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Formalizing complex processes and phenomena of a real-world problem
may require a large number of variables and constraints, resulting in what
is termed a large-scale optimization problem. Nowadays, such large-scale
optimization problems are solved using computing machines, leading to an
enormous computational time being required, which may delay deriving
timely solutions. Decomposition methods, which partition a large-scale
optimization problem into lower-dimensional subproblems, represent a key
approach to addressing time-efficiency issues. There has been significant
progress in both applied mathematics and emerging artificial intelligence
approaches on this front. This work aims at providing an overview of the
decomposition methods from both the mathematics and computer science
points of view. We also remark on the state-of-the-art developments and
recent applications of the decomposition methods, and discuss the future
research and development perspectives.

problem of real-world complex processes and

phenomena, one may need to use a large number
of variables and constraints for their descri-
ption, resulting in the so-called large-scale optimiza-
tion problems, such as large-scale linear program-
ming problems or mixed integer linear optimization
problems (e.g., Refs.[1-2]). Large-scale optimi-
zation problems are usually solved using com-
puting machines. Because of the large number of
variables (and thus dimensions), solving large-scale
optimization problems requires enormous compu-
tational memory, which hinders the timely delivery
of solutions. Therefore, “Divide and Conquer” is one
of the crucial schemes and techniques for handling
large-scale optimization problems"!. The develop-
ments of decomposition methods or how to partition
a large-scale optimization problem into subproblems
of lower-dimension that allow one to derive a timely
solution in a reasonable time have emerged as an

In practice, when formalizing an optimization

important research topic in both applied mathematics
and computer science. This overview will look into
their separate developments, pinpoint their strengths
and weaknesses, identify mutual benefits, and fore-
shadow their future perspectives.

Decomposition methods are an efficient way to
solve a large-scale programming problem by
dividing the problem into subproblems which are
easier to implement and/or are reduced in size. There
has been extensive research done in applied
mathematics and operations research, which will be
summarized in the following sections.

A general optimization problem can be stated as

max{f(x)|x €2, g(x)<0,i=1,---,p,
xeR"
l’lj(x)z(),j:]’...’q} (1)

where x is the decision vector, f:R" — R is the
objective function, g;:R" > R,i=1,---,p and A;:
R"—>R,j=1,---,q are the constraint functions, and
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Q CR" is a geometric constraint set. In large-scale
optimization, the main challenge is maintaining algo-
rithmic efficiency and manageable memory usage as
the dimension n and the number (and complexity) of
constraints increase.

Having established the motivation and relevance
of large-scale optimization in contemporary applica-
tions, the discussion now turns to a structured examin-
ation of decomposition methods, beginning with
their fundamental principles and classical theoretical
underpinnings.

1 Linear and Nonlinear Optimization

1.1 Linear Optimization Problems

The decomposition method can be dated back to
the work of DANTZIG and WOLFE in 1960,
where the authors proposed a decomposition
approach to solve the special optimization problem
of (1), which is a linear programming problem
defined by

max {t|Pjt+Ax+A,y=b,

teR, xeR", yeR™
Ax=b,Ay=Db,,
>0,y >0} (2)

where A, A, i=1,2 are matrices and P,,b,b,,i=
1,2 are vectors.

At that time, most linear programs could be
solved using the revised simplex algorithm, and so
Dantzig-Wolfe decomposition is based on column
generation (e.g., Ref.[5]), which involves the master
problem and a restricted master problem with fewer
variables. In this method, at each step, most
columns/variables are not in the basis. Hence, a
master problem containing at least the currently
active columns (the basis) uses subproblems to
generate columns for entry into the basis so that their
inclusion improves the objective function.

1.2 Column Generation Approaches

Column generation (see, e.g., Ref.[5]) is an
effective technique for solving a large-scale linear
programming problem by decomposing it into the
master problem and the restricted master problem
with a reduced number of variables. The restricted
master problem is heuristically constructed by
selecting a subset of columns from the original
problem or introducing artificial columns. This
restricted master problem is solved and its dual
solutions are used to define a subproblem, which is
often referred to as the oracle. The oracle is then
solved to identify new columns with negative
reduced costs, which are added to the restricted
master problem. This iterative process continues
until a predefined stopping criterion is met, at which
point the solution of the latest restricted master
problem provides an optimal or near-optimal
solution to the original problem!®. Column genera-

tion enables one to find solutions to large-scale
linear programs by iteratively solving smaller subpro-
blems, thereby reducing the number of variables or
constraints to be considered at each step. This makes
it a promising approach for tackling large-scale
linear and mixed-integer programming problems.
For a brief review of the column generation method
and its variants, the reader is referred to Ref.[5].

Recent studies illustrate the versatility and effectiv-
eness of column generation and related decompos-
ition methods in various application domains. For
instance, GAMBOA et al."! investigated decomposi-
tion techniques for two-stage Wasserstein-based
distributionally robust optimization problems by
using Multi-cut Benders decompositions and regula-
rized versions on unit commitment problems with
high-dimensional uncertainty vectors. In the context
of home care scheduling, GRENOUILLEAU et al."!
proposed a pattern-based logic-based Benders de-
composition by integrating it with matheuristics
based on large neighborhood search to maximize
patient acceptance and maintain service consistency.
Similarly, LEAO et al."” addressed the integrated
one-dimensional cutting-stock and lot-sizing pro-
blem in paper manufacturing. They applied Dantzig-
Wolfe decomposition and improved the column
generation procedure by incorporating an adaptive
large neighborhood search and demonstrated effec-
tiveness in real-world instances.

The authors in Ref.[10] developed a structured
stabilized Dantzig-Wolfe decomposition technique
for large-scale linear programs to improve computa-
tional performance, particularly in multicommodity
capacitated network design. In the area of electricity
markets, SAGASTIZABAL!"" explored uncertainty
and strategic interactions in capacity investment
planning by employing Lagrangian relaxation and
Benders decomposition variants to model these
complex dynamics. Linear programming based de-
composition was also prominent in the work of
KUNNUMKAL et al''” who addressed inventory
distribution problems by decomposing a dynamic
programming model, while ZHANG et al.!'"" deve-
loped an exact column generation algorithm for
scheduling in seru production systems by using
Dantzig-Wolfe decomposition to solve linear relaxa-
tions of the model efficiently.

