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Abstract

Shared energy storage helps lower user investment costs and enhances energy efficiency, which is considered a pivotal driver in accel-
erating the green transition of energy sectors. In view of the increasing demand for hydrogen, this paper proposes a bi-level optimization
of configurations and scheduling for combined cooling, heating, and power (CCHP) microgrid systems considering shared hybrid
electric-hydrogen energy storage service. The upper-level model addresses the capacity allocation problem of energy storage stations,
while the lower-level model optimizes the operational strategies for the multi-microgrid system(MMS). To resolve the complexity of
the coupled bi-level problem, Karush-Kuhn-Tucker (KKT) conditions and the Big-M method are applied to reformulate it into a solvable
mixed-integer linear programming (MILP) model, compatible with CPLEX. The economic viability and rationality of the proposed
approach are verified through comparisons of three cases. Numerical results show that the proposed approach reduces user annual costs
by 20.15% compared to MMS without additional energy storage equipment and achieves 100% renewable absorption. For operators, it
yields 5.71 M CNY annual profit with 3.02-year payback. Compared to MMS with electricity sharing, it further cuts user costs by 3.84%,
boosts operator profit by 60.71%, and shortens payback by 15.88%.

Keywords: Shared energy storage; Combined cooling, heating and power (CCHP); Hybrid electric-hydrogen energy; MMS; Karush-Kuhn-Tucker (KKT);
Big-M
0 Introduction

Greenhouse gas emissions, especially carbon dioxide,
account for 80% of total emissions due to human activity
[1]. This directly contributes to the frequency of extreme
weather events. Concomitant problems include rising glo-
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bal temperatures [2] and depletion of environmental
resources [3]. To mitigate the potential environmental
damage caused by climate change as much as possible,
countries across the world have formally adopted,
announced, or are considering net-zero emission goals in
alignment with the Paris Agreement [4]. In 2020, China
announced an expansion of its nationally determined con-
tribution, aiming to achieve net-zero carbon dioxide emis-
sions by 2060 [5].

The CCHP system is an energy-efficient and environ-
mentally friendly system capable of delivering cooling,
heating, and electricity simultaneously [6]. By introducing
decoupling equipment into the traditional CCHP system, a
ervices by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
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CCHP microgrid can be established [7]. It can promote
green energy production, improve energy efficiency [8],
while reducing carbon dioxide emissions [9]. The imple-
mentation of CCHP microgrids contributes significantly
to the achievement of ‘‘carbon neutrality”.

Research on CCHP microgrids has already yielded
some results. Reference [10] integrated a Power-to-Gas
(P2G) device into a CCHP microgrid and applied a dis-
tributed robust optimization approach to address energy
dispatch issues. The results showed that this method
improves stability and economy. Reference [11] proposed
a new multi-timescale dynamic robust optimal scheduling
approach, significantly lower the operating expenses of
CCHP microgrids and enhance the robustness of their
cooperative operation. Reference [12] proposed an opti-
mized scheduling framework for integrating adiabatic
compressed air energy storage and CCHP microgrids, con-
sidering temperature dynamics. A pilot project conducted
in China demonstrated that the system’s operating costs
were reduced by 13.7% compared to previous levels.

A substantial portion of research on CCHP microgrids
emphasizes integrating advanced technologies or renew-
able energy sources, alongside developing innovative mod-
els and optimization methods. However, there is limited
focus on the economic feasibility and practical implemen-
tation of these technologies, particularly within complex
system configurations. At the same time, renewable energy
is volatile and intermittent due to weather factors [13].
These studies do not perform well when dealing with
uncertain renewable energy outputs. Microgrid systems
require integrated energy storage equipment to manage
the volatility of renewable energy [14]. However, the exten-
sive and widespread deployment of energy storage equip-
ment faces problems such as high costs, technical
difficulties, and imperfect market mechanisms.

To tackle the problems mentioned above, some scholars
have suggested new models of energy storage sharing. Ref-
erence [15] proposes a novel energy trading market equilib-
rium model that integrates peer-to-peer trading
mechanisms with energy storage sharing and implements
this model for residential consumers. Reference [16]
extended the energy sharing model into direct and buffer
sharing, developed a day-ahead stochastic planning model
to assist energy sharers’ decision-making. Reference [17]
introduced another way of sharing, cloud energy storage
(CES), which reduces the cost by exploiting consumer
complementarities and economies of scale. Results for res-
idential customers in Ireland showed that CES could pro-
vide residents with more convenient and economical
channels for purchasing energy.

Currently, much attention is directed towards exploring
sharing models and investigating operational strategies or
economic dispatch methods. Few studies have addressed
capacity configurations for energy storage devices and
the maximization of their economic benefits over their life
Please cite this article in press as: L.Li et al. Bi-level optimization of configura
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sharing services.

Hybrid energy storage can cope with future multi-
energy coupling and improve the flexibility of energy stor-
age systems, garnering significant interest from researchers
[18]. Hydrogen frequently serves a crucial function in
hybrid energy storage systems owing to its high energy
density, eco-friendliness, and convenient transportability
[19]. It is widely regarded as essential for shifting away
from the current reliance on fossil fuels and advancing
toward a holistic sustainable energy transition. [20]. Refer-
ence [21] constructed a distributed robustness-based
hybrid energy storage model for electricity and hydrogen
in the MMS. This model ensures system economy and
can cope with fluctuating renewable energy output. Refer-
ence [22] proposed a bi-level optimization model that inte-
grates hydrogen energy with shared energy storage. This
approach not only meets the demand of the external
hydrogen energy market but also provides microgrid users
with greater flexibility in buying and selling energy. Refer-
ence [23] proposed hybrid shared energy storage models
with different emphases for three different types of region-
ally integrated energy systems: residential, industrial, and
commercial. Although the above literature can enhance
the system’s economic performance, it lacks a more com-
prehensive consideration of hydrogen energy circulation.
Most studies focus on utilizing the hydrogen generated
by shared energy storage either as fuel for power genera-
tion or directly selling it to external energy markets, with-
out accounting for the growing internal hydrogen demand
within the system.

