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Abstract
This paper investigates the solution stability and well-posedness for a parametric set
optimization problem (PSOP), where lower and upper set order relations are induced
by an improvement set. We provide new sufficient conditions for the outer-continuity,
outer-openness and inner-openness of the solution mapping of (PSOP). By utilizing
the property of cone-continuity, we derive sufficient conditions ensuring the Levitin-
Polyak well-posedness for (PSOP) and the Hadamard well-posedness for a related
parametric implicit set optimization problem (ISOP). Numerical examples are also
given to illustrate the main results.
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1 Introduction

In the past few years, the set-valued optimization problem has become a vibrant and
growing branch of applied mathematics due to its practical application in diverse
fields, such as engineering, control theory, welfare economies, game theory and many
others; for details, see [4, 23, 26] and the references therein. The vector criterion
and the set criterion are two well known criteria for finding the optimal solution to
set-valued optimization problems. In the vector criterion, optimal solutions of a set-
valued optimization problem are defined as the efficient points of the union of all
images of the set-valued objective mapping. In set-valued optimization (known also
as set optimization), a solution concept is defined by a comparison among all images
of the set-valued objective mapping using set order relations. Due to its extensive
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use in practical situations, set optimization though a relatively new direction in the
field of optimization has attracted a lot of attention from researchers, and we refer the
interested reader to [7, 8, 25, 26, 32, 33, 45, 46] for various important and interesting
results.

The stability analysis of solutions is one of the very interesting and meaningful
topics in optimization and related fields. In the literatures, we can find a number of
papers that studied the stability of solutions for set-valued optimization problems,
vector variational inequalities and vector equilibrium problems [2, 19–21, 24, 29,
32–34, 36, 37]. For instance, Khanh and Luc [24] proposed two concepts of supe-
rior open limit and inferior open limit and used them to examine out-continuity and
inner-continuity of set-valued mapping for parametric variational relation problems.
Later, Hung [17] studied the outer-continuity and the outer-openness of solutions for
parametric generalized vector mixed quasivariational inequality problems. Recently,
under free-disposal set mappings, Li et al. [28] obtained some sufficient conditions
of the outer-continuity, outer-openness and inner-openness for a parametric unified
quasivariational inequality.

The well-posedness of an optimization problem investigates the behavior of the
variables when the value of the corresponding objective function is near to the optimal
value. It is closely related to the analysis of solution stability of optimization problems.
The study of the well-posedness of optimization problems starts with scalar optimiza-
tion problems, and it is divided into two main categories: one known as Hadamard
well-posedness and the other as Tikhonov well-posedness. Hadamard well-posedness
was initiated byHadamard [13] in 1902 to study amathematical model related to phys-
ical phenomena. It requires the existence and uniqueness of the optimal solution of the
problem together with the continuous dependence of the optimal solution set on the
data. Meanwhile, Tikhonov well-posedness [41] was proposed in 1966 to find optimal
solutions of unconstrained optimization problems. Levitin-Polyak (LP, for short) well-
posedness was originally proposed by Levitin and Polyak [27], and it is an extension
of Tikhonov well-posedness. In Tikhonov well-posedness, each minimizing sequence
is required to stay in the feasible set of the problem. Whereas in LP well-posedness,
minimizing sequence can be outside of the feasible set, but the distance between it
and the feasible set has to be approximately zero. In the literature, the concept of LP
well-posedness has further been extended for variational inequalities [16, 40, 42] and
for mathematical programs with equilibrium constraints [1].

The study of well-posedness for set optimization problems was initiated by Zhang
et al. [44], where they introduced three kinds of well-posedness and obtained suffi-
cient and necessary conditions that guarantee the well-posedness for set optimization
problems involving the lower set less order relations. Later, Long et al. [30] introduced
two types of pointwise well-posedness for set optimization problems and investigated
the relationships among them and well-posedness in [44]. Vui et al. [43] presented the
sufficient and necessary conditions for set optimization problems to be LPwell-posed,
and established the links between stability and LP well-posedness of the underlying
problem. Khoshkhabar-amiranloo [25] generalized the well-posedness in [44] and
obtained a characterization in terms of Berge-upper semicontinuity and closedness of
an approximate solution map. Recently, Duy [8] presented various notions of LP well-
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posedness for set optimization problems and investigated the closeness of efficient
solution sets for a set optimization problem under the Berge continuity.

According to our observation of the above literatures [8, 25, 30, 43, 44], we can find
that the order relations used in set optimization problems are usually preorders induced
by convex cones. However, it is worth noting that in economics [10] we may have to
deal with general order relations that are not necessarily preorders. This insight has
inspired many researchers to explore more general order relations for the optimality
of set optimization problems that are not necessarily preorders (see e.g., [32, 33]).
Moreover, many results of the well-posedness of set optimization problems rely on
the Berge continuity of the objective function (see, [8, 43]), which may not be easily
satisfied.

Consequently, a quite natural and interesting question is: Can we study the well-
posedness for a parametric set optimization problem involving general ordering sets
regardless of the Berge continuity? Additionally, how do the out-continuity, outer-
openness and inner-openness properties of the solution map for a parametric set
optimization problem (PSOP) manifest?

The main purpose of this paper is to answer the above questions by investigating
the solution stability and well-posedness for a parametric set optimization problem
(PSOP), where lower and upper set order relations are induced by an improvement
set. More precisely, we provide new sufficient conditions for the outer-continuity,
outer-openness and inner-openness of the solution mapping to the problem (PSOP).
By using the property of cone-continuity, we derive sufficient conditions ensuring the
Levitin-Polyak (LP) well-posedness for (PSOP) and the Hadamard well-posedness
for a related parametric implicit set optimization problem (ISOP).Numerical examples
are also given to illustrate the main results.

The structure of this paper is organized as follows. Sect. 2 recalls some definitions
and properties of cones, improvement sets and set-valued mappings needed in the
sequel. In Sect. 3, we study the outer-continuity, outer-openness and inner-openness
of solutions for (PSOP). In Sect. 4, the closedness of solution sets of a set optimization
problem, the LP well-posedness of (PSOP) and the Hadamard well-posedness of
(ISOP). The last section, Sect. 5, gives a summary of the obtained results.

2 Preliminaries

Throughout this paper, unless stated otherwise, let X , Y , Z and Λ be real Banach
spaces equipped with the norm || · ||. Assume that C ⊆ Y is a closed, convex and
pointed (i.e. C ∩ (−C) = {0}) cone with nonempty interior (i.e. intC �= ∅), where 0
denotes the apex of C . Let BY represent the open unit ball in Y , and P(Y ) denote the
set of all nonempty subsets of Y . For any nonempty subset A in a Banach space, its
topological interior is written as intA.