In a distributed optimization setting, TONBARI e?
al""Vintroduced a fully decentralized Dantzig-Wolfe
decomposition algorithm based on the consensus
alternative direction method of multipliers, and
YAZDANI et al."* proposed a decomposition-based
coevolutionary framework to address the scalability
of dynamic optimization. FLORES et al."" consi-
dered long-term capacity planning and short-term
operational decisions in power-intensive industrial
plants. They extended a multiscale process network
model and used a column generation approach to
solve the resulting large-scale mixed integer linear
programs without the need for branching.



No.3 T D CHUONG, et al. : Decomposition for Large-Scale Optimization Problems: An Overview 159

In Ref.[17], the authors proposed a column
generation-based heuristic for pricing and extreme
point placement, which outperformed existing
approaches and provided new lower bounds for the
non-rotational variant. FARHAM et al."""! developed
a branch-and-price algorithm for the location-routing
problem with time windows, combining set-
partitioning models and dynamic programming with
acceleration strategies. Their approach achieved
strong computational results on both benchmark and
large-scale instances. Similarly, RIERA et al.''”! re-
formulated the team orienteering arc routing pro-
blem as a set-partitioning problem using a customer-
on-vertex representation. Their column generation
algorithms proved particularly effective in cases,
where traditional branch-and-cut methods failed to
provide tight dual bounds due to knapsack-type
constraints.

1.3 Nonlinear Optimization Problems

Benders introduced a decomposition in 1962 to
solve a mixed-variable programming problem, which
is a particular nonlinear problem of (1) defined by

max {c¢'x+f(y)|Ax+F(y)<b,yeS} (3)
x€eR?, yeRY
where § CRY, A is an (m X p) matrix, f is a scalar
function and F is a vector function on S, ¢ € R and
b eR".

The Benders approach was extended by
GEOFFRION in 1972"" to address a more general
problem of the form:

(max {f(r.y)|Gx.y)>0.xeS,yeSa} (@)
where y is a vector of complicating variables in the
sense that (4) is an easier optimization problem in x
when y is temporarily held fixed, and f is a scalar
function and G is a vector function on S, xS, with
S, cRr,S,cRe.

The projection (or partitioning) on y is defined by
max{v(y) |y €S, N V) 5)
yeRa

where V:={yeR?’|dx €S,,G(x,y) > 0} and
v(y) := sup | f(x,) | G(x,p) > 0,x€S,}  (6)
xeRP
Note that v(y) is the optimal value of problem (4) for
fixed y and that, by the designation of y as

complicating variables, evaluating v(y) is much
easier than solving problem (4) itself.

1.4 Solution Relations Between Problem (4) and
Problem (5)

Theorem 2.1 of Ref.[21] states that if (¥,y) is an
optimal solution of the original problem (4), then y
is an optimal solution of the partitioning problem
(5). Conversely, if y is an optimal solution of the
partitioning problem (5) and X achieves the
supremum in Eq.(6) with y =¥, then (¥,y) is an
optimal solution of the original problem (4).

A price-and-verify algorithm based on the Dantzig-

Wolfe decomposition was proposed in Ref.[22] to
reformulate and solve a recursive circle packing
problem within the logistics operations of the tube
industry. In Ref.[23], the Benders decomposition
algorithm was applied to solve the problem of
locating items in carousel systems, where a carousel
storage problem is reformulated as a mixed-integer
program. An extension of sparse group Lasso
regularization was proposed in Ref.[24] to calculate
clusters of generalized linear models in the area of
proportional hazards problems with right-censoring.
The authors in Ref.[25] developed a simultaneous
Magnanti-Wong method”" to accelerate Benders de-
composition”” and handle a metropolitan container
transportation problem that helps leverage trans-
portation effectively from a least-cost perspective.
Recent studies highlight the adaptability of decom-
position methods in solving nonlinear and mixed-
integer nonlinear programming (MINLP) problems
across diverse application domains. OLSEN et al.l*”
investigated a multicommodity flow formulation of
the vehicle scheduling problem and proposed a
three-phase solution approach. This approach com-
prises an exact method for solving the base problem
without range constraints, innovative flow decom-
position techniques, and a novel algorithm to
manage electric vehicle charging constraints, re-
cently developed in Ref.[28] for electric bus
scheduling. Similarly, VASQUEZ et al.”” addressed
a traveling salesman problem with drone by decom-
posing truck and drone operations. Their Benders-
type algorithm incorporated valid inequalities and
novel optimality cuts such as t-shortcut and t-
reduction to achieve strong computational results.
Logic-based Benders decomposition has proven
particularly effective in complex scheduling and rou-
ting contexts. BRUNI ez al.'” formulated a mixed-
integer linear program for drone-assisted package
delivery and developed a logic-based Benders decom-
position enhanced with relaxations. ZHANG et al.*"!
considered a scheduling problem in seru production
with learning effects and sequence-dependent setups.
They applied logic-based Benders decomposition to
reformulate the problem into a set-partitioning mo-
del. Similarly, MICHELS et al."" solved the type-2
multi-manned assembly line balancing problem by
combining decomposition techniques with combina-
torial Benders cuts to find optimal solutions for large
real-life instances in automotive manufacturing.
Benders decomposition has also been adapted for
resilient infrastructure and cyber-physical systems.
SHELAR et al.""! proposed a bilevel mixed-integer
second-order cone program to assess the resilience
of electricity distribution networks against cyber-
physical attacks. To mitigate computational comple-
xity and balance accuracy and efficiency, they
improved classical generalized Benders decompos-
ition by modifying Benders cuts based on selected
dual variables. MOKHTAR et al.’ studied the un-
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capacitated 2-allocation p-hub median problem to
enhance network survivability. They used a modi-
fied Benders decomposition algorithm that trans-
forms subproblems into minimum-cost network flow
models to locate efficient solutions of large-scale
instances. This approach was recently extended in
Ref.[35] to assess the viability of regional connec-
tivity strategies.

In the setting of stochastic programming, the
decomposition has played a central role. The authors
in Ref.[36] solved large-scale lot-sizing problems
under uncertain demand using Benders decom-
position integrated with stochastic linear program-
ming. Their method accelerated subproblem solu-
tions and achieved linear scaling with the number of
scenarios. In Ref.[37], the authors studied enhance-
ments to dual decomposition for two-stage stochastic
mixed-integer programs, including Benders-like cuts
and a new interior-point cutting-plane method with
proven finite convergence to optimal dual solutions.
GUIGUES developed sampling-based decompo-
sition algorithms for multistage stochastic convex
programs and derived cutting-plane formulas for
efficient stochastic dual dynamic programming. The
approach guaranteed convergence even under
interstage dependent stochastic processes.