Addressing the previously identified issues, this paper
proposes a bi-level optimization model of configurations
and scheduling for the MMS considering shared hybrid
electric-hydrogen energy storage service. It can address
both the operation optimization for the MMS and the
capacity configuration for hybrid energy storage station
(HESS). Firstly, the framework structure and operational
mode of the proposed service are presented. Subsequently,
the simplification and solving process of the complex bi-
level optimization model are illustrated. This includes
using the KKT conditions and the Big-M method to sim-
plify the model for direct solving by the CPLEX solver.
Finally, the economic feasibility and reasonableness of
the proposed scheme are verified through a simulation
example. The contributions are outlined as follows:

1) Building upon traditional electricity sharing, this
study proposes a more advanced shared hybrid
electric-hydrogen energy storage service. A bi-level
optimization algorithm is employed to address the
complex interest interactions between the operator
and the MMS, while simultaneously balancing the
benefits of both parties.
tions and scheduling for the multi-microgrid system (MMS) considering
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2) By introducing hydrogen energy flow from HESS to
MMS in the model, the approach facilitates more
flexible multi-energy transmission within the system
while supplying hydrogen to the microgrid at
below-market prices.

3) The paper analyzes the operation and profitability of
the proposed scheme, providing useful references for
industry practitioners.

1 System Design

In current energy systems, shared energy storage has
become a viable strategy to enhance resource utilization
and reduce investment costs [24]. Three prevalent models
are widely adopted [25]:

1) Operator-Invested Centralized Shared Energy Stor-
age Station: An independent operator invests in and
constructs a large-scale centralized energy storage
facility. The primary revenue streams are derived
from service fees, energy arbitrage, and capacity
leasing. This approach reduces individual invest-
ment burdens while ensuring high utilization
efficiency.

2) Jointly Invested Shared Energy Storage Station:
Multiple energy storage users collaboratively invest
in a shared storage facility. By pooling resources,
participants mitigate high initial capital expenditures
while gaining access to reliable energy storage ser-
vices. This cooperative model promotes cost-
sharing and minimizes idle capacity.

3) User-Leased Energy Storage Equipment: End-users
with privately owned energy storage devices lease
their idle capacity to others, creating an additional
revenue stream. This decentralized model maximizes
equipment utilization and facilitates energy circula-
tion across the broader grid.

An increasing number of pilot projects have emerged
and achieved significant results. In China’s Gansu Pro-
vince, a 500 MW/1000 MWh project offers capacity
leasing at just CNY 250 per kW/year—far lower than
the cost of building private facilities. Meanwhile,
projects in California have achieved over 80%
utilization rates in ancillary services markets, signifi-
cantly outperforming traditional distributed storage
systems.

To avoid conflicts of interest between multiple users
and reduce the complexity of implementation, this paper
adopts the first service model mentioned above. Further-
more, based on single-energy sharing, a new hybrid energy
sharing model is proposed to facilitate more efficient and
flexible energy transmission. The corresponding system
architecture is illustrated in Fig. 1.
Please cite this article in press as: L.Li et al. Bi-level optimization of configura
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As shown in the upper part of Fig. 1, HESS consists of
an electricity storage station (ESS) and a hydrogen storage
station (HSS), where HSS consists of a P2G device and a
tank to store hydrogen. In HESS, both the stored and con-
sumed electrical energy originate from MMS. Excess
power generated by the microgrid can be utilized, stored
or converted into hydrogen through the dispatch center
in HESS. The electricity stored in HESS fills the power
gap of MMS. And the hydrogen in it can be supplied to
the outside market and to microgrid users who need it.

The structure of CCHP microgrids is shown at the bot-
tom of Fig. 1. Each microgrid is fitted with a range of
energy conversion and utilization devices, including gas
turbines, heat exchangers, waste heat boilers, gas boilers,
electric chillers, absorption chillers, etc. Microgrids are
connected to the power grid. However, considering the
technical requirements for backward transmission and
related policy restrictions, this paper assumes that micro-
grids cannot sell electricity to the power grid [26]. HESS
and microgrids act as independent operating entities, both
seeking to maximize their respective benefits through the
interactions involving electricity and hydrogen energy.

1.2 Operation

A dispatch center is established within HESS. Users
interested in joining the energy storage service need to pro-
vide the dispatch center with hourly-resolved annual fore-
casts of their load demand, renewable generation, and
electricity purchase prices. Upon collecting the user-
submitted forecast data, the dispatch center performs data
cleaning and processing to eliminate outliers and ensure
consistency. The processed dataset is then clustered into
multiple representative typical days to reduce computa-
tional complexity while preserving key variability. Based
on these typical days, the dispatch center calculates the
optimized capacity of HESS and the operational costs
for users. Once both parties reach an agreement, the ser-
vice agreement is signed, specifying the device capacity,
charging and discharging plans, and rules for the payment
of service fees, among other details.

