone rather
than priced risk, highlighting potential spurious factors that would otherwise appear significant
in variance-based analyses.

On the other hand, this approach is not intended to replace classic risk price estimation. The
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sign and magnitude of λ, which are key inputs for the SDF copula, determines whether a factor
is perceived as a good or a bad risk and how much compensation investors require per unit
exposure. Rather, SDF copula complements risk-price estimation by providing a rank-based view
of dependence that is separate from the marginal distributions and invariant to scaling and other
monotone transformations. For example, a Student-t copulas can accommodate heavy tails and
tail dependence, which are common in financial data. This extension is particularly useful if the
data are non-Gaussian or exhibit extreme co-movements during periods of high volatility.

Finally, in the regularisation experiment, we test a Penalised p-value Fama-MacBeth GLS Lasso
model, which provides several advantages over other regularisation methods, including the FM
Lasso penalised beta estimation of risk prices introduced by Bryzgalova (2015):

- ensuring that retained factors contribute not only to fit, but also to risk pricing.

- accounting for collinearity both via full GLS weighting (cross-sectional covariance of resid-
uals) and via prior orthogonalization of factors, which isolates the marginal contribution of
each factor-specific component.

- penalising factors with high p-values, avoiding false positives and overfitting.

Unlike other approaches, this method regularises the pricing kernel directly. Factors that lack
significance or explanatory power are penalised and removed, while priced and relevant sources
of risk are preserved. However, in the presence of weak factors and beta collinearity, as it is the
case of commodities indices, the regularisation method becomes very unstable.
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Chapter 4

Conclusions and Future Research

In this chapter, we present the conclusions and summarize the main contributions of this work.
For a detailed list of contributions we refer to the respective sections:
- Risk price estimation and linear approximation, Section 2.7.
- Dependence, Copula, and Regularisation, Section 3.6.

4.1 Conclusions

The risk premium is the product of two elements: the risk price and the beta exposure. A factor
is priced only when both components are non-zero. In this framework, the integration model
can be seen as a binary application: integration requires that only the global factor is priced,
meaning it exhibits both high exposure and a significant risk price. Segmentation is defined as
the symmetric case, in which the local factor is priced while the global factor is not. However,
the segmentation model is not intended to verify the same economic mechanism as integration,
but rather to provide a complementary definition by construction. The SDF Copula analysis
developed in the final chapter is particularly useful for visualizing the product factor contribution,
as it highlights the risk premium as a whole rather than separating exposure and risk price
components, which would otherwise appear as a simple sum of factors exposure. A major outcome
of this thesis is the clarification of the concept of integration as originally applied in Brooks and
Iorio (2009). As explained above, this idea extends beyond the integration of global economies
and commodity indices, and addresses the estimation of risk premia and the representation of their
bilinear structure through the SDF Copula analysis. More generally, the concept of integration
serves as a starting point for clarifying how true factors should be distinguished from spurious
ones. This is effectively achieved through risk premium estimation, which combines exposures
and risk prices, and through the analysis of their bilinear product via the SDF Copula. In the final
chapter, we also propose a heuristic Fama–MacBeth GLS Lasso regularisation with penalties on
both betas and p-values, representing a first attempt to implement this idea within a multifactor
model.

Another contribution is the systematic approach to the linear approximation of the product factor,
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namely the risk premium. We show how the estimates and inference of the linear approxima-
tion methods are consistent with the results obtained with more classic estimation techniques.
Comparing solver performance, we see that the sum of squared residuals (SSR) naturally favours
L2-norm methods and the sum of absolute errors (SAE) favours L1-norm methods. However, we
find that in the presence of heavy tails, the L1-norm approaches show lower bias and variance for
the estimation of the unknown parameters than the L2-norm approaches.

Finally, the risk price estimation presented in Chapter 3 introduces a novel application of copula-
based maximum likelihood optimisation to the one-factor asset pricing model. Our results demon-
strate that, when errors are homoskedastic and cross-sectional correlation is absent, the univari-
ate copula likelihood yields the same estimates as OLS, whereas the multivariate copula dens-
ity likelihood matches the GLS estimates. The copula formulation therefore provides a natural
bridge between linear correlation-based methods and dependence modelling based on transformed
ranks.

4.2 Future Research

The findings of this thesis open up several directions for future research that may prove valuable
for financial modelling. In particular, the main applications are expected to lie in the areas of
factor selection and portfolio optimisation via the factor mimicking portfolio method.

- Integration and segmentation. The methodology described in Section 2.6.1.4 can be applied to
study the integration and segmentation of European economies before and after the introduction
of the Euro. Another natural application would be to analyse the degree of integration of the
UK economy with the EU, the US, and the Asia-Pacific region in the periods before and after
Brexit. The main challenge for this line of research lies in the construction of appropriate local
portfolios and market factors, as well as their standardisation across countries, which is essential
to ensure a consistent assessment of changes in financial integration over time. For both studies,
we recommend the use of the SDF copula analysis as developed in Section 3.2.3, to help better
visualise the integration results.

- Linear approximation. The linear approximation methods proposed in Section 2.3 can be easily
extended to two-factor and more complex multifactor models, in order to compare bias, variance,
and performance under both the L1- and L2-norm dimensions.

- Copula density likelihood estimation. The method proposed in Section 3.2.2 can be extended
to multiple factor model and to the use of non-elliptical copulas with empirical PIT. A promising
direction for future research is to simulate the robustness of copula-based likelihood estimation
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relative to standard correlation-based methods in environments with time-varying volatility and
tail dependence. This would help assess the potential gains of copula likelihood methods in
realistic crisis scenarios, where standard linear factor models may fail to provide an adequate
description of joint risks.

- Regularisation. An interesting direction for future research is to extend the penalised p-value
Fama-MacBeth Generalized Least Squares (GLS) Lasso regularisation introduced in this thesis.
Our approach improves upon standard methods by ensuring that retained factors contribute not
only to statistical fit but also to risk pricing, through direct regularisation of the stochastic
discount factor. The current implementation is heuristic: p-values are computed ex post and
incorporated as a soft penalty in the objective function.

A promising extension of this work is the use of the regularised GMM framework developed by
Belloni et al. (2018). In this context, the estimation involves a low-dimensional structural para-
meter of interest (such as the vector of risk prices λ) together with high-dimensional parameters
(such as the portfolio exposures βi). When the βi are estimated with shrinkage methods (e.g.
Lasso), the resulting estimators are biased and direct plug-in approaches yield invalid inference
for λ. The idea is to construct a modified score function that is locally insensitive to errors in the
high-dimensional estimates. Applied to factor pricing, this approach would allow regularisation to
be used in the time-series stage for exposure estimation, while maintaining valid inference on the
cross-sectional risk prices. This offers a rigorous way of unifying shrinkage and inference, and is
a natural direction for future research building on the penalised FM-GLS framework.

- Commodities indices. In the Rolling Yield Appendix A, we have shown that the two-month
WTI futures rolling yield provides a good proxy for the twelve-month rolling yield, and that
the Kalman-filtered ETFs and factor-based synthetic rolling yields display the highest correlation
with the one-period lagged WTI futures term. However, further evidence is required to establish
whether the Kalman synthetic yield, as defined in the appendix, is the most reliable practical
proxy in the absence of full futures curve data. As already noted, the synthetic rolling yield
construction mixes genuine rolling effects with other sources of variation arising from log returns.
In addition, the very high correlations between the Kalman-filtered OIL factor rolling yields and
their ETF counterparts is partially due to the fact that the Kalman filter is removing noise. Future
research should therefore investigate whether the Kalman synthetic yield can be validated against
alternative measures of term premia (i.e., the risk compensation investors demand for holding
longer maturities) and whether its apparent efficiency is robust across different commodities,
maturities, and market regimes. This would help to clarify whether it can be considered a
general-purpose proxy for rolling yields when futures curve data are unavailable.
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Appendices

A Rolling Yield

In this appendix, we aim to mimic futures contracts with historical prices. For this, we construct
a synthetic rolling yield (RYS) that infers the curve term behaviour indirectly.

From the ETFs description, Section 2.6.2.1, it can be seen that, while most of the Oil ETFs
include large- and mid-cap US energy sector firms, USO and DBO are futures related ETFs.
This is the motivation to replace the natural log returns (hereafter log returns) and adopt a carry
dynamics factor such as the rolling yield, which is a more natural risk driver for commodities.

The WTI crude oil futures contract prices from December 2007 to December 2022 were down-
loaded from the LSEG (London Stock Exchange Group) Refinitiv platform. We use the tickers
NYMWTI1 (Crude Oil WTI NYMEX Close M+1, USD/BBL, Ft,1) and NYMWTI2 (M+2, Ft,2),
where NYMWTI1 represents the front-month contract—that is, the contract with the nearest de-
livery date. For the twelve monthly contracts, we used the tickers NCLSM02–NCLSM13 (NYMEX
Light Crude Oil Strip M02–M13 Settlement Prices) over the same time period, where NCLSM02
corresponds to the front-month contract.

Rolling yield is the curve slope: the (log) difference between futures maturities (or spot vs front),
measured at time t. Because the spot price is not available, it is derived from the slope of the
futures curve.

In this work, the two-month WTI rolling yield (RY) is defined as:

RYWTI2M ,t = ln
(
Ft,2

Ft,1

)
, ∀t (4.1)

and the twelve-month rolling yield is defined as:

RYWTI12M ,t =
13∑
n=3

ln
(

Ft,n

Ft,2

)
n− 2

, ∀t (4.2)

where:
Ft,1= price of the 1-month WTI futures contract at time t

Ft,2= price of the 2-month WTI futures contract at time t 1

1 Observed in December, the +1 month contract, that matures in late December, is the January contract (delivers
in January). The +2 month contract is the February delivery contract that matures in late January. In detail,
according to the CME Group, trading for a given contract month terminates three business days before the
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Ft,n = price of the n-month WTI futures at time t

n = Delivery month and t =monthly time index that all the future contract refers to.

In Figure 4.1, we compare the rolling yield built using the full twelve-month future term curve
with the one built using the first two-month future term.
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Figure 4.1: WTI 2-month and 12-month Rolling Yields

Sakkas and Tessaromatis (2020) show that momentum is among the most important pricing
factors, delivering statistically and economically significant risk prices, outperforming specific-
ations that rely only on untransformed returns. Our risk driver, the rolling yield, captures a
term-structure (carry) component that is conceptually distinct from momentum (past returns)
yet often empirically related in commodities because trends and curve slopes can co-move. We
therefore test whether rolling yield explains part of the momentum premium or provides incre-
mental pricing power relative to untransformed returns.