Decomposition techniques have also been emp-
loyed to solve nonlinear and conic problems. In
Ref.[39], the authors proposed a variable parti-
tioning strategy for Benders decomposition, tar-
geting a class of MINLPs including fixed-charge
multicommodity network design with congestion
effects. Their method simplified branch-and-bound
procedures by transforming each node into a conic
quadratic subproblem with only continuous varia-
bles. SCHMIDT et al*” presented global optimi-
zation methods for mixed-integer problems with
Lipschitz nonlinear constraints, including settings of
inexact function evaluations or uncertain Lipschitz
constants. Their algorithms demonstrated robust
convergence and performance on gas transport
networks and academic benchmarks.

To address common challenges in duality and
decomposition, VUJANIC et al.""! proposed modific-
ations to the primal problem to ensure feasibility of
dual solutions in mixed-integer optimization. Their
approach showed improved results in large-scale
power systems problems. BECK et al."”! focused on
the minimization of strongly convex functions com-
bined with nonsmooth convex terms. They derived
primal versions of dual-based block descent algor-
ithms, linked convergence rates, and validated the
approach through total variation-based image denoi-
sing problems. In Ref.[43], the authors introduced a
decomposition branching method that integrates
branch-and-bound with decompositions. Their results
on weighted set covering and regionalized p-median
problems showed superior performance compared to
some commercial solvers and automatic Dantzig-

Wolfe decomposition.

The decomposition methods have proven essential
for solving large-scale optimization problems in both
linear and nonlinear domains including MINLP and
conic problems. Techniques like Dantzig-Wolfe
decomposition, Benders decomposition, column
generation, and hybrid variants continue to deliver
scalable solutions across diverse fields such as
energy, logistics, healthcare, and manufacturing.

However, challenges remain, particularly in sca-
lability, convergence performance in non-convex
settings, and sensitivity to algorithmic details and
parameter tuning. In the next section, we will exa-
mine the effectiveness of decomposition methods in
more structured optimization frameworks, including
piecewise-linear and convex problems.

2 Alternative Structured Optimization
Problems

2.1 Structured Convex and Piecewise-Linear De-
composition Methods

This section explores the decomposition proce-
dures for other structured optimization problems that
can be reformulated and cast into the problem (1).
The notes in Ref.[44] provided some decomposition
approaches for unconstrained and constrained optimi-
zation models with structured functions as follows:

min {ﬁ(xn.}’)"'fz(xz,.)’)} (7)

x€RP1x,€R2, yeRY

where f; and f, are piecewise-linear convex func-
tions and x,,x, and y are variables. Here, y is called
a complicating variable as when it is fixed, the
problem splits into two subproblems independently.
In this case, the original problem (7) is equivalent to
the following master problem:

min {¢:(y) + ¢} ®)

where ¢1(y) := inf fi(x1,y) and $2(y) := inf f(x,y)
are the subpr(')blems. In this way, the authors
extended the corresponding decomposition methods
to a more general constrained problem

min {fl(xl?yl)-'-"'+fm(xm’ym)|

x;€Rri, y;eRYi, zeRY

(x,y)€Chy,=E;, zi=1,---,m} )

where f;,i =1,---,m are functions, z is the vector of
net variables, E;i=1,---,m are matrices and
C,i=1,---,m are the feasible sets of subpro-
blems.

The problem (9) is equivalent to the following
master problem

min{¢,(E, 2)+ -+ ¢,(E, 2)}

where ¢i(y) = inf {/i(x,,y)l(x;,y)€ Cli=1,--.m
are the subproblems.

Recently, the authors in Ref.[45] addressed the
scheduling day-ahead problem of an energy com-
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munity operating by incorporating a novel Benders
dual decomposition proposed in Ref.[460] that can
generate stronger feasibility and optimality cuts
compared with the classical Benders methods. We
refer to an approach called subproblem cuts proposed
in Ref.[47], which helps avoid the generation of
redundant columns in the column generation method
and improve the computational performance. An
application to network revenue management pro-
blems was presented in Ref.[48], where the authors
used the Dantzig-Wolfe decomposition principle!
for the analytical framework by exploring the struc-
ture of approximate linear programs with column
generation subproblems to generate the constraints.
The obtained results show that solving the reduced
programs gives tighter upper bounds on total ex-
pected revenues. A decomposition method for
solving lasso problems involving zero-sum cons-
traints in high-dimensional spaces can be found in
Ref.[49], where a global convergence of the pro-
posed schemes to optimal solutions is guaranteed.

Other recent studies further demonstrate the adap-
tability and effectiveness of decomposition methods
in more structured settings through various applic-
ation domains. RAHMANIANI et al."" presented an
advanced Benders decomposition algorithm to solve
large-scale multicommodity capacitated network
design problems under demand uncertainty. To
enhance computational efficiency, they incorporated
cutting planes, partial decomposition, and warm-
start strategies that significantly outperformed exis-
ting algorithms on benchmark datasets.

Hybrid decomposition frameworks have also
shown promise in solving complex nonlinear and
stochastic optimization problems. The authors in
Ref.[51] developed a joint decomposition approach
that blends the Lagrangian decomposition with the
generalized Benders decomposition to solve multi-
scenario non-convex MINLPs without traditional
branch-and-bound methods. When applied to stoch-
astic process network design problems, their method
achieved substantial reductions in solution time and
mastered the problem complexity compared to state-
of-the-art global solvers.

Decomposition-based heuristics and metaheuri-
stics are effective for tackling real-world production
and scheduling scenarios. In Ref.[52], the authors
analyzed a manufacturing system composed of two
interacting subsystems that are relevant to low-
volume aerospace production. They proposed a hy-
brid random-key genetic algorithm augmented with
list scheduling, exact methods, and buffer-aware
heuristics to optimize labor, inventory, makespan,
and tardiness. Computational results validated the
practical effectiveness of their decomposition-driven
framework.

Decomposition techniques have also been used
effectively in complex scheduling domains. TRAN
et al®™ tackled the unrelated parallel machine

scheduling problem, accounting for both sequence
and machine dependent setup times. They proposed
two exact decomposition-based methods: Benders
decomposition and branch-and-check methods using
a mixed-integer programming master problem. In
Ref.[54], the authors introduced a stochastic parallel
successive convex approximation method for gen-
eral non-convex stochastic sum-utility problems.
Their approach decomposed the problem into
strongly convex subproblems that can be solved in
parallel with superior empirical performance relative
to conventional stochastic gradient approaches,
particularly in multi-agent network environments.