For the above cone C , we have known the lower set less relation, upper set less
relation and set less relation (see e.g., [22, 23, 26]) defined respectively by

A �l
C B ⇔ B ⊆ A + C;

A �u
C B ⇔ A ⊆ B − C;
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A �s
C B ⇔ B ⊆ A + C, A ⊆ B − C,

where A, B ∈ P (Y ).
Chicco et al. [6] defined the upper comprehensive set of a nonempty set E in Y ,

denoted by u-compr(E) as

u-compr(E) := E + C .

A nonempty set E in Y is said to be upper comprehensive if u-compr(E) = E . A
nonempty upper comprehensive set E in Y is said to be an improvement set if 0 /∈ E .
Clearly, C\ {0} and intC are improvement sets in Y .

From now on, let E ⊂ Y be an improvement set satisfying E ⊆ C\ {0}. In [7],
for every A, B ∈ P (Y ), the following lower set less order relations on P (Y ) were
defined by

A �l
E B ⇔ B ⊆ A + E;

A 	l
E B ⇔ B ⊆ A + intE,

where intE �= ∅ when referring to the latter relation. In analogy to [7], Mao et al. [32]
defined the upper set less order relations via improvement sets as follows:

A �u
E B ⇔ A ⊆ B − E;

A 	u
E B ⇔ A ⊆ B − intE .

Note that, for each i ∈ {u, l}, the order relations �i
E and 	i

E are transitive but not
reflexive.

Remark 2.1 Consider a nonempty subset A and the above cone C of Y . The element
a ∈ A is called a minimal point of A with respect to C if (A − a) ∩ (−C) = {0}.
Corollary 3.8 from [31] ensures that if A is compact and nonempty, then the set of all
minimal points of A, denoted by Min(A), is nonempty.

Let F : X ⇒ Y be a set-valued mapping. The domain and graph of F are defined
respectively as

domF = {x ∈ X : F (x) �= ∅} , grF = {(x, y) ∈ X × Y : y ∈ F (x)} .

Let M be a nonempty subset of X , and assume throughout that M ⊆ domF . We
consider the following set optimization problem (SOP):

min{F (x) : x ∈ M}. (SOP)

Definition 2.1 [26] For each i ∈ {u, l}, x̄ ∈ M is said to be

(i) an E-i-minimal solution of (SOP) if x ∈ M and F (x) �i
E F (x̄) implies

F (x̄) �i
E F (x) ;

(ii) a weak E-i-minimal solution of (SOP) if x ∈ M and F (x) 	i
E F (x̄) implies

F (x̄) 	i
E F (x) .
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In what follows, we denote the sets of all E-i-minimal and weak E-i-minimal
solutions of (SOP) by Ei (F, M) and Wi (F, M), respectively, and assume that
Ei (F, M) �= ∅ for each i ∈ {u, l}.
Lemma 2.1 [32] Let x0 ∈ M . If F(x0) is compact, then x0 ∈ Ei (F, M) if and only
if there is no x ∈ M satisfying F (x) �i

E F (x0) for i ∈ {u, l}.
The following result demonstrates that the assertion in Lemma 2.1 also holds for

the weak E-i-minimal solutions with i ∈ {u, l}.
Proposition 2.2 Let x0 ∈ M. If F(x0) is compact, then x0 ∈ Wi (F, M) if and only if
there is no x ∈ M satisfying F (x) 	i

E F (x0) for i ∈ {u, l}.
Proof We only need to prove for the case of i = l as it can be done similarly
for the case i = u. Clearly, if there is no x ∈ M satisfying F (x) 	l

E F (x0), then
x0 ∈ Wl (F, M) by definition. Now, we prove the “only if " part. Assume on the
contrary that there exists x ∈ M satisfying F (x) 	l

E F (x0). Then F (x0) 	l
E F (x)

because x0 ∈ Wl (F, M). Using the above two relations we get

F(x0) ⊆ F(x) + intE ⊆ F(x0) + intE + intE ⊆ F(x0) + C \ {0}, (2.1)

where we should note that intE ⊆ intC due to our assumption that E ⊂ C \ {0}.
Therefore, intE + intE ⊂ intC + intC ⊂ intC ⊂ C \ {0}. Since F(x0) is a compact
and nonempty set, we get byRemark 2.1 thatMin (F (x0)) �= ∅. Let z0 ∈ Min(F(x0)).
This means that

(F (x0) − z0) ∩ (−C) = {0}. (2.2)

As Min(F(x0)) ⊂ F(x0), according to the equation (2.1), there exist u0 ∈ F(x0) and
c0 ∈ C\{0} such that z0 = u0+c0. Then, 0 �= −c0 = u0−z0 ∈ (F (x0) − z0)∩(−C),
which contradicts (2.2) and so the proof is complete. 
�

Let us now recall some basic definitions and properties of multifunction/set-valued
mappings.

Definition 2.2 [3, 5] Let F : X ⇒ Y be a set-valued mapping and C be the above
cone.

(i) F is said to be Berge-upper semicontinuous (B-u.s.c.) at x0 ∈ X , if for any open
set V ⊆ Y with F(x0) ⊆ V , there exists a neighbourhood U of x0 in X such that
F(x) ⊆ V for all x ∈ U .

(ii) F is said to be Berge-lower semicontinuous (B-l.s.c.) at x0 ∈ X , if for any open
set V ⊆ Y with F(x0) ∩ V �= ∅, there exists a neighbourhood U of x0 in X such
that F(x) ∩ V �= ∅ for all x ∈ U .

(iii) F is said to be B-u.s.c. (resp. B-l.s.c.) on X , if it is B-u.s.c. (resp. B-l.s.c.) at x for
all x ∈ X ; F is Berge continuous on X if it is both B-u.s.c and B-l.s.c. on X .
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(iv) F is said to be Hausdorff C-upper semicontinuous (H-C-u.s.c.) at x0 ∈ X , if for
any neighbourhood V of 0Y , there exists a neighbourhood U (x0) of x0 such that

F (x) ⊆ F (x0) + V + C, ∀x ∈ U (x0) .

(v) F is said to be Hausdorff C-lower semicontinuous (H-C-l.s.c.) at x0 ∈ X , if for
any neighbourhood V of 0Y , there exists a neighbourhood U (x0) of x0 such that

F (x0) ⊆ F (x) + V + C, ∀x ∈ U (x0) .

(vi) F is said to be C-lower semicontinuous (C-l.s.c.) at x0 ∈ X , if for any y ∈ F (x0)
and any neighbourhood V of 0Y , there exists a neighbourhood U (x0) of x0 such
that

F(x) ∩ (y + V − C) �= ∅, ∀x ∈ U (x0) .

(vii) F is said to be C-upper semicontinuous (C-u.s.c.) at x0 ∈ X , if for any neighbour-
hood V of F(x0), there exists a neighbourhood U (x0) of x0 such that

F(x) ⊆ V + C, ∀x ∈ U (x0).

(viii) F is called compact at x0 ∈ X if for every sequence {(xn, yn)}n∈N ⊆ gr F with
xn → x0, there exists a convergent subsequence {ynk } such that

ynk → y0 for some y0 ∈ F(x0).