The rolling yield is positive in backwardation and negative in contango, reflecting the return
component from the futures curve shape. The two month and twelve-month WTI rolling yields
have a very high correlation (0.975), they show the same trend, the only difference being the
higher volatility of the two-month curve. This behaviour is confirmed in the literature: Miffre
and Rallis (2007) have shown that rolling yields across different maturities are highly correlated
being closely linked to the slope of the term structure. Shorter-dated contracts exhibit more

25th calendar day of the month preceding the delivery month. For example, the February delivery 2008 WTI
+2 month futures contract expired on January 22, 2008.
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volatile rolling yields, but they largely follow the same trend as longer-dated ones. According to
this result, from now on, we operate with the 2 month RY and we refer to it as WTI rolling
yield.

Now, we define a synthetic rolling yield (RYS) as the deviation of the current excess return from
its long-run average:

RYSi,t = Ri,t −
1

12

12∑
s=1

Ri,t−s = ln
(

Pi,t

Pi,t−1

)
− 1

12

12∑
s=1

ln
(

Pi,t−s

Pi,t−s−1

)
, ∀i, t (4.3)

The formula captures short-term momentum or deviation from trend, which reflect the realised
effects of rolling but is also influenced by ”spot” price movements, the ETF-specific structure
and tracking noise. While the WTI rolling yield directly measures the economic gain or cost of
rolling contracts on the futures curve, the synthetic rolling yield infers curve behaviour indirectly
by comparing short-term ETFs returns to long-term averages.

In addition, we estimate the rolling yield as a latent factor, using a state-space model based on
the discrete time Ornstein-Uhlenbeck process. We postulate that the unobserved rolling yield yi,t

follows a mean-reverting process, while observed excess log returns Ri,t are modelled as noisy
observations of the true yield:

yi,t = ϕiyi,t−1 + (1− ϕi)µi + ηi,t ηi,t ∼ N (0, σ2
ηi
), ∀i, t (4.4)

Ri,t = yi,t + εi,t, εi,t ∼ N (0, σ2
εi
), ∀i, t (4.5)

where for each ETF and factor:

- ϕi ∈ (0, 1): parameter controlling the mean reversion speed,

- µi: equilibrium rate or long-run mean level of the latent yield process,

- σ2
ηi
: variance of the state innovation (yield shock),

- σ2
εi
: variance of the observation noise (measurement error),

- yi,t: latent rolling yield at time t,

- Ri,t: observed excess log return at time t.

The model is estimated by maximizing the likelihood of the observed returns with respect to the
parameters (ϕi, µi, σ

2
ηi
, σ2

εi
). The Kalman filtered estimate of the rolling yield is obtained by using

the python package MLEModel. We have N = 6 ETFs and ℓ̄ = 4 factors: in total 10 Kalman

131



filtered rolling yields.

The filtering is performed separately for each time series: the optimised parameter are used for the
USO and DBO ETFs and the commodities factors; while for the rest of the ETFs as the parameter
estimated by filtering where not realistic, we applied a fix vector parameter that ensures uniform
smoothing behaviour.

We expect that USO and DBO, commodities ETFs that are built as futures-based ETFs derive
a large portion of their return from the rolling yield, i.e. the gain or loss incurred when rolling
futures contracts forward. Standard log returns mix the rolling yield component with the spot price
movements, masking the role of the future term structure (i.e., contango and backwardation).
Rolling yield provides a cleaner measure of the systematic risk priced in the cross-section of
commodities.

In equation 4.1, we defined the two-month WTI rolling yield (RY). However, futures prices
converge to the spot price at contract maturity, which typically occurs a few days before the
start of the stated delivery month; therefore, the term structure observed at time t − 1 (Lag
1) better captures the information relevant for the return realised by the ETFs over the interval
[t − 1, t]. For example, observed in December, the WTI February contract physical delivery
begins in February but reflects expectations about spot prices in late January. This will coincide
in between the one-month lag and the two-month lag WTI rolling yield, however we decide to
use the one-period lag WTI rolling yield, as it exhibits the highest correlation with the ETFs over
the interval [t− 1, t]. :

RY(1)
WTI2M ,t = ln

(
Ft−1,2

Ft−1,1

)
, (4.6)

In Figures 4.2, 4.3, and 4.4, we compare the WTI 2 months RY lag 1 defined in equation 4.6
with the synthetic rolling yield and the Kalman smoothed RYS for USO, DBO and XLE:

We also show the correlation matrices in Tables 4.1, 4.2, 4.3.

USO Return USO RYS USO Kalman RYS OIL Kalman RYS OIL Return WTI Return WTI RY WTI RY (Lag 1)
USO Return 1.000 0.937 0.863 0.671 0.793 0.340 -0.100 0.145
USO RYS 0.937 1.000 0.953 0.799 0.778 0.322 0.101 0.336
USO Kalman RYS 0.863 0.953 1.000 0.864 0.770 0.439 0.065 0.339
OIL Kalman RYS 0.671 0.799 0.864 1.000 0.865 0.553 0.226 0.515
OIL Return 0.793 0.778 0.770 0.865 1.000 0.605 -0.015 0.315
WTI Return 0.340 0.322 0.439 0.553 0.605 1.000 -0.359 0.269
WTI RY -0.100 0.101 0.065 0.226 -0.015 -0.359 1.000 0.630
WTI RY (Lag 1) 0.145 0.336 0.339 0.515 0.315 0.269 0.630 1.000

Table 4.1: Correlation Matrix: USO

We can see that the Kalman synthetic yield is the best practical proxy in the absence of the
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Figure 4.2: USO Kalman Filtered Synthetic Rolling Yields
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Figure 4.3: DBO Kalman Filtered Synthetic Rolling Yields
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Figure 4.4: XLE Kalman Filtered Synthetic Rolling Yields

DBO Return DBO RYS DBO Kalman RYS OIL Kalman RYS OIL Return WTI Return WTI RY WTI RY (Lag 1)
DBO Return 1.000 0.933 0.837 0.634 0.679 0.259 0.002 0.159
DBO RYS 0.933 1.000 0.941 0.723 0.621 0.204 0.219 0.356
DBO Kalman RYS 0.837 0.941 1.000 0.841 0.653 0.339 0.262 0.428
OIL Kalman RYS 0.634 0.723 0.841 1.000 0.865 0.553 0.226 0.515
OIL Return 0.679 0.621 0.653 0.865 1.000 0.605 -0.015 0.315
WTI Return 0.259 0.204 0.339 0.553 0.605 1.000 -0.359 0.269
WTI RY 0.002 0.219 0.262 0.226 -0.015 -0.359 1.000 0.630
WTI RY (Lag 1) 0.159 0.356 0.428 0.515 0.315 0.269 0.630 1.000

Table 4.2: Correlation Matrix: DBO

XLE Return XLE RYS XLE Kalman RYS OIL Kalman RYS OIL Return WTI Return WTI RY WTI RY (Lag 1)
XLE Return 1.000 0.952 0.849 0.438 0.479 -0.024 0.108 0.023
XLE RYS 0.952 1.000 0.929 0.528 0.445 -0.048 0.270 0.178
XLE Kalman RYS 0.849 0.929 1.000 0.694 0.536 0.130 0.277 0.281
OIL Kalman RYS 0.438 0.528 0.694 1.000 0.865 0.553 0.226 0.515
OIL Return 0.479 0.445 0.536 0.865 1.000 0.605 -0.015 0.315
WTI Return -0.024 -0.048 0.130 0.553 0.605 1.000 -0.359 0.269
WTI RY 0.108 0.270 0.277 0.226 -0.015 -0.359 1.000 0.630
WTI RY (Lag 1) 0.023 0.178 0.281 0.515 0.315 0.269 0.630 1.000

Table 4.3: Correlation Matrix: XLE

futures curve data, although it should be interpreted with caution as we have already pointed
out that it mixes rolling effects with other sources of variation from the log returns. We also
notice that the correlation of the Kalman smoothed RYS for USO, DBO and XLE (the same
is observed for the other ETFs) with the WTI 2 months RY is higher than the log return one.
Finally we observe very high correlation between the Kalman filtered OIL factor RYS and the
ETFs one (USO 0.864, DBO 0.841, XLE 0.694). Of course, this is partially due to the fact that
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the Kalman filter is removing the noise.

In summary, we have shown that the WTI future 2 months rolling yield is a good proxy for the
WTI future 12 months RY. We also show that Kalman-filtered ETF and factor RYS have the
highest correlations with the one-lag two-month WTI RY.

According to these results, the Kalman filtered time series appears to be more suitable risk
drivers than log returns to be used in the commodities Fama–MacBeth integrated regression, for
both the dependent variables (de-noised portfolio returns) and the independent variables (factor
exposures).

The Fama-MacBeth regression for the integrated and segmented model are shown in Table 4.4
and 4.5, the excess log return percentage have been replaced by the rolling yields percentage.
Our results show that rolling yield regressions compared with excess log return regressions, exhibit
lower residual variance, and stronger pricing of key factors under both GLS and OLS.