ESS and HSS provide energy storage assistance to users
in their respective service areas. ESS can absorb some of
the excess power from microgrids while delivering power
to users in need. In contrast to conventional power sta-
tions, the buses of ESS are connected to the microgrid
users separately, which allows the transfer of energy at
the spatial level through the buses [27]. During a specific
period, if the energy demand of all users connected to
the ESS bus requires charging, ESS will receive discharg-
ing instructions from the dispatch center. Conversely, if
the users generate excess electricity, ESS will store excess
electricity. HSS produces hydrogen from purchased elec-
tions and scheduling for the multi-microgrid system (MMS) considering
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Fig. 1. Structure of the shared hybrid electric-hydrogen energy storage service.
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trical energy and sells it to needy users. Hydrogen energy
will first be used to meet the demand of microgrid users,
and any surplus hydrogen energy will then be transferred
to the outside market. This paper considers hydrogen tan-
ker transport for hydrogen energy transmission. Unlike
the energy transmission mode of ESS, HSS allows for
simultaneous input and output of energy.

The service fee is charged to users by the HESS opera-
tor for accessing energy storage capabilities, and it is paid
when users interact with ESS or sell power to HSS.
Although power exchanges between microgrids do not
occur directly through ESS, they are still billed in a man-
ner that simulates flow into and out of ESS. Operators
gain revenue in two ways: first, by charging users for their
services, and second, by purchasing energy at low prices
and selling it at high prices. For the convenience of subse-
quent calculations, this paper uniformly equates hydrogen
energy to electric power.

2 Bi-level optimization model building

Bi-level optimization is suitable for addressing system
optimization problems that feature distinct primary and
secondary models. Typically, the upper part serves as the
primary model, while the lower part serves as the sec-
ondary one. Both levels have their own objective functions
and constraint sets. The optimization procedure initiates
at the upper model, where decision variables are deter-
Please cite this article in press as: L.Li et al. Bi-level optimization of configura
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mined and subsequently transmitted to the lower model.
Upon receipt of this data, the lower model establishes its
feasible domain and carries out optimization tasks aimed
at achieving the optimal value of its objective function.
These outcomes are then relayed back to the upper model.
Through iterative processes, the optimal value for the
comprehensive model is attained. This optimization
method tightly integrates the upper and lower levels of fos-
tering mutual influence and constraint while considering
the interests of both parties.

2.1 Upper-level HESS model

This model is tasked with optimizing the maximum
annual profit of HESS during the planning period.
The decision variables consist of two parts. One part
is the capacity configurations and maximum power
of HESS. The other part is the energy interaction of
HESS with the microgrid and the hydrogen energy
market.

2.1.1 Objective function of HESS

Based on the decision variables described above, the
objective function can be formulated below:

minC
M

m 1

T m Cinv m ess Cinv m hss Cess m s Chss m s

Ctrans m Cserve m Cess m b Chss m b Chss m q

1

tions and scheduling for the multi-microgrid system (MMS) considering
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where:M is the number of chosen typical days;Tm is the num-
ber of days corresponding to them th typical day; Cinv m ess

and Cinv m hss are the daily investment costs of ESS and HSS
on m th day, respectively;Cess m s and Chss m s are the pur-
chasing costs of electricity for ESS and HSS on m th
day, respectively;Ctrans m is the transporting costs of hydro-
gen on m th day;Cserve m is the service revenue from micro-
grids on m th day;Cess m b is the revenue generated by
selling electricity on m th day;Chss m b and Chss m q are the
revenue generated by selling hydrogen from HSS to micro-
grids and to the outside market on m th day, respectively.

1) The daily investment cost of ESS can be described as:

Cinv m ess
aessPmax

ess bessE
max
ess

T
Y ess 2
ess

where:aess and bess are the per-unit power cost and capacity
cost of ESS, respectively;Pmax

ess and Emax
ess are the maximum

power and maximum capacity of ESS, respectively;T ess is
the serve days of ESS;Y ess is the maintenance cost of ESS
per day.

2) The daily investment cost of HSS can be described
as:

Cinv m hss

ap2gPmax
p2g

T p2g

btankE
max
tan k

T tan k

Y p2g Y tan k 3
where:ap2g is the per-unit power cost of the P2G device;btank

is the per-unit capacity cost of the hydrogen storage
tank;Pmax

p2g and Emax
tan k are the maximum power and maximum

capacity of the P2G device and hydrogen storage tank,
respectively;T p2g and T tan k are the serve days of the P2G
device and hydrogen storage tank, respectively;Y p2g and
Y tan k are the maintenance costs of the P2G device and
hydrogen storage tank per day, respectively.

3) The purchasing cost of electricity for ESS can be
described as:

Cess m s

N

r 1

NT

t 1

Dt ubuy
d t P ess s m r t 4
where:N is the number of microgrids;NT is the number of

scheduling periods;Dt is the time interval.ubuy
d t is the sell-

ing price of electricity to ESS by microgrids at time
t;P ess s m r t is the electricity sold to ESS by microgrid r at
time t on m th day.

4) The purchasing cost of electricity for HSS can be
described as:

Chss m s

N NT

Dt ubuy
h t P hss s m r t 5
r 1 t 1
Please cite this article in press as: L.Li et al. Bi-level optimization of configura
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where:ubuy
h t is the selling price of electricity to HSS by

microgrids at time t;P hss s m r t is the electricity sold to
HSS by microgrid r at time t on m th day.

