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Abstract
The performance of personal sound systems is often de-

graded by inaccurate acoustic measurements. To achieve ro-
bust control while balancing acoustic contrast and signal distor-
tion, this work proposes a robust hybrid optimization method
that exploits both acoustic contrast control and pressure match-
ing (ACC-PM). The method addresses perturbations caused by
uncertainties in the acoustic transfer functions such as temper-
ature changes, head movement, etc, modeled as norm-bounded
uncertainties. Although the resulting worst-case optimization is
inherently non-convex, it is reformulated as a second-order cone
programming problem, which can be efficiently solved. Numer-
ical simulations demonstrate the effectiveness of the proposed
robust ACC-PM algorithm, showing an improvement over 18%
in terms of AC compared to vanilla ACC-PM.
Index Terms: sound field control, worst-case, personal sound
zone, second-order cone programming, robustness.

1. Introduction
Personal sound zones (PSZs) aim to create distinct auditory
spaces where listeners can experience different sounds without
physical barriers or wearing headsets [1]. With applications ex-
panding in augmented/virtual reality (AR/VR), in-vehicle audio
systems, and mobile devices, PSZ technology has gained signif-
icant attention in recent years. By utilizing loudspeaker arrays
and tailored driving signals, PSZ systems generate bright zones
(BZs), where desired sounds are heard, and dark zones (DZs),
where sound energy is minimized, depicted in Figure 1. How-
ever, achieving this goal requires precise knowledge of acoustic
transfer functions (ATFs) to optimize the sound pressure distri-
bution between BZs and DZs. In practice, accurately capturing
ATFs is challenging due to reverberation, mismatches in array
positioning, listener movement, electro-acoustic variances, and
unpredictable acoustic environments [2]. The traditional ap-
proaches designed with perfect ATFs may struggle or fail when
faced with inaccuracies in the ATFs. Therefore, designing a ro-
bust PSZ control is highly desired in practical applications [3].

The conventional PSZ algorithms primarily focus on the
optimizing criteria such as acoustic contrast (AC), acoustic con-
trast difference (AED) [4, 5], reproduction error (RE), array ef-
fort (AE) [6], and planarity [7]. Choi and Kim introduced the
well-known acoustic contrast control (ACC) in the frequency
domain, while Elliott et al. rederived ACC using Lagrange mul-
tipliers and proposed regularized contrast maximization with an
AE constraint, alongside a low-computation alternative maxi-
mizing AED [6]. However, ACC focuses on maximizing energy
contrast, neglecting phase control, leading to audible distortions
[8]. To address this, the pressure matching (PM) method [9] was

Bright Zone Dark Zone

w2

w1

wL

x[n]

Virtual Source

Control Point

hml 

hml + hml  

hml  is from:   Position Mismatch             Electro-acoustic Mismatch    

        Circumstance Temperature & Humidity   Reverberation       Others

Desired hmt

(PM)

Maximize Energy Difference (ACC)

Perturbation

Figure 1: PSZ system schematic diagram and the potential fac-
tors causing ATFs’ perturbation.

developed, which minimizes the reproduction error by consid-
ering both amplitude and phase at the cost of a lower AC. To
balance ACC and PM, a hybrid approach through a trade-off
weight was later proposed [10, 11]. A subspace-based method,
referred to as the variable span trade-off filters (VAST) [12], is
also proposed based on generalized eigenvalue decomposition.
In addition to the above frequency domain approaches, PSZ al-
gorithm has also been extended to the time domain (TD) [8,13],
the modal domain (MD) [14–16], and other transformed do-
mains [17, 18].

