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Abstract
This paper presents a robust framework for handling a conicmultiobjective linear optimization
problem, where the objective and constraint functions are involving affinely parameterized
data uncertainties. More precisely, we examine optimality conditions and calculate efficient
solutions of the conic robust multiobjective linear problem. We provide necessary and suffi-
cient linear conic criteria for efficiency of the underlying conic robust multiobjective linear
program. It is shown that such optimality conditions can be expressed in terms of linearmatrix
inequalities and second-order conic conditions for a multiobjective semidefinite program and
a multiobjective second order conic program, respectively. We show how efficient solutions
of the conic robust multiobjective linear problem can be found via its conic programming
reformulation problems including semidefinite programming and second-order cone pro-
gramming problems. Numerical examples are also provided to illustrate that the proposed
conic programming reformulation schemes can be employed to find efficient solutions for
concrete problems including those arisen from practical applications.
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1 Introduction

Conic optimization problems are constrained optimization models in which their constraints
are defined via certain closed convex cones, see e.g., [4, 9, 16]. Conic optimization problems
have been intensively studied bymany researchers as they belong to a wide class of structured
decision making optimization problems that encompass all important prominent classes of
mathematicalmodels including numerically tractable classes of linear programming, second-
order cone programming and semidefinite programming problems [8], as well as a more
general class of convex optimization problems because any convex optimization problem can
be reformulated as a conic optimization problem [31].

In the real-world, many decision-making models not only admit multiple objectives (cf.
[2, 3, 17, 28]) that are possible in conflict but also involve uncertain data (cf. [5, 7, 34])
because of, for instance, the lack of information, measurement errors or unknown future
developments. So, discovering new frameworks or classes of multiobjective optimization
problems, tangible approaches as well as associated methods that are capable of dealing with
uncertainty data, has emerged as a crucial aim of research in multiobjective optimization.
Such multiobjective optimization (called robust multiobjective) models are able to generate
(weak) Pareto solutions, which are immune from uncertainty data, see e.g., [1, 12, 18–20, 24,
25, 35] and other references therein.

A recent trend in robustmultiobjective optimization is to identify classes of robustmultiob-
jective problems whose optimality conditions are numerically verifiable or their relaxation
problems can be reformulated and solved by means of linear programming, second-order
cone programming or semidefinite programming problems [10, 11, 13, 14, 21, 22, 26, 27].
In particular, by using an alternative theorem for a robust linear inequality system, the paper
[10] provided necessary and sufficient optimality conditions for weak Pareto solutions of a
robust multiobjective linear programming problem. Recently, the authors in [14] developed
tractable optimality conditions as well as semidefinite reformulation schemes to identify
robust (weak) efficient solutions for quadratic multiobjective problems under data uncer-
tainty. The interested reader is referred to [26, 27] for approximate approaches to solve a
subclass of robust convex polynomial multiobjective optimization problems.

This paper aims to study a broad class of conic uncertain/robust multiobjective linear
programming problems defined as follows.

Conic Multiobjective Linear Optimization Programs. A conic uncertain multiobjective
linear problem is defined by

min
x∈Rn

{(
c1(u1)�x + β1(u1), . . . , cp(u p)�x + β p(u p)

) | A(v)x − b(v) ∈ −K
}
, (UC)

where u j ∈ Uj , j = 1, . . . , p and v ∈ V are uncertain parameters, Uj ⊂ R
s, j = 1, . . . , p

and V ⊂ R
s0 are uncertainty sets that are assumed to be nonempty and compact, A :

R
s0 → L(Rn,Rm), b : R

s0 → R
m are affine maps, K ⊂ R

m is a closed pointed (i.e.,
K ∩ (−K ) = {0}) convex cone with the nonempty interior (i.e., int K �= ∅), and c j : Rs →
R
n, β j : Rs → R, j = 1, . . . , p are affine maps defined respectively by

c j (u j ) := c j0 +
s∑

i=1

u j
i c

j
i , β j (u j ) := β

j
0 +

s∑

i=1

u j
i β

j
i (1.1)

for u j := (u j
1, . . . , u

j
s ) ∈ R

s with β
j
i ∈ R and c ji ∈ R

n fixed for j = 1, . . . , p, i =
0, 1, . . . , s.Note that the notation L(Rn,Rm) stands for the space of all linear transformations
from R

n to R
m .
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To tackle the conic uncertain multiobjective problem (UC), we consider its robust coun-
terpart as follows:

min
x∈Rn

{
(
max
u1∈U1

{c1(u1)�x+β1(u1)}, . . . , max
u p∈Up

{cp(u p)�x+β p(u p)}) | A(v)x − b(v) ∈ −K , ∀v∈V

}

.

(RC)

To proceed, let us define the notions of robust (weak) efficient solutions in the sense
of minmax robustness (cf. [1, 25]) for multiobjective optimization problems. For the sake
of simplicity, we use the notation f j (x) := max

u j∈Uj

{c j (u j )�x + β j (u j )}, j = 1, . . . , p for

x ∈ R
n and denote F := {x ∈ R

n | A(v)x − b(v) ∈ −K , ∀v ∈ V } the set of all robust
feasible points of problem (UC). This enables us to align notions of Pareto optimality in the
robust case with those for their non-robust counterpart. We note that the direct computation
of the functions f j is inefficient in practice.

Definition 1.1 (Robust weak/efficient solutions) For the problem (UC), let x̄ ∈ F .

(i) One says that x̄ is a robust weak efficient solution of problem (UC) if it is a weak
efficient solution of problem (RC); i.e., there is no other x ∈ F satisfying

f j (x) < f j (x̄), j = 1, . . . , p.

(ii) One says that x̄ is a robust efficient solution of problem (UC) if it is an efficient solution
of problem (RC); i.e., there is no other x ∈ F satisfying

f j (x) ≤ f j (x̄), j = 1, . . . , p and f j (x) < f j (x̄) for some j ∈ {1, . . . , p}.
The model (UC) or its robust counterpart (RC) encompasses a broad class of uncertain

multiobjective optimization problems including uncertain multiobjective linear programs
and standard conic uncertain multiobjective linear optimization problems. In particular, if
K is the nonnegative orthant of Rn (i.e., K := R

n+), V is a spectrahedron (see [36] or
(2.17) below) and there are no affine maps β j , j = 1, . . . , p (i.e., β j := 0, j = 1, . . . , p),
then the problem (RC) collapses to a robust multiobjective optimization model studied in
[13]. Moreover, if there is no uncertainty in the objectives (i.e., c ji := 0, b j

i := 0, j =
1, . . . , p, i = 1, . . . , s), the resulting problem further reduces to a robust multiobjective
model examined in [10]. The problem (UC) includes popular conic uncertain multiobjective
linear programs such as uncertain multiobjective semidefinite programming problems and
uncertain multiobjective second-order cone programming problems, which we will examine
in the forthcoming sections. It also covers other uncertain multiobjective linear programs
such as those discussed in [22] by appropriately specifying the data of K , A, b and Uj , j =
1, . . . , p.

To the best of our knowledge, a study of optimality conditions and conic reformulations for
finding robust (weak) efficient solutions of the conic uncertain multiobjective linear program
of type (UC) has not been available in the literature. Such an investigation would be compli-
cated due to the challenges arisen in handling data uncertainties of the objectives and conic
constraints. Furthermore, the obtained optimality conditions and the relaxation/reformulation
schemes for solving the underlying problem would not be numerically verified by virtue of
the general structures of the uncertainty sets. To this end, we assume throughout the paper
that the uncertainty set V is a polytope given by V := conv {v̄1, . . . , v̄q} with v̄l ∈ R

s0 for
l = 1, . . . , q (see e.g., [5]), and the uncertainty sets Uj , j = 1, . . . , p are cone-based sets
(see e.g., [6]) given by

Uj := {u j := (u j
1, . . . , u

j
s ) ∈ R

s | C ju
j − d j ∈ −K j } (1.2)
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with C j ∈ L(Rs,Rm j ), d j ∈ R
m j and K j ⊂ R

m j , j = 1, . . . , p, where K j , j = 1, . . . , p
are closed pointed convex cones with int K j �= ∅.

The main purposes of this work are to examine robust optimality conditions and compute
robust (weak) efficient solutions for the uncertain conic multiobjective linear problem (UC).
More exactly, we provide necessary and sufficient criteria in terms of linear conic conditions
for robust (weak) efficiency of the uncertain conic multiobjective linear problem (UC). We
establish that these optimality conditions can be displayed byway of linearmatrix inequalities
and second-order cone conditions for subclasses of the underlying conic multiobjective prob-
lems such as the class of multiobjective semidefinite programming problems and the class
of multiobjective second-order cone programming problems. With the help of conic opti-
mality conditions, we also show how robust weak/efficient solutions of the uncertain conic
multiobjective linear problem (UC) can be located by solving conic programming reformu-
lation problems including semidefinite programming and second-order cone programming
problems.

To show the verifiability and efficacy of our approach, we give numerical examples that
illustrate how the proposed conic programming reformulation schemes can be employed
to identify robust (weak) efficient solutions for (concrete) uncertain multiobjective prob-
lems inspired by practical applications. The simulation results demonstrate that the proposed
conic uncertain multiobjective problem is capable of modeling practical problems under
data uncertainties. Moreover, the corresponding conic reformulation schemes are able to
generate multiple robust Pareto solutions for such models. As a result, the proposed conic
uncertain/robust multiobjective models and associated conic reformulation schemes not only
empower the decision-maker tomore readily identify preferred (optimal) trade-off trends, but
also enable the opportunity to stabily achieve the corresponding (optimal) trade-off values
under uncertainty of the inputs for actual problems.

The rest of the paper is organized as follows. InSection2,wefirst establish conic conditions
for robust (weak) efficiency of the uncertain conic multiobjective linear problem (UC). We
then derive corresponding results for the class of multiobjective semidefinite programs and
for the class of multiobjective second-order cone programming problems. Section 3 presents
the conic reformulations and there we develop schemes as to how to calculate robust (weak)
efficient solutions for the problem (UC) via its conic reformulations. In Section 4, we present
numerical examples including those inspired by practical applications. Section 5 concludes
the obtained results with an outlook on conic uncertain/robust multiobjective optimization
problems.

2 Conic optimality conditions

Let us provide some notations and definitions, which will be used throughout this paper.
The notation R

n signifies the Euclidean space whose norm is denoted by ‖ · ‖ for each
n ∈ N := {1, 2, . . .}. The inner product in Rn is defined by 〈x, y〉 := x�y for all x, y ∈ R

n .

