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Unequal impacts of future droughts on
global croplands: contributions of climate
and land-use changes across different
income groups
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This study presents a global assessment of future cropland exposure to drought risks under climate
change, accounting for both climate variability and land-use changes across income groups.We used
SPI and SPEI to assess concurrent 3- and 6-month drought risks during major crop-growing periods,
applying a copula-basedmethod to capture joint and transitional drought events. Exposure disparities
anddominant driverswere evaluated using high-resolution global cropland projections under SSP245
andSSP585 scenarios. Results showmodest increases inSPI-based severe drought concurrencebut
substantial increases in extreme droughts, particularly under SSP585. SPEI-based projections reveal
even greater risks due to temperature-driven evapotranspiration, with some exposure increases
exceeding 4000%. Transitional drought risks further intensify vulnerabilities, especially in lower-
middle-income countries. Climate change emerges as the dominant driver of exposure increases,
while the role of land-use change diminishes. These findings underscore the urgent need for climate
mitigation and targeted adaptation to safeguard global food security.

Global population growth, coupled with rising living standards, has inten-
sified the expansion of agricultural land use, driven by the escalating
demand for food, biofuels, and other commodities1–3. Between 2003 and
2019, cropland area expanded by 9%, while cropland net primary produc-
tion surged by 25%, primarily due to agricultural activities in Africa and
South America3. Presently, agricultural land occupies over one-third of the
global land area, with cropland comprising approximately 33% of the total
agricultural area4. As demand for agricultural commodities is projected to
rise by 35–56%between 2010 and20505, pressure on global farming systems
will intensify, driving further cropland expansion.

However, global warming poses severe threats to agricultural sus-
tainability, particularly through its impact on drought patterns and severity.
The increasing frequency, duration, and intensity of droughts present
substantial risks to food security. Recent studies highlight that approxi-
mately three-quarters of global harvested land, equating to 454 million
hectares, experienced drought-induced yield losses between 1983 and 2009,
with cumulative losses valued at 166 billion U.S. dollars6. In Europe,
droughts have reduced cereal yields by 9% on average between 1964 and
2015, with impacts tripling over the past five decades7. Moreover, drought-
related crises such as the East African drought of 2011, which resulted in

widespread starvation and displacement8,9, emphasize the need for effective
drought mitigation strategies.

There have been a great number of studies to address drought risks
through various drought indicators such as Precipitation Index (SPI)10,
Standardized Precipitation Evapotranspiration Index (SPEI)11, Palmer
Drought Severity Index12, standardized soilmoisture index13. These drought
indicators have also been applied to characterize future drought risks under
climate change. For instance, Chiang et al.14 used SPI and SPEI to reveal the
impacts of anthropogenic on global drought frequency, duration, and
intensity. Wu et al.15 investigated changes in meteorological and hydro-
logical drought conditions, especially their propagation features in
1.5–3.0 °C warmer climates for 8655 watersheds globally.

Furthermore, these drought indicators have also been employed to
assess the impacts of droughtoncropproduction. For instance,Mohammed
et al.16 utilized SPI and SPEI to evaluate the drought impacts on maize and
wheat yields across Hungary during 1961–2010, finding that both crops
were highly vulnerable to drought conditions. Similarly, Parsons et al.17

characterized the regional relationshipbetweendrought impacts occurrence
in British agriculture and two drought indices (SPI and SPEI), concluding
that SPEI for the preceding six months is the best indicator to predict the
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probability of drought impacts on agriculture in the UK. Additionally, SPI
and SPEI have also been used to characterize drought impact on crop
productions in other regions such as Nepal18 and Spain19.

Recent studies have increasingly focused on assessing the impacts of
drought on future agricultural sustainability under various climate change
scenarios, utilizing climate and croplandprojectiondatasets. Prodhan et al.20

projected future drought conditions and their impact on simulated crop
yields across South Asia using the SPEI drought index derived fromCMIP6
outputs. Their findings revealed a non-linear increase in yield loss risk as
drought intensity rises. Wang et al.21 evaluated global cropland exposure to
compound drought-heatwave extreme events under future climate change,
using the standardizeddry andhot index.They found that climate effects are
expected to be the dominant driving factor behind the increased exposure of
croplands. Wang et al.22 developed a probabilistic analysis method to
quantify the likelihood of yield loss due to drought in Australia’s crop belt,
utilizing the 3-month SPEI. Their study suggests that droughts will become
more frequent and affect larger areas under future warming scenarios.
Mondal et al.23 used 12-month SPEI to measure south Asian cropland
exposure to drought and its underlying factors based on projections from 7
CMIP6 models, indicating that climate change effect is the pivotal con-
tributor in exposure changes over South Asia. Schillerberg and Tian24 assess
the current and future global compound climate extreme events, as well as
population, agriculture, and forestry exposures to these events, in which
agriculture area exposure to the simultaneous heatwave and flash drought
were analysed under two climate change scenarios (SSP126 and SSP585).

While numerous studies have used SPI and SPEI indices to assess the
impacts of drought on cropland exposure and have identified relevant time
scales for agricultural sensitivity, a key gap remains in understanding the
transitional dynamics of droughts across time scales and severity levels.
Drought is a multifaceted phenomenon, and its progression—from short-
term to long-term or from moderate to extreme events—can have com-
pounding impacts on agriculture. Most existing studies analyze individual
time scales in isolation or focus on specific drought phases, with limited
attention to how drought transitions (e.g., from 3-month severe drought to
6-month extreme drought) affect cropland exposure, particularly at the
global level. Our study addresses this gap by systematically quantifying
global cropland exposure to compound drought transitions across SPI and
SPEI indicators, offering a more dynamic and integrative perspective on
agricultural drought risk.

Furthermore, future global drought patterns are expected to exhibit
significant spatial and temporal variability. Coupled with socioeconomic
development disparities, cropland expansion is likely to vary across coun-
tries with different income levels. However, current research has not suffi-
ciently analyzed how cropland expansion and the associated drought
exposure risks differ across income levels under varying climate change
scenarios. Additionally, most studies focus on the direct impacts of drought
events on agriculture without considering the compounded effects of con-
current droughts and transitional drought risks, which could exacerbate
agricultural vulnerabilities. The interactions between climate change, land-
use dynamics, and their combined effects on drought persistence and
intensity remain underexplored. Understanding how temperature-driven
evapotranspiration amplifies drought risks, especially under high-emission
scenarios, is critical for developing effective adaptation and mitigation
strategies.

This study aims to build upon existing research by exploring future
drought risks and their potential impacts on croplands at a global scale.
Specifically, it will analyze 3- and 6-month droughts characterized by SPI
and SPEI, based on climate projections from 12CMIP6GCMs under the
SSP245 and SSP585 scenarios. These time scales are selected because
they broadly capture short- to medium-term agricultural droughts that
align with the main growing seasons for major crops in many regions. A
copula-based approach will be employed to quantify the concurrence
risks of 3- and 6-month droughts and assess the transitional risks of
3-month droughts evolving into 6-month droughts, capturing the per-
sistence and intensification of drought conditions. Furthermore,

utilizing high-resolution projected cropland data under various climate
change scenarios, the research will quantify the extent of croplands in
countries with different income levels that are threatened by concurrent
droughts (3- and 6-month), and drought transitions (from 3-month to
6-month droughts). The study will also evaluate the relative contribu-
tions of climate change, land-use dynamics, and their interactions to
future cropland exposure, identifying key drivers of agricultural vul-
nerability. By analyzing exposure disparities across income groups, the
research will provide critical insights into the unequal impacts of climate
change on global agriculture.

Results
Concurrence risks of 3-month and 6-month droughts
This study quantifies changes in the risk of simultaneous 3-month and
6-month severe (SD3nSD6) and extremedrought (ED3nED6) events under
different climate change scenarios. The 3-month period corresponds to
April–June in the Northern Hemisphere and October–December in the
SouthernHemisphere, while the 6-month period spansApril–September in
the Northern Hemisphere and October–March in the Southern Hemi-
sphere. These timeframes are crucial for agricultural planning and water
resource management, as they align with key crop growth stages. Droughts
during these periods can lead to substantial yield losses, posing serious
challenges to food security and water availability. The concurrence risks of
3-month and 6-month droughts are estimated using the copula method, as
defined in Eqs. (1)–(3).