5) Transporting costs of hydrogen can be described as
[28]:

Ctrans m
P hss b m r t 0 334Sr 2 771

gtrans
6

h2

where:P hss b m r t is the hydrogen purchased from HSS by
microgrid r at time t on m th day;Sr is the distance of
microgrid r from HSS, and the unit is kilometers;gtransh2

is

the factor used to convert 1 kW of hydrogen to its mass
equivalent.

6) The service revenue can be described as:

Cserve m

N NT

u t Dt P hss s m r t P ess s m r t
7
r 1 t 1

P ess b m r t

where:u t is the service fee for each unit of electricity
traded;P ess b m r t is the electricity purchased from ESS by
microgrid r at time t on m th day.

7) The revenue generated by selling electricity can be
described as:

Cess m b

N NT

Dt usell
d t P ess b m r t 8
r 1 t 1

where:usell
d t is the purchasing price of electricity from

ESS at time t.

8) The revenue generated by selling hydrogen from HSS
to microgrids can be described as:

Chss m b

N NT

Dt usell
h t P hss b m r t 9
r 1 t 1

where:usell
h t is the purchasing price of hydrogen from

HSS by microgrids at time t.

9) The revenue generated by selling hydrogen from HSS
to the outside market can be described as:

Chss m q Dt usell
q t P hss q m t 10
where:usell
q t is the purchasing price of hydrogen from

HSS by the outside market at time t;P hss q m t is the hydro-
gen purchased from HSS by the outside market at time t
on m th day.
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2.1.2 Effects of equipment degradation

In this section, a linear degradation model for HESS is
introduced to enable a more comprehensive evaluation of
the system’s economic performance. The model primarily
considers the linear degradation of ESS capacity over time
as well as the linear efficiency decline of P2G equipment.
At the same time, it is assumed that no parameter degrada-
tion occurs during a typical operational day. Parameter
adjustments, incorporating linear decay, are implemented
only upon completion of each typical day.

Emax
ess m 1 kess m Emax

ess

gabshss m 1 khss m gabshss

11

where:Emax
ess m and gabshss m are the ESS capacity and P2G effi-

ciency corresponding to the m th typical day, respec-
tively;kess m and khss m are the ESS capacity and P2G
efficiency degradation coefficients corresponding to the
m th typical day, respectively；gabshss is the power-to-
hydrogen conversion efficiency of P2G.

2.1.3 Constraints of HESS

1) The ratio of capacity to rated power [22] can be
defined as:

Emax
ess dessPmax

ess
max max 12
Etan k dhssP p2g

where:dess and dhss are the ratio of ESS and HSS,
respectively.

2) Charging and discharging constraints of ESS on the
m th typical day can be described as:

Eess m t Dt gabsess P ess abs m t 1
greless

P ess rel m t Eess m t 1

10 Emax
ess m Eess t 90 Emax

ess m
0 P ess abs m t Pmax
ess mU abs t

0 P ess rel m t Pmax
ess mU rel t

U abs t U rel t 1

U abs t 0 1 U rel t 0 1

13

where:Eess m t is the electricity stock in ESS at time t;gabsess

and greless are efficiencies of charging and discharging for
ESS;P ess abs m t and P ess rel m t are the power of charging
and discharging for ESS at time t, respectively;U abs t
and U rel t are states of charging and discharging, which
are both 0–1 variables.

3) Charging and discharging constraints of HSS on the
m th typical day can be described as:
Please cite this article in press as: L.Li et al. Bi-level optimization of configura
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Etank m t Dt gabshss mP hss abs m t Phss rel m t

grel
hss

Etan k m t 1

10 Emax
tan k Etan k m t 90 Emax

tan k

0 P hss abs m t Pmax
p2g

0 P hss rel m t Pmax
trans

14

where:Etank m t is the hydrogen stock in HSS at time t;grelhss

is the hydrogen discharging efficiency;P hss abs m t and
P hss rel m t are the charging and discharging power of
HSS at time t, respectively;Pmax

trans is the maximum hydrogen
energy delivery power.

4) Constraints between HSS and the outside market can
be described as:

0 P hss q m t P hload m t 15
where:P hload m t is the hydrogen load of the outside market
on m th day.

2.2 Lower-level MMS model

This model is tasked with optimizing the minimum
annual operating cost of the MMS during the planning
period. Decision variables include outputs of devices
within microgrids, power interactions between the main
power grid and microgrids and their corresponding states,
as well as power interactions between HESS and micro-
grids and their respective states.

2.2.1 Objective function of the MMS

The optimization seeks to minimize the annual operat-
ing cost of the MMS, which can be described as:

minC
M

m 1

Tm Cgrid m Cfuel m Cess m b Cserve m

Chss m b Cess m s Chss m s

16

where:Cgrid m is the purchasing cost from the power grid by
microgrids on m th day;Cfuel m is the cost of gas on m th
day；.

1) The purchasing cost from the power grid can be
described as:

Cgrid m

N

r 1

NT

t 1

Dt ugrid t P grid m r t 17
where:ugrid t is the grid tariff at time t;P grid m r t is the elec-

tricity purchased from the power grid by microgrid r at
time t on m th day.

2) The cost of gas can be described as:
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Cfuel m ugas

N

r 1

NT

t 1

Dt
PGT m r t
gGTLNG

QGB m r t

gGBLNG
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where:ugas is the per-unit price of gas;PGT m r t is the power

output of the gas turbine in microgrid r at time t on m th
day;gGT and gGB are the efficiencies of the gas turbine and
gas boiler, respectively;LNG is the low heating value of gas,
which is 9.7 kW h/m3;QGB m r t is the thermal output of

the gas boiler in microgrid r at time t on m th day.