For each j ∈ {1, . . . , n}, enj is the unit vector in R
n whose j th element is one and the other

elements are all zero. We denote by 0 the origin of a space and we also use 0n to denote the
origin of Rn for more clarification. We denote by R

n+ the nonnegative orthant of Rn , while
R
1+ := R+ = [0,+∞). For a nonempty set � ⊂ R

n, conv� denotes the convex hull of �

and int� stands for the interior of �. As usual, the notation L(W , Z) stands for the space
of all linear transformations between finite dimensional spaces W and Z . The dual cone of
a cone K ⊂ R

m is given by
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K ∗ := {y ∈ R
m | y�k ≥ 0 for all k ∈ K }.

An (n × n) real matrix A is symmetric if A� = A, where A� is the transpose of A. The
set of all symmetric (n × n) real matrices is denoted by Sn . A matrix B ∈ Sn is said to be
positive semidefinite, denoted by B � 0, whenever x�Bx ≥ 0 for all x ∈ R

n . If x�Bx > 0
for all x ∈ R

n\{0}, then B is called positive definite, denoted by B � 0. The notation Sn+
stands for the set of all positive semidefinite matrices in Sn . The trace of an (n×n) real matrix
A is defined by Tr(A) = ∑n

j=1 a j j , where a j j is the entry in the j th row and j th column
of A for j = 1, . . . , n. Note that the space Sn can be treated as a Euclidean space equipped
with the Frobenius inner product 〈A, B〉 := Tr(AB) for A, B ∈ Sn (see e.g., [5, Page 150]).
Given v := (v1, . . . , vn), the notation diag(v) or diag(v1, . . . , vn) denotes a diagonal matrix
with entries v1, . . . , vn along the diagonal and zeros elsewhere. Similarly, diag(A1, . . . , An)

denotes the block diagonal matrix with submatrices A1, . . . , An along the diagonal and zero
submatrices elsewhere.

For a linear transformation A : Rn → R
m , the adjoint linear transformation, denoted by

A�, is the map A� : Rm → R
n satisfying

〈Ax, y〉 = 〈x, A�y〉 for all x ∈ R
n, y ∈ R

m .

We are now in a position to present necessary/sufficient optimality criteria, which are
exhibited via linear conic conditions for robust (weak) efficient solutions of problem (UC).

Theorem 2.1 For the problem (UC), let x̄ ∈ F .

(i) (Necessary conic conditions) Assume that the strict constraint qualification holds, i.e.,
there exists x0 ∈ R

n such that

A(v)x0 − b(v) ∈ −int K , ∀v ∈ V . (2.3)

Let x̄ be a robust weak efficient solution of (UC). Then, there exist (α1, . . . , αp) ∈
R

p
+\{0}, αi

j ∈ R, i = 1, . . . , s, j = 1, . . . , p and λl ∈ K ∗, l = 1, . . . , q such that

p∑

j=1

(α j c
j
0 +

s∑

i=1

αi
j c

j
i ) +

q∑

l=1

( Āl)�λl = 0, (2.4)

p∑

j=1

(α jβ
j
0 +

s∑

i=1

αi
jβ

j
i ) −

q∑

l=1

(λl)�b̄l −
p∑

j=1

α j f j (x̄) ≥ 0, (2.5)

C j (α
1
j , . . . , α

s
j ) − α j d

j ∈ −K j , j = 1, . . . , p, (2.6)

where Āl := A(v̄l) and b̄l := b(v̄l) for l = 1, . . . , q.

(ii) (Sufficient conditions for robustweakefficiency)Assume that there exist (α1, . . . , αp)

∈ R
p
+\{0}, αi

j ∈ R, i = 1, . . . , s, j = 1, . . . , p and λl ∈ K ∗, l = 1, . . . , q satisfying
(2.4), (2.5) and (2.6). Then, x̄ is a robust weak efficient solution of (UC).

(iii) (Sufficient conditions for robust efficiency) Assume that there exist (α1, . . . , αp) ∈
intRp

+, αi
j ∈ R, i = 1, . . . , s, j = 1, . . . , p and λl ∈ K ∗, l = 1, . . . , q satisfying

(2.4), (2.5) and (2.6). Then, x̄ is a robust efficient solution of (UC).

Proof Note that V := conv {v̄1, . . . , v̄q} and we denote Āl := A(v̄l) and b̄l := b(v̄l), where
v̄l ∈ R

s0 , l = 1, . . . , q are fixed. For each v ∈ V , there exist γl ≥ 0,
∑q

l=1 γl = 1 such that
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v =∑q
l=1 γl v̄

l . Since A and b are affine maps, it holds that

A(v)x − b(v) =
q∑

l=1

γl A(v̄l)x −
q∑

l=1

γl b(v̄
l) =

q∑

l=1

γl
(
Āl x − b̄l

)
.

Moreover, by the convexity of K , we see that A(v)x−b(v) ∈ −K for all v ∈ V if and only if
Āl x − b̄l ∈ −K for all l = 1, . . . , q , and so the problem (RC) is equivalent to the following
problem

min
x∈Rn

{(
f1(x), . . . , f p(x)

) | Āl x − b̄l ∈ −K , l = 1, . . . , q
}
, (AP)

where f j (x) := max
u j∈Uj

{c j (u j )�x + β j (u j )}, j = 1, . . . , p for x ∈ R
n as above.

(i) Assume that the strict constraint qualification in (2.3) holds, and that x̄ is a robust weak
efficient solution of (UC). Letting

� := {(r1, . . . , rp, y1, . . . , yq) ∈ R
p+qm |∃x ∈ R

n, f j (x) − f j (x̄) < r j , j = 1, . . . , p,

yl + b̄l ∈ Āl x + K , l = 1, . . . , q},
we see that � �= ∅ due to ( f1(x0) − f1(x̄) + ε, . . . , f p(x0) − f p(x̄) + ε, 0qm) ∈ � for
any ε > 0. Observe further that � is a convex set and, as x̄ is a robust weak efficient
solution of (UC), it follows that (0p, 0qm) /∈ �. Using a separation theorem (see e.g.,
[30, Theorem 2.5]), we find 0 �= (α, λ) ∈ R

p × R
qm such that

inf
{
α�r + λ�y | (r , y) ∈ �

}
≥ 0, (2.7)

where r := (r1, . . . , rp) ∈ R
p and y := (y1, . . . , yq) ∈ R

qm . Observe by (2.7) that
α := (α1, . . . , αp) ∈ R

p
+ and λ := (λ1, . . . , λq), λl ∈ K ∗, l = 1, . . . , q .

Let ε > 0.Since ( f1(x)− f1(x̄)+ε, . . . , f p(x)− f p(x̄)+ε, Ā1x−b̄1, . . . , Āq x−b̄q) ∈
� for each x ∈ R

n , we get by (2.7) that

p∑

j=1

α j
(
f j (x) − f j (x̄) + ε

)+
q∑

l=1

(λl)�( Āl x − b̄l) ≥ 0 (2.8)

for all x ∈ R
n . If α = 0, there exists l0 ∈ {1, . . . , q} such that λl0 ∈ K ∗\{0}. Therefore,

by (2.3), we assert (cf. [3, Lemma 3.21]) that (λl0)�( Āl0 x0 − b̄l0) < 0, which ensures
that

∑q
l=1(λ

l)�( Āl x0 − b̄l) < 0 due to the fact that λl ∈ K ∗ for all l = 1, . . . , q . This
contradicts (2.8) and so α �= 0.
As ε > 0 was arbitrarily chosen, we conclude from (2.8) that

p∑

j=1

α j f j (x) +
q∑

l=1

(λl)�( Āl x − b̄l) ≥
p∑

j=1

α j f j (x̄) for all x ∈ R
n,

which entails that

inf
x∈Rn

{ p∑

j=1

α j max
u j∈Uj

{c j (u j )�x + β j (u j )} +
q∑

l=1

(λl)�( Āl x − b̄l)

}
≥

p∑

j=1

α j f j (x̄).

(2.9)
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By denoting U := �
p
j=1Uj , (2.9) reduces further to the following one

inf
x∈Rn

max
(u1,...,u p)∈U

⎧
⎨

⎩

p∑

j=1

α j

(
(c j0)

�x +
s∑

i=1

u j
i (c

j
i )

�x + β
j
0 +

s∑

i=1

u j
i β

j
i

)
+

q∑

l=1

(λl)�( Āl x − b̄l )

⎫
⎬

⎭

≥
p∑

j=1

α j f j (x̄), (2.10)

where u j := (u j
1, . . . , u

j
s ), j = 1, . . . , p. Consider a function F : R

n × R
ps →

R given by F(x, u) := ∑p
j=1 α j

(
(c j0)

�x +∑s
i=1 u

j
i (c

j
i )

�x + β
j
0 +∑s

i=1 u
j
i β

j
i

) +
∑q

l=1(λ
l)�( Āl x − b̄l) for x ∈ R

n and u := (u1, . . . , u p) ∈ R
ps . Since F is an

affine function in variable x and in variable u, (2.10) and a minimax theorem (cf. [33,
Theorem 4.2]) entail that

max
u∈U inf

x∈Rn
F(x, u) = inf

x∈Rn
max
u∈U F(x, u) ≥

p∑

j=1

α j f j (x̄).

This shows that there exists ū := (ū1, . . . , ū p), where ū j := (ū j
1, . . . , ū

j
s ) ∈ Uj , j =

1, . . . , p, such that

inf
x∈Rn

F(x, ū) ≥
p∑

j=1

α j f j (x̄). (2.11)

Letting αi
j := α j ū

j
i , j = 1, . . . , p, i = 1, . . . , s, we claim that

C j (α
1
j , . . . , α

s
j ) − α j d

j ∈ −K j , j = 1, . . . , p. (2.12)

To see this, consider any j ∈ {1, . . . , p}. If α j = 0, then αi
j = 0 for all i = 1, . . . , s and

thus (2.12) holds trivially.Otherwise,we haveα j > 0. Then, by ū j ∈ Uj , j = 1, . . . , p,
it holds that

α j

(

C j

(
α1
j

α j
, . . . ,

αs
j

α j

)

− d j

)

= α j (C j ū
j − d j ) ∈ −K j , (2.13)

which shows that (2.12) holds as well. Now, we derive from (2.11) that

p∑

j=1

α j

(

(c j0)
�x +

s∑

i=1

ū j
i (c

j
i )

�x + β
j
0 +

s∑

i=1

ū j
i β

j
i

)

+
q∑

l=1

(λl )�( Āl x − b̄l ) −
p∑

j=1

α j fr (x̄) ≥ 0

for all x ∈ R
n . This is equivalent to the following conditions

p∑

j=1

(

α j c
j
0 +

s∑

i=1

αi
j c

j
i

)

+
q∑

l=1

( Āl)�λl = 0,

p∑

j=1

(

α jβ
j
0 +

s∑

i=1

αi
jβ

j
i

)

−
q∑

l=1

(λl)�b̄l −
p∑

j=1

α j f j (x̄) ≥ 0,

which show that (2.4) and (2.5) are valid. So (i) holds.
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(ii) Let (α1, . . . , αp) ∈ R
p
+\{0}, αi

j ∈ R, i = 1, . . . , s, j = 1, . . . , p and λl ∈ K ∗, l =
1, . . . , q be such that (2.4), (2.5) and (2.6) hold.
Consider any j ∈ {1, . . . , p}. By the compactness ofUj , we claim by (2.6) that if α j =
0, then αi

j = 0 for all i = 1, . . . , s.Assume on the contrary that α j = 0 but there exists

i0 ∈ {1, . . . , s} with α
i0
j �= 0. In this case, we get by (2.6) that C j (α

1
j , . . . , α

s
j ) ∈ −K j .