Area Method Parameter Estimate Pr > |t| Signif. Comments Results
AL_OIL FM OLS λAL -0.0308 0.958 Estimate not statistically significant; no evidence of

integration
AL_OIL FM OLS λOIL 0.3225 0.4201 Estimate is not statistically significant; no evidence

of segmentation
GAS_OIL FM OLS λGAS 0.3712 0.4962 Estimate not statistically significant; no evidence of

integration
GAS_OIL FM OLS λOIL 0.254 0.0753 Estimate is not statistically significant; no evidence

of segmentation
SOY_OIL FM OLS λSOY 0.3176 0.4105 Estimate not statistically significant; no evidence of

integration
SOY_OIL FM OLS λOIL 0.2774 0.0141 ** Statistically significant and economically large; integ-

ration rejected
IR

AL_OIL FM GLS λAL 0.4799 0.1854 Estimate not statistically significant; no evidence of
integration

AL_OIL FM GLS λOIL 0.0374 0.8757 Estimate is not statistically significant; no evidence
of segmentation

GAS_OIL FM GLS λGAS -2.4614 0.0065 *** Statistically significant and economically large; evid-
ence of integration

PI

GAS_OIL FM GLS λOIL 0.9161 0.0019 *** Statistically significant and economically large; par-
tial integration

PI

SOY_OIL FM GLS λSOY 2.0474 0.0974 Estimate not statistically significant; no evidence of
integration

SOY_OIL FM GLS λOIL 0.1657 0.3261 Estimate is not statistically significant; no evidence
of segmentation

Table 4.4: ETFs Synthetic Rolling Yield Integration Test Results

For the segmented model, the estimated price of risk of the rolling yield OIL factor in the pair
with the GAS orthogonal component is 0.76% with p < 0.01. This implies that an ETF with
unit exposure to the rolling yield factor earns, on average, 0.76% higher monthly excess return.
Annualized, this corresponds to a risk price of approximately: 0.76× 12 = 9.1% per year
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Area Method Parameter Estimate Pr > |t| Signif. Comments Results
OIL_AL FM OLS δOIL 0.1706 0.1104 Estimate not statistically significant; no

evidence of segmentation
OIL_AL FM OLS δAL -0.7189 0.1222 Estimate not statistically significant; no

evidence of segmentation rejection
OIL_GAS FM OLS δOIL 0.2756 0.0306 ** Significant and different from zero, which

shows segmentation
TS

OIL_GAS FM OLS δGAS 0.3601 0.5401 Estimate not statistically significant; no
evidence of segmentation rejection

OIL_SOY FM OLS δOIL 0.3657 0.0154 ** Significant and different from zero, which
shows segmentation

TS

OIL_SOY FM OLS δSOY 0.2735 0.5692 Estimate not statistically significant; no
evidence of segmentation rejection

OIL_AL FM GLS δOIL 0.4596 0.0701 Estimate not statistically significant; no
evidence of segmentation

OIL_AL FM GLS δAL 0.332 0.3146 Estimate not statistically significant; no
evidence of segmentation rejection

OIL_GAS FM GLS δOIL 0.7555 0.0015 *** Significant and different from zero, which
shows segmentation

PS

OIL_GAS FM GLS δGAS -2.5566 0.0053 *** Significant and different from zero, which
shows partial segmentation

PS

OIL_SOY FM GLS δOIL 0.7678 0.0342 ** Significant and different from zero, which
shows segmentation

TS

OIL_SOY FM GLS δSOY 2.0093 0.1187 Estimate not statistically significant; no
evidence of segmentation rejection

Table 4.5: ETFs Synthetic Rolling Yield Segmentation Test Results

The result is statistically significant and confirms that rolling yield, as a futures curve-derived
return component, is priced in the cross-section of commodity-linked ETFs.

Finally, in Table 4.6 we report the Harvey–Liu Incremental factor significance test using the
synthetic rolling yield.

Factor Pair Mean p (mean) Signif. Median p (median) Signif.
AL-OIL -0.0013 0.7430 -0.0040 0.7920
AL-OIL_AL_ort -0.0011 0.6410 -0.0056 0.7420
GAS-OIL 0.0062 0.0570 0.0079 0.0600
GAS-OIL_GAS_ort 0.0064 0.0300 * 0.0083 0.0250 *
SOY-OIL 0.0042 0.1080 0.0041 0.4170
SOY-OIL_SOY_ort 0.0042 0.0910 0.0041 0.4090
OIL-AL -0.0002 0.7400 -0.0007 0.7950
OIL-AL_OIL_ort 0.0024 0.2850 0.0008 0.4720
OIL-GAS 0.0022 0.0520 0.0013 0.0400 *
OIL-GAS_OIL_ort 0.0027 0.0240 * 0.0024 0.0180 *
OIL-SOY 0.0023 0.3180 0.0012 0.3050
OIL-SOY_OIL_ort 0.0005 0.3560 -0.0037 0.5550

Table 4.6: Synthetic Rolling Yield Harvey–Liu Bootstrap Test for Factor Significance
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For the pairs Gas Oil and Oil Gas, the mean reduction in pricing errors is statistically significant,
that suggests the Gas / Oil factors adds explanatory power to the OIL ETFs. The median
reduction is also significant, indicating that the effect is spanned across all ETFs. This is consistent
with the previous analysis where we detected partial segmentation of the OIL and Gas commodities
factor.

B Error Estimation

For the stack vector of parameters θ̂, we compute the sum of squared residuals (SSR):

SSR = ε̂⊤ε̂ =
N∑
i=1

T∑
t=1

ε̂ 2
i,t (4.7)

the sample variance:
σ̂2 =

SSR
NT − J

(4.8)

where T = 240 months, corresponds to the number of time periods; N = 6, is the number of
portfolios; and j is the parameter index from 1 to J , and J denotes the number of parameters,
which changes depending on the method.

The standard errors are derived using the design matrix X ∈ RNT×J evaluated at θ̂2. Then
residuals are computed as:

ε̂ = Y− Xθ̂ (4.9)

The variance-covariance matrix of the estimators is given by:

V̂ar(θ̂) = σ̂2
(
X⊤X

)−1 (4.10)

The standard error for each parameter θ̂j is:

SE(θ̂j) =
√[

V̂ar(θ̂)
]
jj
, ∀j (4.11)

The corresponding test statistic and p-value are computed as:

tj =
θ̂j

SE(θ̂j)
, ∀j (4.12)

2 In the Fama-MacBeth method, we use the two-pass pseudo design matrix, Shanken (1992), which addresses
errors-in-variables in cross-sectional regressions with estimated betas
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pj = 2
(
1− Tν

(
|tj|
))

, ∀j (4.13)

where Tν(·) denotes the cumulative distribution function of the Student’s t-distribution with
ν = NT − J degrees of freedom.

For the Taylor Product method, J = N +2 corresponds to the number of estimated parameters,
and the parameter vector is:

θ̂ =
[
λ̂0 λ̂f β̂1 . . . β̂N

]⊤
∈ RN+2,

For the Product Factor method, J = 2N + 2 is the total number of estimated parameters in θ̂

and the parameter vector is:

θ̂ =
[
λ̂0 λ̂f β̂1 . . . β̂N γ̂1 . . . γ̂N

]⊤
∈ R2N+2.

For the Integer Programming method, J = 2N+2 is the number of parameters and the parameter
vector is:

θ̂ =
[
λ̂0 λ̂f ŷ1,1 . . . ŷN,1 ŷ1,2 . . . ŷN,2

]⊤
∈ R2N+2,

C Kronecker Product

If M is an N × S matrix and Z is a T × p̄ matrix, then the matrix direct product or Kronecker
product M⊗ Z is an (NT )× (Sp̄) block matrix defined by:

M⊗ Z =


m11Z m12Z · · · m1SZ
m21Z m22Z · · · m2SZ
... ... . . . ...

mN1Z mN2Z · · · mNSZ

 ∈ R(NT )×(Sp̄) (4.14)

Examples:
From equation 2.50:

If IN ∈ RN×N is the identity matrix and xt + λf =

[
x1,t + λf1

x2,t + λf2

]
∈ R2, then the Kronecker
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product
(
IN ⊗ (xt + λf )

⊤) ∈ RN×2N can be written block-wise as:
(x1,t + λf1) (x2,t + λf2) 0 0 · · · 0 0

0 0 (x1,t + λf1) (x2,t + λf2) · · · 0 0
... ... ... ... . . . ... ...
0 0 0 0 · · · (x1,t + λf1) (x2,t + λf2)


From equation 2.54:
If Mt(θ) ∈ RN is a residual column vector and zt ∈ Rp̄ is a column vector of instruments, then
their Kronecker product is:

gt(θ) = Mt(θ)⊗ zt =


m1,tzt
m2,tzt

...
mN,tzt

 ∈ RNp̄ (4.15)

That is:

gt(θ) =



m1,tz1,t

m1,tz2,t

m1,tz3,t

m2,tz1,t

m2,tz2,t
...

mN,tzp̄,t



D Vectorization

The operator vec(B) denotes the vectorization of the matrix B ∈ Rℓ̄×N :

B =


β11 β12 · · · β1N

β21 β22 · · · β2N

... ... . . . ...
βℓ̄1 βℓ̄2 · · · βℓ̄N

 ∈ Rℓ̄×N (4.16)
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It is obtained by stacking the columns of B into a single column vector:

vec(B) =



β11

β21

...
βℓ̄1

β12

...
βℓ̄N


∈ Rℓ̄N . (4.17)

E Ordinary Least Squares for a System of Equations

We consider a system consisting of N regression models, each observed over T time periods,
yielding N×T scalar equations.

yi,t = βixt + εi,t, ∀i, t (4.18)

Here, i indexes the cross-sectional unit (e.g., portfolio or equation), and t is the index of the
observation at time t. We use the row vector βi ∈ R1×ℓ̄ for equation i to match the dimension
of column vector xt ∈ Rℓ̄. Each equation i has a single response variable yi,t, while the vector of
regressors xt is common across all equations.

In econometrics, it is customary to denote observations as yi,t, where i refers to the cross-sectional
unit (e.g., asset or equation) and t refers to the time period. Thus, yi,t represents the observation
for asset i at time t. For matrix operations, however, it is convenient to arrange the data by time
in rows and portfolios in columns. Therefore, we define the observation matrix:

Y =


y11 y12 . . . y1N

y21 y22 . . . y2N
... ... yti

...
yT1 yT2 . . . yTN

 .

Similarly, the coefficient vectors βi are rearranged to form the matrix

B =
[
β⊤

1 β⊤
2 · · · β⊤

N

]
∈ Rℓ̄×N ,

where each column corresponds to the coefficients of one equation, and each row to a re-
gressor.

140



With these definitions, the scalar model

yi,t = βixt + εi,t

can be expressed in the standard matrix form:

Y = XB + E,

where:

- X ∈ RT×ℓ̄ is the regressor matrix with rows x⊤t ,

- B ∈ Rℓ̄×N is the coefficient matrix,

- E ∈ RT×N is the error matrix.

Alternatively, stacking observations corresponding to the i-th equation over time into T -dimensional
vectors and matrices, the model can be written in vector form as:

yi = Xβi + εi, ∀i (4.19)

where:

- yi ∈ RT : response vector for equation i,

- X ∈ RT×ℓ̄: regressor matrix (same for all equations),

- βi ∈ Rℓ̄: coefficient vector specific to equation i,

- εi ∈ RT : error vector for equation i.