Figure 1 illustrates changes in the concurrence of SPI-based drought
risks between historical and future periods under SSP245 and SSP585.
Figure 1a–d depict the spatial variations in drought risk changes, while
Fig. 1e–j present histograms showing risk changes across six continents. The
results indicate that there are no significant differences in the concurrence of
3-month and 6-month droughts (SD3nSD6) between SSP245 and SSP585.
As shown in Figs. 1e–j, under both scenarios, the percentage changes in
SD3nSD6 are mostly within the range of [−1, 1], with a small portion of
Europe andAfrica experiencing an increase ofmore than 1%under SSP585.
However, for simultaneous 3-month and 6-month extreme droughts
(ED3nED6), there is a visible increase in some regions, particularly in
northern South America and western Europe, especially the Iberian
Peninsula.Under the SSP585 scenario, the increase inED3nED6 risk is even
more pronounced. Additionally, certain areas of the Amazon, southern
Chile, and parts of western Africa also face an elevated risk of ED3nED6.
These findings are further confirmed by the histograms in Fig. 1e–j. The
histograms under SSP585 exhibit a longer tail compared to those under
SSP245, indicating a higher frequency of extreme drought risk increases. In
some regions of Europe and South America, the risk of ED3nED6 may
increase by up to 10 percentage points compared to the historical period. In
summary, while the concurrence of severe droughts (SD3nSD6) remains
largely unchanged under SSP245 and SSP585, the risk of simultaneous
extreme droughts (ED3nED6) increases significantly in certain regions,
with a more pronounced increase under SSP585.

Compared to SPI, SPEI considers not only precipitation but also
potential evapotranspiration (PET), thereby capturing the influence of
temperature on drought conditions. Figure 2 illustrates the changes in
the concurrence of SPEI-based drought risks between historical and
future periods under SSP245 and SSP585. For SD3nSD6 risk, there may
be a slight increase in the future; however, the changes remain minimal
under both SSP245 and SSP585, as shown in Fig. 2a, b. Additionally, as
indicated in Fig. 2e–j, in most regions, the increase in SD3nSD6 risk
remains within 5 percentage points under both SSP245 and SSP585. In
some areas of Africa, Asia, andNorth America, the riskmay even show a
slight decrease. However, when it comes to extreme drought risk
(ED3nED6), there are significant increases from northwestern China to
most of Europe, as well as in northern Africa and the Arabian Peninsula,
even under the SSP245 scenario. Under SSP585, both the magnitude of
ED3nED6 risk increase and the affected regions expand substantially. As
presented in Fig. 2d, higher ED3nED6 risks are observed across a broad
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area, including northwestern China, most of Europe, northern and
southern Africa, the Arabian Peninsula, the U.S. Midwest—particularly
southern California—as well as from Central America to much of the
Amazon, central to southern Chile, and central and western Australia.
As shown in the histograms in Figs. 2e–j, except for some regions in

Africa, most other areas experience an ED3nED6 risk increase of within
20 percentage points compared to the historical period under SSP245.
However, under SSP585, the histograms exhibit a much more pro-
nounced right tail than those under SSP245, withmany regions inAfrica,
Asia, and Europe experiencing risk increases of more than 20 percentage

Fig. 1 | Concurrence changes of SPI-based drought risks between historical and future periods under SSP245 and SSP585. a–d The spatial variations in drought risk
changes. e–j Histograms showing risk changes across six continents.
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points, and some areas in Africa seeing increases of over 60 percentage
points. Overall, while the risk of simultaneous severe droughts
(SD3nSD6) under SPEI remains relatively stable with only minor
increases, the risk of extreme droughts (ED3nED6) shows significant
growth, particularly under SSP585. This increase is especially

pronounced in northwestern China, most of Europe, northern and
southern Africa, the Arabian Peninsula, the U.S. Midwest, Central
America, the Amazon, central to southern Chile, and western and
central Australia, with some regions experiencing risk increases
exceeding 60 percentage points.

Fig. 2 | Concurrence changes of SPEI-based drought risks between historical and future periods under SSP245 and SSP585. a–d The spatial variations in SPEI-based
drought risk changes. e–j Histograms showing SPEI-based risk changes across six continents.
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Change of drought transition risks
Based on copula-based joint risk analyses for 3-month and 6-month severe
and extreme droughts, the transition probabilities were derived using Eq.
(4a) to quantify the risks of transitioning from a 3-month severe or extreme
drought to a 6-month severe or extreme drought (i.e., SD3toSD6,

SD3toED6, ED3toSD6, and ED3toED6). Figure 3 illustrates the changes in
transition risks of SPI-based droughts between historical and future periods
under SSP245 and SSP585. Overall, on a global scale, the probability of a
3-month severe or extreme drought transitioning into a 6-month severe
drought (i.e., SD3toSD6 and ED3toED6) does not exhibit significant

Fig. 3 | Changes in transition risks of SPI-based droughts between the historical and future periods under SSP245 and SSP585. a–hThe spatial distribution of changes in
SPI-based drought transition risks. i–n Boxplots illustrating the changes in transition risks from 3-month to 6-month SPI-based droughts across the six continents.
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changes compared to the historical period. Additionally, the impact of
different climate change scenarios (SSP245 and SSP585) on these transition
probabilities appears to be invisible. This trend is further confirmed by the
boxplots on SD3toSD6 and ED3toED6 in Fig. 3i–n, where no substantial
differences are observed between SSP245 and SSP585 across all six con-
tinents. However, as evident from Fig. 3, a 3-month severe or extreme
drought is more likely to transition into an extreme drought in the future,
particularly across a vast region extending from Central Asia to most of
Europe, as well as in central North America, much of South America, and
southern Africa. This increased risk of transitioning to an extreme drought
is even more pronounced under the SSP585 scenario especially in Europe
and SouthAmerica. In some regions, the transition risk is expected to rise by
more than 20 percentage points under SSP585.

For the transition risk changes in SPEI-based droughts, there are no
significant changes in the likelihood of a severe or extreme drought tran-
sitioning into an extreme drought in the future, as shown in Fig. 4. Addi-
tionally, these minimal changes are not influenced by different climate
change scenarios, mirroring the pattern observed in SPI-based drought
transitions. Furthermore, as illustrated in the boxplots in Fig. 4i–n, most
regions in Africa, Asia, andNorth Americamay experience slight decreases
in the future probabilities of transitioning froma3-month severe or extreme
drought to a 6-month severe drought (i.e., SD3toSD6, ED3toED6).
Nevertheless, a 6-month extreme drought is much more likely to develop
from a 3-month severe or extreme drought under future scenarios, with
transition probabilities significantly higher than those based on SPI pre-
sented in Fig. 3. As shown in Fig. 4c, d, g, h, the probability of a 3-month
severe or extreme drought evolving into a 6-month extreme drought
increases notably compared to the historical period, particularly in central
and western Eurasia, northern Africa, central and western North America,
northern South America, and southwestern Australia. This increase is even
more severe in both magnitude and spatial extent under SSP585. In parti-
cular, central and western Asia, most of Europe, and northern Africa may
experience transition risk increases exceeding 50 percentage points. Fur-
thermore, as indicated in the boxplots in Fig. 4i–n, transition risks on
SD3toED6 and ED3toED6 have generally increased across most regions on
all six continents compared to the historical period, with this increase being
even more pronounced under SSP585.

Overall, the transition risk analysis reveals distinct differences between
SPI-based and SPEI-based drought projections.While both indices indicate
slight changes in the likelihood of a 3-month severe or extreme drought
transitioning into a 6-month severe drought (SD3toSD6, ED3toSD6), they
both suggest future increases in the probability of a severe or extreme
drought developing into an extreme drought (SD3toED6, ED3toED6).
However, SPEI-based results indicate a significantly higher probability of
transitioning to a 6-month extreme drought. The increased transition risks
under SPEI highlight the amplifying effect of temperature-driven evapo-
transpiration on drought persistence. Under SSP585, these risks become
even more pronounced, particularly across central and western Eurasia,
northern and southernAfrica,North and SouthAmerica, and southwestern
Australia, with some regions experiencing transition risk increases
exceeding 50 percentage points. These findings underscore the importance
of considering both precipitation and temperature effects when assessing
future drought risks.

Crop land exposure to future droughts
The 3-month (April–June in the Northern Hemisphere,
October–December in the Southern Hemisphere) and 6-month
(April–September in the Northern Hemisphere, October–March in the
SouthernHemisphere) droughtperiodswere selected as they encompass the
primary growing seasons for major crops. Cropland changes under SSP245
and SSP585 were derived from the 1-km global cropland dataset developed
by Cao et al. (2021). The exposure of croplands to droughts was then
projected using Eq. (5).

Figure 5presents the cropland exposure changes to SPI-based3-month
and 6-month severe and extreme drought risks between historical and

future periods. Figure 5a, b show the global distribution of changes in
cropland exposure to simultaneous 3-month and 6-month severe droughts
(SD3nSD6) under SSP245 and SSP585 relative to the historical period. The
increases in cropland exposure to SPI-based SD3nSD6 are relatively mod-
erate across most regions under both SSP245 and SSP585, except for some
explicit increases under SSP585 in areas such as Europe, westernAfrica, and
southwestern Australia. However, for ED3nED6, it is apparent that the
increase in cropland exposure to (ED3nED6) ismuch larger than SD3nSD6,
highlighting the growing risk of prolonged and intense droughts affecting
agriculture. Moreover, cropland exposure risks increase under both sce-
narios, but SSP585 shows a far more significant escalation, especially across
western Asia to most of Europe, Central America, southern Brazil, western
Africa, and much of the Indochinese Peninsula.