Take any ū j := (ū j
1, . . . , ū

j
s ) ∈ Uj . By definition, C j ū j − d j ∈ −K j and thus

C j
(
ū j + t(α1

j , . . . , α
s
j )
)− d j = (C j ū

j − d j ) + tC j (α
1
j , . . . , α

s
j ) ∈ −K j for all t > 0.

This means that ū j + t(α1
j , . . . , α

s
j ) ∈ Uj for all t > 0, which contradicts the fact that

(α1
j , . . . , α

s
j ) �= 0s and Uj is bounded. Consequently, our claim is valid.

Let us take û j := (û j
1, . . . , û

j
s ) ∈ Uj and define ũ j := (ũ j

1, . . . , ũ
j
s ) with

ũ j
i :=

⎧
⎨

⎩

û j
i if α j = 0,

αi
j

α j
if α j �= 0,

i = 1, . . . , s.

Note by (2.6) that C j
(α1

j
α j

, . . . ,
αs
j

α j

) − d j ∈ −K j whenever α j �= 0, and so ũ j ∈ Uj .

Then, for any x ∈ R
n, we have

(
α j c

j
0 +

s∑

i=1

αi
j c

j
i

)�
x = α j

(
c j0 +

s∑

i=1

ũ j
i c

j
i

)�
x = α j c

j
(
ũ j
)�

x, j = 1, . . . , p,

(2.14)

where we remind that if α j = 0, then αi
j = 0 for all i = 1, . . . , s as proved above.

Similarly, we obtain that α jβ
j
0 +∑s

i=1 αi
jβ

j
i = α j (β

j
0 +∑s

i=1 ũ
j
i β

j
i ) = α jβ

j (ũ j ) for
j = 1, . . . , p. So, we get by (2.4) and (2.5) that

p∑

j=1

α j c
j (ũ j )�x +

p∑

j=1

α jβ
j (ũ j ) +

q∑

l=1

(λl)�( Āl x − b̄l) ≥
p∑

j=1

α j f j (x̄) for all x ∈ R
n

(2.15)

Now, assume that x̂ ∈ R
n is robust feasible for the problem (UC). Then, Āl x̂−b̄l ∈ −K

for l = 1, . . . , q , which guarantee that
∑q

l=1(λ
l)�( Āl x − b̄l) ≤ 0. Evaluating (2.15)

at x̂ , we arrive at
∑p

j=1 α j
(
c j (ũ j )� x̂ + β j (ũ j )

) ≥∑p
j=1 α j f j (x̄) and thus,

p∑

j=1

α j f j (x̂) ≥
p∑

j=1

α j f j (x̄) (2.16)

due to the fact that α j ≥ 0 and f j (x̂) ≥ c j (ũ j )� x̂ + β j (ũ j ) for all j = 1, . . . , p.
Keeping in mind that (α1, . . . , αp) ∈ R

p
+\{0}, (2.16) ensures that there is no other

x ∈ F with

f j (x) < f j (x̄) for all j = 1, . . . , p.

Consequently, x̄ is a robust weak efficient solution of (UC).
(iii) Let (α1, . . . , αp) ∈ intRp

+, λl ∈ K ∗, l = 1, . . . , q and αi
j ∈ R, i = 1, . . . , s, j =

1, . . . , p be such that (2.4), (2.5) and (2.6) hold. Similarly, following the same argument
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of (ii), we come to the assertion in (2.16). This together with (α1, . . . , αp) ∈ intRp
+

entails that x̄ is a robust efficient solution of problem (UC), which completes the proof.
��

Multiobjective Semidefinite Programming Problems. Let us now consider a particular
case of the problem (UC), which is defined by

min
x∈Rn

{
(
c1(u1)�x + β1(u1), . . . , cp(u p)�x + β p(u p)

) | B(v) −
n∑

i=1

xi Ai (v) � 0

}

,

(USP)

where uncertain parametersu j , j =1, . . . , p andv, the uncertainty setV :=conv {v̄1, . . . , v̄q}
with v̄l ∈ R

s0 for l = 1, . . . , q are defined as above, the maps c j : Rs → R
n, β j : Rs →

R, j = 1, . . . , p are declared in (1.1), Ai : Rs0 → Sk, i = 1, . . . , n, B : Rs0 → Sk are
affine maps, and the uncertainty setsUj , j = 1, . . . , p are spectrahedra (see e.g., [36]) given
by

Uj :=
{

u j := (u j
1, . . . , u

j
s ) ∈ R

s | D j +
s∑

i=1

u j
i C

j
i � 0

}

(2.17)

with given matrices D j ∈ Sk j ,C j
i ∈ Sk j , i = 1, . . . , s. Note that the spectrahedral sets in

(2.17) encompass almost commonly used uncertainty sets in robust optimization including
ball, box, cylinder and ellipsoid uncertainty data.

The robust counterpart of problem (USP) can be captured as follows:

min
x∈Rn

{(
max
u1∈U1

{c1(u1)�x + β1(u1)}, . . . , max
u p∈Up

{cp(u p)�x + β p(u p)}
)

| (RSP)

B(v) −
n∑

i=1

xi Ai (v) � 0, ∀v ∈ V

}
.

We are now ready to derive linear matrix inequality (LMI) conditions for robust (weak)
efficiency of (USP).

Corollary 2.2 (LMI optimality conditions) For the problem (USP), let x̄ ∈ {x ∈ R
n |

B(v) −∑n
i=1 xi Ai (v) � 0, ∀v ∈ V }. We have the following assertions.

(i) Let x0 ∈ R
n be such that

B(v) −
n∑

i=1

x0i Ai (v) � 0, ∀v ∈ V . (2.18)

Assume that x̄ is a robust weak efficient solution of problem (USP). Then, we can find
αi
j ∈ R, i = 1, . . . , s, j = 1, . . . , p, (α1, . . . , αp) ∈ R

p
+\{0} and λl ∈ Sk+, l =

1, . . . , q such that
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p∑

j=1

(

α j c
j
0 +

s∑

i=1

αi
j c

j
i

)

+
q∑

l=1

(
Tr( Āl

1λ
l), . . . ,Tr( Āl

nλ
l)
) = 0, (2.19)

p∑

j=1

(

α jβ
j
0 +

s∑

i=1

αi
jβ

j
i

)

−
q∑

l=1

Tr(B̄lλl) −
p∑

j=1

α j f j (x̄) ≥ 0, (2.20)

α j D
j +

s∑

i=1

αi
jC

j
i � 0, j = 1, . . . , p, (2.21)

where f j (x̄) := max
u j∈Uj

{c j (u j )� x̄ + β j (u j )}, j = 1, . . . , p and Āl
i := Ai (v̄

l), B̄l :=
B(v̄l), l = 1, . . . , q, i = 1, . . . , n.

(ii) Assume that there exist αi
j ∈ R, i = 1, . . . , s, j = 1, . . . , p, (α1, . . . , αp) ∈ R

p
+\{0}

and λl ∈ Sk+, l = 1, . . . , q satisfying (2.19), (2.20) and (2.21). Then, we assert that x̄
is a robust weak efficient solution of (USP).

(iii) Assume that there exist αi
j ∈ R, i = 1, . . . , s, j = 1, . . . , p, (α1, . . . , αp) ∈ intRp

+
and λl ∈ Sk+, l = 1, . . . , q satisfying (2.19), (2.20) and (2.21). Then, x̄ is a robust
efficient solution of (USP).

Proof Consider a mapA : Rs0 → L(Rn, Sk) defined as follows: For each v ∈ R
s0 , one has a

linear transformationA(v) : Rn → Sk given byA(v)x :=∑n
i=1 xi Ai (v) for x ∈ R

n , where
Ai (v) ∈ Sk, i = 1, . . . , n. The maps Ai , i = 1, . . . , n are affine, so is the mapA. Moreover,
for each v ∈ V , it holds that B(v) −∑n

i=1 xi Ai (v) � 0 if and only if A(v)x − B(v) ∈
−Sk+. We also consider linear transformations C j : R

s → Sk j , j = 1, . . . , p defined by

C j u j := −∑s
i=1 u

j
i C

j
i for u j ∈ R

s , where C j
i ∈ Sk j , j = 1, . . . , p, i = 1, . . . , s. Then,

the problem (USP) can be rewritten as the following one

min
x∈Rn

{(
c1(u1)�x + β1(u1), . . . , cp(u p)�x + β p(u p)

) | A(v)x − B(v) ∈ −Sk+
}

, (UAP)

where the uncertainty sets Uj , j = 1, . . . , p are given by Uj := {u j := (u j
1, . . . , u

j
s ) ∈

R
s | C j u j − D j ∈ −S

k j
+ }. This problem lands in the form of problem (UC) with K := Sk+

and K j := S
k j
+ , j = 1, . . . , p. Moreover, the condition (2.18) means that A(v)x0 − B(v) ∈

−int K for all v ∈ V . We now invoke Theorem 2.1 to assert that there exist (α1, . . . , αp) ∈
R

p
+\{0}, αi

j ∈ R, j = 1, . . . , p, i = 1, . . . , s and λl ∈ K ∗ = Sk+, l = 1, . . . , q such that

p∑

j=1

(

α j c
j
0 +

s∑

i=1

αi
j c

j
i

)

+
q∑

l=1

(Āl)�λl = 0,

p∑

j=1

(

α jβ
j
0 +

s∑

i=1

αi
jβ

j
i

)

−
q∑

l=1

〈λl , B̄l〉 −
p∑

j=1

α j f j (x̄) ≥ 0,

C j (α
1
j , . . . , α

s
j ) − α j D

j ∈ −K j , j = 1, . . . , p,

where Āl := A(v̄l), B̄l := B(v̄l), l = 1, . . . , q.