2.2 Lagrangian-Based Decomposition Methods

Lagrangian-based decomposition methods involve
first dualizing some constraints into the objective
function and then using Lagrange multipliers to
penalize their violation.

Consider a convex optimization problem

min (e ++-+ () | Bk, + -+

Bmx,,,:b,xieci,i: 1,"',m} (10)
where f;:R* - R,i=1,---,m are convex functions,
C,cR"i=1,---,m are non-empty convex sets,
B.,i=1,---,m are pXxXn; matrices and b €R”. We

define the (augmented) Lagrangian for the problem
(10) as

L(xl7"' ’xmsy) = Zﬁ(xl)+yT(b_Zlel)+

P =1

)’ m

§||b —ZBixillz,x[ €C,i=1,--,m, yeR"
i=1

with an (augmented) parameter A > 0 and a dual func-
tion

g(y) = irelgL(xla ’xr‘my)

Note here that if 1=0, we obtain the ordinary
Lagrangian for problem (10). Now, the dual problem
is given by

max g(y) (11)

yER‘”
and a general scheme of augmented Lagrangian
decompositions”” was applied to the dual problem
(11) to analyze scenario and nodal decomposition
methods for multistage stochastic programs in
Ref.[56]. We refer to the reader to Ref.[57] for dual
decomposition methods in which the decomposed
scheme is ensured by the Lagrangian for a more ge-
neral framework.

Recent research demonstrates the broad appli-
cability and effectiveness of Lagrangian-based and
dual decomposition methods in solving complex
optimization problems across various domains. In
Ref.[58], the authors developed a semi-proximal
augmented Lagrangian decomposition framework
for convex composite quadratic conic programming
problems with a primal block-angular structure.
Their approach, while formulated from the primal
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side, showed greater computational efficiency when
the dual problem was solved using a semi-proximal
symmetric Gauss—Seidel-based alternating direction
method of multipliers. QUOC et al."” developed an
inexact perturbed path-following algorithm for
large-scale separable convex programming prob-
lems. Their method accommodated approximate
solutions to the primal subproblems and leveraged
inexact derivative information within a two-phase
algorithmic structure.

Similarly, BAI et al” proposed an augmented
Lagrangian decomposition method to tackle joint
chance-constrained optimization problems under
discrete distributions. By reformulating these prob-
lems as large-scale mixed-integer programs, their
method efficiently managed the randomness in both
sides of the chance constraints. The authors in
Ref.[61] addressed separable convex minimization
problems with linear coupling constraints by
proposing an augmented Lagrangian approach with
full Jacobian decompositions and logarithmic-
quadratic proximal regularizations. The proposed
method with both exact and inexact variants allowed
one to solve highly parallelizable unconstrained sub-
problems and ensure global convergence. The con-
vergence behavior of augmented Lagrangian me-
thods was further examined by HE et all”), who
showed that while full Jacobian decomposition can
support parallel computation, it can also induce
divergence in standard settings.

In the context of proximal and coordinate-based
decomposition techniques, TAPPENDEN et al.[*"
studied separable approximations to the augmented
Lagrangian by focusing on the diagonal quadratic
approximation method and the parallel coordinate
descent method. In parallel, the authors in Ref.[64]
proposed proximal-based pre-correction decompo-
sition methods for convex problems with separable
structures. Building on earlier work by CHEN and
TEBOULLE™ and HE", their algorithms retained
the convergence properties of proximal point me-
thods. The proximal method of multipliers also
served as the foundation for a general framework
developed by SHEFI and TEBOULLE!"”. They
proposed two classes of decomposition algorithms
within the proximal method of multipliers frame-
work originally formulated by ROCKAFELLAR,

Other decomposition-based methods including
sparse and branch-and-price techniques have been
developed to tackle non-convex and combinatorial
optimization challenges. Ref.[69] introduced a
penalty decomposition approach for general ¢,
minimization offering convergence guarantees and
outperforming traditional ¢,-based methods in
various applications, recently developed in Ref.[70]
for a nonlinear programming problem with arbitrary
abstract constraints. Similarly, Ref.[71] proposed a
Benders decomposition extension tailored to se-
midefinite programs with structured sparsity, effec-
tively leveraging the underlying problem structure.

Building on this theme, Ref.[72] developed a mo-
dified penalty decomposition method for cardinality-
constrained optimization problems by examining
both gradient-based and derivative-free implemen-
tations. Ref.[73] further advanced this topic by
proposing a penalty dual decomposition framework
for non-convex problems such as beamforming and
matrix factorization with convergence to stationary
points.

In particular, branch-and-price methods have been
proven to be effective in solving large-scale combi-
natorial and scheduling problems. For instance,
Ref.[74] applied branch-and-price to integrated satel-
lite scheduling by embedding column generation
within a branch-and-bound structure. Ref.[75] add-
ressed the two-dimensional vector packing problem
with piecewise-linear costs by designing a pricing
routine based on dominance rules. Ref.[76] tackled
single-machine scheduling problems under periodic
maintenance using a set-partitioning model with
efficient label-setting algorithms. Furthermore, the
branch-and-price algorithm has provided solutions to
complex logistics and planning problems: Ref.[77]
studied multi-agent production-distribution systems,
Ref.[78] focused on emergency unit dispatching un-
der tight deadlines, and Ref.[79] optimized location-
route problems in the presence of price-sensitive de-
mands.

Beyond the traditional frameworks, many studies
have developed scalable decomposition algorithms
for structured optimization. Ref.[80] employed
chordal decompositions combined with operator-
splitting techniques to solve sparse semidefinite pro-
grams and achieve significant scalability improve-
ments. Ref.[81] introduced an alternating direction
method of multipliers (ADMM) variant using a
semi-linearized Gauss-Seidel scheme for multi-block
nonsmooth problems. In energy applications,
Ref.[82] used proximal decomposition to coordinate
electricity market operations more efficiently than
standard ADMM approaches. Ref.[83] developed a
distributed framework for optimizing difference-of-
convex sum-utility functions with convergence
guarantees. Similarly, Ref.[84] proposed a decom-
position approach for box-constrained problems
based on a violating index.