To further analyze the unequal cropland exposure to droughts, we
examine cropland exposure to 3-month and 6-month drought risks across
high-income (HI), upper-middle-income (UMI), lower-middle-income
(LMI), and low-income (LI) countries, following the World Bank’s 2022
classification criteria.As shown inFig. 5e, under SSP245, the global cropland
exposure to SD3nSD6 increases slightly (<2.5%), with the highest rise
(~12.5%) in UMI countries, while HI countries see a slight decrease. Under
SSP585, exposure increases more visible (~12.5% globally), with HI coun-
tries experiencing the highest rise (>15%), followed by UMI and LI coun-
tries. Nevertheless, the increase in cropland exposure to ED3nED6 is much
more substantial, as shown in Fig. 5f, with future exposure doubling under
SSP245 and quadrupling under SSP585 compared to the historical period.
Moreover, cropland exposure changes under SSP245 remain relatively
stable across the four income groups. However, under SSP585, exposure
becomes more unequal, with LMI countries experiencing the highest
increase (>350%), while HI countries see the lowest increase (just
above 250%).

The cropland exposure changes to SPEI-based drought are presented
in Fig. 6. In detail, Fig. 6a, b show the spatial distribution of cropland
exposure changes to simultaneous 3-month and 6-month severe droughts
(SD3nSD6) under SSP245 and SSP585 compared to the historical period.
The increases in cropland exposure are relatively widespread but moderate
across most regions, with no significant differences observed between
SSP245 and SSP585 in terms of cropland exposure changes. This is further
supported by Fig. 6e, which shows that cropland exposure to SD3nSD6 will
more thandouble under both SSP245 andSSP585.However, except for LMI
countries, the other three income groups do not exhibit significant differ-
ences in the change rate of cropland exposure between the historical and
future periods under SSP245 and SSP585. However, the results in Fig. 6c, d
show that the increase in exposure to extreme drought concurrence is
substantially higher than for severe droughts, particularly under SSP585.
Themost affected regions includewestern and central Asia,most of Europe,
the North African Mediterranean coast, central North America, and wes-
tern Africa. Moreover, some hotspot regions, such as western Asia and
Europe, experience extreme increases in cropland exposure, with sig-
nificantly higher exposure under SSP585 than SSP245. Meanwhile, the
significant increases in cropland exposure to SPEI-based ED3nED6 also
contribute to regional disparities in cropland exposure, as shown in Fig. 6f.
Under SSP245, cropland exposure to ED3nED6 increases by 2000% glob-
ally, with the highest increase (>2750%) observed in LMI countries and the
lowest (~1600%) inHI countries. Under SSP585, the global increase exceeds
4200%, with LMI countries experiencing the highest rise (~5000%), while
HI countries see the lowest increase (~3750%). These results indicate that
LMI countries face the most severe increases in cropland exposure to
extreme drought concurrence, highlighting the unequal impacts of climate
change on global agriculture.

Crop land exposure to future drought transition
Due to future climate change, a 3-month severe or extreme drought may
evolve into a 6-month severe or extreme drought, as shown in Figs. 3 and 4,
posing a significant threat to agricultural sustainability. The changes in
cropland exposure to SPI-based drought transition risks between the
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historical and future periods are shown in Fig. 7. It appears that, while there
are noticeable increases in cropland exposure to SD3toSD6 in certain
regions (e.g., central United States and southwestern Russia to eastern
Ukraine), most areas exhibit moderate changes, even under SSP585, as
shown inFig. 7a, b. In fact, the total cropland exposure to SD3toSD6 shows a

declining trend in the future, as illustrated in Fig. 7i, with a decrease of
approximately 15% under SSP245 and 20% under SSP585. Moreover,
cropland in UMI and LMI countries experiences the highest decline rates,
reaching nearly 20% under SSP245 and exceeding 30% under SSP585. A
similar pattern is observed for cropland exposure to risks from a 3-month

Fig. 4 | Transition risk changes of SPEI-based droughts between historical and future periods under SSP245 and SSP585. a–h The spatial distribution of changes in
SPEI-based drought transition risks. i–n Boxplots illustrating the changes in transition risks from 3-month to 6-month SPEI-based droughts across the six continents.
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extreme drought transitioning to a 6-month severe drought (ED3toSD6), as
shown inFig. 7e, f, k.Adeclining trend in cropland exposure toED3toSD6 is
expected in future, with a decrease rate exceeding 15% under SSP245
(ranging from 5% for LMI countries to over 20% for HI countries) and
greater than 25% under SSP585 (ranging between 25 and 30% across all
income groups).

Nevertheless, cropland exposure to 3-month severe or extreme
droughts is more likely to transition into 6-month extreme droughts, as
shown in Fig. 7c, d, j for SD3toED6, and Fig. 7g, h, l for ED3toED6.
Additionally, cropland exposure to SD3toED6 shows explicit increases
under future climate change scenarios. Globally, exposure increases mod-
erately under SSP245, with an average rise of around 30%, ranging from
~7% for LMI countries to ~40% for HI countries. However, under SSP585,
cropland exposure to SD3toED6 increases substantially, particularly across
western Asia to most of Europe, central North America, and Central
America, with a global increase rate exceeding 75%andmore than doubling
for HI countries. The cropland exposure to ED3toED6 follows a similar
pattern to SD3toED6, but with a relatively lower increase rate. Globally,
exposure rises by less than 10% under SSP245 and then increases to over
35% under SSP585. Notably, UMI countries show a declining trend in

ED3toED6 exposure, likely due to the combined effects of changes in
ED3toED6 risks and cropland distribution.

Cropland exposure changes to SPEI-based drought transition risks
betweenhistorical and future periods are presented inFig. 8.While cropland
exposure to drought transitions into 6-month severe droughts (SD3toSD6,
ED3toSD6) decreases under SSP245, similar to SPI-based drought transi-
tions, visible increases are observed under SSP585. Notably, SD3toSD6
exposure rises inHIandLI countries,whileED3toSD6exposure increases in
LI, LMI, andUMI countries. In comparison, cropland exposure to 3-month
severe or extreme droughts transitioning into 6-month extreme droughts
(SD3toED6andED3toED6)will experience substantial increases.While the
hotspots for these transitions remain similar to SPI-based results, including
central North America, western Asia, most of Europe, and southwestern
Australia, the exposure areas under SPEI-based projections are significantly
larger than those in SPI-based results, highlighting the greater impact of
temperature-driven evapotranspiration on drought persistence and
expansion. Income-based disparities are moderate under SSP245, with a
global increase rate of 250% for SD3toED6 (Fig. 8j), ranging from~220% for
UMI countries to ~290% for HI countries. For ED3toED6 shown in Fig. 8i,
the global average increase is ~240%, with country-level variations ranging

Fig. 5 | Cropland exposure changes to SPI-based drought concurrence risks
between historical and future periods under SSP245 and SSP585. a–d The spatial
variations in cropland exposure changes to SPI-based droughts. e Bar plot showing
global and income-group averaged changes in cropland exposure to simultaneous

3-month and 6-month severe drought. f Bar plot showing global and income-group
averaged changes in cropland exposure to simultaneous 3-month and 6-month
extreme drought.
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from 210% for UMI countries to 250% for LMI countries. However, high
GHG emissions (SSP585) not only increase cropland exposure but also
amplify disparities among income groups. As shown in Fig. 8j, global
exposure to SD3toED6 is expected to rise by 350%, with HI countries
experiencing the highest increase (450%) and UMI countries the lowest
(250%). A similar pattern is observed for ED3toED6, with a global increase
of around 320%, ranging from 250% for UMI countries to 350% for HI
countries, indicating that higher emissions exacerbate both overall drought
risks and income-based inequalities in cropland exposure.

To further investigate the unequal impacts of future drought risks on
cropland, the projected changes in cropland exposure to SPI-based and
SPEI-based drought risks for the top ten cereal-producing countries were
characterized under SSP245 and SSP585 scenarios, as shown in Figs.
S2 and S3. Figure S2 shows that projected cropland exposure to SPI-based
drought transitions varies substantially across major cereal producers. For
moderate-to-moderate drought transitions such as SD3nSD6 and
SD3toSD6, increases in exposure are relatively modest and generally below
300%, with stronger changes observed under SSP585. For example, Brazil
and Australia exhibit increases of 200–300% in SD3nSD6 exposures under

SSP585,while countries like theUSA,China, and India show limited or even
negative changes. For more intense transitions, such as ED3nED6, Brazil
shows the largest increase, exceeding 1500% under SSP585, followed by
Australia and France (~500–800%). These three countries also face sub-
stantial risks associated with 3-month droughts transitioning into 6-month
extreme droughts (i.e., SD3toED6 and ED3toED6). In contrast, Fig. S3
illustrates substantially higher exposure rateswhenPET is incorporated into
the drought metric via SPEI. Under SSP585, exposure increases for com-
pound droughts (e.g., SD3toED6 or ED3nED6) are exceptionally high. For
example, in ED3nED6, Brazil’s cropland exposure increases by nearly
20,000%, while France and Russia experience increases above 5000%. These
dramatic surges highlight the amplifying effect of PET—especially
temperature-driven evapotranspiration—on drought severity under high-
emission scenarios. Notably, SPEI-based transitions to extreme droughts
increase substantially acrossmost countriesunder SSP585,underscoring the
significant impact of greenhouse gas emissions on future agricultural
drought risks.