However, the aforementioned approaches usually assume
perfect acoustic transfer functions (ATFs) to attain the required
performance. A key consideration in robust PSZ control is link-
ing the performance metrics to the uncertainty in ATFs. The
existing robust PSZ methods can be broadly categorized into
stochastic and robust optimization. In stochastic optimization,
perturbations are treated as random variables following a known
distribution such as additive or multiplicative errors in phase
and amplitude [19, 20]. In contrast, robust optimization as-
sumes norm-bounded uncertainties [21], using worst-case or
min-max optimization approaches [6, 20, 22]. A hybrid ap-
proach [23] integrates both, using a complex Gaussian mixture
model (CGMM) for parameter estimation and an uncertainty
ellipsoid [24] to model perturbations. However, this method
requires extensive ATF data and computations, with only mod-
erate performance. Other studies focus on specific perturba-
tions, such as position mismatch, temperature variations [25],
or source geometry [26].

This paper proposes a robust ACC-PM (RACC-PM) al-
gorithm based on worst-case optimization, utilizing norm-
bounded uncertainty to alleviate ATF perturbations. The pro-
posed RACC-PM is derived under more stringent assumptions
than RACC while offering lower computational costs relative
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to RPM. Additionally, the proposed method is formulated as a
SOCP problem, which is solved via convex optimization [27].

2. Sound Zone Modeling and Preliminary
2.1. Sound Field Model and ATF Perturbation

We consider a two-zone PSZ system, controlled by L loud-
speakers and sampled by MB and MD control points in BZ
and DZ, respectively, shown in Figure 1. At the m-th control
point in sound zone Z (BZ or DZ), denoted by the subscript
(·)Z∈{B,D}, the produced sound pressure pmZ [k] at the k-th fre-
quency bin is

pmZ [k] = x[k]

L∑
l=1

hml,Z [k]wl[k] = x[k]hT
mZ [k]w[k], (1)

where x[k] is the input signal, wl[k] is the driving sig-
nal for the l-th loudspeaker, and the ATF hml,Z [k] denotes
the acoustic environment between the m-th control point
and the l-th loudspeaker in zone Z. Writing hmZ [k] =
[hm1,Z [k], hm2,Z [k], · · · , hmL,Z [k]]

T ∈ CL×1 and w[k] =
[w1[k], w2[k], · · · , wL[k]]

T ∈ CL×1, the sound pressure
pmZ [k] can be rewritten in vector form, and to account for the
total sound pressure discretized by the microphone array, the
sound field in zone Z can be compactly expressed in matrix
form as

pZ [k] = x[k]HZ [k]w[k], (2)

where HZ [k] = [h1Z [k], · · · ,hMZZ [k]]
T ∈ CMZ×L is pre-

measured ATF matrix, and pZ [k] = [p1Z [k], · · · , pMZZ [k]] ∈
CMZ×1 denotes the sound pressure vector. Assume x[k] is in-
dependent of HZ [k] and w[k], it can be assumed to be a Dirac
function. By omitting the frequency indices, a common expres-
sion for the sound field is [4–6, 10]

pZ = HZw. (3)

For ATFs with bounded perturbation, the measured ATFs
can be denoted as

H̃Z = HZ +∆HZ , ∥∆HZ∥F ≤ ϵZ , (4)

where ∆HZ represents the perturbation of the nominal mea-
surement HZ , ϵZ is the uncertainty level, and ∥ · ∥F denotes the
Frobenius norm.

2.2. Evaluation Criteria

The performance of a PSZ system is primarily evaluated based
on the following three key metrics: the ratio of sound pressure
energy between BZ and DZ, the distortion error w.r.t. the de-
sired sound field, and the power consumption of the loudspeak-
ers. These metrics are quantified as acoustic contrast (AC), nor-
malized reproduction error (NRE), and array effort (AE), re-
spectively. The definitions of these metrics are

AC = 10 log10
MDwHHH

BHBw

MBwHHH
DHDw

, AE =
wHw

Eref
, (5)

and the NRE for both sound zones is defined as:

NRE = 10 log10

(
∥pd

B −HBw∥2

∥pd
B∥2

+
∥HDw∥2

∥pd
B∥2

)
, (6)

where Eref is reference energy [6], and pd
B denotes the desired

BZ sound field, while the desired sound field for DZ is 0. Typ-
ically, pd

B is designed in an anechoic environment, produced by

a virtual source [10, 28, 29], or simulated using a room impulse
response (RIR) generator [30], which is then truncated to the di-
rect path [12]. This operation indirectly allows PSZ to perform
room compensation.