Numerous specialized decomposition schemes
have targeted combinatorial and stochastic prob-
lems. Ref.[85] presented pseudo-polynomial formu-
lations and decomposition algorithms for the
multiple knapsack problem. Ref.[86] proposed a
globally convergent and parallelizable method for
solving convex quadratic programs with dense
Hessians, motivated by support vector machine
training. In service and revenue management,
Ref.[87] optimized long-term hotel room allocations
through decomposition techniques. Ref.[88] intro-
duced a hybrid of the Benders and Dantzig-Wolfe
decompositions for two-stage stochastic supply
chain models. Ref.[89] extended the convergence
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theory to nested decomposition techniques in
multistage stochastic convex programming problems.

Recent advances also include projection-based
and sampling-driven decomposition techniques.
Ref.[90] introduced a dual projection approach for
conic feasibility problems with a MATLAB imple-
mentation tailored for semidefinite programs. Ref.
[91] proposed a distributionally robust stochastic
decomposition algorithm for two-stage optimization
under uncertainty, while Ref.[92] improved sto-
chastic decomposition techniques for second-stage
randomness without relying on arbitrary sampling.
To automate the detection of decomposition sub-
problems, Ref.[93] used community detection
methods and Ref.[94] advanced automatic variable
decomposition using second-order derivative infor-
mation for handling high-dimensional spaces.

Decomposition frameworks have enabled signifi-
cant progress in real-world applications, including
energy systems, healthcare, transportation, and
bioresource planning. Ref.[95] used approximate
decompositions for performance analysis in open
queuing networks. Ref.[96] applied decompositions
to multistage dynamic networks with stochastic
capacity by creating tree-structured subproblems. In
infrastructure and energy systems, Refs.[97-99] and
Ref.[100] implemented the Dantzig-Wolfe decom-
position to optimize district heating, facility layout,
efficiency evaluation and power flow, respectively.
Decentralized approaches were explored by
Refs.[101-102] in grid-level energy systems. In
transportation, Ref.[103] developed a space-time
decomposition model for urban logistics with time-
dependent travel. Other notable applications include
parallel decomposition for steel manufacturing!'’",
electric vehicle charging optimization''””, and
biorefinery design using binary approximations!'*.
In particular, in the settings of healthcare and
scheduling, Refs.[107-108] used the decomposition
strategy for vehicle and surgery assignment prob-
lems, while Ref.[109] integrated gossip-based
distributed computation with column generation to
solve large-scale home healthcare routing.

While classical decomposition techniques and
frameworks offer strong theoretical guarantees for
obtaining or verifying optimal or near-optimal solu-

tions and ensuring convergence for structured optim-
ization models, and have been widely applied in
practical contexts, their performance can be limited
in highly complex formulations or dynamically
changing problem environments. The next section
explores how computational intelligence approaches
can extend and enhance these traditional techniques.

3 Optimization by Computational Intelli-
gence

In contrast to conventional optimization parad-
igms that classify problems into linear or nonlinear
categories and design different algorithms accor-
dingly, computational intelligence approaches adopt
a more unified perspective. From this viewpoint, the
nature of the objective function or constraints is not
the primary concern. Instead, the key idea is to
decompose a high-dimensional optimization prob-
lem into smaller, more manageable components and
solve each each component either iteratively or coope-
ratively.

This decomposition strategy is particularly effec-
tive for large-scale optimization, where handling all
decision variables simultaneously is computationally
prohibitive. Cooperative coevolution (CC)"'” exem-
plifies this approach in evolutionary computation. It
partitions the n decision variables into k subsets, and
evolves a separate population for each subset in a
round-robin fashion. During fitness evaluation, each
subpopulation's candidate solution is combined with
fixed “context vectors” taken from the best solutions
of the remaining subpopulations, forming a complete
solution for evaluation.

Traditional CC typically assumes a fixed, non-
overlapping partition of variables, which can be
suboptimal when strong interactions exist among
variables. To address this limitation, the overlapping
functions decomposition (OFD) approach was
recently proposed. This method allows variables to
appear in multiple subcomponents based on function
overlap, enabling a more accurate representation of
interdependencies!''l. A consolidated summary of
the principal decomposition methods, along with
their key assumptions and representative references,
is provided in Table 1.

Table 1 Summary of Method Classes in Optimization by Computational Intelligence

Method Class Representative Algorithms Key Assumptions References
Grouping Random grouping (RG); dynamic RG (DRG); differential grouping E;:(;‘}Tu(t)‘tr]:s?os?nltr:rzrc-gLogd\(/acr(i);llg)lgrslgc;(:gggzlr?nt Refs.[112-
Variables (DG); robust DG; CC with context vectors additive separability and bounded noise for DG 126]
Surrogate GP/Kriging; radial basis function (RBF); sparse regression; co-/ isnli;(;zg?it:r? 25_?12(:31:??032{;&?1;655; grc(;:s-tgl(;edi Refs.[127-
Modeling multi-fidelity surrogates to infer interactions and guide search - ’ ¥ ty 135]

correlations
Monotonicity Linkage identification by nonlinearity check (LINC)/LI by non-

monotonicity detection (LIMD)-style monotonicity tests; pairwise ~ Local monotonicity and sign consistency in small Refs.[136-

I\::tl;lrzzltieon linkage detection; evolutionary algorithms (EA)/CC variants for steps; limited noise 145]
large-scale and mixed-integer settings

Interaction - Fitness-difference and complementary-solution checks; adaptive Sparse/low-order interaction graph; adequate Refs.[146

Driven partitioning to minimize cross-component interactions; overlapping samples to estimate edges; representative context 15 5]'

Decomposition blocks solutions -
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3.1 Grouping Variables

CC decomposes a high-dimensional optimization
problem into smaller subproblems by grouping
interdependent decision variables. Random grouping
assigns each decision variable uniformly at random
to one of m subcomponents in each of N coevo-
lutionary cycles and has been shown to improve the
efficiency of particle swarm optimization (PSO)
algorithms on high-dimensional, non-separable
problems!' "'l In this framework, the probability
that a given subset of v variables is grouped together
in at least k out of N cycles is

N N 1 r 1 N-r
e S -

Building on this idea, dynamic random grouping
adapts both the number and size of subcomponents
based on intermediate feedback, yielding improved
performance on large-scale multi-objective and
multi-task problems!'*'""].  Random differential
grouping further augments random grouping by
incorporating finite-difference interaction tests du-
ring assignment and has been applied to feature
selection in an age-related macular degeneration
dataset via a bee-colony optimizer!''”), while a more
recent random differential mechanism has been
explored for large-scale feature selection'''”. Delta
grouping detects non-separable variables by com-
puting average pairwise function-value differences
(delta) and clustering them to determine subcom-
ponent number and size. While it can accurately
predict structure in advance, the clustering step
introduces high computational cost when many non-
separable variables exist!'"".