Denote Āl
i := Ai (v̄

l), l = 1, . . . , q, i = 1, . . . , n. We note that since Āl , l = 1, . . . , q
are linear transformations defined by Āl x := A(v̄l)x = ∑n

i=1 xi Ā
l
i for x ∈ R

n ,
the corresponding adjoint operators (Āl)�, l = 1, . . . , q are computed by (Āl)�λ =
(Tr( Āl

1λ), . . . ,Tr( Āl
nλ)
)
for λ ∈ Sk . Moreover, it holds that 〈λl , B̄l〉 = Tr(B̄lλl) for
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l = 1, . . . , q and that

α j D
j +

s∑

i=1

αi
jC

j
i � 0 ⇔ C j (α

1
j , . . . , α

s
j ) − α j D

j ∈ −K j

for all j = 1, . . . , p. Consequently, we arrive at the desired conclusions. ��

Multiobjective Second-OrderConeProgrammingProblems.We consider another special
case of the problem (UC), which is defined by

min
x∈Rn

{(
c1(u1)�x + β1(u1), . . . , cp(u p)�x + β p(u p)

) | A(v)x − b(v) ∈ −Lm
}
, (UOP)

where uncertain parameters u j , j = 1, . . . , p and v, the uncertainty set V := conv {v̄1,
. . . , v̄q} with v̄l ∈ R

s0 for l = 1, . . . , q , the maps A : Rs0 → L(Rn,Rm), b : Rs0 → R
m

are defined as above, the maps c j : Rs → R
n, β j : Rs → R, j = 1, . . . , p are given in

(1.1), and Lm :=
{
(y1, . . . , ym) ∈ R

m | y1 ≥ ||(y2, . . . , ym)||
}
is the second-order cone

or Lorentz cone in R
m(m ≥ 2), while the uncertainty sets Uj , j = 1, . . . , p are ellipsoids

given by

Uj := {u j ∈ R
s | (u j )�M ju j ≤ 1

}
(2.22)

with M j ∈ Ss satisfying M j � 0. For each j ∈ {1, . . . , p}, we let E j be an (m j × s)
matrix, which is a decomposition factor of M j , i.e.,

M j = (E j )�E j . (2.23)

The robust counterpart of problem (UOP) is given by

min
x∈Rn

{(
max
u1∈U1

{c1(u1)�x + β1(u1)}, . . . , max
u p∈Up

{cp(u p)�x + β p(u p)}) (ROP)

| A(v)x − b(v) ∈ −Lm, ∀v ∈ V
}
.

In this case, we obtain second-order conic (SOC) conditions for robust (weak) efficiency
of (UOP) as follows.

Corollary 2.3 (SOC optimality conditions) For the problem (UOP), let x̄ ∈ {x ∈ R
n |

A(v)x − b(v) ∈ −Lm, ∀v ∈ V }.
(i) Let x0 ∈ R

n be such that

A(v)x0 − b(v) ∈ −L0
m, ∀v ∈ V , (2.24)

where L0
m :=

{
(y1, . . . , ym) ∈ R

m | y1 > ||(y2, . . . , ym)||
}
. Assume that x̄ is a robust

weak efficient solution of (UOP). Then, there exist αi
j ∈ R, i = 1, . . . , s, j = 1, . . . , p,

(α1, . . . , αp) ∈ R
p
+\{0} and λl := (λl1, . . . , λ

l
m) ∈ R

m, λl1 ≥ ||(λl2, . . . , λlm)||, l =
1, . . . , q such that

123



Journal of Global Optimization

p∑

j=1

(

α j c
j
0 +

s∑

i=1

αi
j c

j
i

)

+
q∑

l=1

( Āl)�λl = 0, (2.25)

p∑

j=1

(

α jβ
j
0 +

s∑

i=1

αi
jβ

j
i

)

−
q∑

l=1

(λl)�b̄l −
p∑

j=1

α j f j (x̄) ≥ 0, (2.26)

||E j (α1
j , . . . , α

s
j )|| ≤ α j , j = 1, . . . , p, (2.27)

where f j (x̄) := max
u j∈Uj

{c j (u j )� x̄ + β j (u j )}, j = 1, . . . , p and Āl := A(v̄l), b̄l :=
b(v̄l), l = 1, . . . , q.

(ii) Assume that there exist αi
j ∈ R, i = 1, . . . , s, j = 1, . . . , p, (α1, . . . , αp) ∈ R

p
+\{0}

and λl := (λl1, . . . , λ
l
m) ∈ R

m, λl1 ≥ ||(λl2, . . . , λlm)||, l = 1, . . . , q satisfying (2.25),
(2.26) and (2.27). Then, x̄ is a robust weak efficient solution of (UOP).

(iii) Assume that there exist αi
j ∈ R, i = 1, . . . , s, j = 1, . . . , p, (α1, . . . , αp) ∈ intRp

+ and

λl := (λl1, . . . , λ
l
m) ∈ R

m, λl1 ≥ ||(λl2, . . . , λlm)||, l = 1, . . . , q satisfying (2.25), (2.26)
and (2.27). Then, x̄ is a robust efficient solution of (UOP).

Proof Consider any j ∈ {1, . . . , p}. Let C j : R
s → R × R

m j be given by C ju j :=
(0,−E ju j ), u j ∈ R

s, and denote d j := (1, 0, . . . , 0︸ ︷︷ ︸
m j

) ∈ R × R
m j . Since M j = (E j )�E j ,

we see that u�M ju ≤ 1 is equivalent to ||E ju|| ≤ 1 for each u ∈ R
s , and therefore the

ellipsoid Uj in (2.22) can be rewritten as the following cone-based set

C ju
j − d j ∈ −K j ,

where K j := {(k, y) ∈ R × R
m j | k ≥ ||y||}. Now, the problem (UOP) lands in the form

of (UC) with K := Lm , and the condition (2.24) means that A(v)x0 − b(v) ∈ −int K
for all v ∈ V . We employ Theorem 2.1 to assert that there exist (α1, . . . , αp) ∈ R

p
+\{0},

αi
j ∈ R, j = 1, . . . , p, i = 1, . . . , s and λl ∈ K ∗ = Lm, l = 1, . . . , q such that

p∑

j=1

(

α j c
j
0 +

s∑

i=1

αi
j c

j
i

)

+
q∑

l=1

( Āl)�λl = 0,

p∑

j=1

(

α jβ
j
0 +

s∑

i=1

αi
jβ

j
i

)

−
q∑

l=1

(λl)�b̄l −
p∑

j=1

α j f j (x̄) ≥ 0,

C j (α
1
j , . . . , α

s
j ) − α j d

j ∈ −K j , j = 1, . . . , p,

where f j (x̄) := max
u j∈Uj

{c j (u j )� x̄+β j (u j )}, j = 1, . . . , p and Āl := A(v̄l), b̄l := b(v̄l), l =
1, . . . , q. Note in this setting that

||E j (α1
j , . . . , α

s
j )|| ≤ α j ⇔ C j (α

1
j , . . . , α

s
j ) − α j d

j ∈ −K j

for all j = 1, . . . , p, and so the proof is completed by using Theorem 2.1. ��
Remark 2.4 It is worth mentioning that if the cone K in the constraint of problem (UC) is the
nonnegative orthant (i.e., K := R

m+), and the cones K j , j = 1, . . . , p in (1.2) are polyhedral
cones (i.e., K j := {y ∈ R

m j | M̃ j y ≥ 0} for given matrices M̃ j ), then the conic optimality
conditions obtained in Theorem 2.1 such as λl ∈ K ∗, l = 1, . . . , q and (2.6) reduce to
classical linear conditions.
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3 Robust efficient solutions with conic reformulations

This section is devoted to showing how robust weak/efficient solutions of the uncertain conic
multiobjective linear programming problem (UC) can be calculated via its (scalar) conic
programming problems. To this end, we examine robust scalarized optimization models for
(UC) as follows.
Conic Programming Reformulations. For α := (α1, . . . , αp) ∈ R

p
+\{0}, one considers a

robust scalarized problem of the problem (UC) given by

inf
x∈Rn

⎧
⎨

⎩

p∑

j=1

α j max
u j∈Uj

{c j (u j )�x + β j (u j )} | A(v)x − b(v) ∈ −K , ∀v ∈ V

⎫
⎬

⎭
, (Rα)

where c j (u j ) := c j0 +∑s
i=1 u

j
i c

j
i and β j (u j ) := β

j
0 +∑s

i=1 u
j
i β

j
i , j = 1, . . . , p are given

in (1.1), Uj , j = 1, . . . , p are given in (1.2), V := conv {v̄1, . . . , v̄q} is given as before,
A : Rs0 → L(Rn,Rm), b : Rs0 → R

m and K are given in the definition of (UC).
Let us define a conic programming reformulation problem for (Rα) given by

inf
(y,z1,...,z p)

⎧
⎨

⎩

p∑

j=1

α j
(
(c j0)�y + β

j
0 + (d j )�z j

) | Āl y − b̄l ∈ −K , l = 1, . . . , q, (R∗
α)

(
(c j1)�y + β

j
1 , . . . , (c js )�y + β

j
s
)− C�

j z
j = 0, y ∈ R

n, z j ∈ K ∗
j , j = 1, . . . , p

}
,

where Āl := A(v̄l) and b̄l := b(v̄l) for l = 1, . . . , q.

In the following theorem,we present relationships of solutions between the conic uncertain
multiobjective linear programming problem (UC) and a (scalar) conic programming problem
(R∗

α). This shows how to find robust weak efficient and robust efficient solutions of the
conic uncertain multiobjective linear programming problem (UC) by using the (scalar) conic
programming reformulation problem (R∗

α).

Theorem 3.1 (Efficiency with conic reformulations) For the problem (UC), let û j ∈
R
s, j = 1, . . . , p be such that

C j û
j − d j ∈ −intK j . (3.1)

Then, we have the following assertions.

(i) Assume that the strict constraint qualification (2.3) holds and that x̄ is a robust weak
efficient solution of (UC). Then, there exist α ∈ R

p
+\{0} and z̄ j ∈ R

m j , j = 1, . . . , p
such that (x̄, z̄1, . . . , z̄ p) is a solution of problem (R∗

α).
(ii) (Robust weak efficient solution) Assume that the problem (Rα) possesses a solution

for α ∈ R
p
+\{0} and let (w̄, z̄1, . . . , z̄ p) be a solution of (R∗

α). Then, it holds that w̄ is
a robust weak efficient solution of (UC).

(iii) (Robust efficient solution) Assume that the problem (Rα) possesses a solution for
α ∈ intRp

+ and let (w̄, z̄1, . . . , z̄ p) be a solution of (R∗
α). Then, it holds that w̄ is a

robust efficient solution of (UC).

Proof Let α := (α1, . . . , αp) ∈ R
p
+\{0} and suppose that the robust weighted sum optimiza-

tion problem (Rα) possesses an optimal solution, say x̄ . We denote by val(Rα) the optimal
value of (Rα). We claim that there exist z̄ j ∈ K ∗

j , j = 1, . . . , p such that (x̄, z̄1, . . . , z̄ p) is
an optimal solution of (R∗

α) satisfying
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val(Rα) = val(R∗
α) =

p∑

j=1

α j
(
(c j0)

� x̄ + β
j
0 + (d j )� z̄ j

)
, (3.2)

where val(R∗
α) denotes the optimal value of (R∗

α). Indeed, since x̄ is optimal for (Rα), we see
that Āl x̄ − b̄l ∈ −K , l = 1, . . . , q and

val(Rα) =
p∑

j=1

α j f j (x̄), (3.3)

where Āl := A(v̄l), b̄l := b(v̄l) and f j (x̄) := max
u j∈Uj

{c j (u j )� x̄ + β j (u j )} for j = 1, . . . , p.