3. The Proposed Robust ACC-PM Using
Worst-Case Optimization

The proposed robust RACC-PM seeks to mitigate the compu-
tational complexity issue of the robust PM (RPM) [23] and the
unrealistic assumption of uncorrelated nominal measurements
and perturbations in RACC [20]. RPM incurs additional costs
due to the need for autocorrelation matrix estimation, which re-
quires numerous ATF measurements. Furthermore, RPM does
not account for perturbations in the DZ, and the biconvex nature
of the optimization problem [31] leads to many local minima,
where the commonly used alternating update approach cannot
guarantee an optimal solution. Before deriving the RACC-PM
algorithm, we introduce Theorem 1.

Theorem 1. For the following optimization, we have

max
∥∆H∥F≤ϵ

∥p− (H+∆H)w∥2 = ∥p−Hw∥2 + ϵ∥w∥2. (7)

Moreover, using the spectral norm or the Frobenius norm to
measure the perturbation ∆H yields the same result.

This can be easily proved using the triangle inequality and
the definitions of the matrix norms. We omitted the proof here
due to space constraints.

3.1. The Proposed Robust ACC-PM

To leverage both ACC and PM, we intuitively merge their cost
functions and impose an ATF uncertainty constraint. Based on
the worst-case principle, the worst-case RACC-PM formulation
is

min
w

max
∆HZ

∥∥∥pd
B − H̃Bw

∥∥∥2

2
+µ

∥∥∥H̃Dw
∥∥∥2

2
−ρ

(
wHR̃Bw

wHR̃Dw

)
s.t. ∥w∥2 ≤ ew, ∥∆HB∥F ≤ ϵB , ∥∆HD∥F ≤ ϵD,

(8)

where ρ > 0 balances PM and ACC, and R̃Z denotes the corre-
lation matrix of perturbed ATFs in the corresponding personal
zone.

To solve this optimization in (8), the denominator is trans-
formed as follows

min
w

max
∆HB,∆HD

∥pd
B − H̃Bw∥22 + µ∥H̃Dw∥22

− ρ(wHR̃Bw − αwHR̃Dw),

s.t. ∥∆HB∥F ≤ ϵB , ∥∆HD∥F ≤ ϵD, ∥w∥2 ≤ ew,

(9)

where α is a user-defined penalty parameter. Assuming R̃B ⪰
αR̃D, the last term in (9) exactly represents AED maximization
[5].

Expanding the first two terms of ℓ2-norm in (9) produces

min
w

max
∆HB,∆HD

∥pd
B∥22 −wHH̃H

Bp
d
B − pd

B
H
H̃Bw+

(1− ρ)wHR̃Bw + (µ+ ρα)wHR̃Dw,

s.t. ∥∆HB∥F ≤ ϵB , ∥∆HD∥F ≤ ϵD, ∥w∥2 ≤ ew.

(10)
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Regrouping (10) yields

min
w

max
∆HB,∆HD

(1− ρ)

∥∥∥∥ 1

1− ρ
pd

B − H̃Bw

∥∥∥∥2

2

+ (µ+ ρα)
∥∥∥H̃Dw

∥∥∥2

2
− ρσ2

d

1− ρ
,

s.t. ∥∆HB∥F ≤ ϵB , ∥∆HD∥F ≤ ϵD, ∥w∥2 ≤ ew,

(11)

where σ2
d = ∥pd

B∥22 represents the energy of desired sound pres-
sure. Since the predefined parameters are constants independent
of variables, the simplified expression of (11) becomes