Lemma 2.3 [11] Let F : X ⇒ Y be a set-valued mapping, x ∈ X and C be the
above cone.

(i) If F is C-u.s.c at x, then F is H-C-u.s.c. at x .
(ii) If F is compact and H-C-u.s.c at x, then F is C-u.s.c. at x .
(iii) If F is H-C-l.s.c. at x, then F is C-l.s.c. at x .
(iv) If F is compact and C-l.s.c. at x, then F is H-C-l.s.c. at x .
(v) If F is B-l.s.c. at x, then F is H-C-l.s.c. at x .

Note that the B-u.s.c. and B-l.s.c. properties of F : X ⇒ Y at a point can be
characterized via the sequential forms as follows.

Lemma 2.4 Consider the set-valued mapping F : X ⇒ Y between the Banach spaces
X and Y .

(i) [11, Proposition 2.5.6] F is B-l.s.c. at x0 ∈ X if and only if for any sequence
{xn} ⊂ X with xn → x0 and for any y0 ∈ F(x0), there exist a subsequence {xnk }
of {xn} and elements yn ∈ F(xnk ) for all n such that yn → y0.

(ii) [11, Proposition 2.5.9] Let x0 ∈ X be such that F(x0) is compact. Then, F is
B-u.s.c. at x0 if and only if for any sequence {xn} ⊂ X with xn → x0 and
yn ∈ F(xn) for all n, there exist y0 ∈ F(x0) and a subsequence {ynk } of {yn} such
that ynk → y0.
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Definition 2.3 [23] Let D be a nonempty convex subset of X , F : D ⇒ Y be a
set-valued mapping and C be the above cone.

(i) We say that F is C-convex on D if for each x1, x2 ∈ D and λ ∈ [0, 1], we have

F(λx1 + (1 − λ)x2) �s
C λF(x1) + (1 − λ)F(x2).

(ii) We say that F is strictly naturally C-quasiconvex on D if for each x1, x2 ∈ D and
λ ∈ (0, 1), there is an α ∈ [0, 1] such that

F(λx1 + (1 − λ)x2) 	s
C αF(x1) + (1 − α)F(x2).

For a set-valuedmapping F : X ⇒ Y between Banach spaces X and Y , the superior
limit, superior open limit and inferior open limit of F (see e.g., [24, 39]) are defined
respectively by

lim sup
x→x0

F (x) := {y0 ∈ Y |∃xn → x0, ∃yn ∈ F (xn) ,∀n, yn → y0} ,

lim supo
x→x0

F (x) := {y ∈ Y | There exist an open neighbourhood U of y and a

sequence {xn} ⊆ X converging to x0 and xn �= x0 such that U ⊆ F (xn) for all n},
lim info
x→x0

F (x) := {y ∈ Y | There exist open neighbourhoods U of x0 and V of y

such that V ⊆ F(x) for all x ∈ U with x �= x0}.
Definition 2.4 [24, 39] Let F : X ⇒ Y be a set-valued mapping between Banach
spaces.

(i) F is called outer-continuous at x0 ∈ X if

lim sup
x→x0

F(x) ⊆ F(x0).

F is termed outer-continuous on X if it is outer-continuous at every x ∈ X .
(ii) F is called outer-open at x0 ∈ X if

lim supo
x→x0

F (x) ⊆ F(x0).

F is outer-open on X if this holds for all x ∈ X .
(iii) F is called inner-open at x0 ∈ X if

F(x0) ⊆ lim info
x→x0

F (x) .

F is inner-open on X if it is inner-open at every x ∈ X .

The next lemmas give some properties of the superior limit, superior open limit and
inferior open limit which are useful in the sequel.

Lemma 2.5 [24] For a set-valued mapping F : X ⇒ Y and x0 ∈ X, the following
relations hold.
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(i) lim info
x→x0

F (x) ⊆ lim supo
x→x0

F (x) ⊆ lim sup
x→x0

F (x);

(ii) lim info
x→x0

F (x) =
[
lim sup
x→x0

(F (x))Co
]Co

, where (F (x))Co = Y\F (x) for x ∈ X.

Lemma 2.6 [15] Let A and B be two nonempty subsets of Y . If 0 < ϕ < δ, B is convex
and A + δBY ⊆ B + ϕBY , then A ⊆ intB.

Proposition 2.7 Let M be a convex set and assume that F(·) is strictly naturally C-
quasiconvex on M, where C is a cone as above. If F(·) is compact for each x ∈ M,
then Ei (F, M) = Wi (F, M) for i ∈ {u, l}.
Proof Let i ∈ {u, l}. By the definition of strictly naturally C-quasiconvex and the
convexity of M , we can easily obtain the inclusion Wi (F, M) ⊂ Ei (F, M). Since
Ei (F, M) ⊂ Wi (F, M) is obvious, the proof is complete. 
�

3 Outer-Continuity and Openness for the SolutionMapping

In this section, we analyze the outer-continuity, outer-openness and inner-openness
properties of the solution mapping for a parametric set optimization problem.

Let F : X ⇒ Y and M : Λ ⇒ X be two set-valued mappings with nonempty
values. Consider the following parametric set optimization problem (PSOP): For each
parameter λ ∈ Λ, the associated set optimization problem is defined by

min{F (x) : x ∈ M (λ)}. (SOPλ)

As above, we denote the sets of all E-i-minimal and weak E-i-minimal solu-
tions of (SOPλ) by Ei (F, M (λ)) and Wi (F, M (λ)), respectively, and assume that
Ei (F, M (λ)) �= ∅ for i ∈ {u, l}.

The first main result of this section provides sufficient conditions that guarantee the
outer-continuity for the weak E-i-minimal solution map of (PSOP), where i ∈ {u, l}.
Theorem 3.1 Let λ0 ∈ Λ and assume that the following conditions hold:

(i) M (·) is outer-continuous at λ0 and B-l.s.c. at λ0;
(ii) F (·) is Berge continuous on M(λ0) and has nonempty compact values on X.

Then, Wi (F, M (·)) is outer-continuous at λ0 for i ∈ {u, l}.
Proof We only give a proof for the case i = l as it can be done similarly for the case
i = u. Namely, we will justify that

lim sup
λ→λ0

Wl (F, M (λ)) ⊂ Wl (F, M (λ0)) . (3.1)

Let x0 ∈ lim sup
λ→λ0

Wl (F, M (λ)). This implies that there exists a sequence {λα}
converging to λ0 with xα ∈ Wl (F, M (λα)) such that xα → x0. Since M (·) is
outer-continuous at λ0, we have x0 ∈ M(λ0). Note that F(x0) is compact by (ii).
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We show that x0 ∈ Wl (F, M (λ0)). Suppose to the contrary that x0 /∈
Wl (F, M (λ0)). Then, by Proposition 2.2, there exists z0 ∈ M (λ0) such that
F (z0) 	l

E F (x0), i.e.,

F (x0) ⊆ F (z0) + intE . (3.2)

Since M (·) is B-l.s.c. at λ0, we conclude from Lemma 2.4(i) that there exists {zα}
with zα ∈ M(λα) such that zα → z0. We now claim that there exists α0 ∈ N such that

F (xα) ⊆ F (zα) + intE, ∀α � α0. (3.3)

Assume on the contrary that (3.3) is not true. Then, there exist subsequences
{
xαk

}
of

{xα} and {
zαk

}
of {zα} such that F

(
xαk

)
� F

(
zαk

) + intE for all k. Without loss of
generality, we assume that for all α ∈ N,

F (xα) � F (zα) + intE .