Considering any j ∈ {1, . . . , p}, we derive from f j (x̄) = max
u j∈Uj

{c j (u j )� x̄ + β j (u j )} that

min
u j∈Rs

{(−t̄ j )�u j | C ju
j − d j ∈ −K j } = t̄ j0 − f j (x̄),

where t̄ j := (t̄ j1 , . . . , t̄ js ) and t̄ ji := (c ji )
� x̄ + β

j
i , i = 0, 1, . . . , s. Under the strict condition

in (3.1), we invoke a strong duality in conic programming (see e.g., [5, Theorem A.2.1]) to
assert that

t̄ j0 − f j (x̄) = max
z j∈Rm j

{(−d j )�z j | C�
j z

j − t̄ j = 0, z j ∈ K ∗
j },

and so there exists z̄ j ∈ K ∗
j such that

(c j0)
� x̄ + β

j
0 + (d j )� z̄ j = f j (x̄),

(
(c j1)

� x̄ + β
j
1 , . . . , (c js )

� x̄ + β
j
s
)− C�

j z̄
j = 0. (3.4)

Hence, it holds that (x̄, z̄1, . . . , z̄ p) is a feasible point of problem (R∗
α), and so we get by

(3.4) that

val(R∗
α) ≤

p∑

j=1

α j
(
(c j0)

� x̄ + β
j
0 + (d j )� z̄ j

) =
p∑

j=1

α j f j (x̄) = val(Rα), (3.5)

where the last equality is valid due to (3.3).
To prove val(Rα) ≤ val(R∗

α), assume that (w, z1, . . . , z p) is a feasible point of (R∗
α). Then,

we have w ∈ R
n, z j ∈ K ∗

j , j = 1, . . . , p and

Ālw − b̄l ∈ −K , l = 1, . . . , q, (3.6)
(
(c j1)

�w + β
j
1 , . . . , (c js )

�w + β
j
s
)− C�

j z
j = 0. (3.7)

As V := conv {v̄1, . . . , v̄q}, A and b are affine maps, K is a convex cone, arguing as in
the proof of Theorem 2.1, we get by (3.6) that A(v)w − b(v) ∈ −K for all v ∈ V . This
means that w is feasible for the problem (Rα), and so
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val(Rα) ≤
p∑

j=1

α j f j (w), (3.8)

where f j (w) := max
u j∈Uj

{c j (u j )�w + β j (u j )}, j = 1, . . . , p. Consider any j ∈ {1, . . . , p}
and any u j ∈ Uj . The later relation means that C ju j − d j ∈ −K . Therefore, we assert that
(C ju j )�z j ≤ (d j )�z j due to z j ∈ K ∗

j . This, together with (3.7), entails that

c j (u j )�w + β j (u j ) = (c j0)
�w + β

j
0 + (u j )�(C�

j z
j ) ≤ (c j0)

�w + β
j
0 + (d j )�z j .

Since u j was arbitrarily chosen in Uj , we conclude that

f j (w) = max
u j∈Uj

{
c j (u j )�w + β j (u j )

} ≤ (c j0)
�w + β

j
0 + (d j )�z j .

Now, noting that α j ≥ 0, j = 1, . . . , p and taking (3.8) into account, we arrive at

val(Rα) ≤
p∑

j=1

α j
(
(c j0)

�w + β
j
0 + (d j )�z j

)
,

which guarantees that val(Rα) ≤ val(R∗
α) as (w, z1, . . . , z p) was an arbitrary feasible point

of problem (R∗
α).

Invoking now (3.5), we obtain that

val(Rα) = val(R∗
α) =

p∑

j=1

α j
(
(c j0)

� x̄ + β
j
0 + (d j )� z̄ j

)
,

which also confirms that (x̄, z̄1, . . . , z̄ p) is optimal for the problem (R∗
α). Thus, so our claim

in (3.2) holds.
(i) Assume that the problem (UC) admits a robustweak efficient solution x̄ . Under the strict

constraint qualification (2.3), we employ Theorem 2.1(i) to find αi
j ∈ R, i = 1, . . . , s, j =

1, . . . , p, α := (α1, . . . , αp) ∈ R
p
+\{0} and λl ∈ K ∗, l = 1, . . . , q such that

p∑

j=1

(

α j c
j
0 +

s∑

i=1

αi
j c

j
i

)

+
q∑

l=1

( Āl)�λl = 0, (3.9)

p∑

j=1

(

α jβ
j
0 +

s∑

i=1

αi
jβ

j
i

)

−
q∑

l=1

(λl)�b̄l −
p∑

j=1

α j f j (x̄) ≥ 0, (3.10)

C j

(
α1
j , . . . , α

s
j

)
− α j d

j ∈ −K j , j = 1, . . . , p, (3.11)

where Āl := A(v̄l), b̄l := b(v̄l), l = 1, . . . , q and f j (x̄) := max
u j∈Uj

{c j (u j )� x̄+β j (u j )}, j =
1, . . . , p. Recall here that F := {x ∈ R

n | A(v)x − b(v) ∈ −K , ∀v ∈ V } is the robust
feasible set of problem (UC) and so F is also the feasible set of problem (Rα). We can derive
from (3.9), (3.10) and (3.11) that

p∑

j=1

α j f j (x̂) ≥
p∑

j=1

α j f j (x̄)
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for all x̂ ∈ F , which asserts that x̄ is optimal for the problem (Rα). So, the assertion before
(3.2) tells us that there exist z̄ j ∈ K ∗

j , j = 1, . . . , p such that (x̄, z̄1, . . . , z̄ p) is an optimal
solution of problem (R∗

α).
(ii) Let α := (α1, . . . , αp) ∈ R

p
+\{0} be such that the problem (Rα) possesses an optimal

solution. We obtain as by (3.2) that

val(Rα) = val(R∗
α). (3.12)

Assume that (w̄, z̄1, . . . , z̄ p) is optimal for the problem (R∗
α). This shows that w̄ ∈ R

n, z̄ j ∈
K ∗

j , j = 1, . . . , p, and

val(R∗
α) =

p∑

j=1

α j
(
(c j0)

�w̄ + β
j
0 + (d j )� z̄ j

)
, (3.13)

Ālw̄ − b̄l ∈ −K , l = 1, . . . , q, (3.14)
(
(c j1)

�w̄ + β
j
1 , . . . , (c js )

�w̄ + β
j
s
)− C�

j z̄
j = 0, j = 1, . . . , p. (3.15)

Proceeding as above, we derive from (3.14) that w̄ is feasible for the problem (Rα), and
hence w̄ is robust feasible for the problem (UC). Denoting f j (x) := max

u j∈Uj

{
c j (u j )�x +

β j (u j )
}
, j = 1, . . . , p for x ∈ R

n, we get by (3.15) that

f j (w̄) ≤ (c j0)
�w̄ + β

j
0 + (d j )� z̄ j , j = 1, . . . , p. (3.16)

Therefore, we assert that w̄ is a robust weak efficient solution of (UC). Otherwise, there
exists a robust feasible point of (UC), say x̂ , such that

f j (x̂) < f j (w̄), j = 1, . . . , p,

where we should note that x̂ is also feasible for the problem (Rα). By taking (3.16) and (3.13)
into account, we see that

val(Rα) ≤
p∑

j=1

α j f j (x̂) <

p∑

j=1

α j f j (w̄) ≤ val(R∗
α),

which togetherwith (3.12) establishes a contradiction. So, w̄ is a robustweak efficient solution
of (UC).

(iii) Assume the problem (Rα) admits a solution for some α ∈ intRp
+, and let

(w̄, z̄1, . . . , z̄ p) be optimal for the problem (R∗
α). Then, (3.12)–(3.16) hold true for this set-

ting. Arguing similarly as above, we come to a conclusion that there is no other x̂ ∈ F
with

f j (x̂) ≤ f j (w̄), j = 1, . . . , p

and f j (x̂) < f j (w̄) for some j ∈ {1, . . . , p}. So w̄ is a robust efficient solution of (UC). ��
Semidefinite Programming Reformulations. Let us now establish semidefinite program-
ming (SDP) reformulations for finding robust (weak) efficient solutions of the uncertain
multiobjective semidefinite programming problem (USP).

In this case, for each α := (α1, . . . , αp) ∈ R
p
+\{0}, the robust weighted-sum problem

of (USP) is given by

inf
x∈Rn

⎧
⎨

⎩

p∑

j=1

α j max
u j∈Uj

{c j (u j )�x + β j (u j )} | B(v) −
n∑

i=1

xi Ai (v) � 0, ∀v ∈ V

⎫
⎬

⎭
, (SRα)
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where c j (u j ) := c j0 +∑s
i=1 u

j
i c

j
i and β j (u j ) := β

j
0 +∑s

i=1 u
j
i β

j
i , j = 1, . . . , p are given

in (1.1), Uj , j = 1, . . . , p are given in (2.17), Ai : Rs0 → Sk, i = 1, . . . , n, B : Rs0 → Sk

and V := conv {v̄1, . . . , v̄q} are given as in the definition of (USP). An SDP reformulation
problem for (SRα) reads as follows:

inf
(y,Z1,...,Z p)

⎧
⎨

⎩

p∑

j=1

α j
(
(c j0)

�y + β
j
0 + Tr(D j Z j )

)
(SR∗

α)

| B̄l −
n∑

i=1

yi Ā
l
i � 0, l = 1, . . . , q,

y := (y1, . . . , yn) ∈ R
n,

(c ji )
�y + β

j
i + Tr(C j

i Z
j ) = 0,

Z j ∈ Sk j , Z j � 0, j = 1, . . . , p, i = 1, . . . , s
}

,

where Āl
i := Ai (v̄

l), B̄l := B(v̄l), l = 1, . . . , q, i = 1, . . . , n.

Now, solution relationships between the uncertain multiobjective semidefinite program-
ming problem (USP) and a corresponding SDP reformulation problem (SR∗

α) are described
as in the following corollary.

Corollary 3.2 (Finding solutions via SDP reformulations)
For the uncertain multiobjective semidefinite programming problem (USP), let û j :=

(û j
1, . . . , û

j
s ) ∈ R

s, j = 1, . . . , p be such that

D j +
s∑

i=1

û j
i C

j
i � 0. (3.17)

Then, we have the following assertions.