In general, while cropland exposure to drought transitions into
6-month severe droughts shows a declining trend in some regions, the

Fig. 6 | Cropland exposure changes to SPEI-based drought concurrence risks
between historical and future periods under SSP245 and SSP585. a–d The spatial
variations in cropland exposure changes to SPEI-based droughts. e Bar plot showing
global and income-group averaged changes in cropland exposure to simultaneous

3-month and 6-month severe drought. f Bar plot showing global and income-group
averaged changes in cropland exposure to simultaneous 3-month and 6-month
extreme drought.
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likelihood of severe or extreme droughts intensifying into prolonged
extreme droughts increases substantially, especially under high-emission
scenarios. SPEI-based projections indicate larger affected areas compared to
SPI-based results, highlighting the amplifying effect of temperature-driven
evapotranspiration on drought persistence. Moreover, higher emissions
exacerbate disparities in cropland exposure among income groups, with
developing regions facing greater vulnerability. These findings emphasize
the urgent need for adaptation strategies to mitigate increasing agricultural
drought risks under future climate conditions.

Contributions
The cropland exposure to future drought risks is influenced by both climate
change and cropland variations, with their relative contributions varying
across different climate change scenarios. Based on Eqs. (6) and (4d), the

relative contributions of climate, cropland, and their interaction effects are
quantified to identify thedominant factors influencing cropland exposure to
different drought events. Specifically, the contributions from climate,
cropland, and their interaction effects were calculated for each grid, and the
average contributions were determined using a weighted mean based on
future cropland exposure at both the global scale and across different
income groups.

As shown in Fig. 5, cropland exposure to SPI-based SD3nSD6 exhibits
only a minor increase under SSP245, while the increase becomes more
pronounced, exceeding 10%, under SSP585. Figure 9a indicates that climate
change predominantly drives changes in cropland exposure to SD3nSD6,
contributing approximately 67% globally under SSP245, but its influence
varies significantly across incomegroups, revealing cleardisparities.Climate
change contributes more than 75% to SD3nSD6 exposure in HI and LMI

Fig. 7 |Cropland exposure changes to SPI-based drought transition risks between
historical and future periods under SSP245 and SSP585. a–h the spatial variations
in cropland exposure changes to SPI-based drought transition risks. i–l bar plot

showing global and income-group averaged changes in cropland exposure to dif-
ferent SPI-based drought transition risks.
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countries, whereas in UMI and LI countries, cropland variations and
interaction effects play a much greater role—with cropland contributing
56% in UMI countries and interaction effects accounting for 39.2% in LI
countries, suggesting that lower-income regions experience amore complex
interplay of climate and land-use factors. Under SSP585, exposure increases
are overwhelmingly driven by climate change (98.5% globally, Fig. 9a),
further amplifying inequalities, as cropland variations become negligible in
HI andUMI countries but still contribute around 25% in LMI countries and
−14.6% in LI countries, indicating that cropland changes in LI countries
may even counteract some climate-driven exposure increases.

For SPI-based ED3nED6, cropland exposure is projected to double
under SSP245 and quadruple under SSP585 (Fig. 5), further exacerbating
inequality in drought risk exposure. The contributions to these increases,
presented in Fig. 9b, show that climate change remains the dominant factor,

contributing 109.8% under SSP245 and 98.7% under SSP585 globally.
However, the magnitude of climate influence and the role of cropland
changes vary among income groups, reinforcing unequal drought vulner-
abilities. InHIcountries, climate accounts for96.8%of the exposure increase
under SSP245 and 106.7% under SSP585, while cropland effects remain
minimal. Conversely, LI and LMI countries experience a greater relative
contribution from cropland and interaction effects under SSP245, but as
climate change intensifies under SSP585, these contributions decline sig-
nificantly, reinforcing climate’s dominance and leaving low-income regions
more exposed to extreme droughts with limited adaptation capacity. UMI
countries show a unique trend, with climate’s contribution exceptionally
high under SSP245 (156.4%), while cropland reduces exposure (−45.6%),
but this mitigating effect disappears under SSP585, emphasizing how land-

Fig. 8 | Cropland exposure changes to SPEI-based drought transition risks
between historical and future periods under SSP245 and SSP585. a–h the spatial
variations in cropland exposure changes to SPEI-based drought transition risks.

i–l bar plot showing global and income-group averaged changes in cropland
exposure to different SPEI-based drought transition risks.
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use patternsmay fail to counteract worsening drought conditions in a high-
emission scenario.

The cropland exposure changes to SPEI-based droughts (Fig. 6)
highlight significant increases in exposure to both severe and extreme
drought concurrence, with particularly large disparities across income
groups. Figure 10 presents the relative contributions to cropland exposure
changes to SPEI-based drought concurrences (i.e., SD3nSD6 and
ED3nED6). Globally, climate contributes 136.3% to SD3nSD6 under
SSP245 and 84.6% under SSP585, while cropland variations exhibit a
negative contribution under SSP245 (−92.1%) but become slightly positive
(7.0%)under SSP585, indicating that land-use changes offset climate-driven
increases under moderate emissions but have little impact under high
emissions. For ED3nED6, the role of climate is even stronger, contributing
85.0% under SSP245 and rising to 103.5% under SSP585, whereas crop-
land’s influence is minimal and even negative at the global level (−0.4%)
under SSP585, highlighting that land-use changes do not mitigate the
intensifying risk of extreme drought concurrence under high-emission
scenarios.

Across different income groups, both scenarios reveal significant dis-
parities in the drivers of cropland exposure to drought risks. High-income
(HI) countries are overwhelmingly climate-driven, with climate con-
tributing87.3%toSD3nSD6under SSP245and105.3%under SSP585,while
cropland and interaction effects remainminimal or negative. Lower-income
(LI) and LMI countries show amore mixed influence under SSP245, where
cropland contributes 45.2% (LI) and 27.1% (LMI), while interaction effects
contribute 15.6% and 21.2%, respectively, indicating that land-use changes
amplify drought exposure in these regions. However, under SSP585, crop-
land’s role increases further in LI (62.7%) and LMI (35.1%) countries for
SD3nSD6, whereas interaction effects remain substantial in LMI countries
(31.8%) but decline sharply in LI countries (−12.1%), reinforcing climate’s
increasingdominanceover land-use factors.UMI countries exhibit a unique

pattern, where cropland changes strongly counteract climate effects under
SSP245 (−201.4% forSD3nSD6), but thismitigation effectdisappearsunder
SSP585,with cropland contributing10.4%and climate remainingdominant
at 80.3%. For ED3nED6, the dominance of climate change is evident across
all income groups, but its influence strengthens under SSP585, leaving
cropland changes with a minimal or even negative impact. In HI countries,
climate contributes 91.6% under SSP245 and increases to 105.6% under
SSP585, while cropland and interaction effects remain negligible. In LI and
LMI countries, interaction effects play a significant role under SSP245
(27.8% and 26.3%, respectively), but decline under SSP585, reinforcing that
climate-driven evapotranspiration increasingly dictates extreme drought
exposure, particularly in lower-income regions. In UMI countries, climate’s
contribution rises from88.2%under SSP245 to 103.1%under SSP585, while
cropland contributions and interaction effects become negative under
SSP585, further confirming the reduced influence of land-use changes in
mitigating drought risks under high-emission scenarios.

As shown in Fig. 7, there are visible increases in cropland exposures to
3-month severe or extreme droughts transitioning into 6-month extreme
droughts (i.e., SD3toED6, ED3toED6), with global increases of ~30% and
~75% for SD3toED6 under SSP245 and SSP585, respectively, and ~8% and
~38% for ED3toED6. The contributions from climate change, cropland
variation and their interactions are presented in Fig. 11. Globally, climate
contributes 105.6% to SD3toED6 under SSP245 and 101.4% under SSP585,
while cropland variations exhibit a negative contribution under SSP245
(−10.7%) but turn slightly positive under SSP585 (1.2%), indicating that
land-use changes offset climate-driven exposure under moderate emissions
but have little impact under high emissions. For ED3toED6, climate’s role is
even stronger, contributing 78.7% under SSP245 and increasing to 111.7%
under SSP585, while cropland contributions areminimal and even negative
at the global level (−7.1%) under SSP585, reinforcing that land-use changes

Fig. 9 | Relative contributions of climate change, cropland expansion, and their interaction to cropland exposure under SPI-based 3-month and 6-month. a severe and
b extreme droughts.
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do not mitigate the intensifying risk of extreme drought persistence under
high-emission scenarios.