Therefore, for each α, one can find vα ∈ F (xα) such that

vα /∈ F (zα) + intE . (3.4)

Note that F (·) is B-u.s.c. at x0 and F(x0) is compact. Lemma 2.4(ii) yields v0 ∈ F(x0)
and a subsequence {vαk } with vαk → v0. Without loss of generality, assume vα → v0.
From (3.2), there exists u0 ∈ F(z0) satisfying

v0 − u0 ∈ intE . (3.5)

Moreover, F (·) is B-l.s.c. at z0, we get by Lemma 2.4(i) that there exist elements
uα ∈ F(zα) such that uα → u0. This together with (3.5) and vα → v0 implies that
there exists α1 ∈ N such that

vα − uα ∈ intE, ∀α � α1,

which contradicts (3.4). So, (3.3) must be true.
However, it follows from (3.3) and Proposition 2.2 that xα /∈ Wl (F, M (λα)) for

all α ≥ α0. This is a contradiction and so, x0 ∈ Wl (F, M (λ0)). Consequently, (3.1)
holds and the proof is complete. 
�

The following example illustrates the outer-continuity of the solution map in The-
orem 3.1.

Example 3.1 Let X = Λ = R and Y = R
2. We consider C = R

2+ and E = R
2+ +

{(2, 0)} and define a set-valued map M : Λ ⇒ X as

M (λ0) = {x ∈ R : 0 � x � 2 + |λ0|} for λ0 ∈ R.
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Fig. 1 The graph of F

Let F : X ⇒ Y be a set-valued map defined by

F (x) = [(x, x sin x) , (x, 1 + x sin x)] for x ∈ R.

The graph of F is shown in Figure 1.
We can verify that the conditions (i) and (ii) of Theorem 3.1 are fulfilled. By

direct computation, we obtain that Wl (F, M (λ0)) = [0, 2] for a given λ0 ∈ Λ. So
Wl (F, M (·)) is outer-continuous at any λ0 ∈ Λ.

The next result provides sufficient conditions that guarantee the outer-openness for
the weak E-i-minimal solution map of (PSOP), where i ∈ {u, l}.
Corollary 3.2 Let λ0 ∈ Λ. Assume that the assumptions of Theorem 3.1 are satisfied.
Then, Wi (F, M (·)) is outer-open at λ0 for i ∈ {u, l}.
Proof Let λ0 ∈ Λ and i ∈ {u, l}. It follows from Lemma 2.5(i) and the proof of
Theorem 3.1 that

lim supo
λ→λ0

Wi (F, M (λ)) ⊆ lim sup
λ→λ0

Wi (F, M (λ)) ⊆ Wi (F, M (λ0)) .

Therefore, Wi (F, M (·)) is outer-open at λ0. This completes the proof. 
�
The following theorem provides sufficient conditions that guarantee the inner-

openness for the E-i-minimal solution map of (PSOP), where i ∈ {u, l}.
Theorem 3.3 Let λ0 ∈ Λ and assume that E is a closed improvement set. Suppose
that the following conditions hold.

(i) M (·) is inner-open at λ0 and B-u.s.c. with compact values at λ0;
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(ii) F (·) is Berge continuous on M(λ0) and has nonempty compact values on X.

Then, Ei (F, M (·)) is inner-open at λ0 for i ∈ {u, l}.
Proof We only give a proof for the case i = l as it can be done similarly for the case
i = u. Suppose by contradiction that El (F, M (·)) is not inner-open at λ0. Then, we
can find x0 ∈ El (F, M (λ0)) such that x0 /∈ lim info

λ→λ0
El (F, M (λ)). It follows from

Lemma 2.5(ii) that

lim info
λ→λ0

El (F, M (λ)) =
[
lim sup
λ→λ0

(El (F, M (λ)))Co

]Co

.

This implies that x0 ∈ lim sup
λ→λ0

(El (F, M (λ)))Co. Then, there exist a sequence {λα}
with λα → λ0 and a sequence {xα}with xα ∈ (El (F, M (λα)))Co such that xα → x0.
Since M (·) is inner-open at λ0 and x0 ∈ M(λ0), we have

x0 ∈ lim info
λ→λ0

M(λ).

Thus, by the definition of the inferior open limit, we find neighbourhoods U of λ0
and V of x0 such that V ⊆ M(λ) for all λ ∈ U , λ �= λ0. As λα → λ0 and xα ∈
(El (F, M (λα)))Co, there exist subsequences {λβ} of {λα} and {xβ} of {xα} with
xβ /∈ El

(
F, M

(
λβ

))
. By the compactness of F(xβ), from Lemma 2.1, we can find

zβ ∈ M(λβ) such that F
(
zβ

)
�l

E F
(
xβ

)
, i.e.,

F
(
xβ

) ⊆ F
(
zβ

) + E for all β. (3.6)

Note that M (·) is B-u.s.c. at λ0 and M(λ0) is compact. Then, by λβ → λ0 and
zβ ∈ M(λβ), we get by Lemma 2.4(ii) that there exist z0 ∈ M(λ0) and a subsequence
{zβk } of {zβ} such that zβk → z0. There is no loss of generality in assuming that

zβ → z0.

Take any v0 ∈ F(x0) and note that xβ → x0. Since F (·) is B-l.s.c. at x0, we derive
from Lemma 2.4(i) that there exist vβ ∈ F(xβ) for all β such that

vβ → v0.

Now, take a sequence {uβ} ⊂ Y with uβ ∈ F(zβ). Note that F (·) is B-u.s.c. at z0 and
F(z0) is compact. Since zβ → z0, we get by Lemma 2.4(ii) that there exist u0 ∈ F(z0)
and a subsequence {uβk } of {uβ} such that uβk → u0. Without loss of generality, we
may assume that uβ → u0. Hence, by (3.6),

vβ − uβ ∈ E for all β.
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Passing to the limit and noting the closeness of E , we obtain v0−u0 ∈ E . This implies
that v0 ∈ F (z0) + E . Since v0 was arbitrarily chosen, we conclude that F(x0) ⊆
F (z0) + E , i.e., F(z0) �l

E F(x0). However, this contradicts x0 ∈ El (F, M (λ0)) by
virtue of Lemma 2.1 under the compactness of F(x0). Consequently, El (F, M (·)) is
inner-open at λ0, which completes the proof. 
�
Remark 3.1 The inner continuity, the outer continuity, the inner openness and the
outer openness of the solution map for a class of (generalized) variational inequality
problems have been investigated in the literature, e.g., [17, 18, 24, 28]. Recently, in
[29], authors investigated the stability of solution sets for set optimization problems via
improvement sets. Some sufficient conditions for the upper (lower) semicontinuity and
compactness of E-minimal solutionmappings have been given in the above-mentioned
papers for a parametric set optimization under suitable conditions. Our contribution
for this section is to provide sufficient conditions for guaranteeing the outer-continuity,
outer-openness and inner-openness of the solution mappings of (PSOP) via improve-
ment sets.