(i) Assume that the strict constraint qualification (2.18) holds and that x̄ is a robust weak
efficient solution of (USP). Then, there exist α ∈ R

p
+\{0} and Z̄ j ∈ Sk j , j = 1, . . . , p

such that (x̄, Z̄1, . . . , Z̄ p) is a solution of (SR∗
α).

(ii) (Robust weak Pareto solution) Assume that the problem (SRα) possesses a solution for
α ∈ R

p
+\{0} and let (w̄, Z̄1, . . . , Z̄ p) be a solution of (SR∗

α). Then, it holds that w̄ is a
robust weak efficient solution of (USP).

(iii) (Robust Pareto solution) Assume that the problem (SRα) possesses a solution for α ∈
intRp

+ and let (w̄, Z̄1, . . . , Z̄ p) be a solution of (SR∗
α). Then, it holds that w̄ is a robust

efficient solution of (USP).

Proof Consider, as in the proof of Corollary 2.2, an affine map A : R
s0 → L(Rn, Sk)

defined as follows: For each v ∈ R
s0 , one has a linear transformationA(v) : Rn → Sk given

by A(v)x := ∑n
i=1 xi Ai (v) for x ∈ R

n , where Ai (v) ∈ Sk, i = 1, . . . , n. Similarly, we
consider linear transformations C j : Rs → Sk j , j = 1, . . . , p defined by

C j u
j := −

s∑

i=1

u j
i C

j
i for u j ∈ R

s,

where C j
i ∈ Sk j , j = 1, . . . , p, i = 1, . . . , s are given. Then, for each x ∈ R

n and each v ∈
V , B(v) −∑n

i=1 xi Ai (v) � 0 amounts toA(v)x − B(v) ∈ −Sk+, and so the problem (USP)
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can be viewed in the form of problem (UC) with K := Sk+ and K j := S
k j
+ , j = 1, . . . , p.

Consequently, the problem (SRα) lands in the form of problem (Rα). Note that K ∗
j :=

S
k j
+ , j = 1, . . . , p, 〈D j , Z j 〉 = Tr(D j Z j ) for all Z j ∈ Sk j , j = 1, . . . , p and the adjoint

operators of C j , j = 1, . . . , p are C�
j , j = 1, . . . , p computed by

C�
j Z

j = −(Tr(C j
1 Z

j ), . . . ,Tr(C j
s Z

j )
)
for Z j ∈ Sk j .

So the problem (SR∗
α) can be viewed in the form of problem (R∗

α). Moreover, we see that for
each j ∈ {1, . . . , p} the condition (3.17) is nothing else but C j û j − D j ∈ −int K j , which is
in the form of (3.1). Similarly, the condition (2.18) means thatA(v)x0 − B(v) ∈ −int K for
all v ∈ V . To finish the proof, we just invoke Theorem 3.1. ��
Second-Order Cone Programming Reformulations. We now derive second-order cone
programming (SOCP) reformulations for calculating robust weak/efficient solutions of the
uncertain multiobjective second-order cone programming problem (UOP).

In this case, for each α := (α1, . . . , αp) ∈ R
p
+\{0}, the robust weighted-sum problem

of (UOP) is given by

inf
x∈Rn

{ p∑

j=1

α j max
u j∈Uj

{c j (u j )�x + β j (u j )} | A(v)x − b(v) ∈ −Lm, ∀v ∈ V

}
, (SOα)

where c j (u j ) := c j0 +∑s
i=1 u

j
i c

j
i and β j (u j ) := β

j
0 +∑s

i=1 u
j
i β

j
i , j = 1, . . . , p are given

in (1.1), Uj , j = 1, . . . , p are given in (2.22), A : R
s0 → L(Rn,Rm), b : R

s0 → R
m ,

Lm :=
{
(y1, . . . , ym) ∈ R

m | y1 ≥ ||(y2, . . . , ym)||
}
and V := conv {v̄1, . . . , v̄q} are given

in the definition of (UOP).
An SOCP reformulation problem for (SOα) is captured by

inf
(y,λ1,...,λp,y1,...,y p)

⎧
⎨

⎩

p∑

j=1

α j
(
(c j0)�y + β

j
0 + λ j

) | Āl y − b̄l ∈ −Lm , l = 1, . . . , q, y ∈ R
n,

(SO∗
α)

(c ji )�y + β
j
i + (E j

i )�y j = 0, λ j ≥ ||y j ||, λ j ∈ R, y j ∈ R
m j , j = 1, . . . , p, i = 1, . . . , s

}
,

where E j
i , i = 1, . . . , s denote the columns of the matrix E j given in (2.23) and Āl :=

A(v̄l), b̄l := b(v̄l), l = 1, . . . , q .
The relationships between the robust weak/efficient solutions of (UOP) and a correspond-

ing SOCP reformulation problem (SO∗
α) read as follows.

Corollary 3.3 (Solutions via SOCP reformulations) Consider the problem (UOP).

(i) Assume that the strict constraint qualification (2.24) holds and let x̄ be a robust weak
efficient solution of (UOP). Then, there exist α ∈ R

p
+\{0} and λ̄ j ∈ R, ȳ j ∈ R

m j , j =
1, . . . , p such that (x̄, λ̄1, . . . , λ̄p, ȳ1, . . . , ȳ p) is a solution of (SO∗

α).
(ii) (Robust weak efficient solution) Assume that the problem (SOα) possesses a solution

for α ∈ R
p
+\{0} and let (w̄, λ̄1, . . . , λ̄p, ȳ1, . . . , ȳ p) be a solution of (SO∗

α). Then, it
holds that w̄ is a robust weak efficient solution of (UOP).

(iii) (Robust efficient solution) Assume that the problem (SOα) possesses a solution for
α ∈ intRp

+ and let (w̄, λ̄1, . . . , λ̄p, ȳ1, . . . , ȳ p) be a solution of (SO∗
α). Then, it holds

that w̄ is a robust efficient solution of (UOP).
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Proof For any j ∈ {1, . . . , p}, let C j : Rs → R × R
m j be given by C ju j := (0,−E ju j )

for u j ∈ R
s, where E j is the (m j × s) matrix satisfying (E j )�E j = M j as above, and let

d j := (1, 0, . . . , 0︸ ︷︷ ︸
m j

) ∈ R × R
m j . As shown in the proof of Corollary 2.3, the ellipsoid Uj in

(2.22) can be rewritten as the following cone-based set

C ju
j − d j ∈ −K j ,

where K j := {(k, y) ∈ R×R
m j | k ≥ ||y||}.Then, the problem (UOP) can be regarded as the

problem (UC) with K := Lm , and so the problem (SOα) lands in the form of problem (Rα).
Note that K ∗

j := K j , j = 1, . . . , p, and for any z j := (λ j , y j ) ∈ R × R
m j we have

(d j )�z j = λ j , j = 1, . . . , p. In this case, the adjoint operators of C j , j = 1, . . . , p are
computed by

C�
j z

j = −(E j )�y j for z j := (λ j , y
j ) ∈ R × R

m j .

Thus the problem (SO∗
α) can be viewed in the form of problem (R∗

α). Moreover, the condi-
tion (2.24) means that A(v)x0 − b(v) ∈ −int K for all v ∈ V , which lands in the form of
(2.3). By taking û j := 0s, j = 1, . . . , p, we see that

C j û
j − d j ∈ −intK j ,

i.e., (3.1) is valid. So the proof will be completed by invoking Theorem 3.1. ��

4 Solving examples with conic reformulations

In this section, we show how the proposed conic programming reformulation schemes can be
employed to calculate robust (weak) efficient solutions for idealised but concrete uncertain
multiobjective optimization problems involving an uncertain multiobjective optimization
problem arising from practical applications.

4.1 A numerical example

Let us first consider an uncertain multiobjective optimization problem of the form:

min
x∈R2

{(
h1(x, u

1), h2(x, u
2), h3(x, u

3)
) | 2 + v1x1 + v2x2 ≥

√
4x21 + x22

}
, (EU2)

where u j := (u j
1, u

j
2) ∈ Uj , j = 1, 2, 3 and v := (v1, v2) ∈ V are uncertain parameters

and h j , j = 1, 2, 3 are functions given by

h1(x, u
1) := −2u11x1 + u12x2 + 1 + u11 − u12, h2(x, u

2) := u22x1 + 3u21x2 − 1 − u21 + u22,

h3(x, u
3) := x1 + u32x2 + u31 − u32, x := (x1, x2) ∈ R

2.
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Here, the uncertainty sets Uj , j = 1, 2, 3 and V are given respectively by

U1 := {u1 := (u11, u
1
2) ∈ R

2 | (u11)
2

2
+ (u12)

2

3
≤ 1, u11 ≥ 0},

U2 := {u2 := (u21, u
2
2) ∈ R

2 | (u21)
2 + (u22)

2 ≤ 1, u22 ≤ 0},

U3 := {u3 := (u31, u
3
2) ∈ R

2 | (u31)
2

4
+ (u32)

2

9
≤ 1, u31 ≥ 0},

V := conv {(0, 0), (0, 1), (1, 1)}.
Consider affine maps Ai : R2 → S2, i = 1, 2 and B : R2 → S2 given by

B(v) :=
(
2 0
0 2

)
, A1(v) :=

(
2 − v1 0

0 −2 − v1

)
,

A2(v) :=
(−v2 −1

−1 −v2

)
for v := (v1, v2) ∈ R

2.

Note that for a, b, c ∈ R, the following equivalence holds
(
a b
b c

)
� 0 ⇔ a + c ≥ ‖(a − c, 2b)‖.

Then, for each v := (v1, v2) ∈ V and each x ∈ R
2, we see that

2 + v1x1 + v2x2 ≥
√
4x21 + x22 ⇔ B(v) −

2∑

i=1

xi Ai (v) � 0.

Now, the problem (EU2) can be expressed in terms of problem (USP), where the uncer-
tainty sets Uj , j = 1, 2, 3, are described respectively by

D1 :=

⎛

⎜⎜
⎝

2 0 0 0
0 3 0 0
0 0 1 0
0 0 0 0

⎞

⎟⎟
⎠ ,C1

1 = C3
1 :=

⎛

⎜⎜
⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 1

⎞

⎟⎟
⎠ ,C1

2 = C3
2 :=

⎛

⎜⎜
⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞

⎟⎟
⎠ ,

D2 :=

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟⎟
⎠ ,C2

1 :=

⎛

⎜⎜
⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ ,C2

2 :=

⎛

⎜⎜
⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

⎞

⎟⎟
⎠ , D3 :=

⎛

⎜⎜
⎝

4 0 0 0
0 9 0 0
0 0 1 0
0 0 0 0

⎞

⎟⎟
⎠ ,

and the maps c j : R2 → R
2, β j : R2 → R, j = 1, 2, 3 are given respectively by c10 :=

c20 := c31 := (0, 0), c11 := (−2, 0), c12 := c32 := (0, 1), c21 := (0, 3), c22 := c30 := (1, 0),
β1
0 := β1

1 := β2
2 := β3

1 := 1, β2
0 := β2

1 := β1
2 := β3

2 := −1, β3
0 := 0. This means that

the problem (EU2) is rewritten in our multiobjective semidefinite programming model as the
following one:

min
x∈R2

⎧
⎨

⎩
(
c1(u1)�x + β1(u1), c2(u2)�x + β2(u2), c3(u3)�x + β3(u3)

) | B(v) −
2∑

i=1

xi Ai (v) � 0

⎫
⎬

⎭
.