Stacking all N equations, we obtain:

y = (IN ⊗ X) · vec(B) + ε, (4.20)

where:

- y = vec(Y) =
[
y1 y2 · · · yN

]⊤
=
[
y11 y21 · · · yT1 y12 · · · yTN

]⊤
∈ RTN :

stacked response vector obtained by stacking columns of Y (ordered by time periods and
equations, all T observations for i = 1, then for i = 2, and so on),

- B ∈ Rℓ̄×N : coefficient matrix (columns correspond to equations, rows to regressors),
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- vec(B) =
[
β1 β2 · · · βN

]⊤
∈ Rℓ̄N : vectorized coefficient matrix obtained by stacking

columns of B (ordered by regressors and equations),

- ε = vec(E) =
[
ε1 ε2 · · · εN

]⊤
∈ RTN : stacked error vector obtained by stacking

columns of E (ordered by time periods and equations).

Note: The notation with transpose indicates that stacking is column-wise, consistent with the
standard vectorisation, vec().

The OLS estimator minimizes the sum of squares residual (SSR) to estimate the parameter vector
vec(B) from the stacked model:

v̂ec(B) = arg min
vec(B)

(y− (IN ⊗ X) · vec(B))⊤ (y− (IN ⊗ X) · vec(B)) (4.21)

Taking the derivative with respect to vec(B) and setting it equal to zero:

∂

∂ vec(B)

[
(y− (IN ⊗ X) · vec(B))⊤ (y− (IN ⊗ X) · vec(B))

]
= 0 (4.22)

We obtain:
−2(IN ⊗ X)⊤y+ 2(IN ⊗ X)⊤(IN ⊗ X) · vec(B) = 0 (4.23)

Solving for vec(B) gives the OLS estimator:

v̂ec(B) =
[
(IN ⊗ X)⊤(IN ⊗ X)

]−1
(IN ⊗ X)⊤y (4.24)

The OLS single equation linear objective function is :

β̂i,OLS = argmin
β

(yi − Xβ)⊤(yi − Xβ) (4.25)

In SAS-style notation, the OLS objective function is 3:

ObjectiveOLS =
1

T
r⊤r (4.26)

where:

- r = y − (IN ⊗ X) · vec(B) ∈ RTN is the stacked vector of residuals r =
[
r1 · · · rN

]⊤
3 The scaling by 1

T in the SAS objective function, Section 2.4, is used to express it as a sample average rather
than a total sum, see also Appendix K.
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and each ri ∈ RT contains residuals from a (non) linear equation i.

We can observe that the multi-equation stacked model:

y = (IN ⊗ X) · vec(B) + ε (4.27)

can be interpreted as a generalization of the standard single-equation regression model. In fact,
for each individual equation i ∈ {1, . . . , N}, we have:

yi = Xβi + εi, (4.28)

where βi ∈ Rℓ̄ is the i-th column of B transposed, and X ∈ RT×ℓ̄ is the regressor matrix.

We can switch from the multi-equation model to the single equation formulation substitut-
ing:

βi ←→ vec(B) (4.29)

X←→ IN ⊗ X (4.30)

In this way, we obtain the classic single equation OLS estimator from equation 4.244:

β̂i =
(
X⊤X

)−1 X⊤yi (4.31)

From now on, we will use the single equation model. The multi-equation equivalent results can
be obtained by applying equivalence 4.29 and 4.30.

F Gauss-Markov Assumptions

The OLS estimator is subject to the Gauss-Markov assumptions:

- Identification condition or no multicollinearity of the independent variables: X ∈ RT×ℓ̄ is
a full-rank matrix (rank(X) = ℓ̄). We denote its columns by xj ∈ RT , j = 1, . . . , ℓ̄. This
condition can be written in terms of correlation as: ρ(xi, xj) ̸≈ 1 for i ̸= j.

- The error term ε has conditional expectation zero given the stacked regressor matrix5:

E[ε | (IN ⊗ X)] = 0.

- This implies that for any measurable function f(X) = IN⊗X, we have the orthogonal-
4 Using the same method, we can derive equation 4.25 from equation 4.21.
5 Since all N equations share the same regressor matrix X, conditioning on X or on (IN ⊗ X) is equivalent.
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ity condition E[(IN ⊗X)⊤ε] = 0, which follows from the law of iterated expectations:

E[f(X)⊤ε] = E
[
E[f(X)⊤ε | X]

]
= E

[
f(X)⊤ E[ε | X]

]
= 0.

By choosing f(X) = x 6, we obtain the population orthogonality condition:
E[x⊗ ε] = 0.

- Hence (since E[ε] = 0), we have no endogeneity or omitted variable bias, the re-
gressors are uncorrelated with the error term:

E
[
(IN ⊗ X)⊤ε

]
= 0.

- Homoscedasticity and no autocorrelation of the errors: for the stacked system, the
disturbance vector ε ∈ RTN is assumed to satisfy E[ε | X] = 0 and E[εε⊤ | X] =
σ2ITN . This implies homoscedasticity (constant variance across time and portfolios)
and no autocorrelation (errors are uncorrelated across both time and equations):

Var(ε | X) = σ2ITN = σ2(IT ⊗ IN)

Cov(εi,t, εj,s | X) = 0 for (i, t) ̸= (j, s)

If, in addition, (conditional) normality is assumed, then ε | X ∼ N (0, σ2(IT ⊗ IN)).
The Kronecker structure IT ⊗ IN indicates zero covariance across both time and cross-
sectional portfolios (independence follows under normality).

These two conditions together define the case of spherical disturbances. More gener-
ally, the variance-covariance matrix of the error vector is given by, see Section 2.4:

Cov(r | X) = E[εε⊤ | X] = Var(ε | X) = σ2Ω = σ2(ΩT ⊗ΩN) ̸= σ2ITN (4.32)

where ΩT and ΩN are correlation matrices (unit diagonal):

- ΩT ∈ RT×T captures time-series autocorrelation within each equation.
6 In more general models, the functional form can be written as a normalized nonlinear representation:

yt = f(yt, xt,θ) + εt,

where f(·) may be nonlinear and incorporate both endogenous and exogenous variables. In the GMM model,
the orthogonality condition generalizes to the instrumental variables: E[z⊗ ε] = 0, for any valid instrument zt
that is a measurable function of xt.
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- ΩN ∈ RN×N captures cross-sectional correlation across portfolios,

Spherical disturbances correspond to ΩT = IT and ΩN = IN .

In general, Ω is a matrix, whose main diagonal elements are the scaled variances
of errors and all other elements are the scaled covariances of errors. We can have
heteroscedasticity and autocorrelation within ΩN and\or ΩT . For the cross-sectional
correlation, for example, the elements of the cross correlation matrix are: ωij =
Cov(εi,εj)

σ2 , for i, j ∈ {1, . . . , N}. In the case of homoscedasticity and no autocorrel-
ation, ΩN = IN . If the disturbances are only homoscedastic, then ωii = 1 for all i,
and if they are uncorrelated, all off-diagonal elements ωij = 0 for i ̸= j. Similarly, for
the time-series component, under homoscedasticity and no autocorrelation, the same
structure applies, ΩT = IT .

- OLS: assumes ΩN = IN , ΩT = IT .

- SUR / ITSUR: assumes ΩT = IT , but allows ΩN ̸= IN .

- HAC (robust SEs only): allows ΩT ̸= IT ; typically assumes ΩN = IN . HAC
modifies only the covariance estimator (e.g., Newey–West); point estimates are
unchanged.

- Time-series GLS: specifies a structure for ΩT ̸= IT (e.g., AR(1), ARMA), usually
with ΩN = IN . GLS changes both the estimator and its covariance.

- Full GLS: allows both ΩN ̸= IN and ΩT ̸= IT ; fully general error structure.

- Each observation (xt, yt), ∀t is independently and identically distributed (i.i.d.) and
independently drawn from their joint distribution.

- Finally, for inference and hypothesis testing, a common assumption is normality of
the error terms: ε | X ∼ N (0, σ2(IT ⊗ IN)), based on the Central Limit Theorem.

Conditional on the assumptions mentioned above, the Gauss-Markov Theorem states that
there is no other linear and unbiased estimator of the vec(B) parameters with smaller
sampling variance. That is, the OLS estimator v̂ec(B) is the Best Linear Unbiased Estim-
ator (BLUE).
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G Generalized Least Squares (GLS)

The full Generalized Least Squares objective function is defined below:

θ̂ = argmin
θ
r(θ)⊤ (Cov(r))−1 r(θ), where r(θ) = y− f(θ) (4.33)

The function f(θ) ∈ RTN is a nonlinear function of the parameter vector θ ∈ Rk̄, which
replaces (IN ⊗ X) · vec(B) for the nonlinear model (see Section I), Cov(r) ∈ RTN×TN .

The matrix Cov(r)−1 is a non-identity, positive-definite weighting matrix W that:

- in the full GLS, accounts for heteroscedasticity, autocorrelation and correlation across
equations in the residuals;

- reduces to Seemingly Unrelated Regression if Cov(r) has the form S ⊗ IT where S
accounts for both heteroscedasticity and correlation across equations in the residuals:

θ̂SUR = argmin
θ
r(θ)⊤

(
S−1 ⊗ IT

)
r(θ), where r(θ) = y− f(θ) (4.34)

- reduces to nonlinear Weighted Least Squares (WLS) if Cov(r) ∈ RTN×TN has the
form Cov(r) =W⊗ IT , where W = diag(σ2

1, . . . , σ
2
N) ∈ RN×N , which corresponds to

heteroscedasticity across equations, In this case, the nonlinear WLS objective function
is:

θ̂WLS = argmin
θ

r(θ)⊤
(
W−1 ⊗ IT

)
r(θ) (4.35)

The name Weighted Least Squares is used because each squared residual is weighted
by the inverse of its variance.

- reduces to Ordinary Least Squares if Cov(r) = σ2ITN , that is, under the assumption
of homoscedasticity and no autocorrelation;

This class of estimators (GLS) has better properties than OLS with non-spherical errors
defined in equation 4.32. We derive the single equation linear estimator for the GLS
method7:

β̂GLS = (X⊤Ω−1X)−1X⊤Ω−1y (4.36)

In fact, if Ω is symmetric and positive definite, there is an invertible matrix Γ1/2 such that
7 The derivation below applies to a linear system, where the relationship between the regressors and the para-

meters is linear: y = Xβ + ε, and the design matrix X does not depend on β. In nonlinear systems, because
the residuals r(θ) = y − f(θ) depend on the parameter vector θ in a nonlinear way, the role of the design
matrix X is played by the Jacobian matrix: J = ∂r(θ)

∂θ⊤ . Nonlinear GLS is derived in the next section.
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Ω = Γ1/2(Γ1/2)⊤. Then, by multiplying the regression equation 4.28 by Γ−1/2, we can
obtain the transformed regression equation:

ý = X́β + έ (4.37)

ý = Γ−1/2y; X́ = Γ−1/2X; έ = Γ−1/2ε (4.38)

We assume N = 1, we omit the index i. This linear transformation is known as whitening
(i.e., imposing white noise properties), as it transforms the error vector ε ∼ N (0,Γ)

into a new error term έ ∼ N (0, I) with identity covariance. The transformation removes
heteroscedasticity and autocorrelation from the disturbances.