4 Closedness andWell-posedness for Solutions

In this section, we examine the closedness and the Levitin-Polyak well-posedness of
the solution set of a set optimization problem and the Hadamard well-posedness of
the solution map of a parametric implicit set optimization problem.

4.1 Levitin-PolyakWell-posedness of Set Optimization Problems

In this subsection, we examine the closedness and the Levitin-Polyak (LP) well-
posedness of the solution set of the set optimization problem (SOP).

The following theorem presents the closedness of the sets of weak E-i-minimal
solutions and E-i-minimal solutions of (SOP) for i ∈ {u, l}.
Theorem 4.1 For the set optimization problem (SOP), let M be a convex and closed
subset of domF and E be a convex improvement set. Suppose that F (·) is C-convex
and has compact values on M , where C is a cone defined in Section 2. Then, the
following statements hold.

(a) Wl (F, M) is closed if F (·) is Hausdorff C-continuous on M .
(b) Wu (F, M) is closed if −F (·) is Hausdorff C-continuous on M .

Proof We only give a proof for (a) as it can be done similarly for (b). Let F (·) be
Hausdorff C-continuous on M and we will show that Wl (F, M) is closed.

Let {un} ⊆ Wl (F, M) be such that un → u0. Observe first that u0 ∈ M due to the
closedness of M . We will justify that u0 ∈ Wl (F, M). Assume on the contrary that
u0 /∈ Wl (F, M). Then, by Proposition 2.2, there exists x0 ∈ M such that F (x0) 	l

E
F(u0), i.e.

F (u0) ⊆ F (x0) + intE .
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Due to the compactness of F(u0) and the fact that F(x0)+ intE = ∪
z∈F(x0)

(z + intE),

we can find {z1, z2, ..., zk} ⊆ F (x0) such that

F (u0) ⊆ k∪
i=1

{zi + intE} = {z1, z2, ..., zk} + intE .

The compactness of F(u0) ensures further that there exists δ > 0 such that

F(u0) + 3δBY ⊆ {z1, z2, ..., zk} + intE . (4.1)

Since F(·) is H -C-u.s.c. at u0, for the neighbourhood δBY of 0Y , there exists a
neighbourhood U (u0) of u0 such that

F (u) ⊆ F (u0) + δBY + C, ∀u ∈ U (u0) .

As un → u0 , there exists n1 ∈ N such that un ∈ U (u0) for any n ≥ n1 and that

F(un) ⊆ F(u0) + δBY + C . (4.2)

As F(·) is H -C-l.s.c. at x0, for the above set δBY , there exists a neighbourhoodU (x0)
of x0 such that

F(x0) ⊆ F(x ′) + δBY + C, ∀ x ′ ∈ U (x0) . (4.3)

It follows from (4.1) and (4.2) that

F (un) + 2δBY ⊆ F (u0) + 3δBY + C ⊆ {z1, z2, ..., zk} + intE + C

⊆ {z1, z2, ..., zk} + intE, ∀n ≥ n1, (4.4)

where we should recall that intE + C ⊂ intE (cf. [12, Proposition 2.4]).
For n ≥ n1, take any ϑ ∈ F (un) + 2δBY . By (4.4), there are i0 ∈ {1, 2, ..., k} and
e ∈ intE such that

ϑ = zi0 + e. (4.5)

Moreover, by zi0 ∈ F(x0), we get by (4.3) that for each x ′ ∈ U (x0) there exist
t ∈ F

(
x ′) , b0 ∈ BY and p ∈ C such that zi0 = t + δb0 + p. Hence, it follows from

(4.5) that

ϑ = t + δb0 + p + e ∈ F
(
x ′) + δBY + C + intE, ∀n ≥ n1.

Because of the arbitrariness of ϑ ∈ F (un) + 2δBY , one has

F (un) + 2δBY ⊆ F
(
x ′) + δBY + C + intE

⊆ F
(
x ′) + δBY + E, ∀n ≥ n1,∀x ′ ∈ U (x0).

Sine F(·) isC-convex and E is a convex improvement set, we conclude that F
(
x ′)+E

is convex (cf. [33, Lemma 4.3]) for any x ′ ∈ U (x0). This fact together with Lemma 2.6
implies that

F (un) ⊆ int
(
F

(
x ′) + E

) ⊆ F
(
x ′) + intE, ∀n ≥ n1,∀x ′ ∈ U (x0).
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So we get that F
(
x ′) 	l

E F (un) , ∀n ≥ n1,∀x ′ ∈ U (x0). However, by Proposi-
tion 2.2, this is a contradiction to the fact that un ∈ Wl (F, M) for n ≥ n1. Therefore,
u0 ∈ Wl (F, M) and Wl (F, M) is closed. The proof is complete. 
�
Corollary 4.2 For the set optimization problem (SOP), let all assumptions in Theo-
rem 4.1 hold. Suppose that F (·) is strictly naturally C-quasiconvex. Then, Ei (F, M)

is closed if F (·) is Hausdorff C-continuous on M , where i ∈ {u, l}.
Proof Let i ∈ {u, l}. Since F(·) is strictly naturally C-quasiconvex, we get
Ei (F, M) = Wi (F, M) thanks to Proposition 2.7. So we obtain by Theorem 4.1
that Ei (F, M) is closed if F (·) is Hausdorff C-continuous on M . 
�
Remark 4.1 Theorem 4.1 can be considered as an improvement of Theorem 4.4 in
[8], where the author used the Berge semicontinuity of F to obtain the closedness of
solutions of a set optimization problem. It is worth mentioning here that the Hausdorff
C-continuity is weaker than the Berge continuity for a set-valued mapping.

To proceed, we present the concepts of generalized Levitin-Polyak (LP)-
minimizing sequence and LP well-posedness for the set optimization problem (SOP)
(see also in [8]).

Definition 4.1 Consider the set optimization problem (SOP) and a cone C defined in
Section 2.

(i) A sequence {xn} ⊆ domF is called a generalized LP minimizing sequencewith
respect to e ∈ intC for (SOP) if there exist a sequence {εn} ⊆ R+ with εn ↓ 0 and a
sequence {un} ⊆ Ei (F, M) such that d (xn, M) � εn and F (xn) �i

E F (un) + εne
for all n ∈ N, where i ∈ {u, l} and d (xn, M) := inf {||xn − a|| : a ∈ M}.