(EUP2)

Let us now employ the proposed reformulation schemes in Corollary 3.2 to find a robust
(weak) efficient solution of problem (EU2). Taking û1 := û3 := (1, 0) and û2 := (0,− 1

2 ),
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it holds that D j +∑2
i=1 û

j
i C

j
i � 0, j = 1, 2, 3. This means that the condition (3.17) of

Corollary 3.2 is fulfilled for this setting.
Let α := (α1, α2, α3) ∈ R

3+\{0}, and consider a robust scalarized problem of (EUP2) as
follows:

inf
x∈R2

⎧
⎨

⎩

3∑

j=1

α j max
u j∈Uj

{c j (u j )�x + β j (u j )} | B(v) −
2∑

i=1

xi Ai (v) � 0, ∀v ∈ V

⎫
⎬

⎭
, (Eα)

where we should note that the problem (Eα) admits a solution as its feasible set is nonempty
and compact and its objective function is a continuous function.

In this case, an SDP reformulation problem of (Eα) is described by

inf
(y,Z1,Z2,Z3)

⎧
⎨

⎩

3∑

j=1

α j
(
(c j0)

�y + β
j
0 + Tr(D j Z j )

) | (E∗
α)

B̄l −
2∑

i=1

yi Ā
l
i � 0, l = 1, 2, 3,

(c ji )
�y + β

j
i + Tr(C j

i Z
j ) = 0,

Z j ∈ S4, Z j � 0, j = 1, 2, 3, i = 1, 2, y := (y1, y2) ∈ R
2

⎫
⎬

⎭
,

where B̄1 = B̄2 = B̄3 =
(
2 0
0 2

)
and

Ā1
1 = Ā2

1 =
(
2 0
0 −2

)
, Ā3

1 =
(
1 0
0 −3

)
, Ā1

2 =
(

0 −1
−1 0

)
, Ā2

2 = Ā3
2 =

(−1 −1
−1 −1

)
.

We use the toolbox CVX in Matlab (see e.g., [23]) to solve the SDP problem (E∗
α) with

(for example) α := (1, 1, 1) ∈ intR3+ and obtain a solution of (E∗
α) as (ȳ, Z̄1, Z̄2, Z̄3), where

ȳ = (0.4201, 0.6547). By Corollary 3.2 (iii), we assert that ȳ = (0.4201, 0.6547) is a robust
(weak) efficient solution of problem (EU2).

4.2 An example coming from practical applications

We now consider an uncertain multiobjective optimization problem of the form:

min
x∈RT ,y∈RT ,z∈RT ,d∈RT ,r∈RT

(
f1(x, y, z, u), f2(x, y, z), f3(x, d, r , u)

)
(EU3)

s.t. xmin ≤ xt ≤ xmax , t = 1, ..., T , (4.18)

xt+1 − xt ≤ Rmax , t = 1, ..., T − 1, (4.19)

xt − xt+1 ≤ Rmin, t = 1, ..., T − 1, (4.20)

dmin ≤ dt ≤ dmax , t = 1, ..., T , (4.21)

rmin ≤ rt ≤ rmax , t = 1, ..., T , (4.22)

(xt + yt + rt )(xt + yt ) ≥ (zt + dt )
2, t = 1, ..., T , (4.23)

xt + utW + yt − zt − uT+t rt + dt ≥ 0, t = 1, ..., T , (4.24)
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0 ≤ πt (xt + utW + yt − zt ) ≤ Xmax , t = 1, ..., T , (4.25)

ymin ≤ yt ≤ ymax , t = 1, ..., T , (4.26)

zmin ≤ zt ≤ zmax , t = 1, ..., T , (4.27)

where f1, f2 and f3 are given respectively by

f1(x, y, z, u) := −
T∑

t=1

πt (xt + utW + yt − zt ), (4.28)

f2(x, y, z) :=
T∑

t=1

⎛

⎝π
Up
t yt − πDo

t zt +
G∑

g=1

πg,t xt + ct

⎞

⎠ , (4.29)

f3(x, d, r , u) := −
T∑

t=1

(
πDe
t dt − ωt xt − π Ri

t uT+t rt
)

, (4.30)

and u := (u1, . . . , u2T ) is an uncertain vector, which resides in an uncertainty set U . Here,

we assume that U :=
2T∏

j=1
[λ j , γ j ], where λ j ∈ R, γ j ∈ R are fixed and λ j < γ j for

j = 1, . . . , 2T .

Motivation by Bidding Strategy of Virtual Power Plant. The study of problem (EU3) has
beenmotivated frommodeling virtual power plant (VPP) in electricity markets (see e.g., [32]
for a type of VPP model). In this sense, the objective function (4.28) is to minimize VPP cost
for the next day ahead for the regulation markets, where x , y, and z are decision vectors of
variables that indicate electricity generated by power generators, electricity purchased from
the regulation markets, and electricity sold to the regulation markets, respectively. (Note that
xt , yt , and zt refer to x , y, and z at time slot t , respectively.) The vector (u1, ..., uT ) denotes
the percentage of wind farm power output and the vector (uT+1, ..., u2T ) is the percentage
of power generation from other VPP operators. The value of πt is the market clearing price
at time slot t and W is the power generation by wind farms. The objective function (4.29) is
to minimize electricity purchasing and generation cost in the regulation markets. The values
of π

Up
t and πDo

t are the up and down regulation market prices at time slot t , respectively.
The value of πg,t is the start-up cost of generator g at time slot t . The cost ct is the VPP
marginal cost at time slot t . The objective function (4.30) is to minimize cost by maximizing
received revenue and minimizing the electricity purchasing and generation costs, where dt
and rt are electricity consumed and produced by the VPP at time slot t . The values of
πDe
t and π Ri

t are the marginal costs that the VPP and rival operators satisfy the electricity
demand, respectively. The value of ωt is the offered price of the VPP at time slot t . For the
constraints, (4.19) and (4.20) are the enforced unit ramping limits, where Rmax and Rmin

are the ramp up and down rates in the VPP, respectively. The constraint (4.24) constrains
the electricity balance of the VPP and the constraint (4.23) constrains the produced and
purchased electricity which must always be more than the consumed and sold amount. The
boundaries constraints for decision variables are explained from (4.25)to (4.27), where Xmax

denotes the maximal budget in the VPP.

Transforming into Multiobjective Semidefinite Programs. Note that the box U :=∏2T
j=1[λ j , γ j ] can be presented as U = conv {ūl | l = 1, . . . , 4T }, where ūl :=

(ūl1, . . . , ū
l
2T ), l = 1, . . . , 4T are extreme points of the box U . Moreover, by letting
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D = diag(−λ1, . . . ,−λ2T , γ1, . . . , γ2T ) and Ci := diag

(
e2Ti−e2Ti

)
, i = 1, . . . , 2T , the

uncertainty set U can be also written as the following matrix inequality:

U = {u := (u1, . . . , u2T ) ∈ R
2T | D +

2T∑

i=1

uiCi � 0}. (4.31)

Denote x̃ :=

⎛

⎜⎜⎜⎜
⎝

x
y
z
d
r

⎞

⎟⎟⎟⎟
⎠

= (x, y, z, d, r) ∈ R
5T and set

B1 := diag(−xmin, . . . ,−xmin
︸ ︷︷ ︸

T

, xmax , . . . , xmax
︸ ︷︷ ︸

T

),

A1
i :=

⎧
⎪⎨

⎪⎩

diag

(
−eTi
eTi

)

, i = 1, . . . , T ,

0, i = T + 1, . . . , 5T ,

B2 := diag(Rmax , . . . , Rmax
︸ ︷︷ ︸

T−1

), A2
i :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

diag(−eT−1
i ), i = 1,

diag(eT−1
i−1 − eT−1

i ), i = 2, . . . , T − 1,

diag(eT−1
i−1 ), i = T ,

0, i = T + 1, . . . , 5T ,

B3 := diag(Rmin, . . . , Rmin
︸ ︷︷ ︸

T−1

), A3
i := −A2

i , i = 1, . . . , 5T ,

B4 := diag(−dmin, . . . ,−dmin
︸ ︷︷ ︸

T

, dmax , . . . , dmax
︸ ︷︷ ︸

T

),

A4
i :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i = 1, . . . , 3T ,

diag

(
−eTi−3T

eTi−3T

)

, i = 3T + 1, . . . , 4T ,

0, i = 4T + 1, . . . , 5T ,

B5 := diag(−rmin, . . . ,−rmin
︸ ︷︷ ︸

T

, rmax , . . . , rmax
︸ ︷︷ ︸

T

),

A5
i :=

⎧
⎪⎨

⎪⎩

0, i = 1, . . . , 4T ,

diag

(
−eTi−4T

eTi−4T

)

, i = 4T + 1, . . . , 5T .

We can see that (4.18)–(4.22) amount to the following linear matrix inequalities, repec-
tively,

B j −
5T∑

i=1

x̃i A
j
i � 0, j = 1, . . . , 5, (4.32)

where we should remind that x̃i = xi , i = 1, . . . , T , x̃i = yi−T , i = T + 1, . . . , 2T , x̃i =
zi−2T , i = 2T + 1, . . . , 3T , x̃i = di−3T , i = 3T + 1 . . . , 4T and x̃i = ri−4T , i = 4T +
1, . . . , 5T .
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Since xt ≥ 0, yt ≥ 0, zt ≥ 0, dt ≥ 0 and rt ≥ 0 for all t = 1, . . . , T , (4.23) is equivalent
to the following matrix inequalities

(
xt + yt + rt zt + dt
zt + dt xt + yt

)
� 0, t = 1, . . . , T . (4.33)

Then, for each t ∈ {1, . . . , T }, by denoting

Ai,t :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag(−1,−1), i = t, T + t,(
0 −1

−1 0

)

, i = 2T + t, 3T + t,
(

−1 0

0 0

)

, i = 4T + t,

0, i ∈ {1, . . . , 5T }\{t, T + t, 2T + t, 3T + t, 4T + t},

,

we see that (4.33) is nothing but −∑5T
i=1 x̃i Ai,t � 0, t = 1, . . . , T , which can be further

written as

B6 −
5T∑

i=1

x̃i A
6
i � 0, (4.34)

where B6 := 0 and A6
i := diag(Ai,1, . . . , Ai,T ), i = 1, . . . , 5T . For each u ∈ U , put

B7(u) := diag(u1W , . . . , uTW ),

A7
i (u) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

diag
(−eTi

)
, i = 1, . . . , T ,

diag
(−eTi−T

)
, i = T + 1, . . . , 2T ,

diag
(
eTi−2T

)
, i = 2T + 1, . . . , 3T ,

diag
(−eTi−3T

)
, i = 3T + 1, . . . , 4T ,

diag
(
ui−3T eTi−4T

)
, i = 4T + 1, . . . , 5T ,

B8(u) := diag(π1u1W , . . . , πT uT W , Xmax − π1u1W , . . . , Xmax − πT uT W ),

A8
i (u) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag

(

πi

(
−eTi
eTi

))

, i = 1, . . . , T ,

diag

(

πi−T

(
−eTi−T

eTi−T

))

, i = T + 1, . . . , 2T ,

diag

(

πi−2T

(
eTi−2T

−eTi−2T

))

, i = 2T + 1, . . . , 3T ,

0, i = 3T + 1, . . . , 5T .