The OLS estimator of the transformed regression equation is the GLS estimator, that also
solves the so-called generalized least squares problem (see Pericoli and Taboga (2012) for
details of the proof).

β̂GLS = argmin
β

(y− Xβ)⊤Ω−1(y− Xβ) (4.39)

β̂GLS = (X́⊤X́)−1X́⊤ý (4.40)

We substitute into the GLS estimator:

β̂GLS =
(
(Γ−1/2X)⊤(Γ−1/2X)

)−1

(Γ−1/2X)⊤(Γ−1/2y)

Using the transpose identity (AB)⊤ = B⊤A⊤:

=
(
X⊤(Γ−1/2)⊤Γ−1/2X

)−1

X⊤(Γ−1/2)⊤Γ−1/2y

Γ is symmetric being a covariance matrix, then: Γ−1/2 = (Γ−1/2)⊤, so:

β̂GLS =
(
X⊤Ω−1X

)−1 X⊤Ω−1y (4.41)

In practice we rarely know the error covariance matrix Ω so we have to replace it with an
estimator Ω̂ = Ĉov(r), to obtain the so-called Feasible Generalized Least Squares estimator
(FGLS). In the case of Seemingly Unrelated Regressions (SUR), this estimator takes the
form Ω̂ = S⊗ IT , where S is the N×N matrix of estimated contemporaneous covariances
across equations.

It is normal practice to estimate S by means of the residuals of the first-step OLS regression.
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Nonlinear SUR (NSUR) is based on the same two-step logic: the first step uses OLS
residuals to estimate the variance–covariance of disturbances, and the second step applies
FGLS.

The estimator for a system of linear equations is obtained via equation 4.29 and 4.30:

v̂ec(B)SUR =
(
(IN ⊗ X)⊤

(
S−1 ⊗ IT

)
(IN ⊗ X)

)−1
(IN ⊗ X)⊤

(
S−1 ⊗ IT

)
y (4.42)

where:

- IN ⊗ X ∈ RNT×Nℓ̄ is the system design matrix that extends the regressor X for each
equation;

- S−1 ⊗ IT ∈ RNT×NT is the SUR/GLS weighting matrix that assumes heteroscedasti-
city, cross-equation residual correlation and no autocorrelation over time;

- y = vec(Y) ∈ RNT×1 is the stacked portfolios vector.

For a system of nonlinear equation, SAS provides 4.34, which we derive in the next sections
and we use to estimate the parameter vector in equation 2.50 for the NSUR results.

H Nonlinear Least Squares Gauss-Newton

The Gauss-Newton nonlinear least square method is based on a first-order Taylor expansion
around the starting value of the function:

f(θ) ≈ f(θ0) + J(θ0)(θ − θ0) (4.43)

where J(θ0) =
∂f(θ)

∂θ⊤

∣∣∣
θ0

∈ RTN×k̄ is the Jacobian matrix of f evaluated at θ0.

Then, the residual function becomes:

r(θ) = y− f(θ) (4.44)
≈ y− [f(θ0) + J(θ0)(θ − θ0)]

= [y− f(θ0) + J(θ0)θ0]− J(θ0)θ

We define a pseudo-response vector constructed to centre the nonlinear model around θ0,
which enables linear estimation techniques (GLS):

y∗ := y− f(θ0) + J(θ0)θ0 (4.45)
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So that the linearized residual becomes:

r(θ) ≈ y∗ − J(θ0)θ (4.46)

Substituting into the SUR original objective:

θ̂SUR ≈ argmin
θ

(y∗ − J(θ0)θ)
⊤(S−1⊗IT )(y∗ − J(θ0)θ). (4.47)

We can also replace X with J in the linear estimator 4.36 as equation 4.47 is analogue to
equation 4.33.

The nonlinear single equation GLS estimator is:

θ̂GLS =
(
J(θ0)

⊤Ω−1J(θ0)
)−1 J(θ0)

⊤Ω−1y∗ (4.48)

If θ0 is updated iteratively using θ̂, the procedure corresponds to iteratively reweighted
nonlinear GLS. Here below, we write the formula for a system of nonlinear equations N:

θ̂NSUR =
(
J⊤(S−1 ⊗ IT )J

)−1 J⊤(S−1 ⊗ IT )y∗) (4.49)

I Nonlinear Least Squares SAS ITSUR

SAS Feasible Generalized Least Squares (FGLS) estimator (ITSUR method in PROC MODEL)
iteratively updates both the parameter vector and the cross-equation covariance matrix
without linearizing the model.

The parameter vector θ(0), is initialised using OLS.

The following steps are run for each iteration m = 0, 1, 2, . . ., until convergence:

- Residuals are calculated: r(m) = y− f(θ(m)).

- The cross-equation error covariance matrix S(m) ∈ RN×N is estimated from the
residuals:

S(m) =
1

T

T∑
t=1

ε
(m)
t ε

(m)
t

⊤
(4.50)

where ε
(m)
t ∈ RN stacks residuals across equations at time t.

- The Jacobian matrix of the nonlinear function is evaluated numerically using finite

149



difference methods, unless analytic derivatives are explicitly provided:

J(m) =
∂f(θ)

∂θ⊤

∣∣∣∣
θ(m)

∈ RTN×k̄

- The parameter vector is updated using the FGLS estimator and the pseudo–response
y∗(m) = y− f(θ(m)) + J(m)θ(m):

θ
(m+1)
NSUR =

(
J(m)⊤(S(m)−1 ⊗ IT )J(m)

)−1

J(m)⊤(S(m)−1 ⊗ IT )y∗(m)

If ∥θ(m+1)− θ(m)∥ and the change in S are below a given tolerance, the algorithm termin-
ates.

J Inference

The covariance matrix is a fundamental element in statistical inference. It is used to
determine whether the regression coefficients are statistically significant and to construct
confidence intervals.

First we define X+, the Moore–Penrose pseudoinverse of X. If X ∈ RT×ℓ̄ has full column
rank ℓ, then:

X+ = (X⊤X)−1X⊤.

We assume that X is full rank and we write the OLS estimator as a linear function of the
error:

β̂ = X+(Xβ + ε) = β + X+ε (4.51)

and derive the variance-covariance (Cov) matrix of the OLS estimator:

Cov(β̂ | X) = E[(β̂ − β)(β̂ − β)⊤] = E[(X+ε)(X+ε)⊤] (4.52)

and:
E[(β̂ − β)(β̂ − β)⊤] = X+ E[εε⊤] (X+)⊤ = σ2(X⊤X)−1 (4.53)

The main OLS assumptions are the homoscedasticity of the errors and their lack of auto-
correlation. In practice, we cannot observe the error terms ε, nor their variance σ2. Instead,
we can rely on the residual errors of the sample to compute the variance s2. Then:

Cov(β̂ | X) = s2(X⊤X)−1 (4.54)
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The general form is based on nonlinear least squares theory and use the Taylor approximation
of the residual around the starting value:

r(θ) ≈ r(θ0) + J(θ0)(θ − θ0)

The corresponding quadratic approximation of the objective becomes:

Q(θ) = (r(θ0) + J(θ0)(θ − θ0))
⊤ (r(θ0) + J(θ0)(θ − θ0))

Taking the derivative:

∂Q

∂θ
= 2J⊤ (r(θ0) + J(θ0)(θ − θ0)) = 0

and solving for θ:
J⊤r(θ0) + J⊤J(θ − θ0) = 0

We obtain the Gauss–Newton update step

θ − θ0 = −(J⊤J)−1J⊤r(θ0)

Now, take the covariance on both sides:

Cov(θ̂ | X) = Cov
(
−(J⊤J)−1J⊤r(θ0)

)
Using the identity Cov(Az) = ACov(z)A⊤, we get the general form:

Cov(θ̂ | X) = (J⊤J)−1J⊤ Cov(r) J(J⊤J)−1

which simplifies to equation 4.54 when:

Cov(r) = Σ = σ2I

However, while no error autocorrelation is expected in cross-sectional data, homoscedasti-
city is rarely satisfied: the SAS OLS covariance estimator relies on Weighted Least Squares
(WLS) where S ∈ RN×N has the form Ω−1 = diag(S)−1⊗ IT , and W = diag(σ2

1, . . . , σ
2
N),

which corresponds to heteroscedasticity across equations, constant variance over time,
and no autocorrelation. SAS replaces Cov(r) = E[εε⊤] with the diagonal approximation,
diag(S)⊗ IT .
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Instead of using the standard OLS ”sandwich” variance estimator (equation 4.53 and 4.54),
the Generalized Least Squares estimator solves the weighted least squares problem. It seeks
a more efficient estimator by pre-whitening the residuals using as weighting matrix, the
inverse of their covariance structure, W = Ω−1, where: SUR corresponds to the special
case with no serial correlation, Ω = S⊗ IT , and SAS ”OLS” to diagonal WLS weighting,
W =

(
diag(S)

)−1 ⊗ IT ..

In general, the GLS objective replaces the unweighted least squares objective with a
weighted version:

θ̂GLS = argmin
θ

r(θ)⊤W r(θ) (4.55)

Then, we take the derivative of the objective with respect to θ and set it to zero:

J⊤Wr(θ) = 0

Using Taylor approximation as we have done in the general form, we obtain:

θ̂ − θ0 = −
(
J⊤WJ

)−1 J⊤Wr(θ0)

Now, we take the covariance on both sides:

Cov(θ̂ | X) =
(
J⊤WJ

)−1 J⊤WCov(r)WJ
(
J⊤WJ

)−1

Since W = Cov(r)−1, this simplifies to 8 :

Cov(θ̂ | X) =
(
J⊤WJ

)−1 (4.56)

SAS OLS form is based on WLS for multiple equations under heteroscedasticity assumptions
without autocorrelation:

CovWLS(θ̂ | X) =
(
J⊤
(
diag(S)−1 ⊗ IT

)
J
)−1 (4.57)

Heteroscedasticity does not cause problems for estimating β̂OLS = (X⊤X)−1X⊤y, which
does not rely on any assumptions about the disturbances. The estimator is not efficient,
but it is unbiased. However, it causes problems when computing the correct standard
errors for hypothesis testing, i.e., when using: β̂ ≈ N (β, σ2(X⊤X)−1), as we need to make
assumptions about the disturbance process. In the presence of heteroscedasticity and error
correlation, it is not true that: X+ E[εε⊤]X+⊤

= σ2(X⊤X)−1 and we should use equation
8 We use the matrix identity

(
A−1AA−1

)
= A−1, which holds when A is square and invertible.
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4.32 for the error covariance.