min
w

max
∆HB,∆HD

∥∥∥∥ 1

1− ρ
pd

B − H̃Bw

∥∥∥∥2

2

+ β
∥∥∥H̃Dw

∥∥∥2

2
,

s.t. ∥∆HB∥F ≤ ϵB , ∥∆HD∥F ≤ ϵD, ∥w∥2 ≤ ew,

(12)

where β = µ+ρα
1−ρ

. Using Theorem 1, we arrive at the final
RACC-PM formulation. That is

min
∥w∥2≤ew

∥∥∥∥[ pd
B −

√
1− ρHB

0−
√
µ+ ραHD

]
w

∥∥∥∥
2

+ϵr∥w∥2, (13)

where ϵr =
√

(1− ρ)ϵ2B + (µ+ ρα)ϵ2D . It is seen that intro-
ducing the AC constraint reshapes the nominal measurements
in effect.

3.2. Solutions of RACC-PM

To solve the problem in (13), which consists of a quadratic ob-
jective function and a quadratic constraint, we reformulate (13)
as an SOCP problem by introducing auxiliary variables λ and
ν, given by

min λ

s.t. ∥p−Hw∥2 ≤ λ− ν,

∥w∥2 ≤ ν

ϵr
,

∥w∥2 ≤
√
ew,

(14)

where p =
[
pd

B
T
,0T

]T
∈ C(MB+MD)×1 and H =[√

1− ρHT
B,

√
µ+ ραHT

D

]T ∈ C(MB+MD)×L. For compu-
tational convenience, we define the complex desired sound field
and driven signal as

y =

[
Re(p)
Im(p)

]
, x =

[
Re(w)
Im(w)

]
. (15)

To preserve the product (Hw), we define the measurement
ATFs matrix A as:

A(2MB+2MD)×2L =

[
Re(H) −Im(H)
Im(H) Re(H)

]
. (16)

Using the definitions in (15) and (16), we reformulate (14)
as a general SOCP problem, given by

min cTz

s.t. ∥Ciz+ di∥2 ≤ eT
i z+ fi, i = 1, 2, 3,

(17)

where z = [xT, λ, ν]T ∈ R2L+2 and c = [0T, 1, 0]T ∈
R2L+2. The matrices and vectors used in the constraints are
provided in Table 1.

Finally, the problem in (13) can be efficiently solved us-
ing the convex optimization toolbox [27]. The computation

Table 1: Constant References.

Variables
Index 1 2 3

C
(2MB+2MD)×(2L+2)
i

[A,0] [I,0] [I,0]

d
(2MB+2MD)×1
i

−y 0 0

e
(2L+2)×1
i

[
0T, 1,−1

]T
[0T, 0, 1

ϵr
]T 0

fi 0 0
√
ew

complexity of RACC-PM is O(8MBL
2 +8MDL2 +8L3) for

each iteration [32] with the interior-point primal-dual potential
reduction method. In comparison, CGMM, using the interior-
point polynomial algorithm, has a complexity of O(8M3

BL
3 +

8L3) [33, pp. 236].

4. Numerical Experiment
This section presents numerical experiments to validate the
effectiveness of the proposed RACC-PM. We compare the
proposed RACC-PM with several benchmarks: robust worst-
case ACC (wc-RACC) [20], ACC-PM [10], narrowband VAST
(VAST-NF) [12], and POTDC-RACC [34]. The robustness of
these algorithms is evaluated against perturbations in ATFs,
with disturbed ATFs generated using the RIR toolbox [30].
The analysis is conducted across three scenarios: the presence
of background noise, different reverberation times, and mis-
matched microphone array positions.

4.1. Experiment Settings

The room dimensions are set to 4.5m × 4.5m × 2.5m (length
× width × height), with the layout of the equipment shown in
Figure 2.
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6
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1
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Figure 2: Room Setup: A linear array of 16 (L = 16) uni-
formly spaced loudspeakers and two sets of 37 measurement
microphones (MB = MD = 37) with equal spacing between
each. A virtual source generates the desired sound field.