Then, (4.24) and (4.25) become the following linear matrix inequalities, repectively,

B j (u) −
5T∑

i=1

x̃i A
j
i (u) � 0, j = 7, 8. (4.35)
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Similarly, by letting

B9 := diag(−ymin, . . . ,−ymin
︸ ︷︷ ︸

T

, ymax , . . . , ymax
︸ ︷︷ ︸

T

),

A9
i :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i = 1, . . . , T ,

diag

(
−eTi−T

eTi−T

)

, i = T + 1, . . . , 2T ,

0, i = 2T + 1, . . . , 5T ,

B10 := diag(−zmin, . . . ,−zmin
︸ ︷︷ ︸

T

, zmax , . . . , zmax
︸ ︷︷ ︸

T

),

A10
i :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i = 1, . . . , 2T ,

diag

(
−eTi−2T

eTi−2T

)

, i = 2T + 1, . . . , 3T ,

0, i = 3T + 1, . . . , 5T ,

we see that (4.26) and (4.27) are respectively equivalent to the following linearmatrix inequal-
ities

B j (u) −
5T∑

i=1

x̃i A
j
i (u) � 0, j = 9, 10.

This, together with (4.32), (4.34) and (4.35), shows that the constraints (4.18)–(4.27) are
written as the following linear matrix inequality

B(u) −
5T∑

i=1

x̃i Ai (u) � 0,

where u ∈ U , B(u) := diag
(
B1, . . . , B6, B7(u), B8(u), B9, B10

)
and

Ai (u) := diag
(
A1
i , . . . , A

6
i , A

7
i (u), A8

i (u), A9
i , A

10
i

)
for i = 1, . . . , 5T .

Now, the problem (EU3) is rewritten in the form of our multiobjective semidefinite pro-
gramming problem (USP) as the following one:

min
x̃∈R5T

⎧
⎨

⎩

(
c1(u)� x̃ + β1(u), c2(u)� x̃ + β2(u), c3(u)� x̃ + β3(u)

)
| B(u) −

5T∑

i=1

x̃i Ai (u) � 0

⎫
⎬

⎭
,

(BUP)

where u ∈ U which is given by (4.31) and the affine maps c j : R2T → R
5T , β j : R2T →

R, j = 1, 2, 3 are given respectively by

c10 : = (−π1, . . . ,−πT ,−π1, . . . ,−πT , π1, . . . , πT , 02T ),

c20 : =
⎛

⎝
G∑

g=1

πg,1, . . . ,

G∑

g=1

πg,T , π
Up
1 , . . . , π

Up
T ,−πDo

1 , . . . ,−πDo
T , 02T

⎞

⎠ ,

c30 : =
(
ω1, . . . , ωT , 02T ,−πDe

1 , . . . ,−πDe
T , 0T

)
, c3i :=

{
05T , i = 1, . . . , T ,

(04T , π Ri
i−T e

T
i−T ), i = T + 1, . . . , 2T ,
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c1i := c2i := 05T , i = 1, . . . , 2T , β1
0 := β3

0 := 0, β1
i :=

{
−Wπi , i = 1, . . . , T ,

0, i = T + 1, . . . , 2T ,

β2
0 :=∑T

t=1 ct , β2
i := β3

i := 0, i = 1, . . . , 2T .

Semidefinite Programming Reformulations. Given α := (α1, α2, α3) ∈ R
3+\{0}, one

considers a corresponding robust scalarized problem of (BUP) defined by

inf
x̃∈R5T

{ 3∑

j=1

α j max
u∈U {c j (u)� x̃ + β j (u)} | B(u) −

5T∑

i=1

x̃i Ai (u) � 0, ∀u ∈ U
}
. (BPα)

In this setting, an SDP reformulation problem of (BPα) is given by

inf
(ỹ,Z1,Z2,Z3)

⎧
⎨

⎩

3∑

j=1

α j
(
(c j0)

� ỹ + β
j
0 + Tr(DZ j )

)
(BP∗

α)

| B̄l −
5T∑

i=1

ỹi Ā
l
i � 0, l = 1, . . . , 4T , ỹ := (ỹ1, . . . , ỹ5T )

(c jr )
� ỹ + β

j
r + Tr(Cr Z

j ) = 0,

Z j ∈ S4T , Z j � 0, r = 1, . . . , 2T , j = 1, 2, 3
}

,

where Āl
i := Ai (ūl), B̄l := B(ūl), l = 1, . . . , 4T , i = 1, . . . , 5T .

According to the SDP reformulation schemes in Corollary 3.2, we assert that, for a given
α ∈ intR3 (resp., α ∈ R

3+\{0}), if (x̃, Z1, Z2, Z3) is a solution of (BP∗
α), then x̃ is a robust

(resp., weak) efficient solution of (BUP), which means that (x, y, z, d, r) is a robust (resp.,
weak) efficient solution of problem (EU3).

Numerical Simulations. We use a dataset collected by Australian Energy Market Operator
(AEMO)1 to test the efficacy of the proposed semidefinite programming reformulations.
This is done by showing how to locate robust Pareto solutions of problem (EU3) via its SDP
reformulation problem (BP∗

α).
We simulate a set of possible combinations of weights α j , where α j ∈ [0.00001, 1], j =

1, 2, 3 with
∑3

j=1 α j = 1 and obtain robust Pareto solutions that are shown in Fig. 1. As we
can see from Fig. 1, with different weights for three objective functions, the model provides
various possible tasks for different corresponding costs, which are commonly found in a
multiobjective model as these solutions are trade-offs between their objectives. The robust
Pareto solutions found for the underlying problem empower the decision-maker to more
readily identify preferred (optimal) trade-off trends. Furthermore, the decision-maker gains
trade-off (or revenues value) stability due to the fact that the obtained Pareto solutions are
robust in the sense that they are immune from uncertainty factors in inputs of the problem
or fluctuating trading circumstances. For example, the rival operators may alter their bidding
strategies in a dynamic market.

We also test for a combination of weights α j , where α j ∈ {1, 2, 3}, j = 1, 2, 3 and com-
pare the proposed SDP reformulation and (direct)worst case/scenario and best case/scenario
approaches, which are done by solving the problem (EU3) directly with some fixed values of
u from the uncertainty set U . The comparison between the SDP reformulation and the two

1 https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-
nem/aggregated-data
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Fig. 1 Robust Pareto solutions for (EU3) with different weight combinations

direct approaches for solving the problem (EU3) is shown in Fig. 2. As can be seen from
Figs. 2a and c , the regulation cost and power purchasing cost have an analogous trend with
the fluctuating market price and demand. However, the proposed SDP method always makes
more profits in the regulation market with a similar or less cost on electricity purchasing than
in the worst case. Moreover, the SDP reformulation closely tracks the best case performance,
maintaining regulation revenues within a narrow margin of the best case while offering sig-
nificant robustness compared to the worst case. From Fig. 2b, the power generation cost by
the proposed method is much less and more stable than the worst case method. In particu-
lar, the SDP approach yields generation costs only slightly above the best case scenario but
with substantially reduced variability, demonstrating a balanced trade-off between optimality
and robustness. Similarly, for power purchasing cost, the SDP method achieves costs nearly
indistinguishable from the best case and outperforms the worst case throughout all time slots.

Consequently, the proposed semidefinite programming reformulations are capable of solv-
ing the bidding strategy of virtual power plant problem under uncertain wind farm power for a
full day (T = 24) assuming that the electricity spot market updates their prices on an hourly
basis. The proposed conic reformulations perform well for the bidding strategy of virtual
power plant problems when the dimension of variables is small (e.g., T = 24). However,
as T increases, the number of new variables in the reformulation models also grows leading
to a significant computational burden for the proposed conic reformulation schemes when
applied to higher-dimensional real-world problems.

5 Conclusions and further remarks

We have presented verifiable linear conic conditions for robust (weak) efficiency of a conic
multiobjective linear optimization problem under affinely uncertainty data. It has been shown
that the obtained optimality conditions become linear matrix inequalities for the prominent
class of multiobjective semidefinite programming problems or second-order conic conditions
for the special class of multiobjective second-order cone programming problems. We have
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Fig. 2 The proposed SDP, worst case and best case approaches for solving (EU3)

proposed (scalar) conic reformulation schemes for solving the conic robust multiobjective
linear optimization problem and shown how a robust weak/efficient solution of the uncertain
conic multiobjective linear program can be calculated by solving their conic reformulation
problems. In particular, we have shown that for multiobjective semidefinite programming
and multiobjective second-order cone programming problems their corresponding conic
reformulations can be solved by using semidefinite programming and second-order cone
programming reformulations, respectively.

Numerical examples are provided to show how the proposed conic programming reformu-
lation schemes can be employed to locate robust weak/efficient solutions for uncertain conic
multiobjective optimization problems including a model arisen from practical applications.
The numerical simulations show that the proposed conic uncertain multiobjective problem is
potentially capable ofmodeling practical problems involving data uncertainties and the corre-
sponding conic reformulation shemes are able to generate multiple robust efficient solutions
for such problems. As a result, the proposed conic uncertain/robust multiobjective models
and associated conic reformulation schemes not only empower the decision-maker to more
readily locate preferred (optimal) trade-off trends but also enable the opportunity to stably
achieve corresponding (optimal) trade-off values under the presence of uncertainty in inputs
of the actual problem.

It would be of interest to perform a comprehensive analysis of the proposed conic program-
ming reformulation models with recent advanced robust optimization methods, particularly
in terms of computational efficiency and solution quality. Moreover, it is worth seeing how
we can develop and apply the these conic reformulation schemes to solve other practical
problems, such as the internet routing problem under traffic uncertainty [15] or the energy
supply system of [29], where the problem data often involve uncertainties.
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