2.2.2 Constraints of the MMS

Some equation constraints that need to be met for the
optimal operation of the MMS are listed below:

1) Electrical power balance can be described as:

P grid m r t PGT m r t P ess b m r t PWT m r t PPV m r t

P ess s m r t P hss s m r t P load m r t PEC m r t

19

where:PPV m r t and PWT m r t are the photovoltaic power
and the wind power of microgrid r at time t on m th
day, respectively; PEC m r t is the electricity consumed by
the electric chiller in microgrid r at time t on m th
day;P load m r t is the electrical load in microgrid r at time
t on m th day.

2) Cooling power balance can be described as:

PEC m r t gEC QAC m r t P cool m r t 20
where:gEC is the performance coefficient of the electric
chiller;QAC m r t is the cooling power output of the absorp-

tion chiller in microgrid r at time t on m th day;P cool m r t
is the cooling load of microgrid r on m th day.

3) Heating power balance can be described as:

QGB m r t PHX m r t P heat m r t 21
where:PHX m r t is the output of heating power in micro-
grid r at time t on m th day;P heat m r t is the heating load
of microgrid r at time t on m th day.

4) Waste heat balance can be described as:

PHX m r t
gHX

QAC m r t

gAC

cGTgWHPGT m r t 22
where:gHX and gWH are the efficiency of the heat exchanger
and waste heat boiler;gAC is the performance coefficient of
the absorption chiller;cGT is the power-to-heat ratio of the
gas turbine.

5) Charging and discharging the balance of ESS can be
described as:
Please cite this article in press as: L.Li et al. Bi-level optimization of configura
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N

P ess s m r t P ess b m r t P ess abs m t P ess rel m t 23

i 1
6) Charging balance of HSS can be described as:

N

P hss s m r t P hss abs m t 24

i 1
7) Discharging balance of HSS can be described as:

P hss q m t
N

P hss b m r t P hss rel m t 25

i 1
8) Hydrogen load balance can be described as:

P hss b m r t P hload m r t 26

where:P hload m r t is the hydrogen load of microgrid r at
time t on m th day.

It also needs to satisfy the inequality constraints as
follows:

1) Constraints of output can be described as:

Pmin
GT PGT m r t Pmax

GT
min max
QAC QAC m r t QAC

Pmin
EC PEC m r t Pmax

EC

Qmin
GB QGB m r t Qmax

GB

Pmin
HX PHX m r t Pmax

HX

27

where: the above are maximum and minimum values for
each device, respectively.

2) Constraints of energy interaction with the power grid
can be described as:

0 P grid m r t Pmax
grid mg 28
where:Pmax
grid mg is the maximum electric power that micro-

grids can purchase from the power grid.

3) Constraints of energy interaction with ESS can be
described as:

0 P ess b m r t Pmax
ess mgUb m r t

0 P ess s m r t Pmax
ess mgU s m r t

Ub m r t U s m r t 1

29

where:Ub m r t and U s m r t are the state bits of microgrid
on m th day, representing purchase and sale, respec-
tions and scheduling for the multi-microgrid system (MMS) considering
onnection (2025), https://doi.org/10.1016/j.gloei.2025.09.001
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tively;Pmax
ess mg is the maximum power that can be exchanged

between ESS and microgrids.

4) Constraints of energy interaction with HSS can be
described as:

0 P hss s m r t Pmax
hss mg

0 P hss b m r t Pmax
hss hmg

30
Fig. 2. Flowchart for solving the bi-level model of shared hybrid electric-
hydrogen energy storage service.
where:Pmax
hss mg is the maximum power sold to HSS;Pmax

hss hmg is

the maximum power purchased from HSS.

3 Model solving process based on bi-level optimization

As illustrated in Fig. 2, the solution process for the pro-
posed shared hybrid electric-hydrogen energy storage service
consists of three main stages: data input, model construction,
and bi-level optimization model simplification.

The input data includes two key components: the
annual forecasted load and output of renewable energy
units, and the energy price information for interactions
among stakeholders. The annual forecast data undergoes
preprocessing—such as feature extraction and data clean-
ing—before being processed using the K-means clustering
method to generate representative typical daily datasets.

The bi-level optimization model, detailed in the previ-
ous chapter, comprises an upper-level model with integer
and continuous variables under nonlinear constraints,
and a lower-level model formulated as a mixed-integer lin-
ear program. Both levels aim to maximize their respective
objectives, resulting in a complex interdependence.

Due to the strong coupling between the two levels,
direct computation is intractable. To address this, the
Lagrangian function of the lower-level model is first con-
structed. The lower-level model is then transformed into
upper-level constraints using the KKT complementary
slackness conditions, as shown in Appendix A (Equations
A2–A40). Next, nonlinearities in the converted model are
linearized via the Big-M method (Appendix A, Equations
A41–A43), yielding a single-layer MILP formulation.
Finally, the simplified MILP model is solved using the
commercial solver CPLEX in MATLAB, outputting the
optimal hybrid energy storage configuration and micro-
grid operation results.