The SUR covariance matrix estimator is given by:

CovSUR(θ̂) =
(
J⊤(S−1 ⊗ IT )J

)−1 (4.58)

where S is the estimated covariance matrix of the residuals evaluated at θ̂.

K Generalized Method of Moments

In the Generalized Method of Moments (GMM), a number of moment conditions are
specified for the model as functions of the parameters and the data 9:

g(θ) = E[f(w, z,θ)] (4.59)

where θ ∈ Rk̄ is a vector of parameters with true value θ0 and f(·) ∈ Rḡ is a (generally
nonlinear) function vector. At time t, the vector wt contains the endogenous and exogenous
model variables (yt ∈ RN , xt ∈ Rℓ̄) and zt ∈ Rp̄ are the instrumental variables.

The true parameter vector value θ0 in Equation 4.59 is found via the moment condition
expectation. The system is identified (identification can be derived by model construction
or from the data) if there is a unique solution θ = θ0 for g(θ) = E(f(wt, zt,θ))= 0. Since
the population expectation is in general unknown, it is replaced by its sample average:

ĝT (θ) =
1

T

T∑
t=1

f(wt, zt,θ) (4.60)

In the next pages, we will define the GMM estimator θ̂GMM as the parameter value that
minimises the norm of ĝT (θ). Under regularity conditions, θ̂GMM converges in probability
to θ0 as T →∞.

In many applications the population moment condition has the form: f(wt, zt,θ) = ε(wt,θ)⊗
zt where the ḡ moment functions (ḡ = N × p̄) are derived multiplying the model residuals
ε(wt,θ) by the instruments zt:

g(θ) = E[ε(w,θ)⊗ z] = 0 (4.61)

In this class of estimator called instrumental variable (IV), the instruments are uncorrelated
9 The reader should refer to Section 2.4 for the notation explanation in vector and matrix form.
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with the error term of the model.

A unique estimator is found when there are at least as many equations ḡ = N × p̄ as
parameters k̄, in detail:

- When ḡ = k̄ exact identification, it is named the Method of Moments estimator,
θ̂MM

- When ḡ > k̄ , over identification, it is named the Generalized Method of Moments
estimator, θ̂GMM .

- When ḡ < k̄ , under identification, the parameters are not identified and cannot be
estimated consistently.

The solution can be seen as a special case of the minimum-distance estimation. We derive
a quadratic form QT (θ), where the GMM estimator minimizes a certain distance of the
sample averages of the moment conditions. The properties of the subsequent estimator
depend on the choice of the norm function, the GMM theory considers a family of L2-type
norms, defined as:

QT (θ) = ∥ĝT (θ)∥2W = ĝT (θ)
⊤WĝT (θ) (4.62)

where W is a positive definite weighting matrix.

We define the GMM estimator via the standard objective function:

θ̂GMM = argmin
θ
ĝ⊤
T (θ)WĝT (θ) (4.63)

In Section 2.4, we also present the SAS GMM objective in an equivalent scaled form:

1

T
[T ĝT (θ)]

⊤ V̂−1 [T ĝT (θ)] (4.64)

where the weighting matrix is defined as:

V = TΛ, with Λ = E[gtg⊤
t ] (4.65)

Since Λ is unknown, we estimate it with the sample covariance:

Λ̂ =
1

T

T∑
t=1

gtg⊤
t (4.66)
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However, SAS defines:

V̂ = T Λ̂ =
T∑
t=1

gtg⊤
t (4.67)

The T scaling of the objective in Equation (4.63) ensures consistency with large-sample
asymptotics. Both expressions are equivalent

ĝT (θ)
⊤ Λ̂

−1 ĝT (θ) = T ĝT (θ)
⊤ V̂−1 ĝT (θ) (4.68)

From 4.63, to find the first-order condition, we take the derivative of the quadratic form
Q(θ) with respect to θ:

∂Q(θ)

∂θ
=

∂

∂θ

(
ĝ⊤
T (θ)WĝT (θ)

)
(4.69)

Using the rule for differentiating quadratic forms:

∂

∂θ
(a⊤M a) = 2a⊤M∂a

∂θ
(4.70)

where a is a function of θ and M is a symmetric matrix, we obtain:

∂Q(θ)

∂θ
= 2ĝ(θ)⊤W∂ĝ(θ)

∂θ
(4.71)

We define the Jacobian matrix of the moment conditions and apply the interchange rule:

G(θ) = ∂E[g(θ)]
∂θ⊤ , Ĝ(θ) = ∂ĝT (θ)

∂θ⊤ ∈ Rḡ×k̄ (4.72)

then, we set the first-order condition 4.71 to zero:

ĝ(θ)⊤WĜ(θ) = 0 (4.73)

Rearranging, we obtain:
Ĝ⊤Wĝ = 0. (4.74)

The GMM estimator for linear moments10 is found by solving for θ, multiplying both sides
by the inverse of Ĝ⊤WĜ:

θ̂GMM =
(

Ĝ⊤WĜ
)−1

Ĝ⊤Wĝ (4.75)

10 For non linear moments:
θ(m+1) = θ(m) +∆θ(m), and ∆θ(m) =

(
Ĝ(θ(m))⊤W(m)Ĝ(θ(m))

)−1Ĝ(θ(m))⊤W(m)ĝT (θ
(m)).
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From equation 4.27, the residual vector is defined as:

ε(B) := y− (IN ⊗ X) · vec(B),

the sample moment function becomes:

ĝ =
1

T
(IN ⊗ Z⊤)ε(B) ∈ RNp̄ (4.76)

where: IN ⊗ Z⊤ ∈ RNp̄×TN , and ε(B) ∈ RTN .

We define the matrix H ∈ RNp̄×NT as the Kronecker product below:

H := IN ⊗ Z⊤. (4.77)

so that:
ĝ =

1

T
Hε(B)

Differentiating, we obtain the Jacobian with respect to vec(B):

Ĝ =
∂ĝ

∂ vec(B)⊤
= − 1

T
H (IN ⊗ X)

Substituting ĝ = 1
T
H(y− (IN ⊗X) vec(B)) and Ĝ = − 1

T
H(IN ⊗X) into Equation (4.75),

we obtain the GMM estimator for a system of linear equations 11:

̂vec(B)GMM =
(
(IN ⊗ X)⊤H⊤WH(IN ⊗ X)

)−1
(IN ⊗ X)⊤H⊤WHy. (4.78)

where H := IN ⊗ Z⊤, with Z ∈ RT×p̄ and X ∈ RT×ℓ̄.

Substituting H = IN ⊗ Z⊤, we obtain:

̂vec(B)GMM =
(
(IN ⊗ X)⊤(IN ⊗ Z)W (IN ⊗ Z⊤)(IN ⊗ X)

)−1

× (IN ⊗ X)⊤(IN ⊗ Z)W (IN ⊗ Z⊤)y.

We now define the corresponding stacked matrices in Wooldridge’s notation:

- Y := y ∈ RTN : stacked outcome vector, Y =
[
y⊤1 · · · y⊤N

]⊤
.

11 For nonlinear models, it is typically not possible to solve for θ̂GMM analytically. Numerical optimisation
methods are used to find the parameter vector that minimizes the first-order conditions.
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- X := IN ⊗ X ∈ RTN×Nℓ̄: block-diagonal regressor matrix.

- Z := IN ⊗ Z⊤ ∈ RNp̄×TN : block-diagonal instrument matrix.

- b := vec(B) ∈ RNℓ̄: stacked parameter vector.

We keep the bold vector convention for moments:

ĝ(b) = 1

T
Hε(b) with H := IN ⊗ Z⊤.

(If Wooldridge’s non-bold notation appears, ĝT ≡ ĝ.)

Using these definitions, we rewrite the GMM estimator without Kronecker notation:

b̂GMM = (X⊤ZWZ⊤X)−1X⊤ZWZ⊤Y (4.79)

which is the matrix form used in Wooldridge (Equation 8.24).

The following formulas are shown in Wooldridge notation.

If ḡ = k̄, just identified case, X⊤Z is a square matrix, then we obtain:

(X⊤ZWZ⊤X)−1 = (Z⊤X)−1W−1(X⊤Z)−1

The IV estimator, which is independent of W , can be derived from the GMM estimator:

b̂IV = (Z⊤X)−1W−1(X⊤Z)−1X⊤ZW Z⊤Y = (Z⊤X)−1Z⊤Y (4.80)

We can derive the OLS estimator by setting Z = X:

b̂OLS = (X⊤X)−1X⊤Y. (4.81)

Conversely, the GMM estimator depends on the choice of the weighting matrix. If there
is over identification, ḡ > k̄ , and the rank of E[(IN ⊗ Z⊤)(IN ⊗ X)] = Nℓ̄ = k̄ then the
matrix of moment conditions E[z⊗ ε(θ0)] = 0Np̄ implies consistency of θ̂GMM : as the
sample size T →∞, the estimator converges in probability to the true parameter value. 12

We set Z =
[
z⊤1 · · · z⊤T

]⊤, with zt ∈ Rp̄, then we can expand the sample moment
12 See Wooldridge page 186, System Instrumental variables (SIV) Assumption 2.
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function:

ĝT =
1

T

T∑
t=1

g(zt, b) =
1

T

T∑
t=1

εt(b)⊗ zt. (4.82)

We write the estimation error of the GMM estimator:

b̂GMM − bGMM =
(
X⊤H⊤WHX

)−1
X⊤H⊤W

1

T

T∑
t=1

gt. (4.83)

We want to show that the asymptotic covariance of the GMM estimator is:

Avar(b̂GMM ) =
1

T

(
G⊤WG

)−1
G⊤WVWG

(
G⊤WG

)−1 (4.84)

which is equivalent to:

Avar(b̂GMM ) =
1

T

(
(HX)⊤W (HX)

)−1
(HX)⊤W V W (HX)

×
(
(HX)⊤W (HX)

)−1
.