DG detects additive interactions exactly via finite-
difference tests: two variables x, and x, are declared
interacting if

A 10, # Be 1)
Ya, by #b,, 6 #0

b
Xp=a,x,=b,

where

A«S,x,,[f](x) :f( 7xp+5’“')_f(“' 7xp7"')

and f is the objective function of the underlying
problem. DG achieves the highest precision among
grouping mechanisms but its original implemen-
tation may require up to 1001 000 fitness evalua-
tions for a 1000-dimensional fully separable func-
tion''"”). Graph-based DG reduces this cost by cons-
tructing an interaction graph and limiting tests to
graph edges'””, and divide-and-conquer DG recur-
sively partitions the variable set, further enhancing
scalability for large-scale black-box problems!"".

Recursive DG (RDG) refines DG by using a
binary-search style procedure on variable subsets:
given two disjoint subsets, it computes

A = f(x + Ly + L(us +uy))—
f(x* + L(us +uy)),
Ay = f(xX" +huy) - f(x7)

and infers interaction by comparing A, and A,. On
standard benchmarks, RDG reduces the average
fitness-evaluation count to about 1.47x 10*''*’], An
adaptive-threshold variant dynamically tunes the
grouping threshold to balance accuracy against
cost!'! an overlapping-component extension allows
variables to belong to multiple subcomponents by
breaking shared links!”") and an efficient RDG
(ERDG) introduces heuristic pruning to further
lower the computational budget while maintaining or
improving decomposition accuracy!'*"..

DG-based techniques have shown practical value
in expensive real-world optimization tasks such as
aerodynamic design optimization'"”"! and flow shop
scheduling!*”), confirming the efficacy of interaction-
based grouping within the CC framework.

3.2 Surrogate Modeling

This type of method infers variable interactions
via building a surrogate or meta-model of the
objective function. While meta-modeling is often
used for expensive function optimization, there has
been little attempt to use it for identifying the
problem structure. High-dimensional model repre-
sentation (HDMR) can be applied to find interacting
variables, which are shown on the objective function
f as follows:

FXO=fit D fix)+ D fix)+

I<igjsn

ﬁ;",n(xiv e 9xn)

where f, is the zeroth order term, fi(x;) stands for
the first-order terms which capture the effect of each
variable acting independently, f;; represents the
second-order term which depicts the correlated
contribution of x; and x; and finally, f;..,, is the nth-
order term which captures the joint correlation of all
decision variables not covered by all other terms.
HDMR contains a finite number of terms and is
exact once all terms are included'”".

Early meta-modeling focused on compact repre-
sentations of high-dimensional functions to reduce
simulation costs, using methods like Kriging, RBF
and polynomial surface models!'”. Later studies
leveraged RBFs for efficient global optimization via
tailored improvement criteria*”. To handle multi-
modal objectives in large-scale settings, hybrid
models combining Gaussian processes and neural
networks were proposed'’”, while HDMR-based
interaction detection was integrated into cooperative
co-evolution to reduce complexity!””. However,
most of these methods relied on static or offline
learning. Recent work emphasizes dynamic, inter-
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action-aware surrogate adaptation for high-dimen-
sional black-box optimization!"".

Surrogate-assisted EAs (SAEAs) advanced black-
box optimization by improving -efficiency and
scalability. Clustering-based surrogate allocation
enhanced swarm optimization'"’”, while cooperative
frameworks balanced global and local searches!”'..
Integrating surrogates with dimensionality reduction
further boosted performance!””, leading to a
hierarchical optimizer with global, regional, and
local models!*". Applications in engineering, such
as antenna design, confirmed their effectiveness
using high-order Gaussian processes and Bayesian
optimization!'*,

Beyond traditional evolutionary and coevolu-
tionary strategies, a promising direction is the inte-
gration of machine learning into decomposition for
large-scale optimization. Data-driven approaches
enhance adaptability and efficiency by using online
or reinforcement learning to dynamically guide
variable grouping and subproblem prioritization.
These adaptive mechanisms allow algorithms to
learn problem structures during the search, rather
than relying on static decomposition. Surrogate
modeling has also been applied in cooperative optim-
ization, where models such as radial basis functions
or neural networks approximate the objective func-
tion or constraint evaluations!””. This reduces re-
liance on expensive function calls by using surro-
gates for candidate evaluation and selectively con-
firming results with the true model, significantly
decreasing computational cost with minimal accu-
racy loss. In addition, hybrid frameworks combining
machine learning and mathematical optimization are
increasingly used, where learned models identify
effective decomposition strategies or generate warm-
start information to accelerate convergence!' ™.

Surrogate modeling has evolved from uniform
fidelity to multi-fidelity frameworks that balance
accuracy and cost. Early hybrid models used coarse
approximations for global search and finer models
for local search!*’!. Adaptive fidelity selection based
on optimization stages was later introduced! ",
culminating in a three-level architecture combining
global RBFs, regional fuzzy clustering, and local
refinement!*". This multi-resolution strategy enables
efficient surrogate use throughout the search. Appli-
cations under high simulation costs confirmed the
robustness and efficiency of hierarchical surrogate
models' .

3.3 Monotonicity Variable Interaction

Monotonicity detection!*! was proposed as a
method for identifying variable interactions by
examining violations of monotonicity conditions
through systematic perturbations of the objective
function. The monotonicity conditions on the
objective function f are defined as follows:

if £(s”)> f(s)and f(s") > f(s)
then f(s“?) > f(s?) and f(s) > f(s) (12)

if f(s”) < f(s)and f(s?) < f(s)
then f(s”) < f(s”) and f(s*”) < f(s")  (13)

where s denotes a candidate solution vector pertu-
rbed at the index specified in the bracket. The
linkage identification by non-monotonicity detection
algorithm evaluates whether conditions (12) and (13)
are violated in a randomly initialized population.
Variables i and j are considered to be interacting if
either of the two conditions fails to hold.