4 Case study

4.1 Parameter setting

Three disconnected CCHP microgrids, namely MG 1,
MG 2, and MG 3, are selected to constitute an MMS.
Each microgrid is directly connected to HESS, with dis-
tances of 50 km, 80 km, and 120 km, respectively. MG1
is a power-abundant microgrid characterized by high wind
and photovoltaic output, while MG2 represents a bal-
Please cite this article in press as: L.Li et al. Bi-level optimization of configura
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anced energy supply–demand microgrid without wind tur-
bines. In contrast, MG3 is an energy-deficient microgrid
with significant load demand. Considering the significant
impact of seasonal variations on microgrids, the K-
means clustering method is adopted to cluster the forecast
data of spring, summer, autumn, and winter into four typ-
ical days to simulate the annual operation of MMS. Each
season consists of 91 days, and each day is 24 h long. The
clustered data of microgrids are illustrated in Fig. B1 of
Appendix B. The hydrogen load in the outside market
after clustering is depicted in Fig. B2 of Appendix B.
The gas price is taken as the industrial gas price,
3.42CNY/m3. The economic parameters of various devices
in HESS can be found in Table 1. Table 2 illustrates the
pricing for electricity and hydrogen interactions among
the power grid, microgrids, HESS, and the outside market.
The unit power cost for the service is 0.05CNY/kWh.
Equipment-related parameters are provided in Appendix
C, Table C1.

To validate the advantages of the proposed shared
HESS service, a comparative analysis of three scenarios
is conducted:
tions and scheduling for the multi-microgrid system (MMS) considering
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1) The MMS without additional energy storage
equipment.

2) The MMS participates in the shared ESS service.
3) The MMS participates in the shared HESS service.

4.2 Optimization results

Under the three cases, the annual operating cost of the
MMS, the annual profit of the operator, and the renewable
energy absorption rate are shown in Table 3. In Case 1,
there is no additional energy storage equipment incorpo-
rated into the MMS. Excess energy is wasted, and power
shortages are compensated by purchasing from the power
grid. Its annual operating cost is 37,759,034 CNY, with a
renewable energy absorption rate of only 69.78%, leading
to significant wastage.

After participating in shared electric energy storage ser-
vice, the power purchase of the MMS is more flexible and
versatile. Excess electricity can also be sold to ESS, gener-
ating additional revenue and avoiding energy waste. The
annual operating cost of the MMS decreased to
31,355,549 CNY, a decrease of 16.96% from Case 1.
Renewable energy absorption rate increased to 100%. In
addition, the operator receives a considerable amount of
profit, amounting to 3,557,835 CNY annually.

In Case 3, hydrogen trading is incorporated into the
shared energy storage service, providing users with hydro-
gen energy at prices substantially below market rates,
while further enhancing the flexibility of microgrid users
in both purchasing and selling electricity. The cost of the
MMS is 30,152,336 CNY, a decrease of 7,606,698 com-
pared to Case 1, a decrease of approximately 20.15%. Con-
sidering the hydrogen demand, the operator’s energy sales
channels are expanded, with a consequent increase in
profit. In this case, the operator can earn 5,717,427 CNY
in annual profit. This is a rise of 2,159,592 CNY, nearly
60.71% from Case 2.

The following discusses the advantages of Case 3 com-
pared with Case 2, focusing on the capacity configuration
and payback periods. The outcomes of the optimized
capacity are presented in Table 4. Due to the consideration
of hydrogen demand, the system’s electrical energy alloca-
tion becomes more flexible. The capacity of ESS decreased
by 2,991.69 kWh, representing a reduction of approxi-
mately 55.35%, which significantly lowered its cost. How-
ever, to meet user demand, a P2G device with a power
Table 1
Economic parameters of HESS.

Equipment Capacity cost CNY/kWh Power cost CN

Battery 1897[29] 1000[29]
P2G / 6900[30]
Hydrogen
tank

104[30] /
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output of 1,385.85 kW and a hydrogen tank with a capac-
ity of 5,543.40 kWh were added. Although the total equip-
ment investment cost of Case 3 is less advantageous
compared to Case 2, by analyzing Tables 1 and 3, it can
be concluded that the operator can expect to shorten the
payback period due to higher benefits and the longer lifes-
pan of the equipment.

Table 5 demonstrates the payback periods for each
device as well as the operator, thus providing a clearer per-
spective on the economic benefits of the two cases. For
both cases, the payback periods for the energy storage
equipment are less than their respective lifetimes. It is the-
oretically feasible for operators to invest in shared energy
storage. In Case 2, ESS can achieve payback in 3.59 years
by selling electricity and charging a service fee. In Case 3,
the addition of hydrogen trading further enhances the ben-
efits. The payback periods for ESS, P2G device, and
hydrogen storage tank are 1.64 years, 4.74 years, and
7.20 years, respectively. Operators can recover all equip-
ment construction and maintenance costs in 3.02 years,
which is a reduction of 0.57 years. It should be noted that
the profits for the P2G device and hydrogen storage tank
are calculated by distributing the total HSS revenue
according to their investment proportion.

To summarize, the introduction of shared energy stor-
age services can cut down user expenses, achieve a 100%
renewable energy absorption rate, and provide consider-
able benefits to operators. The model introduced in this
paper, integrating hydrogen energy with shared energy
storage, demonstrates more incredible economic benefits
for both users and operators when contrasted with conven-
tional shared electric energy storage service.