(ii) The problem (SOP) is called generalized LP well-posed if for each generalized
LP minimizing sequence {xn}, there exists a subsequence {xnk } of {xn} converging to
an element in Ei (F, M), where i ∈ {u, l}.

Weare now ready to provide sufficient conditions of generalized LP well-posedness
for the problem (SOP). For the sake of convenience, we use l-(SOP) (resp. u-(SOP))
to refer to the set optimization problem (SOP) with respect to the lower (resp. upper)
set less order relation.

Theorem 4.3 For the set optimization problem (SOP), let M be a convex and compact
subset of domF and E be a convex and closed improvement set. Suppose that F (·) is
C-convex, strictly naturally C-quasiconvex and has compact values on M , where C
is a cone defined in Section 2. Then, the following statements hold.

(a) The problem l-(SOP) is generalized LP well-posed if F (·) is Hausdorff C-
continuous on M .

(b) The problem u-(SOP) is generalized LP well-posed if −F (·) is Hausdorff C-
continuous on M .

Proof We only give a proof for (a) as it can be done similarly for (b). Let {xn} be
a generalized LP-minimizing sequence with respect to e ∈ intC for the problem l-
(SOP). By definition, there exist a sequence {εn} ⊆ R+ with εn ↓ 0 and a sequence
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{un} ⊆ El (F, M) such that d (xn, M) � εn , and F (xn) �l
E F (un) + εne, i.e.

F (un) + εne ⊆ F (xn) + E, ∀n ∈ N. (4.6)

Since M is compact and El(F, M) is closed by virtue of Corollary 4.2, El(F, M) is
compact. By the compactness of El(F, M), we may assume without loss of generality
that {un} converges to some u′ ∈ El(F, M).

From d (xn, M) � εn , for each n, there exists x̄n ∈ M such that

||xn − x̄n|| � d (xn, M) + 1

n
� εn + 1

n
.

By the compactness ofM , wemay assume by passing to a subsequence if necessary
that {x̄n} converges to some x ′ ∈ M . It is easy to see that

‖xn − x ′‖ � ‖xn − x̄n‖ + ‖x̄n − x ′‖ � εn + 1

n
+ ‖x̄n − x ′‖.

As εn ↓ 0, 1
n → 0, and ‖x̄n − x ′‖ → 0, we obtain that xn → x ′ ∈ M .

We will show that x ′ ∈ El (F, M). To see this, we assume on the contrary that
x ′ /∈ El (F, M). Then, by the compactness of F(x ′), we claim by Lemma 2.1 that
there exits z′ ∈ M such that F

(
z′

)
�l

E F
(
x ′), i.e., F (

x ′) ⊆ F
(
z′

) + E .
Now, we justify that F

(
u′) ⊆ F

(
z′

)+E . Assume by contradiction that there exists
v ∈ F(u′) such that v /∈ F(z′)+E . Note that F

(
z′

)+E is closed as F
(
z′

)
is compact

and E is closed. Hence, there exists δ > 0 such that

(v + 2δBY ) ∩ (F(z′) + E) = ∅. (4.7)

Let B1 and B2 be zero neighbourhoods in Y such that

B1 + B2 ⊆ δBY . (4.8)

Since F (·) is H-C-u.s.c. at x ′ ∈ M , for the above B1, there exists a neighbourhood
U

(
x ′) of x ′ such that

F (x) ⊆ F
(
x ′) + B1 + C, ∀x ∈ U

(
x ′) .

As xn → x ′, there exists n1 ∈ N such that xn ∈ U
(
x ′) for all n � n1. So, we have

F (xn) ⊆ F
(
x ′) + B1 + C, ∀n � n1. (4.9)

As F (·) is H-C-l.s.c. at u′ ∈ M , for the above B2, there exists a neighbourhoodU
(
u′)

of u′ such that
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F
(
u′) ⊆ F (u) + B2 + C, ∀u ∈ U

(
u′) .

By un → u′, there exists n2 ∈ N such that un ∈ U
(
u′) for all n � n2. Therefore,

F
(
u′) ⊆ F (un) + B2 + C, ∀n � n2. (4.10)

Let n0 = max {n1, n2}. We conclude from (4.6) and (4.8)-(4.10) that, for any n � n0,

F
(
u′) + εne ⊆ F (un) + B2 + C + εne

⊆ F (xn) + E + B2 + C
⊆ F

(
x ′) + B1 + C + E + B2 + C

⊆ F
(
x ′) + δBY + E .

⊆ F
(
z′

) + E + δBY + E .

⊆ F
(
z′

) + C + δBY + E = F
(
z′

) + δBY + E,

where we should note that E ⊆ C\ {0} and E + C = E . Therefore, it holds that

v + εne ∈ F
(
z′

) + δBY + E, ∀n � n0.

Then, for each n ≥ n0, we can find bn ∈ BY such that

v + εne − δbn ∈ F
(
z′

) + E . (4.11)

As εn ↓ 0, we can take n̄ > n0 such that εn < δ
||e|| for all n ≥ n̄. Now, for n ≥ n̄, it

holds that ||εne− δbn|| ≤ ||εne|| + ||δbn|| < 2δ, i.e., εne− δbn ∈ 2δBY . This and the
relation in (4.11) show that

v + εne − δbn ∈ (v + 2δBY ) ∩ (F(z′) + E), ∀n ≥ n̄,

which clearly contradicts (4.7). Consequently, F
(
u′) ⊆ F

(
z′

) + E , which means
that F

(
z′

)
�l

E F
(
u′). Then, by the compactness of F(u′), we claim by Lemma 2.1

that u′ /∈ El (F, M). This contradicts u′ ∈ El (F, M) as shown above. Therefore,
x ′ ∈ El (F, M) holds, and the proof is complete. 
�
Remark 4.2 By virtue of the Hausdorff C-continuity, the above results present suf-
ficient conditions of generalized LP well-posedness of problem (SOP), where the
lower/upper set order relations are induced by an improvement set rather than a cone.
Obviously, the assumptions of Theorem 4.3 are weaker than the Berge continuous
assumption of [8, Theorem 4.5] and [43, Theorem 3.2], and so Theorem 4.3 can be
considered as an improvement of [8, Theorem 4.5] and [43, Theorem 3.2].

The following example illustrates how one can verify the sufficient conditions for
the generalized LP well-posedness of a concrete set optimization problem given in
Theorem 4.3.
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Example 4.1 Let X = R, Y = R
2, M = [0, 1], C = R

2+ and E = R
2+ + {( 1

2 , 0
)}
. We

define a set-valued map F : X ⇒ Y as follows:

F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0, 1] × [0, 1] , if x = 0,

[x, 1] × [−x, 0] , if x ∈ (0, 1] ,

[0, 1] × [0, 0] , if x < 0,

[1, 1] × [−1, 0] , if x > 1.