Across different income groups, there are significant disparities in the
relative contributions of climate, cropland, and their interactions to crop-
land exposure risks. In high-income (HI) countries, climate remains the
overwhelming driver under both SSP245 and SSP585, contributing 147.8%
and 113.2% to SD3toED6 and 116.2% and 101.0% to ED3toED6, respec-
tively. Cropland variations have a significant negative contribution
(−49.7%) only for SD3toED6 under SSP245, while their influence is neg-
ligible (<10%) for all other cases. In contrast, low-income (LI) countries
show a more balanced contribution under SSP245, with cropland
accounting for 80.8% and 36.1% for SD3toED6 and ED3toED6, respec-
tively, highlighting the role of agricultural expansion in shaping drought
exposure. However, under SSP585, cropland’s contribution declines (47.6%
and 17.6%, respectively), while climate’s influence strengthens, reinforcing
that extreme drought exposure in LI countries becomes increasingly
climate-driven. LMI countries exhibit a similar pattern, with climate con-
tributing 79.9 and 71.4% under SSP245 and rising to 91.7% and 104.3%
under SSP585 for SD3toED6 and ED3toED6, respectively, while cropland
contributions remain minimal, further emphasizing climate’s growing
dominance. UMI countries exhibit a distinct shift, where cropland changes
significantly counteract climate effects for SD3toED6 under SSP245
(−17.1%), but thismitigation effectdisappears under SSP585,with cropland
contributing a slightly positive 3.4%. In contrast, cropland variations have a
substantial positive effect (24.3%) on ED3toED6 under SSP245, but under
SSP585, they instead counteract climate effects, contributing a negative
effect of −30.3%.

The cropland exposure to SPEI-based drought transitions into
6-month extreme droughts (SD3toED6 and ED3toED6) follows a similar
pattern to SPI-based drought transitions, with substantial increases in
exposure across all incomegroups.Globally, cropland exposure increases by

~250%and~350% for SD3toED6under SSP245 andSSP585, and by~240%
and ~320% for ED3toED6, reinforcing the critical role of temperature-
driven evapotranspiration in intensifying drought persistence. The con-
tributions from climate change, cropland variations, and their interactions
(Fig. 12) reveal notable differences across income groups and between
SSP245 andSSP585.Climate change contributes themost to these increases,
accounting for 89.7 and 105.3% of SD3toED6 under SSP245 and SSP585,
respectively, and 96.8 and 106.1% of ED3toED6, highlighting the growing
dominance of climate as emissions increase. Cropland variations, in con-
trast, exhibit mostly minor but negative contributions (−7.5% for
ED3toED6under SSP245,−7.6% for SD3toED6, and−3.3% for ED3toED6
under SSP585), with the exception of SD3toED6 under SSP245 (2.2%),
suggesting that land-use changesprovide limitedmitigation, particularly for
3-month extreme droughts transitioning into 6-month extreme droughts.

The contributions of climate, cropland, and their interactions to
cropland exposure risks vary across income groups, highlighting growing
disparities in drought vulnerability. In high-income (HI) countries, climate
is the dominant driver, contributing over 77.5% to SD3toED6 and 92.9% to
ED3toED6 under SSP245, increasing further higher than 100% under
SSP585, while cropland effects remainminimal or negative. In LI countries,
cropland plays a significant role in SD3toED6 exposure under SSP245,
contributing 23.9%, while climate remains the dominant driver at 53.7%.
However, under SSP585, cropland’s contribution turns highly negative
(−159.4%), indicating that land-use changes counteract climate-driven
exposure increases, while climate’s role intensifies sharply, rising to 153.6%.
Meanwhile for ED3toED6, climate remains the dominant driver but with a
slight reduction (from67.0%under SSP245 to 52.0%under SSP585),mainly
due to increased contributions from cropland variations (from 5.0% under
SSP245 to 37.1%under SSP585), a larger role inmodifying extremedrought
exposure. LMI countries exhibit a relatively balanced contribution under
SSP245, with cropland and interaction effects collectively accounting for

Fig. 10 | Relative contributions of climate change, cropland expansion, and their interaction to cropland exposure under SPEI-based 3-month and 6-month. a severe
and b extreme droughts.
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over 20%. However, under SSP585, climate’s dominance increases sig-
nificantly (96.1% for SD3toED6, 114.4% for ED3toED6), while cropland’s
influence diminishes or turns negative. UMI countries experience a distinct
transition, where croplandmitigates climate-driven exposure under SSP245
(−15.4% for SD3toED6,−30.5% for ED3toED6), but this effect disappears
in SSP585, leaving climate as the overwhelming driver.

In general, future cropland exposure to both concurrent (SD3nSD6,
ED3nED6) and transitional (SD3toED6, ED3toED6) drought risks is
increasingly dominated by climate change, with its influence strengthening
under SSP585 across all income groups. High-income countries remain
overwhelmingly climate-driven, while low-income countries experience a
shift from mixed climate-cropland influences under SSP245 to near-total
climate dependence under SSP585, as land-use changes become ineffective
or even counteract exposure increases. LMI and UMI countries show
diminishing cropland contributions under SSP585, reinforcing growing
disparities in drought vulnerability, where lower-income regions face
intensified climate-driven risks with limited adaptation potential through
land-use strategies.

Uncertainty analysis
In this study, four parametric copulas as well as the independence copula
were adopted to model the interdependence among the 3-month and
6-month drought indicators, with the selected copulas being identified by
the AIC criteria. The frequency of selected copulas, as well as the distribu-
tions ofAkaike InformationCriterion (AIC) andKolmogorov-Smirnov (K-
S) statistics, for both SPEI and SPI-based drought indicators are presented
in Fig. S2.

For SPEI (Fig. S4a–c), the Gaussian copula was most frequently
selected (~35%), followed by theGumbel copula, while a notable proportion
of grid cells (~25%) exhibited weak dependence and were assigned the
independence copula. The distributions of AIC values (panel b) are left-

skewed, indicating relatively strong fit for the selected copulas, and the
majority of K-S statistics (panel c) are concentrated below 0.1, suggesting
satisfactory goodness-of-fit across most regions. For SPI (Fig. S2d–f), a
larger number of grid cells (~50%) exhibited weak dependence and were
assigned the independence copula, reflecting the weaker correlation struc-
ture between SPI-3 and SPI-6 at these locations. However, where depen-
dence exists, Gaussian and Gumbel copulas were again predominantly
selected. The AIC and K-S distributions (panels e and f) are consistent with
those observed for SPEI, reinforcing the robustness of the selected copula
structures. The choice of copula significantly influences the joint tail
behavior and hence the estimated risks of compound drought events. By
using a data-driven selection process that minimizes AIC and passes K-S
tests, our approach ensures that the copula structure at each grid cell is
optimally chosen to reflect local dependence characteristics.

In addition to spatial variations in copula models across grid cells,
substantial uncertainties also exist in projecting cropland exposure to
compound drought events, arising frommultiple sources such as variability
across GCMs, the choice of drought indicators (SPI vs. SPEI), and PET
estimation methods. Figures S3 and S4 present the model spread across 12
GCMs for SPI- and SPEI-based exposure estimates. These plots reveal
substantial inter-model variation, particularly under the SSP585 scenario,
for cropland exposures to 3-month and 6-month extreme drought events
(ED3nED6), as well as transitions from 3-month severe or extreme drought
to 6-month extreme drought (SD3toED6 and ED3toED6, respectively).

As presented in Figs. S5 and S6, among all the drought risk indicators
considered, the transitions involving extreme drought events—namely
ED3nED6, SD3toED6, and ED3toED6—consistently exhibit the largest
uncertainty ranges. This is evident for cropland exposures to both SPI and
SPEI-droughts. For example, in SPEI-based projections for ED3nED6
(Fig. S4d), the projected change rate in cropland exposure shows extensive
ranges from–4000% toover+125,00% for a global scale underSSP585,with

Fig. 11 | Contributions of climate change, cropland expansion, and their interaction to cropland exposure under SPI-based transitional droughts. a 3-month severe
drought evolving into a 6-month extreme drought, and b 3-month extreme drought evolving into a 6-month extreme drought.
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a median around +3500%. Similarly, for ED3toED6 (Fig. S4f), the spread
spans from approximately−200% to+400%. This high variability reflects
both the complexity of compound drought definitions and their sensitivity
to inter-model climate differences.