4.3 Energy interaction

4.3.1 Energy interaction in Case 2

Figs. 3 and 4 illustrate the optimized charging and dis-
charging behavior of ESS and the energy exchange dynam-
ics on the microgrid side in Case 2, respectively. From
Fig. 3, it can be observed that during several time periods,
such as 14:00–16:00 and 20:00–24:00, the stock change is
zero. Power is exchanged solely through the ESS bus,
enabling the spatial transfer of energy. For the rest of the
time, ESS is in a state of charging or discharging, maintain-
ing the balance of the entire system by exchanging energy
with the microgrid. From 00:00 to 08:00, the first accumula-
tion of electricity occurred. Combined with Fig. 4, MG 1
Y/kW Maintenance cost CNY/kW Serve years

72[29] 8[29]
138[30] 15[30]
2[30] 25[30]
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Table 2
Energy interactive price list.

Time slot Grid

tariff

CNY/

kW

electricity purchase

from ESS CNY/kW

electricity sold to

ESS CNY/kW

electricity sold to

HSS CNY/kW

Hydrogen sold to

microgrids CNY/kW

Hydrogen sold

outside CNY/kW

Market price of

hydrogen CNY/kW

Peak 08:00–12:00
17:00–21:00

1.36 1.15 0.95 1.06 1.13 1.39 1.51

Shoulder12:00–17:00
21:00–24:00

0.82 0.75 0.55 0.66

Valley 00:00–08:00 0.37 0.40 0.20 0.31

Table 3
Comparison of costs, benefits and renewable energy absorption rate under three cases.

Annual operating cost of the MMS /104 CNY Annual profit of the operator /104 CNY Renewable energy absorption

Case1 3775.90 0 69.78%
Case2 3135.55 355.78 100%
Case3 3015.23 571.74 100%

Table 4
Outcomes of the optimized capacity configuration in Case 2 and Case 3.

Equipment Power/kW Capacity /kWh Cost/104 CNY

Case2 ESS 2027.65 5405.32 1228.15
Case3 ESS 905.40 2413.63 1562.29

HSS 1385.85 5543.40
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imported a significant amount of wind power into ESS dur-
ing that period. Meanwhile, the two energy-deficient micro-
grids did not consume too much ESS stock but chose to
purchase power from gas companies and the power grid
to satisfy their load. After 8:00, the grid electricity prices rise
rapidly. Microgrids stop purchasing power from the power
grid and instead depend on the cheaper ESS supply. The
ESS stock falls rapidly. The second phase of power accumu-
lation occurs between 10:00 and 14:00, driven by a surge in
photovoltaic (PV) generation. However, renewable energy
generation exhibits inherent intermittency, with PV systems
being particularly pronounced in this regard. As solar irra-
diance diminishes, PV output gradually declines to zero.
Consequently, the MMS resumes drawing energy from
ESS to maintain load demand.

4.3.2 Energy interaction in Case 3

Fig. 5 illustrates the optimization of charging and dis-
charging for HESS in Case 3. According to Fig. 5(b),
Table 5
Payback periods for each device and operator in Case 2 and Case 3.

Serve years

Battery 8
P2G 15
Hydrogen tank 25
operator /
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HSS discharges are mainly concentrated between 07:00
and 20:00, so hydrogen loads are concentrated during day-
time hours. The selling price of electricity for microgrids is
highest during 08:00–12:00 and 17:00–21:00 due to the
time-of-use tariff. HSS needs to meet its electricity demand
while avoiding purchasing at these peak periods. There-
fore, the energy charging of HSS is primarily concentrated
from 00:00 to 08:00 and from 12:00 to 16:00.

As shown in Fig. 5(a), from 00:00 to 08:00, the energy
purchase decisions of ESS and HSS are similar, with both
choosing to charge during the low-price period. However,
the total charging power of the two stations already
exceeds the power supply available from microgrids. Com-
bined with the data shown in Fig. 6, MG 2 and MG 3 both
sacrificed some of their own interests during that period to
purchase electricity from the grid to maintain the eco-
nomic efficiency of the entire system.

4.4 Sensitivity analysis

Using the renewable energy input data in Section 4.1 as
the baseline (with a renewable energy penetration rate of
1), Fig. 7 illustrates the impact of varying penetration rates
on the shared hybrid electric-hydrogen energy storage sys-
tem. In this experiment, the actual renewable energy pen-
etration rate is 58.12%. As shown in the figure, when the
penetration rate decreases, the capacity configuration
Payback years in Case2 Payback years in Case3

3.59 1.64
/ 4.74
/ 7.20
3.59 3.02

tions and scheduling for the multi-microgrid system (MMS) considering
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Fig. 3. Optimization of the charging and discharging energy for ESS on a
typical spring day in Case 2.

Fig. 4. Optimization of the energy interaction for microgrids on a typical
spring day in Case 2.
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declines accordingly, leading to economic losses for both
operator and microgrids.

In the initial stage of increasing penetration rates,
microgrids can profit by selling more energy to the sta-
tions, while operators can reap greater benefits by deploy-
ing slightly larger storage systems. However, if the
penetration rate continues to rise beyond a certain thresh-
old, the energy input from the microgrid will far exceed the
overall system’s load demand. Operators must significantly
expand energy storage capacity to accommodate the
energy, which will lead to a sharp increase in the initial
construction costs of the equipment. This not only reduces
the operators’ annual revenue but also extends the invest-
ment payback period.

4.5 Adaptive analysis based on Monte Carlo simulation

Due to the randomness of wind turbines, PV systems,
and loads, the operation of microgrids incorporating
shared hybrid electric-hydrogen energy storage is signifi-
cantly affected. To address this, the Monte Carlo method
was employed to randomly generate 1,000 scenarios by
combining the renewable energy output characteristics
and load profiles of various users. These scenarios cover
extreme cases such as peak loads, full output from wind
turbines or PV systems, and extremely low generation.
By simulating the operation under these scenarios, the
optimal operational strategies for each scenario, as well
as the economic benefits for users and operators, can be
obtained.