One can verify that F (·) is Hausdorff C-continuous and compact-valued on M .
Clearly, E is convex and closed improvement set andM is a convex and closed compact
subset of domF . Moreover, F (·) is C-convex, strictly naturally C-quasiconvex, i.e,
all assumptions of Theorem 4.3 (a) are satisfied.

By calculating, we have El (F, M) = [0, 1]. It can be seen that l-(SOP) is gen-
eralized LP well-posed. Indeed, taking xn = − 1

2n , un = 1
2n and εn = 1

n for all
n ∈ N, we see that {xn} is a generalized LP-minimizing sequence for (SOP) and
− 1

2n → 0 ∈ El (F, M). Therefore, Theorem 4.3 (a) is applicable.
However, F (·) is not B-l.s.c., and so F (·) is not Berge continuous. In fact, let

x0 = 0 and V = {
(x, y) ∈ R

2 | (x − 1)2 + (y − 1)2 < 1
4

}
with F(x0) ∩ V �= ∅.

Then, for any neighbourhood U of x0, there exists x̃ ∈ U such that F(x̃) ∩ V = ∅.
Therefore, Theorem 4.5 in [8] is not applicable for this setting.

4.2 HadamardWell-posedness of Parametric Implicit Set Optimization Problem

Let D ⊆ Z be an improvement set with nonempty interior, A ⊆ X be a nonempty
subset, and T be a nonempty compact subset of a real Hausdorff topological space.
Define

• O as the space of all vector-valued maps from A × T to Z ;
• L as the space of all set-valued maps from A to Y .

We consider a parametric implicit set optimization problem (ISOP) under pertur-
bations of both the objective and constraint maps on the parameter space P := L×O
as follows: For each p := (F, h) ∈ P (regarded as a parameter), one has an implicit
set optimization problem

min{F (x) : x ∈ K (p)}, (ISOPp)

where

K (p) = {x ∈ A : h (x, t) /∈ intD,∀t ∈ T } .

The “min” is understood with respect to�i
E or	i

E and so we have the correspond-
ing parametric implicit set optimization i-(ISOPp) problems for i ∈ {u, l}. We also
denote the set of all E-i-minimal and weak E-i-minimal solutions of i-(ISOPp) by
Ei (p) and Wi (p) respectively for i ∈ {u, l}.
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Remark 4.3 For a given p := (F, h) ∈ P , let K (p) be nonempty and compact. Then
we have the following assertions:

(i) If F is l.s.c. and compact on A, then the set Eu (p) is nonempty (see, [32, Lemma
2.5]). Note that Eu (p) ⊂ Wu (p) and so Wu (p) is nonempty.

(ii) If F is C-u.s.c. on A, then the set El (p) is nonempty (see, [15, Lemma 2.3]),
and so Wl (p) is also nonempty.

Definition 4.2 [33] Let Fn : X ⇒ Y and F : X ⇒ Y , A be a nonempty subset of X
with A ⊆ domFn ∩ domF for n ∈ N and C be a cone defined in Section 2. We say
that

(i) Fn
HCl−−→ F on A if for any neighbourhood V of 0Y , there exists n0 ∈ N such that

F (x) ⊆ Fn (x) + V − C, ∀x ∈ A, ∀n � n0.

(ii) Fn
HCu−−−→ F on A if for any neighbourhood V of 0Y , there exists n0 ∈ N such that

Fn (x) ⊆ F (x) + V − C, ∀x ∈ A, ∀n � n0.

We say that Fn
HC−−→ F (also called, Hausdorff C-convergence) on A if Fn

HCl−−→ F

and Fn
HCu−−−→ F on A.

The following concepts of generalized Hadamard well-posedness were given in [9]
for a type of set optimization problems.

Definition 4.3 Let p ∈ P be a given parameter and let i ∈ {u, l}. The problem i-
(ISOP) is said to be generalized Hadamard well-posed for the efficiency (resp. weak
efficiency) at p if the following statements hold:

(i) Ei (p) �= ∅ (resp. Wi (p) �= ∅);
(ii) Let pn → p, where pn ∈ P for all n ∈ N. Then, every sequence {xn} with

xn ∈ Ei (pn) (resp. xn ∈ Wi (pn)), n ∈ N, admits a subsequence converging to
some x̄ ∈ Ei (p) (resp. x̄ ∈ Wi (p)).

We now provide sufficient conditions for the problem u-(ISOP) to be generalized
Hadamard well-posed for the weak efficiency at a reference parameter.

Theorem 4.4 Let E be a convex improvement set, C be a cone defined in Section 2.
For a given p := (F, h) ∈ P , let F be compact-valued on A, where A is a convex set.
For any pn := (Fn, hn) and n ∈ N, assume that the following conditions hold:

(i) K (·) is Berge continuous and compact at p;
(ii) −F (·) is H-C-u.s.c. on A and F (·) is l.s.c. on A;

(iii) Fn
HC−−→ F on A;

(iv) Fn (·) is −C-convex on A.

Then, the parametric implicit set optimization problem u-(ISOP) is generalized
Hadamard well-posed for the weak efficiency at p.
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To prove this theorem, we need the following technical lemma.

Lemma 4.5 Let E be a convex improvement set, Fn : X ⇒ Y and F : X ⇒ Y , A be
a convex subset of X with A ⊆ domFn ∩ domF for n ∈ N and C be a cone defined in
Section 2. Let {xn} ⊆ A with xn → x ∈ A and {yn} ⊆ A with yn → y ∈ A. Suppose
that the following conditions hold:

(i) F(y) is compact and F (y) 	u
E F (x);

(ii) −F (·) is H-C-u.s.c. at y and −F (·) is C-l.s.c. at x ;

(iii) Fn
HC−−→ F on A;

(iv) Fn (·) is −C-convex on A.

Then, there exists n0 ∈ N such that

Fn (yn) 	u
E Fn (xn) , ∀n � n0.

Proof The proof of this lemma is done by using similar arguments as in the proof of
Theorem 4.4 of [33].

Proof of Theorem 4.4. Since K (p) is compact and F is l.s.c and compact on A, we
assert by Remark 4.3(i) that Wu(p) is nonempty. Let pn → p and let {xn} be a
sequence such that xn ∈ Wu (pn) for all n. Since K (·) is compact and B-u.s.c. at p,
we get by Lemma 2.4 (ii) that the sequence {xn} admits a subsequence {xnk } such that
xnk → x̄ ∈ K (p). Now, we claim that x̄ ∈ Wu (p). Suppose by contrary that x̄ is not
a weak E-u-minimal solution of u-(ISOPp). Then, there exists x ′ ∈ K (p) such that
F

(
x ′) 	u

E F (x̄), i.e.

F
(
x ′) ⊆ F (x̄) − intE .