Building on early monotonicity-based detection,
later work has enhanced accuracy and efficiency in
identifying non-separable variables. A framework
called CC with wvariable interaction learning
(CCVIL)"" addressed fixed-group limitations by
starting with independent variables and merging
pairs that violate separable behavior, though it relies
on heuristic sampling and is sensitive to sampled
representative solutions. To improve robustness, the
cooperative particle swarm optimizer with statistical
variable interdependence learning (CPSO-SL)!*
introduced a probabilistic model estimating inter-
dependencies across samples, enabling overlap-
ping groups but increasing computation cost. A
theoretical study'*” formalized monotonicity testing
with sublinear query complexity and matching lower
bounds, deepening understanding of interaction
detection. To balance scalability and accuracy, a
recursive block partitioning method!*” was propo-
sed, avoiding exhaustive comparisons, using early
pruning and integrating with differential evolution
for reduced overhead.

To address overlapping group structures overloo-
ked by traditional methods, Ref.[141] proposed a
perturbation-based approach that detects shared vari-
able dependencies across groups, improving decom-
position accuracy in complex problems but incurring
high computational cost. Extending this, Ref.[142]
unified monotonicity-inspired perturbation techni-
ques into a general linkage learning protocol suited
for overlapping, hierarchical and adaptive structures,
emphasizing structured decomposition over stan-
dalone monotonicity testing. Separately, the mixed
monotonic programming (MMP) framework! **' acce-
lerated global optimization by exploiting latent mono-
tonicity without reformulation, using tailored branch-
and-bound algorithms. Geometrically, Ref.[144]
compared local search and linear programming-
based methods over simplicial domains, showing
that local strategies often offer a better accuracy-
efficiency trade-off in low-dimensional subspaces.
Finally, a relaxed monotonicity-inspired line search
was proposed in Ref.[145] for stochastic and over-
parameterized problems, enabling stable conver-
gence in deep learning by allowing partial mono-
tonicity.
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3.4 Interaction-Driven Decomposition

The methods reviewed are based on adaptively
rearranging decision variables to minimize a squared
error function, aiming to reduce the interactions
among subcomponents!' ), The underlying principle
is that, for a partially separable function, the
discrepancy between the original objective function
and the sum of its non-separable subfunctions should
ideally vanish. This motivates the minimization of
the following expression:

e [f(x)—Zﬁ(xi)]

i=1

which can be easily rewritten as a special case of
problem (1). Under the black-box optimization set-
ting, both the number and the size of these
subcomponents are unknown. To address this, a
uniform decomposition structure is assumed in
Ref.[146], where the decision variables are
partitioned into k components of equal dimension d.
The purpose becomes finding a permutation of
variables that minimizes the following discre-

pancy:
k
min[m(f(C)+ f(C)) = ) {A(C:C)+

fiesen|

where C, and C, denote two constructed solutions
with all variables set to constants ¢, and c,, respec-
tively. The term f(C,;C,) represents the evaluation
of f where the variables in the i-th component are
assigned values from C,, and the remaining varia-
bles are taken from C,. Similarly, ﬁ(Cz;Cl) evalu-
ates f by swapping the roles of C, and C,. This
approach provides an estimate of variable interde-
pendence, guiding the decomposition toward minim-
izing inter-component interactions.

To implement adaptive decomposition, Ref.[147]
introduced frequency and group frequency matrices
from evaluations at complementary solutions, then
partitioned variables into fixed-size subgroups
optimized via differential evolution (DE), improving
feasibility and runtime. This idea was extended in
Ref.[148], where a dependency metric was embed-
ded in a CC framework with self-adaptive DE,
enhancing robustness and reducing redundant evalua-
tions. To eliminate manual subgroup settings, a
population algorithm based on dynamic variable
interaction identification for constrained problems
(DVIIC)"* encoded permutations and boundaries
into integer genomes, dynamically adapting group
structures with fewer evaluations. A refinement!"™"
replaced greedy search with simulated annealing and
perturbed a single grouping vector, improving
decomposition quality and reducing cost.

A grouping genetic algorithm (GGA)!

B was

proposed to directly encode variable groups and
apply group-level crossover and mutation, optimi-
zing a dependency-based discrepancy function. It
outperformed integer-encoded methods on 18 cons-
trained problems. Further work!"”” confirmed that
group-based encoding yields better decompositions,
especially for non-separable functions. Building on
this, an evolutionary framework!**! combined inter-
action-driven partitioning with contribution-based
prioritization and constraint consensus to guide
resource allocation and repair infeasible solutions,
showing strong performance on overlapping cons-
traints. Refinement came via recursive differential
grouping and feasibility distance-far (FDfar) conse-
nsus!*Y, applying selective repairs and evolving
impactful subcomponents. Most recently, a maxi-
mum direction-based (DBmax) consensus was
integrated into a cooperative DE framework! ",
adaptively steering subproblem evolution and achie-
ving faster feasibility and better solution quality.

A key trend is the integration of classical
decomposition methods with computational intelli-
gence to form hybrid algorithms that combine global
exploration and local refinement. Typically, a meta-
heuristic explores the global space, while a classical
method like linear programming solves subproblems
precisely. This memetic structure balances diversity
and accuracy. Machine learning also aids by auto-
mating strategy selection based on problem features,
while embedded decomposition ensures feasibility.
Such integration leverages adaptivity and mathema-
tical rigor, often outperforming either approach used
alone.

Computational intelligence-based decomposition
provides an effective framework for large-scale
optimization by dividing problems into subcom-
ponents and iteratively refining solutions. Techni-
ques such as cooperative coevolution scale well
through variable partitioning, while recent advances
like dynamic grouping and adaptive coordination
improve performance on complex non-separable
problems. The integration of machine learning adds
adaptability to problem partitioning and parameter
tuning. These methods provide scalability and flexi-
bility beyond classical approaches, making them
increasingly used in hybrid strategies that combine
the strengths of both paradigms.

4 Summary and Conclusions

In this paper, we have reviewed the decompos-
ition methods from a mathematics point of view and
a computational intelligence point of view. While
they each have their own strengths and weaknesses,
their integration is expected to deliver greater outco-
mes. The mathematical decomposition methods
often exploit the decomposition techniques on the
special structures of the models whose optimality
principles or convergent criteria of the proposed
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algorithms and schemes may be theoretically veri-
fiable, while the computational intelligence techni-
ques focus on how to decompose or group variables
and functions of very general optimization problems,
which may lack geometric and functional pro-
perties such as convexity, smoothness, continuity of
the problem data. Integration and interplay of both
methodologies are expected to produce time-critical,
just enough feasible solutions for large-scale optim-
ization problems.