(4.85)

We start from the asymptotic distribution of
√
T (b̂GMM − bGMM ):

√
T (b̂GMM − bGMM )

d−→ N
(
0,Avar(b̂GMM )

)
(4.86)

where d−→ denotes convergence in distribution13. Depending on the source, either Var(b̂GMM )

or the scaled matrix Avar(b̂GMM ) := T · Var(b̂GMM ) is referred to as the asymptotic co-
variance of the estimator 14.

In practice, convergence does not occur at any finite sample size T , so this value is only
an approximation of the true covariance of the estimator. In the limit, the covariance of
the estimator satisfies Var(b̂GMM )→ 0, while the scaled quantity

Avar(b̂GMM ) = lim
T→∞

T · Var(b̂GMM ) (4.87)

represents a consistent approximation for inference when T is large 15

Substituting Λ̂ = 1
T

∑T
t=1 gtg

⊤
t ∈ RNp̄×Np̄ into the covariance formula, we obtain the

13 See Wooldridge, pp. 38 and 191, for the definition of convergence in distribution.
14 See Wooldridge, p. 40, p. 55, where b̂GMM ∼ N (b,Var(b̂GMM )/T ).
15 Although Var(b̂GMM )→ 0 as T →∞, the scaled quantity T ·Var(b̂GMM ) converges to a finite matrix, which

defines the asymptotic covariance.
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sample covariance estimator:

Âvar(b̂GMM ) =
1

T
(Ĝ⊤WĜ)−1Ĝ⊤W Λ̂WĜ(Ĝ⊤WĜ)−1 (4.88)

W is the weighting matrix, often chosen as W = Λ−1 for efficiency.

From the estimation error equation 4.83, the covariance corresponds to:

Var(b̂GMM ) = E
[
(b̂GMM − bGMM )(b̂GMM − bGMM )⊤

]
= (X⊤H⊤WHX)−1X⊤H⊤W · E

( 1

T

T∑
t=1

gt

)(
1

T

T∑
s=1

gs

)⊤


·WHX (X⊤H⊤WHX)−1

=
1

T
(X⊤H⊤WHX)−1X⊤H⊤W Λ̂WHX(X⊤H⊤WHX)−1.

(4.89)

where:

E[ĝT ĝ⊤
T ] = E

( 1

T

T∑
t=1

gt

)(
1

T

T∑
s=1

gs

)⊤


=
1

T 2

T∑
t=1

T∑
s=1

E[gtg⊤
s ]

=
1

T 2

T∑
t=1

Λ =
1

T
Λ,

Using the optimal weighting matrix W = Λ̂−1, moments with a lower covariance are
assigned a greater weight as they are more informative, we obtain from the full “sandwich”
form above the efficient GMM form:

Var(b̂GMM ) =
1

T

(
(HX)⊤Λ−1(HX)

)−1 (4.90)

From equation 4.85, applying the optimal matrix we obtain:

Avar(b̂GMM ) =
(
(HX)⊤Λ−1(HX)

)−1 (4.91)
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For nonlinear systems the SAS GMM covariance becomes16:

Var(θ̂GMM ) = ((HJ)⊤V̂ −1(HJ))−1 (4.92)

SAS moment conditions are formed as sums T ĝT =
∑T

t=1 gt rather than averages. There-
fore, the weighting matrix is defined as V̂ =

∑T
t=1 gtg⊤

t = T Λ̂. This scaling leads to the
equivalent covariance expression 4.92, written in terms of V̂ instead of Λ̂.

The choice of the weight matrix depend on the moments being independent and identically
distributed (i.i.d); independent but heteroscedastic; autocorrelated and heteroscedastic.
For example, we have proven that the MM estimator and the OLS estimator are equivalent.
However, it is important to note that the default covariance of the OLS estimator is based
on homoscedasticity and absence of error autocorrelation assumptions. In the case of a
single equation, so for time-series regression:

Var(β̂ | X) = σ2(X⊤X)−1 (4.93)

It means that in the presence of error autocorrelation and heteroscedasticity, we need a
method to estimate the disturbances covariances. One technique to build a robust cov-
ariance matrix to account for heteroscedasticity is the White Heteroscedasticity estimator,
White (1980), which is also called heteroscedastic consistent-covariance matrix estimator
(HCCME). It can be derived from equation 4.53 and equation 4.27:

Var(β̂ | X) = (X⊤X)−1X⊤ŴX(X⊤X)−1 (4.94)

where Ŵ is a diagonal matrix with squared OLS residuals on the diagonal (the original HC0
proposed by White):

Ŵ = diag(ε̂21, ε̂22, . . . , ε̂2T ) (4.95)

with ε̂t = yt − x⊤
t β̂ being the OLS residual at time t.

Another technique is the Weighted Least Squares estimator that we have shown earlier, see
equation 4.57, which will change the beta loading estimation as well.

In order to match the standard errors calculated by the OLS estimator with the errors of
the GMM estimator in case of linear regression one option is to apply the White robust
covariance estimator. However, for statistical inference, the Generalized Method of Mo-
ments and the Generalized Least Squares method which is used by NSUR regression, are

16 We replace the averaged Jacobian by the summed one: HXsum = T ·HXavg and apply V = TΛ.
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both more robust than Ordinary Least Squares.

L GMM Equivalence of Raw and Demeaned Factor

In this Appendix, we show that the GMM raw and demeaned factor models are equivalent
under the mapping: λf̃ = λf + f̄ , λ′

0 = λ0, β′
i = βi.

We use the following notation: Ri,t are the (excess) returns for asset i at time t, ft is
the market factor with sample mean f̄ ≡ T−1

∑T
t=1 ft. We define the demeaned factor

f̃t ≡ ft − f̄ and consider the stacked linear system with common prices of risk λ0, λf and
loadings βi.

For the raw factor system, the residuals are:

εi,t(λ0, λf , βi) = Ri,t − λ0 − λfβi − βift, ∀i, t

and the GMM/SUR moments with instruments Zt = [1, ft]
⊤ are:

1

T

T∑
t=1

εi,t = 0,
1

T

T∑
t=1

εi,t ft = 0, ∀i

For the demeaned factor system, where f̃t = ft − f̄ , the residuals are:

ε′i,t(λ
′
0, λf̃ , β

′
i) = Ri,t − λ′

0 − λf̃β
′
i − β′

if̃t, ∀i, t

and the GMM/SUR moments with instruments Z ′
t = [1, f̃t]

⊤ are:

1

T

T∑
t=1

ε′i,t = 0,
1

T

T∑
t=1

ε′i,t f̃t = 0, ∀i

Using ft = f̄ + f̃t, λf̃ = λf + f̄ , λ′
0 = λ0, and β′

i = βi :

ε′i,t = Ri,t − λ0 − (λf + f̄)βi − βi(ft − f̄)

= Ri,t − λ0 − λfβi − βift = εi,t, ∀i, t

Since the residuals coincide, the stacked sample moments and the GMM/SUR quadratic
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objective are identical under the mapping. In particular:

1

T

∑
t

ε′i,t =
1

T

∑
t

εi,t = 0,
1

T

∑
t

ε′i,t f̃t =
1

T

∑
t

εi,t ft − f̄
1

T

∑
t

εi,t = 0, ∀i

M Vech Operator

The vech operator is used to transform a symmetric matrix or a lower triangular matrix
into a vector by stacking its elements on and below the main diagonal.

The definition applies for any symmetric matrix. We use L ∈ Rn×n, a lower triangular
matrix:

L =

ℓ11 0 0

ℓ21 ℓ22 0

ℓ31 ℓ32 ℓ33

 .

The vech operator is defined as:

vech(L) =
(
ℓ11, ℓ21, ℓ22, ℓ31, ℓ32, ℓ33

)⊤
.

where the elements are listed row by row, taking only the entries on or below the diagonal,
which is particularly useful when parameterizing covariance matrices via their Cholesky
factor L, because only the entries on and below the diagonal are free parameters.

N Derivation of the Elliptical Copula Log-Density

N.1 Gaussian Copula Log-Density

Under the Gaussian copula specification, we assume the marginals are parametric Gaussians:

FXi
(x) = Φ

( x

σi

)
, where σi =

√
Σii, ∀i

where Φ denotes the standard normal cumulative distribution function. For each residual
time series i, we observe T values εi,t. We model these as draws from a marginal cumu-
lative distribution function FXi

. The probability integral transform is then applied to each
observation:

ui,t = FXi

(
εi,t
)
, ∀i, t

We write zi,t ≡ qi,t for the Gaussian case, where zi,t is the standardised residual quantile
realisation obtained via the probability integral transform followed by the inverse standard
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normal CDF:
zi,t = Φ−1

(
ui,t

)
, ∀i, t

and:
ui,t = FXi

(
εi,t
)
= Φ

(εi,t
σi

)
, ∀i, t

So plugging in:
zi,t = Φ−1

[
Φ
(εi,t
σi

)]
=

εi,t
σi

, ∀i, t

where σi =
√
Σii denotes the marginal standard deviation of the residuals in series i. This

transformation standardizes each residual to have a marginal standard normal distribution.

If G = Φ and g = ϕ are the standard normal Cumulative Distribution Function (CDF) and
Probability Density Function (PDF), then the copula density in equation 3.5 becomes17:

cX(u1, . . . , uN) =
ϕN

(
Φ−1(u1), . . . ,Φ

−1(uN); 0,P
)

N∏
i=1

ϕ
(
Φ−1(ui)

)
We derive the full expression below:

ln cX
(
u1,t, . . . , uN,t

)
= −1

2

(
z⊤t
(
P−1 − I

)
zt
)
− 1

2
ln
∣∣P∣∣ + constant, ∀t

where
cX
(
u1,t, . . . , uN,t

)
=

ϕN

(
zt; 0,P

)∏N
i=1 ϕ

(
zi,t
) , ∀t

For the derivation, we start from the density of a multivariate standard Gaussian with
correlation matrix P:

ϕN(zt; 0,P) =
1

(2π)N/2
∣∣P∣∣1/2 exp

(
−1

2
z⊤t P−1 zt

)
, ∀t

Taking logarithms, we obtain the log multivariate normal density:

lnϕN(zt; 0,P) = −
N

2
ln(2π) − 1

2
ln
∣∣P∣∣ − 1

2
z⊤t P−1 zt, ∀t

17 We recall the distinction in the notation below:
- the function definition cX(u1, . . . , uN ) is a deterministic formula mapping [0, 1]N to R+,
- the evaluation at random variables: cX(U1, . . . , UN ) is itself a random variable,
- the evaluation at observed data: cX(u1,t, . . . , uN,t) is a number.
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For the denominator, we use the univariate standard normal density:

ϕ(zi,t) =
1√
2π

exp
(
−1

2
z2i,t

)
, ∀i, t

Taking logarithms:
lnϕ(zi,t) = −

1

2
ln(2π) − 1

2
z2i,t, ∀i, t

Summing over all components, we obtain the log of the product of marginals:

N∑
i=1

lnϕ(zi,t) = −
N

2
ln(2π) − 1

2

N∑
i=1

z2i,t, ∀t

Recall that, by Sklar’s theorem 3.4, if the joint distribution is absolutely continuous with
density fX , and the marginals have densities fXi

, this implies that the joint density can be
factorized as:

fX(x1, . . . , xN) = cX
(
FX1(x1), . . . , FXN

(xN)
) N∏

i=1

fXi
(xi).