It follows from K (·) is B-l.s.c. at p and Lemma 2.4 (i) that there exists a sequence
{x̂nk }with x̂nk ∈ K (pnk ) such that x̂nk → x ′. We conclude from Lemma 4.5 that there
exists n0 ∈ N such that

Fnk
(
x̂nk

) ⊆ Fnk
(
xnk

) − intE, ∀k � k0.

i.e., Fnk
(
x̂nk

) 	u
E Fnk

(
xnk

)
. This is a contradiction as xn ∈ Wu (pn) for all n. So,

the problem u-(ISOP) is generalized Hadamard well-posed for the weak efficiency,
which completes the proof. 
�

Similarly, we have sufficient conditions ensuring the generalized Hadamard well-
posed for the weak efficiency of l-(ISOP), and its proof is analogous to that of the
above theorem and is therefore omitted.

Proposition 4.6 Let E be a convex improvement set,C be a cone defined in Section 2.
For a given p := (F, h) ∈ P , let F be compact-valued on A, where A is a convex set.
For any pn := (Fn, hn) and n ∈ N, assume that the following conditions hold:

(i) K (·) is Berge continuous and compact at p;
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(ii) F (·) is H-C-u.s.c. on A and F (·) is l.s.c. on A;

(iii) −Fn
H(−C)−−−−→ −F on A;

(iv) Fn (·) be C-convex on A.

Then, the problem l-(ISOP) is generalized Hadamard well-posed for the weak effi-
ciency at p.

Let us now provide sufficient conditions for the problem i-(ISOP), i ∈ {u, l}, to be
generalized Hadamard well-posed for the efficiency at a reference parameter.

Theorem 4.7 Let E be a convex improvement set, C be a cone defined in Section 2
and n ∈ N. For a given p = (F, h) ∈ P , let F be compact-valued on A, where A is a
convex set. For any pn := (Fn, hn) and n ∈ N, consider the following conditions:

(i) K (·) is Berge continuous and compact at p;

(ii) Fn
HC−−→ F on A and Fn (·) is −C-convex on A;

(iii) Fn
H(−C)−−−−→ F on A and Fn (·) is C-convex on A;

(iv) −F (·) is H-C-u.s.c. on A and F (·) is l.s.c. on A;
(v) F (·) is H-C-u.s.c. on A and F (·) is l.s.c. on A;
(vi) F(·) is strictly naturally C-quasiconvex on A.

We have the following assertions:

(a) Under conditions (i), (ii), (iv) and (vi), the problem u-(ISOP) is generalized
Hadamard well-posed for the efficiency at p.

(b) Under conditions (i), (iii), (v) and (vi), the problem l-(ISOP) is generalized
Hadamard well-posed for the efficiency at p.

Proof (a) Since K (p) is compact and F is l.s.c and compact on A, we assert by
Remark 4.3(i) that Eu(p) is nonempty. Let pn → p and let {xn} be a sequence such
that xn ∈ Eu (pn) for all n ∈ N. Since F(·) is strictly naturally C-quasiconvex, it
holds that xn ∈ Wu (pn) for all n by Proposition 2.7. Arguing similarly as in the proof
of Theorem 4.4, we can conclude that x̄ ∈ Wu (p), which entails that x̄ ∈ Eu (p)
by noting Proposition 2.7 again. So, the problem u-(ISOP) is generalized Hadamard
well-posed for the efficiency at p.

(b) Similarly, we can show that the problem l-(ISOP) is generalized Hadamard
well-posed for the efficiency at p.

Remark 4.4 Note that the concepts of Hadamard well-posedness for implicit vector
optimization problems were first investigated in [35]. However, to the best of our
knowledge, such concepts have not been explored for the setting of (ISOP). In The-
orem 4.7, by using the Hausdorff C-continuity of F and other related properties, we
provide new sufficient conditions for the generalized Hadamard well-posedness for
the problem (ISOP) under different kinds of set order relations.

The following example shows how we can verify the sufficient conditions for the
generalized Hadamard well-posedness given in Theorem 4.7.
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Fig. 2 The graph of A

Example 4.2 Let X = Y = Z = R
2, C = D = R

2+, E = R
2+ + {(1, 0)}, T = [0, 1]

and

A =
{
(x1, x2) ∈ X | x12 + x2

2 � 1,
x12

16
+ x22

4
� 1, x1 � 0, x2 � 0

}
.

The graph of A is shown in Figure 2.
We consider h, hn : A × T → R

2, F, Fn : A ⇒ R
2, n ∈ N, which are given as

follows, for all x = (x1, x2) ∈ A, t ∈ T ,

h (x, t) =
(
x1

2 − 2x1 − t, x1 + x2 + t
)

,

hn (x, t) =
(
x1

2 − 2x1 − t + 1

n
, x1 + x2 + t + 1

n

)
,

F (x) = [(x1, 0) , (x1, 2 + cosπx1)] ,

Fn (x) =
[(

x1 + 1

n
, 0

)
,

(
x1 + 1

n
, 2 + cosπ

(
x1 + 1

n

))]
.

The graphs of F and Fn are shown in Figures 3 and 4, respectively.
Obviously, −F (·) is Hausdorff C-continuous and compact-valued on A and con-

ditions (i)-(iii) of Theorem 4.7 are fulfilled. By direct computation, we obtain

K (p) = {x = (x1, x2) ∈ A | 0 � x1 � 2} ,

K (pn) =
{
x = (x1, x2) ∈ A | 1 −

√
n − 1

n
� x1 � 1 +

√
n − 1

n

}
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Fig. 3 The graph of F

Fig. 4 The graph of Fn

and

Eu (p) =
{
(x1, x2) ∈ A | 0 � x1 <

3

2

}
,

Eu (pn) =
{

(x1, x2) ∈ A | 1 −
√
n − 1

n
� x1 <

1

2
+

√
n − 1

n

}
,

where p := (F, h) and pn := (Fn, hn) for n ∈ N. In this setting, by virtue of
Definition 4.3, u-(ISOP) is generalized Hadamard well-posed for the efficiency at p,
which shows that Theorem 4.7 is applicable.
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5 Conclusions

In this article, we examined the stability and well-posedness for a parametric set
optimization problem (PSOP) involving perturbations and theHausdorffC-continuous
set-valued mappings. More specifically, we first provided sufficient conditions for
guaranteeing the outer-continuity, outer-openness and inner-openness of the solution
mappings of (PSOP). By means of the improvement sets, we then investigated the
closedness and the Levitin-Polyak (LP) well-posedness of E-i-minimal solution sets
for a set optimization problem for i ∈ {u, l}. Based on the Hausdorff C-convergence
and related properties, the several types of generalized Hadamard well-posedness for
a parametric implicit set optimization problem (ISOP) under the set lower and upper
order relations were also obtained.

It would be interesting to see how we can employ the current approach to explore
the connectedness and the Hölder continuity of solutions for (PSOP) and (ISOP).
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