Moreover, for both SPI- and SPEI-based estimates, the
SSP585 scenario generally exhibits greater uncertainty than SSP245, espe-
cially for transitions to multi-month extreme drought. In SPI-based
ED3nED6 projections (Fig. S3d), SSP585 shows a broader range—from
roughly 0% to +12.50%—compared to SSP245, which is more tightly
clustered around−100–400% in a global scale. This pattern persists across
income groups and drought types involving extreme drought indicators,
highlighting the greater divergence among climatemodel projections under
high-emission scenarios.

Furthermore, compared to SPI-based cropland exposures, SPEI-based
exposure estimates show significantly wider spreads, indicating greater
overall uncertainty. This difference arises primarily from the inclusion of
PET in SPEI, which introduces additional sources of variability due to
differing GCM representations of radiation, humidity, and wind. For
instance, under SD3toED6 transitions, the median exposure change in a
global scale under SPEI (Fig. S4c) exceeds +250% with a range of [−200,
700]%, compared to about +100% (ranges from −50 to 200%) for SPI
(Fig. S3c). Across all transitions and income levels, the interquartile ranges
are consistently wider for SPEI, with particularly large spreads in low-
income (LI) and high-income (HI) regions.

Besides uncertainties arising from GCM projections and the choice of
drought indicators, SPEI-based drought risks are also affected by the
method used to estimate PET. Figure S7 illustrates the uncertainties in
cropland exposure to SPEI-baseddrought riskswhenPETis estimatedusing
the Hargreaves method. Consistent with earlier findings based on the
Penman–Monteith (PM) approach, the largest uncertainties are observed
for drought indicators involving extreme conditions over longer durations

—specifically ED3nED6, SD3toED6, and ED3toED6. These indicators
exhibit broader interquartile ranges and higher upper bounds, particularly
under the SSP585 scenario. Notably, SSP585 consistently produces wider
spreads and higher median exposure rates across most income groups
compared to SSP245, reflecting greater inter-model divergence under high-
emission pathways. Compared to the Penman–Monteith-derived PET, the
use of the Hargreaves method substantially narrows the spread of cropland
exposure changes. This reduction in variability stems from the simplified
input requirements of the Hargreaves method, which only relies on tem-
perature data. In contrast, the Penman–Monteith method incorporates
additional variables such as humidity, solar radiation, and wind speed—
each of which introduces its own uncertainties. These compound uncer-
tainties in input data propagate through the PET estimation process and
amplify the overall uncertainty in drought risk assessments and associated
cropland exposures. However, compared to the SPI-based cropland expo-
sures shown in Fig. S3, the SPEI-based exposures using PET from the
Hargreaves method still exhibit greater uncertainty. This indicates that
while the choice of PET formulation contributes significantly to overall
uncertainty, it does not change the overarching conclusions: (i) the SPEI-
based drought risk projections consistently display higher variability than
SPI-based ones, (ii) exposures to compound extreme droughts are parti-
cularly uncertain, and (iii) these uncertainties are most pronounced under
high-emission scenarios.

Discussion
This study presents a comprehensive global assessment of future cropland
exposure to drought risks under climate change, focusing on the relative
contributions of climate variability and land-use changes across different
income groups. We analyzed concurrent 3-month and 6-month drought
risks during key crop-growing periods using the Standardized Precipitation
Index (SPI) and the SSPEI, employing a copula-based approach to capture

Fig. 12 | Contributions of climate change, cropland expansion, and their interaction to cropland exposure under SPEI-based transitional droughts. a 3-month severe
drought evolving into a 6-month extreme drought, and b 3-month extreme drought evolving into a 6-month extreme drought.
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joint drought occurrences. Additionally, we assessed transitional risks,
examining the probability of 3-month droughts evolving into 6-month
droughts. By integrating high-resolution global cropland data, we evaluated
cropland exposure to both concurrent and transitional drought risks under
SSP245 and SSP585 scenarios, identifying disparities across income groups
and quantifying the dominant drivers of exposure changes.

The results reveal distinct patterns in future drought risks across
drought indices and climate scenarios. SPI-based concurrent 3-month and
6-month severe droughts (SD3nSD6) showminimal changes under SSP245
and SSP585, with percentage shifts mostly within [−1, 1]. SPEI-based
SD3nSD6 shows slight increases, remaining under 5 percentage points. In
contrast, extreme drought concurrence (ED3nED6) increases notably, with
SPI-based projections showing up to 10 percentage point rises in parts of
Europe andSouthAmerica under SSP585. SPEI-basedED3nED6highlights
more severe increases, with northwestern China, Europe, northern Africa,
and the Arabian Peninsula seeing up to 20 percentage point rises under
SSP245, and over 60% under SSP585. Drought transitions further empha-
size risk disparities, as both indices show rising probabilities of 3-month
droughts evolving into 6-month extreme droughts (SD3toED6,
ED3toED6), with SPEI-based results revealing transition risk increases
exceeding 50 percentage points, driven by temperature-induced
evapotranspiration.

The results highlight the escalating threat of future droughts to global
croplands, with exposure risks varying across drought types, scenarios, and
income groups. SPI-based severe droughts (SD3nSD6) show moderate
cropland exposure increases (~12.5% under SSP585), while extreme
droughts (ED3nED6) double under SSP245 and quadruple under SSP585.
LMI countries face the highest increases (>350%), while high-income (HI)
countries see the lowest (~250%). SPEI-based projections reveal greater
impacts due to temperature-driven evapotranspiration, with SD3nSD6
exposure more than doubling and ED3nED6 surging by 2000% under
SSP245 and 4200% under SSP585, especially affecting LMI countries
(>5000%). Drought transitions further amplify vulnerabilities, with SPI-
based SD3toED6 exposure rising by 30% under SSP245 and 75% under
SSP585, and SPEI-based transitions increasing by 250% and 350%,
respectively. Income-based disparities widen under SSP585, with LMI
countries facing the most severe relative risks, emphasizing the need for
targeted adaptation and climate mitigation strategies.

Cropland exposure to future drought risks is primarily driven by cli-
mate change, with its influence intensifying under high-emission scenarios
(SSP585), where contributions often exceed 100%, minimizing the role of
land-use changes. For SPI-based severe droughts (SD3nSD6), climate
accounts for ~67% of exposure increases under SSP245, rising to ~98.5%
under SSP585. Extreme droughts (ED3nED6) show similar trends, with
global exposure doubling under SSP245 and quadrupling under SSP585,
predominantly climate-driven. SPEI-basedprojections further highlight the
amplifying effect of temperature-driven evapotranspiration, especially for
drought transitions. While cropland and interaction effects moderately
impact lower-income regions under SSP245, climate dominance over-
shadows theseunderSSP585. Inhigh-incomecountries, climate remains the
primary driver, while in low-income regions, land-use changes initially play
a role but diminish or become negative under SSP585.

This study advances understanding of global cropland vulnerability to
future droughts by integrating climate extremes, land-use dynamics, and
socioeconomic disparities. It integrates multi-timescale drought analysis
with a copula-based approach using SPI and SPEI indices to assess both
concurrent and transitional drought risks, while capturing the amplifying
impactof temperature-drivenevapotranspiration.The studyhighlightshow
high-emission scenarios exacerbate drought exposure, disproportionately
impacting lower-income regions, and identifies climate change as the pri-
mary driver of future risks. These findings provide critical insights for tar-
geted adaptation strategies and sustainable agricultural planning under
climate change.

While this study offers a globally consistent assessment of cropland
exposure to compounddrought risks, several limitations still exist.Although

we applied a rigorous data-driven procedure for copula selection based on
AIC and K-S tests, we did not quantify the uncertainty surrounding the
copula dependence parameters themselves. Techniques such as boot-
strapping or sensitivity analysis could help in this regard; however, their
application at a global scale is computationally prohibitive under current
constraints. Moreover, the 3-month and 6-month SPI and SPEI indicators
provides abroadapproximationofdroughtpersistence across crop-growing
seasons, but local cropping calendars and hydrological responses may vary
significantly and require regional-scale refinement. While we incorporated
multiple GCMs and PET estimation methods to assess inter-model
uncertainty, we did not explicitly address structural uncertainties in land-
use projections or adaptation responses. In addition, the analysis of expo-
sure disparities by income group relies on fixed income classifications from
the World Bank in 2020. Particularly for the LMI category, which encom-
passes countries with highly heterogeneous climates, agricultural systems,
and adaptive capacities, our grouping may obscure important regional
differences. Furthermore, income levels are dynamic and may shift by the
end of the century, which could alter interpretations of long-term exposure
trends. Consequently, future work should consider probabilistic frame-
works and ensemble-based decision tools that integrate uncertainty pro-
pagation from climate, land-use, socioeconomic dynamics, and model
structure to better inform drought resilience strategies.