In the experiments, we synthesized 300 sets of ATF data
under three perturbation scenarios. In Case 1, 100 sets were
subjected to random Gaussian noise interference, which repre-
sents the background noise in the room, with an SNR ranging
from 15 dB to 25 dB. In Case 2, 100 sets were contaminated by
disturbances in microphone positions, where the microphones
were uniformly distributed within a circular area of 0.05 m ra-
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dius around their true positions. Finally, in Case 3, 100 sets
were affected by disturbances at reverberation time T60, uni-
formly sampled between 300 and 400 ms. The parameters for
all algorithms are provided in Table 2.

Table 2: Parameters Setting.

Algorithms Parameters

ACC(True)/PM(True) —
ACC-PM κ = 0.7.
VAST-NF µ = 1, V = L/2 = 8 .
wc-RACC γB ≈ ϵ2B , γD ≈ ϵ2D .

POTDC-RACC αl, αu [34], η = ϵB ,
γD = γD in wc-RACC.

RACC-PM
√
ew = ∥wACC−PM∥, µ = 1,

α = ACACC(True), ρ = 0.1,
ϵB = 0.01

√
tr(HH

BHB),
ϵD = 0.01

√
tr(HH

DHD).

4.2. Evaluation Results

The performance comparisons of all algorithms in terms of
NRE, AC, and AE are shown in Figure 3 and 4. The solid
red line represents the proposed RACC-PM, while PM (True)
and ACC (True) denote the best NRE and AC achieved under
undisturbed conditions, respectively.
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Figure 3: Case 1: Background noise.

For Case 1, involving 100 data sets, we used leave-one-out
cross-validation, and the average results are shown in Figure 3.
When nominal data are used, PM and ACC achieve the best per-
formance for the NRE and AC metrics, respectively. However,
both algorithms significantly deteriorate NRE and AC when ap-
plied to perturbed ATFs. The robust algorithms mitigate this
issue, with wc-RACC yielding the best AC performance. No-
tably, the proposed RACC-PM algorithm matches the AC per-
formance of wc-RACC in the 100–1000 Hz range while of-
fering superior NRE performance. Additionally, RACC-PM

demonstrates comparable AE to wc-RACC, which is enhanced
by incorporating an AE constraint.

In Case 2, position mismatch exerts a greater impact on
both the AC and NRE metrics, with NRE degradation in the
1000–4000 Hz band being more pronounced than in Case 1.
The proposed RACC-PM algorithm improves AC performance
over non-robust methods while preventing further degradation
of NRE, particularly in low-frequency bands below 1000 Hz.
While POTDC-RACC, wc-RACC, and ACC achieve higher
AC values than RACC-PM, they are primarily optimized for
AC, with NRE remaining around 0 dB. In contrast, RACC-PM
jointly optimizes AC and NRE, leading to more balanced and
robust performance. Notably, compared to all baselines in Fig-
ure 4, RACC-PM achieves an average AE reduction of approx-
imately 20 dB, significantly improving the acoustic radiation
efficiency of the speaker array and highlighting its practical po-
tential for real-world sound field control.
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Figure 4: Case 2: Position mismatch.

The results of Case 3 caused by reverberation are consistent
with these observations, leading to a more pronounced perfor-
mance degradation, and due to page limitations, the results are
not presented here.

5. Conclusion and Discussion

In this work, we developed a new RACC-PM algorithm, derived
from worst-case optimization, to address the mismatch between
measured and nominal ATFs. Although the optimization is non-
convex, it can be reformulated as SOCP by imposing an AC
constraint, allowing for efficient solutions via convex optimiza-
tion. The effectiveness was demonstrated in a disturbed PSZ
model under various perturbations, where it outperformed the
standard ACC-PM. Currently, we are implementing RACC-PM
in a real-world cabin environment to achieve PSZ between the
front and rear seats. Our findings indicate that RACC-PM re-
mains effective, even without diagonal loading.
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