Fig. 8 presents a comparison of economic benefits
between Case 3 and Case 2 across the 1000 generated sce-
narios. Positive values indicate that Case 3 has better eco-
Please cite this article in press as: L.Li et al. Bi-level optimization of configura
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nomic benefits than Case 2. The figure clearly shows that
the proposed shared hybrid electric-hydrogen energy stor-
age service is superior to Case 2 in 94.3% of scenarios,
achieving a win–win situation for microgrids and opera-
tions and scheduling for the multi-microgrid system (MMS) considering
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Fig. 5. Optimization of the charging and discharging energy for HESS on
a typical spring day in Case 3.

Fig. 6. Optimization of the energy interaction for microgrids on a typical
spring day in Case 3.
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tors. In only 0.6% of cases, the proposed scheme is com-
pletely inferior to the traditional electricity-sharing model.
These results indicate that even when considering uncer-
tainty factors, the proposed scheme remains significantly
superior to the traditional model. Monte Carlo simula-
tions comprehensively assess the impact of various uncer-
tainty factors on the model’s economic performance,
thereby providing robust validation of its reliability. It
should be noted that the determination of the benefit
boundary is based on the calculation results of the maxi-
mum benefit difference between Case 3 and Case 2.
Please cite this article in press as: L.Li et al. Bi-level optimization of configurations and scheduling for the multi-microgrid system (MMS) considering
shared hybrid electric-hydrogen energy storage service. Global Energy Interconnection (2025), https://doi.org/10.1016/j.gloei.2025.09.001
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Fig. 7. Sensitivity analysis of renewable energy penetration.

Fig. 8. Comparison of economic benefits between Case 3 and Case 2
across the 1000 generated scenarios.
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5 Conclusion

For the CCHP MMS with hydrogen energy demand,
this paper proposes a bi-level optimization model incorpo-
rating shared hybrid electric-hydrogen energy storage ser-
vices. The upper-level model optimizes the life-cycle
capacity configuration of HESS, while the lower-level
model focuses on the operational optimization of the
MMS, integrating cooling, heating, electricity, and hydro-
gen energy. By applying the KKT conditions, the lower-
level model is transformed into constraints for the upper-
level model. Subsequently, the Big-M method linearizes
nonlinear components, converting the problem into a
MILP model. Case studies validate the economic feasibil-
ity and reliability of the proposed scheme, yielding the fol-
lowing key findings:

1) The proposed scheme enables users to access more
flexible energy trading options and lower-cost energy
procurement channels. The MMS achieves a 20.15%
reduction in annual operating costs while increasing
the renewable energy utilization rate to 100%.

2) The payback periods for ESS, P2G devices, and
hydrogen storage tanks are 1.64 years, 4.74 years,
and 7.20 years, respectively–all shorter than their
expected service lives. The overall payback period
for HESS is only 3.02 years, demonstrating signifi-
cant profit potential for operators.

3) Integrated HSS-ESS services, capable of meeting
diverse energy demands for CCHP microgrid users,
demonstrate significant potential in future applica-
tions featuring high renewable energy penetration
and multi-energy coupling.
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Appendix A

The Lagrangian function is constructed and presented
in Eq. (A1).

k1 r t m,k2 r t m,k3r t m,k4 r t m,k5 r t m,k6 r t m,k7 r t m and k8 r t m are
Lagrangian multipliers corresponding to equality con-

straints.umin
1 r t m,u

max
1 r t m,u

min
2 r t m,u

max
2 r t m,u

min
3 r t m,u

max
3 r t m,u

min
4 r t m,u

max
4 r t m,-

umin
5 r t m,u

max
5 r t m,u

min
6 r t m,u

max
6 r t m,u

min
7 r t m,u

max
7 r t m,u

min
8 r t m,u

max
8 r t m,u

max
9 r t m,-

umin
10 r t m,u

max
10 r t m,u

max
11 r t m and umin

11 r t m are Lagrangian multipliers

for inequality constraints.
Firstly, Lagrangian multipliers are introduced corre-

sponding to the equational and non-equational constraints
respectively. Then use the complementary slackness condi-
tion of KKT to construct the Lagrangian function (A1),
the lower model can be reformulated as a supplementary
constraint on the upper model. The obtained single-level
mixed-integer nonlinear model is shown in equations.
(A2) (A40).
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The formula ‘‘0 a\b 0” indicates ab = 0, and
a 0, b 0. The Big-M method is then employed to lin-
earize the non-linear constraints (A4), (A6) and (A20)
(A40). For example, constraint (A4) is converted to con-
straint (A41) and constraint (A20) is converted to con-
straints (A42) and (A43). The transformation of
constraints (A6) is like that of constraint (A4), and the
transformation of constraints (A21) (A40) is like that of
constraint (A20).
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In above equations, M and Mmin
u represent a large con-

stants taken as 105;vmin
u r t represents a binary variable.
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Fig. B1. Clustered data of microgrids

Fig. B2. Clustered data of the outside energy market
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Appendix C

Table C1
Equipment-related parameters of microgrids.
Parameters
Please cite this artic
shared hybrid elect
Value
le in press as: L.Li et a
ric-hydrogen energy st
Parameters
l. Bi-level optimizati
orage service. Globa
Value
gGT
 0.3
 Pmax
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 4000 kW
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gtransh2

39.72 kWh/kg
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 4000 kW
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