Methods
Data on climate projection and cropland expansion
In this research, we leveraged climate simulations and projections from 12
GCM models (see Table 1) within the Coupled Model Intercomparison
Project Phase 6 (CMIP6) to evaluate drought conditions under two specific
Shared Socioeconomic Pathways (SSP245 and SSP585). These selected
models encompass a wide range of geographical sources and spatial reso-
lutions, providing a thorough assessment of how projected climate changes
might influence the severity and frequency of droughts. The selection of
GCMs was guided by recent empirical studies, which highlight the critical
role of model accuracy in simulating key climate variables such as pre-
cipitation and temperature—essential components for reliable drought
analysis25–31. Moreover, this study specifically focuses on assessing future
drought risks under the SSP245 and SSP585 scenarios. SSP245 represents a
scenario where socio-economic trends mirror historical patterns, leading to
an intermediate level of radiative forcing by the end of the century,
approximately 4.5W/m², aiming to moderate climate warming32. In con-
trast, SSP585 outlines a “Fossil-Fueled Development” future, characterized
by high energy demand and continued reliance on fossil fuels, resulting in
the highest greenhouse gas emissions among the SSP scenarios, with
radiative forcing exceeding 8.5W/m² by 210033.

Table 1 | CMIP6 climate models used in this study

ID Model Country Resolution

1 ACCESS-CM2 Australia 2.8° × 2.8°

2 ACCESS-ESM1-5 Australia 2.8° × 2.8°

3 CMCC-CM2-SR5 Italy 1.25° × 0.9°

4 EC-Earth3 Spain 100 km

5 GFDL-ESM4 US 100 km

6 INM-CM4-8 Russia 1.4° × 1.4°

7 INM-CM5-0 Russia 1.4° × 1.4°

8 IPSL-CM6A-LR France 2° × 1.5°

9 MIROC6 Japan 2.5° × 1.3°

10 MPI-ESM1-2-HR Germany 250 km

11 MPI-ESM1-2-LR Germany 250 km

12 MRI-ESM2-0 Germany 250 km

All model outputs were regridded to a common resolution of 250 km (matching MRI-ESM2-0) prior
to analysis.
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Monthly precipitation data for both historical (1951–2010) and future
(2041–2100) periods were obtained from the World Climate Research
Programme (WCRP) (https://esgf-node.llnl.gov/search/cmip6/). These
datasets enable an analysis of changes in the SPI across both historical and
projected future timeframes. Additionally, PET data are required to com-
pute the SPEI, which can be derived through various methods using
meteorological variables. For this research, PET data were sourced from
Bjarke et al.34, who provided global monthly estimates using the
Penman–Monteith method, based on climate projections from multiple
GCMs in CMIP634,35. The PET dataset from Bjarke et al.34,35 aligns well with
estimates from the Climate Research Unit (CRU) and the ERA5-Land
reanalysis dataset, confirming its suitability for use in this analysis. More-
over, the multi-model ensemble (MME) was adopted in this study, with
eachmodel assigned equal weights. Figure S1 illustrates the performance of
each model in simulating precipitation and PET compared to observations
from the CUR dataset. The results show substantial variability among
individual models. However, the MME consistently exhibits strong per-
formance, with its position located near the observational reference point in
both diagrams. This supports the long-standing finding that MME
approaches can effectively reduce random errors and compensate for
individual model biases

The cropland data for both historical and future periods were sourced
from Cao et al.36, who developed a global cropland proportion dataset at a
1-km resolution spanning from 10,000 BCE to 2100 CE using a harmoni-
zation and downscaling framework. This high-resolution dataset offers a
detailed view of cropland distribution and spatial heterogeneity. In this
study, cropland areas are notmerely upscaled tomatch the resolution of the
GCM outputs. Instead, we calculate the cropland areas within each GCM
grid cell individually for both historical and future periods. Specifically, for
each GCM grid cell, we first identify the corresponding 1-km resolution
grids from the cropland dataset located within that cell. We then calculate
the cropland area for each 1-km grid and sum these to determine the total
cropland area within the GCM grid cell.

Drought indicators
There are numerousmetrics used to diagnose drought globally, with the SPI
and the SPEI being two of the most widely utilized drought indices10,11. The
SPI focuses solely on precipitation anomalies, making it useful for assessing
drought in areas where temperature has aminimal effect on water demand.
It is calculated by fitting the precipitation data to a probability distribution,
often the gamma distribution, and transforming it into a standard normal
distribution10. In contrast, SPEI accounts not only for precipitation but also
for PET, which reflects the effect of temperature on drought conditions.
SPEI is based on a water balance model where PET is subtracted from
precipitation, and the resulting difference is fitted to a log-logistic
distribution11. The formula for SPEI is similar to SPI, with the water bal-
ance D = P− PET replacing precipitation in the calculation37.

Based on either SPI or SPEI, drought severity can be categorized into
different levels such as moderate, severe, and extreme drought. The specific
SPI/SPEI thresholds for these severity levels are outlined in Table 2. In this
study, we will primarily focus on assessing the risks of severe and extreme
droughts under different climate change scenarios. Tobetter understand the
potential impact of drought on future agriculture, we will analyze drought
risks during the 3-month and 6-month periods that cover themain growing
seasons for crops. In the Northern Hemisphere (NH), the 3-month period

corresponds to April–June and the 6-month period to April–September. In
the Southern Hemisphere (SH), the corresponding 3-month and 6-month
periods are October–December and October–March, respectively. These
time scales are widely used in agroclimatic studies and align with typical
planting-to-harvest durations for major crops worldwide. While the
growing seasons vary across regions—for example, lasting only 3–4months
in northern areas such as Canada or Scandinavia, and longer in tropical or
subtropical zones—our choice of 3- and 6-month periods aims to provide a
globally consistent basis for analyzingdroughtpersistence risks. For regional
applications, local crop calendars and climate characteristics would need to
be taken into account to refine this framework.

Drought occurrence and transition risks
This study aims to characterize drought evolution over periods ranging from
3 to 6 months, encompassing the primary crop-growing seasons. The
3-month and 6-month SPI/SPEI indicators are likely to be correlated, as the
6-month accumulation inherently includes the preceding 3 months. Also,
the goal of our analysis is not to treat themasorthogonal variables, but rather
to assess the persistence and transitions of drought conditions over agri-
culturally meaningful time scales. The 3-month drought captures early-
seasondeficits, while the 6-monthdrought reflects extendedwater stress that
can affect crop yield. To achieve this, the copula method was applied to
quantify the interdependence between 3-month and 6-month drought
events.Over the last twodecades, the copulamethod has beenwidely used to
model and analyze the dependence structure between different variables in
variousfields, includinghydrology, climatology, andagriculture. Its ability to
capture non-linear and asymmetric relationships has made the copula
method particularly valuable for studying complex environmental phe-
nomena, such as droughts,floods, and other hydroclimatic hazards, within a
multivariate context. This has greatly enhanced our understanding of their
underlying dynamics and their impacts onbothnatural andhuman systems.

For either SPI or SPEI with 3-month and 6-month time scales
respectively denoted as X3mon and X6mon, the interdependence between
these two drought index values can be described by the copula function as
follows:

Fðx3mon; x6monÞ ¼ CθðF3monðx3monÞ; F6monðx6monÞÞ ð1Þ

whereF3mon(x) andF6mon(x) represents themarginal distributions forX3mon

and X6mon, respectively; Cθ is the copula function with a parameter set of θ.
In this study, the empiricalmarginal distributions are adopted forX3mon and
X6mon, whilst parametric copula functions including Gaussian, Gumbel,
Frank, and Joe copulas, were used to model their interdependence. There
have been studies using empirical copulas to model multivariate char-
acteristics in drought risk analysis38–40. However, parametric copulas offer
distinct advantages in the current study as there are a variety of parametric
copulas available, allowing flexibility in modeling dependence structures.

The copula modeling procedure consists of the following steps:
1. Dependence Assessment: For each grid cell, the correlation between

historical X3mon and X6mon drought indicators is evaluated using
Kendall’s τ. If a statistically significant dependence is detected, para-
metric copulas are considered for modeling. Otherwise, an indepen-
dence copula is used.

2. Copula Selection: For grid cells with significant dependence, Gaussian,
Gumbel, Frank, and Joe copulas are fitted to the data. The selection of
the optimal copula is based on two criteria: (a) passing the
Kolmogorov-Smirnov (K-S) goodness-of-fit test, and (b) achieving the
lowest Akaike Information Criterion (AIC) score. The selected copula
is then used for subsequent compound drought risk analysis.

3. Application to Future Periods: Given that copula structure has a notable
influence on estimates of compound extremes41,42, wemaintain the same
copula family selected during the historical period for future simulations.
However, the copula parameter is re-estimated based on future drought
indicator time series. This ensures consistency in dependence structure
modeling while adapting to changing marginal behaviors.