Therefore, the log copula density is given by subtracting the log of the product of the
marginal densities from the log of the joint density:

ln cX = ln fX −
N∑
i=1

ln fXi
.

We obtain:

ln cX
(
u1,t, . . . , uN,t

)
= lnϕN(zt; 0,P)−

N∑
i=1

lnϕ(zi,t), ∀t

Expanding the expressions:

ln cX
(
u1,t, . . . , uN,t

)
= −1

2
ln
∣∣P∣∣− 1

2
z⊤t P−1 zt +

1

2

N∑
i=1

z2i,t, ∀t

We note that:
N∑
i=1

z2i,t = z⊤t I zt, ∀t
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Therefore:

ln cX
(
u1,t, . . . , uN,t

)
= −1

2
z⊤t
(
P−1 − I

)
zt −

1

2
ln
∣∣P∣∣+ constant, ∀t

where the quadratic form is defined as:

Qt = z⊤t
(
P−1 − I

)
zt.

and the constant arises from the cancelled normalising terms.

N.2 Student-t Copula Log-Density

Under the Student-t copula specification, we assume the marginals are parametric univariate
Student-t distributions with ν degrees of freedom and unit scale:

FXi
(x) = tν

(
x
)
, ∀i

where tν(·) denotes the cumulative distribution function.

The probability integral transform is:

ui,t = FXi

(
εi,t
)
= tν

(
εi,t
)
, ∀i, t

Then, zi,t is the standardised residual quantile realization:

zi,t = t−1
ν

(
ui,t

)
, ∀i, t

Substituting the expression for ui,t, we obtain:

zi,t = t−1
ν

[
tν
(
εi,t
)]

= εi,t, ∀i, t

Under this parametric marginal assumption: each residual εi,t already has a marginal
Student-t distribution with ν degrees of freedom.

If G = tν and g = t′ν denote the univariate Student-t cumulative distribution function and
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probability density function, then the copula density in equation 3.5 becomes:

cX(u1, . . . , uN) =
tN

(
t−1
ν (u); ν, P

)
N∏
i=1

t′ν

(
t−1
ν (ui)

)
,

where:

- t−1
ν (·) denotes the quantile function (inverse CDF) of the univariate Student-t dis-
tribution with ν degrees of freedom: t−1

ν (u) is defined as the value x such that
P(T ≤ x) = u.

- tN( · ; ν,P) denotes the density of the N -dimensional Student-t distribution with
correlation matrix P, given by:

tN
(
zt; ν, P

)
=

Γ
(
ν+N
2

)
Γ
(
ν
2

)
νN/2 πN/2

∣∣P∣∣1/2
(
1 +

1

ν
z⊤t P−1 zt

)− ν+N
2
, ∀t

- t′ν(·) denotes the probability density function of the univariate Student-t distribution
with ν degrees of freedom, given by:

t′ν
(
zi,t
)
=

Γ
(
ν+1
2

)
√
νπ Γ

(
ν
2

)(1 + z2i,t
ν

)− ν+1
2
, ∀i, t

The copula density can be written in expanded form as:

cX
(
u1,t, . . . , uN,t

)
=

Γ
(
ν+N
2

)
Γ
(
ν
2

)
νN/2 πN/2

∣∣P∣∣1/2
(
1 +

1

ν
z⊤t P−1 zt

)− ν+N
2

N∏
i=1

t′ν
(
zi,t
) , ∀t

Taking the logarithms, we obtain:

ln cX
(
u1,t, . . . , uN,t

)
= ln Γ

(ν +N

2

)
− ln Γ

(ν
2

)
− N

2
ln(νπ) − 1

2
ln
∣∣P∣∣

− ν +N

2
ln
(
1 +

1

ν
z⊤t P−1 zt

)
−

N∑
i=1

ln t′ν
(
zi,t
)
, ∀t

where the constants are not relevant for the optimisation and the quadratic form is defined
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as:
Qt = z⊤t P−1 zt.

In our implementation, we replace the exact t-likelihood criterion with the Gaussian quad-
ratic form, i.e. a Quasi Maximum Likelihood (QML) GLS approach, which is consist-
ent for the mean parameters when paired with robust (sandwich) standard errors, where
e⊤t Σ−1et ≡ Qt for fixed (P, ν,Σ).

N.3 Optimisation

The steps of our algorithm are:

1. Compute residuals:

εi,t = Ri,t − λ0 − λf βi − βi f̃t, ∀i, t

2. Compute the parametric ranking (PIT) of the residuals via the univariate marginal
CDF:

ui,t = FXi

(
εi,t
)
, ∀i, t

where FXi
denotes the CDF of the univariate marginal distribution.

3. Compute the quadratic form Qt (see Gaussian N.1, and Student-t N.2)

4. Compute the marginal log densities of the residuals:

N∑
i=1

ln fXi

(
εi,t
)
, ∀t

where fXi
(·) denotes the marginal density of the elliptical distribution, and

ui,t = FXi

(
εi,t
)
, ∀i, t

5. Compute the log copula density:

ln cX
(
u1,t, . . . , uN,t

)
= ln fN

(
zt
∣∣ ν, P) − N∑

i=1

ln fZi

(
zi,t
)
, for all t

where fN denotes the multivariate elliptical density and fZi
the univariate elliptical

marginal density.
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6. Sum over all t to obtain the total log-likelihood:

lnL
(
θ
)
=

T∑
t=1

[
ln cX

(
u1,t, . . . , uN,t

)
+

N∑
i=1

ln fXi

(
εi,t
)]
.

The parameter vector collects:

θ =
(
λ0, λf , β1, . . . , βN , vech(L), ν

)
,

where ν denotes the degrees of freedom or other tail parameter. Here, L is the lower
triangular Cholesky factor of a covariance matrix S, and the correlation matrix is defined
as:

P =
S√

diag(S) diag(S)⊤
, with S = LL⊤.

The vech operator (see Appendix M) is defined as:

vech
(
L
)
=
(
ℓ11, ℓ21, ℓ22, ℓ31, ℓ32, ℓ33, . . .

)⊤
.

The parameter estimation proceeds by minimizing the negative log-likelihood with respect
to θ. The optimisation is performed using BFGS or L-BFGS-B algorithms in Python
(scipy.optimize minimize routine).

O Robust Inference for Gaussian Copula MLE

We define the parameter vector θ =
(
λ0, λf , β1, . . . , βN , vech(L)

)
, where L is the lower-

triangular Cholesky factor of the covariance matrix Σ.

At each time t, the joint likelihood is expressed in terms of the copula density and marginal
densities:

lnL
(
θ
)
=

T∑
t=1

[
ln cX

(
u1,t, . . . , uN,t

)
+

N∑
i=1

ln fXi

(
εi,t
)]
.

where:
εi,t = Ri,t − λ0 − λf βi − βi ft, ui,t = FXi

(
εi,t
)
, ∀i, t

We define the score vector at time t as:

st = ∇θ

[
ln cX

(
u1,t, . . . , uN,t

)
+

N∑
i=1

ln fXi

(
εi,t
)]
, ∀t
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Stacking all T contributions, the empirical outer product of scores is:

Ω̂18 =
T∑
t=1

st s⊤t .

and the Hessian Ĥ is the observed Hessian of the negative log-likelihood:

Ĥ = −∇2
[
lnL

(
θ
)]
.

Under correct specification of the copula and marginals, the covariance matrix of θ̂ is:

V̂arMLE
(
θ̂
)
= Ĥ−1.

To obtain inference robust to possible model misspecification, we use the robust MLE
estimator (sandwich estimator):

V̂arrobust
(
θ̂
)
= Ĥ−1 Ω̂ Ĥ−1. (96)

The robust standard errors, for j = 1 . . . J , are:

ŜE
(
θ̂j
)
=
√[

V̂arrobust
(
θ̂
)]

jj
.

The associated t-statistics are: tj = θ̂j

ŜE
(
θ̂j

) . Assuming asymptotic normality, the two-sided

p-values are: pj = 2
(
1 − Φ

(
|tj|
))
, where J = N +N(N + 1)/2 + 2 is the total number

of estimated parameters in θ̂.

In our implementation, the log-likelihood is computed directly from the multivariate Gaus-
sian distribution:

lnL(θ) =
T∑
t=1

lnϕN

(
εt;0,Σ

)
,

where ϕN(·;0,Σ) denotes the N -dimensional Gaussian density with mean zero and covari-
ance matrix Σ, and

εt = Rt − λ01− λfβ − βft, ∀t

This formulation implicitly assumes both the copula and the marginals are Gaussian. As
18 This use of Ω̂ refers to the outer product of score vectors in the robust (sandwich) variance estimator. It

is unrelated to the Ω used earlier to denote the error covariance structure in the context of non-spherical
disturbances.
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a result, the full joint density coincides with the log-likelihood of a Gaussian copula with
Gaussian marginals.

In the canonical copula decomposition, the log-likelihood is typically written as:

lnL(θ) =
T∑
t=1

[
ln cX(u1t, . . . , uNt) +

N∑
i=1

ln fXi
(εi,t)

]
,

where ui,t = FXi
(εi,t) and cX is the copula density.

When both the copula and marginals are Gaussian, this decomposition simplifies to the
multivariate normal log-density.

We compute the finite-difference Hessian Ĥ from the Gaussian (or t) log-likelihood, and the
outer product of per-time scores Ω̂ for robust inference. The robust (sandwich) covariance
matrix is then given by equation 96.
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