4.1 Advantages of Decomposition Techniques

Computational intelligence based decomposition
methods have been shown to offer several notable
advantages. First, by partitioning high-dimen-
sional decision variables into smaller and more
manageable subproblems, these techniques achieve
scalability that traditional solvers alone cannot
match. Second, adaptive grouping strategies such as
differential grouping and cooperative coevolution
dynamically identify and exploit variable interac-
tions, improving convergence by focusing compu-
tational effort where dependencies are strongest.
Third, surrogate-assisted decompositions reduce
expensive function evaluations through models like
Gaussian processes and radial basis functions,
maintaining solution quality while dramatically
cutting evaluation cost. Finally, many mathematical
decomposition frameworks such as Benders and
Dantzig-Wolfe decompositions provide rigorous
convergence guarantees under convexity assump-
tions, offering both theoretical soundness and
practical reliability. Because these methods work
directly with the analytical form of the problem, they
can systematically reduce complexity while main-
taining deterministic results. Their reliability and effi-
ciency have led to their widespread integration into
mathematical programming solvers, making them a
preferred choice when the optimization model is
convex, well-structured, and fully specified.

4.2 Disadvantages of Decomposition Techniques

Despite these benefits, several limitations persist.
Decomposition quality often hinges on user speci-
fied parameters or prior knowledge of variable
interactions; incorrect grouping can severely hamper
overall performance. Moreover, the overhead of
interaction tests, surrogate model training and con-
text vector management can offset gains, especially
in extremely large or time critical applications. Clas-
sical mathematical decompositions typically assume
convexity or separability, limiting their applicability
to mixed integer or highly non-convex problems
without significant heuristic augmentation. Finally,
effectively parallelizing subproblem solves demands
sophisticated communication, synchronization and
fault tolerance mechanisms, increasing implemen-
tation complexity and resource requirements.

4.3 Future Research Directions

By embracing hybridization, automation and
scalability, decomposition techniques will remain
central to tackling the next generation of large-scale
optimization. Looking ahead, several promising
avenues have emerged for advancing decomposition
methods in large-scale optimization. Research into
more autonomous and robust decomposition frame-
works holds great promise. Integrating machine
learning techniques for online identification of vari-
able interactions and hyperparameter tuning could
reduce manual intervention and adapt strategies to
problem characteristics in real time. Extending robu-
st and stochastic optimization concepts into decom-
position schemes by combining trust region methods
with Benders cuts may improve performance under
uncertainty. Developing convergent decomposition
algorithms for mixed integer and non-convex
domains, perhaps via hybrid branch and cut or logic
based methods, would broaden applicability. There-
fore, leveraging high-performance computing and
microservices architectures to orchestrate large-scale
parallel decompositions could enable transparent sca-
ling to thousands of cores, unlocking truly massive
problem solving capabilities.

One of the most active areas involves the integr-
ation of decomposition techniques with machine
learning. Recent developments in scientific machine
learning suggest that domain decomposition can
benefit significantly from data-driven approaches,
particularly in enhancing convergence and generali-
zation performance in high-dimensional probl-
ems!"”", These hybrid methods combine algorithmic
rigor with the adaptability of learning models,
enabling more intelligent problem partitioning and
parameter selection.

Another important direction lies in the extension
of decomposition frameworks to robust and stocha-
stic optimization settings. Stabilized Benders decom-
position methods, incorporating trust-region or
bundle techniques, have shown strong perfor-
mance under uncertainty. For instance, in energy
planning problems characterized by deep uncer-
tainty, these methods offer both parallelizability and
scalability!' . Such enhancements are critical for
real-world applications where data variability cannot
be ignored.

The challenges of non-convexity and combina-
torial structures also call for attention. In particular,
recent research has introduced Benders-based
branch-and-cut algorithms tailored for mixed-integer
and non-convex two-stage stochastic programs!®",
These methods provide theoretical convergence
guarantees even in settings with binary or general
integer variables, extending the scope of decompos-
ition far beyond convex domains.

Parallel and distributed implementations of decom-
position methods continue to be a key research
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frontier. Applications in process systems engineering
have demonstrated the ability to scale decomposition
algorithms across high-performance computing inft-
astructures. For instance, the use of progressive
hedging in distributed settings has enabled the
solution of extremely large design spaces involving
tens of thousands of design variants!'*”. Such pro-
gress is instrumental in pushing the boundaries of
practical optimization.

Finally, an emerging area with significant
potential is differentiable multilevel optimization.
Recent work has developed gradient-based decompo-
sition methods that efficiently solve nested optim-
ization problems, such as those encountered in
bilevel machine learning!*”, continual learning, and
hyperparameter tuning. These methods offer the dual
benefits of mathematical rigor and end-to-end diffe-
rentiability, making them attractive for integration
with modern learning systems.

4.4 Recommendations for Practitioners

The future of decomposition methods lies in their
integration with intelligent systems, their extension
to uncertain and non-convex settings, and their
adaptation to parallel computing and application-
specific requirements. To conclude the review, we
distill our findings into a few practical recommen-
dations for practitioners applying decomposition
methods to large-scale optimization as follows:

1) Parameter tuning: Leverage self-adaptive and
automated tuning mechanisms, as decomposition
algorithm performance is often sensitive to para-
meters such as penalty weights, population sizes,
and convergence thresholds. Using self-tuning algor-
ithms or systematic hyperparameter optimization
reduces trial-and-error and improves the robustness
of the underlying method. Recent studies show that
adaptive parameter control during execution often
outperforms static manual tuning across diverse
problem instances.

2) Stopping criteria: Define clear and problem-
appropriate stopping conditions to balance solution
quality and computational cost. Criteria may include
a maximum number of iterations, time limits, or
convergence thresholds based on improvement
between iterations. In heuristic methods, termination
can depend on the lack of progress across multiple
runs. Monitoring indicators such as duality gaps or
objective value stabilization helps identify best
possible solutions when further computation offers
limited benefits.

3) Method selection: Choose decomposition met-
hods based on problem structure and data availa-
bility. Techniques like Dantzig-Wolfe are suitable
for problems with block structures and coupling
constraints, while Benders decomposition is effec-
tive for complicated variables or stochastic elements.
For large-scale or black-box problems, evolutionary
or swarm-based approaches may be more suitable.

When historical data or instance features are
available, machine learning can assist in selecting
the appropriate method. Graph-based analysis has
been wused to predict whether decomposition
techniques or monolithic solvers perform better.
Matching the method to problem properties such as
linearity, separability, uncertainty, and compu-
tational resources is essential for effective strategy
selection.
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