Table 2 | Drought severity using SPI/SPEI indices9

Drought severity levels SPI/SPEI value

No drought SPI/SPEI > -1

Moderate drought −1.0 ≥ SPI/SPEI >−1.5

Severe drought −1.5 ≥ SPI/SPEI >−2.0

Extreme drought −2.0 ≥ SPI/SPEI
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The use of parametric copulas in this context offers several key
strengths. They enable flexible modeling of nonlinear dependence beyond
linear correlation, which is essential for characterizing compound droughts
spanning different time scales. Moreover, their computational efficiency
makes them particularly suitable for global applications involving high-
resolution grids and large datasets. Nevertheless, several limitations should
be acknowledged. Firstly, parametric copulas rely on assumed functional
forms—often with symmetric or asymmetric tail behavior—whichmay not
fully reflect localized or complex dependence structures. Secondly, the
results are sensitive to the choice of both the copula family and the fitted
marginal distributions, which may affect the accuracy of joint extremes.
Finally, although non-parametric or semi-parametric alternatives offer
greater flexibility, they are computationally intensive and not practical for
global-scale analyses. To address these limitations,we implementeda robust
model selection framework combining theAICandK-S test at eachgrid cell.
This ensures that the selected copula strikes a balance between statistical
performance and computational feasibility, thereby supporting a consistent
and scalable analysis of compound drought risk across diverse climatic and
geographic regions.

In this study, the frequencies of 3-month and 6-month severe drought
(SD) and extreme drought (ED) under different climate conditions will be
analyzed using both SPI and SPEI. Utilizing the copula model described in
Eq. (1), the joint probabilities of 3-month and 6-month droughts, for either
SPI or SPEI, can be effectively quantified, enabling a comprehensive
understanding of their interdependence. Refer to the drought severity
categories in Table 2, the concurrence risk severe drought (SD3nSD6) and
extreme drought (ED3nED6) can be expressed as follows:

PSD3nSD6 ¼ CθðF3monð�2:0 < x3mon ≤ � 1:5Þ; F6monð�2:0 < x6mon ≤ � 1:5ÞÞ
¼ CθðF3monð�1:5Þ; F6monð�1:5ÞÞ � CθðF3monð�2:0Þ; F6monð�1:5ÞÞ
�CθðF3monð�1:5Þ; F6monð�2:0ÞÞ
þCθðF3monð�2:0Þ; F6monð�2:0ÞÞ

ð2Þ

PED3nED6 ¼ CθðF3monðx3mon ≤ � 2:0Þ; F6monðx6mon ≤ � 2:0ÞÞ
¼ CθðF3monð�2:0Þ; F6monð�2:0ÞÞ ð3Þ

Furthermore, the copula model developed for the 3-month and
6-month drought indices can also be used to assess the transition risks
between different drought conditions, specifically the transitions between
severe and extreme droughts, under various future climate scenarios.
Understanding these transition risks is essential for evaluating how short-
term droughts may escalate into prolonged and more severe conditions. In
detail, the transition risks among 3-month and 6-month droughts can be
derived as:

(a) 3-month severe drought to 6-month severe drought (SD3toSD6)

PSD3toSD6 ¼ Prfðx6mon 2 SDÞjðx3mon 2 SDÞg

¼ CθðF3monð�2:0 < x3mon ≤ � 1:5Þ; F6monð�2:0 < x6mon ≤ � 1:5ÞÞ
Prf�2:0 < x3mon ≤ � 1:5g

ð4aÞ

(b) 3-month severe drought to 6-month extreme drought (SD3toED6)

PSD3toED6 ¼ Prfðx6mon 2 EDÞjðx3mon 2 SDÞg

¼ CθðF3monð�2:0 < x3mon ≤ � 1:5Þ; F6monðx6mon ≤ � 2:0ÞÞ
Prf�2:0 < x3mon ≤ � 1:5g

ð4bÞ

(c) 3-month extreme drought to 6-month severe drought (ED3toSD6)

PED3toSD6 ¼ Prfðx6mon 2 SDÞjðx3mon 2 EDÞg

¼ CθðF3monðx3mon ≤ � 2:0Þ; F6monð�2:0 < x6mon ≤ � 1:5ÞÞ
Prfx3mon ≤ � 2:0g

ð4cÞ

(d) 3-month extreme drought to 6-month extreme drought
(ED3toED6)

PED3 toED6 ¼ Prfðx6mon 2 EDÞjðx3mon 2 EDÞg

¼ CθðF3monðx3mon ≤ � 2:0Þ; F6monðx6mon ≤ � 2:0ÞÞ
Prfx3mon ≤ � 2:0g

ð4dÞ

Cropland exposure changes to droughts
The drought-induced cropland exposure is defined as crop-cultivable land
situated in areas prone to drought events, which can be quantified by
multiplying the estimateddrought frequency (DF) by the total croplandarea
within a drought-prone region. Refer to Mondal et al23., the cropland
exposure can be expressed as:

CEi;j ¼ Ci × Fi;j ð5Þ

where CEi,j indicates the affected cropland at grid i to hazard j; Ci is the
cropland area at grid i, and Fi,j is the frequency of drought j at grid i. In this
study, drought exposure is defined as the product of cropland area and
drought frequency, implicitly assuming that all cropland is equally sus-
ceptible to drought. While this simplification does not account for yield
gradients or irrigation buffers, the metric remains meaningful for several
reasons. First, even in irrigated regions, droughts often lead to increased
water demand and irrigation costs, especially where water availability is
limited. Thus, drought occurrence still represents a significant stressor,
requiring resource allocation for mitigation. From this perspective, the
metric can also serve as a proxy for the area requiring potential drought-
responsemeasures, such as supplemental irrigation.Moreover, our primary
objective is not to quantify precise yield losses, but to reveal spatial
inequalities in drought exposure under future scenarios. For this purpose,
the adopted metric offers a consistent and interpretable indicator across
global regions.

Due to climate change and anthropogenic activities, drought-induced
cropland exposure is expected to change in the future. These changes will
likely be influenced by cropland alterations, climate variability, and the
combined effects of cropland and climate interactions23. Consequently, the
cropland exposure changes can be decomposed as:

ΔD ¼ Xcrop;j ×Xcli;j � Xcrop;i ×Xcli;i ¼ Xcrop;i ×ΔXcli þ ΔXcrop ×Xcli;i

þΔXcrop ×ΔXcli

ð6Þ

where ΔD is the total change in cropland exposure; Xcrop,i and Xcrop,j

respectively denotes the cropland status (km2) in the time period i and j;Xcli,i

and Xcli,j represents the drought frequency in time period i and j, respec-
tively;ΔXcrop is the cropland change from timeperiod i to j;ΔXclidenotes the
drought frequency change from time period i to j. In Eq. (6), Xcrop;i ×ΔXcli
represents the climate change effect, ΔXcrop ×Xcli;i denotes the cropland
change effect, and ΔXcrop ×ΔXcli reflect the joint cropland-climate change
effect. Consequently, the contribution for each influencing factor can be
obtained as:

CTRcrop ¼
ΔXcrop ×Xcli;i

Xcrop;i ×ΔXcli þ ΔXcrop ×Xcli;i þ ΔXcrop ×ΔXcli
× 100% ð7aÞ
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CTRcli ¼
Xcrop;i ×ΔXcli

Xcrop;i ×ΔXcli þ ΔXcrop ×Xcli;i þ ΔXcrop ×ΔXcli
× 100% ð7bÞ

CTRcrop�cli ¼
ΔXcrop ×ΔXcli

Xcrop;i ×ΔXcli þ ΔXcrop ×Xcli;i þ ΔXcrop ×ΔXcli
× 100%

ð7cÞ
where CTRcrop, CTRcli and CTRcrop-cli respectively denote the relative con-
tribution from cropland variation, climate change, and interact effect of
cropland and climate change. In Equations (7), the contributions of crop-
land expansion (CTRcrop), climate change (CTRcli), and their interaction
(CTRcrop–cli) are calculated using a decomposition approach that allows
individual terms to exceed 100%or be negative. Values above 100% indicate
that a factor alone drives a change larger than the net total, often due to
offsetting effects from other factors. Negative values reflect factors that
reduce overall exposure, which is common when one component coun-
teracts the increase driven by another.While each termmay fall outside the
0–100% range, their sum always equals the total change in cropland
exposure (ΔD), ensuring consistence

Data availability
The CMIP6 simulated data used in the study are available from the Earth
SystemGrid Federation (ESGF)Archive, https://esgf.llnl.gov/. The potential
evapotranspiration data derived from CMIP6 projections are available at
https://zenodo.org/records/7789759. The monthly observation data are
obtained from Climatic Research Unit (CRU) at https://crudata.uea.ac.uk/
cru/data/hrg/cru_ts_4.07/.

Code availability
Code used for the analysis is available upon reasonable request.
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